iiIAPRUEBA TU EXAMEN CON SCHAUM!!

Luis Joyanes Aguilar - Andrés Castillo Sanz
Lucas Sanchez Garcia - Ignacio Zahonero Martinez

REDUCE TU TIEMPO DE ESTUDIO
EJEMPLOS DETALLADOS, CUESTIONES DE REPASO Y PROBLEMAS DE COMPRENSION
PROBLEMAS RESUELTOS EN LA WEB

EJERCICIOS PRACTICOS DE APRENDIZAJE DE PROGRAMACION

C
Algoritmos, programacion
y estructuras de datos

C
Algoritmos, programacion
y estructuras de datos

LUISJOYANESAGUILAR
ANDRES CASTILLO SANZ
LUCAS SANCHEZ GARCIA
IGNACIO ZAHONERO MARTINEZ
Departamento de Lengugjesy Sistemas Informaticos e Ingenieria del Software
Facultad de Informatica/Escuela Universitaria de Informatica
Universidad Pontificia de Salamanca campus Madrid

G

MADRID « BOGOTA » BUENOS AIRES *» CARACAS » GUATEMALA e« LISBOA * MEXICO
NUEVA YORK * PANAMA « SAN JUAN ¢ SANTIAGO * SAO PAULO
AUCKLAND ¢ HAMBURGO ¢ LONDRES ¢ MILAN e« MONTREAL e NUEVA DELHI ¢ PARIS
SAN FRANCISCO e SIDNEY e SINGAPUR ¢ ST. LOUIS TOKIO ¢ TORONTO

La informacion contenida en este libro procede de una obra origina entregada por los autores. No obstante, McGraw-
Hill/Interamericana de Espafia no garantiza la exactitud o perfeccién de la informacién publicada. Tampoco asume ningln tipo de
garantia sobre los contenidos y las opiniones vertidas en dichos textos.

Este trabajo se publica con el reconocimiento expreso de que se esta proporcionando una informacion, pero no tratando de prestar
ningun tipo de servicio profesional o técnico. Los procedimientosy lainformacion que se presentan en este libro tienen sdlo lainten-
cién de servir como guia general.

McGraw-Hill ha solicitado los permisos oportunos paralarealizacion y el desarrollo de esta obra.

C. Algoritmos, programacion y estructuras de datos. Serie Schaum

No esta permitida la reproduccién total o parcial de este libro, ni su tratamiento informatico, ni la transmision de ningunaforma o por
cualquier medio, ya sea electrénico, mecanico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de los
titulares del Copyright.

M cGraw-Hill/Interamericana
de de Espafa, S. A. U.

DERECHOS RESERVADOS © 2005, respecto a la primera edicion en espafiol, por
MCcGRAW-HILL/INTERAMERICANA DE ESPANA, S.A. U.
Edificio Valrealty, 12 planta
Basauri, 17
28023 Aravaca (Madrid)

www.mcegr aw-hill.es

universidad@mcgraw-hill.com

ISBN: 84-481-4514-3
Depdsito legal: M.

Editor: Carmelo Sanchez Gonzalez
Compuesto en CD-FORM, S.L.
Impreso en

IMPRESO EN ESPANA - PRINTED IN SPAIN

mailto: universidad@mcgraw-hill.com

Contenido

o (0] [0 o 1 OO XI
Capitulo 1 Introduccion a las computadoras y a los lenguajes de programacioncccccvcevveriereeiesesesesieseseseeennens 1
1.1 Organizacion fisica de una COMPULAAOIAccceiviiiiiiiiie et a e sesbe st ne e 1

1.2 REAES ...ttt bbbk bbb R R £ E R R R R R R bR E R bR b b e bbbt bt e b 5

1.3 EI SOftWare (10S PrOQIaMES) ...c.eeveiterieriiiirienieriaiisiesiesesiestestesee e st ssesesestesseseeseasesbesbestabesbesbeseesesbessesessesbessensesenns 6

1.4 Lenguajes de PrOgramaCiONc...cceevrvierisreresieteestereseesesessesesessessssesessesesessesessesesessesessssesessssesessasassssessssesessasens 7

1.5 El lenguaje C: NiStOria Y CaraCteriStICaSivvveiriruerireeriristerisieteistere st e seere s e ses e et e e e e s e e nse e ssesesessens 10
Referencias bibliograficas y lecturas SUPIEMENTAIAS ..o 11
EJEICICIOS UE MBPASOevuviiereiceeet ettt ettt nenr e n et r e neen e en e ene s 12
Capitulo 2 Fundamentos de ProgramaCiOn........... oo ieireieriree ettt ettt se et e e s e et e eene e ebeneseenens 13
2.1 Fases en 1a resolucion de ProbIEMAS.........ccviiviiiiiicice et sa e reste e neeneas 13

2.1.1 ANALISIS del PrODIBMAocviieiciicecie e bbbt b e bt ne et re e ere s 14

2.1.2 DiSei0 el AlgOTITMO.....ciiiiieieiieiiee ettt bt e et st e b ne st e sre e ere s 14

2.1.3 Codificacion d& UN PrOgIaAMA........cccevieiiiereiiteesieesssesessseesseessssese s tessssesassesessssesessesessssesessssesssseseses 14

2.1.4 Compilacion y ejecucion de UN PrOGrAMAccuveerrivereriaieresieresssseessesessssesessesessssesessesessssesessssesssseseses 14

oY T Tor Tox o A YA (=T o 10 Vo] o oSS 15

2.1.6 Documentacion Y MAaNtENIMIENTOc.eueuiiiriiriirciet ettt 15

2.2 Programacion ESIIUCTUFATA.........c.eiiiiieireieteteiest sttt b bttt se e n ettt se et 16
2.2.1 RECUISOS ADSTIACTOS ...ttt sttt sttt e ettt bt e sttt e et e e eb e s e seeb e e et e b e seebe st eaene e seenesennens 16

2.2.2 Diseio descendente (TOP DOWN) .c..oviiiiiiiieiiisiesieeste st ssees e stesse e ste e see e ste b ssesasbestesseseesessessensasens 16

2.2.3 ESLIUCLUIAS T8 CONEION ...ttt ettt b ettt ettt eb e et snene s 16

2.2.4 Teorema de la programacion eStTUCIUFATA.cccerveeeereserieesisesie s sbe e sestesreneenens 16

2.3 Métodos formales de VerificaCion de PrOgramas.........cceieirierierierisisiesesieisesie e ese s esse s sseessessessesessens 16

2.4 Factores de calidad del SOfIWAIEouciiieiee bbbt 17
PrODIEMAS FESUBITOSeevieeeei et b bbbt b et n e 18
PrODIEMAS PrOPUEBSLOS. ... cveeiiieeiireie ettt e et e et r et r et n et r et nn e 24
Capitulo 3 El lenguaje C: €lemMENtOS DASICOSc.cvevireiiiiriiiirieieseie ettt 25
3.1 Estructura general de Un Programa €N C...........ocoeiiueirieererieienieeneseeseseeteseseesesesse e sesseseesesessesessasenesessessssesesea 25

3.1.1 Directivas del PreProCESAUON.cciiiviiiiiie ettt sttt te st e st te bt s e tesbesbe e esesbesseseesestesseneaneas 25

3.1.2 Declaraciones gIODAIES..........ccciiiiiiieice ettt e et eere s 25

TN R T ¥ o To o T I SRR 26

3.1.4 Funciones definidas POr €l USUAIIOcceeiiieiriieiireirsee et 26

3.2 Los elementos de UN Programa €cceoioeirieerieeesieesesie et see e sesse e saese e eteseseese s aseneseesenesseneneas 27

IR T T o To T3 (= 1 (o LY =T o I OSSOSO 27

3L3.L ENEEIOS (FN1T) cutrttrtiteiietistes ettt btttk b b et b bbb bt bbb e e b E bbbt b e st bt b e e ene s 27

3.3.2 Tipos de coma flotante (F10at/dOUDTE) wiiiiiriiiiieirieeresee ettt e 28

31303 CAIACTEIES ((CNAT) tuveuteuieuiiterteie ettt sttt sttt b bbbt bbb bbb bbbt b b e bt e bbb e bbbt b s e e eb e b e nn e e bt 29

R I AT oo I (0o P L (oI oo oo OO ERSOPRPRPRSRSIN 29

3.5 CONSTANTES ...ttt bbb b h b E R R R R R R E Rt R R bt r e 29

3B VaTTADIES ... R b bbbt bbb 30

3.7 ENLratdas Y SAIIAS.......oouiriiieiiii et bbb ettt ne e re s 30

o CONTENIDO

PrODIEMAS FESUBITOS.......eciiieeee ettt bbb bbb bbbt bbbt b et bbbt nn et en e 31
PrODIEMAS PrOPUEBSLOS. ... ettt ettt sttt et s et et e b e s ee et et bese s e eb e s e e eese e e b e ne e b e b e e et enene e b e e ebereeeebe e eene 35
Capitulo 4 OpPEradoreS Y BXPIESIONEScveiivereriireretetetstesestetesestesasessesessasasessesessesessssasessesesessesessssesessasessssesessasesesseseses 37
4.1 OPEratoreS Y EXPIESIONESvcveiveeereerestesseseesesassestartasessesseseasessesseseesessessessessssessessessasessessessasessessesssessessensesesses 37
4.2 El OPErador A8 @SIGNACIAccueuireeuirireeierieteieeeete sttt eeete st ete st e eae e tese st e be st s ese st e tene st ebe e et ere et beneneere e tenenea 37
4.3 OPEIAtOreS AITEMELICOS.eutueriiietetetetettt ittt ettt b bt s ettt b b h et bbb bbbttt eb bt 38
4.4 Operadores de incrementacion Y deCrEMENTACIONccevivereriereiieeiereesieree st ee st se e b e e s re s rene e 39
4.5 Operadores relacionales 39
I @ o1 - To (o =TS [0 o LSRR 40
4.7 Operadores de manipulacion de DItS.........ccccivreirireiineecsee e 40
4.7.1 Operadores de asignacion adiCIONAIESc.cciiiiiiieiii i ers 41
4.7.2 Operadores de desplazamiento de DitS (3>, K<) .uiiiiiiiiiiiiieiesiseseece et 41

4.8 Operador CONAICIONALcooriiiee ettt r e n e 41
F e B @] 1= - To (o] g o] - KOTSRS TRSURO 42
4.10 Operadores ESPECIAIES (), L] eoriiirieirieirst ettt ettt bbbt b ettt 42
e Y o]0 L= = To o] R Yo OSSR SSRPR 42
4.12 CONVEISIONES A8 TIPOS ...vevieiieierteiciet ittt bbbttt b ettt b e 42
4.13 Prioridad Y @SOCIAtIVIAAG.cviiieieiiiieiieiee sttt bbb bbbt ne et 43
PrODIEMAS FESUBITOS.......eceiieeee ettt bbb bbb bbb bbb bbbt b et bbbt en e 44
0] o] [T Eo T T 0] 0T U I (1RSSO 53
Capitulo 5 Estructuras de Seleccion: SENtENCIAS 11 Y SWi LT uiuiiiiiriiiirisirisieiesesei st ssereseesenis 55
5.1 ESIrUCIUTAS & CONTIOL......cuiiitiieitiiet ekt b et b ettt b bt bene e 55
5.2 La sentencia if CON UNA AltEINAIVA.......cccciieiiiiiiici s b e st seesestesaeneaneas 55
5.3 Sentencia if de doS alterNatiVas: 71 - €1 S ittt sb e et b b e ere 56
5.4 Sentencia 08 CONIIOI SWT T TN cuiuiiriiiiiriieete ettt 57
5.5 Expresiones condicionales: el OPEIrator 7 :......ciiiiiiiiiiiiiieiie et sb et be e e ene s 57
5.6 Evaluacion en cortocircuito de eXpreSiones IOQICAScooiererireririeirieierisiee ettt 58
PrODIEMAS FESUBITOS ... e ettt ettt bbb bbbt bbbt e bbb s e bt st e bt b e 58
PrODIEIMAS PrOPUESTOS. .. vttt ettt bbb bbb bbb s b e e e bt b ek b e bt e b s b b e s e ebe st e e e s e besbena e e ene e 69
Capitulo 6 EStructuras de CONIOL: DUCIES........c.ci ittt 71
6.1 L SENTENCIA WHT T8 1utetiitiieiietesteste ettt sttt bttt b e bbb bbb b b s bt e b b s e e bt e b b et ekt nb e s b et e bt et e sbe b e e ebe s 71
6.1.1 Miscelanea de control de BUCIES Whi Te ..c.iiiiiiiiiieieiei e 72

6.2 REPELICION: Bl DUCIE FOI iitiitiiiiteiei sttt sttt bt e st b et e sesbesbe e eseebesbenneseareas 73
6.3 RepetiCiOn: €l DUCIE 0. . . WhT T ittt sttt e st 74
6.4 Comparacion de bucles whiTe, TOr Y d0-WhiTe et 74
PrODIEMAS FESUBITOSeceieeeteei ettt bbb bbb bbb bbbt b bbbt e bt 75
0] o] =T Fo T T 0] U] (01O 92
(0= o 11 (0] Fo A U Tod o] 3-SR STSR 95
7.1 CONCEPLO A8 TUNCION ..ottt sttt bbb st bt e b e ebe s be e e e et e s benseneaneas 95
7.2 EStructura de UNa FUNCIONceiueicicccees ettt bbbt e seebe st et eneesestesneneaneas 95
7.3 Prototipos de 18S TUNCIONEScoriiiiieeiece et 96
7.4 Pardmetros de UNA FUNCIONceiiiiiiieiet ettt b ettt bbbttt 97
7.5 Funciones en 1inea, Macros CON argUMENTOSovivierveieresrestesieessesessesesessessessesessessessesessessessesessessessessasens 98
7.6 AMDITO (AICANCE)voveeeeeecteceeeeee et eee st st es s s sttt s e sse s s s s st essensens s s s s s sn s st s sn s sn s senes 98
7.7 Clases de AlMACENAMIENTOc.eiuiieeiiiiteneiei ettt b ettt b bbb sb e e e bt sb e b e e e b e sbe e e e ebe s 99
7.8 Concepto y uso de fuNCIoNes de DIDHOLECA.oiviiiiiiiieise e e 100
7.9 MiSCEIANEA 0B FUNCIONESecviveieietieit ettt sttt e b bt e et st e e e seebesbeteseebesbesneneaneas 100
0] 0] Tt N (=T U T=] L oSO SR 101

PrODIEMAS PrOPUEBSTOS.cveviiieeieir ettt et b bbbt r et et r et 121

CONTENIDO

Capitulo 8 Recursividad

8.1 La naturaleza de 18 FECUISIVIAAUcouiiueiieeee ettt ettt et testeeaeeeeereerseeesteereenes
8.2 FUNCIONES FBCUISIVASvevveviiteeieeiteeteettestesteesaestesteaseetestesseesbesbeeheessesbeebeessesaeabeessetesbeessesesbeassensesbesssensestenteenes
8.3 RECUISION VEISUS ITBIACIONeoviiiiitiieieie et eeie ettt ettt ettt e et eete et e ebeebeeateeteebeenseetesteessesesteessensesteereenes
8.4 RECUISION INFINITAecviiiiiciccie ettt st e s b et e beebe st et e reebesbe st ereebesb et eseesesbessesseseatens

8.5 Algoritmos divi
Problemas resueltos

U8 Y VEINCEIAS ...vviveieieteeie ettt bbbt be et st e e e st et b e s e be et e s b e e e beebeste s eneereatan

0] o] L= ot T 0] U] (o1 RS RPR

Capitulo 9 Arrays (listas
9.1 Arrays.....cco.....

Y EBBIAS) 1.ttt st nre

9.2 INICIANIZACION & UN @ITAYvveieiiieieest ettt bbbt
9.3 Arrays de caracteres y CAUeNaSs U8 TEXLOiviiieiiiiiiie et ste ettt b e sb e b st sa e e re s
9.4 Arrays MUIIAIMENSIONAIES.ciiieiiiee ettt e ettt eb et seene e ebenesnenenea
9.5 Utilizacion de arrays COMO PAFAMEIIOS.cvruereieueeriaeesieestseessesessssesessesessssesessesesessessssesessasesesseseesseseens

Problemas resueltos

PrODIEMAS PrOPUEBSLOS.cveviiiieeiti ettt b et R r ettt nr e nn s

Capitulo 10 Algoritmos de ordenacion Y BUSQUETAceoviuririieiieisee et

10.1 Ordenacién....

10.2 Ordenacion POF DUMDUJAc.ccuvieiiicice ettt bbb et eseebestenneneereans
10.3 Ordenacion POF SEIECCION...........uiveviiieeieii ittt bbbt eb ettt eb et en e
O @ o [T Yo o] o oo g [ST o] o o S RPTRRPP
0TS o (=T - Tod T T TR 1 | SR
10.6 Ordenacion rapida (QUICKSOIT)ccivieiiiiiiietiiiieesest ettt sttt sttt e bbb e b et e e s e snns
10.7 Busqueda en listas: busqueda secuencial Y DINAria..........cccccvvererieiiiinners e

Problemas resueltos

0] o] L= Eo T T 0] U] (oSO

Capitulo 11 EStIUCTUIAS Y UNIONESe.veviriiveriieiesestetetstese e teeste et esesbe e e sese s ta e s et essete e sese e eses e aaese s esesessese e aaesessasens

11.1 Estructuras.....
11.2 Uniones..........

I = 01U 40 T=T (ot o] LT

11.4 Sinonimo de u
11.5 Campos de bit
Problemas resueltos

N LIPO A€ A0S TYPEALT wviviiiiiiiiierier ettt

0] 0] Tt T Lo (] o T0 i) o
Problemas de programacion d8 gESTIONccucviirieiiiiieirisiei ettt e sttt b e e r e enns

Capitulo 12 PUNLEroS (APUNTAAOIES)vvteeieeiieiiesier ettt sttt ettt bbbt bbbttt en s
12.1 Concepto de PUNErO (BPUNTAAOT)iiiiiiiiierieieesie ettt bbbt se st sbe e seebesbe e neereaes
12.2 PUNTEIOS NULL Y VOTID toeeitiiueeieenresreseestesres e sre s s e sre e sr et m e e n b s e n e renme e e n e nme e e nnenne e e nnenneenean
12.3 PUNTEIOS Y GITAYS ..uveueeieetieteestestesteeseestesteese et sseabe e s sb e b e esseabeeb e e ae e b e e bt eae e b e e bt e he e b e e bt ebe e b e e bt nbe e s s e nbenbeennenbenneenean
I AN g | (g e o W (e 10 0] =T oSS
12.5 Punteros como argumentos de TUNCIONES...........curviiririireeriineereere e
12.6 PUNLEIOS @ TUNCIONES ...ttt bbbkt bbbt eb e e

Problemas resueltos

PrODIEIMAS PrOPUESTOS. ... vttt sttt b e bbbt b e bbb e bR e bt e b e bR e e bt e b bt e bt et st et ebe et e s be it e ne et e ne

Capitulo 13 Asignacion dinAmiCa & MEMOIIAceueriiiiririrrereiet ettt
13.1 Gestion diNAMICA A8 18 MEBMOTIA.ciiiiiiii ittt sb e et e sb b s b e e st e s sbeesbessbbesaeeeabeenras
T 0T (ot o) o IR I X G SR

13.3 Liberacion de
13.4 Funciones cal
Problemas resueltos

MEMONIA, TUNCION FIre@()ittt sttt e e st e e et e b e ra et e sbearaesessreanaan
T0CE) Y PEATTIOCT)ttt e

123
123
123
124
125
125
125
135

137
137
138
138
139
140
140
159

161
161
161
162
162
163
163
163
165
170

173
173
175
176
177
179
180
190
190

191
191
192
192
194
195
196
197
209

211
211
212
213
213
214

0 CONTENIDO

0] o] (=T Fo T] 0] T U T (LSOOI 223

L0 o1 (0 Fo T 0o [T 4T TSP 225
I A O g ot o) (o I L= o= Lo [T - LSS 225

14.2 Inicializacion de variables & CAOBNA............ccuiiiiiieiii et re st a e ne e 226

14.3 LECTUTA 08 CAUBNAScueiteteteteiet ettt ettt bbb bbbt b bbbt b ket b et b et b e et ee et e e 226

I I T 0T o To (TS LT I T SO 227

14.5 Conversion de CAUENAS @ NUIMIEIOScuurivuereuesisirtresteteteteaesestse st b b ebebese et ae st b et et eb e s et ae b ettt esene et ae bbb 229
0] o] =T o T (TN] (oSSR 231
PrODIEMAS PIOPUEBSTOS. ... cveviiieeitir ettt bbbt bbbttt b et et r e b en e 240
Capitulo 15 Entrada y salida por arChiViOSccoiiiieiieieceess ettt ne e neneenens 243
L5.1 FIUJOS ottt bR Rk Rk R bR R R R R Rt E bt n e n b 243

15.2 APEITUra 08 UN ArCRIVO......cuiiiiiiiiteicc ettt s et st b e st be bt e s e e te s beaeneeseetesae e ene e 244

15.3 FUNCIONES A& 1ECTUMA Y ESCIITUMA. .c.veviitiitiieiiitiite ettt sttt bbb bbb bbb b s 244

15.4 Archivos DINATIOS 08 C...o.veueeiiiiiiieieisiieiei ettt e bbb s et bt eseebesbe st e seesesbesne e ene e 246

15.5 Datos externos al programa con argumentos d& Ma TN ()ocveucvreerrirerrieee e 248
PrODIEMAS FESUBITOSvevieee etttk b bbb bbb bbbt b bbbt nn b n e 249
0] o] =T Eo T T 0] 0T U] (1RSSOI 265
Capitulo 16 Organizacion de datoS €N UN AICHIVO.........ccuiueeririrerieereeere ettt eere e saeneseenenes 267
16,1 REQISIIOS ... vevviteteiesiete sttt ettt bbb b bbb b b e st b bt e s e bt e b e bRt e bR bR e e R b bRt bRt R bbb n e 267

16.2 OrganizaCion & ArChIVOSviiiieiiiieiei sttt sttt st e b e s e e bestesae e esestesaeneene e 268
16.2.1 OrganizaCion SECUBNCIALcueueuiuiiiiriiesiet ettt bbbt 268

16.2.2 OrganizaCion GIFBCTA.......uiueveiieiteiei sttt sttt e b b be st e bt eseebesbe e esesbesteneneets 270

16.3 Archivos con direcCionamiento NaShcccviceiiiiiiieere e e 271

16.4 Archivos SeCUENCIAIES INAEXAUOSc.eovivivirieiiirieiirist sttt bbb 272

16.5 Ordenacion de archivos: ordenacion EXIEMNAc.ccvveiierieesreseriee e se e e et a et sa e e e tesaeeene e 274
PrODIEMAS FESUBITOSt e et b et nn e 277
0] o] (=T Eo T o] 0] U T (LSOOI 293
Capitulo 17 Tipos abstractos de datoS TAD/ODJELOSuccerviieririeierisieesis ettt ebe e s e sae e seesens 295
I R T o To L3 [T - oL OSSPSR 295

17.2 Tip0S ADSIFACIOS 08 TALOScvvivireiieiiiiiiie ettt bbb bt e bbbt e st e b ne e 296

17.3 ESPECITICACION B 10S TAD ...ooiviiteieiiciiite ettt sttt b bbb bt e e e besbe st e seeseebesae e ene e 298
PrODIEMAS FESUBITOS. ... e et et e e e b et e e e s ae et e e e e s beeseeneesbesteeneesaeatenneeaennenneenean 298
PrODIEIMAS PrOPUESIOS. ... evietititeietiete sttt sttt sttt st e se st e st e b e st b ek b e st e b s b b e s e ebe st et e seebeebeste s ere e 309
Capitulo 18 LiStaS ENIAZAUASevervieeeiieeeriiieeisiee st ettt et se et e et e st et e et e s e ssese e etesessese e seese e esereneenens 311
18.1 FUNAAMENTOS TEOFICOS. .. veuveueeriitiiteiertsiesteies e ateste st e s et st e e seste b e e e sesbesbe e se e b e abe b e s e e be st e b e s e esesbesaeneeseebentensene e 311

18.2 Clasificacion de 1as listas €NlAZAUASc.ccvveiiiiieeiiieieece e sre e ne e 311

18.3 Operaciones €N liStas ENIAZAUASviviirieiiiie et b e bbb sr e b et sne e ne e 312
18.3.1 Insercion de un elemento €N UNA TIStAccoceiiiiieiiiieseece e e 313

18.3.2 Eliminacion de un NOd0 €N UNA HSTAviveveeiiiiiiiicieieiee e 313

18.4 Lista dOBIEMENLE ENIAZAUAccerverriiiiiei sttt bbb ebe s be st e e esestesae e ene e 314
18.4.1 Insercién de un elemento en una lista doblemente enlazadacccoveiirreiinciinncisec e 314

18.4.2 Eliminacion de un elemento en una lista doblemente enlazada..............ccccovvinniinnicincinnc 315

18.5 LISEAS CITCUIAIES ... cueeviteieeiete ettt ettt sttt ettt st e bt e st e e e se et e ebe e e s e e b e st et e s e e be st et e s e enesbe s eneeseetensenseneans 316
PrODIEMAS FESUBITOSveeieeee ettt bbb bbb bbbt b bbbt n b 317
0] o] =T o T T 0] U (OSSR 344
(0T o1 00] (o TR I T T A o] - TSSOSO 347
T R O 13 1ot o (o o[- 8o 1 - S 347

R O g [of=T o1 (o] [l oo - H O OO P O S T RS RPN 348

CONTENIDO

PrODIEIMAS FESUBITOS ... eveetietiiieieiiet ettt sttt st et e et e b et e bt et b et e se et st e e e s e ebesbe s eneereans
PrODIEIMAS PrOPUESTOS. ... vevetiteieteett ettt bbbttt b e s e bt e s b e et e e b e sb e e bt e b b e e be et st e e e senbesbenneneereane

CAPTEUIO 20 ATDOIES ...ttt ettt ettt een s st sttt b ettt ns
20.1 ATDOIES GENEIAIESo.vvoveieecieiecieee bbb

20.2 Arboles binarios

20.3 Estructura y representacion de un &rbol DINATIOccciiiriiiinciec e
20.4 ArDOIES (8 BXPIESIONvoveceeceeeceeiee et eee st s ee sttt s e s s st ss st ens st essensensns s s s snsensens st ensnsnssens
20.5 ReCOrridos de UN ArDO0L.........oiuiiieiciiisieet ettt b ettt e e te st e e e e eneeteste e eneareas
20.6 Arbol DINAMIO A8 DUSGUETAcveevreeeiceeeseceeeess ettt sttt es s s et ene s en e st ens st eanensnens
20.7 Operaciones en arboles binarios de DUSQUETAoiverieiririerieisisese e
PrODIEBMAS FESUBITOScuiieteeeet ettt bbb bbbkt b bbbt bbbt bbbt nn bt e
PrODIEIMAS PrOPUESTOS. ... vttt sttt ettt e sttt b e st e e bt e b e b e e bt b bt be et s b et e s e e besbenn e er e e

Apéndice A. Compilacion de programas C en UNDX Y LINUXcooriiiiiiiiereeee e
Apéndice B. Compilacion de programas C &N WINAOWSceeeiniiiiiiieriieie s
Apéndice C. Recursos Web de ProgramacCiOonccuoiriiierieeieinen et s s

indice

369
369
370
371
371
372
372
373
374
389

391
395
399

405

Prologo

Introduccion

Desde que Kernighan y Ritchie escribieran en 1975 su mitico libro Programacion en C, con el que tantos y tantos lectores y
estudiantes del mundo entero hemos aprendido C y siguen aprendiendo, ¢qué ha cambiado desde entonces en el mundo de la
programacién? Realmente, poco y mucho. C sigue siendo el lenguaje mas utilizado para aprender fundamentos y técnicas de
programacion tanto en la universidad como en los institutos tecnoldgicos y centros de formacién profesional. C++ sigue rei-
nando en el aprendizaje de la programacion orientada a objetos, aunque Java ya es un gran rival. Java y C# se han erigido como
lenguajes por excelencia en el mundo profesional de la programacion, la ingenieria de software, la ingenieria Web vy las tele-
comunicaciones.

C es un lenguaje ideal para aprender la programacion de computadoras. C es un lenguaje muy compacto ya que su sinta-
xis es sencilla y facil para aprender a escribir aplicaciones reales. Es también un lenguaje muy potente ya que se utiliza mucho
en programacion en todos los niveles, desde controladores de dispositivos y componentes de sistemas operativos hasta aplica-
ciones a gran escala. Existen compiladores de C para cualquier entorno de programacion y de sistemas operativos, tales como
Windows, Unix, Linux, Mac, etc., de modo que cuando usted haya aprendido C estara en condiciones de programar en cual-
quier contexto y entorno actual. También observara que C en una base excelente para continuar su formacién en programacién
orientada a objetos con C++ y luego migrar a Java o C# en funcion del ambiente profesional en que se desenvuelva.

Todas las carreras universitarias de Ciencias e Ingenieria, asi como los estudios de Formacion Profesional (sobre todo en
Espafia los ciclos superiores) requieren un curso basico de algoritmos y de programacién con un lenguaje potente y profesio-
nal pero que sea simple y facil de utilizar. C es idoneo para aprender a programar directamente las técnicas algoritmicas y de
programacion en asignaturas tales como I ntroduccion a la Programacion, Fundamentos de Programacion o Metodologia de
la Programacién o con otros nombres tales como Algoritmos, Programacion |, etc. C sigue siendo el lenguaje universal mas
utilizado y recomendado en planes de estudio de universidades y centros de formacion de todo el mundo. Organizaciones como
ACM, IEEE, colegios profesionales, siguen recomendando la necesidad del conocimiento en profundidad de técnicas y de len-
guajes de programacion estructurada con el objetivo de “acomodar” la formacion del estudiante a la concepcién, disefio y cons-
truccion de algoritmos y de estructuras de datos. EI conocimiento profundo de algoritmos unido a técnicas fiables, rigurosas y
eficientes de programacion preparan al estudiante o al autodidacta para un alto rendimiento en programacion y la preparacion
para asumir los retos de la programacion orientada a objetos en una primera fase y las técnicas y métodos inherentes a inge-
nieria de software en otra fase mas avanzada.

La mejor manera para aprender a programar una computadora es pensar y disefiar el algoritmo que resuelve el problema,
codificar en un lenguaje de programacion (C en nuestro caso) y depurar el programa una y otra vez hasta entender la gramati-
cay sus reglas de sintaxis, asi como la logica del programa. Nunca mejor dicho, aprender practicando. El lenguaje C se pres-
ta a escribir, compilar, ejecutar y verificar errores. Por esta razon hemos incluido en la estructura del libro las introducciones
tedricas imprescindibles con el apoyo de numerosos ejemplos, luego hemos incorporado numerosos ejercicios y problemas de
programacion con un analisis del problema y sus codigos fuente, y en numerosas ocasiones se presenta la salida o ejecucion de
los respectivos programas.

La estructura del libro en la coleccion Schaum

Esta edicién al ha sido escrita dentro de la prestigiosa coleccion Schaum de McGraw-Hill, como un manual practico para
la ensefianza de la programacion de computadoras estudiando con el lenguaje de programacién C. Debido a los objetivos
que tiene esta antigua coleccion, el enfoque es eminentemente practico con el necesario estudio teérico que permita avan-
zar de modo rapido y eficaz al estudiante en su aprendizaje de la programacién en C. Pensando en coleccidn los cuatro auto-
res hemos escrito este libro con un planteamiento eminentemente teérico-practico como son todos los pertenecientes a esta

O PROLOGO

coleccién con el objetivo de ayudar a los lectores a superar sus examenes y pruebas practicas en sus estudios de formacion
profesional o universitarios, y mejorar su aprendizaje de modo simultdneo pero con unos planteamientos précticos: analizar
los problemas, escribir los codigos fuente de los programar y depurar estos programas hasta conseguir el funcionamiento
correcto y adecuado.

Hemos afiadido un complemento préactico de ayuda al lector. En la pagina oficial del libro (http://www.mhe.es/joyanes),
encontrard el lector todos los codigos fuente incluidos en la obra y que podré descargar de Internet. Pretendemos no solo evi-
tar su escritura desde el teclado para que se centre en el estudio de la légica del programa y su posterior depuracién (edicién,
compilacion, ejecucidn, verificacion y pruebas) sino también para que pueda contrastar el avance adecuado de su aprendizaje.
También en la pagina Web encontrara otros recursos educativos que confiamos le ayudaran a progresar de un modo eficaz y
rapido.

necesita para utilizar este libro?

C. Algoritmos, Programacion y Estructura de Datos,, esta disefiado para ensefiar métodos de escritura de programas Utiles tan
rapido y facil como sea posible, aprendiendo a la par tanto la sintaxis y funcionamiento del lenguaje de programacién como las
técnicas de programacion y los fundamentos de construccion de algoritmos basicos. EI contenido se ha escrito pensando en un
lector que tiene conocimientos basicos de algoritmos y de programacion C, y que desea aprender a conocer de modo practico
técnicas de programacion.

El libro es eminentemente practico con la formacidn teérica necesaria para obtener el mayor rendimiento en su aprendi-
zaje. Pretende que el lector utilice el libro para aprender de un modo practico las técnicas de programacioén en C, necesarias
para convertirle en un buen programador de este lenguaje.

Para utilizar este libro y obtener el maximo rendimiento se necesitard una computadora con un compilador C, una biblio-
teca instalada de modo que se puedan ejecutar los ejemplos del libro y un editor de texto para preparar sus archivos de codigo
fuente. Existen numerosos compiladores de C en el mercado y también numerosas versiones shareware (libres de costes) dis-
ponibles en Internet. Idealmente, se debe elegir un compilador que sea compatible con la version estandar de C del American
Nacional Standards Institute (ANSI), C99, que es la versién empleada en la escritura de este libro. La mayoria de los actuales
compiladores disponibles de C++ , comerciales o de dominio publico, soportan C, por lo que tal vez ésta pueda ser una opcién
muy recomendable (en el Apéndice C, encontrara numerosos lugares de Internet, donde podra encontrar compiladores, inclu-
SO gratuitos, para practicar con los numerosos ejemplos y ejercicios que incluimos en esta obra.)

Aunque el libro esta concebido como un libro de problemas con los fundamentos te6ricos minimos imprescindibles para
avanzar en su formacion y se puede y debe utilizar de modo independientes, existe una posibilidad de utilizar este libro con
otro de los mismos autores Programacién en C, 22 edicidn, publicado en 2005, también por McGraw-Hill. Este otro libro se
escribi6 tanto en la 12 como en la 22 edicion, como un libro eminentemente didactico para cursos universitarios o profesiona-
les de introduccion a la programacion y sigue un contenido similar a la obra que el lector tiene en sus manos, por lo que ambos
pueden ser complementarios, uno eminentemente tedrico-practico y otro, el publicado en la coleccion Schaum, eminentemen-
te préctico.

Usted puede utilizar cualquier editor de texto, tales como Notepad o Vi, para crear sus archivos de programas fuente, aun-
que sera mucho mejor utilizar un editor especifico para editar codigo C, como los que suelen venir con los entornos integrados
de desarrollo, bien para Windows o para Linux. Sin embargo, no debera utilizar un procesador de textos, tipo Microsoft Word,
ya que normalmente los procesadores de texto o de tratamiento de textos comerciales, incrustan o “embeben’ cédigos de for-
matos en el texto que no serén entendidos por su compilador.

De cualquier forma, si usted sigue un curso reglado, el mejor método para estudiar este libro es seguir los consejos de su
maestro y profesor tanto para su formacion teérica como para su formacion practica. Si usted es un autodidacta o estudia de
modo auténomo, la recomendacion entonces sera que compile, ejecute y depure de errores sus programas, tanto los propuestos
en el libro, como los que usted disefie, a medida que vaya leyendo el libro, tratando de entender la légica del algoritmo y la sin-
taxis del lenguaje en cada ejercicio que realice.

:Como esta organizado el libro?

Todos los capitulos siguen una estructura similar: breve Introduccion al capitulo; fundamentos tedricos basicos necesarios
para el aprendizaje con numerosos ejemplos; problemas resueltos en C, donde se incluye el analisis del problema y el algorit-
mo (codigo en C); y por ultimo, todos los capitulos contienen una coleccion de problemas propuestos, cuyo objetivo es facili-
tar al lector la medicion de su aprendizaje

http://www.mhe.es/joyanes

PROLOGO o

Capitulo 1. Introduccién a la ciencia de la computacion y a la programacion. Explica y describe los conceptos funda-
mentales de la computacidn y de los lenguajes de programacion.

Capitulo 2. Fundamentos de programacion. Se introduce al lector en los conceptos fundamentales de algoritmos y sus
herramientas de representacion. Asi mismo se describen los tipos cléasicos de programacion con especial énfasis en la progra-
macion estructurada soporte del lenguaje C.

Capitulo 3. El lenguaje C. Elementos basicos. Introduce a la estructura y los componentes principales de un programa en
C: datos, constantes, variables y las operaciones basicas de entrada/salida.

Capitulo 4. Operadoresy expresiones. Se aprende el uso de los operadores aritméticos, relacionales y 16gicos para la mani-
pulacién de operaciones y expresiones en C. Se estudian también operadores especiales y conversiones de tipos, junto con
reglas de prioridad y asociatividad de los operadores en las expresiones y operaciones matematicas.

Capitulo 5. Estructuras de seleccion: sentencias i fy switch. Introduce a las sentencias de seleccion fundamentales en
cualquier programa. Se examina el uso de sentencias compuestas 0 bloques asi como el uso de operadores condicionales y eva-
luacién de expresiones légicas.

Capitulo 6. Estructuras de control: bucles. Se aprende el concepto de bucle o lazo y el modo de controlar la ejecucién de
un programa mediante las sentencias for, while y do-while. También se explica el concepto de anidamiento de bucles y
bucles vacios; se proporcionan ejemplos Utiles para el disefio eficiente de bucles.

Capitulo 7. Funciones. Examina las funciones en C, una parte importante de la programacion. Aprende programacion
estructurada — un método de disefio de programas que enfatiza en el enfoque descendente para la resolucién de problemas
mediante la descomposicion del problema grande en problemas de menor nivel que se implementan a su vez con funciones.

Capitulo 8. Funciones recursivas. La recursividad o propiedad de una funcion o expresion de Ilamarse a si misma es una
de las técnicas mas importantes en la construccion de algoritmos.

Capitulo 9. Arrays (listasy tablas). Explica un método sencillo pero potente de almacenamiento de datos. Se aprende como
agrupar datos similares en arrays o “arreglos” (listas y tablas) numéricas

Capitulo 10. Ordenacién y busqueda.. Ensefia los métodos para ordenar listas y tablas, asi como busqueda de datos en lis-
tas y tablas. Se estudian los algoritmos clasicos mas sencillos y eficientes tanto de ordenacion como de blsqueda

Capitulo 11. Estructurasy uniones. Se describen conceptos basicos de estructuras, uniones y enumeraciones: declaracion,
definicidn, iniciacién, uso y tamafio. Las operaciones fundamentales de acceso a estructuras, arrays de estructuras y estructu-
ras anidadas se analizan también en este capitulo; se muestra de modo practico como usar estructuras y uniones para conseguir
las necesidades del programa; se explican las diferencias entre estructuras y uniones, asi como el uso de la palabra reservada
typedef.

Capitulo 12. Punteros (Apuntadores). Presenta una de las caracteristicas mas potentes y eficientes del lenguaje C, los pun-
teros. Se describe con detalle los punteros, arrays de punteros, punteros de cadena, aritmética de punteros, punteros constan-
tes, punteros como argumentos de funciones, punteros a funciones y a estructuras. De un modo practico aprende el modo de
utilizar punteros a punteros y como se pueden utilizar los arrays de punteros para manipular las cadenas, que se estudiaran en
profundidad en el capitulo 14.

Capitulo 13. Asignacion dinamica de memoria. Se describe la gestion dindmica de la memoria y las funciones asociadas
para esas tareas: alloc(), free(), calloc() y realloc(). Se proporcionan reglas de funcionamiento de esas fun-
ciones y reglas para asignacion de memoria.

Capitulo 14. Cadenas. Se describe el concepto de cadena (string) asi como las relaciones entre punteros, arrays y cadenas
en C. Se introducen conceptos basicos de manipulacién de cadenas junto con operaciones basicas tales como longitud, conca-
tenacion, comparacion, conversion y bisqueda de caracteres y cadenas. Se describen las funciones méas notables de la biblio-
teca string.h.

Capitulo 15. Entrada y salida de archivos. Se estudia el concepto de flujo (stream) y los diferentes métodos de apertura de
archivos, junto con los conceptos de archivos binarios y funciones para el acceso aleatorio. Muestra de un modo practico como C
utiliza los flujos, examina los flujos predefinidos y el modo préctico de trabajar con la pantalla, la impresora y el teclado.

Capitulo 16. Organizacion de datos en un archivo. Los conceptos clésicos de registros y organizacion de archivos se estu-
dian en el capitulo. Dos tipos de archivo especiales tales como los secuenciales indexados y con direccionamiento hash son moti-
vo de estudio especifico. Por Gltimo se analizan métodos de ordenacion de archivo tanto externa como por mezcla directa.

Capitulo 17 Tipos de datos (TAD/Objetos). La programacion orientada a objetos es el paradigma mas importante después
del paradigma estructurado. El rol de la abstraccion, la modularidad y los tipos abstractos de datos son analizados en este capi-
tulo. Se describen la especificacion e implementacion de tipos abstractos de datos en C como primer nivel de objetos.

Capitulo 18. Listas enlazadas. Una lista enlazada es una estructura de datos que mantiene una coleccion de elementos,
pero el nimero de ellos no se conoce por anticipado o varia en un rango amplio., La lista enlazada se compone de elementos
que contienen un valor y un puntero. El capitulo describe los fundamentos te6ricos, tipos de listas y operaciones que se pue-
den realizar en la lista enlazada.

L v PROLOGO

Capitulo 19. Pilas y colas. Las estructuras de datos mas utilizadas desde el punto de vista de abstraccion e implementa-
cion son las pilas y colas. Su estructura, disefio y manipulacién de los algoritmos basicos se explican en el capitulo.

Capitulo 20. Arboles. Las estructuras de datos no lineales y dindmicas son muy utilizadas en programacion. . Los arboles
son una de las estructuras mas conocidas en algoritmia y en programacion ya que son la base para las técnicas de programa-
cién avanzada.

Apéndices

Compilacion de programas C en UNIX y Linux
Compilacion de programas C en Windows
Recursos de programacion Web

Cy la Web

C. Algoritmos, Programacion y Estructura de Datos es basicamente un libro practico para aprender a programar con gran can-
tidad de problemas resueltos y sus cddigos fuente respectivos. Por esta razon y con el objetivo principal de que el lector se cen-
tre en el enunciado del problema, en la resolucion del algoritmo y en su codificacién y dado el caracter reiterativo que en
muchos casos requiere la codificacion, se han incluido todos los codigos fuente de los ejercicios y problemas del libro en su
direccién Web oficial: http://www.mhe.es/joyanes. De igual forma, y como ayuda al lector y al maestro/profesor, en el
portal del libro se incluyen también ejercicios y problemas complementarios, tutoriales, bibliografia complementaria, etc Asi
mismo el profesor tiene a su disposicion, si asi lo desea una pagina especifica donde encontrara material didactico comple-
mentario que puede ser de su interés: diapositivas (acetatos, slides)

AGRADECIMIENTOS

A nuestro editor Carmelo Sanchez que con sus sabios consejos técnicos y editoriales siempre contribuye a la mejor edicion de
nuestros libros. Nuestro agradecimiento eterno, amigo y editor. También y como siempre, a todos nuestros compafieros del
departamento de Lenguajes y Sistemas Informaticos e Ingenieria de Software de la Facultad de Informética y de la Escuela
Universitaria de Informatica de la Universidad Pontificia de Salamanca en el campus de Madrid que en esta ocasién y como
siempre nos animan, aconsejan y asesoran en la distribucion de los temas y nos dan sus opiniones para mejora de nuestras obras.
Gracias, colegas y amigos. Naturalmente a nuestros lectores, razén de ser de nuestro libro. Confiamos no defraudar la confianza
depositada en esta obra y aspiramos a que su progresion en el aprendizaje de la programacion sea todo lo rapida y eficiente que
deseamos. Por ultimo, un agradecimiento especial a todos los profesores y maestros que han utilizado nuestra obra
Programacion en C; muchos nos habéis animado a escribir este nuevo libro de modo complementario y que sirviera tanto de
modo independiente como unido al libro citado en talleres y précticas de programacion. Nuestro agradecimiento mas sincero a
todos y nuestra disponibilidad si asi lo consideran oportuno.

Los autores
En Madrid, Mayo de 2005

http://www.mhe.es/joyanes.

1.1

Introduccion
a las computadoras y a los
lenguajes de programacion

Las computadoras (ordenadores) electrénicas modernas son uno de los productos mas importantes del siglo XXI ya que se han
convertido en un dispositivo esencial en la vida diaria y han cambiado el modo de vivir y de hacer negocios. El papel de los
programas de computadoras es fundamental; sin una lista de instrucciones a seguir, la computadora es virtualmente inatil. Los
lenguajes de programacion permiten escribir esos programas.

En el capitulo se introduce a conceptos importantes tales como la organizacion de una computadora, el hardware, el soft-
ware y sus componentes, y a los lenguajes de programacion mas populares y en particular a C. En esta obra, usted comenzara
a estudiar la ciencia de las computacion, la ingenieria informatica o la ingenieria de sistemas a través de uno de los lenguajes
de programacion mas versatiles disponibles hoy dia, el lenguaje C, y también la metodologia a seguir para la resolucién de
problemas con computadoras.

Organizacion fisica de una computadora

Una computadora (también ordenador) es un dispositivo electrénico, utilizado para procesar informacién y obtener resulta-
dos, capaz de ejecutar célculos y tomar decisiones a velocidades millones o cientos de millones més rapidas que puedan hacer-
lo los seres humanos. En el sentido més simple una computadora es “un dispositivo” para realizar calculos o computar. El
término sistema de computadora o simplemente computadora se utiliza para enfatizar que, en realidad, son dos partes distin-
tas: hardware y software. El hardware es el computador en si mismo. El software es el conjunto de programas que indican a
la computadora las tareas que debe realizar. Las computadoras procesan datos bajo el control de un conjunto de instrucciones
denominadas programas de computadora. Estos programas controlan y dirigen a la computadora para que realice un conjunto
de acciones (instrucciones) especificadas por personas especializadas, los programadores de computadoras.

Los datos y la informacién se pueden introducir en la computadora por su entrada (input) y a continuacion se procesan
para producir su salida (output, resultados), como se observa en la Figura 1.1. La computadora se puede considerar como una
unidad en la que se ponen ciertos datos (datos de entrada), se procesan estos datos y produce un resultado (datos de salida o
informacidn). Los datos de entrada y los datos de salida pueden ser, realmente, de cualquier tipo, texto, dibujos, sonido, ima-
genes,.... El sistema mas sencillo para comunicarse una persona con la computadora es mediante un teclado, una pantalla
(monitor) y un ratén (mouse). Hoy dia existen otros dispositivos muy populares tales como escéneres, micréfonos, altavoces,
camaras de video, etc.; de igual manera, mediante médems, es posible conectar su computadora con otras computadoras a tra-
veés de la red Internet.

o CAPITULO 1 Introduccién a las computadoras y a los lenguajes de programacion

COMPUTADORA
Programa
datos de (entrada) datos de (resultados)
entrada salida

Figura 1.1 Proceso de informacién en una computadora.

Los dos componentes principales de una computadora son: Hardware y Software. Hardware es el equipo fisico o los dis-
positivos asociados con una computadora. El conjunto de instrucciones que indican a la computadora aquello que debe hacer
se denomina software o programas. Este libro se centra en el la ensefianza y aprendizaje de la programacion o proceso de escri-
bir programas.

Una computadora consta fundamentalmente de cinco componentes principales: dispositivo(s) de entrada; dispositivos de
salida; unidad central de proceso (UCP) o procesador (compuesto de la UAL, Unidad Aritmética y Logica, y la UC, Unidad
de Control); memoria principal o central; memoria secundaria o externa Yy los programas.

Las computadoras sélo entienden un lenguaje binario digital o lenguaje maquina. EI programa se debe transferir primero de la
memoria secundaria a la memoria principal antes de que pueda ser ejecutado. Los datos se deben proporcionar por alguna fuen-
te. La persona que utiliza un programa (usuario de programa) puede proporcionar datos a través de un dispositivo de entrada. Los
datos pueden proceder de un archivo (fichero), o pueden proceder de una méaquina remota via una conexion de red.

Los paquetes de datos (de 8, 16, 32, 64 0 mas bits a la vez) se mueven continuamente entre la UCP (CPU) y todos los demas
componentes (memoria RAM, disco duro, etc.). Estas transferencias se realizan a través de buses. Los buses son los canales de
datos que interconectan los componentes del PC.

DISPOSITIVOS DE ENTRADA/SALIDA (E/S)

Los dispositivos de Entrada/Salida (E/S) [Input/Output (1/0) en inglés] permiten la comunicacion entre la computadora y el
usuario. Los dispositivos de entrada, como su nombre indica, sirven para introducir datos (informacion) en la computadora para
su proceso. Dispositivos de entrada tipicos son los teclados; otros son: lectores de tarjetas - ya en desuso -, lapices dpticos,
palancas de mando (joystick), lectores de codigos de barras, escaneres, microfonos, etc. Hoy dia tal vez el dispositivo de

UCP (Procesador)

Unidad de control

Dispositivos
de entrada

Dispositivos
de salida

> Memoria central —
bus

Memoria externa
almacenamiento
permanenete

Unidad aritmética
y logica

A
\

Figura 1.2 Organizacion fisica de una computadora.

CAPITULO 1 Introduccion a las computadoras y a los lenguajes de programacion o

entrada mas popular es el ratén (mouse) que mueve un puntero sobre la pantalla que facilita la interaccion usuario-maquina.
Los dispositivos de salida permiten representar los resultados (salida) del proceso de los datos. El dispositivo de salida tipico
es la pantalla o monitor. Otros dispositivos de salida son: impresoras (imprimen resultados en papel), trazadores graficos
(plotters), reconocedores de voz, altavoces, etc.

El teclado y la pantalla constituyen - en muchas ocasiones - un Unico dispositivo, denominado terminal. En ocasiones a la
impresora se la conoce como dispositivo de copia dura (“hard copy’’), debido a que la escritura en la impresora es una copia
permanente (dura) de la salida, y a la pantalla se le denomina en contraste: dispositivo de copia blanda (“soft copy™), ya que
se pierde la pantalla actual cuando se visualiza la siguiente.

Los dispositivos de entrada/salida y los dispositivos de almacenamiento secundario o auxiliar (memoria externa) se cono-
cen también con el nombre de dispositivos periféricos o simplemente periféricos ya que, normalmente, son externos a la com-
putadora. Estos dispositivos son unidad de discos (disquetes, CD-ROM, DVD, cintas, etc.), videocdmaras, teléfonos celulares
(moviles), etc.

MEMORIA

La memoria principal es uno de los componentes mas importantes de una computadora y sirve para el almacenamiento de
informacidn (datos y programas). La memoria central de una computadora es una zona de almacenamiento organizada en cen-
tenares o millares de unidades de almacenamiento individual o celdas. El término bit (digito binario) se deriva de las palabras
inglesas “binary digit” y es la unidad de informacién mas pequefia que puede tratar una computadora. EI término byte es muy
utilizado en la jerga informatica y, normalmente, se suelen conocer a las palabras de 16 bits como palabras de 2 bytes, y a las
palabras de 32 bits como palabras de 4 bytes.

La memoria central de una computadora puede tener desde unos centenares de millares de bytes hasta millones de bytes.
Como el byte es una unidad elemental de almacenamiento, se utilizan maltiplos para definir el tamafio de la memoria central:
Kilo-byte (KB) igual a 1.024 bytes (2'°), Megabyte (MB) igual a 1.024 x 1.024 bytes (22° =1.048.576), Gigabyte (GB) igual
a 1.024 MB (2*° = 1.073.741.824). Las abreviaturas MB y GB se han vuelto muy populares como unidades de medida de la
potencia de una computadora.

EJEMPLO 1.1 Unidades de medida de almacenamiento

Byte Byte (B) equivale a 8 bits

Kilobyte Kbyte (KB) equivale a 1.024 bytes (2')
Megabyte Mbyte (MB) equivale a 1.024 Kbytes (2%)
Gigabyte Gbyte (GB) equivale a 1.024 Mbytes (2%)
Terabyte Tbyte (TB) equivale a 1.024 Gbytes (2%)
Petabyte Pbyte (PB) equivale a 1.024 Toytes (2%°)
Exabyte Ebyte (EB) equivale a 1.024 Ebytes (2%
Zettabyte Zbyte (ZB) equivale a 1.024 Ebytes (27
Yotta Ybyte (YB) equivale a 1.024 Ybytes (2%%)

1TB=1.024 GB 1GB=1.024 MB = 1.048.576 KB =1.073.741.824 B

ESPACIO DE DIRECCIONAMIENTO

Para tener acceso a una palabra en la memoria se necesita un identificador o direccion. Cada celda o byte tiene asociada una
Unica direccion que indica su posicion relativa en memoria y mediante la cual se puede acceder a la posicion para almacenar o
recuperar informacion. La informacion almacenada en una posicién de memoria es su contenido. El contenido de estas direc-
ciones o posiciones de memoria se llaman palabras, que como ya se ha comentado pueden ser de 8, 16, 32 y 64 bits. Por con-
siguiente, si trabaja con una maquina de 32 bits, significa que en cada posicién de memoria de su computadora puede alojar 32
bits, es decir 32 digitos, bien ceros o unos.

El nimero de posiciones Unicas identificables en memoria se denomina espacio de direccionamiento. Por ejemplo en una
memoria de 64 kilobytes (KB) y un tamafio de palabra de un byte tienen un espacio de direccionamiento que varia de 0 a 65.535
direcciones de memoria (64KB, 64x1.024=65.536)

o CAPITULO 1 Introduccién a las computadoras y a los lenguajes de programacion

direcciones 999
998
997 325 D E—

Contenido de la direccién 997

O, NW

Figura 1.3. Memoria central de una computadora

LA MEMORIA PRINCIPAL

La memoria central (RAM, Random, Access Memory) o simplemente memoria se utiliza para almacenar de modo tempo-
ral informacidn, datos y programas. En general, la informacion almacenada en memoria puede ser de dos tipos: las instruccio-
nes de un programa y los datos con los que operan las instrucciones. Para que un programa se pueda ejecutar (correr, rodar,
funcionar,..., en inglés run), debe ser situado en la memoria central, en una operacion denominada carga (load) del programa.
Después, cuando se ejecuta (se realiza, funciona) el programa, cualquier dato a procesar por el programa se debe llevar a la
memoria mediante las instrucciones del programa. En la memoria central, hay también datos diversos y espacio de almacena-
miento temporal que necesita el programa cuando se ejecuta con el fin de poder funcionar.

Es un tipo de memoria volatil (su contenido se pierde cuando se apaga la computadora); esta memoria es, en realidad, la
que se suele conocer como memoria principal o de trabajo. La memoria ROM, es una memoria que almacena informacion de
modo permanente en la que no se puede escribir (viene pregrabada por el fabricante) ya que es una memoria de sélo lectura.

Con el objetivo de que el procesador pueda obtener los datos de la memoria central mas rapidamente, la mayoria de los pro-
cesadores actuales (muy rapidos) utilizan con frecuencia una memoria denominada caché que sirve para almacenamiento inter-
medio de datos entre el procesador y la memoria principal.

LA UNIDAD CENTRAL DE PROCESO (UCP)

La Unidad Central de Proceso, UCP (Central Processing Unit, CPU, en inglés), dirige y controla el proceso de informacién
realizado por la computadora. La UCP procesa 0 manipula la informacién almacenada en memoria y consta de dos compo-
nentes: unidad de control (UC) y unidad aritmético-l6gica (UAL). La unidad de control (Control Unit, CU) coordina las acti-
vidades de la computadora y determina qué operaciones se deben realizar y en qué orden; asimismo controla y sincroniza todo
el proceso de la computadora. La unidad aritmético-légica (Aritmethic-Logic Unit, ALU) realiza operaciones aritméticas y
I6gicas, tales como suma, resta, multiplicacion, divisién y comparaciones. Las series de operaciones requeridas para procesar
una instrucciéon de maquina se llaman ciclo de la maquina. Los ciclos de maquina se suelen medir en nanosegundos o pico-
segundos.

El procesador o microprocesador es un chip (circuito integrado) que controla y realiza las funciones y operaciones. En
realidad el microprocesador representa a la Unidad Central de Proceso. Todas las UCP tienen una velocidad de trabajo, regu-
lada por un pequefio cristal de cuarzo, y que se conoce como frecuencia de reloj. EI nimero de ciclos de reloj por segundo se
mide en hertzios. La velocidad de los microprocesadores se mide en MHz o en GHz.

DISPOSITIVOS DE ALMACENAMIENTO SECUNDARIO (ALMACENAMIENTO MASIVO)

La memoria secundaria, mediante los dispositivos de almacenamiento secundario, proporciona capacidad de almacenamiento
fuera de la UCP y del almacenamiento o memoria principal. El almacenamiento secundario es no volatil. Las unidades (drives,

CAPITULO 1 Introduccion a las computadoras y a los lenguajes de programacion o

1.2

en inglés), periféricos o dispositivos de almacenamiento secundario son dispositivos que actian como medio de soporte para
almacenar los datos —temporal o permanentemente- que ha de manipular la CPU durante el proceso en curso y que no puede
contener la memoria principal.

Las tecnologias de almacenamiento secundario mas importantes son discos magnéticos, discos dpticos y cintas magnéticas.

La informacion almacenada en la memoria secundaria se conserva en unidades de almacenamiento denominadas archivos
(ficheros, files en inglés) que pueden ser tan grandes como se desee. Los resultados de los programas se pueden guardar como
archivos de datos y los programas que se escriben se guardan como archivos de programas, ambos en la memoria auxiliar.

Los discos son dispositivos formados por componentes electromagnéticos que permiten un acceso rapido a bloques
fisicos de datos. La informacion se registra en la superficie del disco y se accede a ella por medio de cabezas de lectura/escri-
tura que se mueven sobre la superficie. Los discos magnéticos se clasifican en disquetes (flopy disk) y discos duros (hard
disk).

Los discos Opticos difieren de los tradicionales discos duros o discos magnéticos en que los primeros utilizan un haz de
laser para grabar la informacion. Son dispositivos de almacenamiento que utilizan la misma tecnologia que los dispositivos
compactos de audio para almacenar informacion digital. Los dos grandes modelos existentes en la actualidad son los discos
compactos (CD) y los discos versétiles digitales (DVD).

El CD-ROM (Compact Disk-Read Only Memory, Disco compacto - Memoria de solo lectura) es el medio ideal para alma-
cenar informacion de forma masiva que no necesita ser actualizada con frecuencia (dibujos, fotografias, enciclopedias,...). La
Ilegada de estos discos al mercado hizo posible el desarrollo de la multimedia, es decir, la capacidad de integrar medios de todo
tipo (texto, imagenes, sonido e imagenes).

El DVD (Digital Versatil Disk): Videodisco digital (DVD-+R, DVD-+RW, DVD-RAM) nacié en 1995, gracias a un
acuerdo entre los grandes fabricantes de electronica de consumo, estudios de cine y de masica (Toshiba, Philips, Hitachi.,
JVC,...). Son dispositivos de alta capacidad de almacenamiento, interactivos y con total compatibilidad con los medios exis-
tentes. Es capaz de almacenar hasta 26 CD con una calidad muy alta y con una capacidad que varia , desde los 4.7 GB del tipo
de una cara y una capa hasta los 17 GB de la de dos caras y dos capas.

Las cintas magnéticas son los primeros dispositivos de almacenamiento de datos que se utilizaron y por ello, hasta hace
poco tiempo -y aun hoy- han sido los mas empleados para almacenar copias de seguridad. Poseen una gran capacidad de alma-
cenamiento pero tienen un gran inconveniente, son dispositivos de almacenamiento de acceso secuencial. Por esta razén, la
rapidez de acceso a los datos en las cintas es menor que en los discos.

Las cintas de audio digital (DAT, Digital Audio Tape) son unidades de almacenamiento con capacidad para grabar varios
GB de informacién en un Unico cartucho. Una memoria flash, también comercializada como un disco, es un pequefio almacén
de memoria mavil de pequefio tamafio.

Un dispositivo de entrada es cualquier dispositivo que permite que una persona envie informacion a la computadora. Los
dispositivos de entrada, por excelencia, son un teclado y un ratén. El uso del ratén y de mens facilita dar 6rdenes al compu-
tador y es mucho més sencillo que las tediosas érdenes con combinaciones de teclas que siempre se deben memorizar. Algunos
dispositivos de entrada no tan tipicos pero cada vez mas usuales en las configuraciones de sistemas informéticos son: escéner,
l&piz dptico, micréfono y reconocedor de voz.

Redes

Hoy dia los computadores autonomos (standalone) practicamente no se utilizan (excepcién hecha del hogar) y estan siendo
reemplazados hasta en los hogares y en las pequefias empresas, por redes de computadores. Una red es un conjunto de com-
putadores conectados entre si para compartir recursos.

Las redes se pueden clasificar en varias categorias siendo las mas conocidas las redes de area local (LAN, local area net-
work) y las redes de area amplia (WAN, wide area network). Una WAN es una red que enlaza muchos computadores persona-
les y redes de area local en una zona geografica amplia. La red mas conocida y popular en la actualidad es la red Internet que
esta soportada por la World Wide Web.

El sistema cliente-servidor divide el procesamiento de las tareas entre los computadores “cliente” y los computadores “ser-
vidor” que a su vez estan conectados en red. A cada maquina se le asignan funciones adecuadas a sus caracteristicas. El clien-
te es el usuario final o punto de entrada a la red y normalmente en un computador personal de escritorio o portatil, o una
estacion de trabajo. El usuario, normalmente interactda directamente sélo con la parte cliente del sistema, normalmente, para
entrada o recuperacion de informacion y uso de aplicaciones para analisis y calculos posteriores.

El servidor proporciona recursos y servicios a otros computadores de la red (los clientes). El servidor puede ser desde un
gran computador a otro computador de escritorio pero especializado para esta finalidad y mucho més potente. Los servidores
almacenan y procesan los datos compartidos y también realizan las funciones no visibles, de segundo plano (back-end), a los

o CAPITULO 1 Introduccién a las computadoras y a los lenguajes de programacion

1.3

usuarios, tales como actividades de gestion de red, implementacion de bases de datos, etc. Otra forma de sistema distribuido es
la computacion P2P (peer-to-peer) que es un sistema que enlaza a los computadores via Internet o redes privadas de modo que
pueden compartir tareas de proceso. El modelo P2P se diferencia del modelo de red cliente/servidor en que la potencia de pro-
ceso reside solo en los computadores individuales de modo que trabajan juntos colaborando entre si, pero sin un servidor o
cualquier otro computador los controle.

Una red de area local (LAN, local area network) normalmente une a decenas y a veces centenares de computadores en
una pequefia empresa u organismo publico. Una red global, tal como Internet, que se expande a distancias mucho mayores y
conecta centenares o millares de maquinas que a su vez se unen a redes mas pequefias a través de computadores pasarela (gate-
way). Un computador pasarela (gateway) es un puente entre una red tal como Internet en un lado y una red de area local en el
otro lado. La computadora también suele actuar como un cortafuegos (firewall) cuyo propésito es mantener las transmisiones
ilegales, no deseadas o peligrosas fuera del entorno local.

INTERNET Y LA WORLD WIDE WEB

Internet, conocida también como la Red de Redes, se basa en la tecnologia Cliente/Servidor. Las personas que utilizan la Red
controlan sus tareas mediante aplicaciones Web tal como software de navegador. Todos los datos incluyendo mensajes de
correo-e y las paginas Web se almacenan en servidores. Un cliente (usuario) utiliza Internet para solicitar informacion de un
servidor Web determinado situado en computador lejano.

Las plataformas cliente incluyen PC y otros computadores, pero también un amplio conjunto de dispositivos electronicos
(handheld) tales como PDA, teléfonos moviles, consolas de juegos, etc., que acceden a Internet de modo inalambrico (sin
cables) a través de sefiales radio.

La World Wide Web (WWW) o simplemente la Web fue creada en 1989 por Bernards Lee en el CERN (European
Laboratory for Particles Physics) aunque su difusién masiva comenzé en 1993 como medio de comunicacion universal. La Web
es un sistema de estandares aceptados universalmente para almacenamiento, recuperacién, formateado y visualizacion de infor-
macion, utilizando una arquitectura cliente/servidor. Se puede utilizar la Web para enviar, visualizar, recuperar y buscar infor-
macion o crear una pagina Web. La Web combina texto, hipermedia, sonidos y graficos, utilizando interfaces graficas de usuario
para una visualizacion facil.

Para acceder a la Web se necesita un programa denominado navegador Web (browser). Se utiliza el navegador para visua-
lizar textos, graficos y sonidos de un documento Web y activar los enlaces (links) o conexiones a otros documentos. Cuando se
hace clic (con el ratén) en un enlace a otro documento se produce la transferencia de ese documento situado en otro computa-
dor a su propio computador.

La Web se basa en un lenguaje estandar de hipertexto denominado HTML (Hypertext Markup Language) que da formatos
a documentos e incorpora enlaces dinamicos a otros documentos almacenados en el mismo computador o en computadores
remotos.

Otros servicios que proporciona la Web y ya muy populares para su uso en el mundo de la programacion son: el correo elec-
trénico y la mensajeria instantanea. El correo electrénico (e-mail) utiliza protocolos especificos para el intercambio de mensa-
jes: SMTP (Simple Mail Transfer Protocol), POP (Post Office Protocol) e IMAP (Internet Message Action Protocol).

El software (los programas)

Las operaciones que debe realizar el hardware son especificadas por una lista de instrucciones, llamadas programas, o softwa-
re. Un programa de software es un conjunto de sentencias o instrucciones al computador. El proceso de escritura o codifica-
cién de un programa se denomina programacion y las personas que se especializan es esta actividad se denominan
programadores. Existen dos tipos importantes de software: software del sistema y software de aplicaciones. Cada tipo reali-
za una funcion diferente.

Software del sistema es un conjunto generalizado de programas que gestiona los recursos del computador, tal como el
procesador central, enlaces de comunicaciones y dispositivos periféricos. Los programadores que escriben software del siste-
ma se llaman programadores de sistemas. Software de aplicaciones son el conjunto de programas escritos por empresas 0
usuarios individuales o en equipo y que instruyen a la computadora para que ejecute una tarea especifica. Los programadores
que escriben software de aplicaciones se llaman programadores de aplicaciones.

SISTEMA OPERATIVO

Cuando un usuario interacttia con un computador, la interaccion esta controlada por el sistema operativo. Un usuario se comu-
nica con un sistema operativo a través de una interfaz de usuario de ese sistema operativo. Los sistemas operativos modernos

CAPITULO 1 Introduccion a las computadoras y a los lenguajes de programacion o

1.4

utilizan una interfaz gréfica de usuario, IGU (Graphical User Interface, GUI) que hace uso masivo de iconos, botones, barras
y cuadros de didlogo para realizar tareas que se controlan por el teclado o el ratén (mouse) entre otros dispositivos.
Normalmente el sistema operativo se almacena de modo permanente en un chip de memoria de sélo lectura (ROM). Otra parte
del sistema operativo puede residir en disco que se almacena en memoria RAM en la inicializacion del sistema por primera vez
en una operacion que se llama carga del sistema (booting)

El sistema operativo dirige las operaciones globales de la computadora, instruye a la computadora para ejecutar otros pro-
gramas y controla el almacenamiento y recuperacion de archivos (programas y datos) de cintas y discos. Gracias al sistema
operativo es posible que el programador pueda introducir y grabar nuevos programas, asi como instruir a la computadora para
que los ejecute. Los sistemas operativos pueden ser: monousuarios (un solo usuario) y multiusuarios, o tiempo compartido
(diferentes usuarios), atendiendo al nimero de usuarios y monocarga (una sola tarea) o multitarea (multiples tareas) segun las
tareas (procesos) que puede realizar simulténeamente. C corre practicamente en todos los sistemas operativos, Windows 95,
Windows NT/2000, Windows XP, UNIX, Linux,... y en casi todas las computadoras personales actuales PC, Mac, Sun, etc.

TIPOS DE SISTEMAS OPERATIVOS

Las diferentes caracteristicas especializadas del sistema operativo permiten a los computadores manejar muchas diferentes
tareas asi como mdltiples usuarios de modo simultineo o en paralelo, bien de modo secuencial. En base a sus caracteristicas
especificas los sistemas operativos se pueden clasificar en varios grupos:

La multiprogramacion permite a maltiples programas compartir recursos de un sistema de computadora en cualquier
momento. Con multiprogramacion, un grupo de programas se ejecutan alternativamente y se alternan en el uso del procesador.
Cuando se utiliza un sistema operativo de un Gnico usuario, la multiprogramacién toma el nombre de multitarea.

Un sistema operativo multiusuario es un sistema operativo que tiene la capacidad de permitir que muchos usuarios com-
partan simultaneamente los recursos de proceso del la computadora. Dada la alta velocidad de transferencia de las operaciones,
la sensacidn es que todos los usuarios estan conectados simultdneamente a la UCP.

Un sistema operativo trabaja en multiproceso cuando puede enlazar a dos 0 mas UCP para trabajar en paralelo en un Gnico
sistema de computadora. El sistema operativo puede asignar multiples UCP para ejecutar diferentes instrucciones del mismo
programa o de programas diferentes simultaneamente, dividiendo el trabajo entre las diferentes UCP.

Lenguajes de programacion

Como se ha visto en el apartado anterior, para que un procesador realice un proceso se le debe suministrar en primer lugar un
algoritmo adecuado. El procesador debe ser capaz de interpretar el algoritmo, lo que significa:

 comprender las instrucciones de cada paso,

* realizar las operaciones correspondientes.

Cuando el procesador es una computadora, el algoritmo se ha de expresar en un formato que se denomina programa. Un
programa se escribe en un lenguaje de programacién. Los principales tipos de lenguajes utilizados en la actualidad son tres:

* lenguajes maquina,

« lenguaje de bajo nivel (ensamblador),

« lenguajes de alto nivel.

Los lenguajes maquina son aquellos que estan escritos en lenguajes directamente inteligibles por la maquina (computa-
dora), ya que sus instrucciones son cadenas binarias. Las instrucciones en lenguaje maquina dependen del hardware de la com-
putadora y, por tanto, diferirdn de una computadora a otra. Las ventajas de programar en lenguaje maquina son la posibilidad
de cargar (transferir un programa a la memoria) sin necesidad de traduccidn posterior, lo que supone una velocidad de ejecu-
cién superior a cualquier otro lenguaje de programacién. Los inconvenientes - en la actualidad - superan a las ventajas, lo que
hace practicamente no recomendables los lenguajes maquina. Estos inconvenientes son:

« dificultad y lentitud en la codificacion,

* poca fiabilidad,

« dificultad grande de verificar y poner a punto los programas,

« los programas s6lo son ejecutables en el mismo procesador (UPC, Unidad Central de Proceso)

Los lenguajes de bajo nivel son mas faciles de utilizar que los lenguajes maquina, pero, al igual, que ellos, dependen de
la maquina en particular. El lenguaje de bajo nivel por excelencia es el ensamblador (assembly language). Las instrucciones

o CAPITULO 1 Introduccién a las computadoras y a los lenguajes de programacion

en lenguaje ensamblador son instrucciones conocidas como nemotécnicos (mnemonics). Por ejemplo, nemotécnicos tipicos de
operaciones aritméticas son: en inglés, ADD, SUB, DIV, etc.; en espafiol, SUM, RES, DIV, etc.

EJEMPLO 1.2 Programacion en lenguaje de bajo nivel
Una instruccion tipica de suma seria:
ADD M, N, P

Esta instruccién podia significar «sumar el nimero contenido en la posicion de memoria M al ndmero almacenado en
la posicion de memoria N y situar el resultado en la posicion de memoria P ». Evidentemente, es mucho més sencillo
recordar la instruccion anterior con un nemotécnico que su equivalente en cédigo maquina:

0110 1001 1010 1011

Un programa escrito en lenguaje ensamblador no puede ser ejecutado directamente por la computadora - en esto se dife-
rencia esencialmente del lenguaje maquina -, sino que requiere una fase de traduccion al lenguaje maquina. EI programa ori-
ginal escrito en lenguaje ensamblador se denomina programa fuente y el programa traducido en lenguaje maquina se conoce
como programa objeto, ya directamente inteligible por la computadora. El traductor de programas fuente a objeto es un pro-
grama llamado ensamblador (assembler).

Los lenguajes ensambladores presentan la ventaja frente a los lenguajes maquina de su mayor facilidad de codificacion vy,
en general, su velocidad de calculo. Los inconvenientes mas notables de los lenguajes ensambladores son:

« Dependencia total de la maquina, lo que impide la transportabilidad de los programas (posibilidad de ejecutar un progra-

ma en diferentes maquinas).

« La formacién de los programas es mas compleja que la correspondiente a los programadores de alto nivel, ya que exige

no solo las técnicas de programacion, sino también el conocimiento del interior de la maquina.

Hoy dia los lenguajes ensambladores tienen sus aplicaciones muy reducidas en la programacion de aplicaciones y se cen-
tran en aplicaciones de tiempo real, control de procesos y de dispositivos electronicos, etc.

Los lenguajes de alto nivel son los mas utilizados por los programadores. Los programas escritos en lenguaje de alto nivel
son portables o transportables, lo que significa la posibilidad de poder ser ejecutados con poca o ninguna modificacion en dife-
rentes tipos de computadoras. Los lenguajes de alto nivel presentan las siguientes ventajas:

« El tiempo de formacion de los programadores es relativamente corto comparado con otros lenguajes.

« La escritura de programas se basa en reglas sintacticas similares a los lenguajes humanos.

« Las modificaciones y puestas a punto de los programas son mas faciles.

« Reduccion del coste de los programas.

« Transportabilidad.

Los inconvenientes se concretan en:

« Incremento del tiempo de puesta a punto, al necesitarse diferentes traducciones del programa fuente para conseguir el pro-
grama definitivo.

« No se aprovechan los recursos internos de la méaquina, que se explotan mucho mejor en lenguajes maquina y ensambla-
dores.

« Aumento de la ocupacién de memoria.

« El tiempo de ejecucién de los programas es mucho mayor.

Los lenguajes de programacion de alto nivel existentes hoy son muy numerosos, aunque la practica demuestra que su uso
mayoritario se reduce a

C C++ COBOL FORTRAN Pascal Visual BASIC VB.Net Java C#

El mundo Internet consume gran cantidad de recursos en forma de lenguajes de programacion tales como Java, HTML,
XML, JavaScript, PHP, etc.

Los traductores de lenguaje son programas que traducen a su vez los programas fuente escritos en lenguajes de alto nivel
a codigo maquina. Los traductores se dividen en compiladores e interpretes

CAPITULO 1 Introduccion a las computadoras y a los lenguajes de programacion o

Un intérprete es un traductor que toma un programa fuente, lo traduce y a continuacion lo ejecuta. Un compilador es un
programa que traduce los programas fuente escritos en lenguaje de alto nivel - C, FORTRAN, C++, Java,...- a lenguaje maqui-
na. Los programas escritos en lenguaje de alto nivel se Ilaman programas fuente y el programa traducido programa objeto o
cddigo objeto. EI compilador traduce - sentencia a sentencia - el programa fuente. Los lenguajes compiladores tipicos son : C,
Pascal, FORTRAN y COBOL.

LA COMPILACION Y SUS FASES

La compilacion es el proceso de traduccion de programas fuente a programas objeto. EI programa objeto obtenido de la com-
pilacién ha sido traducido normalmente a cddigo maquina. Para conseguir el programa maquina real se debe utilizar un pro-
grama llamado montador o enlazador (linker). El proceso de montaje conduce a un programa en lenguaje maquina
directamente ejecutable (Fig. 1.4)

Programa fuente

Compilador
(traductor)

Programa objeto

Montador

Y

Programa ejecutable
En lenguaje méquina

Figura 1.4 Fases de la compilacion.

El proceso de ejecucién de un programa escrito en un lenguaje de programacion y mediante un compilador suele tener los
siguientes pasos:

« Escritura del programa fuente con un editor.

« Compilar el programa con el compilador C.

« \erificar y corregir errores de compilacion (listado de errores).

« Obtencion del programa objeto.

« El enlazador (linker) obtiene el programa ejecutable.

« Se ejecuta el programa y, si no existen errores, se obtendra la salida del programa.

Programa
— .
Datos Compilador
Programa —— 5 (traductor)
Ejecutable 5

'

Resultados

Figura 1.5 Ejecucién de un programa.

o CAPITULO 1 Introduccién a las computadoras y a los lenguajes de programacion

1.5

El proceso de ejecucion seria el mostrado en las figuras 1.5y 1.6.

Programa fuente

Y

Modificacién
programa Y
fuente

Compilador

Y

Existen
errores en la
compilacion

+N0

Programa

v

Montador »| Programa ejecutable

Si

Y

Ejecuccién

Figura 1.6 Fases de ejecucién de un programa.

En el capitulo 2 se describira en detalle el proceso completo y especifico de ejecucion de programas en lenguaje C

El lenguaje C: historia y caracteristicas

C es el lenguaje de programacion de propdsito general asociado, de modo universal, al sistema operativo UNIX. Sin embargo,
la popularidad, eficacia y potencia de C, se ha producido porque este lenguaje no esta practicamente asociado a ningun siste-
ma operativo, ni a ninguna maquina, en especial. Esta es la raz6n fundamental, por la cual C, es conocido como el lenguaje de
programacion de sistemas, por excelencia.

C es una evolucion de los lenguajes BCPL —desarrollado por Martin Richards- y B —desarrollado por Ken Thompson en
1970- para el primitivo UNIX de la computadora DEC PDP-7. C naci6 realmente en 1978, con la publicacion de The C
Programming Languaje, de Brian Kernighan y Dennis Ritchie (Prentice Hall, 1978). En 1983, el American National Standard
Institute (ANSI), una organizacion internacional de estandarizacion, cre6 un comité (el denominado X3J11) cuya tarea funda-
mental consistia en hacer “una definicion no ambigua del lenguaje C, e independiente de la maquina’. Con esta definicion de
C se asegura que cualquier fabricante de software que vende un compilador ANSI C incorpora todas las caracteristicas del len-
guaje, especificadas por el estandar. Esto significa también que los programadores que escriban programas en C estandar ten-
dran la seguridad de que correran sus modificaciones en cualquier sistema que tenga un compilador C.

C es un lenguaje de alto nivel, que permite programar con instrucciones de lenguaje de propdsito general. También, C se
define como un lenguaje de programacion estructurado de propdsito general; aunque en su disefio también primo el hecho de
fuera especificado como un lenguaje de programacion de sistemas, y esta caracteristica le proporciona una enorme cantidad de
potencia y flexibilidad.

El estdndar ANSI C formaliza construcciones no propuestas en la primera version de C, en especial, asignacién de estruc-
turas y enumeraciones. Entre otras aportaciones, se defini6 esencialmente, una nueva forma de declaracion de funciones (pro-
totipos). Pero, es esencialmente la biblioteca estandar de funciones, otra de sus grandes aportaciones.

Hoy, en el siglo XXI, C sigue siendo uno de los lenguajes de programacién mas utilizados en la industria del software, asi
como en institutos tecnoldgicos, escuelas de ingenieria y universidades. Practicamente todos los fabricantes de sistemas ope-
rativos, UNIX, Linux, MacOS, Solaris,... soportan diferentes tipos de compiladores de lenguaje C.

CAPITULO 1 Introduccion a las computadoras y a los lenguajes de programacion o

VENTAJAS DE C

El lenguaje C tiene una gran cantidad de ventajas sobre otros lenguajes, y son, precisamente, la razén fundamental de que des-
pués de casi dos décadas de uso, C siga siendo uno de los lenguajes méas populares y utilizados en empresas, organizaciones y
fabricas de software de todo el mundo. Algunas ventajas que justifican el uso todavia creciente del lenguaje C en la progra-
macién de computadoras son:

« El lenguaje C es potente y flexible.

« C se utiliza por programadores profesionales para desarrollar software en la mayoria de los modernos sistemas de com-
putadora.

« Se puede utilizar C para desarrollar sistemas operativos, compiladores, sistemas de tiempo real y aplicaciones de comu-
nicaciones.

» Un programa en C puede ser escrito para un tipo de computadora y trasladarse a otra computadora con pocas 0 ninguna
modificacion (propiedad conocida como portabilidad).

C se caracteriza por su velocidad de ejecucion. En los primeros dias de la informatica, los problemas de tiempo de ejecu-
cion se resolvian escribiendo todo o parte de una aplicacion en lenguaje ensamblador (lenguaje muy cercano al lenguaje
maquina).

Debido a que existen muchos programas escritos en C, se han creado numerosas bibliotecas C para programadores profe-
sionales que soportan gran variedad de aplicaciones. Existen bibliotecas del lenguaje C que soportan aplicaciones de bases de
datos, gréficos, edicion de texto, comunicaciones, etc.

En la actualidad son muchos los fabricantes de compiladores C, y se pueden encontrar en el comercio y de distribucién gra-
tuita tanto en empresas de distribucion como en Internet para los sistemas operativos Windows, Linux, Unix y Mac, entre otros.
Todos los compiladores del lenguaje C++ pueden ejecutar programas escritos en lenguaje C, preferentemente si cumplen el
estandar ANSI C.!

REFERENCIAS BIBLIOGRAFICAS y LECTURAS SUPLEMENTARIAS

JOYANES AGUILAR, Luis (2003). Fundamentos de programacion. Algoritmos, Estructuras de datos y Objetos, 3? edicidn,
Madrid: McGraw-Hill.
Libro de referencia para el aprendizaje de la programacion con un lenguaje algoritmico. Libro complementario de esta obra
y que ha cumplido ya quince afios desde la publicacidn de su primera edicion
KARBO, Michael B. (2004) Arquitectura del PC. Teoria y Practica, 22 edicion. Barcelona: PC-Cuadernos Técnicos, n° 17,
KnowWare E.U.R.L (www.pc-cuadernos.com).
Excelente manual de hardware. Eminentemente practico con una gran cantidad de informacién. Al formar parte de una
coleccidn editada de modo periddico, tiene un precio muy econémico. Recomendable por su calidad y bajo coste.
LAUDON, Kennet C. y LAUDON, Jane P. (2003). Essentials of Management Information Systems. Fifth edition. Upper
Saddle River: New Jersey: Prentice Hall,
Magnifico libro sobre sistemas de informacion. Escrito con sencillez pero con un gran rigor técnico. Estd acompariado de
una gran cantidad de gréficos y figuras ilustrativas. Actualizado totalmente a los modernos sistemas de informacion.
Recomendable para continuar formandose en informatica fundamental y de modo complementario a la lectura de esta obra.
LOPEZ CRUZ, Pedro A. (2004). Hardware y componentes. Madrid: Anaya.
Completo y actualizado libro del hardware de un computador. Contiene las caracteristicas técnicas junto con sus corres-
pondientes explicaciones no solo del computador como méaquina sino de todos sus componentes tanto internos como exter-
nos. Es una excelente referencia para conocer mas sobre todos los dispositivos hardware modernos de un computador.

! Opciones gratuitas buenas puede encontrar en el sitio del fabricante de software Borland. También puede encontrar y descargar un compilador excelente Dev-C++
en software libre que puede compilar cédigo C y también cddigo C++, en www.bloodshed,net'y en www.download.com puede asi mismo encontrar diferen-
tes compiladores totalmente gratuitos. Otros numerosos sitios puede encontrar en software gratuito en numerosos sitios de la red. Los fabricantes de software y de
computadoras (IBM, Microsoft, HP,...) ofrecen versiones a sus clientes aunque normalmente no son gratuitos

www.pc-cuadernos.com
www.bloodshed,net
www.download.com

CAPITULO 1

Introduccion a las computadoras y a los lenguajes de programacion

MARNAS, José Antonio. (2004). Mundo IP: Introduccion a los secretos de Internet y las Redes de Datos. Madrid. Ediciones
Nowtilus.
Libro completo sobre Redes de Datos e Internet. Muy docente. Escrito por un catedratico de la Universidad Politécnica de
Madrid, su estilo es muy agradable, sencillo, sin por ello dejar el rigor cientifico y técnico. Recomendable para el lector que
desee conocer el mundo de Internet y de las Redes de Datos, por otra parte necesarios para la formacion de todo progra-
mador en C. Conveniente su lectura en paralelo con esta obra o a su terminacion.

EJERCICIOS DE REPASO

La siguiente no es una ventaja del Lenguaje C 6 ¢Que parte de una computadora esta dividida en palabras?
» Se pueden escribir sistemas operativos y programas * La memoria del sistema.
importantes para el sistema. « Los archivos que estan en un disco USB.
« Esta en lenguaje binario. * Los programas ejecutables.
e Es adecuado para escribir programas portables entre
maquinas diferentes. 7. Los siguientes, son protocolos de Internet
* IMAP, SMTP, HTTP.
Las fases de ejecucion de un programa en C son: * CPU, ALU, USB.
« Analisis, Disefio e Implementacion. * LAN, WAN, DEC.
» Compilacion. Enlazado y Ejecucion.
* Depuracion, Compilacion y Verificacion. 8. ¢En cudl de estos tipos de aplicacion estaria justificado usar
Lenguaje Ensamblador para programar:

La Web utiliza sobre todo como lenguaje de programacion » Compiladores.
* Los lenguajes C y C++. * Aplicaciones de Tiempo Real.
* Lenguaje HTML. * Paginas Web.
* Lenguajes maquina.

9. Si se quisiese buscar alguna ventaja para elegir un lenguaje
Si un sistema operativo permite trabajar a la vez a varias méquina para programar serfa:
personas se diria que es: « Por su facilidad de uso y depuracion.
* Un sistema multiproceso. « Por su rapidez de codificacion.
* Un sistema multitarea. « Por su rapidez de ejecucién.
* Un sistema multiusuario.

10. El lenguaje C fue creado por:

Un cortafuegos es un componente importante de:
 Un sistema conectado a Internet.

« La Unidad Central de Procesamiento.

« Los sistemas de almacenamiento secundario.

* El gobierno de Estados Unidos.
* Una comision de la organizacion ANSI.
« Brian Kernighan y Dennis Ritchie.

2.1

Fundamentos
de programacion

Este capitulo le introduce a la metodologia a seguir para la resolucién de problemas con computadoras y con un lenguaje de
programacion tal como C.
La resolucion de un problema con una computadora se hace escribiendo un programa, que exige al menos los siguientes pasos:

1. Definicion o andlisis del problema.

2. Disefio del algoritmo.

3. Transformacién del algoritmo en un programa.
4. Ejecucion y validacién del programa.

Uno de los objetivos fundamentales de este libro es el aprendizaje y disefio de algoritmos. Este capitulo introduce al lector
en el concepto de algoritmo y de programa, asi como en las herramientas que permiten “dialogar” al usuario con la maquina:
los lenguajes de programacion.

Fases en la resolucion de problemas

El proceso de resolucion de un problema abarca desde la descripcion inicial del problema hasta el desarrollo de un programa
de computadora que lo resuelva. El proceso de disefio de programas tiene una serie de fases que generalmente deben seguir
todos los programadores. Estas fases son: andlisis del problema; disefio del algoritmo; codificacidn; compilacion y ejecucion,
verificacion; depuracién; mantenimiento y documentacion.

Las dos primeras fases conducen a un disefio detallado en forma de algoritmo. En la tercera fase se implementa el algorit-
mo en cddigo escrito en un lenguaje de programacion. En la fase de compilacion y ejecucidn se traduce y ejecuta el programa.
En las fases de verificacion y depuracion el programador busca errores de las etapas anteriores y las elimina.

Es importante definir el concepto de algoritmo. Un algoritmo es un conjunto finito de reglas que proponen una serie de
operaciones que sirven para resolver un determinado problema y que cumple las siguientes caracteristicas:

« Finito. Debe acabar siempre tras un ndmero finito de pasos, si bien este nimero de pasos puede ser arbitrariamente grande.

« “Definibilidad”. Cada paso del algoritmo debe definirse de modo preciso. Las acciones del algoritmo deben estar expre-
sadas sin ambigiiedad.

« Efectividad. Las operaciones del algoritmo deben ser basicas, estar expresadas de modo exacto y deben ejecutarse en un
tiempo finito.

@ CAPITULO 2 Fundamentos de programacién

« Entrada. Todo algoritmo debe tener cero 0 méas datos de entrada.
« Salida. Todo algoritmo debe tener cero 0 méas datos de salida.

Son ejemplos de algoritmos bésicos: calcular el médximo comun divisor de dos nimeros; decidir si un numero es primo; cal-
cular el mayor de una secuencia de nimeros; etc.

2.1.1 ANALISIS DEL PROBLEMA

Consiste en definir el problema y especificar claramente aquello que es necesario para su resolucion. Para hacer el analisis hay
que responder a las siguientes preguntas: ¢qué entrada tiene el problema?; ¢cudl es la salida deseada?; ;qué método produce
la salida deseada a partir de los datos de entrada? Normalmente la definicién del problema comienza analizando los requisi-
tos del usuario; pero estos requisitos con frecuencia suelen ser imprecisos y dificiles de escribir. La fase de especificacion
requiere normalmente una gran comunicacion entre los programadores y los futuros usuarios del sistema.

2.1.2 DISENO DEL ALGORITMO

En esta etapa hay que indicar como hace el algoritmo la tarea solicitada, y eso se traduce en la construccién de un algoritmo.
Los métodos mas eficaces se basan en la técnica divide y venceras. El problema se divide en subproblemas, y a continuacion
se divide cada uno de estos subproblemas en otros hasta que pueda ser implementada una solucién. Esta fase de disefio es bas-
tante larga, pero hay que tener en cuenta que el gasto de tiempo en la fase de disefio sera ahorro de tiempo cuando se escriba
y depure el programa. El resultado final del disefio es una solucién que debe ser facil de traducir a estructuras de datos y estruc-
turas de control de un lenguaje de programacion especifico.

HERRAMIENTAS DE PROGRAMACION

Las dos herramientas mas comtUnmente utilizadas para disefiar algoritmos son: diagramas de flujo y pseudocddigos.

« Diagrama de flujo (flowchart). Es una representacion grafica de un algoritmo. Los simbolos utilizados han sido nor-
malizados por el Instituto Norteamericano de Normalizacién (ANSI).

« Pseudocddigo. Es una herramienta de programacion en la cual las instrucciones escriben en palabras similares al inglés
o0 espafiol, que facilitan tanto la escritura como la lectura de programas. En esencia el pseudocédigo (también seudocodi-
go) se puede definir como un lenguaje de especificacion de algoritmos. Aunque no existen reglas para la escritura del
pseudocddigo en espafiol, se ha recogido una notacion estandar que se utilizara en este libro y que ya es muy empleada
en muchos libros de programacion.

2.1.3 CODIFICACION DE UN PROGRAMA

Consiste en escribir en un lenguaje de programacion el algoritmo creado en la fase de disefio, debiendo seguirse las siguientes
reglas:

« Si un problema se ha dividido en subproblemas los algoritmos que resuelven cada subproblema deben ser codificados y
probados independientemente.

 Deben usarse como identificadores términos significativos usando nombres para los datos, y verbos para los subpro-
gramas.

« Ha de tenerse especial cuidado en la comunicacion de los distintos subprogramas, siendo recomendable que esta comu-
nicacion se realice siempre mediante los parametros.

« S6lo deben usarse variables globales si son datos inherentes e importantes del programa.

« El sangrado (indentacién) asi como los buenos comentarios facilitan la posterior lectura del codigo.

2.1.4 COMPILACION Y EJECUCION DE UN PROGRAMA

Una vez que el algoritmo se ha convertido en programa fuente, es preciso introducirlo mediante un procesador de texto en la memo-
ria de la computadora, para que mediante un compilador pueda ser traducido a lenguaje maquina. Si tras la compilacion se presen-
tan errores (errores de compilacion) es necesario volver a editar el programa y corregirlos. Una vez corregidos los errores hay que
ejecutar el programa, obteniéndose la salida de resultados, siempre que no existan errores (errores de ejecucion).

CAPITULO 2 Fundamentos de programacion 0

2.1.5 VERIFICACION Y DEPURACION

La depuracion de un programa es el proceso de encontrar los errores del programa y corregir o eliminar dichos errores. Para
ello hay que eliminar los errores de ejecucion y los errores l6gicos. Esta eliminacion de errores se efectla proporcionando al
programa datos de entrada validos que conducen a una solucién conocida. También deben incluirse datos no validos para com-
probar la capacidad de deteccidn de errores del programa.

Si bien el método de depuracion es muy usado y proporciona buenos resultados; si se quiere estar seguros de que un pro-
grama funciona correctamente, hay que probar todos los posibles datos de entrada o una muestra suficientemente significati-
va, 0 bien verificar el programa, operacion consistente en demostrar formalmente que el programa funciona correctamente.

2.1.6 DOCUMENTACION Y MANTENIMIENTO

La documentacion de un programa consiste en la descripcion de cada uno de los pasos que hay que realizar para resolver el
problema. La documentacion de un programa puede ser interna (contenida en las lineas de comentario) o externa (contenida
en andlisis, diagramas de flujo, pseudocddigos, manuales de usuario con instrucciones de ejecucion del programa etc.).

MANUAL DE USUARIO

Este manual es un documento comercial importante convierte al programa en mas accesible y asequible al usuario. Es frecuente
que este manual se edite como libro, aunque también suele incluirse en el propio programa en cuyo caso se denomina manual
de ayuda en linea. Debe abarcar al menos los siguientes puntos:

« Ordenes necesarias para cargar el programa en memoria desde el almacenamiento secundario (disco) y para arrancar su
funcionamiento.

* Nombres de los archivos externos a los que accede el programa.

« Formato de todos los mensajes de error o informes.

* Opciones en el funcionamiento del programa.

« Descripcion detallada de la funcidn realizada por el programa.

« Descripcion detallada, preferiblemente con ejemplos, de cualquier salida producida por el programa.

« Instrucciones para la instalacion del programa.

El mantenimiento del programa consiste en corregir posibles errores futuros de ejecucién del programa, y en mejorar el pro-
grama afiadiendo nuevas caracteristicas o modificando las ya existentes debido a la necesidad de ejecutarlo en un nuevo entor-
no, la aparicion de nuevo hardware o el cambio de las necesidades del usuario. Después de cada cambio, la documentacion
debe ser actualizada.

MANUAL DE MANTENIMIENTO

El manual de mantenimiento es la documentacion requerida para mantener un programa durante su ciclo de vida. Se divide en
dos categorias: documentacion interna y documentacion externa.
La documentacion interna incluye:

« Cabecera de programa (con comentarios que reflejen el nombre del programador, fecha, version, breve descripcion del
programa).

» Nombres significativos para describir identificadores.

« Comentarios significativos, encerrados entre llaves { } o bien paréntesis/asteriscos (* *), relativos a: mision de los médu-
los de que consta el programa; especificacion de precondiciones y postcondiciones; explicacion de partes confusas del
algoritmo o descripcion clara y precisa de los modelos de datos fundamentales y las estructuras de datos seleccionadas
para su representacion.

« Claridad de estilo y formato: una sentencia por linea, indentacion (sangrado), lineas en blanco para separar modulos (pro-
cedimientos, funciones, unidades, etc.).

La documentacidn externa es ajena al programa fuente y se suele incluir en un manual que acompafia al programa. La
documentacidn externa debe incluir:

» Listado actual del programa fuente, mapas de memoria, referencias cruzadas, etc.

o CAPITULO 2 Fundamentos de programacién

2.2

2.3

« Especificacion del programa: documento que define el propdsito y modo de funcionamiento del programa.

« Diagrama de estructura que representa la organizacion jerarquica de los modulos que comprende el programa.

« Explicaciones de formulas complejas.

« Especificacion de los datos a procesar: archivos externos incluyendo el formato de las estructuras de los registros, campos etc.
« Formatos de pantallas utilizados para interactuar con los usuarios.

« Cualquier indicacién especial que pueda servir a los programadores que deben mantener el programa.

Programacioén estructurada

La programacion estructurada consiste en escribir un programa de acuerdo con las siguientes reglas: el programa tiene un
disefio modular; los médulos son disefiados descendentemente; cada mddulo de programa (subprograma) se codifica usando
las tres estructuras de control (secuencia, seleccién e iteracién). Una definicion mas formal de programacion estructurada es el
conjunto de técnicas que incorporan: recursos abstractos, disefio descendente y estructuras basicas de control.

2.2.1 RECURSOS ABSTRACTOS

Descomponer un programa en términos de recursos abstractos consiste en descomponer acciones complejas en términos de
acciones mas simples capaces de ser ejecutadas en una computadora. La modularidad y la abstraccion procedimental son com-
plementarias, pudiéndose cambiar el algoritmo de un médulo sin afectar al resto de la solucion de un problema. Una abstrac-
cion procedimental separa el propésito de un subprograma de su implementacion. Una vez que el subprograma se haya
codificado se puede usar sin necesidad de conocer su cuerpo y basta con su nombre y una descripcion de sus parametros.

2.2.2 DISENO DESCENDENTE (TOP DOWN)

El disefio descendente se encarga de resolver un problema realizando una descomposicion en otros mas sencillos, mediante el méto-
do de refinamiento por pasos. Se descompone el problema en etapas o estructuras jerarquicas, de forma que se puede considerar
cada estructura desde los puntos de vista: ¢qué hace? ¢cémo lo hace?. El resultado de esta jerarquia de médulos es que cada modu-
lo se refina por los de nivel mas bajo que resuelven problemas méas pequefios y contienen mas detalles sobre los mismos.

2.2.3 ESTRUCTURAS DE CONTROL

Las estructuras de control sirven para especificar el orden en que se ejecutaran las distintas instrucciones de un algoritmo.
Este orden de ejecucién determina el flujo de control del programa. Las tres estructuras basicas de control son: secuencia, selec-
cidn, iteracion. La programacion estructurada hace los programas més faciles de escribir, verificar, leer y mantener, utilizan-
do un nimero limitado de estructuras de control que minimizan la complejidad de los problemas.

2.2.4 TEOREMA DE LA PROGRAMACION ESTRUCTURADA

El teorema de la programacion estructurada de Béhm y Jacopini (1966) dice que todo programa propio puede ser escrito
usando solamente tres tipos de estructuras basicas de control que son: secuencia, seleccion, iteracién. Un programa se dice que
es propio si: tiene un solo punto de entrada y otro de salida; existen caminos desde la entrada hasta la salida que se pueden
seguir y que pasan por todas las partes del programa; todas las instrucciones son ejecutables y no existen bucles infinitos.

Métodos formales de verificacién de programas

Verificar un programa consiste en demostrar que el programa funciona correctamente. Para realizar esta verificacion, hay que
usar formulas matematicas que deben expresar la semantica del programa, aportadas por la l6gica de primer orden. La verifi-
cacion formal es, en general, compleja y requiere conocimientos matematicos avanzados, que comienzan con las precondi-
ciones que deben cumplir los datos de entrada para llegar a las postcondiciones que deben cumplir los datos de salida, mediante
los axiomas y las reglas de la légica de primer orden. Para realizar la verificacion formal de un programa hay que usar el sis-
tema formal de Hoare (conjunto finito de axiomas y reglas de inferencia que sirven para razonar sobre la correccion parcial de
un programa), y demostrar que el programa siempre termina mediante la obtencion de expresiones cota. En este libro sélo se

CAPITULO 2 Fundamentos de programacion Q

2.4

consideran los siguientes conceptos clave: asertos, precondiciones postcondiciones e invariantes, que ayudan a documentar
corregir y clarificar el disefio de modulos y de programas.

Aserciones. Un aserto es una frase que describe la semantica de las variables y datos en un punto de un algoritmo. Estos
asertos se escriben como comentarios y forman parte de la documentacion del programa. Para expresar formalmente estos aser-
tos se usan férmulas de la I6gica de primer orden. La Idgica de primer orden emplea para su sintaxis ademas de los operado-
res logicos (or, not, and...) los cuantificadores para todo (O)y existe (DL

Precondiciones y postcondiciones. Las precondiciones y postcondiciones son afirmaciones sencillas sobre condiciones al
principio y al final de los mddulos. Una precondicion de un procedimiento es una afirmacion légica sobre sus parametros de
entrada; esta afirmacion debe ser verdadera cuando se llama al procedimiento, para que éste comience a ejecutarse. Una pos-
tcondicidén de un procedimiento es una afirmacion l6gica que describe el cambio en el estado del programa producido por la
ejecucion del procedimiento; la postcondicion describe el efecto de llamar al procedimiento. En otras palabras, la postcondi-
cién indicada sera verdadera después que se ejecute el procedimiento.

Precondicién . Predicado I6gico que debe cumplirse al comenzar la ejecucion de un modulo.

Postcondicion. Predicado 16gico que debe cumplirse al acabar la ejecucién de un determinado médulo, siempre que se haya
cumplido previamente la precondicion.

Invariantes de bucles. Un invariante es un condicion que es verdadera tanto antes como después de cada iteracion (vuel-
ta) y que describe la seméntica del bucle. Se utiliza para documentar el bucle y sobre todo para determinar la correccion del
mismo. Los siguientes cuatro puntos han de ser verdaderos:

« El invariante debe ser verdadero antes de que comience la ejecucion por primera vez del bucle.

« Una ejecucidn del bucle debe mantener el invariante. Esto es, si el invariante es verdadero antes de cualquier iteracion del
bucle, entonces se debe demostrar que es verdadero después de la iteracion.

« El invariante debe capturar la exactitud del algoritmo, demostrando que, si es verdadero cuando termina el bucle, el algo-
ritmo es correcto.

* El bucle debe terminar después de un nimero finito de iteraciones.

La identificacion de invariantes de bucles, ayuda a escribir bucles correctos. Se representa el invariante como un comenta-
rio que precede a cada bucle.

Factores de calidad del software

La construccion de software de calidad debe cumplir las siguientes caracteristicas:

« Eficiencia: La eficiencia de un software es su capacidad para hacer un buen uso de los recursos de la computadora. Un
sistema eficiente es aquel que usa pocos recursos de espacio y de tiempo.

« Transportabilidad (portabilidad): La transportabilidad o portabilidad es la facilidad con la que un software puede ser
transportado sobre diferentes sistemas fisicos o l6gicos.

* F&cil de usar: Un software es facil de utilizar cuando el usuario puede comunicarse con él de manera comoda.

» Compatibilidad: Facilidad de los productos para ser combinados con otros y usados en diferentes plataformas hardware
o0 software.

« Correccidn: Capacidad de los productos software de realizar exactamente las tareas definidas por su especificacion.

« Extensibilidad: Facilidad que tienen los productos de adaptarse a cambios en su especificacion. Existen dos principios
fundamentales para conseguir esta caracteristica, disefio simple y descentralizacion.

* Robustez: Capacidad de los productos software de funcionar, incluso, en situaciones anormales.

« Verificabilidad: La verificabilidad, facilidad de verificacion, de un software, es su capacidad para soportar los procedi-
mientos de validacién y de aceptar juegos de test 0 ensayo de programas.

* Reutilizacién: Capacidad de los productos de ser reutilizados, en su totalidad o en parte, en nuevas aplicaciones.

« Integridad: La integridad es la capacidad de un software a proteger sus propios componentes contra los procesos que no
tengan el derecho de acceder.

PROBLEMAS RESUELTOS'

2.1.

2.2.

2.3.

Fundamentos de programacion

Escriba el pseudocddigo de un algoritmo que lea tres nimeros vy si el primero es positivo calcule el producto de los otros

dos, y en otro caso calcule la suma.

Anélisis del problema

Se usan tres variables enteras Numerol, Numero2, Numero3,en las que se leen los datos, y otras dos variables Producto

y Suma en las que calcularemos o bien el producto o bien la suma.

Algoritmo
Algoritmo Producto_o_Suma
Variables
Entero Nuemrol,
Inicio
Leer(Numerol, NumeroZ, Numero3)
Si (Numerol > 0) entonces
Producto « Numero2 * Numero3
Escribe(“ET
Sino
Suma « Numero2 + Numero3
Escribe(‘ La suma de los dos ultimos numeros es °,
Fin si
Fin

Numero2, Numero3, Producto,Suma

Escribir el pseudocodigo de un algoritmo que sume los 50 primeros nimeros naturales.

Anélisis del problema

producto de Tos dos Gltimos nlUmeros es

, Producto)

Suma)

Se usa una variable Contador que cuenta los 50 primeros nimeros naturales y una variable suma, para almacenar las suce-

sivas sumas, 1, 1+2, 1+2+3,.....
Algoritmo

Algoritmo cincuenta
Variables
Entero Contador,
Inicio
Contador « 0
Suma < 0
Mientras Contador <= 50 hacer
Suma « Suma + Contador
Contador « Contador + 1
Fin mientras
Escribe(Suma)
fin

Suma

Escribir el pseudocodigo de un programa que lea 100 namero enteros y calcule el mayor.

! Estos problemas tiene como objetivo fundamental familiarizar al lector con la escritura de algoritmos y programas; le aconsejamos compile y ejecute los
mismos en una computadora observando sus resultados. A medida que avance en el estudio de capitulos posteriores entendera su l6gica y modo de fun-
cionamiento, y le sugerimos los revise en ese momento.

2.4.

Fundamentos de programacioén ”

Analisis del problema

Se usa una variable entera Numero que se encarga de leer los nimeros. Otra variable entera Mayor contiene en cada momen-
to el mayor de los nimeros leidos hasta el momento. Se programa un bucle que lee los nimeros y en cada iteracion alma-
cena en la variable Mayor el nimero leido hasta el momento que sea el mayor de todos. En una variable Contador se lleva
la cuenta de los ndmeros leidos

Algoritmo

Algoritmo ElMayor

Variables
Entero Numero, Mayor, Contador
Inicio

Leer(Numero)

Mayor « Numero

Contador « 1

Mientras Contador < 50 hacer
Contador « Contador + 1
Leer(Numero)
Si(Mayor < Numero) entonces

Mayor « Numero

Fin si

Fin mientras

Escribe(Mayor)

Fin

Escribir y compilar un programa C que lea 5 nimeros enteros desde el teclado y calcule su suma. Exprese el invariante del
bucle como una asercion hecha en lenguaje natural.

Analisis del problema

Para escribir el programa, basta con definir una constante n que tome el valor 5, y mediante un bucle controlado por
el contador c, ir leyendo nimeros del teclado en la variable Numero y sumarlos en un acumulador Suma. Por lo tanto,
el invariante del bucle debe decir si se han leido ¢ nimeros, siendo ¢ menor o igual que n y en Suma se han acumula-
do los ¢ nUmeros leidos.

Codificacion

#finclude <stdio.h>
jtdefine n 5
void main ()
{
int ¢, Numero, Suma;
c =0;
Suma=0
while(¢ < n)
{
c=c¢+ 1;
scanf("%d",&Numero) ;
Suma = Suma + Numero;
/* dinvariante= se han leido c nlmeros siendo c menor o igual
que n y en Suma se han acumulado los c nlmeros leidos*/

2.5.

2.6.

printf("su suma es %d\n", Suma);

}
¢ Cual es el invariante del bucle siguiente escrito en C?

Indice = 1; Suma = A[0];
while (Indice < N - 1)
{
Indice = Indice + 1;
Suma = Suma + AfIndice]

}

Anélisis del problema

Fundamentos de programacion

El invariante del bucle debe ser un predicado que se cumpla antes de la ejecucion del bucle, al final de la ejecucién de cada
iteracion del bucle y por supuesto en la terminacion. Se supone que A es un vector cuyos valores se puedan sumar, y que los
indices varian en el rango 0 hasta el N-1. En este caso el invariante del bucle debe expresar que en el acumulador suma se

han sumado los elementos del array hasta la posicion Indice.

INV = (Suma :mdizceA(k)> A (Indice <N - 1)

k=0
Solucién

Indice = 0;

Suma = A[0];

while (Indice < N - 1)

{
Indice = Indice + 1;
Suma = Suma + A[Indicel]

k=0

INV = (Suma :mdizceA(k)> A (Indice <N - 1)

INV ~ (Indice = N - 1)
Escriba el invariante del siguiente bucle escrito en C. Suponga que n >= 0.

Indice = 0;

Maximo= A[0]

while (Indice !'=(n- 1))

{
Indice = Indice + 1;
If(Maximo < A[indice])
Maximo = A[Indice]

}

Analisis del problema

El invariante debe expresar que Maximo contiene el elemento mayor del array desde las posiciones O hasta la posicion

Indice Yy que ademas se encuentra en esas posiciones.

2.7.

Fundamentos de programacioén 0

Solucion

Indice = 0; Maximo = A[0];
INV =2 (0 < Indice <n—1) " (OKk(0 <k < Indice -~ Maximo > A(k))* (0 <k < Indice » Maximo = A(k))) ~ (Indice <
n-1)

while (Indice != (n-1))

{
Indice = Indice + 1;
if (Maximo < A[indice])
Maximo = A[Indice];

INV =" (0< Indice <n-1) " (0k(@O <k < Indice — Maximo = A(k))* [K(0 < k < Indice » Maximo = A(k))) ~ (Indice
<n-1)
}

INV ~ (Indice =n — 1)

Escriba un programa en C que calcule la parte entera de la raiz cuadrada de un nimero positivo n usando solamente sumas
de nimero naturales y comparaciones entre ellos. Exprese formulas de la ldgica de primer orden que indiquen la semanti-
ca del programa en cada uno de sus puntos.

Anélisis del problema

El programa que se desarrolla esta basado en la propiedad del cuadrado de una suma (x+1)° = x> + 2x +1. Con la propiedad
anterior y haciendo uso de un algoritmo voraz (variable x) de izquierda a derecha que avance con paso uno, y almacenando en
una variable y los valores de 2x + 1, se puede obtener el valor de (x+1)? si se tiene previamente almacenado el valor de x°.

Sea x un contador de nimeros naturales. Sea y un contador de impares de ndmeros naturales (y = 2x+1) y z el cuadra-
do de x+1, (z = (x+1)?). De acuerdo con estas propiedades si se inicializan convenientemente las variables x, y, z, el
siguiente bucle calcula la parte entera de la raiz cuadrada del nimero n.

while (z <= n)
{

% oA s
y + 2
zZ + y;

N < X
Il

Con lo anteriormente dicho, la codificacion del algoritmo pasa por leer el valor de n positivo, e inicializar convenientemen-
te las variables x, y, z alos valores 0, 1, 1, respectivamente.

Solucion

#include <stdio.h>

int main()

{
int x, y, z, n;
printf("introduzca valor de n \n");
scanf("%d", &n);

x =0
y = 13
z =1

Q Fundamentos de programacién

x + 1;
y + 2;
z +y;

N < X
Il

}
printf("%d %d %d\n",x,y,z);
}
Las formulas que siguen expresan la semantica del programa hecha con la sintaxis de la Idgica de primer orden.

#include <stdio.h>
int main()
{
int x,y,z,n;
printf("introduzca valor de n\n");
scanf("%d", &n);
x =0; y=1; z =1;

0 sn x=0)A(y=D)"z=1)"0<n) - (z=Kx+1)H (y=2x+1)~(0<n)*(x*<=n)

while (z <= n)
{

INVA(z<n) - Z+y+2=(x+1+1)?) (y+2=2(x+1)+1)~(0<n)((x+1)?><=n)

x =x + 1
@+y+2=(x+1) A (y+2=2x+1) A (0<n) " (x<=n)
y=y+2
@+y=(x+1)"(y=2x+1)"(0<n)"(E<=n)
Z=27+*Yy;

INV=@z=(x+1)" (y=2x+1)~(0<n)”(x*<=n)

printf("%d %d %d\n",x,y,z);

Z=(x+DHM(y=2x+1) 2 O0<n "(F<=n)"(@z>n) - (0<n)~x=[n]

Escriba un programa en C que calcule el producto de dos nimeros naturales usando sélo sumas. Exprese formulas de la
I6gica de primer orden que indiquen la semantica del programa en cada uno de sus puntos.

Anélisis del problema
Para resolver el problema se recuerda que para multiplicar dos nimeros positivos basta con sumar tantas veces uno de ellos
a una variable como unidades indique el otro. De esta manera si se usa un bucle voraz descendente, y si en las variables x,

e y contienen los datos, y en p se quiere obtener el producto, se tiene de manera obvia el siguiente bucle.

while (x != 0)
{

Fundamentos de programacioén 0

X =x - 1;
p+y;

}
La inicializacion de las variables x, e y, serd respectivamente a los dos datos iniciales y, en este problema, p a cero.
Codificacion

#include <stdio.h>
int main()
{
int a, b, x, y, p;
printf(" dame a >0 y b >0 ‘); scanf("%d %d",&a,&b);
X =a; y=~5b; p=0;
while (x != 0)
{
X =X = 1;
p +y;

}
printf("%d %d %d\n", a, b, p);
}
Las formulas que siguen expresan la semantica del programa hecha con la sintaxis de la ldgica de primer orden.
#include <stdio.h>
int main()
{
int a, b, x, y, p;
printf(" dame a >0 y b >0 "); scanf("%d %d",&a,&b);

@=0)"(b=0)

x=a)”(x=20)"(b=0)
(p+x0Oy=alb)*(@=0)

while (x != 0)

INVA(X#£0) - (p+y+(x—1)Oy=adb)” (x>0)

(p+y+x0Oy=alb)”(x=0)

INV=(p+x-y=alb)”(x=0)
(p=alb)

printf("%d %d %d\n",a, b, p);

PROBLEMAS PROPUESTOS

2.1

2.2.

2.3.

2.4.

2.5.

Escriba el pseudocddigo de un algoritmo para:
* Sumar dos nimeros enteros.

» Restar dos nimeros enteros.

« Multiplicar dos nimeros enteros.

« Dividir dos nUmeros enteros.

Escriba el pseudocodigo de un algoritmo que lea la base
y la altura de un tridngulo y calcule su area.

El maximo comun divisor de dos nimeros enteros posi-
tivos es aquel nimero entero que divide a los dos nime-
ros y es el mayor de todos. Escriba un algoritmo que
calcule el maximo comin divisor de dos numeros.
Exprese en lenguaje natural el invariante del bucle.

Escriba un algoritmo que lea tres nimeros enteros y deci-
da si uno de ellos coincide con la suma de los otros dos.

Disefiar un algoritmo que lea e imprima una serie de
ntmeros distintos de cero. El algoritmo debe terminar

2.6.

2.17.

2.8.

2.9.

2.10.

CAPITULO 2 Fundamentos de programacion

con un valor cero que no se debe imprimir. Visualizar el
ndmero de valores leidos.

Disefiar un algoritmo que imprima y sume la serie de
ndmeros 3, 6, 9,..... 99.

Disefie un algoritmo que calcule la suma de los enteros
1, 2,...,30. Exprese el invariante del bucle mediante
especificacion informal y formal.

Escriba un programa C que presente en pantalla todas las
potencias enteras de 2 que sean menores o0 iguales que
100. Exprese el invariante del bucle formalmente.

Escriba un algoritmo que sume los nimeros pares com-
prendidos entre 20 y 100 ambos inclusive.

Verifique el algoritmo del ejercicio 2.9

3.1

El lenguaje C:
elementos basicos

Una vez que se le ha ensefiado a crear sus propios programas, se analizan los fundamentos del lenguaje de programacion C. Este
capitulo comienza con un repaso de los conceptos tedricos y practicos relativos a la estructura de un programa enunciados en el capi-
tulo anterior, dada su gran importancia en el desarrollo de aplicaciones, incluyendo ademas los siguientes temas:

« creacion de un programa;

« elementos basicos que componen un programa;
« tipos de datos en C y cdmo se declaran;

* concepto de constantes y su declaracion;

« concepto y declaracion de variables;

« tiempo de vida o duracion de variables;

* operaciones bésicas de entrada/salida.

Estructura general de un programa en C

Una funcion en C es un grupo de instrucciones que realizan una o mas acciones. Un programa C puede incluir: directivas de
preprocesador; declaraciones globales; la funcidn main (); funciones definidas por el usuario; comentarios del programa.

3.1.1 DIRECTIVAS DEL PREPROCESADOR

El preprocesador consta de directivas que son instrucciones al compilador. Todas las directivas del preprocesador comienzan con el
signo de libro o “almohadilla " (#) y no terminan en punto y coma ya que no son instrucciones del lenguaje C. La directiva
fFinclude indica al compilador que lea el archivo fuente (archivo cabecera o de inclusidn) que viene a continuacion de ella y su con-
tenido lo inserte en la posicion donde se encuentra dicha directiva. Estas instrucciones son de la forma #include <nombrearch.h>
o bien #include "nombrearch.h". Ladirectivaffdefine indica al preprocesador que defina un item de datos u operacién para el
programa C. Por ejemplo, la directiva #define TAM 10 sustituird el valor 10 cada vez que TAM aparezca en el programa.

3.1.2 DECLARACIONES GLOBALES

Las declaraciones globales indican al usuario que las constantes o variables asi declaradas son comunes a todas las funciones
de su programa. Se sitGan antes de la funcion main (). La zona de declaraciones globales puede incluir declaraciones de varia-

bles ademas de declaraciones de prototipos de funcién.

° CAPITULO 3 El lenguaje C: elementos basicos

EJEMPLO 3.1 Se realizan declaraciones de ambito global.

#include <stdio.h>
/* Definicidn de macros */
jtdefine MICONST1 0.50
ffdefine MICONS2 0.75
/* Declaraciones globales */
int Calificaciones;
int ejemplo (int x);
int main()
{

3.1.3 FUNCION MAIN()

Cada programa C contiene una funcién main ()que es un punto inicial de entrada al programa. Su estructura es:

int main()
{

blogue de sentencias

Ademas de la funcién main(), un programa C consta de una coleccion de subprogramas que en C siempre son funciones.
Las sentencias de C situadas en el cuerpo de la funcién main(), o de cualquier otra funcion, deben terminar en punto y coma.

3.1.4 FUNCIONES DEFINIDAS POR EL USUARIO

C proporciona funciones predefinidas (denominadas funciones de biblioteca) y definidas por el usuario. Se invocan por su
nombre y los parametros opcionales que incluye. Después de que la funcién sea llamada, el codigo asociado con la fun-
cidn se ejecuta y, a continuacion, se retorna a la funcion llamadora. En C, las funciones definidas por el usuario requie-
ren una declaracién o prototipo en el programa, que indica al compilador el nombre por el cual ésta sera invocada, el tipo
y el nimero y tipo de sus argumentos. Las funciones de biblioteca requieren que se incluya el archivo donde esta su decla-
racion.

EJEMPLO 3.2 Programa tipico con una funcién main() y declaracion de codificacion de una funcién prueba().

#finclude <stdio.h>
void prueba();
int main()
it
prueba();
return 0;

void prueba()
{
printf ("Mis primeros pasos \n");

Un comentario es cualquier informacion que se afiade a su archivo fuente. Los comentarios en C estandar comienzan
con la secuencia /* y terminan con la secuencia */ (los compiladores C++ admiten también el tipo de comentario que
empieza por //)

CAPITULO 3 EI lenguaje C: elementos basicos o

3.2

3.3

Los elementos de un programa C

Los elementos basicos de un programa C son : identificadores; palabras reservadas; comentarios; signos de puntuacion; sepa-
radores y archivos cabecera.

Identificador. Un identificador es una secuencia de caracteres, letras, digitos y subrayados. EI primer caracter debe ser una
letra (no un subrayado). Las letras mayusculas y mindsculas son diferentes. Pueden tener cualquier longitud, pero el compila-
dor ignora a partir del caracter 32. No pueden ser palabras reservadas.

Palabras reservadas. Una palabra reservada, tal como void, es una caracteristica del lenguaje C asociada con algun sig-
nificado especial. Una palabra reservada no se puede utilizar como nombre de identificador, objeto o funcidn. Ejemplos de pala-
bras reservadas son: asm, auto, break, case, char, const, continue, default, etc.

Comentarios. Los comentarios se encierran entre /* y */ pueden extenderse a lo largo de varias lineas. Los comentarios
son ignorados por el compilador.

Signos de puntuacion y separadores. Todas las sentencias de C deben terminar con un punto y coma. Los separado-
res son espacios en blanco, tabulaciones, retornos de carro y avances de linea.

Otros signos de puntuacion son:

Loy : & * () : + - {) ~

Archivos de cabecera. Un archivo de cabecera es un archivo especial que contiene las declaraciones de objetos y funciones de
la biblioteca que son afiadidos en el lugar donde se insertan. Un archivo cabecera se inserta con la directiva #inc1ude.

Tipos de datos en C

Los tres tipos de datos basicos de C son: enteros; nimeros de coma flotante (reales) y caracteres. La Tabla 3.1 recoge los prin-
cipales tipos de datos basicos, sus tamafios en bytes y el rango de valores que puede almacenar.

Tabla 3.1 Tipos de datos simples de C.

Tipo Ejemplo Tamafio Rango

en bytes Minimo..Maximo
char c! 1 0..255
short -15 2 -128..127
int 1024 2 -32768..32767
unsigned int 42325 2 0..65535
Tong 262144 4 -2147483648..2147483637
float 10.5 4 3.4%(107%8)..3.4%(10%)
double 0.00045 8 1.7%(107°%8) ., 1.7%(10%%)
long double le-8 8 igual que double

3.3.1 ENTEROS (INT)

Los tipos enteros se almacenan internamente en 2 bytes de memoria. La Tabla 3.2 resume los tres tipos enteros basicos, junto
con el rango de valores y el tamafio usual en bytes (depende de cada compilador C).

@ CAPITULO 3 El lenguaje C: elementos basicos

Tabla 3.2 Tipos de datos enteros.

Tipo C Rango de valores Uso recomendado

int -32.768 .. +32.767 Aritmética de enteros, bucles for, conteo.
unsigned int 0 .. 65.535 Conteo, bucles for, indices.

short int -32.768 .. +32.767 Aritmética de enteros, bucles for, conteo.

DECLARACION DE VARIABLES
La forma mas simple de una declaracion de variable en C es declarar el tipo de dato y a continuacion el nombre de la variable,
seguida, opcionalmente de su valor inicial <tipo de dato> <nombre de variable> = <valor inicial>.Se pueden tam-
bién declarar maltiples variables en la misma linea:

{tipo_de_dato> <nom_varl>, <nom_var2> ... <nom-varn>

C permite escribir constantes enteras en octal (base 8) 0 hexadecimal (base 16). La Tabla 3.3 muestra ejemplos de cons-

tantes enteras representadas en sus notaciones decimal, hexadecimal y octal.

Tabla 3.3 Constantes enteras en tres bases diferentes.

Base 10 Base 16 Base 8
Decimal Hexadecimal (Hex) Octal

8 0x08 010

10 0x0A 012

16 0x10 020
65536 0x10000 0200000
24 0x18 030

17 0x11 021

Si el rango de los tipos enteros basicos no es suficientemente grande para sus necesidades, se consideran tipos enteros lar-
gos. La Tabla 3.4 muestra los dos tipos de datos enteros largos. Ambos tipos requieren 4 bytes de memoria (32 bits) de alma-
cenamiento.

Tabla 3.4 Tipos de datos enteros largos.

Tipo C Rango de valores
Tong -2147483648 .. 2147483647
unsigned long 0 .. +4294967295

3.3.2 TIPOS DE COMA FLOTANTE (FLOAT/DOUBLE)

Los tipos de datos de coma (punto) flotante representan nimeros reales que contienen una coma (un punto) decimal, tal como
3.14159, o0 nimeros muy grandes, tales como 1.85 e +15 = 1,85*10%, La declaracién de las variables de coma flotante es igual
que la de variables enteras. C soporta tres formatos de coma flotante. El tipo f1oat requiere 4 bytes de memoria, double
requiere 8 bytes y Tong double requiere 10 bytes. La Tabla 3.5 muestra los tipos de datos en coma flotante.

CAPITULO 3 EI lenguaje C: elementos basicos °

3.4

3.5

Tabla 3.5 Tipos de datos en coma flotante.

Tipo C Rango de valores Precision
float 3.4 x 107*® .. 3.4 x 10%® 7 digitos
double 1.7 x 107%% . 1.7 x 10%% 15 digitos
Tong double 3.4 x 107%%% . 1.1 x 10%9% 19 digitos

3.3.3 CARACTERES (CHAR)

C procesa datos caracter (tales como texto) utilizando el tipo de dato char. Este tipo representa valores enteros en el rango
-128 a +127. El lenguaje C proporciona el tipo unsigned char para representar valores de 0 a 255 y asi representar todos los
caracteres ASCII. Los caracteres se almacenan internamente como nimeros, y por tanto se pueden realizar operaciones arit-
méticas con datos tipo char.

EJEMPLO 3.4 Definir e inicializar una variable de tipo char, a continuacion convertir a maydscula.

char car = 'b';
car = car - 32;

El ejemplo convierte b (codigo ASCII 98) a B (codigo ASCII 66).

El tipo de dato légico

Los compiladores de C no incorporan el tipo de dato légico. C usa el tipo int para simular el tipo l6gico interpretando todo
valor distinto de 0 como "verdadero” y el valor 0 como "falso". Una expresion logica que se evallia a 0 se considera falsa; una
expresion légica que se evalla a 1 (o valor entero distinto de 0) se considera verdadera.

Constantes

Una constante es un objeto cuyo valor no puede cambiar a lo largo de la ejecucién de un programa.

Constantes literales. Las constantes literales o constantes, en general, se clasifican en cuatro grupos, cada uno de los
cuales puede ser de cualquiera de los tipos: constantes enteras; constantes reales; constantes de caracteres; constantes de
cadena.

Constantes enteras. Son una sucesion de digitos precedios o no por el signo + o — dentro de un rango determinado. Por
ejemplo, 234, y -456.

Constantes reales. Son una sucesion de digitos con un punto delante, al final o en medio y seguidos opcionalmente de un
exponente: Por ejemplo, 82.347, .63, 83., 47e-4,.25E7 y 61l.e+4.

Constantes caracter. Una constante caracter (char) es un caracter del cédigo ASCII encerrado entre apéstrofes. Por ejem-
plo, 'A', 'b', 'c'.

Constantes cadena. Una constante cadena es una secuencia de caracteres encerrados entre dobles comillas. Por ejemplo,
"123", "12 de octubre 1492", "esto es una cadena". En memoria, las cadenas se representan por una serie de carac-
teres ASCII més un 0 o nulo que es definido en C mediante la constante NULL.

Constantes definidas (simbodlicas). Las constantes pueden recibir nombres simbolicos mediante la directiva #define.

EJEMPLO 3.5 Se ponen nombres simbdlicos a constantes de interés.

fidefine NUEVALINEA '\n'
fidefine PI 3.1415929 /* valor de Ta constante Pi */

Constantes numeradas. Las constantes enumeradas permiten crear listas de elementos afines. Por ejemplo:

enum dias {Lunes, Martes, Miercoles, Jueves, Viernes, Sabado, Domingo};

» CAPITULO 3 El lenguaje C: elementos basicos

3.6

3.7

Al procesar esta sentencia el compilador enumera los identificadores comenzando por 0. Después de declarar un tipo de
dato enumerado, se pueden crear variables de ese tipo, como con cualquier otro tipo de datos.

Constantes declaradas const y volatile. El cualificador const permite dar nombres simbélicos a constantes. Su valor
no puede ser modificado por el programa. Su formato es: const tipo nombre = valor; La palabrareservada volatile actlia
como const, pero su valor puede ser modificado no sélo por el propio programa, sino también por el hardware o por el soft-
ware del sistema.

Variables

En C una variable es una posicién con nombre (identificador) de memoria donde se almacena un valor de un tipo de dato. Su
valor puede cambiar a lo largo de la ejecucion del programa.

Delaracién. Una declaracion de una variable es una sentencia que proporciona informacion de la variable al compilador
C. Es preciso declarar las variables antes de utilizarlas. Su sintaxis es:

tipo nombre;

A
Y

tipo es el nombre de un tipo de dato conocido por el Cy nombre es un identificador C.

Entradas y salidas

La biblioteca C proporciona facilidades para entrada y salida. Los programas que utilizan estas facilidades requieren incluir el
archivo de cabecera stdio.h .

Salida. La funcién printf()visualiza en la pantalla datos del programa, transforma los datos, que estan en representa-
cion binaria, a ASCII segin los cédigos transmitidos. El formato general que tiene la funcion es:

printf(cadena_de_control, datol, dato2, ..., dato);
cadena_de_control contiene los tipos de los datos y forma de mostrarlos.
datol, dato?Z... variables, constantes, o en general expresiones de salida.

Los cédigos de formato mas utilizados y su significado:

%d El dato se convierte a entero decimal.

%0 El dato entero se convierte a octal.

%X El dato entero se convierte a hexadecimal.

%u El dato entero se convierte a entero sin signo.

%C El dato se considera de tipo caracter.

%e El dato se considera de tipo float 0 double Se convierte a notacion cientifica.

%f El dato se considera de tipo f1oat 0 double se convierte a notacién decimal.

%9 El dato se considera de tipo float o double se convierte al codigo %e o %f. dependiendo de la representa-
cién mas corta.

%s El dato ha de ser una cadena de caracteres.

Entrada. La funcién mas utilizada para la entrada de datos a través del teclado es scanf (). Su formato es:
scanf (cadena_de_control, varl, varZ2, var3, ...,varn);

cadena_de_contro]l contiene los tipos de los datos y si se desea su anchura.
varl, var2 .. variables del tipo de los codigos de control.

CAPITULO 3 El lenguaje C: elementos basicos

Los codigos de formato méas comunes son los ya indicados en la salida.

Salida de cadenas de caracteres. Con la funcién printf() se puede dar salida a cualquier dato, asociandolo el codigo que le
corresponde. En particular, para dar salida a una cadena de caracteres se utiliza el cddigo %s. Para salida de cadenas, la biblio-
teca C proporciona la funcion especifica puts (); tiene un solo argumento, que es una cadena de caracteres; escribe la cadena
en la salida estandar (pantalla) y afiade el fin de linea.

Entrada de cadenas de caracteres. La entrada de una cadena de caracteres se hace con la funcién mas general scanf ()
y el codigo %s. scanf() con el cddigo %s capta palabras, el criterio de terminacion es el encontrarse un blanco, o bien fin
de linea. La biblioteca de C dispone de una funcidn especifica para leer una cadena de caracteres. Es la funcion gets(),
que lee del dispositivo estandar de entrada una cadena de caracteres. Termina la captacion con un retorno de carro.
gets(variable_cadena);

PROBLEMAS RESUELTOS

3.1

3.2.

¢Cual es la salida del siguiente programa?.

#include <stdio.h>
#define prueba "esto es una prueba"
int main()
{
char cadena[21]="sale la cadena.";
puts(prueba);
puts(“Escribimos de nuevo.");
puts(cadena);
puts(&cadena[8]);
return 0;

}

Solucion

esto es una prueba
Escribimos de nuevo.
sale la cadena.
cadena.

Codifique un programa en C que escriba en dos lineas distintas las frases
Bienvenido a la programacién en C
Pronto comenzaremos a programar en C.

Codificacion

ffinclude <stdio.h>

int main()

{
printf("Bienvenido a la programacién en C\n");
printf(" Pronto comenzaremos a programar en C\n");
return 0;

@ El lenguaje C: elementos basicos

3.3. Codifique un programa en C que copie en un array de caracteres la frase es un nuevo ejemplo en C y lo escriba en la pan-
talla.

Codificacion

ffinclude <stdio.h>
#Finclude <string.h>

int main()

{
char ejemplo[50];
strcpy (ejemplo,
printf(ejemplo);
return 0;

}

Es un nuevo ejemplo de programa en C\n");

3.4. ¢ Cual es la salida del siguiente programa?.

#include <stdio.h>
#define Constante "de declaracion de constante.”
int main(void)
{
char Salida[21]="Esto es un ejemplo" ;
puts(Salida);
puts(Constante);
puts(“Salta dos lineas\n");
puts("'y tambien un");
puts(&Salida[11]);
puts(“de uso de la funcion puts.");
return O;

}

Solucién

Esto es un ejemplo
de declaracion de constante.
Salta dos lineas

y tambien un
ejemplo
de uso de la funcion puts.

3.5. ¢Cudl es la salida del siguiente programa?.

#include <stdio.h>

int main()

{
char pax[] = "Juan Sin Miedo";
printf("%s %s\n",pax,&pax[4]);
puts(pax);
puts(&pax[4]);
return O;

3.6.

3.7.

3.8.

3.9.

El lenguaje C: elementos basicos »

Solucion

Juan Sin Miedo Sin Miedo

Juan Sin Miedo

Sin Miedo

Escriba y ejecute un programa que escriba su nombre y direccion.
Codificacion

##include <stdio.h>
int main()

printf(" Lucas Sanchez Garcia\n");

printf(" Calle Marquillos de Mazarambroz, 2\n");
printf(" Mazarambroz, TOLEDO\n");

printf(" Castilla la Mancha, ESPANA\n");

return 0;

Escribir y ejecutar un programa que escriba una pagina de texto con no mas de 50 caracteres por linea.
Codificacion (Consultar en la pagina web del libro)
Depurar el siguiente programa.

#include <stdio.h>
void main()

printf("El lenguaje de programacién C)
Solucién
A la codificacion anterior le falta en la orden printf, terminar con \n". Ademas el programa debe terminar con }.
El programa depurado es el siguiente:
ffinclude <stdio.h>
void main()
{
printf(" E1 Tenguaje de programacién C\n");
Escriba un programa que escriba la letra B con asteriscos.
Codificacion
ffinclude <stdio.h>
void main()
{

printf("*******\n");
printf("* ")

@ El lenguaje C: elementos basicos

3.10.

3.11.

3.12.

printf("* EAVIRDE:
printf("* *\n");
BIPT M (7 smstss\n ®) g

printf("* =\m”) g
printf("* =\) g
printf("* =\) g

DIPT AT (s) g

Escriba un programa C que lea las iniciales de su nombre y primer apellido y las escriba en pantalla seguidas de un punto.
Analisis del problema

Se declaran dos variables de tipo char una para leer la inicial del nombre y otra para leer la inicial del primer apellido.
Coadificacion

ffinclude <stdio.h>
int main()
{
char n, a;
printf("Introduzca la incial de su nombre y su apellido: ");
scanf("%c %c",&n,&a);
printf("Hola, %c . %c .\n",n,a);
return 0;

Escriba un programa que lea una variable entera y cuatro reales y las escriba en pantalla.
Codificacion

#include <stdio.h>
int main()
{
int vl
float v2,precio, b,h;
printf("Introduzca vl y v2: ");
scanf("%d %f",&vl,&v2); /*lectura valores vl y v2 */
printf("valores leidos: %d %f\n", vl,v2);
printf("Precio de venta al puiblico\n");

scanf("%f",&precio); /*Tectura de precio */
printf("Precio de venta %f\n", precio);
printf("Base y altura: "); /*lectura de base y altura */

scanf("%f %f\n",&b,&h)

printf("Base y altura %f %f\n", b, h);

return 0;
Escriba un programa que lea la base y la altura de un cilindro y las presente en pantalla.
Coadificacion

#include <stdio.h>

CAPITULO 3 El lenguaje C: elementos basicos

int main()
{

float base, altura;
printf("Introduzca base: ");
scanf("%f",&base);
printf("Introduzca altura\n");

scanf("%f",&altura);
printf("Base lefda %f\n",
printf("Altura Teida %f ",
return 0;

base);
altura);

PROBLEMAS PROPUESTOS

3.1.

3.2.

3.3.

3.4.

3.5.

Escribir y depurar un programa que visualice la letra A
con asteriscos.

Escribir un programa que lea un testo de cinco lineas y
lo presente en pantalla.

Escribir un programa que lee 5 nimero enteros y tres
nameros reales y los escriba.

Escribir y ejecutar un programa que lea su nombre y
direccion y lo presente.

¢Cudl es la salida del siguiente programa?.
finclude <stdio.h>

int main()

{

char p[] = "Esto es una prueba";
printf("%s %s\n",p, &pl[2]1);
puts(p);

puts(&pl2]);

return 0;

3.6.

3.7.

3.8.

3.9.

3.10.

Depurar el siguiente programa

#include <stdio.h>
void main()
{
printf("Esto es un ejemplo);

}

Escribir un programa que presente en pantalla los 5 pri-
meros nimeros impares.

Escribir un programa que lea la base y la altura de un tra-
pecio y calcule su area y la presente en pantalla.

Escribir un programa que calcule lea el radio de una cir-
cunferencia y calcule su perimetro.

Realizar un programa que lea tres nimeros reales y
escriba su suma y su producto.

4.1

4.2

CAPITULO 4

Operadores y expresiones

Los programas de computadoras se apoyan esencialmente en la realizacién de numerosas operaciones aritméticas y matemati-
cas de diferente complejidad. Este capitulo muestra como C hace uno de los operadores y expresiones para la resolucion de
operaciones. Los operadores fundamentales que se analizan en el capitulo son:

* aritméticos, légicos y relacionales;
« de manipulacion de bits;

» condicionales;

* especiales.

Ademas se analizaran las conversiones de tipos de datos y las reglas que seguira el compilador cuando concurran en una
misma expresion diferentes tipos de operadores. Estas reglas se conocen como prioridad y asociatividad.

Operadores y expresiones

Los programas C constan de datos, sentencias de programas y expresiones. Una expresion es, una sucesion de operadores y
operandos debidamente relacionados para formar expresiones matematicas que especifican un céalculo.

El operador de asignacion
El operador de asignacion tiene la siguiente sintaxis:
variable = expresion

donde variable es un identificador valido de C declarado como variable. El operador = asigna el valor de la expresién dere-
cha a la variable situada a su izquierda. Este operador es asociativo por la derecha, eso permite realizar asignaciones maltiples.
Asi,a = b = ¢ = 10; equivalea que lasvariablesa, by c se asigna el valor 10. Esta propiedad permite inicializar varias
variables con una sola sentencia. Ademas del operador de asignacién =, C proporciona cinco operadores de asignacion adi-
cionales dados en la Tabla 4.1.

Q CAPITULO 4 Operadores y expresiones

Tabla 4.1 Operadores de asignacion de C.

Simbolo Uso Descripcion

= a=b5b Asigna el valordeba a.

*= a *=b Multiplica a por b y asigna el resultado a la variable a.
/= a/=»b Divide a entre b y asigna el resultado a la variable a.
%= a %=b Fija a al resto de a/b.

+= a +=b Suma by ay lo asigna a la variable a.

-= a -=b Resta b de a y asigna el resultado a la variable a.

EJEMPLO 4.1 El siguiente fragmento de programa asigna a las variables de la izquierda los valores de la derecha.

codigo = 3467
fahrenheit = 123.456;
coordX = 525;
coordY = 725;

4.3 Operadores aritméticos

Los operadores aritméticos sirven para realizar operaciones aritméticas basicas. Estos operadores vienen recogidos en la Tabla
4.2 y su prioridad y asociatividad en la Tabla 4.3

Tabla 4.2 Operadores aritméticos.

Operador Tipos enteros Tipos reales Ejemplo
+ Suma Suma X +y
- Resta Resta b - ¢
* Producto Producto X *y
/ Division entera: cociente Division en coma flotante b /5
% Division entera: resto b %5

Los paréntesis se pueden utilizar para cambiar el orden usual de evaluacién de una expresion determinada por su prioridad
y asociatividad.

Tabla 4.3 Prioridad y asociatividad.

Prioridad (mayor a menor) Asociatividad

+, - (unitarios) izquierda-derecha (-)
* /% izquierda-derecha ()
+, - izquierda-derecha ()

EJEMPLO 4.2 ;Cual es el resultado de la expresion: 7 * 10 -5%3 * 4 + 9?

Los sucesivos pasos en el calculo son los siguientes:

70 - 5% 3 4+ 9
70 -2 * 4+ 9
70 - 8 +9
62 + 9

71

CAPITULO 4 Operadores y expresiones @

4.4 Operadores de incrementaciéon y decrementacion

De las caracteristicas que incorpora C, una de las mas Utiles son los operadores de incremento ++ y decremento - - dados en la
Tabla 4.4. Estos operadores tienen la propiedad de que pueden utilizarse como sufijo o prefijo. El resultado de la expresion
puede ser distinto, dependiendo del contexto.

m = n++;

m = ++n;

En el primer caso, se realiza primeramente la asignacion y después se incrementa en una unidad. En el segundo caso, se
incremente n en una unidad y posteriormente se realiza la asignacion.

Tabla 4.4 Operadores de incrementacion (++) y decrementacion (- -).

Incrementacion Decrementacion
++n, n++ --n n--
n+=1 n-=1
N=n+1 n=n-1

EJEMPLO 4.3 Diferencias entre operadores de preincremento y postincremento.

#include <stdio.h>
/* Test de operadores ++ y -- */
void main()
{
int m =99, n;

n = ++m;
printf(“m = %d, n = %d\n”,m,n);
n = mtt;

printf(“m = %d, n = %d\n”,m,n);

printf(“m = %d \n”,m++);
printf(“m = %d \n”,++m);

}

EJECUCION

m = 100, n = 100

m = 101, n = 100

m = 101

m = 103

4.5 Operadores relacionales

C no tiene tipos de datos logicos. En su lugar se utiliza el tipo int para este prop6sito, con el valor entero 0 que representa a
falso y distinto de cero a verdadero. Operadores tales como >=y == que comprueban una relacién entre dos operandos se lla-
man operadores relacionales y se utilizan en expresiones de la forma:

expresion; operador_relacional expresion,

expresion, y expresion, expresiones compatibles C
operador_relacional un operador de la tabla siguiente

” CAPITULO 4 Operadores y expresiones

4.6

4.7

La Tabla 4.5 muestra los operadores relacionales que se pueden aplicar a operandos de cualquier tipo de dato estandar:
char, int, float, double, etc.

Tabla 4.5 Operadores relacionales de C.

Operador Significado Ejemplo
== Igual a a ==
1= No igual a al!l=»b
> Mayor que a>b
< Menor que a = Mayor o igual que a>=b
(= Menor o igual que a <=b

Operadores légicos

Los operadores légicos se utilizan con expresiones para devolver un valor verdadero (cualquier entero distinto de cero) o un
valor falso (0). Los operadores ldgicos de C son: not (1), and (&&) yor(||). El operador Idgico ! (not, no) produce
falso (cero) si su operando es verdadero (distinto de cero) y viceversa. El operador l6gico && (and, y) produce verdadero s6lo
si ambos operandos son verdadero (no cero); si cualquiera de los operandos es falso produce falso. El operador I6gico | | (or,
0) produce verdadero si cualquiera de los operandos es verdadero (distinto de cero) y produce falso s6lo si ambos operandos
son falsos. El operador ! tiene prioridad més alta que &&, que a su vez tiene mayor prioridad que | |. La asociatividad es de
izquierda a derecha.

Evaluacion en cortocircuito. En C los operandos de la izquierda de && y | | se evaltan siempre en primer lugar; si el valor
del operando de la izquierda determina de forma inequivoca el valor de la expresion, el operando derecho no se evalla. Esto
significa que si el operando de la izquierda de && es falso o el de || es verdadero, el operando de la derecha no se evalla.
Esta propiedad se denomina evaluacion en cortocircuito.

Operadores de manipulaciéon de bits

Los operadores de manipulacion o tratamiento de bits (bitwise) ejecutan operaciones légicas sobre cada uno de los bits de los
operandos. Cada operador de manipulacidn de bits realiza una operacion légica bit a bit sobre datos internos. Los operadores
de manipulacion de bits se aplican sélo a variables y constantes char, int y long, y no a datos en coma flotante. La Tabla
4.6 recoge los operadores légicos bit a bit

Tabla 4.6 Operadores l6gicos bit a bit.

Operador Operacién

& y (and) l6gica bit a bit.

| o (or) légica (inclusiva) bit a bit.

A o (xor) logica (exclusiva) bit a bit (or exclusive, xor).
~ Complemento a uno (inversién de todos los bits).

<« Desplazamiento de bits a izquierda.

>> Desplazamiento de bits a derecha.

CAPITULO 4 Operadores y expresiones 0

4.8

4.7.1 OPERADORES DE ASIGNACION ADICIONALES

Los operadores de asignacién abreviados estan disponibles para operadores de manipulacion de bits. Estos operadores vienen
recogidos en la tabla 4.7

Tabla 4.7 Operadores de asignacion adicionales.

Simbolo Uso Descripcion

K= a «<K=b Desplaza a a la izquierda b bits y asigna el resultado a a.
>>= a >>=b Desplaza a a la derecha b bits y asigna el resultado a a.
&= a &= b Asigna a a el valor a&b.

n= a "=b Establece aa a™b.

|= a | bEstablece aa alb.

4.7.2 OPERADORES DE DESPLAZAMIENTO DE BITS (>>, <<)

Efectla un desplazamiento a la derecha (>>) o0 a la izquierda (<<) de n posiciones de los bits del operando, siendo n un nime-
ro entero. Los formatos de los operadores de desplazamiento son:

1. valor << numero_de_bits;
2. valor >> numero_de_bits;

El valor puede ser una variable entera o caracter, o una constante. EI nimero_de_bits determina cuantos bits se desplazaran.

4.7.3 OPERADORES DE DIRECCIONES

Los operadores recogidos en la Tabla 4.7 permiten manipular las direcciones de las variables y objetos en general.

Tabla 4.7 Operadores de direcciones.

Operador Accion

* Lee o modifica el valor apuntado por la expresion. Se corresponde con un puntero y el resultado es del
tipo apuntado.

& Devuelve un puntero al objeto utilizado como operando, que debe ser un lvalue (variable dotada de una

direccion de memoria). El resultado es un puntero de tipo idéntico al del operando.
Permite acceder a un miembro de un objeto agregado (unién, estructura).
-> Accede a un miembro de un objeto agregado (union, estructura) apuntado por el operando de la izquierda.

Operador condicional

El operador condicional ?, es un operador ternario que devuelve un resultado cuyo valor depende de la condicion comproba-
da. Tiene asociatividad a derechas. El formato del operador condicional es:

expresion_C ? expresion_v : expresion_f;
Se evallia expresion_C Yy su valor (cero es falso, distinto de cero es verdadero) determina cudl es la expresién a ejecutar;

si la condicion es verdadera se ejecuta expresion_v YV si es falsa se ejecuta expresion_f . La precedencia de ? es menor que
la de cualquier otro operando tratado hasta ese momento. Su asociatividad es a derecha.

Q CAPITULO 4 Operadores y expresiones

4.9

4.10

4.11

4.12

EJEMPLO 4.4 Usos del operador condicional ? :

n>07?1:-1 /*1 si n es positivo, -1 si es negativo */
m>=n?m:n /* devuelve el mayor valor de my n */

Operador coma ,

El operador coma permite combinar dos 0 mas expresiones separadas por comas en una sola linea. Se eval(a primero la expre-
sion de la izquierda y luego las restantes expresiones de izquierda a derecha. La expresion mas a la derecha determina el resul-
tado global. El uso del operador coma es como sigue:

expresiénl, expresion2, expresién3, ..., expresion
Cada expresion se evallla comenzando desde la izquierda y continuando hacia la derecha.
EJEMPLO 4.5 Se concatenan expresiones con el operador coma (,).

int i, j, resultado;
int 1;
resultado = j = 10, 1 = j, ++i;

En primer lugar, a j se asigna el valor 10, a continuacion a i se asigna el valor de j. Por Gltimo, i se incrementa a 11. El
valor de esta expresion y, por tanto el valor asignado a resultado es 11.

Operadores especiales (), []

C admite algunos operadores especiales que sirven para propdsitos diferentes. Cabe destacar: (), [].

El operador () es el operador de llamada a funciones. Sirve para encerrar los argumentos de una funcién, efectuar conver-
siones explicitas de tipo, indicar en el seno de una declaracion que un identificador corresponde a una funcién, resolver los con-
flictos de prioridad entre operadores.

El operador [] sirve para dimensionar los arrays y designar un elemento de un array o una matriz.

El operador sizeof

C proporciona el operador sizeof, que toma un argumento, bien un tipo de dato o bien el nombre de una variable (escalar,
array, registro, etc.), y obtiene como resultado el nimero de bytes que ocupa. El formato del operador es:

sizeof(nombre_variable)
sizeof(tipo_dato)
sizeof(expresidn)

Conversiones de tipos

Las conversiones de tipos pueden ser implicitas (ejecutadas automaticamente) o explicitas (solicitadas especificamente por el
programador).

Conversion implicita. C hace muchas conversiones de tipos automaticamente. Convierte valores cuando se asigna un valor de
un tipo a una variable de otro tipo; C convierte valores cuando se combinan tipos mixtos en expresiones; C convierte valores cuan-
do se pasan argumentos a funciones. Los tipos fundamentales (basicos) pueden ser mezclados libremente en asignaciones y expre-
siones. Las conversiones se ejecutan automaticamente: los operandos de tipo mas bajo se convierten a los de tipo més alto de
acuerdo con las siguientes reglas: si cualquier operando es de tipo char, short o enumerado se convierte en tipo int; si los ope-
randos tienen diferentes tipos, la siguientes lista determina a qué operacion convertird. Esta operacion se llama promocion integral.

CAPITULO 4 Operadores y expresiones @

int, unsigned int, long, unsigned long , float, double

El tipo que viene primero, en esta lista, se convierte en el que viene segundo.

Conversiones explicitas. C fuerza la conversion explicita de tipos mediante el operador de molde (cast). El operador molde
tiene el formato: (tiponombre)valor . Convierte valor a tiponombre. El operador molde (tipo) tiene la misma prioridad que
otros operadores unitarios tales como +, - y ! .

4.13 Prioridad y asociatividad

La prioridad o precedencia de operadores determina el orden en el que se aplican los operadores a un valor. Los operadores del
grupo 1 tienen mayor prioridad que los del grupo 2, y asi sucesivamente:

« Si dos operadores se aplican al mismo operando, el operador con mayor prioridad se aplica primero.

* Todos los operadores del mismo grupo tienen igual prioridad y asociatividad.

« La asociatividad izquierda-derecha significa aplicar el operador més a la izquierda primero, y en la asociatividad derecha-
izquierda se aplica primero el operador més a la derecha.

* Los paréntesis tienen la méxima prioridad.

La prioridad de los operadores viene indicada en la Tabla 4.8

Tabla 4.8 Prioridad de los operadores.

Prioridad Operadores Asociatividad
1 > L1 0 1-D
2 ++ -- ~ 1 - + & * sizeof D-1
3 R 1-D
4 * /% 1-D
5 + I1-D
6 > 1-D
7 < K= > = 1-D
8 = I= 1-D
9 & 1-D
10 " 1-D
11 \ 1-D
12 && 1-D
13 N 1-D
14 ? (expresion condicional) D-1
15 = *= /= %= 4= =K== k= ||= = D-1
16 , (operador coma) 1-D

| - D : lzquierda — Derecha.
D - | : Derecha — lzquierda.

PROBLEMAS RESUELTOS

4.1.

4.2.

4.3.

Determinar el valor de las siguientes expresiones aritméticas.

15 /12 15 % 12

24 [12 24 % 12

123 /100 123 % 100

200/ 10 200 % 100
Solucion

15 / 12 =1 15 % 12 =
24 / 12 = 2 24 % 12 =
123 / 100 =1 123 % 100
200 / 100 = 2 200 % 100

I o w

¢Cual es el valor de cada una de las siguientes expresiones?.

a)15*14-3*7
b)-4*5*2
c)(24+2*6)/4

=9

d)3+4*@8*(4-(9+3)/6) =67
£ 4*3*5+8%4%2_5=119

f4-40/5 =-4
9) (-5 % (-2)=-1

Solucion

a) 15* 14 -3* 7 = 189
b)-4*5%2 =-40

c)(24+2*6)/4

=9

d)3+4*(8*(4-(9+3)/6)) =67
£)4*3*5+8*4%2-5=119

f)4-40/5 =-4
9) (-5 % (-2)=-1

Operadores y expresiones

Escribir las siguientes expresiones aritméticas como expresiones de computadora: La potencia puede hacerse con la fun-
cion pow(), por ejemplo (x + y)* ==pow(x+y,2).

Yy
C) X + 7 +1

Solucion

ayx / y +1

b) (x + y) / (x -

d)

_b
c+d

c

§ @+b)

e) [(a+b)?

y)

Xy
9 T
X
"

) (x+y)’.(a-b)

Operadores y expresiones @

C)x +y / z

d)b / (c+d)
(a+b)*(c/d)
f) pow(pow(x +y, 2), 2)
gx *y / (1-4*x)
hyx *xy / (m=*n)

i)pow(x +y, 2) * (a - b)

¢ Cual de los siguientes identificadores son validos?

N 85 Nombre

MiProblema AAAAAAAAAA

Mi Juego Nombre_Apellidos

MiJuego Saldo_Actual

write 92

m&m Universidad Pontificia

registro Set 15

AB * 143Edad

Solucién

N Correcto

MiProblema Correcto

Mi Juego Incorrecto (lleva espacio en blanco)
MiJuego Correcto (lleva espacio en blanco)
write Correcto

m&m Incorrecto

registro Correcto

A B Correcto

85 Nombre Incorrecto (comienza por nimero)
AAAAAAAAAA Correcto

Nombre_Apellidos Correcto

Saldo_Actual Correcto

92 Incorrecto (nimero)

Universidad Pontificia Incorrecto (lleva espacio en blanco)
Set 15 Incorrecto (lleva espacio en blanco)
*143Fdad Incorrecto (no puede comenzar por *)

Si x es una variable entera e y una variable caracter. ¢ Qué resultados producira la sentencia scanf(““%d %c” ,& X, & Y) si
la entrada es?.

a) 5¢

b) 5C

Solucién
Se asigna a la variable x el valor 5 y a la variable y el caracter c o el C mayuscula. Si se ejecuta el programa siguiente:

#finclude <stdio.h>
int main()
{
int x;
char y
scanf("%d %c",& x, & y);

0 Operadores y expresiones

printf("%d %d %c", x, y, Yy);
return 0;
1

para el caso a lasalidaes 5 99 c (99 es el valor ASCII del caracter c)
parael caso b lasalidaes 5 67 C (67 es el valor ASCII del caracter C)

4.6. Realizar un programa que lea un entero, lo multiplique por 2 y a continuacion lo escriba de nuevo en la pantalla.
Codificacion

ffinclude <stdio.h>
int main()
{
int x;
printf(" dame un numero entero\n");
scanf("%d", &x);
X =2 * X;
printf("su doble es %d", x);
return 0

4.7. Realizar un programa que solicite al usuario la longitud y anchura de una habitacion y a continuacidon visualice su super-
ficie con cuatro decimales.

Codificacion

#include <stdio.h>

int main()

{
float x,y:
printf(" dame Ta longitud de la habitacion\n");
scanf("%f",&x);
printf(" dame la anchurade Ta habitacion\n");
scanf("%f",&y);
printf("su superficie es %10.4f", x * y);
return 0;

}

4.8. ¢Cuales son los resultados visualizados por el siguiente programa, si los datos proporcionados son 5y 8 2.

#include <stdio.h>

const int M = 6;

int main()

{
inta, b, c;
puts(“Introduce el valor de a y de b");
scanf("%d %d",&a,&b);

c=2*a-b;
c-=M;
b=a+c-M;

a=b*M;

Operadores y expresiones

printf("\n a = %d\n",a);
b=-1;

printf(*" b= %6d c= %6d",b,c);
return 0;

}

Solucion

Los valores visualizados son:

a= -30
b=-1c= -4
4.9. Un sistema de ecuaciones lineales
ax+hy=c
dx +ey=f
se puede resolver con las siguientes formulas :
ce — bf af —cd

~ ae-hd Y= Be—_nd

Disefiar un programa que lea dos conjuntos de coeficientes (a, b, c, d, e, f) y visualice los valores de x e y.
Codificacion

ffinclude <stdio.h>
int main()
{
float a, b, c,d,e,f,denominador,x,y;
puts("Introduce el valor de a de b y de c");
scanf("%f %f %f",&a,&b,&c);
puts("Introduce el valor de d de e y de f");
scanf("%f %f %f",&d,&e,&f);
denominador= a*e-b*d;
if (denominador==0)
printf(" no solucion\n");
else
{
x =(c *e -b *f) / denominador;
y =(a * f - c *d) / denominador;
printf("la solucion es\n");
printf("%f %f \n", x, y);
}
return 0;
}

4.10. Teniendo como datos de entrada el radio y la altura de un cilindro, calcular el area total y el volumen del cilindro.

Anélisis del problema

Sabiendo que el area total de un cilindro es igual a la suma de las areas de los dos circulos mas el area del rectangulo for-
mado por la longitud de la circunferencia y la altura del cilindro, y que el volumen se obtiene multiplicando la superficie de
la base del circulo por la altura del cilindro, el siguiente programa realiza las tareas solicitadas:

@ CAPITULO 4 Operadores y expresiones

411

Codificacion

#finclude <stdio.h>
const float pi = 3.141592;
int main()
it
float base, altura, area, volumen;
puts("Introduce el valor de la base y la altura");
scanf("%f %f",&base,&altura);
if ((base <= 0)||(altura <= 0))
printf(" no solucion\n");
else
{
area = 2 * pi * base * base + 2 * pi * base * altura;
volumen = pi * base * base * altura;
printf("la solucion es\n");
printf("area total = %f \n", area);
printf("volumen = %f \n", volumen);
}
return 0;

}

Calcular el area de un tridngulo mediante la férmula :

Area = \/(p*(p -)*(p - b)(p - ©))

donde p es el semiperimetro, p = (a + b + ¢)/2, y a, b, c los tres lados del triangulo.

Analisis del problema

Para que el triangulo exista debe cumplirse que los lados sean todos positivos, y ademas que la suma de dos lados cuales-
quiera sea mayor que el otro lado. El programa que se codifica comprueba que los datos leidos cumplen las condiciones.

Codificacion

ffinclude <stdio.h>
#include <math.h>
int main()
{
float a,b,c,p,area;
puts("Introduce el valor de los tres lados");
scanf("%f %f %f",&a, &b, &c);
if ((a <= 0) || (b <=10) || (c <=0) |]
((a +b) <c) || (a+c)<b) || ((b+c)<a)
printf(" no solucion\n");
else
{
p=(a +b+c) 2;
area = pow(p * (p-a)*(p-Db)*(Cp-2c), 0.5);
printf("la solucion es\n");
printf("area = %f \n", area);
}

return 0;

Operadores y expresiones ”

4.12. Construir un programa para obtener la hipotenusa y los angulos agudos de un triangulo rectangulo a partir de las longi-
tudes de losa catetos.

Anélisis del problema

Se calcula la hipotenusa por la formula del teorema de Pitagoras, y se obtiene el angulo mediante la funcidn inversa del seno
que es asin(). Ademas se convierte el valor devuelto por la funcién arco seno a grados (la funcién arco seno da su resulta-
do en radianes).

Codificacion

ffinclude <stdio.h>
j#include <math.h>
int main()
{
const float pi = 3.141592;
float catetol, cateto?2, hipotenusa, angulo;
puts("Introduce el valor de los catetos");
scanf("%f %f",&catetol, &cateto?);
if ((catetol <= 0) || (cateto2 <=0))
printf(" no solucion\n");
else
{
hipotenusa = sqrt(catetol * catetol + cateto2 * cateto2);
angulo = 180 / pi * asin(catetol / hipotenusa); /* angulo en grados */

printf("la solucion es\n");
printf("hipotenusa = %f \n", hipotenusa);
printf(" angulo = %f °\n", angulo);
printf(" otro angulo = %f °\n", 90 - angulo);
}
return 0;

4.13. La fuerza de atraccion entre dos masas, m; y m, separadas por una distancia d, esta dada por la formula:
G* m; *m,
d2
donde G es la constante de gravitacion universal, G = 6.673.x 10°® cm®/g. seg®

Escriba un programa que lea la masa de dos cuerpos y la distancia entre ellos y a continuacion obtenga la fuerza gravita-
cional entre ella. La salida debe ser en dinas; un dina es igual a gr. cm/seg®.

Anélisis del problema

Simplemente hay que leer las dos masas y aplicar la formula correspondiente.
Codificaion.

fHinclude <stdio.h>

ffinclude <math.h>

int main()

{
const float G = 6.67/3e-8;

4.14.

4.15.

}

float masal,masa2, distancia,fuerza;

puts(" dame Ta masa de los dos cuerpos en gramos\n");

scanf("%f %f",&masal, &masal);

puts(" dame Ta distancia entre ellos en centimetros\n");

scanf("%f",&distancia);

if ((masal <= 0) || (masa2 <= 0) || (distancia <= 0))
printf(" no solucion\n");

else

fuerza = G * masal * masa2 / (distancia * distancia);
printf("la solucion es\n");
printf("Fuerza en dinas = %f \n", fuerza);

}

return 0;

CAPITULO 4 Operadores y expresiones

Escribir un programa que lea dos enteros y calcule e imprima su producto, cociente y el resto cuando el primero se divide
por el segundo.

Anélisis del problema

Se leeran en dos variables enteras los datos y se calcularan en las variables producto, cociente y resto los resultados.

Codificacion

##include <stdio.h>
int main()

{

int a, b, producto, cociente, resto;
puts(" introduzca dos numeros\n");
scanf("%d %d", &a, &b);

producto = a * b;

cociente = a / b;

resto = a % b;

printf(" producto %d\n", producto);
printf(" cociente = %d\n", cociente);
printf(" resto = %d\n", resto);
return 0;

Escribir un programa C que lea dos nimeros y visualice el mayor.

Codificacion

#include <stdio.h>
int main()

{

int x, y, Mayor;
puts(" introduzca dos numeros\n");
scanf("%d %d", &x, &y);
Mayor = Xx;
if (x <y)
Mayor = y;

4.16.

4.17.

Operadores y expresiones o

printf(" el mayor es %d\n", Mayor);
return 0,

}

Escribir un programa en el que se introducen como datos de entrada la longitud del perimetro de un terreno, expresada con
tres nUmeros enteros que representan hectdmetros, decametros y metros respectivamente. Se ha de escribir, con un rétulo
representativo, la longitud en decimetros.

Anélisis del problema
El programa que se codifica lee los hectometros, decAmetros y metros y realiza las conversiones correspondientes.
Coadificacion

finclude <stdio.h>

int main()

{
int hectometros, decametros, metros, decimetros;
printf("Introduzca hectometros, decametros y metros ");
scanf("%d %d %d",&hectometros, &decametros, &metros);
decimetros = ((hectémetros * 10 + decametros) * 10 + metros)*10;
printf (" numero de decimetros es %d \n", decimetros);
return 0;

}

Escribir un programa que desglose cierta cantidad de segundos introducida por teclado en su equivalente en semanas, dias,
horas, minutos y segundos.

Anélisis del problema

El programa que se codifica lee el nimero de segundos y realiza las conversiones, teniendo en cuenta que un dia tiene 24
horas, una hora 60 minutos, y un minuto 60 segundos.

Codificacion

f#finclude <stdio.h>
int main()
{
int semanas, dias, horas, minutos, segundos, acu;
printf("Introduzca segundos ");
scanf("%d",&acu);
segundos = acu % 60;
acu = acu / 60;
minutos = acu % 60;
acu = acu / 60;
horas = acu % 24;
acu = acu / 24;
dias = acu % 7;
semanas = acu / 7;

printf (" numero de segundos %d\n", segundos);
printf (" numero de minutos %d\n", minutos);
printf (" numero de horas %d\n", horas);

(

"

printf numero de dias %d\n", dias);

printf (" numero de semanas %d\n", semanas);

return 0;
1

Operadores y expresiones

4.18. La famosa ecuacion de Einstein para conversion de una masa m en energia viene dada por la férmula: E = cm?, c es la

4.19.

velocidad de la luz y su valor es: c= 2.997925 x 10"°m/sg.

Escribir un programa que lea una masa en gramos y obtenga la cantidad de energia producida cuando la masa se convierte

en energia.

Nota: Si la masa se da en gramos, la formula produce le energia en ergios.

Codificacion

#include <stdio.h>

int main()

{
float m, energia;
const float ¢ = 2.997925e+10;
puts(" introduzca masa\n");
scanf("%f", &m);
energia = c *m * m * m;

printf(" energia en ergios %e\n", energia);

return 0;

Disfiar un programa que permita convertir una medida dada en pies a sus equivalentes en: a) yardas, b) pulgadas, c) cen-
timetros y d) metros (1 pie = 12 pulgadas, 1 yarda = 3 pies, 1 pulgada =2.54 cm. 1 m = 100 cm). Leer el nimero de pies

e imprimir el nimero de yardas, pies, pulgadas, centimetros y metros.

Analisis del problema

El programa leera el nimero de pies y realizara las transformaciones correspondientes de acuerdo con las equivalencias.

Codificacion

#include <stdio.h>

int main()

{
float pies, pulgadas, yardas, metros,
puts(" introduzca pies\n");
scanf("%f", &pies);
pulgadas = pies * 12;
yardas = pies / 3;
centimetros = pulgadas * 2.54;
metros = centimetros / 100;
printf(" pies %f \n", pies);
printf(" pulgadas %f\n", pulgadas);
printf(" yardas %f\n", yardas);

printf(" centimetros %f\n", centimetros);

printf(" metros %Zf\n", metros);
return 0;

centimetros;

Operadores y expresiones

4.20. Escriba un programa que lea cuatro nimeros enteros y nos calcule su media.

Analisis del problema

Se leeran los cuatro nimeros enteros y se calculara la media en una variable de tipo real, obligando a que el cociente sea un

ndmero real.
Codificacion

#finclude <stdio.h>
int main()
{
int nl, n2, n3, n4;
float media;
puts(" introduzca Tos cuatro numeros\n");
scanf("%d %d %d %d", &nl, &n2, &n3, &n4);

media = (nl + n2 + n3 + n4) / 4.0;
printf(" la media es %f \n", pmedia);
return 0;

PROBLEMAS PROPUESTOS

4.1.

4.2.

4.3.

Una temperatura Celsius (centigrados) puede ser con-
vertida a una temperatura equivalente F de acuerdo a la
siguiente formula :

F:(i)c+32
5

Escribir un programa que lea la temperatura en grados
Celsius y la escriba en F.

Realizar un programa que lea la hora de un dia de nota-
cién de 24 horas y la respuesta en notacion de 12 horas.
Por ejemplo, si la entrada es 13:45, la salida sera:

1: 45 PM

El programa pedird al usuario que introduzca exacta-
mente cinco caracteres. Por ejemplo, las nueve en punto
se introduce como

09:00

Realizar un programa que determine si un afio es bisies-
to. Un afio es bisiesto si es maltiplo de 4 (por ejemplo
1984). Sin embargo, los afios multiplos de 100 sdlo son
bisiestos cuando a la vez son multiples de 400 (por ejem-
plo, 1800 no es bisiesto, mientras que 2000 si lo es).

4.4,

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

Construir un programa que indique si un namero intro-
ducido por teclado es positivo, igual a cero, o negativo,
utilizar para hacer la seleccion el operador 2.

Implementar un programa que lea tres nimeros y escri-
ba el mayor y el menor.

Implementar un programa que lea tres nimeros y calcu-
le la media.

Implementar un programa que lea el radio de un circulo
y calcule su area, asi como la longitud de la circunfe-
rencia de ese radio.

Implementar un programa que lea el radio y la altura de
un cono Yy calcule su volumen y area total.

Implementar un programa que lea tres enteros de tres
digitos y calcule e imprima su suma Yy su producto. La
salida serd justificada a derecha

Implementar un programa que lea 3 numeros y si el
tercero es positivo calcule y escriba la suma de los
tres nimeros, y si es negativo calcule y escriba su pro-
ducto.

5.1

5.2

Estructuras de seleccion:
sentencias if y switch

Los programas definidos hasta este punto se ejecutan de modo secuencial, es decir, una sentencia después de otra. La ejecucion
comienza con la primera sentencia de la funcidn y prosigue hasta la Gltima sentencia, cada una de las cuales se ejecuta una sola
vez. Esta forma de programacion es adecuada para resolver problemas sencillos. Sin embargo, para la resolucion de problemas
de tipo general se necesita la capacidad de controlar cuales son las sentencias que se ejecutan y en qué momentos. Las estruc-
turas o construcciones de control controlan la secuencia o flujo de ejecucién de las sentencias. Las estructuras de control se
dividen en tres grandes categorias en funcién del flujo de ejecucion: secuencia, seleccién y repeticion.

Este capitulo considera las estructuras selectivas o condicionales —sentencias if y switch— que controlan si una sentencia
o lista de sentencias se ejecutan en funcién del cumplimiento o no de una condicion.

Estructuras de control
Las estructuras de control controlan el flujo de ejecucion de un programa o funcion. Las instrucciones o sentencias se orga-
nizan en tres tipos de estructuras de control que sirven para controlar el flujo de la ejecucion: secuencia, seleccion (decision) y
repeticion.
La sentencia if con una alternativa
La sentencia i f tiene dos alternativas o formatos posibles. El formato méas sencillo tiene la sintaxis siguiente:

if (Expresion 16gica) Sentencia

La sentencia if funciona de la siguiente manera. Si £xpresidén es verdadera, se ejecuta Accidn (Sentencia); en caso
contrario no se ejecuta Accién (Sentencia).

° CAPITULO 5 Estructuras de seleccién if y swicht

5.3

verdadera falsa

Accion

Y

Figura 5.1 Diagrama de flujo de una sentencia basica if.

EJEMPLO 5.1 Prueba de divisibilidad.

int main()
it
int n, d;
printf("Introduzca dos enteros: ");
scanf("&d &d",&n,&d);
if (n%d == 0) printf(" %d es divisible por %d\n",n,d);
return 0;
}

EJECUCION
Introduzca dos enteros: 24 4
24 es divisible por 4
Sentencia if de dos alternativas: if-else
Este formato de la sentencia i f tiene la siguiente sintaxis:
if (exprresion) Accionl else Accion?
Cuando se ejecuta la sentencia if-else, se evalla £xpresion. Si Expresidn es verdadera, se ejecuta Acciénly en caso
contrario se ejecuta Accion?.

Una sentencia i f es anidada cuando la sentencia de la rama verdadera o la rama falsa, es a su vez una sentencia if. Una
sentencia if anidada se puede utilizar para implementar decisiones con varias alternativas o multi-alternativas.

Sintaxis:

if (condiciénl)
sentenciay;

else if (condicion,)
sentencia,;

else if (condicién,)
sentencia,;

else
sentencia;

CAPITULO 5 Estructuras de seleccion if y swicht

5.4

5.5

EJEMPLO 5.2 Calcular el mayor de dos nimeros leidos del teclado y visualizarlo en pantalla.

#finclude <stdio.h>
int main()
{

int x, y;

printf("Introduzca dos enteros:

scanf("%d %d",&x,&y);
if (x > y)
printf("%6d\n", x);
else
printf("%6d\n", y);
return 0;
}

EJECUCION

Introduzca dos enteros: 17 54
54

Sentencia de control switch

")

La sentencia switch es una sentencia C que se utiliza para hacer una seleccidn entre maltiples alternativas. La expresion
selector debe ser un tipo ordinal (int, char,...).Cada etigueta es un valor Unico, constante, y cada etiqueta debe tener
un valor diferente de los otros. La expresion de control 0 seiector se evalla. Si su valor es igual a una de las etiquetas case
— por ejemplo, etiqueta; —entonces la ejecucion comenzara con la primera sentencia de la secuencia secuencia; y continua-
ra hasta que se encuentra el final de la sentencia de control switch, o hasta encontrar la sentencia break.

Sintaxis:

switch (selector)

{
case etiqueta; : sentencias;;
case etiqueta’? : sentenciasZ;

case etiqueta, : sentencias,;
default: sentencias;

/* opcional */

Expresiones condicionales: el operador ?:

Una expresion condicional tiene el formato ¢ 72 A
y B son los tres operandos y ? : es el operador.

B y es realmente una operacion ternaria (tres operandos) en la cual C, A

Sintaxis:

condicion ? expresion;: expresion,

5.6

CAPITULO 5 Estructuras de seleccion if y swicht

condicion es una expresion légica
expresion;/expresion, son expresiones compatibles de tipos

La expresion primerose evalla condicién, si el valor de condicidn es verdadera (distinto de cero) entonces se devuelve
como resultado el valor de expresidng; si el valor de condicién es falsa (cero) se devuelve como resultado el valor de expre -
sion2

EJEMPLO 5.3 Se utiliza una expresion condicional para llamar, alternativamente a f1(x) o a f2(x).
x ==y ? fl(x) : f(x,y);

es equivalente a la siguiente sentencia:
if (x =y)

f1(x);
else

20 x , y);

Evaluacién en cortocircuito de expresiones légicas

La evaluacién en cortocircuito de una expresion ldgica significa que se puede detener la evaluacién de una expresion Idgica
tan pronto como su valor pueda ser determinado con absoluta certeza. C realiza evaluacion en cortocircuito con los operadores
&& 'y ||, de modo que evalla primero la expresion més a la izquierda, de las dos expresiones unidas por && o bien por | |. Si
de esta evaluacion se deduce la informacion suficiente para determinar el valor final de la expresion (independiente del valor
de la segunda expresion), el compilador de C no evalla la segunda expresién. Esto permite disminuir en general el tiempo de
ejecucidn. Por esta razdn el orden de las expresiones con operadores && y | | puede ser critico en determinadas situaciones.

PROBLEMAS RESUELTOS

5.1

5.2.

¢ Qué errores de sintaxis tiene la siguiente sentencia?.

if X

> 25.0

Yy =X

else
Y

= z;

Solucién

La expresion correcta debe ser la siguiente:

if (x
y =
else

> 25.0)
X3

Z;

Por tanto le falta los paréntesis en la expresion Idgica y un punto y coma después de la sentencia de asignacion y = x.

¢Qué valor se le asigna a consumo en la sentencia if siguiente si velocidad es 120?.

if (velocidad < 80)
consumo = 10.00;

5.3.

5.4.

5.5.

Estructuras de seleccion if y swicht @

else if (velocidad > 100)
consumo = 12.00;

else if (velocidad > 120)
consumo = 15.00;

Solucién

Si velocidad toma el valor de 120 entonces necesariamente consumo debe tomar el valor de 12.00.

¢Cudl es el error del siguiente codigo?

if (x <y < z) printf("%d < %d < Zd\n",x,y,z);

Solucién

El error que presenta la sentencia es que x < y < z no es una expresion l6gica. Deberia haberse puesto (x < y) && (y < z).

¢Qué salida producira el codigo siguiente, cuando se empotra en un programa completo y primera_opcion vale 1?. ¢ Y
si primera_opcion vale 2?.

int primera_opcion;

switch (primera_opcion + 1)
{
case 1:
puts("Cordero asado");
break;
case 2:
puts("Chuleta Techal");
break;
case 3:
puts("Chuleton");
case 4:
puts("Postre de pastel");
break;
default:
puts("Buen apetito");

Solucion

En el primer caso aparece escrito Chuleta lechal
En el segundo caso aparece escrito Chuletén y en la siguiente linea Postre de pastel, ya que case 3: no lleva la orden
break.

Escribir una sentencia 77-else que visualice la palabra Alta si el valor de la variable nota es mayor que 100 y Baja si el
valor de esa nota es menor que 100.

Solucion
#include <stdio.h>

int main()
{

5.6.

5.7.

int nota;

printf(" dame nota: ");

scanf("%d", ¬a);

if (nota < 100)
printf(" Baja ");

else if (x >100)m
printf("Alta");

return 0;

Realizar un programa que determine el mayor de tres ndmeros.

Analisis del problema

Estructuras de seleccion

if Yy swicht

Se realiza mediante un algoritmo voraz, de tal manera, que el mayor de un solo ndmero es siempre el propio nimero. Si ya
se tiene el mayor de una lista de nimeros, y si a esa lista se le afiade un nuevo nimero entonces el mayor o bien es el que

ya se tenia, o bien es el nuevo.
Codificacion

#include <stdio.h>
int main()
{
int nl,n2,n3, mayor;

puts(" introduzca tres nuumeros ");

scanf(" %d %d %d", &nl, &n2,&n3);
mayor = nl;
if(mayor < n2)
mayor = n2;
if(mayor < n3)
mayor = n3;

printf(" el mayor es %d\n", mayor);

return 0;

Escribir una sentencia if-else que clasifique un entero x en una de las siguientes categorias y escriba un mensaje adecuado:

x < 0 obien
Solucién

#include <stdio.h>
int main()
{
int x = 10;
if (x < 0)
printf("%d es negativo\n",x);
else if (x <= 100)

printf("0 <= x = %d <= 100\n",

else
printf("x = %d > 100\n", Xx);
return 0;

0 < x < 100 o bien

x > 100

X);

5.8.

Estructuras de seleccion

if y swicht

Se trata de escribir un programa que clasifique enteros leidos del teclado de acuerdo a los siguientes criterios: si es 30 0
mayor, o negativo, visualizar un mensaje en ese sentido; en caso contrario, si €s un nuevo primo, potencia de 2, 0 un nime-

ro compuesto, visualizar el mensaje correspondiente.

Analisis del problema

Se programa una funcién primo () que decide si un nimero es primo. Se inicializa una variable d a 2 y un bucle whiTe incre-
menta d en una unidad cada vez que se ejecuta hasta encontrar un nimero d que divida al nimero que se quiere comprobar
que es primo. El nimero sera primo si el Gnico divisor encontrado es el propio nimero. Se programa una funcién p2 () que
decide si un nimero es potencia de 2. Para comprobarlo se inicializa una variable d a 2, y mientras el nimero sea divisible
por d lo que se hace es dividir el nimero por d. Por tanto el nimero cumplira la condicién de ser potencia de 2 si al final
toma el valor uno.

Codificacion

##include <stdio.h>

int primo(int x)

{

int d = 2;
while (x
d++;
return (d

}
int p2(int
{
int d = 2;
while (x
X =x /
return (x

int main()
{
int x;

%d

%d

puts(" introduzca numero entero \n");
&x);

scanf(" %d

if (x < 0)

printf("%d es negativo\n", x);

else if (x > 30)
%d

printf("

X

elseif (primo(x))

{

if (x == 2)

printf("x= %d

else

> 30\n",x);

// funcidén primo

// los Unicos primos son los que son divisibles

// por si mismos y por la unidad.

// funcién potencia de dos

// programa principal

es primo y potencia de dos\n",x);

printf("x = %d es primo y no potencia de dos \n", Xx);

}

else if (p2(x))

printf("x = %d

es compuesto y potencia de dos\n", x);

5.9.

5.10.

else

printf("x = %d es compuesto y no potencia de dos\n",x);

return 0;

Estructuras de seleccion

if Yy swicht

Escribir un programa que determine si un afio es bisiesto. Un afio es bisiesto si es multiplo de 4 (por ejemplo 1984). Sin
embargo, los afios maltiplos de 100 solo son bisiestos cuando a la vez son multiples de 400 (por ejemplo, 1800 no es bisies-

to, mientras que 2000 si lo es).

Anélisis del problema

Se disefia una funcion bisiesto() que decide si un nimero entero positivo representa a un afio bisiesto.

Codificacion

#finclude <stdio.h>
int bisiesto(int x);

int main()
{
int x;
puts(" introduzca afio entero \n");
scanf(" %d", &x);
if (bisiesto(x))
printf("%d es bisiesto\n", Xx);
else
printf (
return 0;

int bisiesto(int x)
{
if (x % 400 ==0)
return 1;
else if (x % 100 == 0)
return 0;
else
return (x % 4 == 0);

Escribir un programa que calcule el nimero de dias de un mes, dados los valores numéricos del mes y el afio.

Analisis del problema

%d no es un afio bisiesto \n",

X);

Se programa una funcién ndd () que calcula el nimero de dias de un mes de un afio concreto. La funcion llama a bisies-
to()(ejercicio 5.9), que, como su nombre indica, determina si un afio es bisiesto (Febrero, 29 dias). El programa principal

lee y valida tanto el dato afio como el dato mes.

Coadificacion (Consultar la péagina web del libro)

Estructuras de seleccion if y swicht o

5.11. Escribir un programa que introduzca el nimero de un mes (1 a 12) y visualice el nimero de dias de ese mes.
Anélisis del problema

Para resolver el problema, hay que tener en cuenta que el mes 2 corresponde a febrero que puede tener 29 o 28 dias depen-
diendo de si es 0 no bisiesto el afio correspondiente. De esta forma, ademas de leer el mes, se lee el afio, y mediante la fun-
cién bisiesto() (ejercicio 5.9), se decide si febrero tiene 28 o 29 dias. El resto de los meses tiene 31 dias excepto Abril,
Junio, Septiembre y Noviembre.

Codificacion

f#include <stdio.h>
int bisiesto(int x)

int main()
{
int mes, ano;
puts(" introduzca mes entre 1 y 12 \n");
scanf(" %d", &mes);
puts(" introduzca afio \n");
scanf(" %d", &ano);
if (mes == 2)
if(bisiesto(ano))
printf(" tiene 29 dias\n");

else
printf(" tiene 28 dias\n");
else
if((mes == 4) || (mes == 6) || (mes == 9) || (mes == 11))

printf(" tiene 30 dias \n");
else printf(" tiene 31 dias \n");
return 0;
}

5.12. Escribir y comprobar un programa que resuelva la ecuacion cuadratica (ax® + bx + ¢ = 0).

Analisis del problema

Para resolver el problema se ha tenido en cuenta que:

1.Sia <> 0 se presentan tres casos: el primero con dos soluciones dada por la formula que da la solucion de la ecuacion
de segundo grado cuando el discriminante es positivo. El segundo con una solucion dada por la férmula cundo el discri-
minante es cero. El tercero con dos soluciones complejas, dada por la formula cuando el discriminante es negativo.

2.Sia = 0 sepresentan a su vez otros tres casos: el primero es cuando b <>0 cuya solucién -c/b. El segundo es cuan-
dob = 0yc = 0, que es evidentemente una identidad. El tercero cuandob = 0y c <> 0 que no puede tener solu-
cion.

Codificacion (Consultar la pagina web del libro)

5.13. Escriba una sentencia que escriba menor, si el valor de la variable dato es menor que cero, y mayor, si el valor de dato es
mayor que cero.

5.14.

5.15.

Solucién

#Finclude <stdio.h>
void main()
{

float x;

printf(" dame dato\n");

scanf("%f", &x);
if(x <0)

printf(" menor que cero ");

if (x> 0)

printf("mayor que cero");

Estructuras de seleccion

Escribir un programa que lea tres enteros y emita un mensaje que indique si estan o no en orden numérico.

Solucién

Se leen los tres datos y se comprueba la condicién con una sentencia de seleccion doble.

#include <stdio.h>
void main()
{

float x, y, z;

printf(" dame tres datos\n");

scanf("%f %f %f", &x,&y,&z);

if((x <=y) & (y <=12z))
printf(" ordenados ");

else

printf("no ordenados");

if Yy swicht

Codificar un programa que escriba la calificacion correspondiente a una nota, de acuerdo con el siguiente criterio:

0 a <50 Suspenso
5 a<65 Aprobado
6.5 a <85 Notable

85 a <10 Sobresaliente

10 Matricula de honor

Andlisis del problema

El programa lee la nota en una variable real, y mediante i f anidados escribira el resultado pedido.

Codificaciodn

#Finclude <stdio.h>
void main()
{

float nota;

printf(" dame nota\n");

scanf("%f", ¬a);
if((nota < 0.0) ||

(

nota > 10))

Estructuras de seleccion if y swicht o

printf(" error en nota ");
else if (nota < 5.0)
printf("Suspenso");
else if(nota < 6.5)

printf("Aprobado");

else if (nota < 8.5)
printf("Notable");

else if (nota < 10)
printf("Sobresaliente");

else

printf("Matricula de Honor");

5.16. Escriba un programa que determine el mayor de 5 ndmeros leidos del teclado.
Analisis del problema

El programa lee un numero real Mayor. Posteriormente, lee en una iteracion otros cuatro niumeros quedandose en cada una
de ellas en la variable Mayor con el nimero mayor leido hasta el momento.

Codificacion

#include <stdio.h>
void main()
{
float x, Mayor;
int i;
printf(" dame numero\n");
scanf("%f" , &Mayor);
for(i = 2; i <= 5; i++)
{
printf(" dame numero\n");
scanf("%f" , &x);
if(Mayor < x)
Mayor = X;
}
printf(" el mayor es %f\n

Mayor);

5.17. Se desea calcular el salario neto semanal de los trabajadores de una empresa de acuerdo a las siguientes normas:

Horas semanales trabajadas < =38 a una tasa dada.

Horas extras (38 0 mas) a una tasa 50 por 100 superior a la ordinaria.
Impuestos 0 por 100, si el salario bruto es menor o igual a 50.000 pesetas.
Impuestos 10 por 100, si el salario bruto es mayor de 50.000 pesetas.

Analisis del problema

Se escribe un programa que lee las Horas, la Tasa, calcula las horas extras, asi como el Salario Bruto y el Salario Neto de
acuerdo con los especificado.

Codificacion

ffinclude <stdio.h>
void main()
{
float Horas, Extras, Tasa, SalarioBruto, SalarioNeto;
printf(" dame Horas\n");
scanf("%f" , &Horas);
if (Horas <= 38)

Extras = 0;
else
{

Horas = 38;

Extras = Horas - 38;
}
printf("introduzca Tasa\n");
scanf("%f",&Tasa);
SalarioBruto = Horas * Tasa + Extras * Tasa * 1.5;
if (SalarioBruto < 50000.0)

SalarioNeto = SalarioBruto;
else

SalarioNeto = SalarioBruto * 0,9;
printf(" Salario bruto %f \n", SalarioBruto);
printf(" Salario neto %f \n", SalarioNeto)

Estructuras de seleccion

5.18. ¢Que salida producira el siguiente cddigo, cuando se empotra en un programa completo?

int x =2;
puts("Arranque™);
if (x <= 3)
if (x '=0)

puts("Hola desde el segundo if");
else

puts("Hola desde el else.");
puts("Fin\nArranque de nuevo");
if (x > 3)
if (x !'=0)

puts("Hola desde el segundo if.");
else

puts("Hola desde el else.");
puts("'De nuevo fin");

Solucién

Arranque

Hola desde el segundo if
Fin

Arranque de nuevo

De nuevo fin

if Yy swicht

Estructuras de seleccion if y swicht o

5.19. ¢Cual es el error de este codigo?

printf(*Introduzca n:");

scanf("%d", &n);

if (n < 0)
puts(“Este nimero es negativo. Pruebe de nuevo .");
scanf("%d", &n);

else
printf(*conforme. n = %ad\n", n);

Solucién

El error est& determinado porque el e1se no esté bien enlazado con el i f. O bien se elimina una de las dos sentencias o bien
se pone llaves, como se indica a continuacion.

#include <stdio.h>
void main()
{
int n;
printf("Introduzca n:");
scanf("%d", &n);
if (n<0)
{
puts("Este numero es negativo. Pruebe de nuevo .");
scanf("%d", &n);
}
else
printf("conforme. n= %d\n", n);

5.20. ¢Qué hay de incorrecto en el siguiente cédigo?

if (x=0)
printf("%d = 0\n", x);
else

printf(*%d /= 0\n", x);
Solucién

La sentencia anterior tiene de incorrecta que x = 0 es una sentencia de asignacion y no es una expresion légica. Lo que el
programador es probable que haya querido poner es:

if (x == 0)
printf("%d = 0\n", Xx);
else

printf("%d != 0\n", x);

5.21. Cuatro enteros entre 0 y 100 representan las puntuaciones de un estudiante de un curso de informatica. Escribir un pro-
grama para encontrar la media de estas puntuaciones y visualizar una tabla de notas de acuerdo al siguiente cuadro :

Media Puntuacion

[90 , 100] A
[80, 90) B
[70, 80) c
[60, 70) D
[0, 60) E

Analisis del problema

CAPITULO 5 Estructuras de seleccion if y swicht

El programa que se escribe, lee las cuatro notas enteras, calcula la media real, y escribe la media obtenida y su puntuacion
de acuerdo con la tabla anterior.

Codificacion

#include <stdio.h>
void main()
{

int notal,notaZ2,nota3,nota4;
float media;
printf("Dame nota 1 ");
scanf("&d", ¬al);
printf("Dame nota 2 ");
scanf("&d", ¬a2);
printf("Dame nota 3 ");
scanf("&d", ¬a3);
printf("Dame nota 4 ");
scanf("&d", ¬a4d);
media = (float)(notal + nota2 + nota3 + nota4) / (float)4;
if((media < 0) || (media > 100))
printf("fuera de rango ");
else if(media >= 90)
printf(" media = %f A", media);
else if(media >= 80)
printf(" media = %f B", media);
else if(media >= 70)
printf(" media = %f C", media);
else if(media >= 60)
printf(" media = %f D", media);
else
printf(" media = %f E", media);

CAPITULO 5 Estructuras de seleccion if y swicht

PROBLEMAS PROPUESTOS

5.1.

5.2.

5.3.

5.4.

5.5.

Explique las diferencias entre las sentencias de la colum-
na de la izquierda y de la columna de la derecha. Para
cada una de ellas deducir el valor final de x si el valor
inicial de x es 0.

if (x >= 0) if (x >= 0)
X++; X++;

else if (x >= 1); if (x >= 1)
X += 2; X += 2;

El domingo de Pascua es el primer domingo después de la
primera luna llena posterior al equinoccio de primavera, y
se determina mediante el siguiente calculo sencillo:

= afio mod 19

= afio mod 4

afio mod 7

= (19 * A + 24) mod 30
=(2*B+4*C+6*D+5) mod 7
= (22 + D + E)

= m o O W >
Il

Donde N indica el nimero de dia del mes de marzo (si N
es igual o menor que 3) o abril (si es mayor que 31).
Construir un programa que determine fechas de domin-
gos de Pascua.

Determinar el carécter asociado a un cddigo introducido
por teclado corresponde a un caracter alfabético, digito,
de puntuacion, especial o no imprimible.

Escribir un programa que lea la hora de un dia de nota-
cion de 24 horas y la respuesta en notacion de 12 horas.
Por ejemplo, si la entrada es 13:45, la salida sera: 1:45
PM. El programa pedira al usuario que introduzca exac-
tamente cinco caracteres. Por ejemplo, las nueve en
punto se introduce como: 09:00.

Escribir un programa que acepte fechas escritas de modo
usual y las visualice como tres nimeros. Por ejemplo, la
entrada 15, Febrero 1989 producira la salida 15 02 1989

5.6.

5.7.

5.8.

5.9.

5.10.

Escribir un programa que acepte un nimero de tres digi-
tos escrito en palabra y a continuacion los visualice
como un valor de tipo entero. La entrada se termina con
un punto. por ejemplo, la entrada doscientos vein-
ticinco producira la salida 225.

Escribir un programa que acepte un afio escrito en cifras
ardbigas y visualice el afio escrito en nimeros romanos,
dentro del rango 1000 a 2000.

Nota: Recuerde que V=5 X=10 L=50 C=100
D=500 M =1000

IV=4 XL=40 CM =900
MCM = 1900 MCML = 1950 MCMLX = 1960
MCMXL = 1940 MCMLXXXIX = 1989

Se desea redondear un entero positivo N a la centena
mas proxima y visualizar la salida. Para ello la entrada
de datos debe ser los cuatro digitos A, B, C, D, del ente-
ro N. Por ejemplo, siAes 2, Bes3, Ces6yD es 2,
entonces N sera 2362 y el resultado redondeado sera
2400. Si N es 2342, el resultado sera 2300, y si N =
2962, entonces el namero sera 3000. Disefiar el progra-
ma correspondiente.

Se quiere calcular la edad de un individuo, para ello se
va a tener como entrada dos fechas en el formato dia (1
a 31), mes (1 a 12) y afio (entero de cuatro digitos),
correspondientes a la fecha de nacimiento y la fecha
actual, respectivamente. Escribir un programa que cal-
cule y visualice la edad del individuo. Si es la fecha de
un bebé (menos de un afio de edad), la edad se debe dar
en meses y dias; en caso contrario, la edad se calculara
en anos.

Se desea leer las edades de tres de los hijos de un matri-
monio y escribir la edad mayor, la menor y la media de
las tres edades.

6.1

CAPITULO 6

Estructuras de control:
bucles

Una de las caracteristicas de las computadoras que aumentan considerablemente su potencia es su capacidad para ejecutar una
tarea con gran velocidad, precision y fiabilidad. Las tareas repetitivas es algo que los humanos encuentran dificiles y tediosas de
realizar. En este capitulo se estudian las estructuras de control iterativas o repetitivas que realizan la repeticion o iteracion de
acciones. C soporta tres tipos de estructuras de control: los bucles while, fory do-while. Estas estructuras de control o sen-
tencias repetitivas controlan el nimero de veces que una sentencia o listas de sentencias se ejecutan.

La sentencia while

Un bucle whiTe tiene una condicidn del bucle (una expresion légica) que controla la secuencia de repeticion. La posicién de
esta condicion del bucle es delante del cuerpo del bucle y significa que en un bucle whi7e se evalla la condicion antes de que
se ejecute el cuerpo del bucle. La Figura 6.1 representa el diagrama del bucle whi7e. El diagrama indica que la ejecucion de la
sentencia o0 sentencias se repite mientras la condicion del bucle permanece verdadera (true) y termina cuando se hace falsa
(false). En otras palabras, el cuerpo de un bucle while se ejecutard cero 0 méas veces.

Condicion_bucle falsa

verdadera

sentencia

¢

Figura 6.1 Diagrama del bucle while.

° CAPITULO 6 Estructuras de control: bucles

Sintaxis:

1 while (condicidn_bucle)
sentencia; > Ccuerpo

2 while (condicidn_bucle)
{
sentencia-1;
sentencia-2;

. ""’”””””””””””,, cuerpo
sentencia-n;

while » palabra reservada C
condicién_bucle » expresion ldgica o booleana
sentencia » sentencia simple o compuesta

EJEMPLO 6.1 Bucle mientras para escribir de 0 a 10

int x = 0;
while (x < 10)
printf("X: %d", x++);

6.1.1 MISCELANEA DE CONTROL DE BUCLES While

Si la variable de control no se actualiza, el bucle se ejecutara "siempre". Tal bucle se denomina bucle infinito. En otras pala-
bras un bucle infinito (sin terminacion) se producird cuando la condicién del bucle permanece y no se hace falsa en ninguna
iteracion.

Bucles controlados por centinelas. Un centinela es un valor que sirve para terminar el proceso del bucle. Este valor debe
ser elegido con cuidado por el programador para que no afecte al normal funcionamiento del bucle.

Bucles controlados por indicadores (banderas). En C se utiliza como bandera una variable entera que puede tomar dos
valores, 1 6 0. Un bucle controlado por bandera — indicador- se ejecuta hasta que se produce el suceso anticipado y se cambia
el valor del indicador. Para que un bucle esté controlado por una bandera previamente debe ponerse la bandera a 1 (true, ver-
dadero), y cuando se produzca el suceso que decide que hay que salirse del bucle se cambia el valor de la bandera a 0 (false,
falso).

La sentencia break en los bucles. La sentencia break se utiliza para la salida de un bucle while 0 do-while, también se
utiliza dentro de una sentencia switch, siendo éste su uso mas frecuente.

while (condicionl)
{
if (condicion?)
break;
/* sentencias */

El uso de break en un bucle no es muy recomendable ya que puede hacer dificil la comprension del comportamiento del
programa. En particular, suele hacer muy dificil verificar los invariantes de los bucles.

EJEMPLO 6.2 El siguiente cédigo extrae y visualiza valores de entrada desde el dispositivo estandar de entrada
hasta que se encuentra un valor especificado.

CAPITULO 6 Estructuras de control: bucles °

6.2

int clave=-1;

int entrada;

while (scanf("%d", &entrada))
{

if (entrada = clave)
printf("%d\n", entrada);
else
break;

Repeticién: el bucle for

El bucle for es el mas adecuado para implementar bucles controlados por contador, que son bucles en los que un conjunto de
sentencias se ejecutan una vez por cada valor de un rango especificado, de acuerdo al algoritmo: por cada valor de una varia-
ble_contador de un rango especifico ejecutar sentencias. El bucle for se diferencia del bucle whi1e en que las operaciones de
control del bucle se sitGan en un solo sitio: la cabecera de la sentencia.

Sintaxis:

for (Inicializacion; Condicidénlteracion; Incremento)
Sentencias

El bucle for contiene las cuatro partes siguientes:

« Parte de inicializacion: inicializa las variables de control del bucle. Se pueden utilizar variables de control del bucle simples

o multiples.
« Parte de condicion: contiene una expresion ldgica que hace que el bucle realice las iteraciones de las sentencias, mientras que

la expresion sea verdadera.
« Parte de incremento: incrementa o decrementa la variable o variables de control del bucle.
« Sentencias: acciones 0 sentencias que se ejecutaran por cada iteracion del bucle.

EJEMPLO 6.3 Suma de los 10 primeros nimeros multiplos de tres.

#include <stdio.h>
int main()
{
int n, suma = 0;
for (n = 1; n <= 10; n++)
suma += 3*n;
printf("La suma de los 10 primeros multiplos de tres es:%d",suna);
return 0;

Sentencias break ¥ continue. La sentencia break termina la ejecucion de un bucle, o, en general de cualquier sentencia.
La sentencia continue hace que la ejecucion de un bucle vuelva a la cabecera del bucle.

EJEMPLO 6.4 Se escribe un bucle y para descartar un determinado valor clave se utiliza continue.

#include <stdio.h>

int main()
{

@ CAPITULO 6 Estructuras de control: bucles

6.3

6.4

int clave,i;
puts("Introduce -1 para acabar.");
for (i = 0; 1 < 5; i++)
{
if (clave == -1) continue;
scanf("%d",&clave);
}

Si en este bucle se introduce el valor de -1, entonces el bucle itera, como maximo 5 veces, pero no vuelve a leer ninguna
clave ya que la orden continue hace que se itere, y no se pase por la orden scanf ().

Repeticion: el bucle do...while

La sentencia do-while se utiliza para especificar un bucle condicional que se ejecuta al menos una vez.

Sintaxis:

do
sentencia
while (expresion)

La construccion do comienza ejecutando sentencia. Se evallia a continuacion expresion; si expresicén es verdadera,
entonces se repite la ejecucion de sentencia. Este proceso continda hasta que expresion es falsa.

EJEMPLO 6.5 Bucle para imprimir las letras minusculas del alfabeto.

char car = 'a';

do

{
printf("%d ",car);
car ++;

} while (car <= 'z');

Comparacion de bucles while, for Y do-while

Tabla 6.1 Formatos de los bucles

while El uso mas frecuente es cuando la repeticion no esta controlada por contador; el test de condicion precede
a cada repeticion del bucle; el cuerpo del bucle puede no ser ejecutado. Se debe utilizar cuando se desea
saltar el bucle si la condicién es falsa.

for Bucle de conteo cuando el nimero de repeticiones se conoce por anticipado y puede ser controlado por un
contador; también es adecuado para bucles que implican control no contable del bucle con simples etapas
de inicializacion y de actualizacion; el test de la condicidn precede a la ejecucion del cuerpo del bucle.

do-while Es adecuada cuando se debe asegurar que al menos se ejecuta el bucle una vez.

Estructuras de control: bucles 0

PROBLEMAS RESUELTOS

6.1. Cual es la salida del siguiente segmento de programa?.

for (cuenta = 1; cuenta < 5; cuenta++)
printf("%d ",(2 * cuenta));

Solucion

En cada iteracion se escribe el doble del valor de cuenta que ha sido previamente inicializada a uno. Por tanto se escribiran
los valores 2, 4, 6, 8. Cuando cuenta toma el valor de 5, no entra en el bucle.
Puede comprobarse facilmente este resultado ejecutando el siguiente programa:

#include <stdio.h>
void main()
{
int cuenta;
for (cuenta = 1; cuenta < 5; cuenta++)
printf("%d ",(2 * cuenta));

6.2. ¢Cudl es la salida de los siguientes bucles?.

1. for(n=10;n>0; n=n-2)

printf("Hola");
printf("* %d \n",n);

}

2. doublen=2;
for(;n>0;n=n-0.5)
printf("%g ",n);

Solucion

1. En este primer caso la variable n se inicializa al valor 10 y se decrementa en cada iteracion dos unidades saliendo del bucle
cuando es negativa o nula. Por tanto la salida seré:

Hola 10
Hola 8
Hola 6
Hola 4
Hola 2

Si se ejecuta el siguiente programa puede comprobarse los resultados:

##include <stdio.h>
void main()
{
int n;
for (n = 10; n > 0; n = n-2)
{

0 Estructuras de control: bucles

printf("Hola");
printf(" %d \n",n);

2. En este segundo caso la variable n se inicializa al valor 2 y se decrementa en cada iteracion 0.5 unidades saliendo del bucle
cuando es negativa o nula. Por tanto la salida serd: 2 1.5 1 0.5. Si se ejecuta el siguiente programa puede comprobarse
los resultados.

##include <stdio.h>
void main()
it
double n = 2;
for (; n > 0; n=n - 0.5)
printf("%g ", n);

6.3 ¢Cual es la salida de los siguientes bucles?.

int n, m;
for (n=1; n <= 10; n++)
for (m= 10; m >= 1; m - -)
printf("%d veces %d = %d \n", n , m, n *m);

Solucién

La variable n toma los valores 1, 2, 3,...., 10. Para cada uno de estos valores la variable m toma los valores 10,9, 8, 7,....., 1.
Por lo tanto la salida son las tablas de multiplicar de los nimeros 1, 2, ... 10, pero en el orden inverso.

6.4. Escriba un algoritmo que usando un bucle for infinito, y una sentencia break calcule la suma de los n > 0 primeros nime-
ros que se lean del teclado. El ndmero n es un dato y es el primero de la secuencia.

Analisis del problema

En primer lugar se lee el valor de n que cumpla la condicion pedida, para posteriormente mediante un bucle for infinito leer
los nimeros del teclado hasta que se cumpla que se haya leido la n indicada.

Codificacion

#include <stdio.h>
int main()
{
int n, ¢ = 0, x, suma = 0; /* inicializacién */
do
{
printf("Cuantos nlmeros? ");
scanf("%d", &n);}
while (n < 0);
for (:;) /* bucle for que no termina nunca */
{
if(c < n)
/* test */

6.5.

6.6.

Estructuras de control: bucles 0

scanf("%d", &x)
suma += X;
c++;
}
else
break;

/* incremento */

}
printf("suma =% d", suma);
return 0;

Disefiar un programa que lea un limite maximo entero positivo, una base entera positiva, y visualice todas las potencias de
la base, menores que el valor especificado en limite maximo.

Analisis del problema

Se implementan tres bucles. Un primer bucle do-whi1e, valida la entrada del limite entero positivo. Un segundo bucle
do-while, valida la entrada de la base entera positiva. Un tercer bucle controlado por un for escribe las distintas poten-

cias.
Codificacion

f#include <stdio.h>

void main()

{
int max_limit, base, pot;
do

{
printf(" introduzca numero positivo ");
scanf("%d", &max_limit);

}

while (max_limit < 0);

do

{
printf(" introduzca base positiva ");
scanf("%d", &base);

}

while (base < 0);

printf("sucesivas potencias de %d \n", base);

for (pot = 1; pot <= max_limit; pot *= base)
printf("%d \n", pot);

¢ Qué hace el siguiente bucle whi1e? Reescribirlo con sentencias for y do-while.

num = 10;
while (num <= 100)
{
printf("%d \n", num);
num += 10;

}

@ Estructuras de control: bucles

Analisis del problema

El programa anterior escribe en pantalla los siguientes nameros 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. En el siguiente pro-
grama se han escrito las sentencias equivalentes al whi1e anterior con un bucle for, y con un bucle do while en un mismo

programa.
Codificacion

ffinclude <stdio.h>
int main()
{
int num = 10;
while (num <= 100)
{
printf("%d \n",num);
num += 10;

// con bucle for
for (num = 10;num <= 100;num += 10)
printf("%d \n", num);
// con bucle do while
num = 10;
do
{
printf("%d \n", num);
num += 10;
}
while (num <= 100);
return 0;

6.7. ¢Cual es la salida del siguiente fragmento de programa?.

#include <stdio.h>
int main()
{ . P
inti};
i=1;
while (i *i < 10)

{
=i
while (j * j < 100)

{
printf("%d ", i + j);
i*=2
}
printf("\n");
i++;
}

return 0;

}

6.8.

6.9.

Estructuras de control: bucles @

Solucion

En el bucle controlado por la variable i, los valores que puede tomar éstason i = 1, 2, 3. Enel momento que i toma el
valor de 4, se sale del bucle ya que 4*4 no es menor que 10. En el bule controlado por la variable j, se observa que j se ini-
cializa en los valores 1, 2, 3, respectivamente, y en cada iteracion se va multiplicando por dos. Asi cuando i vale 1 los
valores que toma la variable j son 1, 2, 4, 8,y cuando toma el valor de 16 se sale del bucle ya que 16 * 16 es mayor
que 100. Cuando i vale 2, los valores que toma la variable j son 2, 4, 8,y cuando toma el valor de 16 se sale del bucle
al igual que antes. Cuando i vale 3, la variable j toma los valores 3, 6,y cuando toma el valor de 12 se sale del bucle.
Teniendo en cuenta lo anteriormente dicho, se tiene que la salida producida seré:

,3,5,9
, 6,10

l

oo AN
®© o0 o w

Disefie un algoritmo que sume los 20 primeros nimeros impares.

Analisis del problema

Se necesita un acumulador suma que sera donde se sumen los respectivos nimeros impares. Para calcular los 20 primeros
numeros impares basta con recorrer mediante un bucle for los nimeros del 0 al 19 y si i es la variable que lo controla, el
correspondiente nimero impares 2 * i + 1.

Codificacion

#include <stdio.h>
int main()
{
int i, suma = 0;
for (i = 0; n <= 19; i++)
suma += 2 * i + 1;
printf("La suma de los 20 primeros nlmeros impares: %d",suma);
return 0;

Escriba un programa que lea un namero n1, y escriba la tabla de multiplicar del nimero.

Analisis del problema

Se lee el nimero y mediante un bucle for y se itera 10 veces escribiendo los resultados.
Coadificacion

#include <stdio.h>
int main()
{
int nl,n2;
printf("introduzca numero \n");
scanf("%d", &nl);
printf(" tabla de multiplicar del %d \n", nl);
for (n2 = 1; n2 <= 10; n2++)
printf(" %d X %d = %d\n", nl, n2, nl * n2);
return 0;

° Estructuras de control: bucles

6.10.

6.11.

Escriba un programa que escriba la tabla de multiplicar del 1, 2,....,9.

Anélisis del problema

Se hace de una manera analoga al ejercicio anterior, pero ahora anidando dos bucles for, y sin leer ningln dato.
Codificacion

#include <stdio.h>
int main()
{
int nl,n2;
char ch;
for (nl = 1;nl <= 9; nl++)
{
printf(" tabla de multiplicar del %d \n", nl);
for (n2 = 1; n2 <= 10; n2++)
printf(" %d X %d = %d\n", nl, n2, nl * n2);
scanf("%c", &ch);
}
return 0;
}

Disefiar e implementar un programa que solicite a su usuario un valor no negativo n y visualice la siguiente salida:

1 2 3. n-1 n
1 2 3. n-1

1 2 3

1 2

1

Analisis del problema
Un primer bucle debe validar la entrada del dato n. Para escribir la tabla anterior se implementan dos bucles anidados.
Coadificacion

#Finclude <stdio.h>
int main()
{
int i, j, n;
do
{
printf("valor de n >0\n");
scanf("%d", &n);
}
while (n <= 0);
// termina la lectura de n
for (i =n; i >=1; i--) // para cada una de las filas descendentemente
{
for (j = 1;J <= i; j++)
// para cada una de las columnas

Estructuras de control: bucles °

printf("%2d", j);
printf("\n"); // salta de linea
}

return 0;

6.12. Implementar y ejecutar un programa que invierta los digitos de un entero positivo dado.
Analisis del problema

Para resolver el problema se inicializa una variable n1 a cero. Un bucle controlado por una variable n (la leida) termina cuan-
do su valor es cero. En cada iteracion del bucle se calcula en la propia variable n el valor del cociente entero de n entre 10.
Asi si la variable n toma el valor de 234, en las sucesivas iteraciones ird tomando los valores 234, 23, 2y cero. En cada
iteracion del bucle, se va calculando el resto del cociente entero de n entre 10. Es decir se van calculando los valores, 4, 3,
2. Para conseguir obtener el nimero invertido, basta con observar que 432 = 4*10*10+ 3*10+2 =
(((0*10+4)*10+3)*10+2). (Método de Horner de evaluacién de polinomios). Es decir, basta con acumular en n1 el valor
de n1 multiplicado por 10 y sumarle el resto de la division entera. De todo lo dicho anteriormente, se deduce obviamente el
siguiente programa.

Codificacion

finclude <stdio.h>
int main()
{
int i, n, nl;
do
{
printf("valor de n >0\n");
scanf("%d", &n);
}
while (n <= 0);
nl = 0;
while (n != 0)
{
i=n% 10;
n=n/ 10;
nl =nl * 10 + 1;

printf(" ndmero invertido %d", nl);
return 0;

6.13. Implementar el algoritmo de Euclides que encuentra el maximo comun divisor de dos nimeros enteros y positivos.
Analisis del problema

El algoritmo transforma un par de enteros positivos (n, m) en una par (n1, m1), dividiendo repetidamente el entero mayor
por el menor y reemplazando el mayor por el menor y el menor por el resto. Cuando el resto es 0, el nimero mas pequefio
distinto de cero de la pareja sera el maximo comuin divisor de la pareja original.

La codificacion que se realiza, lee primeramente los nimeros enteros n y m, validando la entrada. Posteriormente median-
te otro bucle se efecttan las correspondientes transformaciones para obtener el maximo comun divisor.

@ Estructuras de control: bucles

Codificacion

#finclude <stdio.h>
int main()
{
int r, n, m;
do
{
printf("valor de n >0\n");
scanf("%d", &n);
} while (n <= 0);
do
{
printf("valor de m >0\n");
scanf("%d", &m);
I while (m <= 0);
/* no es necesario comenzar en n con el mayor, ya que el
algoritmo de Euclides lo primero que hace es intercambiar
valores */
printf(" el maximo comum divisor entre %3d y %3d\n", n, m);
r=n % m;
while (r =0)
it

n=m
m=r
r=n % m;

}
printf(" es %3d\n", m);
return 0;

6.14. Escriba un algoritmo que lea dos nlimeros enteros positivos y calcule el minimo comdn multiplo de los dos nimeros.
Analisis del problema

Una forma sencilla de resolver el problema es tener en cuenta que siempre el producto de dos nimeros positivos cualesquiera
coincide con el producto del méximo comun divisor por el minimo comdn mdltiplo. Entonces, modificando el problema
6.13, se puede obtener el minimo comuin maltiplo. Otra manera también sencilla de resolverlo, es tomar el minimo comdn
multiplo como el mayor de los dos nimeros, y mediante un bucle que itere mientras que los nimeros dados no dividan al
minimo comdn multiplo hacer incrementar en una unidad el minimo comdn mudltiplo.

Codificacion

#include <stdio.h>
int main()
{
int n, m, mcm;
do
{
printf("valor de n >0\n");
scanf("%d", &n);
} while ((n <=0);
do

Estructuras de control: bucles @

printf("valor de m > 0\n");
scanf("%d", &m);
b while (m <= 0);
ifC n < m
mcm = m
else
mcm = n ;
while ((mcm % m !
mem++;
printf(" el minimo comun multiplo es %3d\n", mcm);
return 0;

0)[|(mcm % n != 0))

6.15. Escribir un programa que lea el radio de una esfera y visualice su &rea y su volumen.

Anélisis del problema

Teniendo en cuenta que las formulas que dan el area y volumen de una esfera son: a = 4mr?, v = 4/3mr’ para resolver
el problema s6lo se tiene que leer el radio (positivo), validarlo en un bucle y aplicar las formulas anteriores para obtener el
area y el volumen.

Codificacion

#include <stdio.h>
int main()
{
float r, a, v, pi = 3.141592;
do
{
printf("valor del radio > 0\n");
scanf("%f", &r);
b while (r <= 0);
// fin entrada de datos

o3}
Il

4 #Fpi * P o Py
4.0 / 3 *pi *r *r *r;

<
Il

// calculado el drea y el volumen
printf("el area y volumen de la esfera de radio r=%f es:\n", r);
printf("area = %f \n volumen = %f \n", a, v);
return 0;

6.16. Escriba un programa que escriba los valores de la funcion seno(2x)-x para los valores de x igual a 0, 0.5,1.0,......9.5,10.

Anélisis del problema

Se define la constante simbélica m como 10 y una "funcidn en linea" f(x) (también llamada una macro con argumentos).
El bucle se realiza 21 veces; en cada iteracion el valor de x se incrementa en 0.5, se calcula el valor de la funcién y se
escriben los resultados.

Codficacion

#include <math.h>

6.17.

#include <stdio.h>
jtdefine M 10
ffdefine f(x)
int main()

{

sinC 2 * x) - x

double x;
for (x = 0.0; x <= M; i += 0.5)
printf("%f = f\n", x, f(x);
return 0;

}

Estructuras de control: bucles

Escribir un programa que calcule y visualice el mas grande, el mas pequefio y la media de n ndmeros (n>0). El valor de n
se solicitara al principio del programa y los nimeros seran introducidos por el usuario.

Analisis del problema

Primeramente se lee el nimero n en bucle do-whiTe que valide que es positivo. Posteriormente se lee el primer nimero de
la serie, y se inicializa el mayor, el menor y la media a ese nimero. Un bucle for va leyendo el resto de los nimero, y
mediante la técnica voraz (el mejor de todos es o el mejor de todos los anteriores o es el que se acaba de leer) se recalcu-
lan los nuevos minimo y méximo, y a la vez se acumula en media el Gltimo valor leido. Al final se escriben los resultados y
la media que es la suma obtenida en la variable media divido por n.

Codificacion

#include <stdio.h>
int main()
{

int i, n;
float M, m,
do

{

media, num;

printf("valor de n >0\n");
scanf("%d", &n);

} while (n <=0);

printf ("introduzca %d numeros \n
scanf("%f", &num);

M = num;

m = num;

media = num;

for (i = 2; 1 <= n; i++)

{
scanf("%f",&num) ;
if (M < num)
M = num;
if (m > num)
m = num;
media media + num;

i
media media / n;
printf(" media %f \n",

media);

"
s

n;

/] se

recalcularon Tos

/7

nuevos maximos,

fin de entrada de datos

// bucle voraz

minimos y suma= media

Estructuras de control: bucles @

printf(" menor = %f \n", m);
printf(" mayor = %f \n", M);
return 0;

}

6.18. Un numero perfecto es un entero positivo, que es igual a la suma de todos los enteros positivos (excluido el mismo) que son
divisores del nimero. El primer nimero perfecto es 6, ya que los divisores de 6 son 1,2,3y 1+ 2 + 3 = 6.
Escribir un programa que lea un nimero entero positivo n y decida si es perfecto.

Anélisis del problema

Se lee el nimero n en un bucle validando la entrada. Posteriormente en un bucle for, prueba todos los posibles candidatos
a divisores menores que n (basta con empezar en 1 y avanzar de uno en uno hasta llegar a n-1. Podria mejorarse el bucle
Ilegando s6lo a la raiz cuadrada de n). Estos divisores se van acumulando en un acumulador, para al final del bucle com-
probar la condicion de perfecto y dar el mensaje correspondiente.

Codficacion

##include <stdio.h>
int main()
{
int i, n, resto, acu;
do
{
printf("valor de n > 0\n");
scanf("%d", &n);
}
while (n <= 0);
acu = 0;
// acu contendrd en todo momento la suma de todos lo divisores
// conocidos de n menores que i
for (i = 1; i < n; i++)
{
resto = n % i;

if (resto == 0) acu += i; /* nuevo divisor*/
}
if (n == acu)
printf(" el numero %d es perfecto\n", n);
else
printf(" el numero %d no es perfecto \n", n);
return 0;

6.19. El valor de e” se puede aproximar por la suma

2 X3 Xn
1+x+ — + — +.+ —
2! 3! n!

Escribir un programa que tome un valor de x como entrada y visualice la suma para cada uno de los valores de 1 a 100.
Anélisis del problema

El problema se resuelve teniendo en cuenta que para calcular el valor de la serie, basta con ir acumulando los sucesivos valo-
res del término, y que cada término de la serie se obtiene del inmediatamente anterior, multiplicando por x y dividiendo por

° Estructuras de control: bucles

i, siendo i un contador que indica el nimero de término que se estd sumando. Por ejemplo x°/3/= x?/2!*(x/3). El tér-
mino cero es 1, el término 1 es x, y asi sucesivamente.

Codificacion

#include <stdio.h>

int main()

{
int i;
float x, t, e;
printf("valor de x \n");
scanf("%f", &x);

e =1;
t =1;

// se han inicializado el valor de e y del término t
printf(" distintos valores \n");

for (i = 1; i <= 100; i++)
{

t *=x / i;
// se recalculd el nuevo término
@ = g
// se recalculd Ta nueva suma
printf(C " i= %d , e= %Zf \n", i, e);
}
return 0;

6.20. El matematico italiano Leonardo Fibonacci propuso el siguiente problema. Suponiendo que un par de conejos tiene un par
de crias cada mes y cada nueva pareja se hace fértil a la edad de un mes. Si se dispone de una pareja fértil y ninguno de
los conejos muere, ¢cuantas parejas habra después de n afos? Mejorar el problema calculando el nimero de meses nece-
sarios para producir un nimero dado de parejas de conejos.

Analisis del problema

Para resolver el problema, basta con observar que en cada mes el nimero de parejas fértiles, coincide con la suma de las
parejas fértiles que habia en los dos meses inmediatamente anteriores, con lo que para obtener el resultado, basta con usar
una variable auxiliar aux en la cual se suman los dos valores que se tiene en los dos meses anteriores, para actualizar de
nuevo los valores de los nuevos meses de acuerdo con lo indicado. El programa que se codifica posteriormente, lee pri-
meramente un nimero n positivo. Inicializa 1y f2 con los valores 1, para posteriormente en un bucle for de uno en
uno y comenzando por el valor 2, hacer aux=f1+f2, f1=f2 y f2=aux (f1 es el mes anterior y 2 es el actual). Para mejo-
rar la solucion solicitada, basta con leer el nimero de parejas, y entrar en un bucle while controlado, en este caso, por la
condicién ser menor que np, Yy realizar la misma operacidn que se hizo en el bucle for. Al final se escribe el valor de la
variable i que va contando el nimero de iteraciones.

Codificacion

#include <stdio.h>
int main()
{
int n, i, f1 ,f2, aux, np;
do
{
printf("valor de n \n");

Estructuras de control: bucles

scanf("%d", &n);
} while (n < 0);
fl = 1;
f2 = 1;

// Se calculan los sucesivos términos de Ta sucesién de fibonacci

for (i = 2; 1 <=n; i++)
{

aux = fl1 + f2;

f1 f2;

f2 aux;

}
printf(" valor de fibonacci para n= %d, es %d \n", n,

printf ("numero de parejas necesarias \n");
scanf("%d", &np);

while (f 2 < np)
{
aux = fl1 + f2;

fl = f2;
f2 = aux;
i+t

J
printf(" numero de meses %d \n", i);
return 0;

6.21. Determinar si un nimero dado leido del teclado es primo o no.

Anélisis del problema

Un ndmero positivo es primo, si solo tiene por divisores el uno y él mismo. Teniendo en cuenta que si hay un nimero i que
divide a otro n menor que la raiz cuadrada de n, entonces hay otro que también lo divide que es mayor que la raiz cuadrada
de n, se tiene que basta con comprobar los posibles divisores menores o iguales que la raiz cuadrada del nimero dado. El
programa codificado, se ha realizado con un solo bucle, en el cual se van comprobando los posibles divisores, siempre y
cuando, no se haya encontrado ya algun divisor anterior, 0 no se tenga que controlar ningin otro divisor. La codificacion
gue se realiza, lee primeramente el valor de n, validando que sea positivo, y posteriormente se realiza con otro bucle lo

expuesto anteriormente.
Codifcacion

##include <stdio.h>
int main()
{
int primo, 1, n;
do
{
printf("valor de n >0\n");
scanf("%d", &n);
} while (n <= 0);

f2);

// comienza la mejora

// se supone que np es positivo.

Estructuras de control: bucles

primo = 1;
//inicialmente el nlmero es primo
for (i = 2; (i * 1 < n) & primo; i++)
/* mientras sea primo y queden posibles divisores menores
0 iguales que la raiz de n hacer */

primo = (n % i) != 0;
}
if (primo)
printf(" el numero %d es primo\n", n);
else
printf(" el numero %d no es primo \n", n);
return 0;

6.22. Calcular la suma de la serie 1/1 +1/2 + ... + 1/n donde n es un nimero que se introduce por teclado.
Anélisis del problema

Para realizar la suma de la serie, basta con acumular en una variable s los distintos valores de los términos t = 1/i.
Previamente se lee del el valor del nimero de términos n validando la entrada y posteriormente con un bucle for contro-
lado por la variable i se va realizando la correspondiente acumulacion.

Codficacion

ffinclude <stdio.h>
int main()
{
int i,n;
float t, s;
do
{
printf("valor de n \n");
scanf("%d", &n);
b while (n <= 0);
s = 1;
for (i = 1; i <= n; i++)
{
t=1.07/ 1i;
// para obligar a que la divisidn sea real se pone 1.0
s += t;
}
printf(" valor de la suma = %f\n", s);
return 0;
}

6.23. Calcular la suma de los términos de la serie: 1/2 + 2/22 + 3/2% + ... + n/2".
Anélisis del problema
Para realizar la suma de la serie, basta con acumular en una variable s los distintos valores de los términos t = i/2'.

Previamente se lee del el valor del nimero de términos n validando la entrada, y posteriormente se realiza la acumulacion
mediante un bucle for.

Estructuras de control: bucles @

Codificacion

f#include <stdio.h>
#include <math.h>

int main()

{
int i, n;
float t, s;
do

{
printf("valor de n \n");
scanf("%d", &n);
b while ((n <=0);
s = 1;
for (i = 1; i <= n; i++)
{
t = float(i) / pow(2, i);
// Se obliga a que el cociente sea real.
s += t;
t
printf(" valor de Ta suma = %f\n", s);
return 0;

6.24. Encontrar un nimero natural n mas pequefio tal que la suma de los n primeros nimeros naturales exceda el valor de una
cantidad introducida por el teclado méaximo.

Anélisis del problema

En primer lugar se lee el valor de la cantidad introducida por teclado méximo validando la entrada; a continuacion, se acu-
mula la serie dada por los distintos nimeros naturales, hasta que se exceda el valor introducido. Esto se realiza mediante
un bucle for cuya salida viene dada precisamente por el valor s >= maximo.

Codificacion

#include <stdio.h>
int main()
{
int n;
float s, maximo;
do
{
printf("valor maximo n \n");
scanf("%f", &maximo);
} while (maximo <= 0);
s = 0;
for (n = 0; s < maximo;)

printf(" valor de Ta suma = %6.2f\n", s);
printf(" valor del numero de terminos = %d\n", n);
return 0;

0 Estructuras de control: bucles

6.25. Escriba un programa que lea un ndmero entero positivo y calcule su factorial, mediante un for, un while y mediante un do-
while.

Anélisis del problema

Primeramente se lee el valor del nimero n1, mediante una sentencia do-whi1e validando el dato para posteriormente escri-
bir los tres bucles, con sus correspondientes inicializaciones.

Coadificacion (Se encuentra en la pagina web del libro)
6.26. Encontrar el nimero mayor de una serie de nimeros introducidos por teclado.

Analisis del problema

La codificacion realizada, comienza pidiendo el primer nimero que sera distinto de -1. Posteriormente, se lee la serie de
ntmeros. El fin de la entrada de datos viene dado por el valor de -1. El calculo del maximo se realiza en el cuerpo del segun-
do bucle controlado por el valor -1 mediante la técnica, “el mayor de todos hasta el Gltimo leido coincide con el mayor del
ultimo ndmero que se ha leido o bien coincide con el mayor de todos los que se leyeron anteriormente™.

Codificacion

#include <stdio.h>
int main()
{
int s, maximo;
do

{
printf(" introduzca primer valor <> -1 \n");
scanf("%d", &maximo);

} while (maximo == -1);
S = maximo;
while (s !I= -1)

{

printf(" introduzca valor -1= fin \n");

scanf("%d", &s);

if(s 1= -1)

if (maximo < s)
maximo = s;

}
printf(" valor del maximo= %d\n", maximo);
return 0;

6.27. Calcular todos los nimeros de tres cifras tales que la suma de los cuadrados de las cifras es igual al valor del ndmero.

Analisis del problema

La solucion se plantea mediante un bucle que recorre todos los nimeros de tres cifras. En cada iteracion del bucle se calcu-
la cada una de las cifras del nimero y se comprueba la condicidn en cuyo caso se escribe. Si el nimero i =c3c2cl enton-
ces la condicion indicada es i =cl*cl+ c2*c2+ c3*c3. Para calcular las cifras basta con usar el cociente y la division

entera.

6.28.

6.29.

Estructuras de control: bucles °

Codificacion

f#include <stdio.h>
int main()
{
int cl, c2, c3, i, Xx;
printf(" lista de numeros que cumplen Ta condicion\n");

for(i 100; i <= 999; i++)
{
X =1 ;
cl = x % 10;
x= x / 10;
c2 = x % 10;
x = x / 10;
c3 = X;
// ya se han calculado Tas tres cifras
if(¢l * ¢l + c2 * c2 + ¢c3 * ¢c3 == 1)

printf(" numero %d\n", 1i);
}
return 0;

}
Escriba un programa que sume los nimeros pares comprendidos entre 2 y 100.

Anélisis del problema

Se inicializa una variable suma a 2 y otra variable numero a 4. Posteriormente mediante un bucle whi Te se suman los nime-
ros pares que va tomando numero a la variable suma, hasta que namero sobrepase el valor de 100.

Codificacion

#include <stdio.h>
f#include <stdlib.h>

int main()
{
int numero, suma;
suma = 2;
numero = 4;
while (numero <= 100)
{
suma = suma + numero;
numero = numero + 2;
}
printf("\nSuma pares entre 2 y 100 = %d", suma);
return 0;

Escriba un programa que lea nimeros enteros del teclado y cuente los ceros que se introducen. El final de datos viene dado
cuando se pulse por teclado una tecla distinta de s 0 S.

Codificacion (Consultar la pagina web del libro)

PROBLEMAS PROPUESTOS

6.1. Seleccione y escriba el bucle adecuado que mejor resuel-
va las siguientes tareas:
a) Sumar de serie 1/2+1/3+1/4+1/5+...+1/50.
b) Lectura de la lista de calificaciones de un examen de
Historia.
¢) Visualizar la suma de enteros en el intervalo 11. . .50.

6.2. ¢Cual es la salida del siguiente bucle?:

suma = 0;
while (suma < 100)
suma += b;

printf(" %d \n",suma);
6.3. ¢Cual es la salida de los siguientes bucles?:

A for (i = 0; 1 < 10; i++)
printf(" 2* %d = %d \n", i, 2 * i);

B for (i = 0; 1 <= 5; i++)
printf(" %d ",2 * i + 1);

C for (i = 1; 1 < 4; i++)
{
printf(" %d ",i);
for (j =15 J >=1; j--)
printf(" %d \n",j);
}

6.4. Describir la salida de los siguientes bucles:

A for (i = 1; 1 <= 5; i++)
{
printf(" %d \n",i);
for (j = i; j >=1; j-=2)
printf(" %d \n",j);
1

B for (i =3; 1 > 0; i--)
for (j = 1; j <= 1i; j++)
for (k = i; k >= j; k--)
printf("%d %d %d \n", i, j, k);

C for (i =1; i <= 3; i++)
for (j = 1; j <= 3; j++)
{
for (int k = 1; k <= j; k++)
printf("%d %d %d \n", i, j, k);
putchar('\n');
}

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

Estructuras de control: bucles

Disefar e implementar un programa que cuente el nime-
ro de sus entradas que son positivos, negativos y cero.

Disefar e implementar un programa que extraiga valores
del flujo de entrada estandar y a continuacién visualice
el mayor y el menor de esos valores en el flujo de salida
estandar. El programa debe visualizar mensajes de
advertencias cuando no haya entradas.

Disefar e implementar un programa que solicite al usua-
rio una entrada como un dato tipo fecha y a continuacion
visualice el nimero del dia correspondiente del afio.
Ejemplo, si la fecha es 30 12 1999, el nUmero visualiza-
do es 364.

Un caracter es un espacio en blanco si es un blanco (' "),
una tabulacién (' \t '), un caracter de nueva linea (' \n")
0 un avance de pagina ('\f'). Disefiar y construir un
programa que cuente el nimero de espacios en blanco de
la entrada de datos.

Escribir un programa que lea las temperaturas en grados
Celsius e imprima las equivalente en grados Fahrenheit.

Escribir un programa que convierta: (a) centimetros a
pulgadas; (b) libras a kilogramos.
(\er problema propuesto 4.1)

Escribir un programa que lea 3 enteros positivos dia, mes
y anno Y a continuacion visualice la fecha que represente,
el nimero de dias, del mes y una frase que diga si el afio es
0 no bisiesto. Ejemplo, 4/11/1999 debe visualizar 4 de
Noviembre de 1999. Ampliar el programa de modo que
calcule la fecha correspondiente a 100 dias mas tarde.

En una empresa de computadoras, los salarios de los
empleados se van a aumentar segun su contrato actual:

Contrato Aumento %
0 a 9.000 dolares 20
9.001 a 15.000 dolares 10
15.001 a 20.000 ddlares 5
mas de 20.000 dolares 0

Escribir un programa que solicite el salario actual del
empleado y calcule y visualice el nuevo salario.

La constante p7 (3.1441592...) es muy utilizada en
matematicas. Un método sencillo de calcular su valor es:

e (3)0(2)-(8)(3)-

CAPITULO 6 Estructuras de control: bucles

6.14.

Escribir un programa que efectle este calculo con un
numero de términos especificados por el usuario.

Escribir un programa que visualice un cuadrado magico
de orden impar n, comprendido entre 3 y 11; el usuario
elige el valor de n. Un cuadrado magico se compone de
niimeros enteros comprendidos entre 1y n?. La suma de
los nimeros que figuran en cada linea, cada columna y
cada diagonal son idénticas. Un ejemplo es:

8 1 6
3 5 7
4 9 2

Un método de construccion del cuadrado consiste en
situar el nimero 1 en el centro de la primera linea, el
ntmero siguiente en la casilla situada encima y a la dere-
cha, y asi sucesivamente. Es preciso considerar que el
cuadrado se cierra sobre si mismo: la linea encima de la
primera es de hecho la dltima y la columna a la derecha

6.15.

6.16.

de la dltima es la primera. Sin embargo, cuando la posi-
cién del nimero caiga en una casilla ocupada, se elige la
casilla situada debajo del nimero que acaba de ser situa-
do. Puede verse una solucion con arrays en el ejercicio
resuelto 9.13.

Calcular la media de las notas introducidas por teclado
con un didlogo interactivo semejante al siguiente:

¢Cuantas notas? 20
Nota 1 : 7.50
Nota 2: 6.40
Nota 3: 4.20
Nota 4: 8.50

Nota 20: 9.50
Media de estas 20: 7.475

Contar el nimero de enteros negativos introducidos en
una linea.

7.1

7.2

Funciones

Una funcion es un miniprograma dentro un programa. Las funciones contienen varias sentencias bajo un sélo nombre, que un
programa puede utilizar una 0 mas veces para ejecutar dichas sentencias. Las funciones ahorran espacio, reduciendo repeticio-
nes y haciendo mas facil la programacion, proporcionando un medio de dividir un proyecto grande en moédulos pequefios mas
manejables. En otros lenguajes como BASIC o ensamblador se denominan subrutinas; en Pascal, las funciones son equivalen-
tes a funciones y procedimientos. C, C++, JAVA, C# utilizan funciones.

Este capitulo examina el papel (rol) de las funciones en un programa C. Las funciones pueden existir de modo auténomo o bien
como miembros de una clase. Como ya conoce, cada programa C tiene al menos una funcién main(); sin embargo, cada programa
C consta de muchas funciones en lugar de una funcién main() grande. La division del codigo en funciones hace que las mismas se
puedan reutilizar en su programa y en otros programas. Después de que escriba, pruebe y depure su funcion, se puede utilizar nue-
vamente una y otra vez. Para reutilizar una funcién dentro de su programa, sélo se necesita llamar a la funcion.

Si se agrupan funciones en bibliotecas otros programas pueden reutilizar las funciones, por esa razén se puede ahorrar tiempo
de desarrollo. Y dado que las bibliotecas contienen rutinas presumiblemente comprobadas, se incrementa la fiabilidad del pro-
grama completo.

Las funciones son una de las piedras angulares de la programacion en C y un buen uso de todas las propiedades basicas ya
expuestas, asi como de las propiedades avanzadas de las funciones, le proporcionaran una potencia, a veces impensable, a sus
programaciones. La compilacion separada y la recursividad son propiedades cuyo conocimiento es esencial para un disefio efi-
ciente de programas en numerosas aplicaciones.

Concepto de funciéon

Un programa C se compone de varias funciones, cada una de las cuales realiza una tarea principal. EI mejor medio para escri-
bir un programa es escribir funciones independientes para cada tarea que haga el programa. Cada funcion realiza una determi-
nada tarea y cuando se ejecuta return o termina el codigo de la funcién, se retorna al punto en que fue llamada por el programa
o funcion principal.

Estructura de una funcion

Una funcién es, sencillamente, un conjunto de sentencias que se pueden Ilamar desde cualquier parte de un programa. Las fun-
ciones en C no se pueden anidar. En C todas las funciones son externas o globales, es decir, pueden ser llamadas desde cual-

quier parte del programa. La estructura de una funcién en C es:

0 CAPITULO 7 Funciones

7.3

tipo_de_retorno nombrefuncién (lista De Pardmetros)
{

cuerpo de la funcioén

return expresion

tipo_de_retorno tipo de valor devuelto por la funcion o la palabra reservada void si la funcién no devuelve ningin
valor.

nombreFuncién identificador o nombre de la funcion.

ListaDePardmetros lista de declaraciones de los pardmetros de la funcion separados por comas.

expresion valor que devuelve la funcién.

Los aspectos mas sobresalientes en el disefio de una funcion son:

« Tipo de resultado. Es el tipo de dato que devuelve la funcion C .

« Lista de parametros. Es una lista de parametros con tipos que utilizan el formato siguiente: tipol pardmetrol, tipo?
parametro’z, ...

* Cuerpo de la funcion. Se encierra entre llaves de apertura ({) y cierre (}).

« Paso de parametros. El paso de parametros en C se hace siempre por valor.

« Declaracion local. Las constantes, tipos de datos y variables declaradas dentro de la funcion son locales a la misma y no per-
duran fuera de ella.

« Valor devuelto por la funcion. Mediante la palabra reservada return se puede devolver el valor de la funcion.

« La llamada a una funcién. Debe ser una sentencia de otra funcidn. Esta sentencia debe ser tal que debe haber coincidencia en
nGmero orden y tipo entre la lista de pardmetros formales y actuales de la funcién.

EJEMPLO 7.1: Codifica la funcién suma () y se muestra su estructura.

tipo de resultado —— —— lista de parametros
float suma(float numl,float num2) cabecera de la funcion
{
declaracion ———— float resp;
de variables resp = numl + num2; valor
return resp; devuelto
}

Prototipos de las funciones

La declaracion de una funcién se denomina prototipo. Especificamente un prototipo consta de los siguientes elementos: nom-
bre de la funcidn, lista de argumentos encerrados entre paréntesis y un punto y coma. En C no es necesario incluir el prototipo
aungque si es recomendable para que el compilador pueda hacer chequeos en las Ilamadas a las funciones. Los prototipos se sitl-
an normalmente al principio de un programa, antes de la definicion de la funcién main (). EI compilador utiliza los prototipos
para validar que el nimero y los tipos de datos de los argumentos reales de la llamada a la funcién son los mismos que el nime-
ro y tipo de argumentos formales en la funcién llamada. Si una funcién no tiene argumentos, se ha de utilizar la palabra reser-
vada void como lista de argumentos del prototipo (también se puede escribir paréntesis vacios). Un formato especial de
prototipo es aquel que tiene un nimero no especificado de argumentos, que se representa por tres puntos (. . .)

EJEMPLO 7.2 Calcular el area de un rectangulo. El programa se descompone en dos funciones, ademas de main().
ffinclude <stdio.h>

float area_rectangulo(float b, float a); /* declaracion */
float entrada(); /* prototipo o declaracién */

CAPITULO 7 Funciones

7.4

int main()
{
float b, h;
printf(“\n Base del rectangulo: “);
b = entrada();
printf(“\n Altura del rectangulo: *);
h = entrada();
printf(“\n Area del rectangulo: %.2f”,area_rectangulo(b,h));
return 0;

/* devuelve numero positivo */

float entrada()
{

float m;

do |

scanf (“\%f”,&m);

I while (m <= 0.0);

return m;

/* calcula el area de un rectdngulo */
float area_rectangulo(float b, float a)
{
return (b*a);

Parametros de una funcioén

C siempre utiliza el método de parametros por valor para pasar variables a funciones. Para que una funcién devuelva un valor a
través de un argumento hay que pasar la direccion de la variable, y que el argumento correspondiente de la funcién sea un punte-
ro, es la forma de conseguir en C un paso de parametro por referencia. C permite utilizar punteros para implementar parametros
por referencia, ya que por defecto, en C el paso de parametros es por valor. Los pardmetros por valor reciben copias de los valo-
res de los argumentos que se les pasan. La asignacion a parametros valor de una funcién nunca cambian el valor del argumento
original pasado a los parametros. Los parametros por referencia (declarados con *, punteros) reciben la direccién de los argu-
mentos pasados; a éstos les debe de preceder del operador &, excepto los arrays. En una funcion, las asignaciones a parametros
referencia (punteros) cambian los valores de los argumentos originales. Con el objeto de afiadir seguridad adicional a las funcio-
nes, se puede afiadir a la descripcion de un pardmetro el especificador const, que indica al compilador que son sélo para pasar
informacién al interior de la funcién. Si se intenta modificar este parametro se producira un mensaje de error.

EJEMPLO 7.3 Esquema del paso de parametros por valor en la llamada a una funcién.

main()

{
int i = 6;
func(i);
return 0;

void func(int 1)

{
printf(“%d”,i);
i+

° CAPITULO 7 Funciones

7.5

7.6

EJEMPLO 7.4. Esquema de paso de parametros por referencia.

int i = 3, j = 50;

printf("i = %d y j = %d \n”, i,3);
intercambio(&i, &j);

printf("i = %d y j =% \n”, i,3);

void intercambio(int* a, int* b)
{

int aux = *a;

*a *b.

*b aux;

Funciones en linea, macros con argumentos

Las funciones en linea se usan cuando la funcion es una expresion (su codigo es pequefio y se utiliza muchas veces en el pro-
grama). Realmente no son funciones, el preprocesador expande o sustituye la expresion cada vez que es llamada. La sintaxis
general es :

ffdefine NombreMacro(pardmetros sin tipos) expresion_texto

La definicién ocupara sélo una linea, aunque si se necesita mas texto, se puede situar una barra invertida (\) al final
de la primera linea y continuar en la siguiente, en caso de ser necesarias mas lineas proceder de igual forma; de esa mane-
ra se puede formar una expresién mas compleja. Entre el nombre de la macro y los paréntesis de la lista de argumentos no
puede haber espacios en blanco. Es importante tener en cuenta que en la macros con argumentos no hay comprobacién de
tipos.

EJEMPLO 7.5 Funcion en linea para definir una funcién matematica.

#include <stdio.h>
ffdefine fesp(x) (x*x + 2*x -1)

void main()
{
float x;
for (x = 0.0; x <= 6.5; x += 0.3)
printf(“\t f(%.1f) = %6.2f “,x, fesp(x));
}

Ambito (alcance)

El &mbito es la zona de un programa en la cual es visible una variable. Existen cuatro tipos de ambitos: programa, archivo fuen-
te, funcién y bloque. Normalmente la posicion de la sentencia en el programa determina el ambito.

« Las variables que tienen &mbito de programa pueden ser referenciadas por cualquier funcion en el programa completo; tales
variables se llaman variables globales. Para hacer una variable global, declarela simplemente al principio de un programa,
fuera de cualquier funcidn.

« Una variable que se declara fuera de cualquier funcion y cuya declaracién contiene la palabra reservada static tiene ambi-
to de archivo fuente. Las variables con este &mbito se pueden referenciar desde el punto del programa en que estan declara-
das hasta el final del archivo fuente.

« Una variable que tiene &mbito de una funcién se puede referenciar desde cualquier parte de la funcion. Las variables decla-
radas dentro del cuerpo de la funcion se dice que son locales a la funcién.

CAPITULO 7 Funciones °

7.7

« Una variable declarada en un bloque tiene ambito de bloque y puede ser referenciada en cualquier parte del bloque, desde el
punto en que esta declarada hasta el final del bloque. Las variables locales declaradas dentro de una funcién tienen &mbito de
bloque de la funcién; no son visibles fuera del bloque.

EJEMPLO 7.6 Declaracion de variables y funciones en &mbitos diferentes.

int 1; /*Ambito de programa */
static int j; /*Ambito de archivo */
float func(int k) /* K ambito de funcidén */
{
{
int m; /*Ambito de bloque */

Clases de almacenamiento

Los especificadores de clases (tipos) de almacenamiento permiten modificar el &mbito de una variable. Los especificadores
pueden ser uno de los siguientes: auto, extern, register, static y typedef.

Variables Automaticas. Las variables que se declaran dentro de una funcion se dice que son automaticas (auto), signifi-
cando que se les asigna espacio en memoria automaticamente a la entrada de la funcidn y se les libera el espacio tan pronto se
sale de dicha funcién. La palabra reservada auto es opcional.

EJEMPLO 7.7 Declaracion de variables automaticas.
auto int x1; es igual que int x1;

Variables Externas. Cuando una variable se declara externa, se indica al compilador que el espacio de la variable esta defi-
nida en otro archivo fuente.

EJEMPLO 7.8 Declara que la funcién TeerReal () estd implementada en otro archivo fuente. También, declara la
variable f definida en otro archivo.

/* archivo fuente exterl.c */
#finclude <stdio.h>
extern void leerReal(void); /* funcidén definida en otro archivo; no es estrictamente
necesario extern, se asume por defecto */

float f;
int main()
{

leerReal();

printf("Valor de f = %f",f);

return 0;

/* archivo fuente exter2.c */
#include <stdio.h>
void leerReal(void)
{
extern float f; /* variable definida en otro archivo (externl.c) */
printf("Introduzca valor en coma flotante: ");
scanf(“%f”,&f);

@ CAPITULO 7 Funciones

7.8

7.9

En el archivo extern2.c la declaracion externa de f indica al compilador que 7 se ha definido en otra parte (archivo).
Posteriormente, cuando estos archivos se enlacen, las declaraciones se combinan de modo que se referirdn a las mismas posi-
ciones de memoria.

Variables registro. Precediendo a la declaracion de una variable con la palabra reservada register, se sugiere al compi-
lador que la variable se almacene en uno de los registros hardware del microprocesador. Para declarar una variable registro,
hay que utilizar una declaracion similar a: register int k;. Una variable registro debe ser local a una funcién, nunca puede
ser global al programa completo.

Variables estaticas. Las variables estaticas no se borran (no se pierde su valor) cuando la funcién termina y, en con-
secuencia, retienen sus valores entre llamadas a una funcién. Al contrario que las variables locales normales, una variable
static se inicializa s6lo una vez y se declaran precediendo a la declaracién de la variable con la palabra reservada
static.

EJEMPLO 7.9 Se declaran dos variables con almacenamiento permanente (static).

func_uno()

{
int i;
static int j = 25; /*j, k variables estdticas */
static int k 100;

Concepto y uso de funciones de biblioteca

Todas las versiones de C ofrecen una biblioteca estandar de funciones que proporciona soporte para operaciones utilizadas con
mas frecuencia. Las funciones estandar o predefinidas, se dividen en grupos; todas las funciones que pertenecen al mismo
grupo se declaran en el mismo archivo de cabecera. Los nombres de los archivos de cabecera estandar utilizados en los pro-
gramas se muestran a continuacion encerrados entre corchetes tipo angulo:

<assert.h> {ctype.h> <errno.h> <float.h>

<Timits.h> <locale.h> <math.h> <setjmp.h>
<signal.h> <stdarg.h> <stddef.h> <stdio.h>

<stdlib.h> {string.h> <{time.h>

Miscelanea de funciones

Funciones de caracter. El archivo de cabecera <ctype.h> define un grupo de funciones/macros de manipulacion de carac-
teres. Todas las funciones devuelven un resultado de valor verdadero (distinto de cero) o falso (cero).

Funciones numéricas. Virtualmente cualquier operacion aritmética es posible en un programa C. Las funciones matema-
ticas disponibles son las siguientes: trigonomeétricas; logaritmicas; exponenciales; funciones matematicas de caracter general;
aleatorias. La mayoria de las funciones numéricas estan en el archivo de cabecera math. h; las funciones de valor absoluto abs
y labs estan definidas en std1ib.h, y las funciones de division entera div y 1div también estan en stdlib.h.

Funciones de fecha y hora. Los microprocesadores tiene un sistema de reloj que se utiliza principalmente para controlar
el microprocesador, pero se utiliza también para calcular la fecha y la hora. El archivo de cabecera time.h define estructuras,
macros y funciones para manipulacion de fechas y horas. La fecha se guarda de acuerdo con el calendario gregoriano
(mm/dd/aa). Las funciones time y clock devuelven, respectivamente, el nimero de segundos desde la hora base y el tiempo
de CPU empleado por el programa en curso.

Funciones de utilidad. El lenguaje C incluye una serie de funciones de utilidad que se encuentran en el archivo de cabe-
cerastdlib.h como las siguientes: abs(n), que devuelve el valor absoluto del argumento n.; atof(cad) convierte los digi-
tos de la cadena cad anUmero real; atoi(cad), atol(cad) convierte los digitos de la cadena cad a nimero entero y entero
largo respectivamente.

Visibilidad de una funcién. ElI ambito de un elemento es su visibilidad desde otras partes del programa y la duracién de
un objeto es su tiempo de vida, lo que implica no sélo cuanto tiempo existe la variable, sino cuando se crea y cuando se hace

Funciones @

disponible. El &mbito de un elemento en C depende de donde se situe la definicion y de los modificadores que le acompafian.
Se puede decir que un elemento definido dentro de una funcion tiene &mbito local (alcance local), o si se define fuera de cual-
quier funcion, se dice que tiene un &mbito global.

Compilacion separada. Los programas grandes son mas faciles de gestionar si se dividen en varios archivos fuente, tam-
bién llamados médulos, cada uno de los cuales puede contener una o més funciones. Estos médulos se compilan y enlazan por
separado posteriormente con un enlazador, o bien con la herramienta correspondiente del entorno de programacion. Cuando
se tiene mas de un archivo fuente, se puede referenciar una funcion en un archivo fuente desde una funcién de otro archivo
fuente. Al contrario que las variables, las funciones son externas por defecto. De modo opcional y por razones de legibilidad,
puede utilizar la palabra reservada extern con el prototipo de funcion.

PROBLEMAS RESUELTOS

7.1.

7.2.

La funcion factorial se define de la siguiente forma. Factorial(n) = 1 si n=0, y factorial(n) = n* factorial(n-1) si n>0.
Escriba la funcion factorial, y un programa que la llame para distintos valores de n.

Analisis del problema

La funcidn factorial, se programa no recursivamente, usando un bucle ascendente, inicializando un acumulador a 1 y multi-
plicando en cada iteracion el acumulador por la variable de control del bucle.

Codificacion

#include "stdio.h"
float factorial (int x);

void main (void)
{
float Xx,y,i;
printf(" dame dos nlmeros ");
scanf ("%f%f",&x,&y);
for (i = x; 1 <=y; i++)
{
printf("%8.0f %s %8.0f\n",i,"factorial", factorial(i));}

}
float factorial (int x)

float 1,f;

f =1.0

for (1 =1; i <= x; it++)
f=1f=*1;

Escriba una funcién que intercambie el valor de dos nimeros enteros y un programa que realice las llamadas.
Analisis del problema

Se escribird una funcion interl() que intercambia el valor de los nimeros enteros, realizando la transmisién de parame-
tros por referencia.

@ CAPITULO 7 Funciones

Codificacion

#include "stdio.h";
void main(void)
{
int Xx,y;
printf(" dame dos enteros \n");
scanf(" %d %d",&x,&y);
interl(&x,&y);
printf (" cambiados %d %d \n",x,y);
1
void interl(int *a, int *b)

{

int aux
aux = *a;
*a = *b;
*b = aux;

7.3. Escriba dos macros que permitan calcular el area lateral y el volumen de un cilindro.
Anélisis del problema

El volumen de un cilindro viene dado por volumen= pi*radio®* altura y el Areatotal viene dada por
Areatotal=2*pi*radio*altura+ pi*radio’. Para resolver el problema basta con declarar las variables correspondien-
tes declarar la constante pi y los dos macros que permitan definir las dos funciones, con lo que la codificacion queda de la
siguiente forma.

Codificacion

#include <stdio.h>

const float Pi = 3.141592;

fhdefine VOLCILINDRO(radio,altura) ((Pi*(radio*radio)*altura))
jtdefine AREATOTAL(radio,altura) (2*Pi*radio*altura+Pi*radio*radio)

int main()

{

float radio, altura, volumen, Areatotal;

do

{
printf("Introduzca radio del cono:\n ");
scanf("%f",&radio);
printf("Introduzca altura del cono:\n ");
scanf("%f",&altura);

twhile ((radio <= 0) || (altura <= 0));

volumen = VOLCILINDRO(radio, altura);

Areatotal = AREATOTAL(radio, altura);

printf("El volumen del cilindro es: %f\n",volumen);

printf("El area tetla n del cilindro es: %f\n",Areatotal);

return 0;

}

7.4. Escriba una funcién que lea tres nimeros enteros del teclado y devuelva el mayor.

7.5.

Funciones @

Analisis del problema

La funcion que resuelve el problema no tiene ningin parametro, y lo que hace es leer secuencialmente los tres nimeros y
calcular el mayor. Se codifica también un programa principal que se encarga de llamar a la funcién anterior.

Codficacion

f##include "stdio.h"
int mayor ();

void main (void)
{
printf(" el mayor es %d ",mayor());

int mayor ()
{
int i,m
printf(" dame numero \n");
scanf("%d", &m);
printf(" dame numero \n");
scanf("%d", &i);
if (i > m)
m=i;
printf(" dame numero \n");
scanf("%d", &i);
if (i > m)
m= 1i;
return (m);

Escriba un programa que calcule los valores de la funcion funcionx definida de la siguiente forma:

funcionx(0) = 0,
funcionx(1) = 1
funcionx(2) = 2
funcionx(n) = funcionx(n-3)+ 2*funcionx(n-2)+funcionx(n-1) sin> 2.

Analisis del problema

La funcion funcionx esta definida recursivamente. Para programarla se puede usar la idea de definir tres variables loca-
les estéaticas que guarden los dltimos valores obtenidos de la funcidonx. De esta forma si se le llama desde un bucle desde,
hasta el valor que se quiera calcular se obtiene la lista de valores de la funcién que es la siguiente 0, 1, 2, 4, 9, 19,

Codificacion

#finclude <stdio.h>
long int funcionx();
int main()
{
int n,i;
printf("Cuantos numeros de la funcionx ?: ");

7.6.

}

scanf("%d",&n);

printf("\nSecuencia de funcionx: 0,1,2");

for (i = 3; 1 <= n; i++)
printf(",%d",funcionx());
return 0;

long int funcionx()

{

static int x = 0;
static int y = 1;
static int z = 2;
int aux;

aux = x + 2 *y + z ;
X =Y;

y = z;

Z = aux;

return z;

Funciones

Escriba una funcién que tenga como parametro dos nimeros enteros positivos n 'y m, y calcule el cociente de la division

entera del mayor de ellos entre el menor mediante sumas y restas.

Analisis del problema

Un programa principal leera los dos nimeros y llamara a la funcion cociente que se encargara de resolver el problema. La
funcion cociente determina el mayor y el menor de los dos nimeros almacenandolos en las variables Mayor y menor.
Mediante un acumulador inicializado a la variable menor y un contador, c, inicializado a cero, se cuenta el nimero de veces
que es necesario sumar el menor para sobrepasar (ser estrictamente mayor) el nimero Mayor. Como ¢ se ha inicializado a
cero, cuando en el acumulador ya se ha sumando una vez el menor, el resultado final solicitado sera el dado por el acumu-
lador c.

Codificacion

#include "stdio.h"
int
void main (void)

{

cociente (int n, int m);

int n,m;
do

{

}

int

{

printf(" dame dos numeros
scanf("%d %d",&n,&m);

")

while ((n <= 0) || (m <= 0));
printf(" el cociente es %d \n",

cociente (int n, int m)

int ¢, Mayor, menor, acu ;
if (n < m)

{

Mayor = m;
menor

Il
=

cociente(n,m));

7.7.

Funciones @

else

{
Mayor = n;
menor = m;

}
acu = menor;
c = 0;
while (acu <= Mayor)
{
acu += menor;
c++;
}
return (c);

Escriba una funcién que tenga como parametro dos nimeros enteros positivos n'y m, y calcule el resto de la division ente-
ra del mayor de ellos entre el menor mediante suma y restas.

Anélisis del problema

Un programa principal leerd los dos nimeros asegurandose que son positivos mediante un bucle do-while y llamaré a la
funcidn resto que se encargara de resolver el problema. La funcion resto, primeramente, determina el mayor y el menor
de los dos nimeros almacenandolos en las variables Mayor y menor. Mediante un acumulador inicializado a la variable
menor y mediante un bucle while se suma al acumulador el valor de menor, hasta que el valor del acumulador sea mayor
que el niamero Mayor. Necesariamente el resto debe ser el valor de la variable Mayor menos el valor de la variable acumu-
lador acu menos el valor de la variable menor.

Codificacion

#include "stdio.h"
int resto(int n, int m);

void main (void)
{

int n, m;

do

{

printf(" dame dos numeros :");
scanf("%d %d",&n,&m);
} while ((n <= 0) || (m <= 0));
printf(" el cociente es %d \n", resto(n,m));

int resto(int n, int m)
{
int Mayor, menor, acu ;
if (n < m)
{
Mayor = m;
menor

Il
=}

}
else

@ Funciones

7.8.

Mayor = n;
menor
}
acu = menor;
while (acu <= Mayor)
acu += menor;
return (Mayor - acu - menor);

Il
E

}
Escriba un programa que calcule los valores de la funcion funcionx definida de la siguiente forma:

funcionx(0) = 0,
funcionx(1) =1
funcionx(2) = 2
funcionx(n) = funcionx(n-3)+ 2*funcionx(n-2)+funcionx(n-1) sin> 2.

Anélisis del problema

El ejercicio nimero 7.5 se ha programado mediante variables static aqui se resuelve mediante un bucle, y sélo se retorna
el resultado final.

Codificacion

ffinclude <stdio.h>

long int funcionx(int n);

int main()

{
int n,i;
printf("Cuantos numeros de la funcionx ?: ");
scanf("%d",&n);
printf("\nSecuencia de funcionx: 0,1,2");
for (i = 3; i <= n; it+)

printf(",%d",funcionx(i));

return 0;

long int funcionx(int n)
{
long int x =0 ,y =1,z =2, 1, aux;

if (n <= 2)
return (n);
else

for (i = 3; 1 <= n;i++)

X =y
y =z
Z = aux;

return z;
1

7.9.

7.10.

Funciones @

Escriba una funcion que calcule la suma de los divisores de un nimero entero positivo.
Anélisis del problema

La funcion divisores calculara la suma de todos los divisores del nimero incluyendo el uno y el propio nimero. Para rea-
lizarlo basta con inicializar un acumulador a cero, y mediante un bucle for recorrer todos los nimeros naturales desde el
uno hasta el propio n, y cada vez que un ndmero sea divisor de n sumarlo al acumulador correspondiente. En la codificacion
se incluye un programa principal que se encarga de leer el nimero y de llamar a la funcién divisores.

Codificacion

#include "stdio.h"
int divisores (int n);

void main (void)
{
int n;
do
{
printf(" dame un numero :");
scanf("%d",&n);}
} while (n <= 0);
printf("la suma de divisores es %d \n",divisores(n));

int divisores(int n)
{
int i, acu;
acu = 0;
for(i = 1; 1 <= n; it++)
if (n % 1 == 0)
acu += 1i;
return (acu);

Escriba una funcién que decida si un nimero es perfecto.

Anélisis del problema

Se programa la funcion perfecto, de tal manera que solo se suman los posibles divisores del nimero n que recibe como
parametro comprendido entre 1 y n - 1. Esta funcion es de tipo l6gico, y por lo tanto devuelve el valor de la expresion
acu==n.

Codificacion

int perfecto(int n)
{

int i,acu ;
acu = 0;
for(i = 1; i < n; i++)
if (n % 1 == 0)
acu += i;

return (acu == n);

@ Funciones

7.11.

7.12.

Escriba una funcion que decida si dos nimero enteros positivos son amigos. Dos nUmeros son amigos, si la suma de los divi-
sores distintos de si mismo de cada uno de ellos coincide con el otro ndmero. Ejemplo 284 y 220 son dos nimeros amigos.

Anélisis del problema

Para resolver el problema basta con usar la funcion divisores implementada en el ejercicio 7.9 y escribir la funcién ami -
gos que detecta la condicion. También se presente un programa principal que llama a las funciones.

Codificacion

#finclude "stdio.h"
int divisores (int n);
int amigos (int n, int m);

void main (void)
{
int n, m;
do
{
printf(" dame dos numeros :");
scanf("%d %d",&n, &m);
} while ((n <= 0) || (m <= 0));
if (amigos(n, m))
printf(" los numeros %d %d son amigos\n", n);
else
printf(" loa numeroa %d %d no son amigos\n", n);

int divisores(int n)
{

int i,acu
acu=0;
for(i =1; i < n; i++)
if (n % i ==20)
acu += i;

return (acu);

int amigos (int n, int m)
{
return ((n == divisores(m)) && (m == divisores(n)));

Escriba una funcion que decida si un nimero entero positivo es primo.
Analisis del problema

Un nimero entero positivo es primo, si solo tiene por divisores la unidad y el propio nimero. Una posible forma de resolver el
problema consiste en comprobar todos los posibles divisores desde el dos hasta uno menos que el dado. EI método que se usa,
aplica la siguiente propiedad: “si un nimero mayor que la raiz cuadrada de n divide al propio n es porque hay otro nimero ente-
ro menor que la raiz cuadrada que también lo divide”. Por ejemplo: si n vale 64 su raiz cuadrada es 8, el nimero 32 divide a
64 que es mayor que 8 pero también lo divide el nimero 2 que es menor que 8, ya que 2*32 =64. De esta forma para decidir
si un nimero es primo basta con comprobar si tiene divisores menores o iguales que su raiz cuadrada por supuesto eliminando
la unidad. EI programa que se codifica a continuacion, usa esta propiedad, en la funcién lI6gica primo.

Funciones @

Codificacion

jidefine TRUE 1
ffdefine FALSE 0

int primo(int n)

{
int i,tope, p;
p = TRUE;
i=2;
printf("%d",tope);
while (p && (i <= tope))
{

p=l(n%i==20);
i+

}

return (p);

7.13. Se define un nimero c elevado a un ndmero entero n(n>0) como el producto de ¢ por si mismo n veces. Escriba un pro-
grama que calcule la potencia de varios nimeros.

Anélisis del problema

Se programa la funcion potencia, mediante un bucle que multiplica por si mismo el primer pardmetro tantas veces como
indique el segundo. El programa principal lee el exponente n y calcula la potencia de varios nimeros.

Codificacion

##include "stdio.h"
float potencia (float a, int n);

void main (void)
{
float x,y,i;
int n;
printf(" dame dos numeros ");
scanf("%f%f",&x,&y);
printf(" dame el exponente entero");
scanf("%d",&n);
for (i = x; 1 <=y; i+=1.0)
{
printf("%8.0f %s %8d %s ",i, "elevado a", n,"es");.
printf("%8.0f\n",potencia(i,n));

float potencia (float a, int n)
{
float 1,f;
=10k
for (1 =1.0; i <=n; i+=1.0)
f=f*a

@ Funciones

return (f);
7.14. Escriba una funcion para calcular las coordenadas x e y de la trayectoria de un proyectil de acuerdo a los parametros angu-
lo de inclinacion alfa y velocidad v a intervalos de 0.1 s.
Analisis del problema
Las férmulas que dan las coordenadas x e y del proyectil son:

X = v*cos(alfa)*t
y = v*seno(alfa) - a*t* / 2

donde alfa es un angulo que esta en el primer cuadrante v es la velocidad inicial y a= 40m/s? es la aceleracion. La funcion
debe terminar cuando y valga cero.
Coadificacion

void tratectoria(float a, float v)
{
float t, X, y;

printf(" X y");
printf(" 0 0");
t =0.1;

y = 1.0

while (y > 0)

{
X = v * cos(a) * t;
v * sin(a) * t - 40 /2 * t * t;
printf(" %f %f \n", X, y);
t =1t +0.1;

7.15. Se define el nimero combinatorio m sobre n de la siguiente forma: .

(T:) - n!(mmi n)!

Escriba un programa que lea los valores de my de n y calcule el valor de m sobre n.
Anélisis del problema

El programa se codifica usando la funcién factorial, y programando la funcion combinatorio, con sus correspondientes
Ilamadas. El programa principal se encarga de leer los datos my n y de Ilamar a la funcion combinatorio.

Codificacion
#include "stdio.h"
int factorial (int x);

int combinatorio(int m, int n);

void main(void)

7.16.

Funciones @

int m, n, s;

printf(" dame dos numeros enteros ");

scanf("%d%d",&m, &n);

if (m < n)

{
printf("%81 %s %8.1 %s",n,"sobre",m,"=");
printf("%8i\n", combinatorio(n,m));

}

else

{
printf("%81 %s %8.1 %s",m,"sobre",n,"=");
printf("%8i\n", combinatorio(m,n));

int factorial (int x)
{
int i,f
f=1
for (i =1; i <= x; it+)
f=1f=*1;
return (f);

int combinatorio(int m,int n)
{
return(factorial(m) / (factorial(n) * factorial(m - n)));

Dado un nimero real p entre cero, un nimero entero n positivo, y otro nimero entero i comprendido entre 0 y n, se sabe que
si un suceso tiene probabilidad de que ocurra p, y el experimento aleatorio se repite n veces, la probabilidad de que el suce-
so ocurra i veces viene dado por la funcién binomial de pardmetros n, p e i dada por la siguiente formula.

Probabilidad (X = i) = (:‘) p(L-p)
Escriba un programa que lea los valores de p, n e i, y calcule el valor dado por la funcién binomial.
Anélisis del problema

El problema usa la funcion factorial, combinatorio, potencia,yademas labinomial programada de acuerdo con la
formula.

Codificacion

#include "stdio.h"

float factorial (int x);

float combinatorio(int m,int n);

float potencia (float a, int n);

float binomial(float p, int i, int n);

void main (void)
{

@ Funciones

int n, 1;

float p;

do

{
printf(" dame porbabilidad p y valor de n ");
scanf("%f %i",&p,&n);

b while ((p <= 0) (p >=1)

do

{
printf(" dame valor de i entre 0 y el valor de n \n");
scanf("%i",&1);

b while (C 7 <0) || Ci>n));

printf("%8f\n", Dbinomial(p, i, n));

(n <= 0));

float factorial (int x)
{
float i, f;
f =1
for (1 = 1; 1 <= x; i++)
f = f*i;
return (f);

float combinatorio(int m, int n)

{
float x
x = factorial(m)/(factorial(n)*factorial(m-n));
return(x);

float potencia (float a, int n)
{

0 ;
i=1; 1 <= n; i++)
£ *

float binomial(float p, int i, int n)
{
return(combinatorio(n,i) * potencia(p,i) * potencia(l-p,n-i));

7.17. Escriba un programa que mediante funciones calcule:
« Las anualidades de capitalizacidn si se conoce el tiempo, el tanto por ciento y el capital final a pagar.

« El capital ¢ que resta por pagar al cabo de t afios conociendo la anualidad de capitalizacion y el tanto por ciento.
« El nimero de afios que se necesitan para pagar un capital ¢ a un tanto por ciento r.

Funciones @

Analisis del problema

El programa se codifica de la siguiente forma: la funcién menu, se encarga de realizar las llamadas a los distintos apartados
del problema. La funcion aa calcula la anualidad de capitalizacion, teniendo en cuenta que viene dada por:

cr

B=Trn@+n-1

La funcién cc calcula el apartado segundo teniendo en cuenta que viene dada por la formula:
t
cc=a(l+r) <—(1 +1) - 1)
r

La funcion tt calcula el tercer apartado, teniendo en cuenta que viene dada pro la férmula:

cr
i log (1 + W)
= log(1 +r)

El programa principal, se encarga de leer los datos, y realizar las distintas llamadas.
Codificacion

#Finclude <math.h>

#finclude <stdio.h>

float cc (float r, float t, float a);
float tt(float r, float a, float c);
float aa(float r, float t, float c);
int menu(void);

void main (void)
{
int opcion;
float c, r, t, a;
for (;;)
{
char sigue;
opcion = menu();
switch (opcion)
{
case 1: printf(" dame r t y a\n");
scanf("%faf%f",&r,&t,8a);
c = ccl(r / 100, t, a);
printf(" capital = %f \n", c);
scanf("%c",&sigue);
break;
case 2: printf(" dame r t y c\n");
scanf("%af%f%f",&r,&t,8&c);
a= aa(r / 100, t, c);
printf(" anualidad = %f \n", a);
scanf("%c",&sigue);
break;

case 3: printf(" dame r a y c\n");

scanf("%f%fhf", &r

t= ttC r / 100, a,

printf(afios =
scanf("%c",&sigue
break;

case 4: exit();
break;

float cc(float r, float t,
{

,&a,8&c);

c);

%f \n ", t);
)

float a)

return (a* (1 + r) * (pow(l + r,) - 1) / r);

float aa(float r, float t,

{
return (¢ * r / ((1 + r)

float tt(float r, float a,
{
float x;

float ¢)

* (pow(l +r, t) - 1)));

float c)

Xx=c¢*r / (a* (1 +r))

return (Tog(1 + x) / Tog

int menu(void)
{

char s[8017;
int c;
printf(" 1.
printf(" 2. calcular el
printf(" 3. calcular el
printf(" 4 fin \n");
do
{
printf (" introduzca op
gets(s);

c = atoi(s);
} while (c < 0 || ¢ > 4);
return c;

(1 +r));

calcular anualidad A de capitalizacién \n");

capital C al cabo de t afios \n");
numero de afios \n");

cién \n");

CAPITULO 7 Funciones

7.18 La ley de probabilidad de que ocurra el suceso r veces de la distribucion de Poisson de media m viene dado por:

Escriba un programa que calcule

r.nl'
Probabilidad (X =r) = = g™

mediante un menu el valor de:

7.19

Funciones @

a) El suceso ocurra exactamente r veces.
b) El suceso ocurra a lo sumo r veces.
c) El suceso ocurra por lo menos r veces.

Anélisis del problema

Se programa una funcién ment que elige entre las tres opciones.
Se programa una funcién Poisson que calcula

Probabilidad (X = r) :% R

yla

r

Probabilidad (X < r) = Zb 'I“—I g™

que resuelven el apartado a y el b.
Para resolver el apartado ¢ basta con observar que:

Probabilidad (X = r) = 1 + Probabilidad (X = r) — Probabilidad (X < r)
El programa principal, lee los valores de r, el valor de la media m y llama al menda.
Codificacion (Consultar la pagina web del libro)

La funcion seno viene definida mediante el siguiente desarrollo en serie.
2i+1

sen(x) :i:%O D) (2>i(T)

Escriba una funcién que reciba como parametro el valor de x asi como una cota de error, ycalcule el seno de x con un error
menor que la cota que se le pase.

Anélisis del problema
Las férmula que calcula los valores de sen (x) puede obtenerse de la siguiente forma:
sen(x)= tl1+t3+t5+t7+t9+........

donde

H:XYE:—jgj%7ﬁ4
La funcion seno se programa teniendo en cuenta las férmulas anteriores, y ademas la parada se realiza, cuando se han suma-
do, como méximo 10 términos (i=20), o el siguiente término a sumarse tiene un valor absoluto menor que una cota de error
gue se le pasa como parametro.
El programa principal lee los valores de valorl, valor2, incremento,y cota de error y llame a la funcién coseno de
biblioteca y la compare con el valor calculado mediante la funcién programada, para los valores:

valorl, valorl+incremento, valorl+ 2*incremento,...

hasta que se sobrepase el valor2.

Codificacion

f#include <math.h>
#include <stdio.h>
float seno(float x, float error)

void main (void)

{

float error,valorl,valor2, inc, x;
do
{
printf (" dame valorl valor2 inc error positivo ");
scanf(" %f %f %f %f", &valorl, &valor2,&inc,&error);
} while ((valorl > valor2) || (inc <0) || (error <0));
for (x = valorl; x <= valor2; x += inc)

printf(" %f %t %f \n", x , sin(x), seno(x,error));

float seno(float x, float error)

{

7.20 La funcidn clotoide viene definida por el siguiente desarrollo en serie, donde Ay 6 son datos.

float term,suma,xx;

int i, ii
suma = X;
i=1;

term = Xx;

XX = X * X;
while (fabs(term) > error && i < 20)
{

i=2;
term = -term * xx/(i * (i - 1));
suma = suma + term;

}

return(suma) ;

Ozi

HEAZO 2 G e

Funciones

Escriba un programa en calcule los valores de la clotoide para el valor de A =1y para los valores de 8siguientes 0, 7720,
2m20,37720,......, 7T La parada de la suma de la serie, sera cuando el valor absoluto del siguiente término a sumar sea
menor o igual que 1 e™°.

Anélisis del problema

Las formulas que calculan los distintos valores de x y de y, pueden obtenerse de la siguiente forma:

siendot, = A\V20 y t;=(-1)

tO+t2+t4+to+t8+.
EASFESFEDFE /Do o 000 oo

@ir D) b

Funciones @

Se programa la funcion term, que calcula ti en funciénde ti-1 , i , ©.

Se programa la funcion clotoide, que recibe como datos el valor de a y el de 0 y devuelve como resultado los valores de
Xey.

El programa principal, calcula el valor de 1t mediante la funcién arcocoseno, para posteriormente mediante un bucle, rea-
lizar las distintas llamadas a la funcién clotoide.

Codificacion (Se encuentra en la pagina web del libro)

7.21 La funcidn coseno viene definida mediante el siguiente desarrollo en serie.

2i

cos(x) = ZO (-1) ﬁ

Escribe una funcion que reciba como parametro el valor de x asi como una cota de error, y calcule el coseno de x con un
error menor que la cota que se le pase. Compare el valor obtenido, por la funcion de biblioteca y la programada.

Anélisis del problema
Las formula que calcula los valores de cos(x) puede obtenerse de la siguiente forma:

cos(x)= tO+t2+t4+te+t8+. ..

XX

dondety=1yti=- mti_z

La funcion coseno se programa teniendo en cuenta las férmulas anteriores, y ademas la parada se realiza, cuando se han
sumado, como maximo 20 términos (i=20), o el siguiente término a sumarse tiene un valor absoluto menor que una cota de
error que se le pasa como parametro.

El programa principal lee los valores de valorl, valor2, incremento,y cota de error y llame a la funcién coseno de
biblioteca y la compare con el valor calculado mediante la funcién programada, para los valores:

valorl, valorl+ incremento, valorl+ 2*incremento ,...
hasta que se sobrepase el valor2.
Codificacién

f#include <math.h>
#include <stdio.h>
float coseno(float x, float error);

void main (void)
{
float error,valorl,valor2, inc, x;
do
{
printf (" dame valorl valorZ inc error positivo ");
scanf(" %f %f %f %f", &valorl, &valor2,&inc,&error);

} while ((valorl > valor2) || (inc <0) || (error <0));
for (x = valorl; x <= valor2; x += inc)
printf(" %f 72 73 \n", x ,cos(x),coseno(x, error));

float coseno(float x, float error)

@ Funciones

float term, suma, XxX;

int i, ii;
suma = 1.0;
i=20;

term = 1.0;

XX = X * X;
while (fabs(term) > error && i < 20)
{
i += 2;
term = -term * xx/(i * (i - 1));
suma = suma + term;
}
return(suma) ;

7.22 La descomposicién en base 2 de todo nimero, permite en particular que todo nimero en el intervalo (0,1), se pueda escri-
bir como limite de la serie

d 1
2

donde la eleccidn del signo sg(i) depende del nimero que se trate.
El signo del primer término es siempre positivo. Una vez calculado los signos de los n primeros, para calcular el signo
del siguiente término se emplea el esquema: signo es positivo sg(n+1)=+1 si se cumple:

I 1
2,590 7
2 > X
en caso contrario, sg(n+1)= -1.

Escriba un programa que calcule el logaritmo en base dos de un nimero x>0 con un error absoluto menor o igual que

épsilon (x y épsilon son datos).
Anélisis del problema

Si x esté en el intervalo (0,1) entonces 10g2(x) = -10g2(1/x). Si x es mayor que 2 entonces es obvio que Tog2(x) = 1
+ log2(x/2).

Por tanto para programar la funcion 1o0g2 () basta con tener en cuenta las propiedades anteriores. El problema se resuelve
escribiendo las siguientes funciones:

e Alog2 que calcula el logaritmo en base 2 de cualquier x, y que llamara a las funciones alog01, alogl12, 0 bien alogli.

e ATogl2 se programa teniendo en cuenta el desarrollo de la serie en el intervalo [1,2].

* La funcién signo determina en el propio avance del desarrollo de la suma.

e La funcién A7og01, se programa, de acuerdo con la propiedad del intervalo (0,1). Llamard, o bien a la funcion alog12,
0 bien a la funcién alogli, dependiendo de que 1/x sea menor, o igual que dos, 0 bien sea estrictamente mayor.

« La funcién alog2i, se programa de acuerdo con la propiedad de los nimeros estrictamente mayores que dos.

El programa principal lee la cota de error, y Ilama a la funcioén alog?2 para varios valores de prueba. Se muestra el resulta-
do obtenido de la funcién alog2 y con la funcién de libreria Tog ().

Codificacion

#include <math.h>
#include <stdio.h>

CAPITULO 7 Funciones

@ CAPITULO 7 Funciones

if (exp(12 * suma) <= x)
suma += term;
else
suma -= term;
}
return(suma);

float alog2i(float x, float eps)
{
float acu = 0;
while (x > 2)
{
X =X/ 2;
acu = acu + 1;
}
acu = acu + alogl2(x, eps);
return (acu);

7.23 Escriba un programa para gestionar fracciones.
Analisis del problema
El problema se ha estructurado de la siguiente forma.

* Una funcién mcd, calcula el maximo comudn divisor de dos nimeros naturales, mediante el conocido algoritmo de
Euclides. Para ello convierte los dos nimeros en positivos.

* Una funcién mem calcula el minimo comdn maltiplo de dos nimeros enteros, usando la propiedad siguiente: el maximo
comun divisor, multiplicado por el minimo comin mdaltiplo de dos nimeros coincide con el producto de ambos ndmeros.

e Una funcién simp1ificaf, que simplifica una fraccion dejando siempre el signo negativo, en caso de que la fraccion sea
negativa en el numerador.

« Una funcion Teerf, se encarga de leer una fraccion, asegurandose de que el denominador sea distinto de cero y que ade-
mas el numerador y denominador sean primos entre si.

 Una funcion escribef, se encarga de escribir una fraccion en la salida.

e Las funciones sumaf, restaf, multiplicaf, dividef,se encarga de sumar, restar, multiplicar y dividir fracciones.

« La funcién e7ige se encarga de leer un nimero comprendido entre los dos que se le pasen como parametro.

« La funcién 1eerfracciones se encarga de leer dos fracciones.

« Por dltimo, el programa principal, mediante un mend llama a las distintas funciones.

Coadificacion (Consultar la pagina web del libro)

CAPITULO 7 Funciones

PROBLEMAS PROPUESTOS

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

Escriba una funcion digito que determine si un caracter
es uno de los digitos, 0,1,2,

Realice un procedimiento que realice la conversion de
coordenadas polares (r,a) a cartesianas. Nota: x =
rx*cos(a), y = r*sin(a).

Escriba una funcion que calcule la media de un conjun-
to de n>0 nimeros leidos del teclado.

Escriba una funcién que decida si un nimero entero es
capicta.

Escriba una funcién que sume los 30 primeros nimeros
impares.

Dado el valor de un angulo escribir un programa que
muestre el valor de todas las funciones trigonométricas
correspondientes al mismo.

7.7.

7.8.

7.9.

7.10.

Escriba una funcién que calcule la suma de los 20 pri-
meros nimeros primos.

Escriba una funcién que encuentre y escriba todos los
nimeros perfectos menores que un valor constante max.

Escriba un programa que mediante funciones determine
el area del circulo correspondiente a la circunferencia
circunscrita de un triangulo del que se conocen las coor-
denadas de los vértices.

Escriba un programa que lea dos enteros positivos n, y
b y mediante una funcidon CambiarBase visualice la
correspondiente representacion del nimero n en la
base b.

8.1

8.2

CAPITULO 8

Recursividad

La recursividad (recursion) es la propiedad que posee una funcion de permitir que dicha funcién puede Ilamarse a si misma.
Se puede utilizar la recursividad como una alternativa a la iteracion. La recursidn es una herramienta poderosa e importante en
la resolucion de problemas y en programacion. Una solucion recursiva es normalmente menos eficiente en términos de tiem-
po de computadora que una solucion iterativa debido a las operaciones auxiliares que llevan consigo las llamadas suplementa-
rias a las funciones; sin embargo, en muchas circunstancias el uso de la recursién permite a los programadores especificar
soluciones naturales, sencillas, que serian, en caso contrario, dificiles de resolver.

La naturaleza de la recursividad

Una funcion recursiva es aquella que se llama a si misma bien directamente, o bien a través de otra funcion. En matematicas
existen numerosas funciones que tienen caracter recursivo de igual modo numerosas circunstancias y situaciones de la vida
ordinaria tienen carécter recursivo. Una funcién que contiene sentencias entre las que se encuentra al menos una que llama a
la propia funcidn se dice que es recursiva.

Funciones recursivas

Una funcion recursiva es una funcidn que se invoca a si misma de forma directa o indirecta. En recursion directa el cddigo
de la funcién f () contiene una sentencia que invoca a f (), mientras que en recursion indirecta f () invoca a la fucion g()
que invoca a su vez a la funcidn p (), y asi sucesivamente hasta que se invoca de nuevo a la funcién f (). Un requisito para que
un algoritmo recursivo sea correcto es que no genere una secuencia infinita de llamadas sobre si mismo. Cualquier algoritmo
gue genere una secuencia de este tipo puede no terminar nunca.

EJEMPLO 8.1 Una funcién con recursividad directa

int f(int x)
{
if (x <= 0)
return 2;
else

< CAPITULO 8 Recursividad

8.3

return(n + 2 * f(n - 2));

La recursividad indirecta se produce cuando una funcion Ilama a otra, que eventualmente terminara llamando de nuevo a
la primera funcién. Puede generalizarse mediante tres funciones f1(), f2() , f3(). La funcion f1() realiza una llamada a
£2(). La funcion f2() realiza una llamada a f3(). La funcion £3() realiza una llamada a f1().Cuando se implementa una
funcion recursiva es preciso considerar una condicion de terminacidn (caso base), ya que en caso contrario la funcién conti-
nuaria indefinidamente, llamandose a si misma y llegaria un momento en que la memoria se agotaria. En consecuencia, seria
necesario establecer en cualquier funcion recursiva la condicién de parada de las llamadas recursivas y evitar indefinidamen-
te las Ilamadas.

EJEMPLO 8.2. Implementacién de dos funciones con recursividad indirecta.
float f(float y);

float g(float y)
{

if (y <= 3)
return (y);
else

returnC y + f(y - 2));

float f (float y)
{
if (y <= 2)
return (y);
else
return(y + g(y - 2));

Recursion versus iteracion

Tanto la iteracién como la recursién se basan en una estructura de control: la iteracion utiliza una estructura repetitiva y la
recursion utiliza una estructura de seleccidn. La iteracion y la recursion implican ambas repeticion: la iteracion utiliza expli-
citamente una estructura repetitiva mientras que la recursion consigue la repeticion mediante llamadas repetidas a funciones.
La recursion invoca repetidamente al mecanismo de llamadas a funciones y en consecuencia se necesita un tiempo suplemen-
tario para realizar cada llamada. Esta caracteristica puede resultar cara en tiempo de procesador y espacio de memoria. Las fun-
ciones con llamadas recursivas utilizan memoria extra en las llamadas; existe un limite en las llamadas, que depende de la
memoria de la computadora. En caso de superar este limite ocurre un error de desbordamiento (overflow). La iteracion se pro-
duce dentro de una funcion de modo que las operaciones suplementarias de las llamadas a la funcién y asignacion de memo-
ria adicional son omitidas. Toda funcién recursiva puede ser transformada en otra funcién con esquema iterativo, para ello a
veces se necesitan pilas donde almacenar calculos parciales y valores de variables locales. La razon fundamental para elegir la
recursion es que existen numerosos problemas complejos que poseen naturaleza recursiva y, en consecuencia, son mas féciles
de disefiar e implementar con algoritmos de este tipo.

EJEMPLO 8.3 Escribir una funcién no recursiva que permita generar los nimeros de fibonacci.

La secuencia de nimeros de fibonacci: 0, 1, 1, 2, 3, 5, 8, 13 ... se obtiene partiendo de los nimeros 0, 1y a partir de
ellos cada nimero se obtiene sumando los dos anteriores:

a, = a,; * a,,. La funcion fibonacci tiene dos variables static, x e y. Se inicializan x a0 y a 1, a partir de esos valo-
res se calcula el niamero de fibonacci actual, y, dejando preparado x para la siguiente llamada. Al ser variables static
mantienen el valor entre llamada y llamada:

CAPITULO 8 Recursividad

8.4

8.5

long int fibonacci()
{
static int x = 0;
static int y = 1;

y =yt X
X =Yy - X
return y;
}
/* bucle para escribir n numeros de 1 fibonacci */
for (i =2; 1 < n; i++)

printf(“,%1d”, fibonacci());

Recursion infinita

La recursion infinita se produce cuando una Ilamada recursiva realiza otra llamada recursiva y ésta a su vez otra llamada recur-
siva y asi indefinidamente. El flujo de control de una funcién recursiva requiere para una terminacion normal distinguir los
casos generales y triviales:

* Al caso general de un problema debe proporcionar una solucién general mediante la realizacion de una o varias llamadas
recursivas para un subproblema o subproblemas mas pequefio.
« Al caso o casos triviales, debe proporcionar una solucion trivial que no incluya llamadas recursivas.

Algoritmos divide y venceras

El disefio de algoritmos basados en la técnica divide y vence consiste en transformar (dividir) un problema de tamafio n en pro-
blemas mas pequefios, de tamafio menor que n pero similares al problema original, de modo que resolviendo los subproblemas
y combinando las soluciones se pueda construir facilmente una solucién del problema completo (vencerés). Normalmente, el
proceso de division de un problema en otros de tamafio menor conduce a problemas unitarios, caso base, cuya solucion es
inmediata. A partir de la obtencion de la solucién del problema para el caso base, se combinan soluciones que amplian el tama-
fio del problema resulto, hasta que el problema original queda resuelto. La implementacién de estos algoritmos se puede reali-
zar con funciones recursivas.

PROBLEMAS RESUELTOS

8.1.

Escriba una funcién recursiva para calcular el factorial de un nimero entero positivo.
Analisis del problema

Si n es un numero positivo se sabe que 0!=1y si n>0 entonces se tiene que n! = n*(n-1)!. Lafuncion factorial codi-
fica el algoritmos recursivamente .

Codificacién
int factorial(int n)

{
int aux;

@ Recursividad

if (n <= 1)
aux
else
aux = n * factorial(n - 1);
return(aux) ;

Il
—

8.2. Escriba una funcion que calcule la potaneicia a" recursivamente, siendo n positivo.
Anélisis del problema
La potenciade a" es 1 si n=0 yesa*n"™ en otro caso.
Codificacion
float potencia(float a, int n)
{
if (n <= 0)
return(1);
else
return(a * potencia(a, n - 1));
8.3. Escriba una funcién que dado un nimero entero positivo n calcule el nimero de fibonacci asociado.

Anélisis del problema

Los nimeros de fibonaccison 0, 1, 1 , 2, 3, 5, 8, 13, ... donde para n=0 fibonacci(0)=0, para n=1 fibo-
nacci(1)=1, y si n>1 tenemos que fibonacci(n) = fibonacci(n - 1) + fibonacci(n - 2).

Codificacion

int fibonacci(int n)
{

if (n <= 1)
return(n);
else

return(fibonacci(n -1)+ fibonacci(n - 2));
8.4. Escriba una funcion recursiva que calcule el cociente de la division entera de n entre m, siendo m y n dos nimeros enteros
positivos recursivamente.
Analisis del problema

El cociente de la division entera de n entre m, siendo ambos ndmeros enteros positivos se calcula de la siguiente forma si
n < mentonces cociente(n,m)= 0, Sin >= mentonces cociente(n, m) = 1 + cociente(n - m, m).
Codificacion

int cociente(int n, int m)
{
if (n < m)

8.5.

8.6.

Recursividad @

return(0);
else
return(l + cociente(n - m, m));

Escriba una funcion recursiva que calcule los valores de la funcidn funcionx definida de la siguiente forma:
funcionx(0) = 0,

funcionx(1) = 1

funcionx(2) = 2

funcionx(n) = funcionx(n-3)+ 2*funcionx(n-2)+funcionx(n-1) sin> 2.

Anélisis del problema

La funcion funcionx esta definida recursivamente por lo que su codificacion sigue exactamente el esquema indicado. Los
primeros valores de esta funcién son;. 0, 1, 2, 4, 9, 19, 41,...

Coficacion

int funcionx(int n)
{
if (n <= 2)
return(n);
else
return(funcionx(n-3) + 2 * funcionx(n-2) + funcionx(n-1));

Escriba una funcién recursiva que lea nimeros enteros positivos ordenados crecientemente del teclado, elimine los repeti-
dos y los escriba al revés. El fin de datos viene dado por el niumero especial 0.

Analisis del problema

La funcion recursiva que se escribe tiene un pardmetro llamado ant que indica el Ultimo nimero leido. Inicialmente se llama
a la funcién con el valor —1 que se sabe que no puede estar en la lista. Lo primero que se hace es leer un ndmero n de la
lista. Como el final de la lista viene dada por 0, si se lee el 0 entonces ““se rompe” la recursividad y se da un salto de linea.
En caso de que el nimero leido no sea O se tienen dos posibilidades: la primera es que n no coincida con el anterior dado en
ant, en cuyo caso se llama a la recursividad con el valor de ant, dado por n, para posteriormente y a la vuelta de la recur-
sividad escribir el dato n; la segunda es que n coincida con ant, en cuyo caso se llama a la recursividad con el nuevo valor
de ant, dado por n, pero ahora a la vuelta de la recursividad no se escribe n pues esta repetido.

Codificacion

f#include <stdio.h>
int elimina (int ant);

int main()

{
elimina(-1)
return 0;

int elimina(int ant)
{
int n;

8.7.

scanf(“%d”,&n);

if(n == 0)
printf(“\n”);
else if (!(n == ant))

{
elimina (n);
printf(“%d”, n);
}
else
eliminaC n);
returnC 0);

Recursividad

El problema de las torres de Hanoi general tiene tres varillas o torres denominadas Origen, Destino y Auxiliar y un con-
junto de n>0 discos de diferentes tamafios. Cada disco tiene una perforacion en el centro que le permite colocarse en cual-
quiera de las torres. En la varilla Origen se encuentran colocados inicialmente los n discos de tamafios diferentes ordenados
de mayor a menor, como se muestra en el dibujo. Se trata de llevar los n discos de la varilla Origen a la varilla Destino uti-

lizando las siguientes reglas:

1. Solo se puede llevar un solo disco cada vez.

2. Un disco solo puede colocarse encima de otro con diametro ligeramente superior.

3. Si se necesita puede usarse la varilla Auxiliar.

Analisis del problema

El problema de pasar 3 discos del pivote origen al destino se puede resolver en tres pasos:
Paso 1: pasar 2 discos de la varilla Origen a la varilla Auxiliar.

Paso2: pasar un disco a la varilla Origen a la Destino.
Paso 3: pasar dos discos de la varilla Auxiliar a laDestino.

Origen Destino Auxiliar
1 2 3

El paso 1, vulnera la primera regla, pero para solucionarlo, se puede recurrir a la misma mecanica: mover 1 disco de la vari-
lla Origen a la Destino; mover el siguiente disco a la varilla Auxiliar; mover el disco de la varilla Destino a la

Auxiliar:

Fases del Paso 1

Origen Destino Auxiliar Origen Destino Auxiliar Origen Destino

1 2 3 1 2 g 1 2

Aucxiliar
8

El paso 2 se realiza de la manera 6bvia, y el paso 3 es analogo al paso 1.

8.8.

Recursividad @

Algoritmicamente, el problema tiene una solucién muy sencilla usando la recursividad y la técnica divide y vence. Para
resolver el problema basta con observar que si solo hay un disco n=1 (caso trivial), entonces se lleva directamente de la
varilla Origen a la varilla Destino. Si hay que llevar n > 1 (caso general) discos de la varilla Origen a la varilla
Destino, entonces:

Se llevan n-1 discos de la varilla Origen ala Auxiliar.

Se lleva un solo disco de la varilla Origen ala Destino.

Se traen los n-1 discos de la varilla Auxiliar ala Destino.

Codificacion

ffinclude <stdio.h>
#include <stdlib.h>

void Hanoi(int n, int Origen, int Destino, int Auxiliar)
{

if (n = 1)
printf(“llevo disco %3d dela varilla %3d a la varilla %3d\n”, n, Origen, Destino);
else

{
Hanoi(n - 1, Origen, Auxiliar, Destino);
printf(“llevo disco %3d dela varilla %3d a la varilla %3d\n”, n, Origen, Destino);
Hanoi(n - 1, Auxiliar, Destino, Origen)

int main()

char sig;
Hanoi(3, 1, 2, 3);
puts(“\nPresione una tecla para continuar . . . “);
scanf (“%c”,&sig);
return 0;
}
Ejecucion

varilla
varilla
varilla
varilla
varilla
varilla
“wvarilla

llevo disco dela varilla 1
llevo disco dela varilla 1
llevo disco dela varilla 2
llevo di=sco dela varilla 1
3
3
1

llevo disco dela varilla
llevo disco dela varilla
llevo disco dela varilla
rezione una tecla para continuar

L=~ -1~]

Realizar una funcién recursiva que calcule el producto de nameros naturales.
Anélisis del problema

El producto x*y si x e y son nimeros naturales se define recursivamente de la siguiente forma:

Il
o

x * 0 si oy ==
X *y=x*(y -1) +x si y >0

@ Recursividad

Codificacion

#include <stdio.h>
#include <stdlib.h>

int producto (int x, int y)
{

if (y == 0)
return(0);
else

return(producto(x, y -1) + x);

int main()
{
int x, y;
do
{
printf(“dame x e y >= 0\n”);
scanf(“%d %d”, &x,&y);
} while (x <0 || ¥y < 0);
printf(“el producto de %d por %d es:%d\n”,x, y, producto(x,y));
return 0;

8.9. Cadificar un programa que mediante la técnica de recursividad indirecta escriba el alfabeto en minusculas.
Anélisis del problema

La codificiacion usa dos funciones recursivas 1 () que llama a la funcion f2() y f2() que llama a la funcién f1(). Ambas
funciones reciben como parametro un caracter c, y si ese caracter es menor que “z - entonces lo escriben; sitdan el caracter
c en el siguiente caracter y llaman a la otra funcién. En caso de que el caracter c que reciben como parametro seael "z~ lo
escriben y no realizan ninguna llamada recursiva. El programa principal simplemente se encarga de llamar a una funcioén (en
este caso f1())con “a”.

Codificacién
#include <stdio.h>

void fl(char c);
void f2(char c);

int main()

{
fl(‘a’);
printf(“\n”);
return 0;

void fl(char c)
{
if (¢ < ‘z27)
{

Recursividad @

printf(“%c “, c);
c++;
fo(¢);
}
else
printf(“%c”, c);

void f2(char c)
{
if (c < ‘z27)
{
printf(“%c “, c);
c++;
f1(¢);
}
else
printf(“%c”, c);

8.10. Escriba una funcion recursiva que calcule la suma de los n primeros términos de la serie armdnica.
n
1
s= Z =
& i

Analisis del problema

La suma de la serie armoénica realizada descendentemente puede definirse recursivamente de la siguiente forma:

S(1) = 1 si i =1
S(i) = 1/ i+ SCi - 1) si i > 1
Si se realiza ascendentemente la definicidn recursiva es:

S1(i,n) =1 /i Si i =n
S1(i,n) =1 / i + SI1(i + 1, n + 1) Si i <n

Se codifica el programa principal y las dos versiones. Hay que tener en cuenta que si i es entero entonces 1/1 da como
resultado el entero 0. Para evitarlo hay que obligar a que el operador / realice la division real. Esto se codifica en el pro-
blema como 1/(flota)i.

Codificacién
#include <stdio.h>

float S(int 1)
{

if (i = 1)
return 1;
else

return(1 / (float)i + S(i - 1));

float S1(int i, int n)

@ Recursividad

if (i = n)
return 1/ (float)i;
else

returnC 1 / (float)i + S1(i + 1, n));

int main()
{

printf(“\n %f, la otra %f \n”, S(6), S1(1,6));
return 0;

8.11. Escriba una funcion iterativa y otra recursiva para calcular el valor aproximado del nimero e, sumando la serie:
e=1+1/11+1/2!'+ ..+ 1/n!
hasta que los términos adicionales a sumar sean menores que 1.0e”.
Analisis del problema

La funcién 1oge (), calcula iterativamente la suma de la serie indicada de la siguiente forma: la variable delta contendra
en todo momento el valor del siguiente término a sumar. Es decir tomara los valoresde 1, 1/1!, 1/2!, 1/3!, ... 1/nl.
La variable suma contendra las sumas parciales de la serie, por lo que se inicializa a cero, y en cada iteracién se va suman-
do el valor de delta. La variable n contendra los valores por los que hay que dividir delta en cada iteracion para obtener
el siguiente valor de delta conocido el valor anterior. La funcidn 1ogeR() codifica la serie recursivamente. Tiene como
pardmetro el valor de n y el valor delta. El valor de n debe ser incrementado en una unidad en cada Ilamada recursiva. El
pardmetro delta contiene en cada momento el valor del término a sumar de la serie. Si el término a sumar es mayor o igual
que 1.0 e® se suma el término a la llamada recursiva de la funcion recalculando en la propia llamada el nuevo valor de
delta (dividiéndolo entre n+1). Si el término a sumar delta es menor que 1.0 e ° se retorna el valor de 0, ya que se ha
terminado de sumar la serie.

Codificacion
#include <stdio.h>

double loge(void)
{
double suma, delta;
int n;
suma =0;
delta = 1.0;
n=20;
do
{
suma += delta;
n++;
delta = delta/n;
} while (delta >= 1.0e-8);
return suma;

Recursividad @

double TogeR(int n, float delta)
{
if (delta >= 1.0e-8)
return (delta + logeR(n + 1, delta / (n + 1)));
else
return O0;

int main()
{
double aux, auxl;
char sig;
aux = logeR(0, 1.0);
auxl = loge();
printf (* recursivo %f \n no recursivo %f \n”, aux, auxl);

puts(“\nPresione una tecla para continuar . . . “);
scanf (“%c”,&sig);
return 0;

}

Ejecucion

FECUursivo 2. M18282
no recursive 2_718282

Prezione una tecla para continuar

8.12. Escriba una funcién recursiva que calcule la funcion de Ackermann definida de la siguiente forma:

Amn)=n+1 si m=0
A(m,n) =A(m-1,1) si n=0
A(m, n) = A(m -1, A(m, n — 1)) sim>0,yn>0

Analisis del problema

La funcidn recursiva queda perfectamente definida en el propio problema por lo que su codificacion en C se realiza exac-
tamente igual que la propia definicion. En la codificacidn se incluye un programa principal con sucesivas llamadas a la fun-
cion Akerman.

Codificacion

f#finclude <stdio.h>
double akerman (int m, int n)
{
if (m == 0)
return n + 1;
else
if (n == 0)
return (akerman(m - 1,1));
else
return (akerman(m - 1, akerman(m, n - 1)));

int main()
{
long a;

@ Recursividad

int i, J;
char sig;
for (i = 1; 1 <= 3; i++)
{
printf(* fila %d :”, 1);
for (j = 1; j <= 8; j++)
{
a = akerman (i, j);
printf (“ %d “, a);
}
printf (“\n”);
}

puts(“\nPresione una tecla para continuar . . . “);
scanf (“%c”,&sig);
return 0;

}

Ejecucion

=% |Seleccionar C:',Dev-Cpp'Projectl.exe

fila 1 3 4 5 6 7 8 92 18
fila 2 5 7 9 11 13 15 17 19

fila 3 13 29 61 125 253 582 1621 2845
Prezione una tecla para continuar . .

8.13. Escriba una funcién recursiva que calcule el maximo de un vector de enteros.
Anélisis del problema
Suponiendo que el vector tenga al menos dos elementos, el elemento mayor se puede calcular recursivamente, usando la

funcion max()que devuelva el mayor de dos enteros que reciba como parametros. Posterioremente se puede definir la fun-
cion maxarray () que calcula el maximo del array recursivamente con el siguiente planteamiento:

Caso trivial : n == 1, solucién trivial max(a[0],al1])
Caso general: n > 1, maxarray = max(maxarray(a,n-1),aln])
Codificacién

int max(int x, int y)
{
if (x < y)
return y;
else
return x;

int maxarray(int a[], int n)
{

if (n ==1)
return (max(al0], all]));
else

return(max(maxarray(a, n - 1), alnl));

Recursividad

8.14. Escriba una funcion recursiva, que calcule el producto de los elementos de un vector v que sean mayores que un valor b.

Analisis del problema

Se programa la funcién producto de la siguiente forma: la funcién tiene como parametros el vector v, el valor de b, y un
parametro n que indica que falta por resolver el problema para los datos almacenados en el vector desde la posicion 0 hasta
la n. De esta forma si n vale O el problema tiene una solucién trivial: si v[0] < = b devuelve 1,ysiv[0] > b devuel-
ve v[0]. Si n es mayor que 0, entonces, debe calcularse recursivamente el producto desde la posicion 0 hasta la n-1 y des-
pués multiplicarse por vin] en el caso de que v[n] sea mayor que b.

Codificacion
float producto(float v[], float b, int n)
{
if (n == 0)
if (v[0] <= b)
return 1;
else
return v[0];
else
if (vin] <= b)
return producto(v, b, n - 1);
else
return v[nl* producto(v, b, n - 1);

PROBLEMAS PROPUESTOS

8.1

8.2

8.3

8.4

Disefiar una funcién recursiva de prototipo int voca-
Tes(const char * cd) para calcular el nGmero de
vocales de una cadena.

Disefiar una funcion recursiva que calcule la suma de los
elementos de un vector recursivamente.

Apligue el esquema de los algoritmos divide y vence
para que dados las coordenadas (x,y) de dos puntos en el
plano, que representan los extremos de un segmento, se
dibuje el segmento.

Disefiar una funcion recursiva que sume los n primeros
numeros naturales. Compuebe el resultado en otra fun-
cién sabiendo que la suma de los primeros n ndmeros
enteros responde a la formula:

1 +2+3+...+n=n(n+1) /2

8.5

8.6

Un palindromo es una palabra que se escribe exacta-
mente igual leida en un sentido o en otro. Palabras tales
como level, deed, ala, etc., son ejemplos de palindro-
mos. Aplicar el esquema de los algoritmos divide y
vence para escribir una funcién recursiva que devuelva
1, si una palabra pasada como argumento es un palin-
dromo y en caso contrario devuelva 0. Escribir un pro-
grama en el que se lea una cadena hasta que esta sea
palindromo.

Disefiar un programa que tenga como entrada una
secuencia de nimeros enteros positivos (mediante una
variable entera). El programa debe hallar la suma de los
digitos de cada entero y encontrar cual es el entero cuya
suma de digitos es mayor. La suma de digitos calctlese
con una funcién recursiva.

8.7

8.8

Leer un nimero entero positivo n<10. Calcular el des-
arrollo del polinomio (x + 1)". Imprimir cada potencia
x° de la forma x**1.

Sugerencia:
(X+1)"=Co X" + Cp X"+ Cp X"+ L +C, X+
CoXt + CooX’

donde C,,y C,o son 1 para cualquier valor de n

La relacion de recurrencia de los coeficientes binomiales
es:

C(n,0)=1
C(n,n)=1
C(n, k) = C(n-1, k-1) + C(n-1, k)

Sea A una matriz cuadrada de n x n elementos, el deter-
minante de A se puede definir de manera recursiva:

8.9

CAPITULO 8 Recursividad

a. Sin==1 entonces Deter(A)= a; ;

b. Para n > 1, el determinante es la suma alternada de
productos de los elementos de una fila o columna elegi-
da al azar por sus menores complementarios. A su vez,
los menores complementarios son los determinantes de
orden n-1 obtenidos al suprimir la fila y columna en
que se encuentra el elemento.

La expresion matemética es:
n
Det(A)= Z(-1)™9*AL1, j1*Det (Menor(AL1,31))
=
para cualquier columna j
Disefar un programa que transforme ndmeros enteros en
base 10 a otro en base b. Siendo la base b de 2 a 9. La

transformacion se ha de realizar siguiendo una estrategia
recursiva.

CAPITULO 9

Arrays®
(listas y tablas)

En capitulos anteriores se han descrito las caracteristicas de los tipos de datos basicos o simples (caracter, entero y coma flo-
tante). Asi mismo, se ha aprendido a definir y utilizar constantes simbolicas utilizando const, #define y el tipo enum. En este
capitulo se continua con el examen de los restantes tipos de datos de C, examinando especialmente el tipo array o arreglo (lista
o tabla) y aprenderd el concepto y tratamiento de los arrays. Un array almacena muchos elementos del mismo tipo, tales como
veinte enteros, cincuenta nimeros de coma flotante o quince caracteres. El array es muy importante por diversas razones. Una
muy importante es almacenar secuencias o0 cadenas de texto. Hasta el momento C, proporciona datos de un solo carécter; uti-
lizando el tipo array, se puede crear una variable que contenga un grupo de caracteres.

9.1 Arrays

Un array o arreglo (lista o tabla) es una secuencia de datos del mismo tipo. Los datos se llaman elementos del array y se
numeran consecutivamente 0, 1, 2, 3...(valores indice o subindice del array). En general, el elemento i-ésimo esta en la
posicion i-1. De modo que si el array a tiene n elementos, sus nombres son a[0], al[1],...,aln-1]. Eltipo de elemen-
tos almacenados en el array puede ser cualquier tipo de dato de C, incluyendo estructuras definidas por el usuario, como se
describird mas tarde.

Un array se declara de modo similar a otros tipos de datos, excepto que se debe indicar al compilador el tamafio o longitud
del array. Para indicar al compilador el tamafio o longitud del array se debe hacer seguir al nombre, el tamafio encerrado entre
corchetes. La sintaxis para declarar un array de una dimension determinada es:

tipo nombreArray[numeroDeElementos];

Observacion: C no comprueba que los indices del array estan dentro del rango definido.

El indice de un array se denomina, con frecuencia, subindice del array. EI método de numeracién del elemento i-ésimo con
el indice o subindice i-1 se denomina indexacién basada en cero. Su uso tiene el efecto de que el indice de un elemento del

array es siempre el mismo que el nimero de “pasos” desde el elemento inicial a[0] a ese elemento. Por ejemplo, a[3] estd a
3 pasos o posiciones del elemento a[0].

! En Latinoamérica es muy frecuente el uso del término arreglo como traduccion del término array.

@ CAPITULO 9 Arrays (listas y tablas)

9.2

9.3

EJEMPLO 9.1 Posiciones vélidas de un array.

Enelarray int a[10] los indices vélidos son al0], al[11,..,a[9]. Perosise considera a[15] no se proporciona un
mensaje de error y el resultado puede ser impredecible.

Los elementos de los arrays se almacenan en blogues contiguos de memoria. En los programas se pueden referenciar ele-
mentos del array utilizando férmulas o expresiones enteras para los subindices. Los arrays de caracteres funcionan de igual
forma que los arrays numéricos, partiendo de la base de que cada caracter ocupa normalmente un byte. Hay que tener en cuen-
ta, que en las cadenas de caracteres el sistema siempre inserta un Gltimo caracter (el caracter nulo) para indicar fin de cadena.

El operador sizeof devuelve el nimero de bytes necesarios para contener su argumento. Si se usa sizeof para solici-
tar el tamafio de un array, esta funcién devuelve el nimero de bytes reservados para el array completo. Conociendo el tipo
de dato almacenado en el array y su tamafio, se tiene la longitud del array, mediante el cociente sizeof(a)/tamafio(dato).
Al contrario que otros lenguajes de programacion, C no verifica el valor del indice de la variable que representa al array esté
dentro del rango de variacion valido, por lo que si se sobrepasa el valor maximo declarado, los resultados pueden ser impre-
decibles.

EJEMPLO 9.2 Posiciones ocupadas por los elementos de un array.

Si a es un array de nimero reales y cada nimero real ocupa 4 bytes, entonces si el elemento a[0] ocupa la direccion
x, el elemento a[i] ocupa la direccion de memoria x + (i-1)*4.

Inicializacion de un array

Se deben asignar valores a los elementos del array antes de utilizarlos, tal como se asignan valores a variables. Para asignar
valores a cada elemento del array de enteros p, se puede escribir:

pl0] = 10; pl[1] = 20; pl[2] = 30; p[3]1 = 40

La primera sentencia fija p[0] al valor 10, p[1] al valor 20, etc. Sin embargo, este método no es practico cuando el array
contiene muchos elementos. EI método utilizado, normalmente, es inicializar el array completo en una sola sentencia. Cuando
se inicializa un array, el tamafio del array se puede determinar automaticamente por las constantes de inicializacién. Estas cons-
tantes se separan por comas y se encierran entre Ilaves.

EJEMPLO 9.3 Declaraciones e inicializacion de arrays.
int numf6] = {10, 20, 30, 40, 50, 60};

int x[1] = 1{1,2,3} /*Declara e inicializa un array de 3 elementos */
char ch[] = {‘L’,’u’,’¢c’,’a’,’s’}; /*Declara un array de 5 datos */

Arrays de caracteres y cadenas de texto

Una cadena de texto es un conjunto de caracteres. C soporta cadenas de texto utilizando un array de caracteres que contenga
una secuencia de caracteres. Sin embargo, no se puede asignar una cadena a un array del siguiente modo: Cadena = “ABC-
DEF”. La funcion de la biblioteca estandar strcpy () (“copiar cadenas”) permite copiar una constante de cadena en una cade-
na. Para copiar el nombre “Ejemplo” en el array x, se puede escribir:

strcpy(x,”Ejemplo”); /*Copia Ejemplo en x */
EJEMPLO 9.4 Inicializacién de una cadena de caracteres.
Una cadena de caracteres es un array de caracteres que contiene al final el caracter caracter nulo (\0). Mediante la

sentencia declarativa char Cadenal] = “abcdefg” el compilador inserta automéaticamente un caracter nulo al final
de la cadena, de modo que la secuencia real seria:

CAPITULO 9 Arrays (listas y tablas) @

9.4

char Cadenal7] = “ABCDEF”;

Cadena A B C D E F \Q

Arrays multidimensionales
Los arrays multidimensionales son aquellos que tienen mas de una dimension y, en consecuencia, mas de un indice. Los arrays
mas usuales son los de dos dimensiones, conocidos también por el nombre de tablas o matrices. Sin embargo, es posible crear
arrays de tantas dimensiones como requieran sus aplicaciones, esto es, tres, cuatro 0 mas dimensiones. Los elementos de los
arrays se almacenan en memoria por filas. Hay que tener en cuenta que el subindice mas préximo al nombre del array es la fila
y el otro subindice, la columna. La sintaxis para la declaracién de un array de dos dimensiones es:

<TipoElemento><nombrearray>[<NimeroDeFilas<J][<NumeroDeColumnas>]

La sintaxis para la declaracion de un array de tres dimensiones es:

{tipodedatoElemento><nombrearray> [{Cotal>] [<Cotaz>][<Cota3>]

EJEMPLO 9.5 Declaracion y almacenamiento de array

Dada la declaracién: int al51[61;
El orden de almacenamiento es el siguiente:

al0JC0],al0]1C17,al01027,...al01057,al11007,aC110l2],.... allIl5],......., al41[017,
al41017,.... al4]1[5].

Los arrays multidimensionales se pueden inicializar, al igual que los de una dimensién, cuando se declaran. La inicia-
lizacion consta de una lista de constantes separadas por comas y encerradas entre llaves, como en el ejemplo siguiente:

int ejemplol[2][3] = {1,2,3,4,5,6});

El formato general para asignacion directa de valores a los elementos es para la insercion de elementos:
<nombre array>[indice filal[indice columna] = valor elemento.

Para la extraccion de elementos:

<variable> = <nombre array> [indice filallindice columnal]

Las funciones de entrada o salida se aplican de igual forma a los elementos de un array unidimensional. Se puede acce-
der a los elementos de arrays bidimensionales mediante bucles anidados. Su sintaxis general es:

int IndiceFila, IndiceCol;
for (Indicefila = 0; Indicefila < NumFilas; ++IndiceFila)

for (IndiceCol = 0; IndiceCol < NumCol; ++IndiceCol)
Procesar elementol[IndiceFila]lIndiceCol];

@ CAPITULO 9 Arrays (listas y tablas)

9.5

Utilizacion de arrays como parametros

En C todos los arrays se pasan por referencia (direccion) a las funciones. C trata automaticamente la llamada a una funcion
como si hubiera situado el operador de direccion & delante del nombre del array que realiza la llamada. La declaracion en la
funcion de un parametro tipo array se realiza con uno de los formatos siguientes:

1.<tipo de datoElemento> <nombre array> [<Cotal>]
2.<{tipo de datoElemento> <nombre array> []

En arrays bidimensionales se realiza siempre indicando el nimero de columnas de la siguiente forma:

{tipo de datoElemento> <nombre array> [<Cotal>][cotaZ]. O bien,
{tipo de datoElemento> <nombre array> [J][cota?]

Cuando se pasa un array a una funcion, se pasa realmente s6lo la direccion de la celda de memoria donde comienza el array.
Este valor se representa por el nombre del array. La funcion puede cambiar el contenido del array accediendo directamente a
las celdas de memoria en donde se almacenan los elementos del array.

EJEMPLO 9.6 Declaracion de funciénes con parametros array:

float suma(float a[5]) ,o float suma(float al[l), obien float suma(float *a)
void calcula (flota x[1[51)

En el caso de la funcién suma(), si se tiene declarado int b[5], una posible llamada a la funcién serfa suma(b).

Cuando se utiliza una variable array como argumento, la funcién receptora puede no conocer cuadntos elementos existen en
el array. Aunque la variable array apunta al comienzo del mismo, no proporciona ninguna indicacion de donde termina el array.
Se pueden utilizar dos métodos alternativos para permitir que una funcién conozca el nimero de argumentos asociados con un
array que se pasa como argumento de una funcion:

a) Situar un valor de sefial al final del array, que indique a la funcién que se ha de detener el proceso en ese momento.
b) Pasar un segundo argumento que indica el nimero de elementos del array.

La técnica de paso de arrays como parametros se utiliza, también, para pasar cadenas de caracteres a funciones. Las cade-
nas terminan en nulo (< \0" o nulo, es el carcter cero del cddigo de caracteres ASCIT) por lo que el primer método dado ante-
riormente sirve para controlar el tamafio de un array.

PROBLEMAS PROPUESTOS

9.1

¢Cudl es la salida del siguiente programa?.

#include <stdio.h>
void main(void)
{
inti; intPrimero[21];
for i=1;i<=6; i++)
scanf(*“%d”,&Primero[i]);
fori=3;i>0;i--)
printf(““%4d”,Primero[2*i]);
return;

}

9.2.

9.3.

9.4.

Arrays (listas y tablas) @

Solucion

Si la entrada de datos es por ejemplo: 3 7 4 -1 0 6. Estos se colocan en las posiciones del array numeros
1,2,3,4,5,6 y por lo tanto la salida sera 6 -1 7 ya que el bucle es descendente y se escriben las posiciones del array
nimeros6 4 y 2.

¢Cual es la salida del siguiente programa?.

#include <stdio.h>
void main(void)
{
int i,j,k; int Segundo[21];
scanf(““%d”,&k);
for(i =3; i <=k;)
scanf(*“%d”,&Segundo[i++]);
=4
printf(“%d %5d\n’*,Segundo[k],Segundo[j+1]);
}

Solucion

Si la entrada de datos es por ejemplo 6 3 0 1 9. Estos nimeros se almacenan en k el nimero 6 y el resto en las posi-
ciones del array 3, 4, 5, 6. Por lo tanto la salida de resultados seran los nimeros 9 1.

¢, Cuél es la salida del siguiente programa?.

#include <stdio.h>
void main(void)
{
int i,j,k;int Primero[21];
for(i=0; i < 10;i++)
Primero[i] = i + 3;
scanf(*“%d %d”,&j,&K);
for(i=j; i<=k;)
printf(““%d\n”’,Primero[i++]);

}

Solucion

Si la entrada de datos es por ejemplo 7 2, el programa no tendra ninguna salida ya que el segundo bucle es ascendente y
el limite inferior es mayor que el superior. Si la entrada de datos es por ejemplo 2 7, el programa escribira las posiciones
del array 2, 3, 4, 5, 6, 7 que se han inicializado, previamente, con los valores 5, 6, 7, 8, 9, 10.

¢ Cual es la salida del siguiente programa?.
void main(void)

{
inti,j k;
int Primero[21], Segundo[21];
for(i=0;i<12; i++)
scanf(*“%d”,&Primero[i]);
for(j =0;] <6; j++)
Segundo[j] = Primero[2*] + j;

9.5.

9.6.

for(k =3; k< 7; k++)
printf(““%d %d \n’’,Primero[k+1],Segundo [k-1]);
}

Solucién

Si laentrada de datoses 2 7 3 4 9 -4 6 -5 0 5 -8 10,y teniendo en cuenta que el programa lee primeramente 12
numeros almacenandolos consecutivamente en el array Primero, para posteriormente almacenar 6 valores en el array
Segundo en las posiciones 0,1,2,3,4,5 que en este caso serdn respectivamente 2, 3+1, 9+2, 6+3, 0+4, -8+ 5, 1la
salida de resultados sera:

9 11
-4 9
6 4
=B 3

Escriba un programa que lea por filas una matriz de orden 3 por 4 (tres filas y cuatro columnas) y la escriba por colum-
nas.

Analisis del problema

Se definen las constantes filas y columnas. En primer lugar, mediante dos bucles anidados, se lee la matriz por filas y pos-
teriormente se escribe por columnas mediante otros dos bucles anidados.

Codificacion

f#finclude <stdio.h>
jtdefine filas 3
jtdefine columnas 4
void main(void)
{
int i,7;
int M[filas][columnas];
// lectura por filas
for(i = 0; i < filas; i++)
for (j = 0;J < columnas; Jj++)
scanf(“%d” ,M[11[j1);
// escritura por columnas
for(j = 0; j < columnas;j++)
{
for (i = 0; i< filas;i++)
printf(“%5d”,M[i1031);
printf(“\n”);
}

Escriba un programa que lea una matriz cuadrada la presente en pantalla, y presente la suma de todos los nimeros que no
estan en la diagonal principal.

Anélisis del problema

El problema se resuelve en un solo programa principal. Dos bucles for anidados leen la matriz, otros dos bucles anidados

la escriben, y otros dos bucles anidados se encargan de realizar la suma de los elementos que no estan en la diagonal prin-
cipal, que son aquellos que cumplen la condicion i<>j.

Arrays (listas y tablas)

Arrays (listas y tablas) @

Codificacion

ffinclude <stdio.h>
jtdefine filas 5
void main(void)
{
int i,j, suma; int M[filas]l[filas];
// Tlectura por filas
for(i = 0; 1 < filas; i++)
for (j = 0;j < filas;j++)
scanf(“%d” ,M[11[J1);
// escritura por filas
for(i = 0; i < filas;i++)
{
for (j = 0; j < filas;j++)
printf(“%5d” ,M[11[j]1);
printf(“\n”);
}
suma=0; // realizacién de Ta suma
for(i = 0; i < filas;i++)
for (J 0; j < filas;j++)
if(L(i = j))
suma += M[i1[j]1;
printf(“ suma &d \n”, suma);

9.7. Escriba un programa C que intercambie el valor de la fila i con la fila j, de una matriz cuadrada de orden 7.
Analisis del problema
El programa que se presenta, solo muestra el segmento de cddigo que se encarga de intercambiar la fila i con la fila j.
Coadificacion

#include <stdio.h>
ffdefine filas 5
void main(void)
{
int i,J, k, aux;
int M[filas][filas];
// intercambio de fila i con fila j
for (k = 0;k < filas;k++)
{
aux = MLiJCk];
MEi1Ck] = MLJICkD;
MLJI[k] = aux;

9.8. Escriba un programa en C que declare un vector de longitud maxima max, y llame a funciones que se encarguen de leer el
vector, escribirlo, sumar dos vectores, restar dos vectores, hacer cero a un vector, rellenar el vector de unos.

@ Arrays (listas y tablas)

Analisis del problema

9.9.

La solucién se plantea de la siguiente forma. Las funciones que se encargan de resolver cada uno de los apartados tienen un
parametro entero n que indica la dimensién del vector, y un vector de longitud maxima max = 11. El programa principal se
encarga de llamar a los distintos médulos. Las funciones que resuelven el problema son:

rellena. Se encarga de leer de la entrada, las n componentes del vector.

escribe. Se encarga de presentar los distintos valores de las componentes del vector.

suma. Se encarga de recibir como parametros dos vectores a y b, y dar como resultado, el vector suma c.
resta. Se encarga de recibir como parametros dos vectores a y b y dar como resultado el vector diferencia c.
cero. Inicializa a cero todas las componentes del vector.

Identidad. Pone todas las componentes del vector a uno.

Codificacion (Consultar en la pagina web del libro)

Escriba un programa que lea un total de 10 nameros enteros, calcule la suma de todos ellos asi como la media presentan-
do los resultados.

Analisis del problema

Una constante NUM nos declara el valor 20. Dos bucles for se encargan de leer los datos y de calcular los resultados.
Codificacion

ffinclude <stdio.h>
ffdefine NUM 10
int main()
{
int numeros[NUMJ;
int i, total=0;
for (i = 0; i < NUM; i++)
{
printf(“ Iintroduzca el nlmero: que ocupa poscion %d :”7,1);
scanf(“%d”,&numeros[i]);
}
printf(“\n Lista de numeros Tleidos: *);
for (i = 0; i < NUM; i++)
{
printf(“%d “,numeros[i]);
total += numeros[il;
}
printf(“\nlLa suma total de todos los numeros es %d”,total)
printf(“\n La media es %f”,float(total)/NUM) ;
return 0;

}

9.10. Escriba funciones C que usando las definiciones del ejercicio 9.8 se encargue de asignar a un vector otro vector, que escri-

ba, el mayor y menor elemento de un vector asi como sus posiciones, que decida si un vector es simétrico, antisimético, y
mayoritario.

Analisis del problema

La solucion se plantea mediante la programacion de las siguientes funciones:

9.11.

Arrays (listas y tablas)

. asigna. Recibe como parametro un vector a y devuelve un vector b que es una copia del vector a.

- mayormenor. Se encarga de escribir el mayor y menor elemento del vector asi como las posiciones en que se encuentra.
. simétrico. Decide si un vector es simétrico. (Un vector de n datos se dice que es simétrico si el contenido de la posicion
i_ésima coincide con el que ocupa la posicién n-i_ésima, siempre que el nimero de elementos que almacene el vector

sea n).

. antisimétrico. Decide si un vector es antisimétrico. (Un vector de n datos se dice que es antisimétrico si el contenido
de la posicidn i_ésima coincide con el que ocupa la posicién n-i_ ésima cambiada de signo, siempre que el nimero de ele-

mentos que almacene el vector sea n).

. Mayoritario. Decide si un vector es mayoritario. (Un vector de n datos se dice que es mayoritario, si existe un elemen-

to almacenado en el vector que se repite mas de n/2 veces).

Coadificacion (Consultar en la pagina web del libro)

Escriba funciones que calculen el producto escalar de dos vectores, la norma de un vector y el coseno del angulo que for-

man.
Anélisis del problema
El producto escalar de dos vectores de n componentes se define de la siguiente forma:
pe(nab) = " ai) - b(i)
i=1

la norma de un vector de n componentes se define de la siguiente forma:

norma(n,a) = _ | i a(i) - a(i) = \y’pe(n,a,a)
i=1

El coseno del angulo que forman dos vectores de n componentes se define de la siguiente forma:

ia(i) - b(i) pe(n,a,b)
i=1

coseno(n,a,b) = - = =
\/Za(i) -a(i) ->_b(i) - b(i) norma(n,a) - norma(n,b)
i=1 i=1

Codificacion

#include <stdio.h>

#include <stdlib.h>

ffinclude <math.h>

f#define max 11

float productoescalar(int n, float almax],float b[max]);
float norma(int n, float almax]);

float coseno(int n, float almax], float blmax]);

float productoescalar(int n, float almax], float bl[max])
{
int i; float acu;
acu = 0
for (i 0; i < n; i++)
acu += alil * blil;
return acu;

@ Arrays (listas y tablas)

float norma(int n, float almax])
{

float aux;
aux = productoescalar(n,a,a);
aux = sqrtaux);

return aux;

float coseno(int n, float almax], float b[max])

{
float aux;
aux = productoescalar(n,a,b) / (norma(n,a) * norma(n,b));
return aux;

9.12. Escriba funciones para calcular la media m, desviacién media dm, desviacion tipica dt, media cuadratica mc y media armo-
nica ma, de un vector de hasta n elementos siendo n un dato.

Anélisis del problema

La media, desviacion media, desviacion tipica, media cuadratica, y media armoénica se definen de la siguiente forma:

m = (éa(i))/n

nabs (a(i) —m)
dm =121
n
mc =
ma=—
e
> t(a) - my?
dt =1 2—— -

Codificacion

#include <stdio.h>

#include <stdlib.h>

ffinclude <math.h>

jhdefine max 11

float m(int n, float almax]);
float dm(int n, float almax]);

CAPITULO 9 Arrays (listas y tablas)

@ Arrays (listas y tablas)

9.13. Escriba un programa que lea un nimero natural impar n menor o igual que 11, y calcule un cuadrado magico de orden n.
Un cuadrado de orden n*n se dice que es magico si contiene los valores 1, 2 ,3,.....n*n , y cumple la condicion de que la
suma de los valores almacenados en cada fila y columna coincide.

Analisis del problema

En un array bidimensional se almacenara el cuadrado magico. El problema se resuelve usando las siguientes funciones:

. Una funcion sig que tiene como parametro dos nimeros enteros i y n, de tal manera que i es mayor o igual que cero
y menor o igual que n - 1. La funcién devuelve el siguiente valor de i que es i + 1. En el caso de que al sumarle a i
el valor 1, i tome el valor n se le asigna el valor de 0. Sirve para ir recorriendo los indices de las filas de la matriz que
almacenara el cuadrado méagico de orden n.

. Una funcion ant que tiene como parametro dos nimeros enteros i y n, de tal manera que i es mayor o igual que cero
y menor o igual que n - 1. La funcidn devuelve el anterior valor de i quees i - 1. En el caso de que al restarle a i el
valor 1, i tome el valor -1 se le asigna el valor de n - 1. Sirve para ir recorriendo los indices de las columnas de la
matriz que almacenara el cuadrado méagico de orden n.

. Una funcién comprueba que escribe la matriz que almacena el cuadrado magico y ademas escribe la suma de los valores de
cada una de las filas y de cada una de las columnas, visualizando los resultados, para poder ser comprobado por el usuario.

. Una funcién cuadrado que calcula el cuadrado méagico mediante el siguiente conocido algoritmo:

. Se pone toda la matriz a ceros, para indicar que las casillas estan libres.

. Seinicializalafilai = 1lacolumnaj = n / 2.

- Mediante un bucle que comienza por el valor 1, se van colocando los valores en orden creciente hastael n * n de la
siguiente forma.

. Si la posicién fila i columna j de la matriz esta libre se almacena , y se recalcula la fila con la funcién ant y la
columna con la funcién sig.

. Si la posicion fila i columna j de la matriz esta ocupada se recalcula i aplicandole dos veces la funcion sig y se
recalcula j aplicAndole una vez la funcién ant. Se almacena el valor en la posicion fila i columna j (siempre esta
libre), para posteriormente recalcular la fila con la funcién ant y la columna con la funcion sig.

Codificiacion

#include <stdio.h>

fhdefine max 11

int sig(int i, int n);

int ant(int i, int n) ;

void cuadrado(int n, int alJllmax]);
void comprueba(int n, int alJllmax]);

int main()
{
int n, almaxJ[max];
do
{
printf(“introduzca valor de n <= %d e impar \n”, max);
scanf(“ %d”, &n);
// bucle que controla que n estd en el rango indicado y que
//n es impar
b while ((n <= 0) ||(n > max) ||(n% 2 == 0)) ;
cuadrado(n,a);
comprueba(n,a);
return 0;

CAPITULO 9 Arrays (listas y tablas)

@ Arrays (listas y tablas)

printf(“ ultima columna = suma de elementos de fila\n”);
printf(“ ultima fila = suma de elementos de columna\n”);
for (i = 0; i < n; i++)
{
acu = 0;
for (j = 0; j < n; j++)
{
printf(“%4d”, alilljl);
acu += alilljl;
}
printf(“%6d \n”, acu);
}
for (j = 0; J < n; j+)
{
acu = 0;
for (i = 0; 1 < n;i++)
acu += alillj]l;
printf(“%4d”, acu);

9.14. Implementar un programa que permita visualizar el triangulo de Pascal

En el tridngulo de Pascal cada nimero es la suma de los dos nimeros situados encima de él. Este problema se debe resol-
ver utilizando primeramente un array bidimensional y posteriormente uno de una sola dimension.

Analisis del problema

Se declaran dos array uno bidimensional a y otro unidimensional. La solucion se estructura de la siguiente forma:

« Unmédulo pascalbi tiene como parametros el array bidimensional y una variable entera y calcula el triangulo de Pascal
de orden n.

- Un moédulo escribebi tiene como parametros el array bidimensional y una variable entera y escribe el tridngulo de pas-
cal de orden n.

« Unmodulo pascaluni tiene como parametros el array unidimensional y una variable entera , calcula y escribe el triangulo de
Pascal de orden n. En este modulo el bucle j se hace descendente para no “pisar” los valores anteriormente calculados.

Codificacion

#include <stdio.h>

f#define max 11

void pascalbi(intn, int all[max]);
void escribebi(intn, int alllmax]);
void pascaluni(int n, intaalmax]);

int main()
{

CAPITULO 9 Arrays (listas y tablas)

@ Arrays (listas y tablas)

9.15. Escriba tres funciones en C que calculen la suma de dos matrices, la resta de dos matrices y el producto de dos matrices.
Anélisis del problema

Las tres funciones tienen como parametro una variable entera y las matrices a, b, c.
En la matriz c se devuelve el resultado de la operacion:
Suma c(i, j) = a(i, j) + b(i, j)

Resta c(i, j) = a(i, j) - b(i, j)

Producto c(i, j) = ¥ a(i, k) - b(k, j)
k

Codificacion

ffinclude <stdio.h>

#Finclude <stdlib.h>

fhdefine max 11

void suma(int n,float al[llmax],float b[J[max], float c[J][max]);
void resta(int n,float alllmax],float b[I[max],float c[Ilmax]);
void produc(int n,floatal][max],float b[J1[max],float c[I[max]);

void resta(int n, float alJ[max],float b[J[max],float c[J[max])
{
int 1,3;
for (i = 0;1 < n; i++)
for (j = 0; j < n; j++)
clillj] = alilljl - bLilljd;
}

void suma(int n,float al][max],float b[J[max], float c[J[max])
{
int 1,3;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; j++)
clillj] = alilljl + blLilljd;
}

void produc(int n,float al[llmax],float b[J[max],float c[][max])
{
int i,j,k;
float acu;
for (i = 0; 1 <n; i++)
for (j = 0; j < n; j++)
{
acu = 0;
for (k = 0;k < n;k++)
acu += ali]lCk] * bCkILJj1;
c[i1lj] = acu;

}

9.16. Escriba funciones en C que calculen la matriz cero la matriz identidad, asigne una matriz a otra, y usando la funcién pro-
ducto definida en el ejercicio anterior calcule la potencia de una matriz.

Arrays (listas y tablas) @

Analisis del problema

La matriz cero y la matriz identidad se calculan mediante sendas funciones que reciben como parametros una variable ente-
ran y devuelve en la matriz a la solucién. La asignacion de matrices se resuelve mediante una funcién que recibe como para-
metro una matriz y devuelve la matriz copia como resultado de la asignacion. La matriz potencia se calcula mediante una
funcién que recibe como pardmetros una variable entera n, otra variable entera m que indica el exponente al que hay que
elevar la primera matriz que se recibe como pardmetro y devuelve en otra matriz el resultado de calcular la potencia m_ésima
de la matriz.

Cero c(i,j)=0 o
1—>i=j
Identidad c(i, j) = o
0—>i#%j
Potencia b=a"

Asigna b(i, j) = a(i, j)
Coadificacion (Consultar la pagina web del libro)

9.17. Escriba funciones que calculen la traspuesta de una matriz cuadrada sobre si misma, y decidan si una matriz es simética o
antisimética.

Analisis del problema

La traspuesta de una matriz a viene dada por la matriz que se obtiene cambiando la fila i por la columna i. Es decir b es la
matriz traspuesta de a si se tiene que b(i,j) = a(j,i). Una matriz es simétrica si a(i,j) = a(j,i). Una matriz es
antisimétricasi a(i,j)= -a(j,i).Lasolucién viene dada por las tres funciones que reciben como pardmetro la matriz a y
su dimension, y en el primer caso devuelve la traspuesta en la propia matriz, y en el segundo y en el tercer caso, devuelven
verdadero o falso dependiendo de que cumplan o no la condicion.

Codificacion

#include <stdio.h>

#finclude <stdlib.h>

ffdefine max 11

void traspuesta(int n, float alJllmax]);
int simetrica (int n, float alllmax]);

int antisimetrica (int n, float alllmax]);

void traspuesta(int n, float alllmax])
{

int i,3;

float aux;

for (i = 0; i < n; it++)
for (j = 0; J < i; j++)

{
aux = alilljl;
ali]lj] = aljllil;
aljllil = aux;

int simetrica (int n, float alJ][max])

int i,j,sime = 1;

for (i = 0; i <
for (j = 0;] <

=n;
=n;

i++)
G++)

CAPITULO 9 Arrays (listas y tablas)

if (Malilljl == aljllil))

sime = 0;
return sime;
}

int antisimetrica (int n,

{

int i,j,sime;

sime=1;

for (i = 0; 1 <=

for (j = 0; J
if (1(alill]
sime = 0;
return sime;

n;
{=n
1 =

i++)
3J++)

float alllmax])

-alJ10il))

9.18. Escriba una funcién que encuentre el elemento mayor y menor de una matriz, asi como las posiciones que ocupa y se escri-

ban por pantalla.

Analisis del problema

La solucion se presente mediante una funcién que recibe la dimensién de la matriz y la propia matriz, y calcula ambos ele-
mentos sendos bucles voraces, que calculan a la vez el mayor y el menor, asi como las posiciones.

Codificiacion

f#finclude <stdio.h>
ffdefine max 11
void mayormenor(int

void mayormenor(int
//Calcula y escribe
//Calcula y escribe
{

n,
el
el

float

float
mayor
menor

int 1,j,1iM, im, jM,jm
float mayor, menor;

mayor=a[0][0];
menor=mayor:;
im=0;

iM=0;

Jm=0;

jM=0;

for (i = 0; 1 < n;

for (j = 0; j < n;

{

i++)

j++)

if (menor > alill[jl)

{

menor = alillj];

im= 1;
jm = J;

al1lmax]);

alJlmax])
elemento de la matriz y su posiciodn
elemento de Ta matriz y su posicidn

Arrays (listas y tablas) @

}s
if (mayor < alill[jl)
{

mayor = alil1[j];

iM = i;
M = 3:)
}
printf(“ el mayor elemento es %6.0f\n”, mayor);
printf(“ la posicion del mayor es %5d %5d\n”, iM + 1,jM +1);
printf(“ el menor elemento es %6.0f\n”, menor);
printf(“ Ta posicion del menores %5d %5d\n”, im + 1, jm + 1);

9.19. Se dice que una matriz tiene un punto de silla si alguna posicion de la matriz es el menor valor de su fila, y a la vez el mayor
de su columna. Escribir una funcién que tenga como pardmetro una matriz de nimeros reales, y calcule y escriba los pun-
tos de silla que tenga, asi como las posiciones correspondientes.

Analisis del problema

Para resolver el problema se supone que la matriz no tiene elementos repetidos. La funcién recibe como parametro un ndme-
ro entero n, y una matriz de reales a[maxJ][max] (max es una constante previamente declarada). La codificacion se ha plan-
teado de la siguiente forma: un primer bucle recorre las distintas filas de la matriz. Dentro de ese bucle se calcula el
elemento menor de la fila y la posicion de la columna en la que se encuentra. Posteriormente se comprueba si la columna en
la que se ha encontrado el elemento menor de la fila cumple la condicién de que es el elemento mayor de la columna. En
caso positivo sera un punto de silla.

Codificacion

void puntosdesilla(int n, float alllmax])
{
int i,j, menor, jm,correcto;
printf(“ puntos de sillas\n”);
for(i = 0; i < n; i++)
{
menor = al[i][0];
Jjm =0
for(j 1; J < n; j++)
if (menor > alil1[J])
{

menor =alil[j];
Jm=3;
}
correcto = 1;
J = 03
while(correcto&&(j<n))
{
correcto = menor >= al[jlljm];
JA=Es
}
if (correcto)
printf(“silla en %d %d valor = %f \n”, i,jm,alilljml);

@ Arrays (listas y tablas)

9.20. Escriba un programa que lea en una cadena de caracteres un nimero entero, y convierta la cadena a nimero.
Analisis del problema

La variable cadena sirve para leer el nimero introducido por teclado en una variable tipo cadena de caracteres de longitud
maxima 80. La funcién valor_numerico, convierte la cadena de caracteres en un nimero entero con su signo. Esta funcion
se salta todos los blancos y tabuladores que se introduzcan antes del nimero entero que es dato. Para convertir la cadena en
nlmero se usa esta descomposicion: ‘2345°= 2*1000+3*100+4*10+5. La realizacion de estas operaciones es hecha por el
método de Horner:

2345 = (((0*10+ 2)*10+3)*10+4)*10+5
La obtencidn de, por ejemplo el nimero 3 se hace a partir del caracter ‘3’: 3 = “3°-'0’
Coadificacion

#include <stdio.h>
f#include <string.h>
int valor_numerico(char cadenal]);

void main(void)
{
char cadenal80];
int numero;
printf(“dame numero: “);
gets(cadena);
numero= valor_numerico(cadena);
puts(cadena);
printf(“ valor Teido %d \n “,numero);

int valor_numerico(char cadenall])
{
int i,n,sign;
/* salto de blancos y tabuladores */
for (i = 0; cadenali]l == * || «cadenali]l == “\t’; i++);
/* determinacién del signo*/

sign = 1;
if(cadenali]l == ‘+° || cadenali] == *-’)

sign = cadenali++] == ‘+° ? 1:-1;

/* conversion a namero*/

n=20;
for (; cadenali] >= ‘0’ && cadenal[i] <= ‘9’ ; i++)

n = 10*n + cadenali] - ‘0’;
return (sign*n);

}

9.21. Escriba un programa en C que lea un nimero en base 10 en una variable entera. Lea una base y transforme el nimero leido
en base 10 a la otra base como cadena de caracteres. Posteriormente, lea un nimero como cadena de caracteres en una
cierta base y lo transforme al mismo ndmero almacenado en una variable numérica escrito en base 10. Por altimo el Glti-
mo numero leido como cadena en una base, lo transforme a otro nimero almacenado en una cadena y escrito en otra base
gue se leera como dato.

9.22.

Arrays (listas y tablas)

Analisis del problema

La solucion se ha estructurado de la siguiente forma:

* Una funcion cambi o recibe como dato el nimero almacenado en una variable numérica y lo transforma en el mismo nime-
ro almacenado en una cadena de caracteres en otra cierta base que también es recibida como parametro en otra variable
entera. Para poder realizar lo indicado usa una cadena de caracteres llamada bases que almacena los distintos caracteres a
los que se transformaran los nimeros: asi por ejemplo el nimero 5 se transforma en ‘5°, el ndmero 10 se transforma en
‘A’, el nimero 11 en “B’, etc. Se define un vector de enteros aux que almacena en cada una de las posiciones (como
resultado intermedio) el digito entero al que corresponde cuando se pasa a la base que se recibe como parametro. Para hacer
esto se usa el esquema siguiente: mientras la variable num sea distinta de cero hacer en la posicién i del vector aux que
se almacene el resto de la division entera del nimero num entre la base, para posteriormente almacenar en la variable num
el cociente de la divisidn entera del nimero entre la base. Para terminar se pasa el nimero a cadena de caracteres usando

el array bases.

 Una funcion valore recibe como parametro la cadena de caracteres y la base en que esta escrita, y lo trasforma a su corres-
pondiente valor numérico devolviéndolo en la propia funcion, que es declarada como de tipo entero largo. Para realizar la
operacion se usa, al igual que en el ejercicio anterior el método de Horner de evaluacion de un polinomio escrito en una

cierta base:

‘23457 .se=(((0*base+2)*baset+3)*baset+d)*base + 5

« Para pasar de un nimero almacenado en una cadena de caracteres y escrito en una base al mismo nimero almacenado en
otra cadena de caracteres y escrito en otra base se usa la funcién cambiodoble que llama a las dos funciones anteriores.
* Por Gltimo el programa principal escribe usando el formato correspondiente un nimero entero almacenado en una varia-

ble entera en base octal y base hexadecimal.

Codificacion (Consultar la pagina web del libro)

Escriba un programa que lea un texto de la entrada hasta fin de fichero y calcule el nimero de: letras a, letras e, letras i,
letras o, letras u leidas, y cuente el nimero de palabras y el nimero de lineas leidas.

Analisis del problema

Se declara un vector entero de cinco componentes que sirve para contar las vocales correspondientes. Un contador npal, cuen-
ta el nimero de palabras, y otro contador n1ineas cuenta el nimero de lineas. Un bucle itera mientras no sea fin de archivo
(control + Z), y otro bucle itera mientras esté en una palabra, y ademas cuenta las vocales, en caso de que lo sean.

Codificacion

#include <stdio.h>
#include <string.h
ffdefine max 5

void main(void)

{

int npal =0, nlin=0,

char c;
clrscr(

>

)
printf (* \t\t TEXTO \n”);
max; i++)

for (i = 0; 1 <
cont[i] 0;

while ((c = getchar())

{
while ((c !=

AtT) &&

(c

cont[max];

!= EOF)

| =

‘

) &

(c!="\n")&&

(c!'=EO0F))

c=getchar();
if (c = *a’ || c = "A
if (e =" @ || ¢ = °F°
if (c = ‘1" || ¢ = ‘I
if (c = ‘0’ || ¢c = ‘0
if (c == ‘u || c = ‘U

}

npal++;

if (c == ‘\n’)

nlin++;

}

printf(“ palabras %d lineas
printf(“ numero de a_es %d
printf(“ numero de e_es %d
printf(“ numero de i_es %d
printf(“ numero de o_es ?%d
printf(“ numero de u_es ?%d
getch();

9.23. Escriba un programa que lea una frase, y decida si es palindroma.

Anélisis del problema

) cont[0]++;
) cont[1]++;
*) contl[2]++;
) cont[3]++;
) cont[4]++;

%d \n”, npal,

\n”, cont[0]);
\n”, cont[1]);
\n”, contl[2]);

\n”, cont[3]);
\n”, contl[4]);

nlin);

Arrays (listas y tablas)

Una frase es palindroma si puede leerse de igual forma de izquierda a derecha, que de derecha a izquierda, después de haber
eliminado los blancos. Por ejemplo la frase dabale arroz a la zorra el abad es palindroma. Para resolver el problema, se lee
una frase en una cadena de caracteres. Se copia la frase en otra cadena de caracteres, eliminando los blancos. Posteriormente
mediante un bucle que llegue hasta la mitad de la frase, se comprueba si la letra que ocupa la posicién i_ésima coincide con

la correspondiente que ocupa la posicién n-i_ésima, siendo n la longitud de la cadena.

Codificacion

ffinclude <stdio.h>
ffinclude <string.h>

void main(void)

{
char cadenal80], cadenal[80]
int i,j, palindroma;

s

printf(“dame cadena “); gets(cadena);

J=0;
for(i = 0; cadenalil; i++)
if (cadenali] != °)

{
cadenall[j] = cadenalil;
JA=FS
}
palindroma = 1;
i = 0

while (i <= j / 2 && palindroma)

{
palindroma = cadenall[i] ==

cadenallj -

1

Arrays (listas y tablas) @

i+
}
if (palindroma)

printf(* Es palindroma “);
else

printf(“ No es palindroma”);

9.24. Un namero entero es primo si ningln otro ndmero primo mas pequefio que él es divisor suyo. A continuacion escribir un

programa que rellene una tabla con los 100 primeros ndmeros primos y los visualice
Anélisis del problema
El programa se ha estructurado de la siguiente forma:

* Se declaran la constante max y los valores 16gicos TRUE y FALSE.

« El programa principal se encarga de declarar un array para almacenar los max nimeros primos, y mediante un bucle for
se rellena de ndmeros primos, Ilamando a la funcién primo. EI nimero n que se pasa a la funcién primo(n) se incremen-
ta en dos unidades (todos los nimeros primos son impares). El primer nimero primo, que es el 2, es el Gnico que no cum-
ple esta propiedad.

 Funcién primo. Un nimero entero positivo es primo, si solo tiene por divisores la unidad y el propio nimero. El método
que se usa, aplica la siguiente propiedad “ si un nimero mayor que la raiz cuadrada de n divide al propio n es porque hay
otro nimero entero menor que la raiz cuadrada que también lo divide”. Por ejemplo. Si n vale 64 su raiz cuadrada es 8. El
ntmero 32 divide a 64 que es mayor que 8 pero también lo divide el nimero 2 que es menor que 8, ya que 2*32 = 64. De
esta forma para decidir si un nimero es primo basta con comprobar si tiene divisores menores o iguales que su raiz cua-
drada por supuesto eliminando la unidad.

* Funcion escribe. Se encarga de escribir la lista de los 100 nimeros primos en 10 lineas distintas.

Coadificacion (Consultar la pagina web del libro)

PROBLEMAS PROPUESTOS

9.1.

Determinar la salida de cada segmento de programa para for(k = -1; k < J + 2;k = kt+ 2)
el correspondiente archivo de entrada que se indica al printf(“%d”,Primero[++ k1);
final.
20 60 70 10 0 40 30 90

int i,j.k;
int Primero[21]; 9.2. Determinar la salida de cada segmento de programa.
for(j = 0; j < 7;)

scanf(“%d”,&Primerol[j++1); int i,j.k;
i=0 int Tercero[6][12];
j=1; for(i = 0; i < 3; i++)
while ((j < 6) && (Primero[j - 1 1 < for(j = 0; J < 12; J++)
Primero[j])) Tercerol[il[j]l = i + § + 1;
{ for(i = 0; i < 3; i++)

5 s {

Jt+; J = 23

} while (j < 12)

9.3.

9.4.

9.5.

9.6.

9.7.

printf(“%d \n”,i, j, Tercero[il[Jj]);
J = 33

El juego del ahorcado se juega con dos personas (0 una
persona y una computadora). Un jugador selecciona una
palabra y el otro jugador trata de adivinar la palabra adivi-
nando letras individuales. Disefiar un programa para jugar
al ahorcado . Sugerencia: almacenar una lista de palabras
en un array y seleccionar palabras aleatoriamente.

Escribir un programa que lea una coleccion de cadenas
de caracteres de longitud arbitraria. Por cada cadena
leida, su programa hara lo siguiente:

a) Imprimir la longitud de la cadena.

b) Contar el nimero de ocurrencia de palabras de cua-
tro letras.

c) Sustituir cada palabra de cuatro letras por una cadena
de cuatro asteriscos e imprimir la nueva cadena.

Disefiar un programa que determine la frecuencia de
aparicion de cada letra mayuscula en un texto escrito por
el usuario (fin de lectura, el punto o el retorno de carro,
ASCIT 13).

Escribir un programa que lea una cadena de caracteres y
la visualice en un cuadro.

Escribir un programa que lea una frase, sustituya todas
las secuencias de dos 0 mas blancos por un solo blanco
y visualice la frase restante.

9.8.

9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

CAPITULO 9 Arrays (listas y tablas)

Escribir un programa que lea una frase y a continuacion
visualice cada palabra de la frase en columna, seguido
del nimero de letras que compone cada palabra.

Escribir un programa que desplace una palabra leida
del teclado desde la izquierda hasta la derecha de la
pantalla.

Escribir un programa que lea una linea de caracteres, y
visualice la linea de tal forma que las vocales sean susti-
tuidas por el caracter que mas veces se repite en la linea.

Escribir un programa que lea una serie de cadenas, a
continuacion determine si la cadena es un identificador
valido segln la sintaxis de C. Sugerencias: utilizar las
siguientes funciones: longitud (tamafio del identificador
en el rango permitido); primero (determinar si el nombre
comienza con un simbolo permitido); restantes (com-
prueba si los restantes son caracteres permitidos).

Se introduce una frase por teclado. Se desea imprimir cada
palabra de la frase en lineas diferentes y consecutivas.

Escribir un programa que tenga como entrada una pala-
bra y n lineas. Se quiere determinar el nimero de veces
que se encuentra la palabra en las n lineas.

Escribir un programa en el que se genere aleatoriamente
un vector de 20 nimeros enteros. El vector ha de quedar
de tal forma que la suma de los 10 primeros elementos
sea mayor que la suma de los 10 ultimos elementos.
Mostrar el vector original y el vector con la distribucion
indicada.

10.1

10.2

CAPITULO 10

Algoritmos de ordenacion
y busqueda

Una de las tareas que realizan mas frecuentemente las computadoras en el procesamiento de datos es la ordenacion. El estudio
de diferentes métodos de ordenacidn es una tarea intrinsecamente interesante desde un punto de vista tedrico y, naturalmente,
practico. El capitulo estudia los algoritmos y técnicas de ordenacion mas usuales y su implementacion en C. De igual modo
se estudiar el andlisis de los diferentes métodos de ordenacién con el objeto de conseguir la méaxima eficiencia en su uso real.

Ordenacion

La ordenacion o clasificacion de datos es la operacion consistente en disponer un conjunto de datos en algin determinado
orden con respecto a uno de los campos de elementos del conjunto. En terminologia de ordenacién, el elemento por el cual esta
ordenado un conjunto de datos (o se esta buscando) se denomina clave. Una lista dice que esta ordenada por la clave k si la
lista estd en orden ascendente o descendente con respecto a esta clave. La lista se dice que esta en orden ascendente si:

< implica que k[i] <= k[J]
y se dice que estd en orden descendente si: P> implica que k[i1 <= k[j]

En todos los métodos de este capitulo, se utiliza el orden ascendente sobre vectores o listas (arrays unidimensionales). La
eficiencia es el factor que mide la calidad y rendimiento de un algoritmo. En el caso de la operacion de ordenacion, dos crite-
rios se suelen seguir a la hora de decidir qué algoritmo (de entre los que resuelven la ordenacién: 1) tiempo menor de ejecu-
cién en computadora; 2) menor cantidad de memoria utilizada.

Los métodos de ordenacién pueden ser internos o externos segun que los elementos a ordenar estén en la memoria princi-
pal 0 en la memoria externa. Los métodos de ordenacion se suelen dividir en dos grandes grupos:

« directos: burbuja, seleccion, insercion;
« indirectos (avanzados): shell, ordenacién répida, ordenacion por mezcla, radixsort;

Ordenacion por burbuja

En el método de ordenacion por burbuja los valores mas pequefios “burbujean” gradualmente (suben) hacia la cima o parte
superior del array de modo similar a como suben las burbujas en el agua, mientras que los valores mayores se hunden en la

@ CAPITULO 10 Algoritmos de ordenacion y bisqueda

10.3

10.4

parte inferior del array. La técnica consiste en hacer varias pasadas a traves del array. En cada pasada, se comparan parejas suce-
sivas de elementos. Si una pareja esta en orden creciente (o los valores son idénticos), se dejan los valores como estan. Si una
pareja esta en orden decreciente, sus valores se intercambian en el array. En el caso de un array (lista) con n elementos, la orde-
nacion por burbuja requiere hasta n-1 pasadas. Por cada pasada se comparan elementos adyacentes y se intercambian sus valo-
res cuando el primer elemento es mayor que el segundo elemento. Al final de cada pasada, el elemento mayor ha “burbujeado”
hasta la cima de la sublista actual. Por ejemplo, después que la pasada 0 estd completa, la cola de la lista A[n-17] esta ordena-
day el frente de la lista permanece desordenado. Las etapas del algoritmo son :

* En la pasada 0 se comparan elementos adyacentes
(ALOT,ALLD), CALL],AL21), (AL2],AL3]),...(A[n-2],A[n-11)

» Se realizan n-1 comparaciones, por cada pareja (A[i],A[i+1]) se intercambian los valores si A[i+1] < A[i].
Al final de la pasada, el elemento mayor de la lista esta situado en A[n-17 .

« En la pasada 1 se realizan las mismas comparaciones e intercambios, terminando con el elemento de segundo mayor valor
en Aln-2].

* El proceso termina con la pasada n-1, en la que el elemento més pequefio se almacena en A[0] .

EJEMPLO 10.1. Funcionamiento del algoritmo de la burbuja con un array de 5 elementos (50, 20, 40, 80, 30). Los
movimientos de claves que se realizan son:

50, 20, 40, 80, 30
20, 50, 40, 80, 30
20, 40, 50, 80, 30
20, 40, 50, 30, 80 el mayor se encuentra el Gltimo

20, 40, 30, 50, 80 ordenado

Ordenacién por seleccion

El método de ordenacion se basa en seleccionar la posicién del elemento méas pequefio del array y colocarlo en la posicion que
le corresponde. El algoritmo de seleccion se apoya en sucesivas pasadas que intercambian el elemento méas pequefio sucesiva-
mente con el primer elemento de la lista. En la primera pasada se busca el elemento mas pequefio de la lista y se intercambia
con AL0], primer elemento de la lista. Después de terminar esta primera pasada, el frente de la lista esté ordenado y el resto de
la lista AL1], A[2]...A[n-1] permanece desordenada. La siguiente pasada busca en esta lista desordenada y selecciona el
elemento mas pequefio, que se almacena entonces en la posicion A[1]. De este modo los elementos A[0] y A[1] estan orde-
nados y la sublista A[2], A[3]...A[n-1] desordenada; entonces, se selecciona el elemento més pequefio y se intercambia
con A[2]. El proceso contintia n-1 pasadas; en ese momento la lista desordenada se reduce a un elemento (el mayor de la lista)
y el array completo ha quedado ordenado.

EJEMPLO 10.2. Funcionamiento del algoritmo de seleccién con un array de 5 elementos (50, 20, 40, 80, 30).

Los movimientos de claves que se realizan son:
50, 20, 40, 80, 30
20, 50, 40, 80, 30
20, 30, 40, 80, 50
20, 30, 40, 50, 80

Ordenacién por insercion

El método de ordenacion por insercion es similar al proceso tipico de ordenar tarjetas de nombres (cartas de una baraja) por
orden alfabético, consistente en insertar un nombre en su posicion correcta dentro de una lista que ya esta ordenada. El algo-
ritmo considera que la lista a[0], a[1], ... al[i-1] estd ordenada, posteriormente inserta el elemento a[i] en la posi-
cion que le corresponda para que la lista a[0], a[1], ... al[i-1] ,ali] esté ordenada, moviendo hacia la derecha los
elementos que sean necesarios. Si un bucle que comienza en la posicién i=1 y avanza de uno en uno hasta la posiciéon n-1y
realiza el proceso anterior, al terminar el proceso el vector estar ordenado.

CAPITULO 10 Algoritmos de ordenacion y bisqueda @

10.5

10.6

10.7

EJEMPLO 10.3 Funcionamiento del algoritmo de insercion con un array de 5 elementos (50, 20, 40, 80, 30).

Los movimientos de claves que se realizan son:
50, 20, 40, 80, 30
20, 50, 40, 80, 30
20, 40, 50, 80, 30
20, 40, 30, 50, 80

Ordenacion Shell

La ordenacion Shell se suele denominar también ordenacién por insercién con incrementos decrecientes. Es una mejora de los
métodos de insercidn directa en el que se comparan elementos que pueden ser no contiguos. El algoritmo es el siguiente:

1. Sedivide la lista original en n/2 grupos de dos elementos, considerando un incremento o salto entre los elementos de n/2.

2. Se clasifica cada grupo por separado, comparando las parejas de elementos y si no estan ordenados se intercambian.

3. Sedivide ahora la lista en la mitad de grupos (n/4), con un incremento o salto entre los elementos también mitad (n/4), y
nuevamente se clasifica cada grupo por separado.

4. Asi sucesivamente, se sigue dividiendo la lista en la mitad de grupos que en el recorrido anterior con un incremento o salto
decreciente en la mitad que el salto anterior, y después clasificando cada grupo por separado.

5. El algoritmo termina cuando se alcanza el tamafio de salto 1. En este caso puesto que se comparan elementos contiguos
cuando termine el proceso el vector estara ordenado.

El método de ordenacion shell ordena ya que cuando el salto es 1 el método funciona como el burbuja.
EJEMPLO 10.4. Obtener las secuencias parciales del vector al aplicar el método Shell para ordenar en orden cre-
ciente la lista:

6 1 5 2 3 4 0

El nimero de elementos que tiene la lista es 6, por lo que el salto inicial es 6/2 = 3. La siguiente tabla muestra el nime-
ro de recorridos realizados en la lista con los saltos correspondiente.

Recorrido Salto Intercambios Lista

1 3 (6,2),(5,4),(6,0) 2140356
2 3 (2,0 0142356
3 3 ninguno 0142356
salto 3/2=1

4 1 (4,2),(4,3) 0123456
5 1 ninguno 0123456

Ordenacion rapida (QuickSort)

El algoritmo conocido como quicksort (ordenacion rapida) recibe su nombre de su autor, Tony Hoare. Usa la técnica divide y
venceras y normalmente la recursividad en la implementacion. EI método se basa en dividir los n>0 elementos de la lista a orde-
nar en dos particiones separadas, de tal manera, que los elementos pequefios estan en la izquierda, y los grandes a la derecha.
Para realizar esta dos particiones, se elige un pivote o elemento de particion y se colocan todos los elementos menores o igua-
les que él a la parte izquierda del array y los elementos mayores o iguales que él a la derecha. Posteriormente se ordena la
izquierda y la derecha recursivamente.

Busqueda en listas: busqueda secuencial y binaria

El proceso de encontrar un elemento especifico de un array se denomina blsqueda. Las técnicas de blsqueda mas utilizadas
son : busqueda lineal o secuencial, la técnica méas sencilla y busqueda binaria o dicotdmica, la técnica mas eficiente.

Algoritmos de ordenacion y biisqueda

La busqueda secuencial de una clave en un vector se basa en comparar la clave con los sucesivos elementos del vector tra-
tados secuencialmente (de izquierda a derecha o viceversa). Si el vector se encuentra ordenado, la busqueda secuencial puede
interrumpirse sin éxito cuando se esté seguro de que no se puede encontrar la clave en el vector, ya que los elementos que que-
dan por comparar, se sabe que son mayores que la clave o bien menores.

La bdsqueda binaria se aplica a vectores ordenados. Para buscar si una clave esta en un vector se comprueba si la clave
coincide con el valor del elemento central. En caso de que no coincida, entonces se busca a la izquierda del elemento central,
si la clave a buscar es mas pequefia que el elemento almacenado en la posicién central y en otro caso se busca a la derecha.

PROBLEMAS RESUELTOS

10.1.

10.2.

10.3.

10.4.

¢ Cudl es la diferencia entre ordenacion por seleccion y ordenacion por insercion?.
Solucién

El método de ordenacién por seleccion selecciona la posicion del elemento mas pequefio (mas grande) y lo coloca en el
lugar que le corresponde. Por lo tanto, elige la posicion del elemento mas pequefio del vector y lo intercambia con el pri-
mero. Posteriormente elige la posicion del siguiente mas pequefio y lo intercambia con el que ocupa la posicion segunda,
etc. EI método de ordenacion por insercion , a partir de una parte del vector ordenado (hasta la posicidn i-1), decide cual es
la posicion donde debe colocar el elemento que ocupa la posicion i del vector para que quede ordenado el vector hasta la
posicién i (debe desplazar datos hacia la derecha).

Un vector contiene los elementos mostrados a continuacién. Los primeros dos elementos se han ordenado utilizando un
algoritmo de insercion. ¢ como estaran colocados los elementos del vector después de cuatro pasadas mas del algoritmo ?
3,13, 8, 25, 45, 23, 98, 58.

Solucion

Después de la primera pasada los elementos estaran en el orden: 3, 8, 13, 25, 45, 23, 98, 58.
Después de la segunda pasada los elementos estaran en el orden: 3, 8, 13, 25, 45, 23, 98, 58.
Después de la tercera pasada los elementos estaran en el orden: 3,8, 13, 25, 45, 23, 98, 58.
Después de la cuarta pasada los elementos estaran en el orden: 3, 8, 13, 23, 25, 45, 98, 58.

Dada la siguiente lista 47 ,3 21, 32, 56, 92. Después de dos pasadas de un algoritmo de ordenacidn, el array se ha
quedado dispuesto asi:3, 21, 47, 32, 56, 92. ¢Qué algoritmo de ordenacidn se esta utilizando (seleccion, burbuja o inser-
cion) ?. Justifique la respuesta.

Solucion

El método de la burbuja no puede ser el empleado, ya que tras la primera pasada del método, los elementos deberian estar
en el orden siguiente: 3, 21, 32, 47, 56, 92. Es decir ya estarfan ordenados.

El método de ordenacion por seleccion, tras la primera pasada tendria los elementos colocados de la siguiente forma: 3,
47, 21, 32, 56, 92.

Tras la segunda pasada los elementos del vector estaria colocados : 3, 21, 47, 32, 56, 92. Por lo tanto este método puede
haber sido usado.

El método de ordenacion por insercidn tras la primera pasada los datos estarian: 3, 47, 21, 32, 56, 92. Una vez reali-
zada la segunda pasada la informacion del vector seria: 3, 21, 47, 32, 56, 92. Es decir, también podria haberse usado este
método de ordenacion.

Un array contiene los elementos indicados mas abajo. Utilizando el algoritmo de bisqueda binaria, trazar las etapas nece-
sarias para encontrar el nimero 88.
8, 13, 17, 26, 44, 56, 88, 97.

Algoritmos de ordenacion y biisqueda @

Solucion

En la primera iteracion del bucle la clave central seria 26, y como no coincide con la clave a buscar que es 88, entonces
habria que realizar la bisqueda en: 44, 56, 88, 97. En la segunda iteracion del bucle, la clave central seria 26, y como tam-
poco coincide con la CLAVE a buscar que es 88, entonces habria que realizar la busqueda en: 88, 97. En la tercera itera-
cion, la clave central es 88 que coincide con la clave que se busca, por lo tanto se terminaria el bucle con éxito.

10.5. Escriba una funcién que realice la ordenacion interna de un vector de n elementos, por el método de ordenacion de bur-
buja.

Analisis del problema

La ordenacion por burbuja se basa en comparar elementos contiguos del vector e intercambiar sus valores si estan desorde-
nados. Si el vector tiene los elementos a0], alll,....,aln-1]1. El método comienza comparando a[0] con al[l]; Si
estan desordenados, se intercambian entre si. A continuacion se compara a[1] con a[2]. Se continua comparando a[2]
con a[3], intercambiandolos si estan desordenados,... hasta comparar aln-21 con a[n-1] intercambiandolos si estan
desordenadoS. Estas operaciones constituyen la primera pasada a través de la lista. Al terminar esta pasada el elemento
mayor esta en la parte superior de la lista. EIl proceso descrito se repite durante n-1 pasadas teniendo en cuenta que en la
pasada i el se ha colocado el elemento mayor de las posiciones 0, ,n-1i en la posicién n-i. De esta forma cuando i
toma el valor n-1, el vector esta ordenado.

Codificacion

void burbuja(int n, float almax])
{
int i,j; float aux;
for (i = 0; i < n - 1; i++)
for(j = 0;j <n -1 - 1; j++)
if (aljl > alj + 11)
{
aux = aljl;
aljl =a [J + 11;
alj + 11 =aux;

10.6. Escriba una funcion que realice la ordenacidn interna de un vector de n elementos, por el método de ordenacion de selec-
cion.

Analisis del problema

Se basa en el siguiente invariante “seleccionar en cada pasada el elemento mas pequefio y colocarlo en la posicion que le
corresponde”. De esta forma en una primera pasada, encuentra el menor de todos los elementos y lo coloca en la posicién
primera del vector (la cero). En la segunda pasada encuentra el siguiente elemento mas pequefio (el segundo elemento mas
pequefio) y lo coloca en la posicion nimero 2 (la uno). Y asi continla hasta que coloca los n-1 elementos mas pequefios
guedando por tanto el vector ordenado.

Codificacion

void selecion(int n, float almax])
{

int i,j,k; float aux;

for (i = 0;i < n - 1; i++)

k = 1;
for(j =1 + 1; j < n;j++)
if(alj] < alkl)

k= 3;
aux = alkl];
alk]l = alil;
ali]l = aux;

10.7. Escriba funciones para realizar la bisqueda secuencial de un vector.

Analisis del problema

Algoritmos de ordenacion y biisqueda

Si se supone declarada previamente una constante max, que es el tamafio del vector es, y que el elemento que se busca es x.
La busqueda, devuelve un valor entero, que es —1 en el caso de que el elemento a buscar no esté en el vector. La bisqueda
secuencial se programa, primeramente de forma descendente (el bucle termina cuando ha encontrado el elemento, o cuando
no hay méas elementos en el vector) suponiendo que el vector esta ordenado, y posteriormente de forma ascendente (el bucle
termina cuando se ha encontrado el elemento, o cuando se esta seguro de que no se encuentra en el vector), suponiendo que
el vector estéa ordenado.

Codificacion

int Bsecdes(int n,float almax], float x)

{

int enc = 0; int i =n - 1;
// Busqueda secuencial descendente
while ((lenc) && (i >=0))
{

enc = (ali]l == x);

if (! enc)
i- -

}
//Si se encuentra se devuelve la posicion en el vector*/
if (enc)

return (i);
else

return (-1);

int Bsecor(int n , float al[max], float x)

{

int enc = 0; int i = 0;

// Blusqueda secuencial ascendente.

while ((lenc) && (i <max))
{

enc = (alil >= x);

//enc se hace verdadero cuando lo encuentra o no esta

if (! enc)
i+
}
if (i < n)

Algoritmos de ordenacion y biisqueda @

enc = ali] == x
//Si se encuentra el elemento se devuelve la posiciodn
if (enc)
return (i);
else
return (-1);

10.8. Escriba funciones para realizar la bisqueda binaria de una clave en un vector ordenado ascendentemente.

Analisis del problema

La busqueda dicotémica se programa, tomando en cada particion el elemento central c. Decidiendo si el elemento buscado
se encuentra en esa posicion, o bien si hay que mover el indice izquierdo o derecho de la particion. El bucle que realiza la
busqueda termina cuando ha encontrado el elemento o bien cuando los indices de la particién se han cruzado.

Codificacién
int Bdicotomicacor(int n, float almax], float x)

{
int 1iz,de, c, enc;

iz = 0;

de = n - 1;

enc = 0;

while((iz <= de)&& (lenc))

{
c = (iz + de)/ 2;
if (alc] == x)

enc = 1;
else if (x < alcl)
// debe encontrarse a la izquierda de c. Retrocede de
de =c -1 ;
else

// debe encontrarse a la derecha de c. Avanza iz
iz = € 4 1
}
if(enc)
return (c);
else
return (-1);

10.9. Escribir una funcién de busqueda binaria aplicada a un array ordenado descendentemente.

Anélisis del problema

La busqueda dicotémica descendente de un vector ordenado descendentemente es analoga a la busqueda dicotémica en un
vector ordenado ascendentemente. Solamente cambian los movimientos de los indices iz y de; esto se consigue simplemente
cambiando la condicion de seleccion del if(x < alc]) porestaotra if (x > alc]) del ejercicio 10.8.

Codificacion

int Bdicotomicades(int n, float almax], float x)

10.10.

10.11.

int iz,de, c, enc;

iz = 05
de = n - 1;
enc = 0;

while((iz <= de) && (!enc))
{
c = (iz + de)/ 2;
if (alc] == x)
enc = 1;
else if (x > alcl)
// debe encontrarse a la izquierda de c. Retrocede de

de = ¢ -1
else
// debe encontrarse a la derecha de c. Avanza iz
iz =c¢c + 1;
}
if(enc)
return (c);

else
return (-1);

Escriba dos funciones que realicen la ordenacion interna de un vector de n elementos, por los método de ordenacidn de
insercion.

Analisis del problema

Se basa en realizar un total de n-1 iteraciones sobre un vector que almacene n datos. En la iteracion nimero i, se cumple
antes de empezar que el vector se encuentra ordenado desde las posiciones 0,1,, i-2.,y al final de la pasada el vec-
tor queda ordenado hasta la posicién nimero i -1. Para realizarlo, el método realiza una blsqueda secuencial o binaria (dos
métodos distintos) de la posicion k donde debe colocarse el elemento que ocupa en el vector la posicion i - 1. Posteriormente
intercambia los contenidos de las posiciones k, e i-1. En la codificacién que se presenta hay que tener en cuenta que si i
comienza por cero entonces el nimero de iteraciones es siempre uno mas. Se codifica el método de ordenacion por inser-
cion lineal y binaria.

Codificacion (Consultar la pagina web del libro)

Escriba una funcion que realice la ordenacion interna de un vector de n elementos, por los método de ordenacion Shell.
Analisis del problema

Se divide el vector original (n elementos) en n/2 listas de dos elementos con un intervalo entre los elementos de cada lista
de n/2 y se clasifica cada lista por separado. Se divide posteriormente el vector en n/4 listas de cuatro elementos con un
intervalo o salto de n/4 y, de nuevo, se clasifica cada lista por separado. Se repite el proceso dividiendo en grupos n/8, n/16,
....(esta secuencia puede cambiarse) hasta que, en un ultimo paso, se clasifica la lista de n elementos. La clasificacion de cada
una de las listas puede hacerse por cualquier método en este caso se hara por el método de insercion lineal.

Codificacion

void shell(int n, float almax])

{
int i, j, k, salto;

Algoritmos de ordenacion y biisqueda

Algoritmos de ordenacion y biisqueda @

float aux;
salto = n / 2;
while (salto > 0)
{
for (i = salto; i < n; it++)
{
j =1 - salto;
while(j >= 0)
{
k = j + salto;
if (alj] <= alkl)
J=-1L
else
{
aux = aljl;
aljl alkl;
alk] aux;
J =73 - salto;

}
salto = salto / 2;

10.12. Escriba una funcion recursiva que implemente el método de ordenacion rapida Quick _ Sort que ordene un array de n ele-
mentos.

Analisis del problema

El algoritmo de ordenacion rapida divide el array a en dos subarrays (sublistas). Se selecciona un elemento especifico del
array a[centro] llamado pivote y se divide el array original en dos subarrays, de tal manera que los elementos menores o
iguales que a[centro] se colocan en la parte izquierda y los mayores o iguales en la parte derecha. Posteriormente se orde-
nan la parte izquierda y la derecha mediante dos llamadas recursivas.

Coadificacion (Consultar la pagina web del libro)

10.13. Escribir una funcion que acepte como parametro un vector que puede contener elementos duplicados. La funcion debe sus-
tituir cada valor repetido por -1 y devolver al punto donde fue llamado el vector modificado y escribir el | nimero de entra-
das modificadas (puede suponer que el vector dato no contiene el valor —1 cuando se llama a la funcién).

Analisis del problema

Se supone que el vector es de dimension n, y que n<=max siendo max una constante previamente declarada. El contador nv
cuenta el nimero de veces que se cambia un valor por —1. El contador nv1, cuenta el nimero de elementos que en la ite-
racion i son cambiados por —1. El problema se ha resuelto de la siguiente forma: un bucle controlado por la variable 1,
recorre el vector. Para cada posicidn i cuyo contenido sea distinto de la marca —1 se comprueba, se cuenta y se cambia por
el valor predeterminado —1 mediante otro bucle controlado por la variable entera j, aquellos valores que cumplen la condi-
cién aliJ]==a[j], siempre que a[i1<>-1. Al final del bucle j, si se ha cambiado algin elemento por el valor predetermi-
nado, se cambia también el valor de la posicion i, y por supuesto se cuenta.

Codificacion

void duplicados(int n, float almax])
{
int i, j;
float aux, nv, nvl;
aux = -1;
nv = 0;
for (i = 0; i < n - 1;
{
nvl = 0;
fer(y = 03 jJ €< m = 1= 1g
if (alill= -1)
if (alj]l == alil)
{
alj] = aux;
nvl++;
}
if (nvl > 0)

{

i++)

j++)

alil = aux;
nvl++;
nv+ = nvl;

}

printf(“ numero de duplicados = %d \n”, nv);

}

PROBLEMAS PROPUESTOS

10.1. Un array de registros se quiere ordenar segin el campo
clave fecha de nacimiento. Dicho campo consta de tres
subcampos: dia, mes y afio de 2, 2 y 4 digitos respectiva-
mente. Adaptar el método de la burbuja a esta ordenacion.

10.2. Suponga que se tiene una secuencia de n nimeros que

deben ser clasificados:

1. Si se utiliza el método de Shell, ;cuantas compara-
ciones y cuantos intercambios se requieren para cla-
sificar la secuencia si: ya esta clasificado; esta en
orden inverso.

2. Realizar los mismos célculos si se utiliza el algorit-
mo quicksort.

10.3. Escriba la funcion de ordenacion correspondiente al
método Shell para poner en orden alfabético una lista de
n nombres.

10.4.

10.5.

10.6.

Algoritmos de ordenacion y biisqueda

Dado un vector x de n elementos reales, donde n es impar,
disefiar una funcidn que calcule y devuelva la mediana de
ese vector. La mediana es el valor tal que la mitad de los
nimeros son mayores que el valor y la otra mitad son
menores. Escribir un programa que compruebe la funcion.

Se trata de resolver el siguiente problema escolar. Dadas
las notas de los alumnos de un colegio en el primer curso
de bachillerato, en las diferentes asignaturas (5, por
comodidad), se trata de calcular la media de cada alum-
no, la media de cada asignatura, la media total de la clase
y ordenar los alumnos por orden decreciente de notas
medias individuales. Nota: utilizar como algoritmo de
ordenacion el método Shell.

Escribir un programa de consulta de teléfonos. Leer un
conjunto de datos de 1000 nombres y nimeros de telé-
fono de un archivo que contiene los nimeros en orden

CAPITULO 10 Algoritmos de ordenacion y bisqueda

10.7.

10.8.

10.9.

10.10.

aleatorio. Las consultas han de poder realizarse por
nombre y por nimero de teléfono.

Realizar un programa que compare el tiempo de célculo
de las busquedas secuencial y binaria.

Se dispone de dos vectores, Maestro y Esclavo, del
mismo tipo y nimero de elementos. Se deben imprimir
en dos columnas adyacentes. Se ordena el vector
Maestro, pero siempre que un elemento de Maestro se
mueva, el elemento correspondiente de Esclavo debe
moverse también; es decir, cualquier accion hecha con
Maestro[i] debe hacerse a Esclavo[i]. Después de
reali-zar la ordenacion se imprimen de nuevo los vec-
tores. Escribir un programa que realice esta tarea.
Nota: utilizar como algoritmo de ordenacién el méto-
do quicksort.

Cada linea de un archivo de datos contiene informacion
sobre una compafiia de informatica. La linea contiene el
nombre del empleado, las ventas efectuadas por el
mismo y el nimero de afios de antigiiedad del empleado
en la compafiia. Escribir un programa que lea la infor-
macion del archivo de datos y a continuacion se visuali-
za. La informacion debe ser ordenada por ventas de
mayor a menor Yy visualizada de nuevo.

Se desea realizar un programa que realice las siguientes
tareas:

a) Generar, aleatoriamente, una lista de 999 nimeros
reales en el rango de 0 a 2000.
b) Ordenar en modo creciente por el método de la burbuja.

c) Ordenar en modo creciente por el método Shell.
e) Buscar si existe el nimero x (leido del teclado) en la
lista. Aplicar la busqueda binaria.

10.11. Ampliar el programa anterior de modo que pueda obte-

ner y visualizar en el programa principal los siguientes
tiempos:

t1. Tiempo empleado en ordenar la lista por cada uno de
los métodos.

t2. Tiempo que se emplearia en ordenar la lista ya orde-
nada.

t3. Tiempo empleado en ordenar la lista ordenada en
orden inverso.

10.12. Construir un método que permita ordenar por fechas y

de mayor a menor un vector de n elementos que con-
tiene datos de contratos (n <= 50). Cada elemento del
vector debe ser un objeto con los campos dia, mes, afio
y nimero de contrato. Pueden existir diversos contratos
con la misma fecha, pero no nimeros de contrato repe-
tidos.

10.13. Se leen dos listas de nimeros enteros, Ay B de 100 y 60

elementos, respectivamente. Se desea resolver mediante
funciones las siguientes tareas:

a) Ordenar, aplicando el método de insercion, cada una
de las listas Ay B.

b) Crear una lista C por intercalacién o mezcla de las lis-
tasAy B.

c) Visualizar la lista C ordenada.

11.1

Estructuras y uniones

Este capitulo examina estructuras, uniones, enumeraciones Yy tipos definidos por el usuario que permiten a un programador crear
nuevos tipos de datos. La capacidad para crear nuevos tipos es una caracteristica importante y potente de C y libera a un progra-
mador de restringirse al uso de los tipos ofrecidos por el lenguaje. Una estructura contiene maltiples variables, que pueden ser de
tipos diferentes. La estructura es importante para la creacion de programas potentes, tales como bases de datos u otras aplicaciones
que requieran grandes cantidades de datos. Por otra parte, se analizara el concepto de unién, otro tipo de dato no tan importante
como las estructuras o los array y el concepto de estructura (struct), de gran importancia en el tratamiento de la informacion.

Un tipo de dato enumerado es una coleccion de miembros con nombre que tienen valores enteros equivalentes. Un type-
def es de hecho no un nuevo tipo de dato sino simplemente un sinénimo de un tipo existente.

Estructuras

Una estructura es una coleccién de uno o mas tipos de elementos denominados miembros, cada uno de los cuales puede ser de
un tipo de dato diferente. Una estructura puede contener cualquier nimero de miembros, cada uno de los cuales tiene un nom-
bre Unico, denominado nombre del miembro.

Una estructura es un tipo de dato definido por el usuario, que se debe declarar antes de que se pueda utilizar. EI formato de
la declaracion es:

struct <nombre de la estructura>

{
{tipo de dato miembrol> <nombre miembrol>
{tipo de dato miembroZ> <nombre miembro2z>

{tipo de dato miembron> <nombre miembron>
}:

Al igual que a los tipos de datos enumerados, a una estructura se accede utilizando una variable o variables que se deben
definir después de la declaracion de la estructura. Del mismo modo que sucede en otras situaciones, en C existen dos concep-
tos similares a considerar, declaracion y definicion. Una declaracion especifica simplemente el nombre y el formato de la
estructura de datos, pero no reserva almacenamiento en memoria; la declaracion especifica un nuevo tipo de dato: struct
<nombre_estructura>. Por consiguiente, cada definicion de variable para una estructura dada crea un area en memoria en
donde los datos se almacenan de acuerdo al formato estructurado declarado.

@ CAPITULO 11 Estructuras y uniones

Las variables de estructuras se pueden definir de dos formas: (1) listdndolas inmediatamente después de la llave de cierre
de la declaracion de la estructura, o (2) listando el tipo de la estructura creado seguida por las variables correspondientes en
cualquier lugar del programa antes de utilizarlas. Se puede asignar una estructura a otra.

Se puede inicializar una estructura de dos formas. Se puede inicializar una estructura dentro de la seccién de cédigo de su
programa, o bien se puede inicializar la estructura como parte de la definicion. Cuando se inicializa una estructura como parte
de la definicion, se especifican los valores iniciales, entre llaves, después de la definicion de variables estructura. EI formato
general en este caso:

struct <tipo> <nombre variable estructura> =
{ valor miembro;,
valor miembro,,

valor miembro,
}:

El operador sizeof se puede aplicar para determinar el tamafio que ocupa en memoria una estructura. Cuando se accede a
una estructura, o bien se almacena informacion en la estructura o se recupera la informacion de la estructura. Se puede acce-
der a los miembros de una estructura de una de estas dos formas: (1) utilizando el operador punto (.), o bien (2) utilizando el
operador flecha ->.

La asignacion de datos a los miembros de una variable estructura se hace mediante el operador punto. La sintaxis en C es:

<nombre variable estructura> . <nombre miembro> = datos;

El operador punto proporciona el camino directo al miembro correspondiente. Los datos que se almacenan en un miembro
dado deben ser del mismo tipo que el tipo declarado para ese miembro.

El operador puntero, ->, sirve para acceder a los datos de la estructura a partir de un puntero. Para utilizar este operador se
debe definir primero una variable puntero para apuntar a la estructura. A continuacion, se utiliza simplemente el operador pun-
tero para apuntar a un miembro dado. La asignacion de datos a estructuras utilizando el operador puntero tiene el formato:

<puntero estructura> -> <nombre miembro> = datos;

Previamente habria que crear espacio de almacenamiento en memoria; por ejemplo, con la funcién malloc().

Si se desea introducir la informacién en la estructura basta con acceder a los miembros de la estructura con el operador punto o
el operador flecha(puntero). Se puede introducir la informacion desde el teclado o desde un archivo, o asignar valores calculados.

Se recupera informacion de una estructura utilizando el operador de asignacion o una sentencia de salida (printf(),
puts() ...). lgual que antes, se puede emplear el operador punto o el operador flecha(puntero). El formato general toma uno
de estos formatos:

1. <nombre variable> = <nombre variable estructura>.<nombre miembro>;
0 bien
<nombre variable> = <puntero de estructura> -> <nombre miembro>;
2. parasalida:

printf(" ",<nombre variable estructura>.<nombre miembro>);
0 bien
printf(" ",<{puntero de estructura>-> <nombre miembro>);

Una estructura puede contener otras estructuras llamadas estructuras anidadas. Las estructuras anidadas ahorran tiempo en
la escritura de programas que utilizan estructuras similares. Se han de definir los miembros comunes sélo una vez en su pro-
pia estructura y a continuacion utilizar esa estructura como un miembro de otra estructura. El acceso a miembros dato de estruc-
turas anidadas requiere el uso de multiples operadores punto. Las estructuras se pueden anidar a cualquier grado. También es
posible inicializar estructuras anidadas en la definicion.

Se puede crear un array de estructuras tal como se crea un array de otros tipos. Muchos programadores de C utilizan arrays
de estructuras como un método para almacenar datos en un archivo de disco. Se pueden introducir y calcular sus datos de disco
en arrays de estructuras y a continuacion almacenar esas estructuras en memoria. Los arrays de estructuras proporcionan tam-
bién un medio de guardar datos que se leen del disco. Los miembros de las estructuras pueden ser asimismo arrays.

CAPITULO 11 Estructuras y uniones @

C permite pasar estructuras a funciones, bien por valor o bien por referencia, utilizando el operador &. Si la estructura es
grande, el tiempo necesario para copiar un parametro struct a la pila puede ser prohibitivo. En tales casos, se debe conside-
rar el método de pasar la direccién de la estructura.

EJEMPLO 11.1 Declaracion de diferentes estructuras

struct complejo
{
float x,y;
Vs

struct racional
{
int numerador;
int denominador;
1

struct fecha
{
unsigned int mes, dia, anyo;
b
struct tiempo
{
unsigned int horas, minutos;
}s

struct direccion
{
char callel[40];
int num;
int codpost;
char ciudad [20];

struct entrada

char nombre[507];

struct direccion dir;

char telefonos [5]1[15];
1

11.2 Uniones

Las uniones son similares a las estructuras en cuanto que agrupan a una serie de variables, pero la forma de almacenamiento es dife-
rente y por consiguiente tiene efectos diferentes. Una estructura (struct) permite almacenar variables relacionadas juntas y alma-
cenadas en posiciones contiguas en memoria. Las uniones, declaradas con la palabra reservada union, almacenan también
miembros maltiples en un paquete; sin embargo, en lugar de situar sus miembros unos detras de otros, en una unién, todos los miem-
bros se solapan entre si en la misma posicion. EIl tamafio ocupado por una unién se determina asi: se analiza el tamafio de cada varia-
ble de la unién; el mayor tamafio de variable seré el tamafio de la unién. La sintaxis de una union es la siguiente:

union nombre {
tipol miembrol;
tipo2 miembro?l;

@ CAPITULO 11 Estructuras y uniones

La cantidad de memoria reservada para una unidn es igual a la anchura de la variable mas grande. En el tipo union, cada
uno de los miembros dato comparten memoria con los otros miembros de la unién.

Una razon para utilizar una unién es ahorrar memoria. En muchos programas se deben tener varias variables, pero no nece-
sitan utilizarse todas al mismo tiempo. Para referirse a los miembros de una union, se utiliza el operador punto (.), o bien el
operador -> si se hace desde un puntero a union.

EJEMPLO 11.2 Declaracion de una union

union arg

{
int v;
char c[2];
bong

printf (“Introduzca un nudmero entero:”);

scanf (“%d”, &n.v);
printf (“La mitad mas significativa del numero es %i \n”, c[1l]);
printf (*La mitad menos significativa del numero es %i \n”, c[0]);
/* En algunos sistemas puede ser al revés */

11.3 Enumeraciones

Una enumeracion es un tipo definido por el usuario con constantes de nombre de tipo entero. En la declaracién de un tipo enum
se escribe una lista de identificadores que internamente se asocian con las constantes enteras 0, 1, 2

Formato
1. enum
{
enumeradorl, enumerador?, ...enumeradorn.

b
2. enum nombre
{
enumeradorl, enumeradorZ?, ...enumeradorn.
b

En la declaracion del tipo enum pueden asociarse a los identificadores valores constantes en vez de la asociacion que por
defecto se hace (0, 1, 2 ...). Para ello se utiliza este formato:

3. enum nombre
{
enumeradorl = expresién_constantel,

enumerador? = expresién_constanteZ,

enumeradorn = exprsesion_constanten
/s

El tamafio en bytes de una estructura, de una unién o de un tipo enumerado se puede determinar con el operador sizeof.
EJEMPLO 11.3 Diferentes tipos de enumeraciones
enum tipo_operacion {deposito, retirada, aldia, estado};

enum tipo_operacion op;

CAPITULO 11 Estructuras y uniones @

switch (op)
{

case deposito: realizar_deposito (args);
break;

case aldia: poner_al_dia (args);
break;

case retirada: retirar_fondos (args);
break;

case estado: imprimir_estado (args);
break;

default: imprimir_error (args);

11.4 Sinonimo de un tipo de datos: Typedef

La sentencia typedef permite a un programador crear un sinénimo de un tipo de dato definido por el usuario o de un tipo ya
existente.

EJEMPLO 11.4 Uso de typedef
Uso de typedef para declarar un nuevo nombre, Longitud, de tipo de dato double.
typedef double Longitud;

A partir de la sentencia anterior, Longitud se puede utilizar como un tipo de dato, en este ejemplo sinénimo de dou-
ble. Lafuncién Distancia(), escrita a continuacion, es de tipo Longitud:

Longitud Distancia (const Punto& p, const Punto& p2)
{

Longitud longitud = sqgrt(rcua);
return longitud;
Otros ejemplos:

typedef char* String;
typedef const char* string;

A continuacion se pueden hacer las siguientes declaraciones con la palabra String 0 string:

String nombre = "Jesus Lopez Arrollo";
string concatena(string apelll, string apell2);

Sintaxis:

typdef tipo_dato_definido nuevo_nombre;

Puede declararse un tipo estructura o un tipo union y a continuacion asociar el tipo estructura a un nombre con typedef.
typedef struct complejo complex;

/* definicidén de un array de complejos */

complex v[12];

typedef struct racional

{

}

int numerador;
int denominador;
Racional;

CAPITULO 11

Ahora se puede declarar la estructura numero utilizando el tipo complex y el tipo Racional:

typedef struct numero

{

Vs

complex a;
Racional r;

EJEMPLO 11.5 Uso de typedef

typedef struct fecha Fecha;
typedef struct tiempo Tiempo;
typedef enum tipo_operacion TipOperacion;

struct registro_operacion

{

typedef struct registro_operacion RegistrOperacion;

long numero_cuenta;
float cantidad;
TipOperacion operacion;
Fecha f;

Tiempo t;

RegistrOperacion entrada(void);

int main()

{

{

RegistrOperacion w;
w = entrada();

printf(“\n Operaci¢n realizada\n\n”);
printf(“\t%Z1d\n”,w.numero_cuenta);

printf(“\t%d-%d-%d\n”,w.f.dia,w.f.mes,w.f.anyo);

printf(“\t%d:%d\n”,w.t.horas,w.t.minutos);

return 0;

RegistrOperacion entrada(void)

int x, y, z;
RegistrOperacion una;

printf(“\nNimero de cuenta: “);
scanf(“%1d”,&una.numero_cuenta);
puts(“\tTipo de operacién”);
puts(“Deposito(0)”);

Estructuras y uniones

CAPITULO 11 Estructuras y uniones Q

puts(“Retirada de fondos(1)”);
puts(“Puesta al dia(2)”);
puts(“Estado de la cuenta(3)”);
scanf(“%d”,&una.operacion);

printf(“\nFecha (dia mes afio): “);
scanf(“%d %d %d”,&una.f.dia,&una.f.mes,&una.f.anyo);

printf(“Hora de la operacion(hora minuto): *);
scanf(“%d %d”,&una.t.horas,&una.t.minutos);

return una;

11.5 Campos de bit

El lenguaje C permite realizar operaciones con los bits de una palabra. Ya se han estudiado los operadores de manejo de bits:
>>, <<, Con los campos de bit, C permite acceder a un nimero de bits de una palabra entera. Un campo de bits es un
conjunto de bits adyacentes dentro de una palabra entera.

La sintaxis para declarar campos de bits se basa en la declaracién de estructuras. El formato general:

struct identificador_campo {
tipo nombrel: longitudl;
tipo nombreZ: longitud?;
tipo nombre3: longitud3;

tipo nombren: longitudn;
}:
tipo ha de ser entero, int; generalmente unsigned int.
Tongitud es el nimero de bits consecutivos que se toman.

Al declarar campos de bits, la suma de los bits declarados puede exceder el tamafio de un entero; en ese caso se emplea la
siguiente posicion de almacenamiento entero. No esta permitido que un campo de bits solape los limites entre dos int.
En la declaracion de una estructura puede haber miembros que sean variables y otros campos de bits. Los campos de bits se
utilizan para rutinas de encriptacion de datos y fundamentalmente para ciertos interfaces de dispositivos externos. Los campos
de bits tienen ciertas restricciones. Asi, no se puede tomar la direccién de una variable campo de bits; no puede haber arrays
de campos de bits; no se puede solapar fronteras de int. Depende del procesador el que los campos de bits se alineen de izquier-
da a derecha o de derecha a izquierda (conviene hacer una comprobacién para cada procesador, utilizando para ello un union
con variable entera y campos de bits).

EJEMPLO 11.6 Estructuras con campos de bit

struct entrada
{
char nombre[50];
struct direccion dir;
char telefonos [5]1[15];
int edad;
int sexo:1; /* H: 1 - M: Q0 */
int departamento:3; /* codigo <8 */
int contrato:3;
1

@ Estructuras y uniones

PROBLEMAS RESUELTOS

11.1. Encuentre los errores en la siguiente declaracion de estructura y posterior definicion de variable.

struct hormiga
{
int patas;
char especie[41];
float tiempo;
E
hormiga colonial[100];
Es necesario conservar la palabra struct en la declaraciones de variables, a no ser que se afiada una sentencia de tipo type-
def como la siguiente:
typedef struct hormiga hormiga;

11.2. Declare una tipo de datos para representar las estaciones del afio.
enum estaciones {PRIMAVERA =1, VERANO=2, OTONO=0=3, INVIERNO=4};

11.3. Escriba un funcién que devuelva la estacion del afio que se ha leido del teclado. La funcion debe de ser del tipo declarado
en el ejercicio 2.

Anélisis del problema

El tipo enumerado asocia enteros a nombres simbolicos, pero estos nombres simbdlicos no pueden ser leidos desde una fun-
cioén estandar como scanf. Por consiguiente el programa tiene que leer los valores enteros y traducirlos a los nombres sim-
bolicos que les corresponden segun la definicion del tipo enumerado.

Codificacion

enum estaciones leerEstacion ()
{
int e;
printf("Introduzca el nimero de Ta estacion del afio:\n");
printf(" 1 - Primavera\n");
printf(" 2 - Verano\n");
printf(" 3 - Otofio\n");
printf(" 4 - Invierno\n");
scanf("%d", &e);
switch (e)

{

case 1: return (PRIMAVERA); break;

case 2: return (VERANO); break;

case 3: return (O0TONO); break;

case 4: return (INVIERNO); break;

default: printf ("Entrada errénea \n"); return;

11.4. Declara un tipo de dato enumerado para representar los meses del afio; el mes enero debe estar asociado al dato entero 1,
y asi sucesivamente los deméas meses.

Estructuras y uniones @

enum meses {ENERO=1, FEBRERO=2, MARZ0=3, ABRIL=4, MAY0=5,

11.5.

11.6.

11.7.

JUNIO=6, JULIO=7, AGOSTO=8, SEPTIEMBRE=9,
OCTUBRE=10, NOVIEMBRE=11, DICIEMBRE=12};

Encuentra los errores del siguiente codigo

#include <stdio.h>
void escribe(struct fecha f);
int main()
{
struct fecha
{
int dia;
int mes;
int anyo;
char mes[];
) ff;
ff = {1,1,2000,"ENERO"};
escribe(ff);
return 1;
}

Analisis del problema

La inicializacion de una estructura puede hacerse solamente cuando es estatica o global. No se puede definir un array de
caracteres sin especificar el tamafio. La mayor parte de los compiladores tampoco permiten inicializar las estructuras de la
manera que aparece en el ejemplo fuera de la inicializacion de variables globales. Para estar seguros habria que inicializar
la estructura fecha miembro a miembro.

¢Con typedef se declaran nuevos tipos de datos, o bien permite cambiar el nombre de tipos de datos ya declarados?
Solucion

La sentencia no afiade ningun tipo de datos nuevo a los ya definidos en el lenguaje C. Simplemente permite renombrar un
tipo ya existente, incluso aunque sea un nuevo nombre para un tipo de datos basico del lenguaje como int o char.

Declara un tipo de dato estructura para representar un alumno; los campos que tiene que tener son: nombre, curso, edad,
direccion y notas de las 10 asignaturas. Declara otro tipo estructura para representar un profesor; los campos que debe
tener son: nombre, asignaturas que imparte y direccion. Por Gltimo declara una estructura que pueda representar un pro-
fesor 0 a un alumno.

Solucion

struct alumno

{
char nombre [40];
int curso;
int edad;
char direccion[40];
int notas[10];

b

struct profesor {
char nombre [40];
char direccion[407;
char asignaturas[10][20];

@ Estructuras y uniones

b

union univ {
struct alumno al;
struct profesor prof;

11.8. Definir tres variables correspondientes a los tres tipos de datos declarados en el ejercicio anterior y asignarles un nombre.
Solucién

struct alumno a;
struct profesor p;
union univ un;

11.9. Escribe una funcion que devuelva un profesor o un alumno cuyos datos se introducen por teclado.
Analisis del problema

La estructura es devuelta por valor y la funcién ha de leer por separado cada uno de sus campos, accediendo a ellos por
medio del operador punto. Para algunos compiladores no esta permitido devolver una estructura por valor. En estos casos
habria que devolver un puntero que contenga la direccion de la estructura creada o, aun mejor, pasar la estructura creada a
la propia funcion por referencia y que sea ésta la que modifique los miembros de la estructura, como se hace en el ejercicio
siguiente.

Codificacion

struct alumno TeerAlumno()
{
struct alumno aa;
int i;
printf(" Introduzca el nombre \n");
scanf("%s", aa.nombre);
printf(" Introduzca Ta edad \n");
scanf("%d", &aa.edad);
printf(" Introduzca su curso \n");
scanf("%d", &aa.curso);
printf(" Introduzca Ta direccidén\n");
scanf("%s", aa.direccion);
for (i=0; i<10; i++)
{
printf(" Introduzca Ta nota de la asignatura %d \n", i);
scanf("%d", &aa.notas[il);
}
return aa;

11.10. Escribe la misma funcion que en el ejercicio anterior, 11.9, pero pasando la estructura como argumento a la funcion.
Anélisis del problema
Al pasar la estructura por referencia, por medio de un puntero a la misma, es necesario utilizar el operador flecha para acce-

der a cada uno de sus campos. La ventaja es que la estructura en este ejemplo no es una variable local, cuyo espacio de
memoria puede dar problemas al terminar de ejecutarse la funcion.

Estructuras y uniones @

Codificacion

leerAlumno(struct alumno *aa)
{
int i;
printf(" Introduzca el nombre \n");
scanf("%s", aa->nombre);
printf(" Introduzca la edad \n");
scanf("%d", &aa->edad);
printf(" Introduzca su curso \n");
scanf("%d", &aa->curso);
printf(" Introduzca Ta direccidén\n");
scanf("%s", aa->direccion);
for (i=0; i<10; i++)
{
printf(" Introduzca la nota de la asignatura %d \n", 1i);
scanf("%d", &aa->notas[il);

11.11. Escribe una funcién que tenga como entrada una estructura, profesor o alumno, y escriba sus campos por pantalla.
Anélisis del problema
Es la operacion inversa a la entrada. Se trata de acceder a cada uno de los campos de la estructura que se pasa como argu-
mento a la funcién, puesto que una funcién estandar como printf() no es capaz de mostrar correctamente los campos de
una estructura definida por el usuario en un programa; hay que recorrer cada uno de los campos miembro.
Codificacion

mostrarAlumno(struct alumno *aa)

{

int i;

printf(" Nombre: %s\n", aa->nombre);
printf(" Edad: %d \n", aa->edad);

printf(" Curso: %d\n", aa->curso);
printf(" Direccién: %s\n", aa->direccion);

for (i=0; i<10; i++)
printf(" Nota de la asignatura %d: %d \n", i, aa->notas[i]);

11.12. Escribir un programa de facturacion de clientes. Los clientes tienen un nombre, el nimero de unidades solicitadas, el
precio de cada unidad y el estado en que se encuentra: moroso, atrasado, pagado. EIl programa debe generar los diver-
sos clientes.

Anélisis del problema

Se ha definido una estructura siguiendo la especificacion del problema y con la misma se ha declarado un array que va a
guardar la informacion de cada cliente. Es decir, el array de estructuras funciona como una base de datos relacional, en la
que cada campo de la estructura corresponde a una columna de la base de datos y cada estructura corresponde a una linea o
registro de dicha base.

@ Estructuras y uniones

Codificacion

struct cliente
{
char nombre[100];
int numUnidades;
float precio;
char estado;
g
main()
{
struct cliente listado [100];
for (i=0; i<100; i++)
{
printf("Introduzca nombre del cliente: ");
scanf("%s",Tistadoli].nombre);
printf("\n Introduzca el nlmero de unidades solicitadas: ");
scanf("%d",&listadoli].numUnidades);
printf("\n Introduzca el precio de cada unidad:");
scanf("%f",&1istado[i].precio);
printf("\n Introduzca el estado del cliente (m\a\p)");
scanf("%c",&1istado[i].estado);

11.13. Modifique el programa de facturacion de clientes de tal modo que se puedan obtener los siguientes listados.

* Clientes en estado moroso.
« Clientes en estado pagado con factura mayor de una determinada cantidad.

Analisis del problema

La informacion requerida esta en el array de estructuras que se considera como una tabla de la base de datos. Para realizar
el procesamiento del array hay que recorrerlo, por eso la sentencia de C que mas se adecua a esta labor es la sentencia for
con una variable entera de control que recorre todos los posibles valores del indice de la tabla y para cada registro lee y pro-
cesa los campos que contienen la informacion relevante.

Para cumplir los requisitos del programa se supone que el estado del cliente esta representado en la base de datos por un
caracter que lo simboliza. Asi, por ejemplo, si el caracter que aparece es 'm', esto va a significar que el cliente es moroso y
si contienen una 'p' son clientes que han pagado ya sus facturas. Se supone también que lo que debe pagar cada cliente en
la factura se calcula multiplicando el precio de lo que adquirieron por el nimero de unidades adquiridas.

Codificacion
Se muestran Unicamente los dos bucles que presentan el modelo en que ha de procesar el array de estructuras.

for (i=0; i<100; i++)
| if (listado[i].estado == 'm")

printf ("%s\n",listadol[i].nombre);
1}70F (i=0; <1005 i++)
| if (listado[i].estado == 'p")

11.14.

11.15.

Estructuras y uniones @

if (lTistadoli].precio * Tistadol[i].numUnidades > maximo)

"o

printf ("%s\n",listadol[i].nombre);

Escribir un programa que permita hacer las operaciones de suma, resta y multiplicacién de nimeros complejos. El tipo com-
plejo ha de definirse como una estructura.

Analisis del problema

Un nimero complejo esta formado por dos nimeros reales, uno de los cuales se denomina parte real y el otro parte imagi-
naria. La forma normal de representar en matematicas un nimero complejo es la siguiente: real + i * imaginario. Donde
el simbolo i se denomina «unidad imaginaria» y simboliza la raiz cuadrada de —1. Debido a su naturaleza compuesta, un
nimero complejo se representa de forma natural por una estructura con dos campos de tipo real que contendran la parte real
y la imaginaria del nimero concreto. Las funciones que siguen, traducen las operaciones matematicas tal y como se definen
en la aritmética de nimeros complejos.

Codificacion

struct complejo
{
float r;
float i;
[
struct complejo suma (struct complejo a, struct complejo b)
{
struct complejo c;
c.r =a.r + b.r;
c.i =a.i + b.i;
return c;
}
struct complejo resta (struct complejo a, struct complejo b)
{
struct complejo c;
c.r=a.r - b.r;
c.i =a.i - b.i;
return c;
}
struct complejo multiplicacion (struct complejo a, struct complejo b)
{
struct complejo c;
c.r = a.r*b.r - a.i*b.i;
c.i = a.r*b.i + a.i*b.r;
return c;

Un ntmero racional se caracteriza por el numerador y denominador. Escriba un programa para operar con nimeros racio-
nales. Las operaciones a definir son la suma, resta, multiplicacion y division; ademés de una funcion para simplificar cada
numero racional.

Anélisis del problema

Un namero racional posee entonces dos componentes, por lo cual serd representado por una estructura con dos campos
miembro que corresponderén respectivamente al numerador y al denominador del nimero. Las operaciones aritméticas se

@ Estructuras y uniones

11.16.

traducen a la manipulacion de sendas estructuras para cada uno de los operandos. Como el resultado debe ser otra estructu-
ra se afiade un tercer pardmetro a las funciones para recibir el resultado. Como el parametro de salida ha de ser modificado,
la Unica posibilidad es que sea pasado por referencia por medio de un puntero teniendo en cuenta que ha de ser manipulado
de forma adecuada con el operador flecha para acceder a sus miembros.

Coadificacion (Consultar la pagina web del libro)
Se quiere informatizar los resultados obtenidos por los equipos de baloncesto y de fltbol de la localidad alcarrefia Lupiana.

La informacién de cada equipo:
« Nombre del equipo.

< NUmero de victorias.

» NUmero de derrotas.

Para los equipos de baloncesto afadir la informacion:
« Numero de pérdidas de balon.

« Numero de rebotes cogidos.

« Nombre del mejor anotador de triples.

» NUmero de triples del mejor triplista.

Para los equipos de fltbol afadir la informacion:
» NUmero de empates.

» NUmero de goles a favor.

< Numero de goles en contra.

« Nombre del goleador del equipo.

» NUmero de goles del goleador.

Escribir un programa para introducir la informacion para todos los equipos integrantes en ambas ligas.
Anélisis del problema

Cada equipo ha de corresponder a solamente una estructura, de ahi que se defina un array de estructuras para contener la
informacion de cada uno y de todos los equipos. A la hora de leer los datos de cada equipo, asi como en la salida de esos
datos, hay que tener en cuenta realizar ordenadamente dos movimientos. Por un lado hay que recorrer iterativamente por
medio de un bucle las posiciones del array de equipos. Al mismo tiempo y por cada posicion del array habra que acceder a
cada uno de los campos de la estructura correspondiente, teniendo en cuenta el tipo de datos que contiene para que la ope-
racion de entrada o salida se realice correctamente.

Codificacion

struct baloncesto

{
char nombre[207;
int victorias;
int derrotas;
int perdidas;
int rebotes;
char mejorTriples [40];
int triples;

}s

struct futbol

{
char nombre[20];

CAPITULO 11 Estructuras y uniones

int victorias;
int derrotas;
int empates;
int golesAFavor;
int golesContra;
int golesGoleador;
char goleador[40];
b3
main()
{
struct baloncesto equiposB [10];
struct futbol equiposF [107;

int 1;
for (i=0, i<10; i++) leerEquipoBaloncesto (&equiposB[i]);
for (i=0, i<10; i++) leerEquipoFutbol (&equiposF[il);

void TeerEquipoBaloncesto (struct baloncesto *bal)

{
printf ("\n\tIntroducir nombre del equipo :");
scanf("%s",bal->nombre);
printf ("\n\tIntroducir el nimero de victorias conseguidas :");
scanf ("%d", &bal->victorias);
printf ("\n\tIntroducir el nimero de derrotas :");
scanf ("%d", &bal->derrotas);
printf ("\n\tIntroducir el numero de pérdidas de balén :");
scanf ("%d", &bal->perdidas);
printf ("\n\tIntroducir el numero de rebotes cogidos :");
scanf ("%d", &bal->rebotes);
printf ("\n\tIntroducir nombre del mejor triplista :");
scanf("%s", bal->mejorTriples);
printf ("\n\tIntroducir el numero de rebotes cogidos :");
scanf ("%d", &bal->triples);

}

void TeerEquipoFutbol (struct futbol *fut)

{
printf ("\n\tIntroducir nombre del equipo :");
scanf("%s", fut->nombre);
printf ("\n\tIntroducir el nimero de victorias conseguidas :");
scanf ("%d", &fut->victorias);
printf ("\n\tIntroducir el nimero de derrotas :");
scanf ("%d", &fut->derrotas);
printf ("\n\tIntroducir el nimero de empates :");
scanf ("%d", &fut->empates);
printf ("\n\tIntroducir el nimero de goles a favor :");
scanf ("%d", &fut->golesAFavor);
printf ("\n\tIntroducir el nudmero de goles en contra :");
scanf ("%d", &fut->golesContra);
printf ("\n\tIntroducir nombre del mejor goleador :");
scanf("%s", fut->goleador);
printf ("\n\tIntroducir el nudmero de goles del goleador :");
scanf ("%d", &fut->golesGoleador);

188 Estructuras y uniones

11.17. Modificar el programa 16 para obtener los siguientes informes o datos.

« Listado de los mejores triplistas de cada equipo.

» Maximo goleador de la liga de futbol.

« Suponiendo que el partido ganado son tres puntos y el empate 1 punto: equipo ganador de la liga de futbol.
« Equipo ganador de la liga de baloncesto.

Anélisis del problema

El procesamiento de la informacion de un array de estructuras se basa en determinar primero en qué campos de cada regis-
tro esta la informacion que se precisa. Una vez determinado esto se trata de recorrer todo el array acumulando en una varia-
ble, en este caso, la indicacién del registro que contiene el valor buscado. La blsqueda asi realizada se denomina lineal,
porque recorre la totalidad del array para determinar el elemento que cumple las condiciones predeterminadas.

Se muestra el cddigo de las funciones puesto que las llamadas a las mismas, que habria que realizar dentro del programa
solamente necesitan un parametro y es el nombre del array que contiene los registros de todos los equipos tanto de ftbol,
como de baloncesto:

mejoresTriplistas (equiposB);
maximoGoleador (equiposF);
equipoGanadorFutbol (equiposF);
equipoGanadorBaloncesto (equiposB);

Codificacion (Consultar la pagina web del libro)

11.18. Un punto en el plano se puede representar mediante una estructura con dos campos. Escribir un programa que realice las
siguientes operaciones con puntos en el plano.
« Dados dos puntos calcular la distancia entre ellos.
» Dados dos puntos determinar el punto medio de la linea que los une.

Analisis del problema

Las coordenadas de un punto en el plano de dos dimensiones son dos ntimeros reales que se representan en forma de estruc-
tura. Es decir, por cada punto se define una estructura. Cuando una funcion retorne como salida una estructura, un método
adecuado de hacerlo suele ser proporcionar una estructura para la salida pasandola por referencia al realizar la llamada de la
funcion. Esto es lo que se hace para la funcion que calcula el punto medio entre dos puntos dados.

Es importante recordar que la funcién scanf (), como cualquier funcion estandar de entrada y salida de C, no reconoce
las estructuras definidas por los programas. Por consiguiente la salida y la entrada de los valores de una estructura ha de rea-
lizarse siempre miembro a miembro, teniendo en cuenta exactamente cual es el tipo de cada uno de ellos y si hay que refe-
renciarlos con el operador punto, porque se accede desde una variable creada desde la definicidn, o si es necesario usar el
operador flecha, porque s6lo se posea un puntero a la estructura.

Codificacion

struct punto
{
float x;
float y;
b g
main()
{
struct punto p, q, r;
printf ("Introduzca Tas coordenadas de dos puntos. \n");
printf ("Primer punto. Coordenada x:");

11.19.

Estructuras y uniones @

scanf ("%Zf", &p.x);
printf ("\n Primer punto. Coordenada y:");
scanf ("%f", &p.y);
printf ("\n Segundo punto. Coordenada x:");
scanf ("%f", &q.x);
printf ("\n Segundo punto. Coordenada y:");
scanf ("%f", &q.y);
printf ("\n La distancia entre ambos puntos es de %f.\n, distancia (p, q));
medio (p,q, &r);
printf (E1 punto medio de la recta que une ambos puntos es: (%f, %Zf). \n", r.x, r.y);
}
float distancia (struct punto pl, struct punto p2)
{
return (sqrt(sqr(pl.x-p2.x) + sqr(pl.y-p2.y)));
}
medio (struct punto pl, struct punto p2, struct punto * p3)
{
p3->x = (pl.x + p2.x) /2
p3->y (pl.y + p2.y) /2

Este programa busca en un archivo una secuencia de bytes. Si los encuentra, los sustituye por ceros. El programa esta pen-
sado para ser llamado desde otros programas, por lo que debe devolver su resultado como cddigo de error. Asimismo no
debe modificar la longitud total del fichero.

La invocacion del programa debe tomar como argumentos el nombre del fichero y una lista de patrones separados por
comas, cada uno de los cuales debe ser de la forma siguiente: Puede contener caracteres sueltos que se interpretan literal-
mente, puede tener nimeros hexadecimales de hasta dos digitos terminados con el sufijo h y puede constar de un nimero
de hasta tres digitos en decimal seguido por el sufijo d.

Por ejemplo:

cambiabytes datos.dat 12d 1bh,[,3,x
Convierte a cero los cédigos 12 1B y la secuencia de escape «[3x» en el fichero datos.dat.
Devuelve los siguientes codigos:

0 — Exito.

1 — No existe el fichero.

2 - Faltan argumentos.

3 — No se puede abrir el fichero.

4 — No hay memoria suficiente.

5 — Argumento no valido.

6 - Error al leer el fichero.

7 - Error al escribir el fichero.

Analisis del problema
Este programa rellena un array de estructuras a partir de los argumentos de la linea de érdenes que le indican qué patrones
debe buscar en el fichero para ser reemplazados posteriormente. Cada estructura posee un campo para guardar el patrén, de

tipo cadena, y su longitud para facilitar su comparacion.

Coadificacidn (Consultar la pagina web del libro)

PROBLEMAS PROPUESTOS

11.1.

11.2.

Escribir un programa que gestione una agenda de direccio-
nes. Los datos de la agenda se almacenan en memoria en
un array de estructuras, cada una de las cuales tiene los
siguientes campos:

nombre

direccion

teléfono fijo

teléfono movil

direccion de correo electronico

El programa debe permitir afiadir una nueva entrada a la
agenda, borrar una entrada, buscar por nombre y elimi-
nar una entrada determinada por el nombre.

Escribir un programa que permita ordenar el array de
estructuras definido en el programa anterior por el
campo nombre de cada estructura. Utilizar los algorit-
mos de ordenacion por el método de la burbuja, ordena-
cién por insercion y ordenacion por seleccion.

PROBLEMAS DE PROGRAMACION
DE GESTION

11.1.

11.2.

11.3.

Suponga que tiene un array que guarda la informacion
de los empleados de una gran empresa. De cada emple-
ado se guarda el nombre, los dos apellidos, el nimero de
la Seguridad Social, el NIF, la edad, el departamento en
el que trabaja y la antigiiedad en la empresa. Escriba un
programa en el que se ordene el array por el campo pri-
mer apellido y en caso de que el primer apellido coinci-
da por el segundo apellido. Si ambos apellidos coinciden
para algln registro ordenar entonces por el nombre.

Utilizando el array del ejercicio anterior escriba un pro-
grama que permita a un usuario por medio de un mend
elegir uno de los campos para realizar una blsqueda por
dicho campo en el array de registros.

Escriba un programa auxiliar que permita afiadir nuevos
campos a la tabla de empleados, como por ejemplo, suel-

11.3.

11.4.

11.5.

11.6.

11.4.

Estructuras y uniones

A menudo, en el tratamiento de bases de datos es nece-
sario unir los datos de dos bases distintas cuyos regis-
tros tienen la misma estructura. Para estudiar los
aspectos involucrados en tal operacion de mezcla de
bases de datos, suponga que tiene dos arrays del tipo
descrito en el ejercicio propuesto 1 y codifique el pro-
grama en C que los una en uno solo, eliminando los
duplicados que puedan existir entre los dos.

Disefie una estructura de registro para una base de
empleados que contenga campos que codifiquen el esta-
do civil del empleado, el sexo y el tipo de contrato utili-
zando la menor cantidad de memoria posible, es decir,
utilizando campos de bits.

En la base de datos anterior cree un campo de tipo enu-
merado que permita determinar el departamento al que
pertenece un empleado, utilizando un nombre simbélico.

Escriba un programa para calcular el nimero de dias que
hay entre dos fechas; declarar fecha como una estructura.

do anual y porcentaje de retenciones de impuestos. Una
vez modificado el array de estructuras, escriba un pro-
grama que permita a un usuario elegir un rango de regis-
tros de empleados especificando un apellido inicial y
otro final, o un departamento concreto, y produzca en la
salida la suma total de los sueldos que se les pagan a los
empleados seleccionados.

Escribir un programa que permita elaborar un informe a
partir del array de estructuras anterior con el siguiente
formato. Cada pagina contendrd los empleados de un
solo departamento. Al comienzo de cada pagina se indi-
ca por medio de una cabecera cada uno de los campos
gue se listan y al departamento que corresponde el lista-
do. Los campos aparecen justificados a la derecha en
cada columna.

12.1

Punteros
(apuntadores)

Los punteros en C tienen fama, en el mundo de la programacién, de dificultad, tanto en el aprendizaje como en su uso. En este
capitulo se tratard de mostrar que los punteros no son mas dificiles de aprender que cualquier otra herramienta de programa-
cién ya examinada o por examinar a lo largo de este libro. El puntero, no es mas que una herramienta muy potente que puede
utilizar en sus programas para hacerlos mas eficientes y flexibles. Los punteros son, sin género de dudas, una de las razones
fundamentales para que el lenguaje C sea tan potente y tan utilizado.

Una variable puntero (o puntero, como se llama normalmente) es una variable que contiene direcciones de otras variables.
Todas las variables vistas hasta este momento contienen valores de datos; por el contrario las variables puntero contienen valo-
res que son direcciones de memoria donde se almacenan datos. En resumen, un puntero es una variable que contiene una direc-
cién de memoria, y utilizando punteros su programa puede realizar muchas tareas que no serian posibles utilizando tipos de
datos estandar.

En este capitulo se estudiaran los diferentes aspectos de los punteros:

« Concepto y caracteristicas

« Utilizacion de punteros.

* Asignacion dindmica de memoria.

« Aritmética de punteros.

* Arrays de punteros.

* Punteros a punteros, funciones y estructuras.

Concepto de puntero (apuntador)

Cuando una variable se declara, se asocian tres atributos fundamentales con la misma: su nombre, su tipo y su direccion en
memoria. Al valor de una variable se accede por medio de su nombre. A la direccidn de la variable se accede mediante el ope-
rador de direccion &. Un puntero es una variable que contiene una direccion de una posicion de memoria que puede corres-
ponder o no a una variable declarada en el programa. La declaracién de una variable puntero debe indicar el tipo de dato al que
apunta; para ello se hace preceder a su nombre con un asterisco (*):

{tipo de dato apuntado> *<identificador de puntero>

@ CAPITULO 12 Punteros (apuntadores)

12.2

12.3

EJEMPLO 12.1 Inicializacion de punteros

C no inicializa los punteros cuando se declaran y es preciso inicializarlos antes de su uso. Después de la inicializacion,
se puede utilizar el puntero para referenciar los datos direccionados. Para asignar una direccion de memoria a un pun-
tero se utiliza el operador &. Este método de inicializacion, denominado estético, requiere:

Asignar memoria estaticamente definiendo una variable y a continuacion hacer que el puntero apunte al valor de la
variable.

int i; /*define una variable i*/
int *p; /*define un puntero a un entero p*/
p = &i; /*asigna la direcciéon de i a p */

El operador & devuelve la direccién de la variable a la cual se aplica.

Es un error asignar un valor a una variable puntero si previamente no se ha inicializado con la direccion de una variable o
se le ha asignado memoria dindmicamente. El uso de un puntero para obtener el valor al que apunta, es decir, su dato apunta-
do se denomina indireccionar el puntero (“desreferenciar el puntero™); para ello, se utiliza el operador de indireccion *. La
Tabla 12.1 resume los operadores de punteros.

Tabla 12.1 Operadores de punteros

Operador Proposito

& Obtiene la direccion de una variable.
Define una variable como puntero.
Obtiene el contenido de una variable puntero.

Punteros NULL y vOID

Un puntero nulo no apunta a ningun dato valido; se utiliza para proporcionar a un programa un medio de conocer cuando una
variable puntero no direcciona a un dato valido. Para declarar un puntero nulo se utiliza la macro NULL.

Nota:

« Un puntero nulo no direcciona ningun dato valido. Un puntero void direcciona datos de un tipo no especifi-
cado. Un puntero void se puede igualar a nulo si no se direcciona ningln dato valido. NULL es un valor; void
es un tipo de dato.

« Un puntero puede apuntar a otra variable puntero. Para declarar un puntero a un puntero se hace preceder a la
variable con dos asteriscos (**).

Punteros y arrays

Los arrays y los punteros estan fuertemente relacionados en el lenguaje C. EI nombre de un array es un puntero, contiene la
direccion en memoria de comienzo de la secuencia de elementos que forma el array. Es un puntero constante ya que no se puede
modificar, s6lo se puede acceder para indexar a los elementos del array. Si se tiene la siguiente declaracion de un array, la Figura
12.1 representa un array almacenado en memoria.

int Tistal5] = {10, 20, 30, 40, 50};

CAPITULO 12 Punteros (apuntadores) @

Lista —[0] <«—— Lista
[1] <«— *(lista+l)
[2] <+« *(lista+2)
[3] < *(lista+3)
[4] < *(lista+4)

Figura 12.1 Un array almacenado en memoria.
EJEMPLO 12.2. Acceso a arrays mediante punteros

Se puede utilizar indistintamente notacién de subindices o notacién de punteros. Dado que un nombre de un array con-
tiene la direccion del primer elemento del array, se debe indireccionar el puntero para obtener el valor del elemento. En
este ejemplo se ponen de manifiesto operaciones correctas y erréneas con nombres de array.

float v[10];
float *p;
float x = 100.5;
int j;
/* se indexa a partir de v */

for (j= 0; j<10; j++)

*(v+j) = j*10.0;
p = v+d; /* se asigna la direccidon del quinto elemento */
v o= &x; /* error: intento de modificar un puntero constante */

Se puede declarar un array de punteros, como un array que contiene como elementos punteros, cada uno de los cuales
apuntard a otro dato especifico. La linea siguiente reserva un array de diez variables punteros a enteros:

int *ptr[107;

(0] —
(1] —
(2] —
3] —
(4] —
[5] —
(6] —
(71 —
(8]]
(91 |

Cada elemento puede apuntar a un entero
memoria

BEEEEREEREEERE

Figura 12.2 Un array de 10 punteros a enteros.

La Figura 12.2 muestra cdmo C organiza este array. Cada elemento contiene una direccion que apunta a otros valores de
la memoria. Cada valor apuntado debe ser un entero. Se puede asignar a un elemento de ptr una direccion, tal como para
variables puntero o arrays. Asi por ejemplo,

ptri5] = &edad; /* ptr[5] apunta a Ta direccion de edad */
ptr(4] NULL; /* ptr[4] no contiene direccidn alguna */

@ CAPITULO 12 Punteros (apuntadores)

De igual forma, se podria declarar un puntero a un array de punteros a enteros.

int *(*ptr10)[];

paso a paso:
(*ptrl0) €s un puntero; ptr10 es un nombre de variable.
(*ptr10)[] €s un puntero a un array

*(*ptrl0)[] es un puntero a un array de punteros

int *(*ptrl0)L[] es un puntero a un array de punteros de variables int

Una matriz de nimeros enteros, o reales, puede verse como un array de punteros; de tantos elementos como filas tenga
la matriz, apuntando cada elemento del array a un array de enteros, reales, de tantos elementos como columnas.

La inicializacién de un array de punteros a cadenas se puede realizar con una declaracion similar a ésta:

char *nombres_meses[12] = { "Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio",
"Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre" };

EJEMPLO 12.3 Uso de los punteros a cadenas

Considérese la siguiente declaracion de un array de caracteres que contiene las veintiséis letras del alfabeto internacional.
char alfabeto[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Si p es un puntero a char. Se establece que p apunta al primer caracter de alfabeto escribiendo

p = &alfabeto[0]; /* o también p = alfabeto */

Figura 12.3 Un puntero alfabeto [15].
Es posible, entonces, considerar dos tipos de definiciones de cadena:

char cadenall[]="Hola viejo mundo";
/*array contiene una cadena */
char *cptr = "C a su alcance";
/*puntero a cadena, el sistema reserva memoria para la cadena*/

12.4 Aritmética de punteros

Aun puntero se le puede sumar o restar un entero n; esto hace que apunte n posiciones adelante o atras de la actual. A una varia-
ble puntero se le puede aplicar el operador ++, 0 el operador —— . Esto hace que contenga la direccion del siguiente, o anterior
elemento. No tiene sentido, por ejemplo, sumar o restar una constante de coma flotante.

Operaciones no validas con punteros:

« No se pueden sumar dos punteros.
« No se pueden multiplicar dos punteros.
« No se pueden dividir dos punteros.

CAPITULO 12 Punteros (apuntadores) @

Para crear un puntero constante se debe utilizar el siguiente formato:

{tipo de dato > *const <nombre puntero> = <direccion de variable >;

El formato para definir un puntero a una constante es:

const <tipo de dato elemento> *<nombre puntero> = <direccién de constante >;

Cualquier intento de cambiar el contenido almacenado en la posicion de memoria a donde apunta creara un error de com-
pilacién.

Nota:

Una definicion de un puntero constante tiene la palabra reservada const delante del nombre del puntero, mientras
que el puntero a una definicién constante requiere que la palabra reservada const se sitle antes del tipo de dato. Asi,
la definicion en el primer caso se puede leer como «punteros constante o de constante», mientras que en el segundo
caso la definicion se lee «puntero a tipo constante de dato».

El Gltimo caso a considerar es crear punteros constantes a constantes utilizando el formato siguiente:

const <tipo de dato elemento> *const <nombre puntero> = <direccién de constante >;

Regla:

« Si conoce que un puntero siempre apuntara a la misma posicion y nunca necesita ser reubicado (recolocado), defi-
nalo como un puntero constante.

« Si conoce que el dato apuntado por el puntero nunca necesitara cambiar, defina el puntero como un puntero a una cons-
tante.

12.5 Punteros como argumentos de funciones

Cuando se pasa una variable a una funcion (paso por valor) no se puede cambiar el valor de esa variable. Sin embargo, si se
pasa un puntero a una funcion (paso por direccién) se puede cambiar el valor de la variable a la que el puntero apunte.

El paso de un nombre de array a una funcién es lo mismo que pasar un puntero al array. Se pueden cambiar cualquiera de los
elementos del array. Sin embargo, cuando se pasa un elemento a una funcién, el elemento se pasa por valor.

EJEMPLO 12.4 Paso de argumentos por referencia
Hay que recordar que el paso de los parametros en las llamadas a las funciones en C siempre se hace por valor. Si se
precisa pasar una variable por referencia, se pasara un puntero a dicha variable, como por ejemplo en la funcion que

intercambia el valor de los variables:

intercambia (int *a, int *b)
{

int aux;
aux = *a;
*a = *b;

*b = aux;

}

@ CAPITULO 12 Punteros (apuntadores)

12.6 Punteros a funciones

Es posible también crear punteros que apunten a funciones. En lugar de direccionar datos, los punteros de funciones apuntan a codi-

go ejecutable. Al igual que los datos, las funciones se almacenan en memoria y tienen direcciones iniciales. Tales funciones se pue-

den Illamar de un modo indirecto, es decir, mediante un puntero cuyo valor es igual a la direccion inicial de la funcién en cuestion.
La sintaxis general para la declaracion de un puntero a una funcion es:

Tipo_de_retorno (*PunteroFuncion) (<lista de pardmetros>);

Este formato indica al compilador que Punterofuncion esun puntero a una funcién que devuelve el tipo Tipo_de_retor-
noy tiene una lista de parametros.

Un puntero a una funcion es simplemente un puntero cuyo valor es la direccion del nombre de la funcién. Dado que el nom-
bre es, en si mismo, un puntero, un puntero a una funcién es un puntero a un puntero constante.

pfl:l .

int f(int n)
{
/0. .

Figura 12.4 Puntero a funcion.

La funcion asignada debe tener el mismo tipo de retorno y lista de pardmetros que el puntero a funcion; en caso contra-
rio, se producird un error de compilacion. Los punteros a funciones también permiten pasar una funcién como un argumento
a otra funcién. Para pasar el nombre de una funcién como un argumento funcion, se especifica el nombre de la funcién como
argumento.

Recuerde:

var, nombre de una variable.

var[] es un array.

(*var[]) esun array de punteros.

(*var[1)() esun array de punteros a funciones.

int (*var[1)() esunarray de punteros a funciones que devuelven valores de tipo int.

EJEMPLO 12.5. Uso de punteros a estructuras

struct punto {
float x;
float y;
bop, *puntp;

printf (“Introduzca las coordenadas: “);

scanf (“%f”, &p.x);

scanf (“%f”, &p.y);

puntp = &p;

printf (*Las coordenadas introducidas son (%f, %f)”, puntp->x, puntp->y);

Se puede declarar un puntero a una estructura tal como se declara un puntero a cualquier otro objeto. Cuando se refe-
rencia una estructura utilizando el puntero estructura, se emplea el operador -> para acceder a un miembro de ella.

Punteros (apuntadores) @

PROBLEMAS RESUELTOS

12.1.

12.2.

12.3.

12.4.

Encuentre los errores en la siguiente declaracion de punteros:

int x, *p, &y;

char* b= "Cadena larga";
char* c= 'C';

float x;

void* r = &x;

Es incorrecta sintacticamente la declaracion int &y. No tiene ningln sentido en C.
Cuando un caracter esta rodeado por comillas simples es considerado como una constante de tipo char no como una
cadena, para lo cual deberia estar rodeado de dobles comillas:

char* c= "C";
No se puede declarar un puntero a tipo void.

Dada la siguiente declaracion, escribir una funcioén que tenga como argumento un puntero al tipo de dato y muestre por
pantalla los campos.

struct boton

{
char* rotulo;
int codigo;

La funcion puede ser la siguiente:

void mostrarBoton (struct boton *pb)
{
printf ("Rotulo del botén : %s\n", pb->rotulo);
printf ("Cédigo asociado al boton : %d\n", pb->codigo);

¢ Qué diferencias se pueden encontrar entre un puntero a constante y una constante puntero?

Por medio de un puntero a constante se puede acceder a la constante apuntada, pero obviamente no esta permitido modificar
su valor por medio del puntero. Un puntero declarado como constante no puede modificarse su valor, es decir la direccion
que contiene y a la que apunta.

Un array unidimensional se puede indexar con la aritmética de punteros. ¢;Qué tipo de puntero habria que definir para
indexar un array bidimensional?

El tipo de puntero que se vaya a utilizar para recorrer un array unidimensional tendréa que ser el mismo tipo que el de los elementos
que compongan el array, puesto que va a ir apuntando a cada uno de ellos segln los recorra. Para apuntar al array bidimensional
como tal, o lo que es lo mismo, para apuntar a su inicio, el compilador de C considera que un array bidimensional es en realidad
un array de punteros a los arrays que forman sus filas. Por tanto, sera necesario un puntero doble o puntero a puntero, que contendra
la direccion del primer puntero del array de punteros a cada una de las filas del array bidimensional o matriz.

Una array bidimensional se guarda en memoria linealmente, porque la memoria es lineal, fila a fila. Por consiguiente para
acceder a un elemento concreto de una fila y columna determinadas habra que calcular primero en qué fila esta y dentro de

@ Punteros (apuntadores)

esa fila seguin su columna se calculara su posicion dentro de la memoria. Para realizar esta operacion no es necesario saber
cuantas filas contiene la matriz bidimensional pero si cuantas columnas, para saber cuantos bytes ocupa cada fila. Esto se
vera en los ejercicios siguientes.

12.5. En el siguiente codigo se accede a los elementos de una matriz. Acceder a los mismos elementos con aritmética de punteros.

jtdefine N 4
j#define M 5

int f,c;

double mt[NI[MI;

for (f = 0; f<N; f++)
{
for (c = 0; c<M; c++)
printf("%1f ", mt[fllcl);
printf("\n");
}

Analisis del problema

Se define un puntero que apunte a la primera posicion de la matriz y se calcula la posicion de memoria donde se van encontrando
cada uno de los elementos de la matriz, a base de sumar la longitud de las filas desde el comienzo de la matriz y los elementos
desde el comienzo de la fila donde esta situado el elemento al que se desea acceder. Si un elemento esta en la fila 5, habra que
saltar 5 filas enteras de elementos del tipo de la matriz, para situarse al comienzo de su fila en la memoria. Recordar que en C
los arrays siempre se numeran desde 0. Si el elemento que se busca esta en la columna 3, hay que calcular tres posiciones desde
el comienzo de su fila calculado antes. Asi se llega a la direccion donde se encuentra el elemento buscado. Para hacer estos calculos
es imprescindible conocer el nimero de columnas de la matriz, que es igual al tamafio de cada fila. Sin este dato seria imposible
reconstruir la estructura de la matriz, partiendo sdlo del espacio que ocupa en la memoria, ya que éste es puramente lineal. Una
vez que se tiene dicha direccion se accede a su contenido. Esta expresion es la misma que sustituye el compilador de C, cuando
compila la indireccion que representan los operadores corchetes de los arrays.

Codificacion

ffdefine N 4

jtdefine M 5

int f,c;

double mt[NI[M], *pmt=mt;

for (f = 0; f<N; f++)
{
for (c = 0; c<M; c++)
printf("%1f ", *(pmt + f*M + c));
printf("\n");

Otra opcion podria haber sido hacer que el puntero recorra la matriz, sabiendo que la matriz esta almacenada en memoria
fila a fila de forma lineal.

ftdefine N 4

ffdefine M 5

int f,c;

double mt[NI[M], *pmt=mt;

for (f = 0; f<N; f++)
{

12.6.

12.7.

12.8.

Punteros (apuntadores) @

for (c = 0; c<M; ct++)
printf("%1f ", *pmt++);
printf("\n");

Escriba una funcién con un argumento de tipo puntero a double y otro argumento de tipo int. El primer argumento se
debe corresponder con un array y el segundo con el nimero de elementos del array. La funcién ha de ser de tipo puntero a
double para devolver la direccién del elemento menor.

Analisis del problema

Al hacer la llamada a la funcién se pasa el nombre del array a recorrer o un puntero con la direccion del comienzo del array.
De la misma manera el puntero que recibe la funcidn puede ser tratado dentro de su cddigo como si fuera un array, usando
el operador corchete, o como un simple puntero que se va a mover por la memoria. En ambos casos el segundo parametro
de la funcién es imprescindible para no acceder fuera de la region de la memoria donde estén los datos validos del array
original almacenados.

Codificacion

double *menorArray (double *v, int n)
{
int i, min = -1;
/* suponer que los elementos del array v son positivos */
double *menor;
for (i=0; i<n; i++)
if (v[il < min) menor = &v[il;
/* o if (*v++ < min) menor = v-1; */
return menor;

¢ Qué diferencias se pueden encontrar entre estas dos declaraciones?

float mt[5][5];
float *m[5];

Anélisis del problema

En la primera declaracion se reserva memoria para una matriz de 25 nimeros reales. En la segunda, sélo se reserva memoria
para un array de cinco punteros a reales.

¢Se podrian hacer estas asignaciones?:

m = mt;
m{l] = mt[1];
mL2] = &mt[2]1[0];

Ambas variables son del mismo tipo, pero son consideradas como constantes por ser nombres de arrays, por lo cual no se
puede modificar su contenido. La segunda asignacion es correcta porque el compilador interpreta la expresion mt[1] como
conteniendo la direccion de la segunda fila de la matriz y por lo tanto su valor es del mismo tipo que m[1] en el lado de la
izquierda. La expresion de la derecha en la tercera asignacion proporciona la direccion de la tercera fila de la matriz; por
consiguiente, es también de tipo puntero a real al igual que el lado derecho de la matriz.

Dadas las siguientes declaraciones de estructuras, escribe como acceder al campo x de la variable estructura t.

@ Punteros (apuntadores)

12.9.

12.10.

struct fecha

{
int d, m, a;
float x;

E

struct dato

{

char* mes;
struct fecha* f;
bt

Analisis del problema

La variable t es una variable de tipo estructura, por lo que se usa el operador punto para acceder al miembro f.
Desde el dato miembro f es necesario usar el operador flecha para acceder al campo x de la estructura fecha a la que
apunta.

CofF=2%3
¢ Qué problemas habria en la siguiente sentencia?
gets(t.mes);

El campo mes de la estructura fecha no apunta a ningun sitio, por lo cual dard problemas de asignacion de memoria cuando
la funcién gets()intente colocar el resultado en el puntero que se le pasa como argumento. Para evitar esto seria necesario
reservar memoria antes de llamar a gets().

El prototipo de una funcion es
void escribe_mat(int** t, int nf, int nc);

La funcién tiene como propdsito mostrar por pantalla la matriz. EI primer argumento se corresponde con una matriz entera,
el segundo y tercero es el nimero de filas y columnas de la matriz. Escriba la implementacion de la funcién aplicando la
aritmética de punteros.

void escribe_mat(int** t, int nf, int nc)
{
int f,c;
for (f=0; f<nf; f++)
for (c=0; c<nc, ct++)
printf ("Elemento de la fila %d y columna %d: %d\n", f, c, *(t + f * nc + c));

Escriba un programa en el que se lean 20 lineas de texto, cada linea con un maximo de 80 caracteres. Mostrar por pantalla
el nimero de vocales que tiene cada linea.

Analisis del problema

Una forma de almacenar texto compuesto de lineas que son cadenas de caracteres consiste en partir de un puntero a cadenas,
es decir de un puntero de indireccién doble que apunte a un array de punteros a cadenas de caracteres. Ese puntero, que el
programa denomina texto, apuntard a un array de punteros a cadenas que apuntaran cada uno de ellos a su vez a cada una
de las lineas de texto que el usuario vaya introduciendo por teclado. Como cada cadena es un array de caracteres, cada linea
funcionara como si fuera la fila de una matriz bidimensional, con la ventaja de que cada una tendra sélo la longitud necesaria

Punteros (apuntadores) @

para almacenar su contenido, sin que se desperdicie espacio de memoria sin usar como ocurriria si se hubiese definido una
matriz con todas las filas de la misma longitud.

Codificacion
ENTRADA: 20 cadenas de caracteres
SALIDA: Numero de vocales que contiene cada linea.

Para ajustar el tamafio de la memoria que ocupa cada cadena, en vez de reservar directamente el tamafio maximo para cada
linea, se lee en un array cada linea desde teclado y después se usan las funciones de manejo de cadenas para reservar espacio
para los caracteres leidos y para copiar la linea leida en ellos.

Para comprobar el nimero de vocales se accede a cada uno de los caracteres de la linea leida y se comparan por medio de
una sentencia switch con los caracteres correspondientes a las vocales, tanto mayudsculas como mindsculas.

main()

{
char **texto, *linea;
int i, vocales;

texto = (char **) malloc (20 * sizeof (char *));
linea = (char *) malloc (80 * sizeof (char));
for (i=0; i<20; i++)

{
gets(linea);
texto [i] = (char *) malloc (strlen (linea)+l);
strcpy (texto[i], Tinea);
/* Ahora comprobar las vocales que contiene la Tinea */
vocales = 0;
for (i=0; i<strlen(linea); i++)
{
switch (linea [i])
{

case 'a' case 'A':
case 'e' case 'E':
case 'i': case 'I':
case 'o' case '0':
case 'u' case 'U': vocales++;

}
printf ("La Tinea contiene %d vocales. \n", vocales);
b /* for interno */
} /* for externo */

12.11. Escribir un programa que encuentre una matriz de nimeros reales simétrica. Para ello, una funcidn entera con entrada la
matriz determinara si ésta es simétrica. En otra funcion se generara la matriz con nimeros aleatorios de 1 a 112.
Utilizar la aritmética de punteros en la primera funcion, en la segunda indexacion.

Anélisis del problema
Una matriz es simétrica si cada uno de sus elementos es igual a su simétrico con respecto a la diagonal principal. Una manera

de comprobarlo es recorrer la matriz y preguntar si cada elemento es idéntico al que se obtiene cambiando su fila por su
columna y su columna por su fila.

@ Punteros (apuntadores)

Codificacion
ENTRADA: Matriz generada aleatoriamente
SALIDA: Un valor entero que es cero si la matriz no es simétrica, uno si lo es.

Para recorrer una matriz utilizando punteros hay que recordar siempre que la matriz estd almacenada linealmente en la
memoria linea a linea. Por consiguiente para situarse en un elemento concreto posicionarse primero en la fila correspondiente
sumando a la direccion del primer elemento el nimero de filas a saltar y para calcular la direccién en la fila requerida, sumar
tantas unidades al puntero como columnas haya que saltar para llegar. No hay que preocuparse de cuantos bytes hay que ir
sumando cada vez a la direccion puesto que eso lo realiza el compilador de forma automatica a partir de la informacion del
tipo de datos a los que apunta el puntero. En este problema a reales (f1oat).

main ()
{
float matriz [101[107;
crearMatriz (matriz);
if ((resp = simetrica (matriz))==1)
printf ("lLa matriz generada es simétrica. \n");
else
printf ("La matriz generada no es simétrica. \n");
}
crearMatriz (float m[J[101)
{
int 1,3;
randomize();
for (i=0; i<10; i++)
for (j=0; j<10; j++)
mLillj]l = rand () % 10;
}
int simetrica (float **mat)
{
int i,j, resp = 1;
for (i=0; i<10; i++)
for (j=0; j<10; j++)
if (il= J)
if (*(mat + 10 *i + j) != *(mat + 10 *j +i))
{
resp =0;
return (resp);
}
return (resp);
i

12.12. En una competicion de natacion se presentan 16 nadadores. Cada nadador se caracteriza por su nombre, edad, prueba en
la que participa y tiempo(minutos, segundos) de la prueba. Escribir un programa que realice la entrada de los datos y calcule
la desviacion estandar respecto al tiempo. Para la entrada de datos, definir una funcion que lea del dispositivo estandar el
nombre, edad, prueba y tiempo.

Analisis del problema

El primer paso es siempre definir una estructura con los datos que se necesitan para cada elemento. Para que haya espacio
para varios participantes, se crea también un array de estructuras del tipo definido. Aunque de antemano se sabe el nimero
de participantes se trabajara con un array de punteros a las estructuras. Asi lo Unico que se crea en principio es un array de
punteros sin inicializar. Segun se vayan leyendo los datos se ir& reservando memoria para cada estructura y haciendo que el
puntero correspondiente del array apunte a ellas.

CAPITULO 12 Punteros (apuntadores)

Otro uso comun consiste en que cuando en una estructura un miembro es de tipo cadena, en vez de definirlo con una longitud
determinada, se declara como puntero a caracter, pues de esta manera sdlo se reserva la memoria que se nececesita una vez
que se sepa qué cadena se ha de introducir en dicho campo. El ahorro en espacio de memoria es significativo cuando el
namero de registros, en este caso estructuras, es grande.

Codificacion

struct nadador
{
char * nombre;
int edad;
char *prueba;
struct tt
{
int min;
int seg;
} tiempo;
g
main()
{
struct nadador *participantes[16];
leerParticipantes (participantes);
desviacionEstandar (participantes);
}
leerParticipantes (struct nadador *participantes[])
{
int i;
for (i=0; i<16; i++)
leerNadador(participantes, 1i);
}
leerNadador (struct nadador ** p, int num)
{
char cadenal[40];
*(p+ti) = (struct nadador *) malloc (sizeof (struct nadador));
printf ("\n Introduzca el nombre : ");
gets(cadena);
p[i]->nombre = (char*) malloc (strlen(cadena)+l);
strcpy (plil->nombre, cadena);
printf ("\n Introduzca la edad : ");
scanf ("%d", &pl[il->edad);
printf ("\n Introduzca la prueba en la que participa : ");
gets(cadena);
p[il->prueba = (char*) malloc (strlen(cadena)+l);
strcpy (plil->prueba, cadena);
printf ("\n Introduzca el tiempo de la prueba. Minutos y segundos : ");
scanf ("%d %d", &plil->tiempo.min, &pl[il->tiempo.seq);
}
desviacionEstandar (struct nadador *participantes[])
{
float media, desv, d;
int i;
for (i=0; i<16; i++)
media += participantes[il->tiempo.min * 60 +

@ Punteros (apuntadores)

participantes[il->tiempo.seg;
media /= 16;
for (i=0; i<16; i++)
{
d = participantes[i]->tiempo.min * 60 +
participantes[i]->tiempo.seg - media;
desv += d * d;
}
desv /= 16;
printf ("La desviacion estdndar es: %f/n", sqrt(desv));

12.13. Se quiere evaluar las funciones f(x), g(x) y z(x) para todos los valores de x en el intervalo 0 <x < 3.5 con incremento de
0.2. Escribir un programa que evalte dichas funciones. Utilizar un array de punteros a funcion.
Las funciones son las siguientes:

f(x)= 3*e* -2x
g(x)= -x*sin(x)+ 1.5
z(x)= x> - 2x + 1

Analisis del problema

Una vez que se entiende el mecanismo de los punteros a funciones su uso es muy sencillo. Se trata de definir las funciones
al estilo de C y después definir un array de punteros, a los que se asignan cada una de las funciones creadas. El acceso a
dichas funciones para su ejecucion es similar a cuando se accede a cualquier otro dato por medio de punteros.

Codificacion

float f (float x)
{
return (3 * exp(x) - 2*x);
}
float g (float x)
{
return (-x * sin (x) + 1.5);
}
float z (float x)
{
return (x *x * x - 2 *x + 1);
}
main ()
{
float (*func[3]) (float);

func [0] = f;
func [1]1 = g;
func [2] = z;
for (i=0; i <=2; i++)
for (x = 0.0; x < 3.5;
X += 0.2)

printf (x = %f = %f \n", x, (*func [i1)(x));

Punteros (apuntadores)

12.14. Se quiere sumar enteros largos, con un nimero de digitos que supera el maximo entero largo. Los enteros tienen un maximo
de 40 digitos. Para solventar el problema se utilizan cadenas de caracteres para guardar cada entero y realizar la suma. Escribir
un programa que lea dos enteros largos y realice la suma.

Analisis del problema

Como indica el enunciado el programa recoge los dos nimeros como cadenas. De esta manera sus digitos se guardan segin
su codigo ASCII y no segin su valor numérico. No es ningun problema la conversion entre codigos ASCII y valores

numéricos dado que C permite operar con caracteres y enteros convirtiéndolos unos en otros segun se necesite.

Una vez que se tienen las dos cadenas hay que fijarse en que los digitos menos significativos, que son por los que se empieza
a sumar, estan al final de las cadenas, por lo cual o se da la vuelta a las cadenas (procedimiento que se vera en un capitulo

posterior) 0, como en este caso, usar dos punteros para recorrer las cadenas con los nimeros desde atrds adelante.

Codificacion

main()

{

char numl[40], num2[40], res[40];

char *pnuml, *pnum;

printf ("Introduzca el primer sumando: ");
gets (numl);

printf ("\n Introduzca el segundo sumando: ");
gets (num2);

longl = strlen (numl);

long2 = strlen (num2);

pnuml = numl[longl];

/* Tos punteros apuntan al final de cada cadena que es el

pnum2 = num2[long2];

i = Tlongl>long2 ¢ longl : long2; /* longitud cadena mds larga */
res [i+1] = '"\0"';
do
{
suma = res[i] + (*pnuml-- -'0"')+ (*pnum2-- -'0');

if (suma < 9)

res [i--] = suma + '0';
else
{

res [i--1 = (suma % 10) + '0'; /* hay arrastre */

res(i] ++;

}

/* las conversiones de char a int y viceversa suponen -'0'-'0'+'0"

} while (pnuml >= numl && pnum2 >= num?2);

/* Hasta que se acabe el nimero con menos dfgitos.

/* Queda sumar el resto del nlamero mds largo.
if (pnuml > numl)
do
{
resfi--1 += numl[i]
} while (i);
else if (pnum2 > num2)
do
{
resfi--1 += num2[i]

primer digito de nlmero */

} while (i);
printf ("\nEl resultado es : %s\n", res);

Punteros (apuntadores)

12.15. Escribir una funcién que tenga como entrada una cadena y devuelva un nimero real. La cadena contiene los caracteres de
un namero real en formato decimal (por ejemplo, la cadena «25.56» se ha de convertir en el correspondiente valor real).

Anélisis del problema

Fundamentalmente se trata de ir recorriendo la cadena, utilizando un puntero, para calcular primero la parte entera del nimero
hasta encontrar el punto decimal y luego seguir por los digitos después del punto para calcular los decimales del nimero

real.

Codificacion

float cadenaanum (char * cadena)

{

char *pcad;int d = 1, signo;

float n;
/* saltar espacios en blanco iniciales */
for (pcad = cadena [0]; *pcad == ' '; pcad++);

/* averiguar el signo del nlmero */
switch (*pcad)
{
case '-': signo = -1; pcad+t; break;
case '+': pcad++t;
default : signo = +1;
}
/* calcular la parte entera del nlmero */
n =%*pcad - '0'; /* convierte el digito en decimal */
while (*++pcad >='0" && *pcad <= '9")
/* ¢{el siguiente cardcter es un digito? */

n =n*10 + * pcad - '0';
/* convertir y afadir a parte entera del numero /*
if (* pcad++ 1= "')

return (signo * n);

/* el nudmero s6lo tiene parte entera asi que devolver */

while ((*pcad >='0"' && *pcad <= '9')
{
d *= 10;
n += (*pcad++ - '0') / d;
}
return (signo * n);

12.16. Escribir un programa para generar una matriz de 4 x 5 elementos reales, multiplicar la primera columna por cualquier otra
y mostrar la suma de los productos. El programa debe descomponerse en subproblemas y utilizar punteros para acceder a
los elementos de la matriz.

main()

{

float **mat, *productos;
randomize();

CAPITULO 12 Punteros (apuntadores)

12.17.

generarmatriz (mat);

multiplicacolumnas (mat, rand() % n, productos);

mostrarsumaproductos (productos);
}
generarmatriz (float **m)
{

m = (float **) malloc (4*5 * sizeof (float));

randomize();

for (i = 0; i <4; i++)

for (j = 0; j <5; j++)
*(m + i*5 + j) = rand () + rand()/ 1000 ;

}
multiplicacolumnas (float **m, int ncol, float *vp)
{

vp = (float *) malloc(b * sizeof (float));

for (i = 0; 1 <4; i++)

*ypt+ = *(m + i*5) * *(m + i*5 + ncol);
/* vp[il = m[i1L0] * m[illncoll; */

}
mostrarsumaproductos (float *v)
{

int suma = 0;

for (i = 0; 1 < 4; i++) suma += *v++;
printf ("%f \n", suma);
}

Desarrolle un programa en C que use una estructura para la siguiente informacion sobre un paciente de un hospital: nombre,
direccion, fecha de nacimiento, sexo, dia de visita y problema médico. El programa debe tener una funcién para entrada de
los datos de un paciente, guardar los diversos pacientes en un array y mostrar los pacientes cuyo dia de visita sea uno
determinado.

jtdefine TAM 200
struct paciente
{
char *nombre;
char *direccion;
char fecha [10];
char sexo; /* V o H */
char diavisita [10];
char *problema;
g
main ()
{
char dia [10];
struct paciente *lista;
tomadatos(lista);
printf ("Introduzca la fecha de la consulta: (dd/mm/aaaa) ");
gets(dia);
mostrarconsulta (dia, lista);
}
tomadatos(struct paciente *lista)
{

int i;

}

CAPITULO 12

char buffer [80];

lista = (struct paciente*) malloc(TAM*sizeof(struct paciente));
printf (" Entrada de datos de los pacientes\n");

printf(" \n");

for (i = 0; i < TAM; i++)

{

printf ("Nombre del paciente :\n")

gets (buffer);

listalil->nombre = malloc (strlen (buffer) +1);
strcpy (listalil->nombre, buffer);

printf ("Direccion del paciente :\n");

gets (buffer);

listali]->direccion = malloc (strlen (buffer) +1);
strcpy (listalil->direccion, buffer);

printf ("Fecha de nacimiento (dd/mm/aaaa) \n");
gets(Tistalil->fecha);

printf ("Sexo del paciente\n");

listalil->sexo = getche();

printf ("Dia de visita (dd/mm/aaaa) \n");
gets(listalil->diavisita);

printf ("Problema médico del paciente :n");

gets (buffer);

listalil->problema = malloc (strlen (buffer) +1);
strcpy (lTistalil->problema, buffer);

printf ("éDesea continuar? (S/N) \n");

if (getchar() == 'N') return;

mostrarconsulta (char * dia, struct paciente *lista)

{

int i;
printf (" Pacientes con visita el dia %s\n\n", dia);
printf (" \n");

for (i = 0; 1 < TAM; i++)
if (!strcmp (dia, Tista->diavisita))
printf ("\t%s\n", Tista ->nombre);

Punteros (apuntadores)

12.18. Escribir un programa que permita calcular el area de diversas figuras: un triangulo rectangulo, un triangulo isésceles, un
cuadrado, un trapecio y un circulo. Utilizar un array de punteros de funciones, siendo las funciones las que permiten calcular

el area.
main()
{
int i;
float (*areal[])() = {areaTriRect, areaTrilsoc, areaCuad, areaCirc };
printf ("Elija el tipo de figura : \n");
printf (" 1. Tridngulo Rectdngulo.\n");
printf (" 2. Tridngulo Isésceles. \n");
printf (" 3. Cuadrado. \n");
printf (" 4. Circulo. \n");

scanf ("%d", &i);
printf ("El drea de la figura es %f\n ", (*arealil)());

Punteros (apuntadores)

t
float areaTriRect()
{

float cl, c2;

printf ("Introduzca longitudes de catetos del

scanf
return

("%f %f" &cl, &c2);
(cl * c2 / 2);
}
float areaTrilsoc()
{
float 11,12;

printf ("Introduzca las longitudes de dos lados desiguales del

scanf
return

("%f %f" &11, &12);
(11 * 12 / 2);

}

float areaCuad()

{

tridngulo: ");

tridngulo: ");

float 1;

printf ("Introduzca Ta longitud de Tado del cuadrado: ");
scanf ("%f" &1);

return (1 * 1);

t
float areaCirc
{
float r;
printf ("Introduzca el
scanf ("%f" &r)
return (r * r * 3.1415);

radio del

PROBLEMAS PROPUESTOS

12.1.

12.2.

12.3.

Se tiene la ecuacion 3*e*~7x = 0; para encontrar una raiz
(una solucioén) escribir tres funciones que implementen
respectivamente el método de Newton, Regula-Falsi y
Biseccion. Mediante un puntero de funcién aplicar uno de
estos métodos para encontrar una raiz de dicha ecuacion.

Se parte de una tabla de claves enteras desordenadas. Se
trata de mostrar las claves ordenadas sin modificar la
tabla, utilizando para ello un array paralelo de punteros
gue apunten a cada una de las claves.

Escribir un programa que calcule el determinante de una
matriz cuadrada utilizando la expresion recursiva que lo
obtiene sumando los determinantes de las submatrices

circulo:

s

12.4.

que resultan de ir suprimiendo la primera fila de la
matriz original y una de las columnas. La formula suma
y resta alternativamente estos determinantes parciales
multiplicAndolos previamente por el elemento de la pri-
mera fila de la matriz original cuya columna se ha
suprimido en la submatriz. Cada uno de los determi-
nantes de las submatrices ha de calcularse reservando
dindmicamente memoria para las submatrices corres-
pondientes.

Escribir una funcién que tome como entrada una cadena
de caracteres y devuelva un puntero a la misma cadena,
pero con los caracteres al revés, poniendo en primer
lugar el Gltimo de ellos.

PROBLEMAS DE PROGRAMACION
DE GESTION

12.1.

12.2.

12.3.

Dado un array que contiene una serie de registros con los
datos de clientes de un establecimiento, realizar una fun-
cion en la que se dé como entrada un puntero al inicio
del array y el apellido de un cliente. La funcién debe
devolver la direccion del registro que contiene los datos
del cliente buscado o NULL si no lo encuentra. Incluir la
funcién en un programa que utilice el puntero resultado
para imprimir los datos del cliente.

La manera mas usual para representar con el lenguaje C
una tabla de una base de datos es por medio de un array
de estructuras, correspondiendo un campo de la estruc-
tura a cada columna de la tabla. Suponer que se tiene un
catalogo de un almacén con los datos de cada uno de los
articulos en stock y que se desea cambiar el orden en que
aparecen en la tabla pero sin modificar en realidad el
orden en que fueron almacenados los registros en el
array. Escribir un programa que afiada un campo de tipo
puntero al mismo tipo de estructura a cada registro. Una
vez transformado el array el programa ha de hacer que el
puntero de cada estructura apunte a la estructura que
estaria a continuacion segiin un nuevo orden, por ejem-
plo, en orden creciente de nimero del articulo.

Utilizando el array de estructuras del ejercicio anterior
escribir una funcién que busque un articulo por su codi-
go utilizando el método de blsqueda binaria que apro-
vecha la ordenacién de los registros por medio de los
punteros.

12.4.

12.5.

12.6.

12.7.

CAPITULO 12 Punteros (apuntadores)

Para la gestion de un video club se tienen los datos de todas
las peliculas que se pueden alquilar y de los clientes abo-
nados. Escribir un programa que cree dos arrays de estruc-
turas, uno para las peliculas de video y otro para los
clientes con todos sus datos. La estructura de cada pelicu-
la tendra un puntero a la estructura de la tabla de clientes
al registro del cliente que la ha alquilado. También al revés,
el registro de cada cliente tendra un puntero al registro de
la pelicula que tiene alquilada. El programa pedira conti-
nuamente el nombre de cada cinta y a quién se presta o
quién la devuelve, colocando a continuacion los punteros
de forma que apunten a los registros que correspondan.

Modificar el programa anterior para sacar por pantalla
un informe que indique las peliculas alquiladas y a
quién, los clientes y las peliculas que tienen y que per-
mita preguntar qué cliente tiene una determinada cinta.

Afiadir a los dos ejercicios anteriores una funcién que
combine la informacidn de las dos tablas, por ejemplo, cre-
ando una tabla que contenga el titulo de cada pelicula con
el teléfono y la direccidn que quien la tiene alquilada.

Al crecer el negocio se van a tener varios ejemplares de
la misma pelicula y un mismo cliente va a poder tener a
la vez hasta cuatro cintas alquiladas. Aumentar el nime-
ro de punteros necesarios para manejar dicha situacion y
modificar los programas de los ejercicios anteriores de la
manera adecuada.

13.1

Asignacion dinamica
de memoria

Los programas pueden crear variables globales o locales. Las variables declaradas globales en sus programas se almacenan en
posiciones fijas de memoria, en la zona conocida como segmento de datos del programa, y todas las funciones pueden utilizar
estas variables. Las variables locales se almacenan en la pila (stack) y existen s6lo mientras estan activas las funciones que
estan declaradas. Es posible, también, crear variables static (similares a las globales) que se almacenan en posiciones fijas de
memoria, pero solo estan disponibles en el mddulo (es decir, el archivo de texto) o funcién en que se declaran; su espacio de
almacenamiento es el segmento de datos.

Todas estas clases de variables comparten una caracteristica comun: se definen cuando se compila el programa. Esto signi-
fica que el compilador reserva (define) espacio para almacenar valores de los tipos de datos declarados. Es decir, en el caso de
las variables globales y locales se ha de indicar al compilador exactamente cuantas y de qué tipo son las variables a asignar. O
sea, el espacio de almacenamiento se reserva en el momento de la compilacion. Sin embargo, no siempre es posible conocer
con antelacion a la ejecucion cudnta memoria se debe reservar al programa.

En C se asigna memoria en el momento de la ejecucion en el monticulo o montdn (heap), mediante las funcionesmalloc(),
realloc(), calloc()y free(), que asignany liberan la memoria de una zona denominada almacén libre.

Gestion dinamica de la memoria

En numerosas ocasiones no se conoce la memoria necesaria hasta el momento de la ejecucion. Por ejemplo, si se desea alma-
cenar una cadena de caracteres tecleada por el usuario, no se puede prever, a priori, el tamafio del array necesario, a menos que
se reserve un array de gran dimension y se malgaste memoria cuando no se utilice. EI método para resolver este inconvenien-
te es recurrir a punteros y a técnicas de asignacién dindmica de memoria.

Error tipico de programacién en C:

En C no se puede determinar el tamafio de un array en tiempo de ejecucion.

El espacio de la variable asignada dindAmicamente se crea durante la ejecucion del programa, al contrario que en el caso de
una variable local cuyo espacio se asigna en tiempo de compilacién. El programa puede crear o destruir la asignacion dinami-
ca en cualquier momento durante la ejecucion. Se puede determinar la cantidad de memoria necesaria en el momento en que se

haga la asignacion.

@ CAPITULO 13 Asignacién dinamica de memoria

13.2

El codigo del programa compilado se sitlia en segmentos de memoria denominados segmentos de codigo. Los datos del progra-
ma, tales como variables globales, se sitlian en un area denominada segmento de datos. Las variables locales y la informacion de con-
trol del programa se sittian en un area denominada pila. La memoria que queda se denomina memoria del monticulo o almacén libre.
Cuando el programa solicita memoria para una variable dindmica, se asigna el espacio de memoria deseado desde el monticulo.

El mapa de memoria del modelo de un programa grande es muy similar al mostrado en la Figura 13.1. El disefio exacto
dependera del modelo de programa que se utilice. Para grandes modelos de datos, el almacén libre (heap) se refiere al area de
memoria que existe dentro de la pila del programa. Y el almacén libre es, esencialmente, toda la memoria que queda libre des-
pués de que se carga el programa.

En C las funciones malloc(), realloc(), calloc()Yy free() asignany liberan memoria de un bloque de memo-
ria denominado el monticulo del sistema. Las funciones malloc(), calloc()y realloc() asignan memoria utilizando
asignacion dinamica debido a que puede gestionar la memoria durante la ejecucion de un programa.

Funcion malloc()

La forma mas habitual en C para obtener bloques de memoria es mediante la llamada a la funciéon malloc(). La funcién reser-
va un blogue de memoria cuyo tamafio es el nimero de bytes pasados como argumento. malloc()devuelve un puntero, que
es la direccion del primer byte asignado de memoria. El puntero se utiliza para referenciar el bloque de memoria. El puntero
que devuelve es del tipo void*. La forma de llamar a la funcién malloc()es:

puntero = malloc(tamafio en bytes);

Generalmente se har& una conversion al tipo del puntero:

tipo *puntero;
puntero =(tipo *)malloc(tamano en bytes);

Memoria alta El monticulo (almacén libre)

Toda la memoria que queda disponible
esta disponible en asignaciones
dinamicas de memoria

Segmento de pila Cada segmento dato, codigo o pila de limita a 64 K

SP La pila crece hacia abajo en memoria

SS —————*| Datos no inicializados

DS ————*| Segmento de cédigo n

Segmento de codigo 2

Memoria baja Segmento de codigo 1

Figura 13.1 Mapa de memoria de un programa.

El operador unitario sizeof se utiliza con mucha frecuencia en las funciones de asignacion de memoria. El operador se
aplica a un tipo de dato (o una variable), el valor resultante es el nimero de bytes que ocupa. Al llamar a la funcién malloc(
) puede ocurrir que no haya memoria disponible, en ese caso malloc()devuelve NULL. Hay que comprobar siempre el pun-
tero para asegurar que es valido, antes de que se asigne un valor al puntero. El prototipo es:

void* malloc(size_t n);

CAPITULO 13 Asignacién dinamica de memoria @

13.3

13.4

Liberacion de memoria, funcion free()

Cuando se ha terminado de utilizar un blogque de memoria previamente asignado por malloc(), u otras funciones de asigna-
cion, se puede liberar el espacio de memoria y dejarlo disponible para otros usos, mediante una llamada a la funcion free().
El blogue de memoria suprimido se devuelve al espacio de almacenamiento libre, de modo que habra mas memoria disponible
para asignar otros bloques de memoria. El prototipo es:

void free(void *);

Funciones calloc() Y realloc()

En la sintaxis de llamada, puntero es el nombre de la variable puntero al que se asigna la direccién de memoria de un bloque,
0 NULL si falla la operacion de asignacion de memoria. El prototipo de calloc() es:

void* calloc(size_t numelementos, size_t tamafio);

La funcion realloc()permite ampliar un bloque de memoria reservado anteriormente. El puntero a blogue referencia a un
blogue de memoria reservado previamente con malloc(), calloc()o la propia realloc(). El prototipo de realloc() es:

void* realloc(void* puntero_a_bloque, size_t t);

El segundo argumento de realloc(), es el tamafio total que va a tener el bloque de memoria libre. Si se pasa cero (0) como
tamario se libera el bloque de memoria al que esta apuntando el puntero primer argumento, y la funcién devuelve NULL. Si el
primer argumento tiene el valor de NULL, la funcion reserva tanta memoria como la indicada por el segundo argumento, como
malloc().

Hay que tener en cuenta que la expansion de memoria que realiza realloc() puede hacerla en otra direccion de memo-
ria de la que contiene la variable puntero transmitida como primer argumento. En cualquier caso, realloc() copia los datos
referenciados por puntero en la memoria expandida. El prototipo de las funciones esta en std1ib.h.

Se pueden crear dindmicamente arrays multidimensionales de objetos con las funciones de asignacién de memoria. Para
crear un array bidimensional n x m, en primer lugar, se asigna memoria para un array de punteros(de n elementos), y después
se asigna memoria para cada fila (m elementos).

EJEMPLO 13.1 Definicion de arrays dinamicos.

En C no se pueden definir arrays o matrices de tamafio variable. Sin embargo, se puede utilizar la asignacion dinamica
de memoria para el mismo proposito.

ffdefine N 200
int a[lN];

int *b;

int i, tam;

b= (int*) malloc (N * sizeof (int));

for (i = 0; 1 < N; i++)
b[i] = ali]l;

printf (“Introduzca un nuevo tamafio para el array b: *);
scanf (“%d”, &tam);

realloc (b, tam);

@ Asignacion dinamica de memoria

PROBLEMAS RESUELTOS

13.1. Encuentre los errores en las siguientes declaraciones y sentencias.

int n, *p;
char** dob= "Cadena de dos punteros";
p = n*malloc(sizeof(int));

Anélisis del problema

Una cadena de caracteres se almacena en C como un array de caracteres de tipo char, por lo que puede ser accedido por un
puntero a char, pero no como un puntero doble:

char* dob= "Cadena de dos punteros";

La funcién mal1oc devuelve un puntero a la zona de memoria reservada en tiempo de ejecucion, por lo cual no tiene senti-
do hacer una operacion de multiplicacion con la direccion que devuelve. El resultado seria valido sintacticamente, pero no
daria como resultado una direccion de memoria que se pudiera utilizar. Produciria un error grave de violacion de acceso a
memoria. Habria que hacerlo asi:

p = malloc (sizeof (int));

13.2. Dada la siguiente declaracién, definir un puntero b a la estructura, reservar memoria dinamicamente para una estructura
asignando su direccion a b.

struct boton
{
char* rotulo;
int codigo;
hg

Codificacion

struct boton *b;
b = (struct boton *) malloc (sizeof (struct boton));

13.3. Una vez asignada memoria al puntero b del ejercicio 13.2 escribir sentencias para leer los campos rotulo y cédigo.
Analisis del problema
Se trata de utiliza el operador de indireccion flecha para acceder desde el puntero b a cada uno de los campos de la estructura:
Codificacion
scanf ("%s", b->rotulo);
printf ("E1l rotulo del botén es: %s\n", b->rotulo);
scanf ("%d", &b->codigo);
printf ("E1 cédigo del boton es: %d\n", b->codigo);
13.4. Declara una estructura para representar un punto en el espacio tridimensional. Declara un puntero a la estructura para

que tenga la direccién de un array dinamico de n estructuras punto. Utiliza la funcién calloc() para asignar memoria
al array y comprueba que se ha podido asignar la memoria requerida.

13.5.

13.6.

Asignacién dinamica de memoria @

struct punto3D
{
int x;
int y;
int z;
[E
struct punto3D *poligono;
int n;
if ((poligono = (struct punto3D*) calloc (n, sizeof (struct punto3D))) == NULL)
{
printf ("Error de asignacién de memoria dindmica");
exit(l);

Dada la declaracion de la estructura punto del ejercicio anterior escribe una funcion que devuelva la direccion de un array
dindmico de n puntos en el espacio tridimensional. Los valores de los datos se leen del dispositivo de entrada(teclado).

Anélisis del problema

La Unica forma de definir un array dindmico en C es declarar un puntero al tipo de datos de los elementos del array. Durante
la ejecucion del programa se reservara memoria para tantos elementos como se requiera. El lenguaje C no permite declarar
un array sin especificar su tamafio en tiempo de compilacion; ello no es problema para utilizar el puntero al array como si
se tratase del nombre de un array declarado como tal, puesto que C trata todos los arrays como punteros a sus elementos y
ve los corchetes como abreviaturas de operaciones con punteros para localizar la direccion de cada uno de sus elementos
segun estan dispuestos en la memoria.

Codificacion

struct punto3D * TleerPuntos (int numpuntos)
{
struct punto3D * poligono, *ppol;
int i;
if ((poligono = (struct punto3D*) calloc (numpuntos, sizeof (struct punto3D))) == NULL)
{
printf ("Error de asignacién de memoria dindmica");
exit(l);
}
for (i=0, ppol = poligono; i<numpuntos; i++, ppol++)
{
printf ("\n\tIntroduzca coordenadas x,y,z siguiente punto :");
scanf ("%d %d %d", ppol->x, ppol->y, ppol->z);
}
return (poligono);

Dada la declaracion del array de punteros:

ftdefine N 4
char *1inealN];

escriba las sentencias del codigo fuente para leer N lineas de caracteres y asignar cada linea a un elemento del array.

@ Asignacion dinamica de memoria

13.7.

13.8.

Analisis del problema

La forma mas eficiente de manejar un texto formado por lineas, que son cadenas de texto, es declarar un puntero doble a carac-
ter para que apunte a un array de punteros a caracter, los cuales seran los que contengan la direccion de comienzo de cada linea
del texto. Hay que recordar que se necesita un array que funcione como buffer temporal para leer cada linea y asi poder cal-
cular la longitud que tienen, con lo que se sabe cuanta memoria se va a utilizar para cada linea y no reservar mas que para los
caracteres de la cadena leida més uno para el carécter fin de cadena: '\0'.

Codificacion

int i;

char temp[80];

for (i=0; i<N; i++)

{
printf ("\n Introduzca la siguiente linea: ");
gets (temp);
lineali] = (char*) malloc (strlen (temp)+1);
strcpy (Tinealil, temp);

Escriba una funcion que reciba el array dindmico creado en el ejercicio 13.4 y amplie el array en otros m puntos del espacio.
Analisis del problema

Esta operacion es muy sencilla ya que el array ha sido manejado en todo momento a partir de un solo puntero que apunta a
la primera posicidn de los datos. Solamente hay que pasar este puntero a la funcioén realloc() para que busque un espa-
cio de memoria mayor y mueva alli los datos del array para seguir afiadiendo mas registros.

Codificacion

struct punto3D * ampliarpoligono (struct punto3D * poligono, int m)
{
struct punto3D *ppol;
int i;
if ((poligono = (struct punto3D*) realloc (poligono, sizeof (struct punto3D)*m)) == NULL)
{
printf ("Error de reasignacién de memoria dindmica");
exit(l);

for (i=0, ppol = poligono; i<m; i++, ppol+t)
printf ("\n\tIntroduzca las coordenadas x, y, z del siguiente punto :");
scanf ("%d %d %d", ppol->x, ppol->y, ppol->z);

}
return (poligono);

Escriba una funcidn que reciba las N lineas leidas en el ejercicio 13.6 y libere las lineas de longitud menor de 20 caracte-
res. Las lineas restantes han de quedar en orden consecutivo, desde la posicion cero.
Analisis del problema

La declaracién del array de lineas era:

13.9.

13.10.

Asignacién dinamica de memoria @

ftdefine N 4
char *linealN];

Ahora, suponiendo que el array contiene lineas validas, se va a proceder a la eliminacién de aquellas con una longitud menor
a 20 caracteres. Para que el array de lineas quede como se espera, ademas de eliminar las lineas hay que mover las siguien-
tes a la posicion anterior, con el fin de que estén seguidas y sin huecos entre ellas que puedan revelarse a la hora de impri-
mirlas por pantalla.

Codificacion

int 1,j;
for (i=0; i<N; i++)
{
if (strlen (linealil) < 20)
{
free (linealil);
/* se libera el espacio ocupado por la linea corta */
for (j=i; j<N, Tinealjl; j++)
/* se mueven sélo las Tineas con contenido */
linea [j] = linea [j+11;
Tinealj+1] = NULL;

¢ Qué diferencias existen entre las siguientes declaraciones?:
char *c[15];

char **c;

char c[15][12];

Anélisis del problema

char *c[157;

Es un array de 15 punteros a datos de tipo char o cadenas de caracteres, pero estos punteros estan sin inicializar: no apun-
tan a ninguna posicién de memoria valida.

char **c;

Es una variable que puede contener la direccidn de un puntero a datos de tipo char o cadenas de caracteres. Tampoco esta
inicializado, por lo cual no apunta a ningn puntero valido a char.

char c[15][12];

Es una matriz de caracteres con 15 filas y 12 columnas. Tiene espacio de memoria ya reservado para 15 * 12 caracteres.
Escribe un programa para leer n cadenas de caracteres. Cada cadena tiene una longitud variable y esta formada por cual-
quier caracter. La memoria que ocupa cada cadena se ha de ajustar al tamafio que tiene. Una vez leidas las cadenas se debe

realizar un proceso que consiste en eliminar todos los blancos, siempre manteniendo el espacio ocupado ajustado al nime-
ro de caracteres. El programa debe mostrar las cadenas leidas y las cadenas transformadas.

@ Asignacion dinamica de memoria

Analisis del problema

En primer lugar, para que cada linea sélo ocupe la memoria necesaria para sus caracteres y el carécter final de cadena, se
realiza el procedimiento de los ejercicios anteriores, esto es, leer la cadena en un buffer y después reservar memoria para la
linea leida nada mas. Se dispone de un array de punteros a cadenas que van a ir conteniendo las direcciones de comienzo de
las cadenas segun se vayan almacenando en memoria dinamicamente. Por otro lado, como hay que dejar las cadenas origi-
nales tal como estén, el programa define otro array de punteros a cadenas para contener las cadenas transformadas.

Para direccionar cada linea en vez de utilizar el operador corchete se usa la operacion de suma sobre el puntero de inicio
del array. Como los arrays siempre se comienzan a numerar desde la posicion cero, la i-ésima linea esta a una distancia i del
origen del array, posicion a la que esta apuntando el puntero declarado.

Codificacion

main (int argc, char *argv[])
{
char **1inea, **1ineaT;
int n = atoiCargv[l]);
linea = (char **)malloc (n * sizeof char *);
lineaT = (char **)malloc (n * sizeof char *);
leerCadenas (linea, n);
transformarCadenas (linea, lineaT, n);
mostrarCadenas (linea, n);
mostrarCadenas (lineaT, n);
1
leerCadenas (char **Tinea, int n)
{
int i;
char temp[80];
for (i=0; i<n; i++)
{
printf ("\nIntroduzca la siguiente linea:");
gets (temp);
lineali] = (char*) malloc (strlen (temp)+1);
strcpy (linealil, temp);

}
transformarCadenas (char **1lineas, char **lineasT, int n)
{
int i, j, k;
char cad [80];
for (i=0; i<n; i++)
{
lon = strilen (*(lineas+i));
strcpy (cad, *(lineas+i));
for (j=0; j <lon; j++)
{
if (cad[j] == ' ")
for (k = j; k<lon; k++)
cad [k] = cad [k+1];
cad[k]="\0";
}
strcpy (*(lineasT + i), cad);

CAPITULO 13 Asignacién dinamica de memoria @

}

mostrarCadenas (char **1ineas, int n)

{
int i, j
for (i=0
{

s
s

1<Mg 1mF)

lon = strlen (*(lineas+i));
for (j=0; j <lon; j++)

printf ("%c", *(*(lineas +i) + j))
printf ("\n");

13.11. Se quiere escribir un programa para leer nimeros grandes (de tantos digitos que no entran en variables Tong) y obtener la
suma de ellos. El almacenamiento de un ndmero grande se ha de hacer en una estructura que tenga un array dinamico y
otro campo con el nimero de digitos. La suma de dos nimeros grandes dara como resultado otro nimero grande represen-
tado en su correspondiente estructura.

Analisis del problema
El nimero se leera como cadena y se guardara como un array de enteros.
Codificacion

struct grande
{
int *digitos;
int numdigitos;
[
main ()
{
struct grande suml, sum2, res;
leerNumeroGrande (&suml);
leerNumeroGrande (&sum?2);
res = *sumarNumerosGrandes (&suml, &sum2);
mostrarNumeroGrande (&res);
}
leerNumeroGrande (struct grande *numgr)
{
char buffer [100], *pbuf;
int i;
printf ("\n\tIntroduzca el ndmero : ");
gets (buffer);
numgr->digitos = (int*) malloc ((strlen (buffer)+l) * sizeof (int));
numgr->numdigitos = strlen (buffer);
/* recorrer la cadena con el numero y cada digito
convertirlo a entero para guardarlo en el array de digitos)
for (pbuf = buffer, i=0; pbuf - buffer < strlen (buffer); pbuf++, i++)
/* almacenar primero los digitos menos significativos */
*(numgr->digitos + numgr->numdigitos-i) = *prbuf - '0';
}
struct grande *sumarNumerosGrandes (struct grande *ngrl, struct grande *ngr2)
{

13.12.

13.13.

int i, maxlLong;
struct grande *result;
int *pgrl, *pgr2, *pres;
result = (struct grande *) malloc (sizeof (struct grande));
maxLong = ngrl->numdigitos > ngr2->numdigitos ngrl->numdigitos : ngr2->numdigitos;
result ->digitos = (int*) ma-1loc (maxLong * sizeof (int));
result->numdigitos = maxLong;
i=0;
pgrl = ngrl->digitos;
pgr2 = ngr2->digitos;
pres = result->digitos;
while (i < ngrl->numdigitos && i++ < ngr2->numdigitos)
*pres++ = *pgrl++ + pgr++;
if (i >= ngrl->numdigitos)
for (i = ngrl->numdigitos +1; i < ngr2->numdigitos; i++)
*pres++ = *pgri++;
if (i >= ngr2->numdigitos)
for (i = ngr2->numdigitos +1; i < ngrl->numdigitos; i++)
*prest++ = *pgrl++;
/* calcular arrastre */
pres = result->digitos;
for (i=0; i< result->numdigitos; i++, pres++)
if (pres - '0" > 10)
{
*pres = (*pres) % 10);
*(pres+l) += 1;
}
return (result);
}
mostrarNumeroGrande (struct grande *ngr)
{
int i;
for (i=0; i< ngr->numdigitos; i++)
printf ("%c", *ngr->digitos++ + '0');

Se tiene una matriz de 20x20 elementos enteros. En la matriz hay un elemento repetido muchas veces. Se quiere generar otra
matriz de 20 filas y que en cada fila estén solo los elementos no repetidos. Escribir un programa que tenga como entrada
la matriz de 20x20, genere la matriz dindmica solicitada y se muestre en pantalla.

Analisis del problema

Suponiendo que el elemento repetido es mayoritario, es decir, aparece en mas de la mitad de posiciones de cada fila, lo pri-
mero es averiguar cual es y después dejar en las filas de la nueva matriz sélo los otros elementos.

Caodificacion (Consultar la pagina web del libro)

Escribir un programa para generar una matriz simétrica con nimeros aleatorios de 1 a 9. El usuario introduce el tamafio
de cada dimension de la matriz y el programa reserva memoria libre para el tamafio requerido.

Analisis del problema

Una matriz simétrica es una matriz en la cual los elementos que son simétricos respecto al eje son los mismos. Por tanto,
solamente hay que generar la mitad de la matriz y asignar lo mismo a los dos elementos simétricos que intercambian sus

Asignacion dinamica de memoria

Asignacién dinamica de memoria @

posiciones de fila por columna y al revés. Como se esta haciendo en todos los ejercicios, en vez de utilizar los operadores
corchetes para acceder a los elementos de la matriz bidimensional, se realiza la misma operacion que hace el compilador, es
decir, calcular dénde comienza cada fila a partir del puntero al comienzo del array y el tamafio de cada columna y después
situar la direccion del elemento en la fila usando su nimero de columna.

Codificacion

main()
{
int **simetrica, n, i, J;
randomize();
printf ("Introduzca la dimensién de la matriz simétrica: ");
scanf ("%d", &n);
simetrica = (int **) malloc (n*sizeof (int*));
for (i=0; i<n; i++)
simetricali]l] = (int *)malloc (n*sizeof (int));
for (i=0; i<n; i++)
for (j=0; j<n; j++)
*(simetricalil + j) =
*(simetricalj] + i) = rand ()%10;
for (i=0; i<n; it++)
*(simetricalil + i) = 0;

13.14. Escribir un programa para manejar enteros no negativos como cadenas de caracteres. Teniendo como entrada un entero n
mayor que cero, transformar n en una cadena de digitos, cad; mediante una funcién que tenga como entrada cad, trans-
formar el valor entero n en 2*n que sera devuelto como otra cadena. La salida mostrara ambas cadenas.

Analisis del problema

Esta operacion ha sido realizada ya en otros ejercicios. Solamente observe que después de hacer la operacion digito a digi-
to, hay que tener en cuenta el arrastre, para que en cada caracter haya sélo una cifra y asi corresponda su valor numérico con
el caracter (su codigo ASCII) correspondiente.

Codificacion

main ()
{
int n;
char *cad, *cad?;
printf ("Escriba un numero entero positivo: ");
scanf ("%d", &n);
ntoa (n, cad);
cad2 = doble (cad);

ntoa (int n, char *cad)

char aux[40];

char paux = aux;

while (n>0)

{
*paux++ =n % 10 + '0';
n=n/ 10;

13.15.

1
*paux = '0';
cad = (char *) malloc (sizeof (char) * (paux - aux));
strcpy(cad,aux);
}
char* doble (char *cad)
{
int i, longitud = strlen (cad);
char * aux, *cadDoble = (char *) malloc (longitud * sizeof(char)+2);
aux = cadDoble;
for (i=0; i<longitud; i++)
*aux++ = (*cad++ -'0') * 2 + '0';
return (normaliz (cadDoble));
}
char * normaliz (char * cad)
{
int i, longitud = strlen (cad);
char * aux = cad;
for (i=0; i<longitud; i++, aux++)
if (*aux - '0" > 10)
{/ * calcula el arrastre */
*aux = ((*aux - '0') % 10) + '0';
*(auxtl) += 1;
}
return cad;

Una malla de ndmeros enteros representa imagenes, cada entero expresa la intensidad luminosa de un punto. Un punto es
un elemento «ruido» cuando su valor se diferencia en dos o0 mas unidades del valor medio de los ocho puntos que le rodean.
Escribir un programa que tenga como entrada las dimensiones de la malla, reserve memoria dindmicamente para una
matriz en la que se lean los valores de la malla. En una funcion que reciba una malla, devuelva otra malla de las mismas
dimensiones donde los elementos «ruido» tengan el valor 1y los que no lo son valor 0. Todos los puntos que se encuentran
en el contorno de la malla no tienen «ruido».

Analisis del problema

En este caso la malla se disefia como un arreglo (array) bidimensional de filas y columnas, en vez de, como en otros casos,
definir primero un array de punteros que contendran la direccién de las filas.

En la entrada de datos desde la linea de érdenes hacia el argumento argv de la funcién main, hay que recordar siempre
gue los argumentos se almacenan como cadenas de caracteres a las que apuntan los punteros del array direccionado por
argv; por tanto, si un argumento es numérico, ha de ser convertido a entero antes de ser asignado a una variable entera o
real.

Codificacion (Consultar la pagina web del libro)

CAPITULO 13 Asignacién dinamica de memoria

CAPITULO 13 Asignacién dinamica de memoria

PROBLEMAS PROPUESTOS

13.1.

13.2.

En una competicién de ciclismo se presentan n ciclis-
tas. Cada participante se representa por nombre, club,
puntos obtenidos y prueba en que participara en la
competicién. La competicion es por eliminacion. Hay
pruebas de dos tipos: persecucion y velocidad. En per-
secucioén participan tres ciclistas, el primero recibe 3
puntos y el tercero se elimina. En velocidad participan
4 ciclistas, el mas rapido obtiene 4 puntos el segundo 1
y el cuarto se elimina. Las pruebas se van alternando,
empezando por velocidad. Los ciclistas participantes
en una prueba se eligen al azar entre los que en menos
pruebas han participado. El juego termina cuando no
quedan ciclistas para alguna de las dos pruebas. Se ha
de mantener arrays dinamicos con los ciclistas partici-
pantes y los eliminados. El ciclista ganador sera el que
mas puntos tenga.

Un polinomio, P(x), puede representarse con un array de
tantos elementos como el grado del polinomio més uno.
Escribir un programa que tenga como entrada el grado n
del polinomio, reserve memoria dindmicamente para un
array de n+1 elementos. En una funcion se introduciran

13.3.

13.4.

13.5.

por teclado los coeficientes del polinomio, en orden
decreciente. El programa tiene que permitir evaluar el
polinomio para un valor dado de x.

Una operacion comun en el tratamiento digital de image-
nes consiste en aplicar un filtro para suavizar los bordes
entre las figuras dibujadas. Uno de estos filtros consiste en
modificar el valor de la imagen en cada punto por la
media de los valores de los ocho puntos que tiene a su
alrededor. Escribir un programa que parta de la imagen
como una matriz de elementos enteros que representan
cada uno de ellos la intensidad de cada pixel en la imagen
y que aplique la operacion de filtrado descrita.

Escribir un programa que permita sumar, restar, multi-
plicar y dividir nmeros reales con signo representados
con cadenas de caracteres con un solo digito por carac-
ter.

Escribir una funcion que tome como entrada un nimero
entero y produzca una cadena con los digitos de su
expresion en base binaria.

CAPITULO 14

Cadenas

El lenguaje C no tiene datos predefinidos tipo cadena (string). En su lugar C, manipula cadenas mediante arrays de caracteres
que terminan con el cardcter nulo ASCII ('\0'). Una cadena se considera como un array unidimensional de tipo char o
unsigned char. En este capitulo se estudiaran temas tales como:

* Cadenas en C.

* Lectura y salida de cadenas.

« Uso de funciones de cadena de la biblioteca estandar.

* Asignacion de cadenas.

* Operaciones diversas de cadena (longitud, concatenacién, comparacion y conversion).
« Localizacién de caracteres y subcadenas; inversion de los caracteres de una cadena.

14.1 Concepto de cadena

Una cadena es un tipo de dato compuesto, un array de caracteres (char), terminado por un carcter nulo (*\0"), NULL (Fig. 14.1).

Una cadena (también Ilamada constante de cadena o literal de cadena) es "ABC". En memoria esta cadena consta de cua-
tro elementos: 'A', 'B', 'C' y '\0', ode otra manera, se considera que la cadena "ABC" es un array de cuatro elementos
de tipo char. El valor real de una cadena es la direccion de su primer caracter y su tipo es un puntero a char.

@ |L|a cla|d|e|n|a d|e t|e|s|t

) |[L|a clal|d|e|n]|a dle tlefs|t|\O

Figura 14.1 (a) array de caracteres; (b) cadena de caracteres.

El nimero total de caracteres de una cadena en C es siempre igual a la longitud de la cadena mas 1.

@ CAPITULO 14 Cadenas

14.2

14.3

Inicializacion de variables de cadena

Todos los tipos de arrays requieren una inicializacion que consiste en una lista de valores separados por comas y encerrados
entre llaves.

char texto[81] = "Esto es una cadena";
char cadenatest[] = "é¢Cudl es la longitud de esta cadena?";

La cadena texto puede contener 80 caracteres mas el caracter nulo. La tercera cadena, cadenatest, se declara con una
especificacion de tipo incompleta y se completa solo con el inicializador. Dado que en el literal hay 36 caracteres y el compi-
lador afiade el caracter '\0', un total de 37 caracteres se asignaran a cadenatest.

Ahora bien, una cadena no se puede inicializar fuera de la declaracién. La razén es que un identificador de cadena, como
cualquier identificador de array, se trata como un valor de direccién, como un puntero constante.

Para asignar una cadena a otra hay que utilizar la funcién strcpy(). La funcion strcpy() copia los caracteres de la
cadena fuente a la cadena destino. La funcién supone que la cadena destino tiene espacio suficiente para contener toda la cade-
na fuente.

EJEMPLO 14.1 Inicializacién de variables de tipo cadena
Es aconsejable declarar las cadenas que se inicializan de tipo estatico.

static char cadena [] = “Cadena estédtica”;
char *cadena?;

/* No olvidar reservar espacio para cadenas gestionadas por medio de punteros */
cadena2 = (char*) malloc (strlen(cadena) + 1);
strcpy (cadena?2, cadena);

Lectura de cadenas

La lectura usual de datos se realiza con la funcién scanf (); cuando se aplica a datos cadena el cddigo de formato es %s. La fun-
cion da por terminada la cadena cuando encuentra un espacio en blanco o el fin de linea. Se puede utilizar la funcion gets (), la
cual permite leer la cadena completa, incluyendo cualquier espacio en blanco, hasta el caréacter de fin de linea.

La funcién asigna la cadena al argumento transmitido a la funcién, que serd un array de caracteres o un puntero (char=*) a
memoria libre, con un nimero de elementos suficiente para guardar la cadena leida. Si ha habido un error en la lectura de la
cadena, devuelve NULL.

La funcién getchar () se utiliza para leer caracter a caracter. La llamada a getchar () devuelve el caracter siguiente del
flujo de entrada stdin. En caso de error, o de encontrar el fin de archivo, devuelve EOF (macro definida en stdio.h).

La funcidn putchar () se utiliza para escribir en la salida (stdout) caracter a caracter. El caracter que se escribe es el trans-
mitido como argumento. Esta funcién (realmente es una macro definida en stdio.h) tiene como prototipo:

int putchar(int ch);

La funcion puts () escribe en la salida una cadena de caracteres, incluyendo el caracter fin de linea por lo que sitla el pun-
tero de salida en la siguiente linea. El prototipo es:

int puts(const char*s);
Las funciones getch() y getche() leen un caracter tecleado sin esperar el retorno de carro. La diferencia entre ellas esta
en que con getch() el cardcter tecleado no se visualiza en pantalla (no hace eco en la pantalla), y con getche() si hay eco

en la pantalla. El prototipo de ambas funciones se encuentra en al archivo conio.h

int getch(void);
int getche(void);

CAPITULO 14 Cadenas @

EJEMPLO 14.2 Lectura y escritura de cadenas

char entradal407;
char *ptrchar;

printf (“Introduzca una cadena de caracteres: “);
ptrchar = gets (entrada);

printf (“\n Esta es la cadena introducida: *);
for (; *ptrchar != “\0’; ptrchar++)
putchar (*ptrchar);

puts (“\n Presione una tecla para terminar”);
getch ();

EJEMPLO 14.3 Manipulacién de cadenas
Se desea leer lineas de texto, m&ximo de 80 caracteres, y contar el nimero de palabras que tiene cada linea.

Cada linea se lee llamando a la funcién gets (), con un argumento que pueda almacenar el maximo de caracteres de
una linea. Por consiguiente se declara la variable: char cad[81], que serd el argumento de gets (). Con el fin de sim-
plificar, se supone que las palabras se separan con un espacio; entonces para contar las palabras se recorre el array cad
contando el nimero de espacios, la longitud de la cadena se determina con una llamada a strien(). El nimero de pala-
bras sera el nimero de espacios (blancos) contados, mas uno ya que la Ultima palabra no termina con un espacio sino
con el retorno de carro. La ejecucion termina tecleando al inicio de una linea ~ Z (tecla “control” y 2); entonces la fun-
cion gets () devuelve NULL y termina el bucle.

ffinclude <stdio.h>
ffinclude <string.h>
void main()

{

char cad[81], *a;
int i, n;

puts (“Introduce lineas, separando las palabras con blancos.\n “);
a = gets (cad);
while (a != NULL)

{

n=20;
for (i = 0; i < strlen(cad); i++)
if (cad[i]l == ° °) n++; /* también se accede a los char con *(cad+i) */

if (i > 0) ++n;

printf (“Numero de palabras: %d \n”, n);
a = gets (cad);

}

14.4 Las funciones de STRING.H

La biblioteca estandar de C contiene las funciones de manipulacién de cadenas utilizadas méas frecuentemente. Cuando se uti-
liza la funcion, se puede usar un puntero a una cadena o se puede especificar el nombre de una variable array de char. La Tabla
14.1 resume algunas funciones de cadena mas usuales.

CAPITULO 14 Cadenas

Tabla 11.1. Funciones de <string.h>

Funcion Cabecera de la funcion y prototipo
memcpy() void* memcpy(void* sl, const void* s2, size_t n);
Reemplaza los primeros n bytes de *s1 con los primeros n bytes de *s2. Devuelve s1.
strcat() char* strcat(char*destino, const char*fuente);
Afiade la cadena fuente al final de destino, concatena.
strchr() char* strchr(char* sl, int ch);
Devuelve un puntero a la primera ocurrencia de ch en s1. Devuelve NULL si ch no esti en s1.
stremp() int strcmp(const char*sl, const char*s?2);
Compara alfabéticamente la cadena sI a s2 y devuelve:
0 si sl =s2
<0 si s1 < s2
>0 si s1 > s2
stricmp() int stricmp(const char*sl, const char*s2);
Igual que strcmp(), pero sin distinguir entre mayusculas y mindsculas.
strcpy() char*strcpy(char*dest, const char*fuente);
Copia la cadena fuente a la cadena destino.
strncpy() char*strcpy(char*dest, const char*fuente, size_t num);
Copia la cadena fuente a la cadena destino.
strcspn() size_t strcspn(const char* sl, const char* s2);
Devuelve la longitud de la subcadena mas larga de s1 que comienza con el caracter s1[0] y no contiene
ninguno de los caracteres de la cadena s2.
strlen() size_t strlen (const char*s)

strncat()

strncmp()

strnset()

strpbrk()

strrchr()

strspn()

Devuelve la longitud de la cadena s excluyendo el caracter nulo de terminacion de la cadena.

char* strncat(char* sl, const char*s2, size_t n);
Afiade los primeros n caracteres de s2 a s1. Devuelve s1.Sin >= strlen(s2), entonces strncat(sl,
s2, n) tiene el mismo efecto que strcat(sl, s2).

int strncmp(const char* sl, const char* s2, size_t n);

Compara s1 con la subcadena formada por los primeros n caracteres de s2. Devuelve un entero negativo,
Ccero 0 un entero positivo, segun que s1 lexicograficamente sea menor, igual o0 mayor que la subcadena
s2.Sin = strlen(s2), entonces strncmp(sl, s2, n) Yy strcmp(sl, s2) tienen el mismo efecto.

char*strnset(char*s, int ch, size_t n);
Copia n veces el caracter ch en la cadena s a partir de la posicién inicial de s (s[0]). El maximo de
caracteres que copia es la longitud de s .

char* strpbrk(const char* sl, const char* s2);
Devuelve la direccion de la primera ocurrencia en s1 de cualquiera de los caracteres de s2. Devuelve
NULL si ninguno de los caracteres de s2 aparece en s1.

char* strrchr(const char* s, int c);
Devuelve un puntero a la Gltima ocurrencia de c en s. Devuelve NULL si ¢ no esta en s. La bisqueda la
hace en sentido inverso, desde el final de la cadena al primer caracter, hasta que encuentra el caracter c.

size_t strspn(const char* sl, const char* s2);
Devuelve la longitud de la subcadena izquierda(s1[0])...) mas larga de s1 que contiene Unicamente
caracteres de la cadena s2.

Continta

CAPITULO 14 Cadenas

strrev()

strstr()

strtok()

char*strrev(char*s);
Invierte el orden de los caracteres de la cadena especificada en el argumento s; devuelve un puntero a
la cadena resultante.

char*strstr(const char*sl, const char*s2);
Busca la cadena s2 en s1y devuelve un puntero a los caracteres donde se encuentra s2.

char* strtok(char* sl, const char* s2);

Analiza la cadena s1 en tokens (componentes léxicos), éstos delimitados por caracteres de la cadena
s2. La llamada inicial a strtok(s1, s2)devuelve la direccion del primer token y sitda NULL al final
del token. Después de la llamada inicial, cada llamada sucesiva a strtok(NULL, s2) devuelve un
puntero al siguiente token encontrado en s1. Estas llamadas cambian la cadena s1, reemplazando cada
separador con el caracter NULL.

14.5 Conversion de cadenas a numeros

La funcidén atoi () convierte una cadena a un valor entero. Su prototipo es:

int atoi(const char*cad);

La cadena debe tener la representacion de un valor entero y el formato siguiente:

[espacio en blanco] [signo] [digitos]

Si la cadena no se puede convertir, atoi () devuelve cero.
La funcién atof() convierte una cadena a un valor de coma flotante. Su prototipo es:

double atof(const char*cad);

La conversién termina cuando se encuentre un caracter no reconocido. La cadena de caracteres debe tener una
representacién de caracteres de un nimero de coma flotante. Su formato es:

[espacio en blancollsignollddd][.J[ddd][e/E][signol[ddd]

La funcién ato1() convierte una cadena a un valor largo (1ong). Su prototipo es

Tong

atol(const char*cad);

La utilidad las funciones strtol() y strtoul () radica en que convierten los digitos de una cadena, en cual-
quier sistema de numeracion (base), a entero (1ong) 0 a entero sin signo (unsigned 1ong). El prototipo de las fun-
ciones se encuentra en stdio.h, es el siguiente:

Tong

strtol (const char* c, char** pc, int base);

unsigned long strtoul (const char* c, char** pc, int base);

EJEMPLO 14.4 Conversion de cadenas a tipos numéricos

char *c = “ -49 23327;
char **pc = (char**) malloc(1l);
long nl;

unsigned long n?2;

nl

= strtol (c,pc,0);

printf (“ nl = %1d\n”, nl);
printf (* cadena actual %s\n”, *pc);

C

= *pc;

CAPITULO 14 Cadenas

n2 = strtoul (c, pc, 10);
printf (* n2 = %1u”, n2)

Ejecutando el fragmento de codigo se obtienen estos resultados:

nl = -49
cadena actual 2332
n2 = 2332

La funcién strtod() convierte los digitos de una cadena en un nimero real de tipo double. El primer argumento,
en la llamada, es la cadena; el segundo argumento es de salida, al cual la funcién asigna un puntero al caracter de la
cadena con el que termind de formarse el nimero real. El prototipo de la funcion se encuentra en stdio.h, y es el
siguiente:

double strtod (const char* c, char** pc);
EJEMPLO 14.5 Conversion de cadenas a nlimeros reales

El siguiente programa muestra coémo obtener todos los nimeros reales (tipo doub1le) de una cadena. Se puede observar
el uso de la variable errno (archivo errno.h); la funcidn asigna a errno la constante ERANGE si se produce un error
por overflow (desbordamiento) al convertir la cadena, y entonces devuelve la constante HUGE_VAL.

f##include <stdio.h>
#include <errno.h>
f#include <stdlib.h>

void main (void)

{

char*c = “333.555563 444444.2 3e+1221";
char **a;

double v=0

a = (char**) malloc(1l);

v = strtod (c, a);

if (errno != 0)
{
printf (“Error \”%d\” al convertir la cadena.”, errno);
exit (-1);

}

printf (*c = [%s], v = %1f\n”, c, v);
while ((**a) != *\0")

= strtod (c, a);
f (errno != 0)
{
printf (“Error \”%d\” al convertir la cadena.”, errno);
exit(-1);
}
printf(“c = [%s], v = %Z1f\n”, c, v);
}

{
c = *a;
v
5

Cadenas @

PROBLEMAS PROPUESTOS

14.1.

14.2.

14.3.

Se quiere leer del dispositivo estandar de entrada los n cddigos de asignaturas de la carrera de Sociologia. Escribe un seg-
mento de codigo para realizar este proceso.

Anélisis del problema

Suponer que el nimero N de asignaturas estd definido en una macro de la siguiente manera:

ftdefine N 10

Cada asignatura tiene un cddigo de cinco caracteres alfanuméricos, por lo cual se guardan en una cadena de caracteres.
Codificacion

int i;

char asignatura [N][20]1, codigo [NI[6];

for (i = 0; i<= N; i++)

{
printf ("\n\tEscriba el nombre de la asignatura: ");
gets (asignatura [i]);
printf ("\n\tEscriba el cédigo de la asignatura: ");
gets (codigo [i]);

Para entrada de cadenas de caracteres, qué diferencia existe entre scanf("%s", cadena)y gets(cadena). ¢{En qué casos
sera mejor utilizar una u otra?

Anélisis del problema

scanf() limita las variables que reconoce en la entrada por medio de los espacios en blanco que las separan; por tanto, no
es capaz de reconocer una linea que contenga espacios en blanco, porque para esta funcién cada palabra es una cadena dife-
rente. Por tanto, si se va a leer una cadena de caracteres que contenga espacios en blanco ha de hacerse con gets(). Por
otro lado gets() tiene el peligro de que aparentemente tiene un uso mas sencillo que scanf() pero si no se le propor-
ciona una cadena de caracteres como argumento puede que no almacene correctamente la entrada.

Define un array de cadenas de caracteres para poder leer un texto compuesto por un maximo de 80 lineas. Escribe una fun-
cion para leer el texto; la funcion debe tener dos argumentos, uno el texto y el segundo el nimero de lineas.

Anélisis del problema

Una de las ventajas de trabajar con punteros es poder reservar memoria dindmicamente, es decir, en tiempo de ejecucion
para las variables necesarias. En este caso si se reservase un array entero de 80 posiciones por linea, se desperdiciaria todo
el espacio sobrante de las cadenas cuya longitud no llegase a 79 caracteres. Manejando punteros y reserva dinamica de
memoria se puede leer cada linea en un buffer temporal, para averiguar su longitud final; luego reservar tanta memoria como
sea precisa para la nueva linea, hacer que el puntero de la linea apunte a la primera posicion de la memoria recién asignada
y por ultimo, copiar la linea de texto desde el buffer a la nueva zona apuntada por el puntero de la linea.

El array necesario para manejar 80 lineas, implicara, por consiguiente, 80 punteros, por lo que su declaracion podra ser la
siguiente:

char *texto[80];

@ Cadenas

Codificacion

leerTexto (char**texto, int nlineas)
{
int 1;
char buffer [80];
texto = (char**) malloc (nlineas * sizeof (char*));
for (i=0; i < nlineas ; i++)
{
gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto [i], buffer);

14.4. Escribir una funcién que tenga como entrada una cadena y devuelva el nimero de vocales, de consonantes y de digitos de
la cadena.

Analisis del problema

Se solicita que la funcién devuelva tres valores y una funcién en C s6lo puede devolver un valor, se opta por hacer que la
funcién tenga tres parametros mas de «salida». Con la semantica del paso por referencia, se pasan tres punteros a las varia-
bles que la funcion puede modificar para dejar los tres resultados que se piden, que no son mas que tres contadores.

Para averiguar el tipo del caracter, recorrer la cadena por medio de un puntero auxiliar y comparar su codigo ASCII con el
de los numeros y las letras.

Codificacion

cuentaletras (char* cadena, int *vocales, int *consonantes, int
*digitos)

char* p = cadena;
while (*p != '\0")
{
if ((Fp >= 'a' && *p <= 'Z') || ((*p >= 'a' && *p <= 'z"))
switch (*p)
{

case 'a': case 'A':

case 'e': case 'E':

case 'i': case 'I':

case 'o': case '0':

case 'u': case 'U': (*vocales) ++;
default (*consonantes) ++;

)
if (*p >= '0" && *p <= '9') (*digitos)++;
pp+;
)

14.5. ¢Qué diferencias y analogias existen entre las variables c1, c2, ¢3? La declaracion es:

char**cl;
char*c2[101];
char*c3[10][21];

Cadenas @

Analisis del problema

La variable c1 es un puntero que puede apuntar a un puntero a caracteres, pero no esta inicializado con una direccion vali-
da. La variable c2 es un array de 10 punteros a caracteres, pero estos 10 punteros no apuntan a ningn dato valido. La varia-
ble c3 es una matriz con espacio para 210 punteros a caracteres no inicializados, accesibles segtn un arreglo de 10 filas de
21 elementos cada una de ellas.

14.6. Escribe una funcién que obtenga una cadena del dispositivo de entrada, de igual forma que char* gets(char*). Utilizar
paraello getchar().

Anélisis del problema

La funcion gets() de la biblioteca estandar lee caracteres de la entrada estandar, normalmente el teclado, hasta que se le
introduce un salto de linea. Los caracteres que recibe son colocados en un buffer interno local y en la direccién donde indi-
que el argumento de la funcidn, en caso de que disponga de uno. Esta es la razon por la que es conveniente utilizar gets ()
siempre con un argumento que sea un puntero y apunte a una direccion de la memoria correcta, porque gets() no «mira»
donde coloca los caracteres, sino que se fia del puntero que se le pasa. Tampoco se puede contar con la direccion que devuel-
ve, porque al apuntar a un buffer interno, no lleva la cuenta cuando hay llamadas sucesivas, de colocar las cadenas que lee
en lugares diferentes de la memoria y los resultados pueden ser desagradables.

Codificacién
char* gets2 (char* cadena)

{
char c, *p = cadena;

while (((¢ = getchar()) != EOF) || (c != "\n"))
*p++ = C;
*m = "\0"g

return cadena;

14.7. Escribir una funcion que obtenga una cadena del dispositivo estandar de entrada. La cadena termina con el caracter de fin
de linea, o bien cuando se han leido n caracteres. La funcion devuelve un puntero a la cadena leida, o EOF si se alcanzo el
fin de fichero. El prototipo de la funcion debe de ser:

char* lee_linea(char*c, int n);
Analisis del problema

Como en el ejercicio anterior la funcion lee caracter a caracter de la entrada estandar y lo va colocando en la posicién de
memoria a la que apunta el primer argumento, sin mirar si la direccién que recibe es una direccién verdaderamente libre.

Codificacion

char* lee_linea(char*c, int n)
{
char ch, *cc = c;
if ((ch = getchar()) == EOF) return (EQOF)
else *cct++ = ch;
while (((ch = getchar()) != "\n") || (cc - ¢ < n))
*cctt = ch;
*cc = '"\0';
return c;

@ Cadenas

14.8. Escribir un programa que lea un texto de como maximo 60 lineas, cada linea con un maximo de 80 caracteres. Una vez leido
el texto intercambiar la linea de mayor longitud por la linea de menor longitud.

Anélisis del problema

Como el texto se maneja a partir de un array de punteros a caracteres que apuntan a cada una de las lineas, el manejo del
texto se hace verdaderamente sencillo. Solamente hay que tratar cada puntero como la linea a la cual apunta, pues todas las
funciones de gestion de cadenas esperan como argumento precisamente un puntero con la direccion del primer caracter de
la cadena.

Codificacion

main()
{
char *texto[60];
int i, Imax, posmax, Imin, posmin;
char buffer [807;
for (i=0; i < 60 ; i++)
{
gets (buffer);
if (strlen (buffer) == 0) break;
if (strlen (buffer) < Imin)
{
posmin = 1i;
Imin = strlen (buffer);
}
if (strlen (buffer) > Imax)
{
posmax = 1i;
Tmax = strlen (buffer);
}
texto [1] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto [i], buffer);
}
strcpy (buffer, textolposminl);
strcpy (texto[posmin]l, texto[posmaxl]);
strcpy (texto[posmax], buffer);

14.9. Escribir un programa que lea una linea de texto y escriba en pantalla las palabras de que consta la linea. Utilizar las fun-
ciones de string.h.

Anélisis del problema

El trabajo se realiza en realidad por la funcion strtok(), que utiliza un puntero interno para recorrer la cadena que se le
pasa como argumento la primera vez y se va parando en cada una de las ocurrencias de los separadores proporcionados.

Codificacion

main()

{
char cad[80];
char*separador =

14.10.

14.11.

Cadenas @

char*ptr = cad;

gets (cad);

printf("\n%s\n",cad);

ptr = strtok(cad, separador);
printf("\tSe rompe en Tas palabras");
while (ptr)

printf("\n%s",ptr);
ptr = strtok(NULL, separador);

Se tiene un texto formado por un mé&ximo de 30 lineas, del cual se quiere saber el nimero de apariciones de la palabra clave
CLAVE. Escribir un programa que lea el texto y la palabra CLAVE y, determine el nimero de apariciones de CLAVE en el
texto.
Analisis del problema
Se trata de realizar una blsqueda con strstr() en cada una de las lineas del texto individualmente, accediendo a las mis-
mas por medio de los punteros que apuntan hacia ellas.
Codificacion
main()
{
char* texto[30], buffer [80], clavel[l5];
int i, veces, *ptr;
puts (" Introduzca la palabra clave a buscar: ");
gets (clave);
for (i=0; i < 30 ; i++)
{
gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto [i1, buffer);
ptr = texto[il;
while ((ptr = strstr (ptr, clave)) != NULL) veces++;
}
printf ("La palabra clave %s aparece %d veces en el texto.\n", clave, veces);
1
Se tiene un texto de 40 lineas. Las lineas tienen un nimero de caracteres variable. Escribir un programa para almacenar el

texto en una matriz de lineas, ajustada la longitud de cada linea al nimero de caracteres. El programa debe leer el texto,
almacenarlo en la estructura matricial y escribir por pantalla las lineas en orden creciente de su longitud.

Anélisis del problema

Como en C las cadenas de caracteres no guardan informacion acerca de su propia longitud, puesto que la marca de final de
linea, '\0"', es suficiente para determinar su extension, se usa un array auxiliar para guardar la longitud de cada linea y la
posicién inicial que tienen en el texto. Después se ordena tal array por longitud de linea, tal y como se pide, y s6lo resta for-
mar otro texto con las lineas del original en las posiciones que indica el array de longitudes. Se trata en definitiva de mani-
pular simplemente los punteros del texto, puesto que las propias lineas no tienen por qué ser trasladadas.

@ CAPITULO 14 Cadenas

Codificacion

main()
{
char* textol[40], buffer [80];
int i, longlin[401[2];
puts (" Introduzca el texto linea a linea. \n ");
for (i=0; i < 40 ; i++)
{
gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char))
strcpy (texto[i], buffer);
longlin [i1[0] = strlen (buffer) +1;
longlin [i][1] = 1i;
1
ordenar (longlin);
for (i=0; i < 40 ; i++)
puts (textol Tonglin[il[111);
1

14.12. Escribir un programa que lea lineas de texto, obtenga las palabras de cada linea y las escriba en pantalla en orden alfa-
bético. Se puede considerar que el maximo nimero de palabras por linea es 28.

Anélisis del problema

Este ejercicio es sencillo puesto que la informacion que se solicita esta dentro de cada linea por separado. Se trata de acce-
der a cada linea por medio del puntero donde se guardan y dividirse en palabras, guardarlas en una matriz auxiliar, ordenar-
las y mostrarlas ordenadas.

Codificacion

main()
{
char* texto[100], buffer [80], palabras[28]1[20], *ptr;
int i, J;
puts (" Introduzca el texto linea a linea. \n ");
for (i=0; i < 100 ; i++)
{
gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (textolil, buffer);
ptr = strtok(textolil, " ");
] = g
while (ptr)
{
strcpy (palabras [j++1, ptr);
ptr = strtok(NULL, " ");
}
ordenar (palabras);
for (i=0; i < 28 ; i++)
{
puts (palabras[il);
palabras[i]l [0] = "\0';

Cadenas @

14.13. Se quiere leer un texto de como maximo 30 lineas y que ese texto se muestre de tal forma que aparezcan las lineas en orden
alfabético.

Codificacion

main()
{
char* texto[30], buffer [80];
int i;
puts (" Introduzca el texto linea a linea .\n ");
for (i=0; i < 30 ; i++)
{
gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto[i], buffer);
}
ordenar (texto);
for (i=0; i < 30 ; i++)
puts (textol[il);

14.14. Se sabe que en las lineas que forman un texto hay valores numéricos enteros, representan los kg de patatas recogidos en
una finca. Los valores numéricos estan separados de las palabras por un blanco, o el caracter fin de linea. Escribir un pro-
grama que lea el texto y obtenga la suma de los valores numéricos.

Analisis del problema

La funcidn estandar de conversion de cadenas en enteros, atoi (), devuelve 0 si no encuentra digitos en la cadena que se
le pasa como argumento. Utilizando esta caracteristica se puede separar en palabras las lineas del texto y aplicar a cada pala-
bra la funci6n atoi (), si encuentra un nimero devolvera el nimero de kilos.

Codificacion

main()
{
char* texto[100], buffer [80]1, *ptr;
int i, kilos, suma;
puts (" Introduzca el texto linea a linea. \n ");
for (i=0; i < 100 ; i++)
{
gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (textolil, buffer);
ptr = strtok(textoli], " ");
J = 03
while (ptr)
{
if ((kilos = atoi (ptr)) != 0)
suma += kilos;
ptr = strtok(NULL, " ");
}
printf ("La suma total de los kg. recogidos es de %d\n", suma);

Cadenas

14.15. Escribir un programa que lea una cadena clave y un texto de como maximo 50 lineas. El programa debe de eliminar las
lineas que contengan la clave.

Codificacion

main()

{

char* texto[50], buffer [80], clavel[l5];
int 1;

puts (" Introduzca la palabra clave a buscar: ");

gets (clave);
for (i=0; i < 50 ; i++)
{

gets (buffer);

texto [i] = (char*) malloc ((strlen (buffer)+1)

if (strstr (buffer, clave) == NULL)
strcpy (texto [i], buffer);

14.16. Se quiere sumar nimeros grandes, tan grandes que no pueden almacenarse en variables de tipo 7ong. Por lo que se ha pen-
sado en introducir cada nimero como una cadena de caracteres y realizar la suma extrayendo los digitos de ambas cade-
nas. Hay que tener en cuenta que la cadena suma puede tener un caracter mas que la maxima longitud de los sumandos.

Analisis del problema

Las condiciones del enunciado indican que no se puede convertir las cadenas en enteros, sumar los enteros y convertir el
resultado de vuelta en cadena. Asi que con las cadenas tal cual se dan y caracter a caracter se convierten en digitos y se suman
y se convierte la suma en un digito del resultado, teniendo cuidado, claro esta, en que si el resultado es mayor que 9 tiene
que haber arrastre sobre el digito siguiente (en realidad el anterior en la cadena), puesto que en cada caracter solamente se
puede representar un digito del 0 al 9.

Para facilitar el disefio del algoritmo, como los ndmeros se introducen como se escriben, desde las cifras mas significati-
vas a las menos, se da la vuelta en la cadena, porque se suma al revés y asi se hace que la suma se realice en el mismo sen-
tido del avance corriente de los indices de los arrays, esto es, en sentido creciente.

Codificacion

char* leerGrandes (char* numl, char* num2)

{

/* para alinear los nlUmeros dar la vuelta a las cadenas

487954558 855459784
+ 235869 + 968532
488190427 724091884

asi se pueden sumar los digitos en el sentido del

char* rnuml, * rnum2, *result;
int i, mayor;

rnuml = strrev (numl);

rnum2 = strrev (num2);

array */

mayor = strlen (numl) > strlen (num2) ? strlen (numl) : strlen (num2);
result = (char*) malloc ((mayor +2) * sizeof (char));

for (i=0; i<=mayor; i+t)
resultl[i] = *rnuml++ + *rnum2++;

14.19. Un texto esta formado por lineas de longitud variable. La maxima longitud es de 80 caracteres. Se quiere que todas las line-
as tengan la misma longitud, la de la cadena més larga. Para ello se debe cargar con blancos por la derecha las lineas
hasta completar la longitud requerida. Escribir un programa para leer un texto de lineas de longitud variable y formatear

Cadenas

for (i=0; i<=mayor; i+t) /* cdlculo del arrastre */
if (resultli] > 10)
{
result[i+1] += (int) resultlil / 10;
/* division entera */
resutl[i] %= 10;
}
return (strrev (result));

el texto para que todas las lineas tengan la longitud de la maxima linea.

Analisis del problema

Como en los ejercicios anteriores se trata linea por linea a partir de sus punteros. En cada linea se obtiene su longitud y se
escriben blancos a continuacion hasta completar la longitud de la linea mas larga mas el 0 final.

Codificacion

main()

{

14.20. Escribir un programa que encuentre dos cadenas introducidas por teclado que sean anagramas. Se considera que dos cade-
nas son anagramas si contienen exactamente los mismos caracteres en el mismo o en diferente orden. Hay que ignorar los

char* texto[100], buffer [80]1, *ptr;
int i, j, mayor;
puts (" Introduzca el texto linea a linea.\n ");
for (i=0; i < 100 ; i++)
{
gets (buffer);
texto [i] = (char*) malloc (80 * sizeof (char));
strcpy (textol[i], buffer);
if (mayor < strlen (buffer))
mayor = strlen (buffer);
}
/* rellenado con blancos */
for (i=0; i < 100 ; i++)
{
texto[il=realloc(textol[i], mayor+l);
for (j= strlen (texto[il); j <mayor; j++)
*(textoli] + j) = " ';
textolillmayor+l] = '\Q0';

blancos y considerar que las mayusculas y las mintsculas son iguales.

Anélisis del problema

Para averiguar si dos cadenas son anagramas, se necesita entonces saber qué letras tienen. Para eso se utiliza un array con
una posicion para cada letra del abecedario. Este array contendra el nimero de veces que se encuentra cada caracter cuyo

Cadenas

codigo ASCII coincide con el valor de su posicion en el array. Al final s6lo se compara la informacion guardada en los arrays

de cada cadena.
Codificacion

main()

{
char cadl[40], cad2[40];
char* ptrl = cadl, *ptr2 = cad?;
int letras1[28], letras2[28], i;
gets (cadl);
cadl = tolower (cadl);
gets (cad2);
cad2 = tolower
for (i=0; i
{

(cad2);
< 40; i++)

if (alpha (cadll[il))
letraslfcadl[i] -
if (alpha (cad2[i]1))
letraslfcad2[i] -

"3 1+

'a']+

1

for (i=0; i < (28);
if (letrasl[i]

return; puts

i++)
I= letras2[il)

puts

PROBLEMAS PROPUESTOS

14.1. Lafuncion atoi () transforma una cadena formada por
digitos decimales en el equivalente ndmero entero.
Escribir una funcién que transforme una cadena forma-
da por digitos hexadecimales en un entero largo.

14.2. Escribir una funcién para transformar un nimero entero

en una cadena de caracteres formada por los digitos del

nUmero entero.

14.3. Escribir una funcién para transformar un nimero real en

una cadena de caracteres que sea la representacion deci-

mal del nimero real.

14.4. Escribir un programa que lea una linea de texto y escri-

ba en pantalla las palabras de que consta la

linea sin utilizar las funciones de string.h. y particu-
larmente sin usar strtok().

14.5. Escribir un programa que lea lineas de texto, obtenga las

palabras que aparecen en él y las escriba en pantalla en

("Las cadenas introducidas no son anagramas.

("Las cadenas introducidas son anagramas. \n");

14.6.

14.7.

\n");

orden alfabético, afiadiendo el nimero de veces que apa-
recen.

Un texto estd formado por lineas de longitud variable.
La maxima longitud es de 80 caracteres. Se quiere que
todas las lineas tengan la misma longitud, la de la
cadena mas larga. Para ello se debe rellenar con blan-
cos los espacios que ya existen entre las palabras. Tal
relleno debe ser lo més uniforme posible para que no
se note la transformacién. Escribir un programa para
leer un texto de lineas de longitud variable y formate-
ar el texto para que todas las lineas tengan la longitud
de la maxima linea.

Un sistema de cifrado simple consiste en sustituir cada
caracter de un mensaje por el caracter que esta situado a
tres posiciones alfabéticas por delante suyo. Escribir una
funcién que tome como pardmetro una cadena y devuel-
va otra cifrada como se ha explicado.

CAPITULO 14 Cadenas

14.8.

14.9.

Otro sistema de encriptacion consiste en sustituir cada
caracter del alfabeto por otro decidido de antemano,
pero siempre el mismo. Utilizar este método en una fun-
cién que tome como parametros el mensaje a cifrar y una
cadena con las correspondencias ordenadas de los carac-
teres alfabéticos. La funcion devolvera un puntero a la
cadena cifrada del mensaje.

Escribir una funcioén que cada vez que se le llame genere
un codigo alfanumérico diferente, devolviéndolo en forma
de cadena. El argumento de dicha funcién es el nimero de
caracteres que va a tener el codigo generado.

14.10. Escribir un programa que tome como entrada un progra-
ma escrito en lenguaje C de un fichero de texto y com-
pruebe si los comentarios estan bien escritos. Es decir, se
trata de comprobar si después de cada secuencia ' /*'
existe otra del tipo '*/', recordando que no se pueden
anidar comentarios.

14.11. Escriba una funcién que reciba una palabra y genere
todas las palabras que se pueden construir con sus letras.

15.1

Entrada y salida
por archivos

Hasta este momento se han realizado las operaciones basicas de entrada y salida. La operacion de introducir (leer) datos en el
sistema se denomina lectura y la generacion de datos del sistema se denomina escritura. La lectura de datos se realiza desde
su teclado e incluso desde su unidad de disco, y la escritura de datos se realiza en el monitor y en la impresora de su sistema.

Las funciones de entrada/salida no estan definidas en el propio lenguaje C, sino que estan incorporadas en cada compila-
dor de C bajo la forma de biblioteca de ejecucion. En C existe la biblioteca stdio.h estandarizada por ANSI; esta biblioteca
proporciona tipos de datos, macros y funciones para acceder a los archivos. EI manejo de archivos en C se hace mediante el
concepto de flujo (streams) o canal, o también denominado secuencia. Los flujos pueden estar abiertos o cerrados, conducen
los datos entre el programa y los dispositivos externos. Con las funciones proporcionadas por la biblioteca se pueden tratar
archivos secuenciales, de acceso directo, archivos indexados...

En este capitulo aprendera a utilizar las caracteristicas tipicas de E/S para archivos en C, asi como las funciones de acceso
mas utilizadas.

Flujos

Un flujo (stream) es una abstraccion que se refiere a un flujo o corriente de datos que fluyen entre un origen o fuente (pro-
ductor) y un destino o sumidero (consumidor). Entre el origen y el destino debe existir una conexion o canal por la cual circu-
len los datos. La apertura de un archivo supone establecer la conexion del programa con el dispositivo que contiene al archivo.
Hay tres flujos o canales abiertos automaticamente:

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

Estas tres variables se inicializan al comenzar la ejecucion del programa y todas ellas admiten secuencias de caracteres en
modo texto. Tienen el siguiente cometido:

stdin asocia la entrada estandar (teclado) con el programa.
stdout asocia la salida estandar (pantalla) con el programa.
stderr asocia la salida de mensajes de error (pantalla) con el programa.

El acceso a los archivos se hace con un buffer intermedio. Se puede pensar en el buffer como un array donde se van almace-
nando los datos dirigidos al archivo, o desde el archivo; el buffer se vuelca cuando de una forma u otra se da la orden de vaciarlo.

@ CAPITULO 15 Entrada y salida por archivos

15.2

15.3

Por ejemplo, cuando se llama a una funcion para leer del archivo una cadena, la funcion lee tantos caracteres como quepan en el
buffer. Luego, la primera cadena del buffer es la que se obtiene; una siguiente llamada a la funcion obtendra la siguiente cadena
del buffer, asi hasta que se quede vacio y sea llenado con una posterior llamada a la funcién de lectura.

Apertura de un archivo

Para comenzar a procesar un archivo en C la primera operacion a realizar es abrir el archivo. La apertura del archivo supone
conectar el archivo externo con el programa, e indicar coémo va a ser tratado el archivo: binario, texto. El programa accede a
los archivos a través de un puntero a la estructura FILE, la funcion de apertura devuelve dicho puntero.

La funcidn para abrir un archivo es fopen(); el formato de llamada:

FILE *fopen(char *nombre_archivo, char *modo);
nombre = cadena Contiene el identificador externo del archivo.
modo = cadena Contiene el modo en que se va a tratar el archivo.

La funcion puede detectar un error al abrir el archivo, por ejemplo que el archivo no exista y se quiera leer, entonces devuel-
ve NULL.

fopen() espera como segundo argumento el modo de tratar el archivo. Fundamentalmente se establece si el archivo es
para leer, para escribir o para afiadir; y si es de texto o binario. Los modos basicos se expresan como Modo en la Tabla 15.1.
A éstos se afiade la t para modo texto, la b para modo binario.

Tabla 15.1 Modos de apertura de un archivo

Modo Significado

"t Abre para lectura.

"W Abre para crear nuevo archivo (si ya existe se pierden sus datos).

"a" Abre para afiadir al final.

"t Abre archivo ya existente para modificar (leer/escribir).

"W Crea un archivo para escribir/leer (si ya existe se pierden los datos).

"a+" Abre el archivo para modificar (escribir/leer) al final. Si no existe es como w-+.

Al terminar la ejecucion del programa podra ocurrir que haya datos en el buffer de entrada/salida, si no se volcasen en el
archivo quedaria éste sin las Ultimas actualizaciones. Siempre que se termina de procesar un archivo y siempre que se termine
la ejecucion del programa los archivos abiertos hay que cerrarlos para que entre otras acciones se vuelque el buffer.

La funcion fclose() cierra el archivo asociado al puntero_file, devuelve EOF si ha habido un error al cerrar. El proto-
tipo es:

int fclose(FILE* puntero_file);

Funciones de lectura y escritura

Las funciones putc() y fputc()son idénticas, putc() estd definida como macro. Escriben un caracter c en el archi-
vo asociado con el puntero a FILE. Devuelven el caracter escrito, o bien EQF si no puede ser escrito. El formato de Ilama-
da es:

putc(c, puntero_archivo);
fputc(c, puntero_archivo);

Las funciones getc()y fgetc(), leen un caracter (el siguiente carécter) del archivo asociado al puntero a FILE.
Devuelven el caracter leido o EOF si es fin de archivo (o si ha habido un error). El prototipo de ambas funciones es el
siguiente:

CAPITULO 15 Entrada y salida por archivos @

int getc(FILE* pf);
int fgetc(FILE* pf);

La funcién fputs() escribe una cadena de caracteres. La funcion devuelve EOF si no ha podido escribir la cadena, un valor
no negativo si la escritura es correcta; el formato de llamada es:

fputs(cadena, puntero_archivo);

La funcion fgets() lee una cadena de caracteres del archivo. Termina la captacion de la cadena cuando lee el caracter de
fin de linea, 0 bien cuando ha leido n-1 caracteres, siendo n un argumento entero de la funcién. La funcién devuelve un pun-
tero a la cadena devuelta, o NULL si ha habido un error. El formato de llamada es:

fgets(cadena, n, puntero_archivo);

Las funciones printf()y scanf() permiten escribir o leer variables de cualquier tipo de dato estndar; los codigos de
formato (%d, %f ..)indican a C la transformacion que debe de realizar con la secuencia de caracteres(conversion a entero ...).
La misma funcionalidad tienen fprintf()y fscanf() con los flujos a que se aplican. Estas dos funciones tienen como pri-
mer argumento el puntero asociado al archivo de texto. El prototipo de ambas funciones es el siguiente:

int fprintf(FILE* pf, const char* formato,. . .);
int fscanf(FILE* pf, const char* formato,. . .);

La funcién feof() devuelve un valor distinto de O (true) cuando se lee el caracter de fin de archivo, en caso contrario
devuelve 0 (false). El prototipo de la funcion es el siguiente:

int feof (FILE* pf);
Con la funcién rewind() se sitla el puntero del archivo al inicio de éste. El prototipo:
void rewind(FILE* pf);

EJEMPLO 15.1 Lectura y escritura en un archivo (fichero) de texto

En un archivo (fichero) de texto la informacién se guarda en formas de cadenas de caracteres separadas por saltos de
linea. El programa siguiente solicita una serie de lineas al usuario, las escribe en un fichero y a continuacién imprime.

FILE *ftexto;
char 1lineal801];

if ((ftexto = fopen (“ejemplo.txt”, “w+t”)) == NULL)
fprintf (stderr, “Error al abrir el archivo”);

while (!strcmp (Tinea, “fin”))
{
gets (linea);
fputs (Tinea, strlen(linea) + 1, ftexto);
}
printf (“Estas han sido las lineas recibidas:\n”);

while (!feof (ftexto))
{
fgets (linea, strlen(linea) + 1, ftexto);
puts (linea);
}
fclose (ftexto);

@ CAPITULO 15 Entrada y salida por archivos

Ademas, C dispone de la funcion fflush() para volcar y vaciar el buffer del archivo pasado como argumento. La fun-
cién devuelve 0 si no ha habido error, en caso de error devuelve la constante EOF. El prototipo es el siguiente:

int fflush (FILE* pf);
EJEMPLO 15.2 Uso de fflush()

En el siguiente fragmento se realiza una entrada de un nimero entero, llamando a scanf (), y de una cadena de carac-
teres, llamando a gets(). Lallamada fflush (stdin) hace que se vacie integramente el buffer de entrada, en caso
contrario quedaria el caracter fin de lineay gets () leeria una cadena vacia.

int cuenta;
char b[817;

printf (“Cantidad: *);
scanf (“%d”, &cuenta);
fflush (stdin);

printf (“Direcciodn: “);
gets (b);

15.4 Archivos binarios de C

Para abrir un archivo en modo binario hay que especificar la opcion b en el modo. Los archivos binarios son secuencias de
bytes. Los archivos binarios optimizan el espacio, sobre todo con campos numéricos. Asi, almacenar en modo binario un ente-
ro supone una ocupacion de 2 bytes o 4 bytes (depende del sistema), y un nimero real 4 bytes o 8 bytes; en modo texto pri-
mero se convierte el valor numérico en una cadena de digitos (%26d, %8.2f ...)Yy después se escribe en el archivo.

La funcién fwrite() escribe un buffer de cualquier tipo de dato en un archivo binario. El prototipo de la funcion es:

size_t fwrite(const void * direccion_buffer, size_t tamafio,
size_t num_elementos, FILE * puntero_archivo);

La funcidn fread() lee de un archivo n blogues de bytes y los almacena en un buffer. El nimero de bytes de cada bloque
(tamafio) se pasa como parametro, al igual que la direccion del buffer (o variable) donde se almacena. El prototipo de la fun-
cion es:

size_t fread(const void * direccion_buffer, size_t tamafo,
size_t num_elementos, FILE * puntero_archivo);

Con la funcion fseek() se puede tratar un archivo en C como un array que es una estructura de datos de acceso aleato-
rio. fseek() sitla el puntero del archivo en una posicidn aleatoria, dependiendo del desplazamiento y el origen relativo que
se pasan como argumentos.

El segundo argumento de fseek() es el desplazamiento, el tercero es el origen del desplazamiento. El prototipo es :
long fseek(FILE * puntero_archivo, long desplazamiento, int origen);

origen Posicion desde la que se cuenta el nimero de bytes a mover. Puede tener tres valores, que son:
0 O SEEK_SET: Cuenta desde el inicio del archivo.
1 O SEEK_CUR: Cuenta desde la posicion actual del puntero al archivo.
2 [0 SEEK_END: Cuenta desde el final del archivo.

La posicion actual del archivo se puede obtener llamando a la funcién fte11() Yy pasando un puntero al archivo como
argumento. La funcién devuelve la posicion como nimero de bytes (en entero largo: 7ong int) desde el inicio del archivo
(byte 0). El prototipo es:

long int ftell(FILE *pf);

CAPITULO 15 Entrada y salida por archivos

Otra forma de conocer la posicion actual del archivo, o bien mover dicha posicion es mediante las funciones fgetpos() y
fsetpos().La funcion fgetpos() tiene dos argumentos, el primero representa al archivo (flujo) mediante el puntero FILE
asociado. El segundo argumento de tipo puntero a fpos_t (tipo entero declarado en stdio.h) es de salida; la funcion le asig-
na la posicidn actual del archivo. La funcién fsetpos ()se utiliza para cambiar la posicion actual del archivo. La nueva posi-
ci6n se pasa como segundo argumento (de tipo const fpos_t*) en la llamada a la funcion. El primer argumento es el puntero

FILE asociado al archivo.

La dos funciones devuelven cero si no ha habido error en la ejecucion, en caso contrario devuelven un valor distinto de cero

(el nimero del error). Sus prototipos estan en stdio.h, son los siguientes:

int fgetpos (FILE* pf, fpos_t* p);
int fsetpos (FILE* pf, const fpos_t* p);

EJEMPLO 15.3 Lectura y escritura en un archivo binario

En un archivo se desea grabar la notas que tienen los alumnos de una asignatura junto al nombre del profesor y el
resumen de aprobados y suspensos. La estructura va ser la siguiente: Primer registro con el nombre de la asignatura
y curso.Segundo registro con el nombre del profesor, nimero de alumnos, de aprobados y suspensos.Cada uno de los

alumnos, con su nombre y nota.

Se crea un archivo binario (modo wb+) con la estructura que se indica en el enunciado. Antes de escribir el segundo
registro (profesor) se obtiene la posicion actual, llamando a fgetpos (). Una vez que se han grabado todos los registros
de alumnos, se sitiia como posicidn actual, llamando a fgetpos (), el registro del profesor con el fin de grabar el nime-
ro de aprobados y suspensos. Naturalmente, segun se solicitan las notas de los alumnos se contabiliza si la calificacion

es aprobado o suspenso. La entrada de datos se realiza desde el teclado.

#include <stdlib.h>
ffinclude <stdio.h>

typedef struct
{
char asg[41];
int curso;
I ASGTA;

typedef struct
{
char nom[41];
int nal, aprob, susp;
} PROFS;
typedef struct
{
char nom[417;
float nota;
} ALMNO;

void entrada (ALMNO* a);
void main (void)

{
ASGTA a;

PROFS h = {*“ “, 0, 0, 0}; /* valores iniciales:

ALMNO t;
FILE* pf;
int i;

fpos_t* p = (fpos_t*) malloc (sizeof(fpos_t));

aprobados,

suspensos */

@ CAPITULO 15 Entrada y salida por archivos

pf = fopen (“CURSO.DAT”, “wb+”);
if (pf == NULL)
t
printf (“Error al abrir el archivo, modo wbh+”);
exit (-1);
}

printf (“Asignatura: “);

gets (a.asg);

printf (“Curso: “);

scanf (“%d%*c”, &a.curso);

fwrite (&a,sizeof(ASGTA), 1, pf);

printf (“Nombre del profesor: *);

gets (h.nom);

printf (“Ndmero de alumnos: “);

scanf (“%d%*c”, &h.nal);

fgetpos (pf, p); /* guarda en p la posicion actual */
fwrite (&h,sizeof(PROFS),1,pf);

for (i = 1; i <= h.nal; i++)
{
entrada (&t);
if (t.nota <= 4.5)
h.susp++;
else
h.aprob++;
fwrite (&t, sizeof(ALMNO), 1, pf);
1

fflush (pf);

fsetpos (pf, p); /*se sitla en registro del profesor */
fwrite (&h, sizeof(PROFS), 1, pf);

fclose(pf);

}

void entrada(ALMNO* a)

{

printf (“Nombre: *“);

gets (a -> nom);

printf (“Nota: “);

scanf (“%f%*c”, &(a -> nota));
}

15.5 Datos externos al programa con argumentos de main()
La funciéon main() tiene dos argumentos opcionales: el primero es un argumento entero que contiene el nimero de parame-
tros transmitidos al programa (incluyendo el mismo nombre del programa). El segundo argumento contiene los parametros
transmitidos, en forma de cadenas de caracteres; por lo que el tipo de este argumento es un array de punteros a char. Puede
haber un tercer argumento que contiene las variables de entorno, definido también como array. El prototipo de main() sera:

int main(int argc, char*argv[]);

Los nombres de los argumentos pueden cambiarse.

Entrada y salida por archivos @

PROBLEMAS RESUELTOS

15.1.

15.2.

15.3.

Escribir las sentencias necesarias para abrir un archivo de caracteres cuyo nombre y acceso se introduce por teclado en
modo lectura; en el caso de que el resultado de la operacion sea errdneo, abrir el archivo en modo escritura.

Analisis del problema

Estas son las operaciones bésicas para realizar la apertura de un fichero. Una observacion importante es que siempre se ha
de comprobar si la apertura del archivo ha sido realizada con éxito, puesto que es una operacién que realiza el sistema ope-
rativo para el programa y queda fuera de control. En caso de que la apertura no fuera correcta, es recomendable abortar la
ejecucion del programa para averiguar qué es lo ha podido ir mal.

ENTRADA: Nombre del archivo a abrir.

Codificacion

FILE *ps
char nombre[14]; /* tiene que haber espacio para el nombre completo */
printf ("Escriba el nombre del fichero: ");
gets (nombre);
if ((fp = fopen (nombre, "rt")) == NULL)
{
puts ("Error de apertura para lectura ");
fp = fopen (nombre, "wt");

Sefiale los errores del siguiente programa:

##include <stdio.h>
int main()
{
FILE* pf;
pf = fopen("almacen.dat");
fputs("Datos de los alma-cenes TIESO", pf);
fclose(pf);
return 0;

Analisis del problema

La funcién fopen() carece de segundo argumento para indicar el modo de apertura del archivo. Tampoco se comprueba que
el fichero se haya podido abrir sin errores, segun el valor devuelto por la funcién fopen().

Se tiene un archivo de caracteres de nombre «SALAS.DAT». Escribir un programa para crear el archivo «SALAS.BIN» con
el contenido del primer archivo pero en modo binario.

Analisis del problema

Observar que la diferencia externa al usar un archivo binario y otro de texto esta solamente en el argumento que indica el
modo de apertura, porque las operaciones de lectura y escritura se ocupan de leer o escribir la misma variable segun el dife-
rente formato: en el archivo de texto byte a byte convirtiéndolo a y de su cddigo ASCII y en el archivo binario se vuelva de
y a la memoria sin realizar ninguna transformacién.

@ Entrada y salida por archivos

Codificacion

main()
{
FILE * pft, * pfb;
char 1ineal[807;
if ((pft = fopen ("SALAS.DAT", "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
if ((pfb = fopen ("SALAS.BIN", "wb")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof(pft))
{
fgets (linea, 80, pft);
fwrite (lTinea, strlen (linea) +1, 1, pfb);
}
fclose (pft);
fclose (pfb);

15.4. La funcién rewind() sitda el puntero del archivo en el inicio del archivo. Escribir una sentencia, con la funcion fseek (
) que realice el mismo cometido.

Analisis del problema

Como fseek() posiciona el puntero del fichero en la posicién que indican sus dos Gltimos argumentos, hacer una Ilama-
da que posicione en el byte 0 desde el origen del fichero.
fseek(puntero_archivo, 0, SEEK_SET);

15.5. Utiliza los argumentos de la funcién main() para dar entrada a dos cadenas; la primera representa una méscara, la segun-
da el nombre de un archivo de caracteres. El programa tiene que localizar las veces que ocurre la mascara en el archivo.

Anélisis del problema

La organizacion de un archivo de tipo texto es una serie de cadenas de caracteres almacenadas secuencialmente y separadas
por caracteres final de linea y salto de carro, que cuando se leen en memoria se convierten en cadenas terminadas en '\0"',
como todas las cadenas del lenguaje C. Los caracteres estan almacenados en un byte cuyo contenido es el cddigo ASCII
correspondiente. Las funciones de entrada y salida, es decir, de lectura y escritura con archivos de modo texto son de dos
tipos, o leen y escriben byte a byte, caracter a caracter, o leen y escriben linea a linea.

En este programa se trata de leer cada linea de un archivo de texto y buscar en ella la ocurrencia de una subcadena denomi-
nada méascara, para lo cual se utilizan las funciones estandar de C de tratamiento de cadenas.

Codificacion

main (int argc, char **argv)
{
FILE * pf;
char mascaral[20], nombre[14], 1ineal[80]1, *ptr;

Entrada y salida por archivos @

int veces, i;
if (argc != 3)
{
printf ("Uso: programa mascara archivo.\n");
exit (1);
}
strcpy (mascara, argv[1]);
strcpy (nombre, argv[2]);
if ((pf = fopen (nombre, "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof (pf))
{
fgets (Tinea, 80, pf);
i+t
ptr = Tinea;
while (*ptr)
{
ptr++ = strstr (ptr, mascara);
printf ("La mascara aparece en la linea %d \n", 1i);
vecestt;
}
}
printf ("La mascara aparece %d veces en el fichero. \n", veces);
fclose (pf);

15.6. Un archivo contiene enteros positivos y negativos. Utiliza la funcion fscanf() para leer el archivo y determinar el nime-
ro de enteros negativos.

Anélisis del problema

Una vez dominadas las funciones de entrada y salida por teclado y consola de la biblioteca estandar de C, es muy facil pro-
gramar con las funciones de entrada y salida para ficheros de texto, puesto que son las mismas. Asi fscanf() es totalmente
similar a scanf(), solamente variando en que la segunda lee siempre de la entrada estandar —teclado—, mientras que la
primera puede leer de cualquier archivo abierto en modo texto.

Aunque esta operacion es muy simple, es bueno entender el mecanismo de conversion que se esta utilizando. El fichero
abierto contiene nimeros enteros, pero al ser un archivo de texto esos nimeros estan almacenados no de forma binaria sino
como una cadena de caracteres que representan los digitos y el signo del nimero en forma de secuencia de sus cédigos ASCII
binarios.

Esto no quiere decir que haya que leer linea a linea y en cada una de ellas convertir las secuencias de cddigos de caracteres
a los nimeros enteros en binario correspondiente, para almacenarlos asi en la memoria. Este trabajo es el que realiza la fun-
cion fscanf() cuando el formato indica que lo que se va a encontrar es un entero. Es la misma operacion de conversion
que realiza la funcidn scanf() cuando lee secuencias de cddigos de teclas desde la entrada estndar.

Codificacion

main (int argc, char **argv)
{
FILE * pfg
char mascaral[20], nombre[14], 1ineal[80];

@ Entrada y salida por archivos

int num, neg;
if ((pf = fopen ("NUMEROS.TXT", "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof (pf))
{
fscanf (pf, "%d", &num);
if (num < 0) neg++;
1
printf ("E1 ndmero de enteros no negativos en el fichero es %d \n", neg);
fclose (pf);

15.7. Un archivo de caracteres quiere escribirse en la pantalla. Escribir un programa para escribir el archivo, cuyo nombre viene
dado en la linea de 6rdenes, en pantalla.

Anélisis del problema

Los archivos de texto estan creados para ser leidos en memoria linea a linea, transformandose los caracteres final de linea
y salto de carro en el caracter terminado de cadena que entiende C en memoria. Por eso, para escribir el contenido de un
archivo en memoria basta con leer cada linea y escribirla en pantalla con cualquiera de las funciones que lo hacen.

Codificacion

main (int argc, char **argv)
{
FILE * pf;
char nombre[14], Tineal807;
if (argc != 2)
{
printf ("Uso: programa archivo.\n");
exit (1);
}
strcpy (nombre, argv[1]);
if ((pf = fopen (nombre, "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof (pf))
{
fgets (linea, 80, pft);
puts (l1inea);
}
fclose (pf);

15.8. Escribir una funcion que devuelva una cadena de caracteres de longitud n, del archivo cuyo puntero se pasa como argu-
mento. La funcién termina cuando se han leido los n caracteres o es fin de archivo. Utilizar la funcién fgetc().
El prototipo de la funcién pedida es:

char* leer_cadena(FILE* pf, int n);

15.9.

Entrada y salida por archivos @

Analisis del problema

La funcion fgetc()es usada para ir leyendo el fichero abierto en modo texto caréacter a caracter, o lo que es lo mismo, byte
a byte.

Codificacion

char* leer_cadena(FILE* pf, int n){
{
char cadenaln+1];
int i;
while (!feof(pf) || i <n)
cadena [i++] = (char) fgetc (pf);
cadenalil = '"\0"';
return cadena;

Se quiere concatenar archivos de texto en un nuevo archivo. La separacion entre archivo y archivo ha de ser una linea con
el nombre del archivo que se acaba de procesar. Escribir el programa correspondiente de tal forma que los nombres de los
archivos se encuentren en la linea de drdenes.

Anélisis del problema

El segundo argumento de main(), llamado cominmente argv, €s un puntero a un array que contiene punteros que apun-
tan al inicio de las cadenas de caracteres donde el sistema guarda los elementos de la linea de érdenes. Como en este caso
esos elementos son nombres de archivos, se van a ir tomando uno a uno desde el segundo —porque el primero siempre es
el nombre del ejecutable del programa que permite su ejecucion— para pasarselos a las funciones fopen() y asi poder
abrir cada archivo necesario.

Codificacion

main (int argc, char **argv)
{
FILE * pf, pfcat;
char nombre[14], T1ineal80];
int 1 = 2;
if (argc < 2)
{
printf ("Uso: programa lista de archivos. \n");
exit (1);
}
if ((pfcat = fopen (argv[1], "wt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
argc--;
while (--argc >0)
{
strcpy (nombre, argv[i++]);
if ((pf = fopen (nombre, "rt")) == NULL)
{
puts ("Error de apertura ");

exit(l);
}
fputs (nombre,

pfcat);

while (!feof (pf))

{

fgets (linea, 80, pf);
fputs (linea, pfcat);

}

fclose (pf);
}
fclose(pfcat);

Entrada y salida por archivos

15.10. Escribir una funcién que tenga como argumentos un puntero de un archivo de texto, un ndmero de
linea inicial y otro nimero de linea final. La funcion debe mostrar las lineas del archivo comprendidas entre los limites indi-

cados.

Anélisis del problema

Por supuesto, los archivos de texto no contienen lineas numeradas, a no ser que se hayan escrito en ellos incluyendo su nume-
racion. Pero como la lectura es secuencial, es necesario utilizar una variable entera a modo de indice o contador, para llevar
en todo momento el nimero de lineas leidas y esto puede servir para saber cuél es la posicion de cada una de ellas.

Codificacion

mostrarLineas (FILE *pf, int inicio, int fin)

{
char 1lineal801;
int i=1;
while (!feof (pf))
{
fgets (Tinea,

80, pf);

if (i >= inicio && i <= fin)
printf ("%d: %s/n", i++, linea);

15.11. Escribir un programa que escriba por pantalla las lineas de texto de un archivo, numerando cada linea del mismo.

Codificacion

main (int argc, char **argv)

{
FILE * pf;

char nombre[14], 1ineal807;

int i;

if (argc != 2)

{
printf ("Uso:
exit (1);

}

programa archivo.\n");

strcpy (nombre, argv[1]);
if ((pf = fopen (nombre, "rt")) == NULL)

Entrada y salida por archivos @

puts ("Error de apertura ");
exit(l);
}
while (!feof (pf))
{
fgets (linea, 80, pf);
printf ("%+4d : %Zs\n" i++, Tinea);
}
fclose (pf);

15.12. Escribir un programa que compare dos archivos de texto. El programa ha de mostrar las diferencias entre el primer archi-
vo Y el segundo, precedidas del nimero de linea y de columna.

Analisis del problema

Si solamente se pidiera saber qué lineas son diferentes, se podria comparar cada linea con una funcién como strcmp(), pero
como se indica que es necesario saber en qué caracteres difieren, hay que comparar en cada par de lineas que se leen de cada
fichero cada caracter con el que esta en la misma posicion del otro archivo (fichero).

Codificacion

main()
{
char 1ineall[80], Tinea2[80];
int numlinea, i;
FILE * pft, * pfb;
if ((pfl = fopen ("TEXTOS.DAT", "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
if ((pf2z = fopen ("COPIA.DAT", "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof(pfl) && !feof(pf2))
{
fgets (lineal, 80, pfl);
fgets (1inea2, 80, pf2);
numlinea ++;
for (i=0; i<80 || Tinealli]l != linea2[il; i++)
if (linealli] != Tinea2[il)
{
printf ("\n Linea %d y columna %d:", numlinea, 1);
printf (" primer fichero -> %s segundo fichero -> %s",
&linealli], &linea2[il);

}
fclose(pfl);
fclose(pf2);

@ Entrada y salida por archivos

15.13. Un atleta utiliza un pulsémetro para sus entrenamientos. El pulsémetro almacena las pulsaciones cada 15 segundos, duran-
te un tiempo maximo de 2 horas. Escribir un programa para almacenar en un archivo los datos del pulsémetro del atleta,
de tal forma que el primer registro contenga la fecha, hora y tiempo en minutos de entrenamiento, a continuacion los datos
del pulsémetro por parejas: tiempo, pulsaciones.

Analisis del problema

Los datos que hay que almacenar son de tipo struct, es decir definidos por usuario. Se podria convertir estos datos a cade-
nas y almacenarlos en un archivo de texto. Parece mas directo utilizar un archivo binario, en el que se guardan los datos tal
y como estan en memoria. Asi se ahorraria una conversion al leer y escribir. Lo Unico que hay que tener en cuenta es que,
como los archivos binarios no tienen ninguna clase de marca sobre la estructura de lo que estan almacenado en ellos, son los
programas los que tendran que leer con las mismas estructuras con que se escribieron.

Codificacion

struct entrenamiento
{
char fechalll]l; /* dd/mm/aaaaa */
char horal9] /* hh:mm:ss */
int minutos;
} rege;
struct pulsom
{
char horal9] /* hh:mm:ss */
int pulsaciones;
} regp;
main()

FILE * pf;
if ((pf = fopen ("ENTRENAM.DAT", "wb")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
printf ("\nFecha entrenamiento : ");
gets (rege.fecha);
printf ("\nHora entrenamiento: ");
gets (rege.hora);
printf ("\nDuracién en minutos del entrenamiento: ");
scanf ("%d",®e.minutos);
fwrite (®e, sizeof (rege), 1, pf);
printf ("\n\n— Datos pulsémetro —");
for (m = 0; m < rege.minutos * 60 /15; m++)
{

printf ("\nHora : ");
gets (regp.hora);
printf ("\nPulsaciones : ");

scanf ("%d", ®p.pulsaciones);
fwrite (®p, sizeof (regp), 1, pf);
}
fclose(pf);

Entrada y salida por archivos @

15.14. Se quiere obtener una estadistica de un archivo de caracteres. Escribir un programa para contar el nimero de palabras
de que consta un archivo, asi como una estadistica de cada longitud de palabra.

Anélisis del problema

La tabla 1ongitudes tiene en cada uno de sus elementos el nimero de palabras con una longitud igual a su lugar en la
tabla. La variable numpalabras contiene el nimero total de palabras en el archivo.

Codificacion

main()
{
int longitudes[20], numpalabras;
char 1ineal807;
FILE * pf;
if ((pf = fopen ("PRUEBA.DAT", "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof(pf))
{

fgets (1inea, 80, pf);
for (i=0; i<80 || Tinealil; i++)
{

if (1ineali] = ' ")

{
numpalabras ++;
longitudes [longpall]l ++;
longpal =0;

}

else longpal+t;

}
fclose(pf);
printf("Numero de palabras y %d", numpalabras);
for (i=0; i<20; i++)
printf("Aparecen y %d palabras de longitud y %d", longitudes[il, 1);

15.15. En un archivo binario se encuentran pares de valores que representan la intensidad en miliamperios y el correspondiente
voltaje en voltios para un diodo. Por ejemplo:
0.5 0.35
1.0 045
2.0 0.55
2.5 0.58

El problema es que dado un valor del voltaje v, comprendido entre el minimo valor y el méximo encontrar el correspon-
diente valor de la intensidad. Para ello el programa debe leer el archivo, formar una tabla y aplicar un método de interpo-
lacion. Una vez calculada la intensidad, el programa debe de escribir el par de valores en el archivo.

@ Entrada y salida por archivos

Analisis del problema

El programa va a leer los datos desde el fichero y con ellos va a formar una tabla en memoria. A partir de esta tabla se cal-
cularan los nuevos valores y se afiadiran al final del array. Una vez terminada la operacion se escribe de nuevo la tabla ente-
ra en el fichero.

Codificacion

struct pares
{
float intensidad;
float voltaje;
hg
main()
{
FILE #* s
struct pares tabla [100], valor;
int i, 1;
float volt;
if ((pf = fopen ("SALAS.DAT", "r+b")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while(!feof(pf))
{
fread (&valor, sizeof (valor), 1, pf);
tablalil.intensidad = valor.intensidad;
tablali++].voltaje = valor.voltaje;
}
printf ("\nIntroduzca un valor de voltaje: ");
scanf ("%f", &volt);
mAmp = interpolacion (volt, &1);
/* calcula el valor de la intensidad interpolado y el lugar
de Ta tabla tras el que deberia colocarse */
rewind(pf);
for (i=0; i<=T; i++)
fwrite (&tablalil, sizeof (valor), 1, pf);
valor.intensidad = mAmp;
valor.voltaje = volt;
fwrite (&valor, sizeof (valor), 1, pf);
for (i=1+1; i<100; i++)
fwrite (&tablalil, sizeof (valor), 1, pf);
fclose(pf);

15.16. Un profesor tiene 30 estudiantes y cada estudiante tiene tres calificaciones en el primer parcial. Almacenar los datos en un
archivo, dejando espacio para dos notas mas Yy la nota final. Incluir un menud de opciones, para afiadir mas estudiantes,
visualizar datos de un estudiante, introducir nuevas notas y calcular nota final.

Anélisis del problema

El mend indica una manera de especificar cual de las operaciones que permite el programa se puede activar. La primera fun-
cién va a ir escribiendo las estructuras en el fichero segun se va introduciendo la primera parte de las notas. Hay que recor-

CAPITULO 15 Entrada y salida por archivos @

dar que los archivos binarios no son mas que secuencias de bits sin estructura alguna. La estructura la da el programa que
define qué estructura, o estructuras, necesita definir para los datos que va a escribir y leer.

De esta forma, una vez escritos los registros con las primeras notas, no hace falta mas que leerlos de nuevo para afiadir
mas notas o calcular la nota final. Para volver a escribir la informacion en el disco sin tener que cargar todo en memoria y
volverlo a escribir entero, como el disco permite un acceso secuencial, se puede utilizar la funcion fseek() para, una vez
leido un registro y modificado en memoria, volver atras al inicio de ese registro en el archivo y reescribirlo con la informa-
cion actualizada.

Codificacion

struct nota

{
char nombre[407;
int notas[5];
int notafinal;

}s

main()
{
int op;
puts ("Menu del programa de gestién de notas");
puts (" ")
puts ("(1) Introducir notas primer parcial.");
puts ("(2) Introducir notas segundo parcial.");
puts ("(3) Calcular notas finales.");
puts ("(4) Afadir nuevos alumnos.");
puts ("(5) Consultar notas.");
puts ("(0) Salir.");
puts ("Introduzca su opcidn.");
puts("");

scanf ("%d", &op);
switch (op)
{

case 0: exit (1);

case 1: primerParcial(); break;
case 2: segundoParcial(); break;
case 3: notasFinales(); break;
case 4: anhadir(); break;

case 5: consultar(); break;

}
primerParcial()
{
struct nota reg;
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof (pf))
{
fread (®, sizeof (reg), 1, pf);
visualizar (reg);

}

CAPITULO 15

puts ("Escriba nota primera");
scanf ("%d", ®.notal0]);

puts ("Escriba nota segunda");
scanf ("%d", ®.notalll);

puts ("Escriba nota tercera");
scanf ("%d", ®.notal2]);

fwrite (®, sizeof (reg), 1, pf);

fclose(pf);

segundoParcial()

{

struct nota reg;
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)

{

}

puts ("Error de apertura ");
exit(1l);

while (!feof (pf))

{

}

fread (®, sizeof (reg), 1, pf);
visualizar (reg);

puts ("Escriba nota cuarta");

scanf ("%d", ®.notal3]1);

puts ("Escriba nota quinta");

scanf ("%d", ®.notal4]);

fwrite (®, sizeof (reg), 1, pf);

fclose(pf);

notasFinales()

{

struct nota reg;

int media;

FILE * pf;

if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)

{

}

puts ("Error de apertura ");
exit(l);

while (!feof (pf))

{

fread (®, sizeof (reg), 1, pf);

visualizar (reg);

media = (reg.notas[0] + reg.notas[1] + reg.notas[2]
+ reg.notas[3] + reg.notas[4]) / 5;

reg.notafinal = media;

fseek (pf, -sizeof (reg), SEEK_CUR);

fwrite (®, sizeof (reg), 1, pf);

Entrada y salida por archivos

CAPITULO 15 Entrada y salida por archivos @

fclose(pf);
}
visualizar (struct nota r)
{
printf ("\t\n Nombre del Alumno : %s.", r.nombre);
printf ("\t\n Notas : %d %d %d %d %d.", r.notas[0], r.notas[l], r.notas[2], r.notas[3],
r.notas[4]1);
printf ("\t\n Nota final: %d\n.", r.notafinal);

anhadir()
{
struct nota reg;
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
fseek (pf, 0, SEEK_END);
printf ("\t\n Nombre del Alumno :");
gets (reg.nombre);
puts ("Escriba nota primera");
scanf ("%d", ®.notal0]);
puts ("Escriba nota segunda");
scanf ("%d", ®.notall]);
puts ("Escriba nota tercera");
scanf ("%d", ®.notal2]);
fwrite (®, sizeof (reg), 1, pf);
puts ("Escriba nota cuarta");
scanf ("%d", ®.notal3]);
puts ("Escriba nota quinta");
scanf ("%d", ®.notal4]);
fwrite (®, sizeof (reg), 1, pf);
fclose(pf);

consultar()
{
struct nota reg;
char alumno[40];
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
printf ("\t\n Nombre del Alumno :");
gets (alumno);
while (!feof (pf))
{
fread (®, sizeof (reg), 1, pf);
if (!strcmp (reg.nombre, alumno))

@ Entrada y salida por archivos

visualizar (reg);
return;

}
puts ("Alumno no existente. \n");
fclose(pf);

15.17. Se quiere escribir una carta de felicitacion navidefia a los empleados de un centro sanitario. El texto de la carta se encuentra
en el archivo CARTA.TXT. El nombre y direccion de los empleados se encuentra en el archivo binario EMPLA.DAT, como una
secuencia de registros con los campos nombre y direccién. Escribir un programa que genere un archivo de texto por cada emple-
ado, la primera linea contiene el nombre, la segunda esta en blanco, la tercera la direccion y en la quinta empieza el texto
CARTA.TXT.

Anélisis del problema

En este problema lo Gnico que hay que observar con cuidado es la secuencia de operaciones, puesto que para cada lectura de
datos de archivo binario hay que copiar el archivo de texto en el archivo resultado. También hay que fijarse en que hay que
operar de forma diferente los dos archivos pues son de tipos diferentes. El archivo binario posee datos que son cadenas de
caracteres, pero al estar almacenados de forma binaria hay que leerlos como tales, a partir de su estructura.

Codificacion

struct empleado

{
char nombre[40];
char direccion [40];

main()
{
struct empleado reg;
FILE * pf, *pfc, *pff;
if ((pfc = fopen ("CARTA.TXT", "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
if ((pf = fopen ("EMPLA.DAT", "rb")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
if ((pff = fopen ("CARTAS.TXT", "wt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while (!feof (pf))
{
fread (®, sizeof (reg), 1, pf);
fputs (reg.nombre, pff);

Entrada y salida por archivos @

fputs ("", pff);

fputs (reg.direccion, pff);
fputs ("", pff);

fputs ("", pff);

while (!feof(pfc))

{
fgets (linea, 80, pfc);
fputs (linea, pff);

}
fclose(pf);
fclose(pff);
fclose(pfc);

15.18. Se quiere crear un archivo binario formado por registros que representan productos de perfumeria. Los campos de cada
registro son cédigo de producto, descripcion, precio y nimero de unidades. La direccién de cada registro viene dada por
una funcién hash que toma como campo clave el codigo del producto(tres digitos):
hash(clave) = (clave modulo 97) + 1

El nimero maximo de productos distintos es 100. Las colisiones, de producirse, se situaran secuencialmente a partir del
registro nimero 120.

Analisis del problema

En un archivo binario en el que se escriben estructuras o registros de un Unico tipo, se puede considerar que esas estructu-
ras estan numeradas, como lo estarian si estuviesen en un array en memoria. El lugar de cada estructura viene dado por su
posicién desde el comienzo del archivo. El primer registro seria el cero siempre y asi sucesivamente. Buscar el registro a par-
tir de su ndmero de indice es tan sencillo como calcular el nimero del byte donde comienza dicho registro. Este byte se cal-
cula multiplicando el nimero del indice del registro por los bytes que ocupa cada registro. Una vez localizado el byte, sdlo
resta pasarlo a la funcion fseek() para que posicione el puntero de lectura y escritura del archivo en él. Las operaciones de
lectura o escritura siempre se realizan desde la posicion del puntero, avanzandole en un nimero de bytes igual al tercer para-
metro de las llamadas fread() o fwrite() oigual al nimero de bytes leidos, en caso de que éste fuera menor.

En este problema se obtiene el nimero del registro, o lo que es lo mismo, la posicion del archivo en la que va a ser escri-
to partir de una funcion que parte del contenido del propio registro. Esta es la funcion llamada hash que permite también al
contrario encontrar la posicion de un registro a partir de su contenido.

Codificacion

struct producto
{
int codigo;
char descripcion[807;
float precio;
int unidades;
[
struct producto reg;
int hash;

main()
{
int colisiones = 120;
FILE * pis
if ((pf = fopen ("PERFUM.DAT", "r+b")) == NULL)

@ Entrada y salida por archivos

puts ("Error de apertura ");
exit(l);
}
printf ("\n\tCoédigo de producto: ");
scanf ("%d", ®.codigo);
printf ("\n\t Descripcién del producto: ");
gets (reg.descripcion);
printf ("\n\t Precio: ");
scanf ("%f", ®.precio);
printf ("\n\t Nimero de unidades: ");
scanf ("%d", ®.unidades);
hash = reg.codigo % 97 +1;
fseek (pf, hash * sizeof (reg), SEEK_SET);
fread (®, sizeof (reg), 1, pf);
if (reg.codigo == 0)
fwrite (®, sizeof (reg), 1, pf);
else
{
fseek (pf, colisiones++ * sizeof (reg), SEEK_SET);
fwrite (®, sizeof (reg), 1, pf);
}
fclose(pf);

15.19. Modificar el problema 15.13 para afiadir un men0 con opciones de afiadir al archivo nuevos entrenamientos, obtener el
tiempo que se esta por encima del umbral aerdbico (dato pedido por teclado) para un dia determinado y media de las pul-
saciones.

Analisis del problema

En este programa cada funcién abre el fichero, lee todo su contenido, realiza las operaciones correspondientes y lo cierra.
Otra manera de hacerlo podria haber sido abrir el fichero una vez en la funcién principal y pasar el puntero al fichero a cada
una de las funciones para que operen sobre él, sea como parametro 0 como una variable global al programa.

Coadificacion (Consultar la pagina web del libro)

15.20. Un archivo de texto consta en cada linea de dos cadenas de enteros separadas por el operador +, 0 —,. Se quiere formar un
archivo binario con los resultados de la operacion que se encuentra en el archivo de texto.

Anélisis del problema

Como de antemano se conoce el formato de las lineas que componen el fichero de texto y ademas es necesario hacer una
conversion de caracteres a enteros, se puede utilizar la funcién fscanf() para realizar ambas tareas: la lectura y la con-
version, tras proporcionarles el formato concreto que va a encontrar en cada linea que lea.

Codificacion

main()

{
char 1ineal[801;
FILE * pf, *pfr;
int res, vall, valZ;

if ((pf = fopen ("VALORES.TXT", "rt")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
if ((pfr = fopen ("RESULT.DAT", "wb")) == NULL)
{
puts ("Error de apertura ");
exit(l);
}
while(!feof(pf))
{
fgets (linea, 80, pf);
if (strchr (linea, ‘+7))
{
fscanf (pf, "%d+%d\n", &vall, &val2);
res = vall + val?2;
fwrite (&res, sizeof (int), 1, pfr)
}
if (strchr (linea, “-7))
{
fscanf (pf, "%d-%d\n", &vall, &val2);
res = vall - valZ;
fwrite (&res, sizeof (int), 1, pfr)
}
}
fclose(pf);
fclose(pfr);
}
15.1. Las funciones fgetpos()y fsetpos() devuelven la
posicion actual del puntero del archivo, y establecen el
puntero en una posicion dada. Escribir las funciones
pos_actual() ymover_pos(), con los prototipos:
int pos_actual(FILE* pf, long* p); 15.3.
int mover_pos(FILE* pf, const long* p);
La primera funcion devuelve en p la posicion actual del
archivo. La segunda funcion establece el puntero del — 15.4.

15.2.

Entrada y salida por archivos

archivo en la posicion p.

Un atleta utiliza un pulsémetro para sus entrenamientos.
El pulsémetro almacena las pulsaciones cada 15 segun-
dos, durante un tiempo maximo de 2 horas. Escribir un
programa para almacenar en un archivo los datos del pul-
sometro del atleta, de tal forma que el primer registro

contenga la fecha, hora y tiempo en minutos de entrena-
miento, a continuacion los datos del pulsémetro por
parejas: tiempo, pulsaciones. El archivo donde se alma-
cene la informacién ha de ser de tipo texto.

Escribir un programa para listar el contenido de un
determinado subdirectorio, pasado como pardmetro a la
funcién main().

Escribir un programa que gestione una base de datos
con los registros de una agenda de direcciones y teléfo-
nos. Cada registro debe tener datos sobre el nombre, la
direccion, el teléfono fijo, el teléfono movil, la direc-
cion de correo electronico de una persona. El programa
debe mostrar un menu para poder afadir nuevas entra-
das, modificar, borrar y buscar registros de personas a
partir del nombre.

Entrada y salida por archivos

PROBLEMAS PROPUESTOS DE
PROGRAMACION DE GESTION

15.1. Mezclar dos archivos ordenados para producir otro 15.4. Una vez obtenida del ejercicio anterior la lista de pro-
archivo ordenado consiste en ir leyendo un registro de veedores desde el archivo de transacciones, se desea
cada uno de ellos y escribir en otro archivo de salida el saber con qué proveedores se ha trabajado mas. Para
que sea menor de los dos, repitiendo la operacion con el ello se sabe que en archivo de texto se apuntaba en cada
registro no escrito y otro leido del otro archivo, hasta que linea la cantidad pagada en cada operacion.
todos los registros de los dos archivos hayan sido leidos Evidentemente como hay varias transacciones con un
y escritos en el archivo de salida. Este tendra al final los mismo proveedor es necesario acumularlas todas para
registros de los dos archivos de entrada pero ordenados. saber el monto total de las transacciones por proveedor.
Suponer que la estructura de los registros es: Una vez que se tiene esta cantidad hay que escribirla en

un archivo de proveedores ordenados descendentemen-
struct articulo te por la cantidad total pagada.
{
long clave; 15.5. El sistema informatico de una gran superficie comer-
char nombre [207; cial va guardando en un archivo binario la informacion
int cantidad; de las operaciones de cada una de las cajas. La infor-
char origen[10]; macién de cada operacidn es de tamafio variable y con-
5 siste en el nimero de caja, la cantidad total pagada, el
modo de pago (contado o tarjeta) una lista con cada uno
El campo clave es por el que tendran que estar ordena- de los articulos comprados y su cantidad. Como cada
dos los registros. operacion tiene una lista de articulos comprados de
tamafio diferente, el primer campo de cada registro

15.2. Se tiene que ordenar un archivo compuesto de registros guardado indica el ndmero de articulos de la lista del
con las existencias de los articulos de un almacén. El registro que aparece a continuacion. Escribir un pro-
archivo es demasiado grande como para leerlo en memo- grama que lea cada registro de forma adecuada y mues-
ria en un array de estructuras, ordenar el array y escri- tre en pantalla toda la informacién de cada operacion.
birlo al final, una vez ordenado, en el disco. La Unica El tipo del registro de tamafio variable utilizado es el
manera es leer cada doscientos registros, ordenarlos en siguiente:
memoria y escribirlos en archivos diferentes. Una vez
gue se tienen todos los archivos parciales ordenados hay struct oper
que irlos mezclando, como se indica en el ejercicio ante- {
rior, sucesivamente hasta tener un archivo con todos los int numarticulos;
registros del original, pero ordenados. Utilizar la estruc- int caja;
tura del ejercicio anterior. float total;

struct articulo

15.3. En un archivo de texto se conserva la salida de las trans- {

acciones con los proveedores de una cadena de tienda. char nombre[15];

Se ha perdido el listado original de proveedores y se float precio;

desea reconstruirlo a partir del archivo de transacciones. } *lista;

Se sabe que cada linea del archivo comienza con el b

nombre del proveedor. Se pide escribir un programa que

lea el archivo de transacciones, obtenga el nombre del 15.6. Modificar el programa del ejercicio anterior para que

proveedor con los caracteres hasta el primer espacio en
blanco y muestre una lista con todos los proveedores
diferentes con los que se trabaja en las tiendas.

produzca listados por agrupados caja o por nombre de
articulo.

16.1

CAPITULO 16

Organizacion de datos
en un archivo

Grandes cantidades de datos se almacenan normalmente en dispositivos de memoria externa. Este capitulo se dedica a la orga-
nizacion y gestion de datos estructurados sobre dispositivos de almacenamiento secundario, tales como discos magnéticos,
CDs... .Las técnicas requeridas para gestionar datos en archivos son diferentes de las técnicas que estructuran los datos en
memoria principal, aunque se construyen con ayuda de estructuras utilizadas en memoria principal.

Los algoritmos de ordenacion presentados en el capitulo 10 no se pueden aplicar si la cantidad de datos a ordenar no cabe
en la memoria principal de la computadora y estan en un dispositivo de almacenamiento externo. Es necesario aplicar nuevas
técnicas de ordenacion que se complementen con las ya estudiadas. Entre las técnicas mas importantes destaca la fusion o mez-
cla. Mezclar, significa combinar dos (o mas) secuencias en una sola secuencia ordenada por medio de una seleccién repetida
entre los componentes accesibles en ese momento.

Registros

Un archivo o fichero es un conjunto de datos estructurados en una coleccion de registros, que son de igual tipo y constan a su
vez de diferentes entidades de nivel mas bajo denominadas campos. Un registro es una coleccién de campos I6gicamente rela-
cionados, que pueden ser tratados como una unidad por algun programa.

EJEMPLO 16.1 Definicién de registro

El concepto de registro es similar al concepto de estructura (struct) de C. Una posible representacion en C del regis-
tro libro es la siguiente:

struct libro
{
char titulol[46];
char autor [807;
char editoriall[35];
struct fecha fechaEdicion;
int numPags;
long isbn;

@ CAPITULO 16 Organizacién de datos en un archivo

16.2

Una clave es un campo de datos que identifica el registro y lo diferencia de otros registros. Normalmente los registros de
un archivo se organizan segln un campo clave. Claves tipicas son nimeros de identificacion, nombres; en general puede ser
una clave cualquier campo que admita relaciones de comparacion. Por ejemplo, un archivo de libros puede estar organizado
por autor, o bien por editorial, etc.

Organizacioén de archivos

La organizacion de un archivo define la forma en que los registros se disponen sobre el dispositivo de almacenamiento. La orga-
nizacién determina como estructurar los registros en un archivo. Se consideran tres organizaciones fundamentales:

« Organizacion secuencial.
* Organizacién directa.
« Organizacion secuencial indexada.

16.2.1 ORGANIZACION SECUENCIAL

Un archivo con organizacion secuencial es una sucesion de registros almacenados consecutivamente, uno detras de otro, de tal
modo que para acceder a un registro dado es necesario pasar por todos los registros que le preceden.

Un archivo con organizacion secuencial se puede procesar tanto en modo texto como en modo binario. En C para crear estos
archivos se abren (fopen()) especificando en el argumento modo: “w”, “a”, “wb” 0 “ab”; a continuacion se escriben los
registros utilizando, normalmente, las funciones fwrite(), fprintf()y fputs().

EJEMPLO 16.2 Operaciones con archivos secuenciales

En el primer programa se leen una serie de registros de tipo Distrito para guardarlos en un archivo y en el segundo
programa se leen del fichero (archivo) para contabilizar los datos escritos.

typedef struct

t
char candidatol[41];
long votl;
char candidato2[417;
Tong vot2;
char candidato3[41];
Tong vot3;

} Distrito;

char* archivo = “Petanca.dat”;
FILE *pf = NULL;

void main()

{
Distrito d;
int termina;

pf = fopen (archivo, “ab”);

if (pf == NULL)

{
puts (“No se puede crear el archivo.”);
exit (-1);

strcpy (d.candidatol,”Lis Alebuche”);
strcpy (d.candidato2,”Pasionis Cabitorihe”);

CAPITULO 16 Organizaciéon de datos en un archivo

strcpy (d.candidato3,”Gulius Martaria™);

termina = 0;
puts (“Introducir los votos de cada candidato,
do {

leeRegistro (&d);

termina con 0 0 07);

if ((d.votl == 0) && (d.vot2 == 0) && (d.vot3 == 0))

{
termina = 1;

puts (“Fin del proceso. Se cierra el archivo”);

}
else
fwrite (&d, sizeof(Distrito), 1, pf);
} while (!termina);
fclose (pf);

void leeRegistro (Distrito* d)
{

printf (“Votos para %s : “, d -> candidatol);
scanf (“%1d”, &(d -> votl));
printf (“Votos para %s : “, d -> candidato2);
scanf (“%1d”, &(d -> vot2));
printf (“Votos para %s : “, d -> candidato3d);

scanf (“%1d”, &(d -> vot3));

/*

Cédigo fuente del programa, cntavoto.c, que lee secuencialmente
los registros del archivo Petanca.dat y cuenta los votos.

*/

fHinclude <stdlib.h>
#include <stdio.h>
#include <string.h>
##include “petanca.h”

void main()
{
Distrito d;
int votos[3] = {0,0,0};

pf = fopen (archivo, “rb”);

if (pf == NULL)

{
puts (“No se puede Teer el archivo.”);
exit (-1);

fread (&d, sizeof(Distrito),l, pf);
while (!feof (pf))
{

votos[0] += d.votl;

votos[1l] += d.vot?2;

votos[2] += d.vot3;

@ CAPITULO 16 Organizacién de datos en un archivo

fread(&d, sizeof(Distrito),l, pf);
1
fclose (pf);

puts(“\n\tV0OTOS DE CADA CANDIDATO\n”);

printf (“ %s %1d: \n”, d.candidatol, votos[0]);
printf (“ %s %1d: \n”, d.candidato2, votos[1l]);
printf (* %s %1d: \n”, d.candidato3, votos[2]);

16.2.2 ORGANIZACION DIRECTA

Un archivo con organizacién directa (aleatoria), o sencillamente archivo directo, se caracteriza por que el acceso a cualquier
registro es directo mediante la especificacion de un indice, que da la posicién ocupada por el registro respecto al origen del
archivo.

EJEMPLO 16.3 Tratamiento de un archivo directo

En la seccidn siguiente de un programa de gestion de habitaciones en un hotel, se leen los registros utilizando una funcion que
devuelve la situacion del comienzo de cada registro en el archivo directo a partir del nimero de habitacion:

ftdefine desplazamiento(n) ((n - 1) * sizeof(Habitacion))

void entrada(void)
it
Habitacion h;
int encontrado, nh;
/* Blsqueda secuencial de primera habitacidén libre */
encontrado = 0;
nh = 0;

if (fb == NULL) fb = fopen (fich, “rb+”);
fseek (fb, OL, SEEK_SET);

while ((nh < numhab) && !encontrado)
t
fread (&h, sizeof(h), 1, fb);
nh++;
if (strcmp (h.nif , “*7) == /* Habitacién Tibre */
t
encontrado = 1;
leerRes (&h);

fseek (fb, desplazamiento(h.num), SEEK_SET);
fwrite (&h, sizeof(h), 1, fb);
puts (“Datos grabados”);

}
if (lencontrado) puts (“Hotel completo “);
fflush (fb);

CAPITULO 16 Organizacién de datos en un archivo @

16.3 Archivos con direccionamiento hash

La organizacion directa tiene el inconveniente de que no haya un campo del registro que permita obtener posiciones consecu-
tivas, y, como consecuencia, surgen muchos huecos libres entre registros. Entonces la organizacién directa necesita programar
una relacién entre un campo clave del registro y la posicion que ocupa.

Una funcion hash, o de dispersion, convierte un campo clave (un entero o una cadena), en un valor entero dentro del rango
de posiciones que puede ocupar un registro de un archivo.

EJEMPLO 16.4 Funciones hash

La clave puede ser el nimero de serie de un articulo (hasta 6 digitos) y si estan previstos un maximo de tamIndex regis-
tros, la funcion de direccionamiento tiene que ser capaz de transformar valores pertenecientes al rango 0 .. 999999, en
un conjunto de rango 0 .. tamIndex-1. La clave también puede ser una cadena de caracteres, en ese caso se hace una
transformacion previa a valor entero.

La funcién hash mas utilizada por su sencillez se denomina aritmética modular. Genera valores dispersos calcu-
lando el resto de la division entera entre la clave x y el nimero maximo de registros previstos.

X % tamIndex = genera un ndmero entero de 0 a tamIndex-1

La funcion hash o funcion de transformacién debe reducir al maximo las colisiones. Se produce una colisién cuan-
do dos registros de claves distintas, c1 y c2, producen la misma direccion, h(c1) = h(c2). Nunca existird una garan-
tia plena de que no haya colisiones, y mas sin conocer de antemano las claves y las direcciones. La experiencia ensefia
que siempre habra que preparar la resolucion de colisiones para cuando se produzca alguna.

EJEMPLO 16.5 Obtencién de la funcion "hash™ més adecuada
Considerar una aplicacién en la que se debe almacenar n = 900 registros. EI campo clave elegido para dispersar los
registros en el archivo es el nimero de identificacion. Elegir el tamafio de la tabla de dispersion y calcular la posicion

que ocupa los registros cuyo nimero de identificacion es: 245643, 245981 y 257135

Una buena eleccidn, en este supuesto, de tamIndex es 997 al ser un nimero primo mayor que el nimero de registros
que se van a grabar, 900. Se aplica la funcién hash de aritmética modular y se obtienen estas direcciones:

h(245643)= 245643 % 997 = 381
h(245981)= 245981 % 997 = 719
h(257135)= 257135 % 997 = 906

Para el disefio del archivo se deben considerar dos areas de memoria externa. El area principal y el area de sindbnimos
o colisiones. Aproximadamente el archivo se crea con un 25 por 100 mas que el nimero de registros necesarios. Un
archivo hash se caracteriza por:

« Se accede a las posiciones del archivo a través del valor que devuelve una funcion hash.
« La funcion hash aplica un algoritmo para transformar uno de los campos llamado campo clave en una posicién del
archivo.
« El campo elegido para la funcién debe ser Unico (no repetirse) y conocido facilmente por el usuario, porque a través
de ese campo el usuario va a acceder al programa.
« Todas las funciones hash provocan colisiones o sinénimos. Para solucionar estas repeticiones se definen dos zonas:
« Zona de datos o principal en la que el acceso es directo al aplicarle la funcién hash.
« Zona de colisiones o sindnimos en la que el acceso es secuencial. En esta zona se guardan las estructuras o regis-
tros en los que su campo clave ha producido una posicion repetida. Y se van colocando secuencialmente, es decir,
en la siguiente posicién que esté libre.

EJEMPLO 16.6 Manejo de un archivo directo con acceso por funcién "hash"

Los libros de una pequefia libreria van a guardarse en un archivo para poder realizar accesos tan rapido como sea
posible. Cada registro (libro) tiene los campos cddigo (cadena de 6 caracteres), autor y titulo. El archivo debe estar

@ CAPITULO 16 Organizacién de datos en un archivo

organizado como de acceso directo con transformacion de claves (archivo hash), la posicion de un registro se obten-
dra aplicando aritmética modular al campo clave: codigo. La libreria tiene capacidad para 190 libros.

Para el disefio del archivo se crearan 240 registros que se distribuirdn de la siguiente forma:

1. Posiciones 0 - 198 constituyen el area principal del archivo.
2. Posiciones 199 - 239 constituyen el area de desbordamiento o de colisiones.

El campo clave es una cadena de 6 caracteres, que se transforma considerando que es una secuencia de valores numé-
ricos (ordinal ASCII de cada caracter) en base 27. Por ejemplo, el cddigo 2R545 se transforma en:

227t + RF2TP+ 5272 + 4727 + 5727

* En C, un cardacter se representa como un valor entero que es, precisamente, su ordinal. La transformacion da lugar a
valores que sobrepasan el maximo entero (incluso con enteros largos), generando nimeros negativos. No es proble-
ma, simplemente se cambia de signo.

« La creacion del archivo escribe 240 registros, con el campo codigo == “*’, para indicar que estan disponibles (de baja).

« Para dar de alta un registro, primero se obtiene la posicion (funcién hash); si se encuentra dicha posicion ocupada, el
nuevo registro debera ir al area de colisiones (sin6nimos).

« El proceso de consulta de un registro debe comenzar con la entrada del codigo, la transformacion de la clave permite
obtener la posicidn del registro. A continuacion se lee el registro, la comparacion del cédigo de entrada con el cédigo
del registro determina si se ha encontrado. Si son distintos, se explora secuencialmente el area de colisiones.

« La baja de un registro también comienza con la entrada del c6digo, se realiza la bisqueda, de igual forma que en la
consulta, y se escribe la marca “*” en el campo cédigo (se puede elegir otro campo) para indicar que ese hueco (regis-
tro) esté libre.

« La funcion hash devuelve un ndmero entero n de 0 a (199-1); por esa razon el desplazamiento desde el origen del
archivo se obtiene multiplicando n por el tamafio de un registro.

16.4 Archivos secuenciales indexados

La guia de teléfonos es un ejemplo tipico de archivo secuencial indexado con dos niveles de indices, el nivel superior para las
letras iniciales y el nivel menor para las cabeceras de pagina. Por consiguiente, cada archivo secuencial indexado consta de un
archivo de indices y un archivo de datos.

Para que un archivo pueda organizarse en forma secuencial indexada el tipo de los registros contendra un campo clave iden-
tificador. La clave se asocia con la direccién (posicion) del registro de datos en el archivo principal.

Un archivo con organizacion secuencial indexada consta de las siguientes partes:

« Area de datos. Contiene los registros de datos en forma secuencial, sin dejar huecos intercalados.
« Area de indices. Es una tabla que contiene la clave identificativa y la direccién de almacenamiento. Puede haber indices
enlazados.

El 4rea de indices normalmente esta en memoria principal para aumentar la eficiencia en los tiempos de acceso. Ahora bien,
debe haber un archivo donde guardar los indices para posteriores explotaciones del archivo de datos. Entonces al disefiar un archi-
vo indexado hay que pensar que se manejaran dos tipos de archivos, el de datos y el de indices, con sus respectivos registros.

EJEMPLO 16.7 Proceso de un archivo secuencial indexado

Por ejemplo, si se quiere grabar los atletas federados en un archivo secuencial indexado, el campo indice que se puede
elegir es el nombre del atleta (también se puede elegir el nimero de carnet de federado). Habria que declarar dos tipos
de registros:

typedef struct
{
int edad;

CAPITULO 16 Organizacién de datos en un archivo @

char carnet[15];

char club[29];

char nombre[417;

char sexo;

char categorial2l1];

char direccion[71];
} Atleta;

typedef struct

{
char nombre[417;
long posicion;

} Indice;

Al disefiar un archivo secuencial indexado, lo primero a decidir es cual va a ser el campo clave. Los registros han
de ser grabados en orden secuencial, y simultaneamente a la grabacion de los registros, el sistema crea los indices en
orden secuencial ascendente del contenido del campo clave.

A continuacion se desarrollan las operaciones (altas, bajas, consultas ...) para un archivo con esta organizacion.
También es necesario considerar el inicio y la salida de la aplicacién que procesa un archivo indexado, para cargar y
descargar, respectivamente, la tabla de indices.

Los registros tratados se corresponden con articulos de un supermercado. Los campos de cada registro: nombre del
articulo, identificador, precio, unidades. Un campo clave adecuado para este tipo de registro es el nombre del articulo.
Para afadir registros el archivo de datos este se abre (puede que previamente se haya abierto) en modo lectura/escritu-
ra, se realizaran operaciones de lectura para comprobar datos . EI proceso sigue estos pasos:

1. Leer el campo clave y el resto de campos del articulo.

2. Compraobar si existe, 0 no, en la tabla de indices. Se hace una bisqueda binaria de la clave en la tabla.

3. Si existe en la tabla: se lee el registro del archivo de datos segun la direccién que se obtiene de la tabla. Puede ocu-
rrir que el articulo, previamente, se hubiera dado de baja, o bien que se quiera re-escribir; en cualquier caso se deja
elegir al usuario la accién que desee.

4. Si no existe: se graba en el siguiente registro vacio del archivo de datos. A continuacion, se inserta ordenadamente
en la tabla de indices el nuevo campo clave junto a su direccién en el archivo de datos.

Para dar de baja un registro (en el ejemplo, un articulo) del archivo de datos, simplemente, se marca el campo esta-
do a cero que indica borrado, y se elimina la entrada de la tabla de indices. El archivo de datos estara abierto en modo
lectura/escritura. El proceso sigue estos pasos:

1. Leer el campo clave del registro a dar de baja.

2. Compraobar si existe, 0 no, en la tabla de indices (busqueda binaria).

3. Si existe en la tabla: se lee el registro del archivo de datos segln la direccion que se obtiene de la tabla para confir-
mar la accién.

4. Si el usuario confirma la accion, se escribe el registro en el archivo con la marca estado a cero. Ademas, en la tabla
de indices se elimina la entrada del campo clave.

La consulta de un registro (un articulo) sigue los pasos:

1. Leer el campo clave (en el desarrollo, el nombre del articulo) del registro que se desea consultar.

2. Buscar en la tabla de indices si existe, 0 no (blsqueda binaria).

3. Si existe: se lee el registro del archivo de datos segln la direccidn que se obtiene de la tabla para mostrar el registro
en pantalla.

La operacion modificar, tipica de archivo, sigue los mismos pasos que los expuestos anteriormente. Se debe afadir
el paso de escribir el registro, que se ha leido, con el campo modificado.

La primera vez que se ejecuta la aplicacion se crea el archivo de datos y el de indices, cada vez que se produce un
alta se graba un registro y a la vez se inserta una entrada en la tabla. Cuando se de por terminada la ejecucién se gra-

@ CAPITULO 16 Organizacién de datos en un archivo

bar la tabla en el archivo de indices llamando a grabalndice(). Nuevas ejecuciones han de leer el archivo de indi-
ces y escribir estos en la tabla (memoria principal). El primer registro del archivo contiene el nimero de entradas, el
resto del archivo son los indices. Como se grabaron en orden del campo clave, también se leen en orden y entonces la
tabla de indices queda ordenada.

16.5 Ordenacidon de archivos: ordenacion externa

Los algoritmos de ordenacion estudiados hasta ahora utilizan arrays para contener los elementos a ordenar, por lo que es nece-
sario que la memoria interna tenga capacidad suficiente. Para ordenar secuencias grandes de elementos que se encuentran en
soporte externo (posiblemente no pueden almacenarse en memoria interna), se aplican los algoritmos de ordenacion externa.

El tratamiento de archivos secuenciales exige que estos se encuentren ordenados respecto a un campo del registro, deno-
minado campo clave K. Los distintos algoritmos de ordenacion externa utilizan el esquema general de separacion y fusion o
mezcla. Por separacion se entiende la distribucion de secuencias de registros ordenados en varios archivos; por fusion la mez-
cla de dos 0 mas secuencias ordenadas en una Unica secuencia ordenada. Variaciones de este esquema general dan lugar a dife-
rentes algoritmos de ordenacion externa.

FUSION DE ARCHIVOS

La fusion o mezcla de archivos consiste en reunir en un archivo los registros de dos 0 mas archivos ordenados por un campo
clave T. El archivo resultante también estd ordenado por la clave T.

EJEMPLO 16.8 Fusion de archivos

Suponer que se dispone de dos archivos ordenados F1y F2, se desea mezclar o fundir en un sélo archivo ordenado,
F3. Las claves son

F1 12 24 36 37 40 52
F2 38 9 20

Para realizar la fusion es preciso acceder a los archivos F1 y F2, en cada operacion solo se lee un elemento del archivo
dado. Es necesario una variable de trabajo por cada archivo (actuall, actual?2) para representar el elemento actual
de éste el archivo.

Se comparan las claves actual.y actuaZy se sitla la mas pequefia 3 (actual2) en el archivo de salida (F3). A con-
tinuacion, se avanza un elemento el archivo F2 y se realiza una nueva comparacion de los elementos situados en las
variables actual.

actuall
Fl | 12]24]36]40] 52|
2 [3[e[z
actual?

F3 I!I

La nueva comparacion sitla la clave mas pequefia 8 (actual?2) enF3. Se avanza un elemento (20) el archivo F2 y se
realiza una nueva comparacion. Ahora la clave mas pequefia es 12 (actuall) que se sitla en F3. A continuacion, se
avanza un elemento el archivo F1 y se vuelve a comparar las claves actual.

actuall
F1 | 12| 24| 36| 40| 52|
v @
actual?

SN EOE

CAPITULO 16 Organizacién de datos en un archivo @

Cuando uno u otro archivo de entrada se ha terminado, se copia el resto del archivo sobre el archivo de salida. El resul-
tado final seré:

F3 |3|8|12|24|36|40|52|

La codificacion correspondiente de fusion de archivos (se supone que el campo clave es de tipo int) es:

void fusion (FILE* f1, FILE* f2, FILE* f3)
{
Registro actuall, actual?2, d;

f3 fopen (“fileDestino”, “wt”);
f1 fopen (“fileOrigenl”, “rt”);
f2 = fopen (“fileOrigen2”, “rt”);

if (f1 == NULL || f2 == NULL || f3 == NULL)
{

puts (“Error en los archivos.”);

exit (-1);

fread (&actuall, sizeof(Registro), 1, fl);
fread (&actual?2, sizeof(Registro), 1, f2);

while (!feof (fl) && !feof (f2))
{
if (actuall.clave < actual2.clave)
{
d = actuall;
fread (&actuall, sizeof(Registro), 1, fl);
}
else
{
d = actual?2;
fread (&actual?2, sizeof(Registro), 1, f2);
}
fwrite (&d, sizeof(Registro), 1, f3);

/* Lectura terminada de fl o f2. Se escriben los registros no procesados */

while (!feof (f1))
{

fwrite (&actuall, sizeof(Registro), 1, f3);

fread (&actuall, sizeof(Registro), 1, fl);
}
while (!feof (f2))
{

fwrite (&actual?2, sizeof(Registro), 1, f3);

fread (&actual?2, sizeof(Registro), 1, fl);

fclose (f);
fclose (fl);
fclose (f2);

@ CAPITULO 16 Organizacién de datos en un archivo

CLASIFICACION POR MEZCLA DIRECTA

El método mas facil de comprender es el denominado mezcla directa. Utiliza el esquema iterativo de separacion y mezcla. Se
manejan tres archivos, el archivo original y dos archivos auxiliares.
El proceso consiste en:

1. Separar registros individuales del archivo original O en dos archivos F1y F2.

2. Mezclar los archivos F1 y F2 combinando registros individuales (segin sus claves) y formando pares ordenados que son
escritos en el archivo O.

3. Separar pares de registros del archivo original O en dos archivos F1y F2.

4. Mezclar F1 y F2 combinando pares de registros y formando cuadruplos ordenados que son escritos en el archivo O.

Cada separacion (particion) y mezcla duplica la longitud de las secuencias ordenadas. La primera pasada (separacion +
mezcla) se hace con secuencias de longitud 1 y la mezcla produce secuencias de longitud 2; la segunda pasada produce secuen-
cias de longitud 4. Cada pasada duplica la longitud de las secuencias; en la pasa n la longitud sera 2". El algoritmo termina
cuando la longitud de la secuencia supere el nimero de registros del archivo a ordenar.

EJEMPLO 16.9 Mezcla directa

Un archivo esta formado por registros que tienen un campo clave de tipo entero. Suponiendo que las claves del archi-
VO son:

34 23 12 59 73 44 8 19 28 bl

Se van a realizar los pasos que sigue el algoritmo de mezcla directa para ordenar el archivo. Se considera el archivo O
como el original, F1 y F2 archivos auxiliares.

Pasada 1

Separacion :

F1: 34 12 73 8 28
F2: 23 59 44 19 51

Mezcla formando duplos ordenados:
0: 23 34 12 59 44 73 8 19 28 51

Pasada 2

Separacion:

F1: 23 34 44 73 28 51
F2: 12 59 8 19

Mezcla formando cuédruplos ordenados:
0: 12 23 34 59 8 19 44 73 28 5l

Pasada 3

Separacion:

Fl1: 12 23 34 59 28 51
F2: 8 19 44 73

Mezcla formando octuplos ordenados:
0: 8 12 19 23 34 44 59 73 28 5l

CAPITULO 16

Organizacion de datos en un archivo

Pasada 4

Separacion:
F1: 8 12 19 23 34 44 59 73
F2: 28 51

Mezcla con la que ya se obtiene el archivo ordenado:
0: 8 12 19 23 28 34 44 51 59 73

PROBLEMAS RESUELTOS

16.1 Codifique del algoritmo mezcla directa

Analisis del problema

La implementacion del método se basa, fundamentalmente, en dos rutinas: distribuir() ymezclar(). La primera sepa-
ra secuencias de registros del archivo original en los dos archivos auxiliares. La segunda mezcla secuencias de los dos archi-
vos auxiliares y la escribe en el archivo original. Las pasadas que da el algoritmo son iteraciones de un bucle mientras
Tongitud_secuencia menor numero_registros; cada iteracion consiste en llamar a distribuir() y mezclar(). El
ndmero de registros del archivo se determina dividiendo posicién_fin_archivo por tamafio_registro:

Codificacion

int numeroReg (FILE* pf)

{

if (pf != NULL)

{

fpos_t fin;

fseek (pf, OL, SEEK_END);
fgetpos (pf, &fin);

return fin / sizeof (Registro);

}
else

return 0;

}

La implementacion que se escribe a continuacion supone que los registros se ordenan respecto de un campo clave de tipo

int:

typedef int TipoClave;

typedef struct

{

TipoClave clave;

} Registro;

void mezclaDirecta(FILE *f)

{

int longSec;

CAPITULO 16 Organizacién de datos en un archivo

CAPITULO 16 Organizacién de datos en un archivo

/*
Los registros no procesados se escriben directamente
=
for (k = i; k <= nl; k++)
{
fwrite(&rl, sizeof(Registro), 1, f);
fread(&rl, sizeof(Registro), 1, fl);

for (k = j; k <= n2; k++)

{
fwrite(&r2, sizeof(Registro), 1, f);
fread(&r2, sizeof(Registro), 1, f2);

(*TonSec) *= 2;
fclose (f);fclose(fl);fclose(f2);

Organizacion de datos en un archivo

16.2 Las reservas de un hotel de n habitaciones se van a gestionar con un archivo directo. Cada reserva tiene los campos nom-
bre del cliente, NIF y nimero de habitacidn asignada. Los nimeros de habitacion son consecutivos, desde 1 hasta el nime-
ro de habitaciones. Entonces, se utiliza como indice de registro el nimero de habitacion. Las operaciones que se podran
realizar son: inauguracion, entrada de una reserva, finalizacion de estancia, consulta de habitaciones.

Analisis del problema

Cada registro del archivo se va a corresponder con una reserva y a la vez con el estado de una habitacion. Si la habitacion
n esta ocupada el registro de indice n contendra el nombre del cliente y su ni f. Si esta vacia, libre, el campo ni f va a tener
un asterisco (“**). Por consiguiente, se utiliza como indicador de habitacion libre que nif == *.

La operacion inauguracién inicializa el archivo, escribe tantos registros como habitaciones; cada registro con el campo ni f

igual a la clave, *, para indicar habitacion libre y su nimero de habitacion.

La operacion entrada busca en el archivo la primera habitacion libre y en su registro escribe uno nuevo con los datos de la

reserva.

La finalizacion de una reserva consiste en asignar al campo nif la clave (*) que indica habitacion libre.
También se afiade la operacion ocupadas para listar todas las habitaciones ocupadas en ese momento.

Codificacion

j#include <stdio.h>

f#include <string.h>

#include <stdlib.h>

ffinclude <ctype.h>

jtdefine numhab 55

FILE *fb = NULL;

const char fich[] = “fichero.dat”;

typedef struct
{
int num;
char nif[13];
char nombre[457;
} Habitacion;

CAPITULO 16 Organizacién de datos en un archivo

CAPITULO 16 Organizacién de datos en un archivo

CAPITULO 16 Organizacién de datos en un archivo

@ Organizacion de datos en un archivo

16.3.

16.4.

16.5

printf (“\t %d”, h.num);
printf (“\t%s\t”, h.nif);
printf “\t%s\n”, h.nombre);

Un archivo secuencial contiene registros con un campo clave de tipo entero en el rango de 0 a 777. Escribir la funcion vo1 -
cado (), que genere un archivo directo de tal forma que el nimero de registro coincida con el campo clave.

Anélisis del problema

Se va a suponer que en los registros no se repite ninguna clave. La entrada de la funcion es el nombre del nuevo fichero
directo y el puntero al fichero secuencial. La funcion lee cada registro del fichero secuencial, obtiene la clave y utiliza ese
valor para colocar el registro en una posicion de valor igual a la clave.

Codificacion

Volcado (char *nuevonombre, FILE *fps)
{

FILE *pfd;

struct reg registro;

int nreg;

if ((pfd = fopen (nuevonombre, “wb”))==NULL)
{
puts (“NO se puede crear el fichero”);
return;

while (ifeof (fps))
{
fread (®istro, sizeof(registro), 1, fps);
nreg = registro.clave;
fseek (pfd, nreg*sizeof(registro), SEEK_SET);
fwrite (®istro, sizeof(registro), 1, pfd);
}
fclose(pfd);
}

Escribir la funcién principal para gestionar el archivo secuencial indexado de articulos de un supermercado. Los campos
que describen cada articulo son: nombre del articulo, identificador, precio, unidades.

Anélisis del problema

Unicamente se escribe la codificacion de la funcién main() con un sencillo ment para que el usuario elija la operacion que
quiere realizar. El archivo articulo.h contiene la declaracion de las estructuras Articulo e Indice, la macro desplaza-
miento y la declaracién de los punterosa FILE, fix y findices. Los prototipos de las funciones desarrolladas en el ante-
rior apartado se encuentran en el archivo indexado.h; la implementacion de las funciones esté en el archivo indexado.c

Coadificacion (Consultar la pagina web del libro)
Los registros de un archivo secuencial indexado tienen un campo, estado, para conocer si el registro esta dado de baja.

Escribir una funcion para compactar el archivo de datos, de tal forma que se eliminen fisicamente los registros dados de
baja.

CAPITULO 16 Organizaciéon de datos en un archivo

Analisis del problema

La mejor manera de realizar la operacién consiste en ir leyendo la informacién del fichero original copiando en un nuevo
fichero solo aquellos registros con informacién valida. Como el fichero original esta indexado habra que asegurarse que el
fichero destino también lo esté. La forma que se realiza esto es construyendo un nuevo archivo de indices tras la generacién

del nuevo fichero compactado.
Codificacion

typedef struct
{

char clavel[40];
long posicion;
} Indice;

ftdefine MXAR 200
compactar()
Indice tabla[MXARI];
FILE *origen, *temp;
FILE *findices;
long pos = 0;

origen = fopen (“datos.dat”, “rb+”);
temp = fopen (“temp.dat”,”wb”);
findices = fopen (“indices.idx”,”wb”);

if ((iorigen || itemp || ifindices)
{
puts (“NO se puede crear el fichero”);
return;
}

while (ifeof (origen))
{
fread (®istro, sizeof(registro), 1,
if (estado == ACTIVO)
{
fwrite (®istro, sizeof(registro),

strcpy (tablalil.clave, registro.clave);

tablali++].posicion = pos;
pos += sizeof(registro);
}
}
for (j=0; j<i; j++)

fwrite(&tablal[j], sizeof (Indice), findices);

fclose(origen);

fclose(temp);

fclose(findices);
remove(“datos.dat”);
rename(“temp.dat”, “datos.dat”);

Organizacion de datos en un archivo

16.6 Realizar los cambios necesarios en la funcion fusion() que mezcla dos archivos secuenciales ordenados, ascendentemente
respecto al campo fecha de nacimiento. La fecha de nacimiento esta formada por los campos de tipo int: mes, dia y afio.

16.7

Anélisis del problema

La Unica diferencia respecto a una funcion de fusion que compare claves enteras es que la comparacion entre claves de regis-
tro debe hacerse por medio de una funcién.

Codificacion (Consultar la pagina web del libro)

Escribir una funcion que distribuya los registros de un archivo no ordenado, F, en otros dos F1y F2, con la siguiente estra-
tegia: leer M (por ejemplo, 16) registros a la vez del archivo, ordenarlos utilizando un método de ordenacion interna 'y a
continuacion escribirlos, alternativamente, en F1y F2.

Analisis del problema

Se trata de sustituir la funcién de distribucion por otra que cumpla la especificacion del enunciado.

Codificacion

typedef int TipoClave;

typedef struct
{
TipoClave clave

} Registro;
void distribuirM (FILE* f, FILE* f1,
{
int numSec, resto, i;
numSec = numReg / (2*M);
resto = numReg % (2*M);
f = fopen (“fileorg”,”rb”);
f1l = fopen (“fileAuxl”,”wb”);
f2 = fopen (“fileAux2”,”wb”);
for (i = 1; i <= numSec; i++)
{
subSecuenciaM (f, f1, M);
subSecuenciaM (f, f2, M);

1
/*
Se procesa el
=)
if (resto > M)
{
resto -= M;
subSecuenciaM
subSecuenciaM

resto de registros del

(f,
(f,

fl,
fe,

M)
resto);

FILE* f2,

int M,

archivo

int numReg)

CAPITULO 16 Organizacién de datos en un archivo @

else
subSecuenciaM (f, fl, resto);

fclose(fl);
fclose(f2);
fclose(f);

void subSecuenciaM (FILE* f, FILE* t, int m)
{

Registro r, tablal[m];

int j;

for (j = 1; j <= m; j++)
{
fread (&tablalil, sizeof(Registro), 1, f);
}
ordenar (tabla, m);
for (j = 1; j <= m; j++)
{
fwrite (&tablal[i], sizeof(Registro), 1, t);

16.8 Modificar la implementacion de la mezcla directa de tal forma que inicialmente se distribuya el fichero origen en secuen-
cias de M registros ordenados, segun se explica en ejercicio 16.5. Y a partir de esa distribucion se repitan los pasos del algo-
ritmo mezcla directa: fusion de M-uplas para dar lugar a 2M registros ordenados, separacion ...

Codificacion

void mezclaDirecta(FILE *f)
{
int longSec;
int numReg;
FILE *f1 = NULL, *f2 = NULL;

[T 9

f = fopen (“fileorg”,”rb”);

numReg = numeroReg (f);
longSec = 16;

distribuirM (f, f1, f2, longsec, numReg);
mezclar (fl, f2, f, &longsec, numReg);

while (longSec < numReg)

{
distribuir (f, f1, f2, TongSec, numReg);
mezclar (fl, f2, f, &longSec, numReg);

288

Organizacion de datos en un archivo

16.9. Un archivo esta ordenado alfabéticamente respecto un campo clave que es una cadena de caracteres. Disefiar un algorit-

16.10.

mo e implementar para que la ordenacion sea en sentido inverso.

Anélisis del problema

Solamente es necesario copiarlo al revés en un fichero auxiliar y renombrarlo después.

Codificacion

OrdenacionInversa (char *fichero)
{

struct registro reg;

int numregs;

FILE *pf, *pftemp, *aux;

fpos_t fin;

if ((pf = fopen (fichero, “rb”)) == NULL)
{
puts (“NO se puede crear el fichero”);
return;
}

if ((pftemp = fopen (“temp”, “rb”)) == NULL)
{
puts (“NO se puede crear el fichero”);
return;
}

fseek (pf, OL, SEEK_END);

fgetpos (pf, &fin);

nregs = fin / sizeof(Registro);

while (nregs—)
{
fseek (pf, -sizeof (registro), SEEK SET);
fread (®, sizeof (registro), 1, pf);

fwrite (®, sizeof (registro), 1, pftemp);

fseek(pf, -sizeof (registro), SEEK_SET);
}

fclose (pftemp);

fclose (pf);

remove (fichero);

rename (“temp”, fichero);

}

Un archivo secuencial no ordenado se quiere distribuir en dos ficheros F1 y F2 siguiendo estos pasos:
Leer N registros del archivo origen y ponerlos en una lista secuencial. Marcar cada registro de la lista con un estatus,

por ejemplo activo = 1.

Obtener el registro t con clave mas pequefia de los que tienen el estatus activoy escribirlo en el archivo destino F1.

Sustituir el registro t por el siguiente registro del archivo origen. Si el nuevo registro es menor que t, se marca como
inactivo, es decir activo = 0; en caso contrario se marca activo. Si hay registros en la lista activos volver al paso 2.

Cambiar el archivo destino, si el anterior es F1 ahora sera £2y viceversa. Activar todos los registros de la lista y volver

al paso 2.

CAPITULO 16 Organizaciéon de datos en un archivo

16.11.

Codificacion

distribucion()

{

FILE fp, fpl, fp2;

Registro reg, tablalN];

int activo [N], min, hayactivos, menor;

pf = fopen (“origen”, “rb”);

pfl = fopen (“destinol”, “wb”);

pf2 = fopen (“destino2”, “wb”);

if (pf || !'pfl || !pf2)

{

printf (“Error al abrir Tos ficheros\n”);
exit (1);

}

for (i = 0; i < N; i++)

{

fread (&tablal[il, sizeof (Registro), 1, fp);
activoli] = 1;

}

while (!feof (fp))
{

do {
/* encontrar el menor de los activos y comprobar que
todavia hay registros activos en Ta lista */
min = 0;
menor = -1;

hayactivos = 0;
for (i = 0; i < N; i++)
if (tabla([i].clave < min) &&
hayactivos = activol[il))
{
min = tabla[i].clave;
menor = i;
}
if (menor i= -1)
fwrite (&tablalmenor], sizeof (Registro), 1, fpl);
if (tablalmenor].clave < min)
activolmenor] = 0;
} while (hayactivos);

aux = fpl;
fpl = fp2;
fp2 = aux;

for (i=0; i<N; i++) activo [i] = 1;

}

Los registros que representan los objetos de una perfumeria se van a guardar en un archivo hash, se prevé como maximo
1024 registros. EI campo clave es una cadena de caracteres, cuya maxima longitud es 10. Con este supuesto codificar la
funcidn de dispersion y mostrar 10 direcciones dispersas.

@ Organizacion de datos en un archivo

Analisis del problema
Segun lo comentado en el comienzo del capitulo una funcién sencilla que utilice aritmética modular podria ser la siguiente.
Codificacion

int hash (Registro reg)
{
for (i = 0; i <= strlen(reg.clave); i++)
sumacar += reg.claveli];
return sumacar% 1024;

16.12. Disefiar un algoritmo e implementar un programa que permita crear un archivo secuencial PERFUMES cuyos registros
constan de los siguientes campos:
Nombre
Descripcion
Precio
Cadigo
Creador

typedef struct
{
char nombre[40];
char descripcion[100];
float precio;
char codigo[107;
char creador[407;
} Registro;

main()

{

FILE *pf;
Registro reg;

if ((pf = fopen(“perfumes”, “wb+”))==NULL)
{
printf(“ERROR en Ta creacidén del fichero”);
exit(l);
}

while (1)
{
printf (“Introduzca los siguientes datos:\n”);
printf (“Nombre:”);
scanf(“%s”, reg.nombre);
printf (“Descripcion:”);
scanf(“%s”, reg.descripcion);
printf (“Precio:”);
scanf(“%f”, ®.precio);
printf (“Codigo:”);
scanf(“%s”, reg.codigo);
printf (“Creador:”);

fc
}

16.13. Realizar un programa que copie el archivo secuencial PERFUMES del ejercicio anterior en un archivo hash PERME_DIR;
el campo clave es el cddigo del perfume que tiene como maximo 10 caracteres alfanuméricos.

Organizacion de datos en un archivo

scanf(“%s”, reg.creador);
fseek (pf, OL, SEEK_END);
fwrite (®, sizeof (reg), 1, pf);

printf (“Desea continuar (s/n):”);
scanf (“%c”, &r);

if (r == ‘s’) break;

}

lose (pf);

Codificacion (Consultar la pagina web del libro)

16.14. Disefiar un algoritmo e implementar un programa para crear un archivo secuencial indexado denominado DIRECTORIO,
que contiene los datos de los habitantes de una poblacion que actualmente esta formada por 5590 personas. El campo clave

es

el nimero de DNI.

Codificacion (Consultar la pagina web del libro)

16.15. Escribir un programa que liste todas las personas del archivo indexado DIRECTORIO que pueden votar.

Codificacion
void ListadoVotantes(Indice* tabla, int nreg)
{
hab reg;
Tong DNI;
int p;
FILE * fp;
fp = fopen (“directorio.dat”, “wb+”);
if (fp == NULL)

{

wh
{

printf (“Error al abrir el archivo”);
exit(2);

ile (ifeof (fp))

fread (®, sizeof(reg), 1, fp);

if (reg.edad >= 18)

{
printf (* Nombre: %s\n”, reg.nombre);
printf (“ DNI: %1d\n”, reg.DNI);
printf (*“ Edad: %d\n”, reg.edad);
printf (

(

printf (* Sexo: %c”, reg.sexo);

Direccion: %s\n”, reg.direccion);

CAPITULO 16 Organizacién de datos en un archivo

Organizacion de datos en un archivo

PROBLEMAS PROPUESTOS

16.1.

16.2.

16.3.

16.4.

16.5.

El archivo secuencial F, almacena registros con un
campo clave de tipo entero. Supdngase que la secuencia
de claves que se encuentra en el archivo es la siguiente:

14 27 33 58 11 23 44 22 31 46 7 8 11 1 99 23
40 6 11 14 17

Aplicando el algoritmo de mezcla directa realizar la
ordenacion del archivo y determinar el namero de pasa-
das necesarias.

Un archivo secuencial F contiene registros y requiere ser
ordenado utilizando 4 archivos auxiliares. Suponiendo
que la ordenacion se desea hacer respecto a un campo de
tipo entero, con estos valores:

22 11 3 4 1155 2 98 11 21 4 3 8 12 412142
58 26 191159 37 28 61 72 47

Aplicar el esquema seguido en el algoritmo de mezcla
directa (tener en cuenta que se utilizan 4 archivos en vez
de 2) y obtener el nimero de pasadas necesarias para su
ordenacion.

El archivo JOVENES (ejercicio 16.15) se desea orde-
narlo alfabéticamente. Aplicar el método mezcla directa.

Dado un archivo hash, disefiar un algoritmo e imple-
mentar el codigo para compactar el archivo después de
dar de baja un registro. Es decir, un registro del area de
sinbnimos se mueve al area principal si el registro del
area principal, con el que colision6 el registro del area de
sindnimos, fue dado de baja.

Se necesita construir un catalogo para organizar los
datos de una coleccion de CDs de musica. El sistema de
gestion de datos guardaré la informacion de cada CD
(autor, titulo, afio) y de cada tema (autor, titulo del tema,
titulo del CD). La informacién se almacenara en dos
ficheros secuenciales indexados. Escribir un programa
que ademas de permitir la entrada y eliminacion de los

16.6.

16.7.

16.8.

16.9.

16.10.

datos en ambos ficheros, proporcione las opciones de
consultar por temas y por CDs.

Afadir al programa anterior una funcion que liste el con-
tenido del fichero de CDs y para cada uno de ellos liste
los temas que contiene segln la informacién del fichero
de temas.

Utilizar el algoritmo de mezcla directa para ordenar los
ficheros de los dos ejercicios anteriores. Escribir una
funcion que utilice el algoritmo de blsqueda binaria para
encontrar un registro determinado en los ficheros inde-
xados descritos.

Un sistema de gestion de informacion de un almacén debe
mantener tres ficheros relacionados. El primer fichero
tiene informacidn de cada proveedor indexado por el nom-
bre del mismo. Un segundo fichero mantiene las caracte-
risticas de cada producto, incluyendo el nombre del
proveedor, y esta indexado por un cddigo alfanumérico. El
tercer fichero lleva la informacion de las existencias de
cada producto y su localizacion en el almacén.

Escribir un programa que liste los productos de los que
existan menos de 10 unidades en el almacén. Al lado de
cada producto en el listado deben aparecer los datos del
proveedor.

En el escenario del ejercicio anterior se puede suponer
que cada vez que se adquieren nuevos productos en el
almacén se afiaden registros con la cantidad incorporada
en cada producto. También cuando se venden productos
se afladen registros por cada producto en los que se espe-
cifica una cantidad negativa. Implementar un programa
que al final del dia reagrupe la informacion de entradas
y salidas dejando un registro por producto con las exis-
tencias reales.

Completar el programa del ejercicio 16.8. con una funcién
que ordene los registros de producto del segundo fichero
agrupando todos los registros del mismo proveedor.

17.1

Tipos abstractos de datos
TAD/objetos

En este capitulo se examinan los conceptos de modularidad, abstraccion de datos y objetos. La modularidad es la posibilidad
de dividir una aplicacion en piezas mas pequefias llamadas mddulos. Abstraccion de datos es la técnica de inventar nuevos tipos
de datos que sean mas adecuados a una aplicacion y, por consiguiente, facilitar la escritura del programa. La técnica de abs-
traccion de datos es una técnica potente de propdsito general que cuando se utiliza adecuadamente, puede producir programas
mas cortos, mas legibles y flexibles. Los objetos combinan en una sola unidad datos y funciones que operan sobre esos datos.

Los lenguajes de programacion soportan en sus compiladores tipos de datos fundamentales o basicos (predefinidos), tales
como int, chary float en C. Casi todos los lenguajes de programacion tienen caracteristicas que permiten ampliar el len-
guaje afiadiendo sus propios tipos de datos.

Un tipo de dato definido por el programador se denomina tipo abstracto de dato, TAD, (abstract data type, ADT). El término
abstracto se refiere al medio en que un programador abstrae algunos conceptos de programacién creando un nuevo tipo de dato.

La modularizacién de un programa utiliza la nocién de tipo abstracto de dato (TAD) siempre que sea posible. Si el lenguaje
de programacion soporta los tipos que desea el usuario y el conjunto de operaciones sobre cada tipo, se obtiene un nuevo tipo
de dato denominado TAD.

Tipos de datos

Todos los lenguajes de programacion soportan algin tipo de datos. Por ejemplo, el lenguaje de programacion convencional C
soporta tipos base tales como enteros, reales y caracteres; asi como tipos compuestos tales como arrays (vectores y matrices)
y estructuras(registros).

A tener en cuenta

Un tipo de dato es un conjunto de valores, y un conjunto de operaciones definidas sobre esos valores.

Un valor depende de su representacion y de la interpretacion de la representacion, por lo que una definicién informal de un
tipo de dato es: Representacion + Operaciones.

Un tipo de dato describe un conjunto de objetos con la misma representacion. Existen un nimero de operaciones asociadas
con cada tipo. Es posible realizar aritmética sobre tipos de datos enteros y reales, concatenar cadenas o recuperar 0 modificar
el valor de un elemento.

@ CAPITULO 17 Tipos abstractos de datos TAD/objetos

17.2

La mayoria de los lenguajes tratan las variables y constantes de un programa como instancias de un tipo de dato. Un tipo
de dato proporciona una descripcion de sus instancias que indica al compilador cosas como cuanta memoria se debe asignar
para una instancia, como interpretar los datos en memoria y qué operaciones son permisibles sobre esos datos. Por ejemplo,
cuando se escribe una declaracion tal como float z en C 0 C++, se esta declarando una instancia denominada z del tipo de
dato f1oat. El tipo de datos f1oat indica al compilador que reserve, por ejemplo, 32 bits de memoria, y qué operaciones tales
como “‘sumar” y “multiplicar” estan permitidas, mientras que operaciones tales como el ““el resto” (mddulo) y “desplaza-
miento de bits”” no lo estan. Sin embargo, no se necesita escribir la declaracion del tipo float -el autor de compilador lo
hizo ya y se construyen en el compilador-. Los tipos de datos que se construyen en un compilador de este modo, se conocen
como tipos de datos fundamentales (predefinidos), y por ejemplo en C y C++ son entre otros: int, char, float y double.

Cada lenguaje de programacion incorpora una coleccion de tipos de datos fundamentales, que incluyen normalmente ente-
ros, reales, caracter, etc. Los lenguajes de programacion soportan también un nimero de constructores de tipos incorporados
que permiten generar tipos mas complejos. Por ejemplo, C soporta registros (estructuras) y arrays.

A tener en cuenta

El programador no tiene que preocuparse de saber cdmo el compilador del lenguaje implementa los tipos de datos
predefinidos, simplemente usa los tipos de datos en el programa.

Tipos abstractos de datos

Algunos lenguajes de programacion tienen caracteristicas que permiten ampliar el lenguaje afiadiendo sus propios tipos de
datos. Un tipo de dato definido por el programador se denomina tipo abstracto de datos (TAD), se implementa considerando
los valores que se almacenan en las variables y las operaciones disponibles para manipular esas variables. Por ejemplo, en C
el tipo Punto, que representa a las coordenadas x e y de un sistema de coordenadas rectangulares, no existe; el programador
puede definir el tipo abstracto de datos Punto que represente las coordenadas rectangulares, y las operaciones que se pueden
realizar (distancia, médulo ...). En esencia un tipo abstracto de datos es un tipo de datos que consta de datos (estructuras de
datos propias) y operaciones que se pueden realizar sobre esos datos. Un TAD se compone de estructuras de datos y los pro-
cedimientos o funciones que manipulan esas estructuras de datos.

Para recordar

Un tipo abstracto de datos puede definirse mediante la ecuacion:
TAD = Representacion (datos) + Operaciones (funciones y procedimientos)

Desde un punto de vista global, un tipo abstracto de datos se compone de la interfaz y de la implementacion (Figura 17.1).
Las estructuras de datos reales elegidas para almacenar la representacion de un tipo abstracto de datos son invisibles a los usua-
rios o clientes. Los algoritmos utilizados para implementar cada una de las operaciones de los TAD estan encapsuladas dentro
de los propios TAD. La caracteristica de ocultamiento de la informacion del TAD significa que disponen de interfaces publi-
cas, sin embargo, las representaciones e implementaciones de esas interfaces son privadas.

VENTAJAS DE LOS TIPOS ABSTRACTOS DE DATOS

Un tipo abstracto de datos es un modelo (estructura) con un nimero de operaciones que afectan a ese modelo. Los tipos abs-
tractos de datos proporcionan numerosos beneficios al programador, que se pueden resumir en los siguientes:

1. Permite una mejor conceptualizacion y modelizacion del mundo real. Mejora la representacion y la comprensibilidad.
Clarifica los objetos basados en estructuras y comportamientos comunes.

2. Mejora la robustez del sistema. Los tipos abstractos de datos permiten la comprobacion de tipos para evitar errores de tipo
en tiempo de ejecucion.

CAPITULO 17 Tipos abstractos de datos TAD/objetos @

Método 1 Método 1
Método 3 Método 3

Interfaz pablico

Representacion
estructura de datos
(variables de instancia)

Implementacién de métodos:
Cadigo del método 1
Cédigo del método 2

Implementacién privada

Figura 17.1 Estructura de un tipo abstracto de datos (TAD)

3. Mejora el rendimiento (prestaciones). Para sistemas tipificados, el conocimiento de los objetos permite la optimizacion de
tiempo de compilacion.

4. Separa la implementacion de la especificacion. Permite la modificacion y mejora de la implementacion sin afectar a la inter-
faz publica del tipo abstracto de dato.

5. Permite la extensibilidad del sistema. Los componentes de software reutilizables son mas faciles de crear y mantener.

6. Recoge mejor la semantica del tipo. Los tipos abstractos de datos agrupan o localizan las operaciones y la representacion
de atributos.

Un programa que maneja un TAD lo hace teniendo en cuenta las operaciones o funcionalidad que tiene, sin interesarse por
la representacion fisica de los datos. Es decir, los usuarios de un TAD se comunican con este a partir de la interfaz que ofrece
el TAD mediante funciones de acceso. Podria cambiarse la implementacion de tipo de datos sin afectar al programa que usa el
TAD vya que para el programa esta oculta la implementacion.

IMPLEMENTACION DE LOS TAD

Los lenguajes convencionales, tales como C, permiten la definicién de nuevos tipos y la declaracion de funciones para reali-
zar operaciones sobre objetos de los tipos. Sin embargo, tales lenguajes no permiten que los datos y las operaciones asociadas
sean declaradas juntos como una unidad y con un solo nombre. En los lenguajes en el que los médulos (TAD) se pueden imple-
mentar como una unidad, éstos reciben nombres distintos:

Turbo Pascal unidad, objeto
Modula-2 mddulo

Ada paquete

C++ clase

Java clase

En estos lenguajes se definen la especificacion del TAD, que declara las operaciones y los datos ocultos al exterior, y la
implementacion, que muestra el codigo fuente de las operaciones y que permanece oculto al exterior del médulo.

En C no existe como tal una construccion del lenguaje para especificar un TAD. Sin embargo se puede agrupar la interfaz
y la representacion de los datos en un archivo de inclusion: archivo.h. La implementacion de la interfaz, de las funciones se
realiza en el correspondiente archivo.c . Los detalles de la codificacion de las funciones quedan ocultos en el archivo.c

Las ventajas de los TAD se pueden manifestar en toda su potencia, debido a que las dos partes de los mddulos (especificacion
e implementacion) se pueden compilar por separado mediante la técnica de compilacion separada (“separate compilation™).

@ Tipos abstractos de datos TAD/objetos

17.3 Especificacion de los TAD

Un tipo abstracto de datos es un tipo de datos definido por el usuario que tiene un conjunto de datos y unas operaciones.
La especificacion de un TAD consta de dos partes, la descripcién matematica del conjunto de datos, y las operaciones defi-
nidas en ciertos elementos de ese conjunto de datos. El objetivo de la especificacion es describir el comportamiento del
TAD.

La especificacion del TAD puede tener un enfoque informal, en el que se describen los datos y las operaciones relaciona-
das en lenguaje natural. Otro enfoque mas riguroso, especificacion formal, supone suministrar un conjunto de axiomas que
describen las operaciones en su aspecto sintactico y semantico.

PROBLEMAS RESUELTOS

17.1. Realizar una especificacion informal del TAD Conjunto con las operaciones: ConjuntoVacio, Esvacio, Afiadir un elemento
al conjunto, Pertenece un elemento al conjunto, Retirar un elemento del conjunto, Union de dos conjuntos, Interseccion de
dos conjuntos e Inclusion de conjuntos.

Analisis del problema

La especificacion informal consiste en dos partes:
« detallar en los datos del tipo, los valores que pueden tomar.
« describir las operaciones, relacionandolas con los datos.

El formato que especificacion emplea, primero especifica el nombre del TAD y los datos:
TAD nombre del tipo (valores y su descripcion)

A continuacion cada una de las operaciones con sus argumentos, y una descripcion funcional en lenguaje natural.
Operacidon(argumentos). Descripcion funcional

Como ejemplo se va a especificar el tipo abstracto de datos Conjunto:

TAD Conjunto (Especificacion de elementos sin duplicidades pueden estar en cualquier
orden, se usa para representar los conjuntos matematicos con sus operaciones).

Operaciones, existen numerosas operaciones matematicas sobre conjuntos, algunas de ellas:

Conjuntovacio.

Crea un conjunto sin elementos
Afadir(Conjunto, elemento).

Comprueba si el elemento forma parte del conjunto, en caso negativo es afiadido. La funcién modifica al conjunto.
Retirar(Conjunto, elemento).

En el caso de que el elemento pertenezca al conjunto es eliminado de este. La funcién modifica al conjunto.
Pertenece(Conjunto, elemento).

Verifica si el elemento forma parte del conjunto, en cuyo caso devuelve cierto.
Esvacio(Conjunto)

Vferifica si el conjunto no tiene elementos, en cuyo caso devuelve cierto.
Cardinal(Conjunto)

Devuelve el nimero de elementos del conjunto
Union (Conjunto, Conjunto).

Realiza la operacion matematica de la union de dos conjuntos. La operacion devuelve un conjunto con los elementos
comunes y no comunes a los dos argumentos.

Tipos abstractos de datos TAD/objetos @

Interseccion (Conjunto, Conjunto).

Realiza la inclusion matematica de la interseccion de dos conjuntos. La operacion devuelve un conjunto con los elemen-
tos comunes a los dos argumentos.
Inclusién (Conjunto, Conjunto).

Vferifica si el primer conjunto esta incluido en el conjunto especificado en el segundo argumento, en cuyo caso devuelve
cierto.

17.2. Realizar la especificacion formal del TAD Conjunto con las operaciones indicadas en el ejercicio 17.1. Considerar a las
operaciones ConjuntoVacio y Afiadir como constructores.

Anélisis del problema

La especificacion formal proporciona un conjunto de axiomas que describen el comportamiento de todas las operaciones. La
descripcion ha de incluir un parte de sintaxis, en cuanto a los tipos de los argumentos y el tipo del resultado, y una parte de
semantica, donde se detalla para unos valores particulares de los argumentos la expresion del resultado que se obtiene. La
especificacion formal ha de ser lo bastante potente para que cumpla el objetivo de verificar la correccion de la implementa-
cion del TAD.

El esquema que se sigue para especificar formalmente un TAD consta de una cabecera con el nombre del TAD y los datos:
TAD nombre del tipo (valores que toma los datos del tipo)

Le sigue la sintaxis de las operaciones (se listan las operaciones indicando los tipos de los argumentos y el tipo del resultado):

Sintaxis
Operacién(Tipo argumento, ...)-> Tipo resultado

y a continuacidn, la semantica de las operaciones. Esta se construye dando unos valores particulares a los argumentos de las
operaciones, a partir de los cuales se obtiene una expresion resultado que puede tener referencias a tipos ya definidos, valo-
res de tipo l6gico o referencias a otras operaciones del propio TAD.

Semantica
Operacidén(valores particulares argumentos) [expresién resultado

Al hacer una especificacion formal siempre hay operaciones definidas por si mismas, se consideran constructores del TAD.
Se puede decir que mediante estos constructores se generan todos los posibles valores del TAD. Normalmente, se elige como
constructor la operacién que inicializa (por ejemplo, Conjuntovacio en el TAD Conjunto), y la operacién que afiade un dato
0 elemento(esta operacion es comun a la mayoria de los tipos abstractos de datos). Se acostumbra a marcar con un asteris-
co a las operaciones que son constructores.
A continuacion se hace la especificacion formal del TAD Conjunto, para formar la expresion resultado se hace uso, si es
necesario, de la sentencia alternativa si—entonces-sino.

TAD Conjunto(coleccidn de elementos sin duplicidades, pueden estar en cualquier orden, se usa
para representar los conjuntos matemdticos con sus operaciones).

Sintaxis
*Conjuntovacio => Conjunto
*Afadir(Conjunto, Elemento) =» Conjunto
Retirar(Conjunto, Elemento) = Conjunto
Pertenece(Conjunto, Elemento) => Conjunto
Esvacio(Conjunto) => boolean
Cardinal(Conjunto) = entero
Union(Conjunto, Conjunto) => Conjunto
Interseccion(Conjunto, Conjunto) => Conjunto
Incluido(Conjunto, Conjunto) -> boolean

Semdntica 0 el,e2 O Elemento y O C,D O Conjunto

Afiadir(Afiadir(C, el), el)
Afiadir(Afadir(C, el), e2)
Retirar(Conjuntovacio, el)
Retirar(Afadir(C, el), e2)

Pertenece(Conjuntovacio, el)
Pertenece(Afiadir(C, e2), el)

Esvacio(Conjuntovacio)
Esvacio(Afadir(C, el))
Cardinal(Conjuntovacio)
Cardinal(Anadir(C, el))

Union(Conjuntovacio,

Conjuntovacio)

Union(Conjuntovacio,

Afiadir(C, el))

Union(Afiadir(C, el), D)
Interseccion(Conjuntovacio,
Conjuntovacio)

Intereseccion(Afiadir(C, el),Afiadir(D, el)
Incluido(Conjuntovacio, Conjuntovacio)
Incluido(Anadir(C, el), Afadir(D, el))

OO oooo

I o

|

I o o

CAPITULO 17 Tipos abstractos de datos TAD/objetos

Afiadir(C, el)
Afadir(Anadir(C, e2), el)
Conjuntovacio

si el = e2 entonces Retirar(C,e2)
sino Afiadir(Retirar(C,e2),el)
falso

si el = e2 entonces cierto
sino Pertenece(C, el)

cierto

falso

Cero

si Pertenece(C,el) entonces
Cardinal(C)

sino 1 + Cardinal(C)

Conjuntovacio

Anadir(C, el)
Afiadir(Union(C, D), el)

Conjuntovacio
Afiadir(Intereseccion (C,D), el)
cierto

cierto si Incluido (C, D)

17.3. Crear un TAD que represente un dato tipo cadena (string) y sus diversas operaciones: CadenaVacia, Asignar, Longitud,
Buscar posicion de un caracter dado, Concatenar cadenas, Extraer una subcadena.
Realizar la especificacion informal y formal considerando como constructores las operaciones CadenaVacia y Asignar.

ESPECIFICACION INFORMAL

TAD Cadena (Secuencia de caracteres ASCII terminada por un byte nulo).

Operaciones

Cadenavacia.
Crea una cadena vacia
Asignar (Cadena, Cadenal).

Elimina el contenido de la primera cadena si lo hubiere y lo sustituye por la segunda.

Longitud (Cadena).

Devuelve el nimero de caracteres de la cadena sin contar el byte final.

Buscar (Cadena, Caracter)

Devuelve la posicion de la primera ocurrencia del caracter por la izquierda.

Concatenar (Cadenal, Cadena2).

Ariade el contenido de Cadena2 a la cadena del primer argumento.

Extraer (Cadena, Posicion, NumCaracteres).

Devuelve la subcadena del primer argumento que comienza en la posicion del segundo argumento y tiene tantos caracte-

res como indica el tercero.

ESPECIFICACION FORMAL

TAD Cadena (Secuencia de caracteres ASCII terminada por un byte nulo).

17.4.

17.5.

Tipos abstractos de datos TAD/objetos @

Sintaxis
*Cadenavacia -> Cadena
*Asignar (Cadena, Cadena) -> Cadena
Longitud (Cadena) -> entero
Buscar (Cadena, Cardacter) -> entero
Concatenar (Cadenal, Cadena?2) -> Cadena
Extraer (Cadena, Posicién, NumCaracteres) -> Cadena

Disefiar el TAD Bolsa como una coleccion de elementos no ordenados y que pueden estar repetidos. Las operaciones del
tipo abstracto: CrearBolsa, Afiadir un elemento, BolsaVacia (verifica si tiene elementos), Dentro (verifica si un elemento
pertenece a la bolsa), Cuantos (determina el nimero de veces que se encuentra un elemento), Union y Total. Realizar la
especificacion informal y formal considerando como constructores las operaciones CrearBolsa y Afiadir.

ESPECIFICACION INFORMAL
TAD Bolsa (Coleccion de elementos no ordenados que pueden estar repetidos).
Operaciones

CrearBolsa
Crea una bolsa vacia.
Afadir (Bolsa, elemento)
Afiade un elemento a la bolsa.
BolsaVacia (Bolsa).
Verifica que la bolsa no tiene elementos.
Dentro (elemento, Bolsa).
Verifica si un elemento pertenece a la bolsa
Cuantos (elemento, Bolsa).
Determina el nimero de veces que se encuentra un elemento en una bolsa
Union (Bolsal, Bolsa2).
Devuelve una bolsa con los elementos de los dos argumentos.
Total (Bolsa).
Devuelve el nimero de elementos de una bolsa.

ESPECIFICACION FORMAL

TAD Cadena (Secuencia de caracteres ASCII terminada por un byte nulo).

Sintaxis
*CrearBolsa -> Bolsa
*Afiadir (Bolsa, elemento) -> Bolsa
BolsaVacia (Bolsa) -> boolean
Dentro (elemento, Bolsa) -> boolean
Cuantos (elemento, Bolsa) -> entero
Union (Bolsal, Bolsa?2) -> Bolsa
Total (Bolsa) -> Bolsa

Disefiar el TAD Complejo para representar a los nimeros complejos. Las operaciones que se deben definir: AsignaReal (asig-
na un valor a la parte real), Asignalmaginaria (asigna un valor a la parte imaginaria), ParteReal(devuelve la parte real de un
complejo), Partelmaginaria (devuelve la parte imaginaria de un complejo), Modulo de un complejo y Suma de dos nimeros com-
plejos. Realizar la especificacion informal y formal considerando como constructores las operaciones que desee.

@ Tipos abstractos de datos TAD/objetos

ESPECIFICACION INFORMAL

TAD Complejo (Par de nlUmeros reales que representan la parte real e imaginaria de un nldmero com-
plejo segun el concepto matemdtico).

Operaciones

AsignaReal (Complejo, real).

Asigna un valor a la parte real de un nimero complejo.
Asignalmaginaria (Complejo, real).

Asigna un valor a la parte imaginaria de un nimero complejo.
ParteReal (Complejo).

Devuelve la parte real de un nimero complejo.
Partelmaginaria (Complejo).

Devuelve la parte imaginaria de un nimero complejo.
Modulo (Complejo).

Devuelve el médulo de un nimero complejo.
Suma (Complejol, Complejo2).

Devuelve la suma de dos nimeros complejos

ESPECIFICACION FORMAL

TAD Complejo (Par de nimeros reales que representan la parte real e imaginaria de un numero com-
plejo seglin el concepto matemdtico).

Sintaxis
*AsignaReal (Complejo, real) -> Complejo
*Asignalmaginaria (Complejo, real) -> Complejo
ParteReal (Complejo) -> real
ParteImaginaria (Complejo) -> real
Modulo (Complejo) -> real
Suma (Complejol, Complejo?) -> Complejo

17.6. Disefiar el tipo abstracto de datos Vector con la finalidad de representar una secuencia de n elementos del mismo tipo. Las ope-
raciones a definir: CrearVector (crea un vector n posiciones vacias), Asignar (asigna un elemento en la posicion j),
ObtenerElemento(devuelve el elemento que se encuentra en la posicion j), SubVector(devuelve el vector comprendido entre las
posiciones i, j). Realizar la especificacion informal y formal considerando como constructores las operaciones que desee.

ESPECIFICACION INFORMAL
TAD Vector (secuencia de n elementos del mismo tipo).
Operaciones

Crear\ector (entero).
Crea un vector n posiciones vacias.
Asignar (Vector, posicion, elemento).
Asigna un elemento en la posicién indicada en el segundo parametro.
ObtenerElemento (Vector, posicion).
Devuelve el elemento que se encuentra en la posicién indicada en el segundo parametro.
SubVector (Vector, inicial, final).
Devuelve el vector comprendido entre las posiciones indicadas en los parametros finales.

Tipos abstractos de datos TAD/objetos @

ESPECIFICACION FORMAL

TAD Vector (secuencia de n elementos del mismo tipo).

Sintaxis
*CrearVector (entero) -> Vector.
*Asignar (Vector, entero, elemento) -> Vector.
ObtenerElemento (Vector, entero) -> elemento.
SubVector (Vector, entero, entero) -> \Vector.

17.7. Disefar el tipo abstracto de datos Matriz con la finalidad de representar matrices matematicas. Las operaciones a definir:
CrearMatriz (crea una matriz, sin elementos, de m filas por n columnas), Asignar (asigna un elemento en la fila i columna
J), ObtenerElemento(obtiene el elemento de la fila i y columna j), Sumar (realiza la suma de dos matrices cuando tienen las
mismas dimensiones), ProductoEscalar(obtiene la matriz resultante de multiplicar cada elemento de la matriz por un valor).
Realizar la especificacion informal y formal considerando como constructores las operaciones que desee.

ESPECIFICACION INFORMAL
TAD Matriz (Secuencia de elementos organizados en filas y columnas).
Operaciones

CrearMatriz (filas, columnas).

Crea una matriz, sin elementos, de las dimensiones que indican los argumentos.
Asignar (Matriz, fila, columna, elemento).

Asigna un elemento en la posicién que indican los argumentos finales.
ObtenerElemento (Matriz, fila, columna).

Obtiene el elemento de la posicion que indican los argumentos finales.
Sumar (Matrizl, Matriz2).

Realiza la suma de dos matrices cuando tienen las mismas dimensiones
ProductoEscalar (Matriz, valor).

Obtiene la matriz resultante de multiplicar cada elemento de la matriz por un valor.

ESPECIFICACION FORMAL

TAD Matriz (Secuencia de elementos organizados en filas y columnas).

Sintaxis
*CrearMatriz (entero, entero) -> Matriz.
Asignar (Matriz, entero, entero, elemento) -> Matriz.
ObtenerElemento (Matriz, entero, entero) -> Matriz.
Sumar (Matriz, Matriz) -> Matriz.
ProductoEscalar (Matriz, valor) -> Matriz.

17.8. Implementar el TAD Conjunto con las operaciones especificadas en los ejercicios 17.1y 17.2.
Anélisis del problema
La implementacion del tipo abstracto de datos debe incluir dos partes diferenciadas:

« representacion de los datos.
« implementacion de las operaciones descritas en la especificacion.

@ Tipos abstractos de datos TAD/objetos

Los archivos de inclusion o de cabecera se utilizan para agrupar en ellos variables externas, declaraciones de datos comu-
nes y prototipos de funciones. Estos archivos de cabecera se incluyen en los archivos que contienen la codificacion de las
funciones, archivos fuente, y también en los archivos de codigo que hagan referencia a algin elemento del archivo de inclu-
sién, con la directiva del preprocesador #include. Al implementar un TAD en C, se agrupa, en cierto modo se encierra, en
estos archivos la representacion de los datos y el interfaz del TAD, a su vez, representado por los prototipos de las funcio-
nes. De esta forma en los archivos de cadigo fuente que utilicen el TAD hay que escribir la directiva

f#include “tipodedato.h”

Para hacer la implementacion lo mas flexible posible, no se establece que el conjunto pueda tener un maximo de elemen-
tos. Esta caracteristica exige el uso de asignacion dindmica de memoria.

En el archivo de cabecera, conjunto.h, se realiza la declaracion de la estructura que va a representar a los datos. El tipo
de los datos puede ser cualquiera, entonces es necesario que TipoDato esté especificado antes de incluir conjunto.h . La
constante M, que arbitrariamente toma el valor de 10, es el nimero de “huecos” o posiciones de memoria, que se reservan
cada vez que hay que ampliar el tamafio de la estructura.

Archivo conjunto.h

ffdefine M 10
typedef struct
{
TipoDato* cto;
int cardinal;
int capacidad;
} Conjunto;

void conjuntoVacio (Conjunto* c);

int esVacio (Conjunto c);

void afiadir (Conjunto* c, TipoDato elemento);

void retirar (Conjunto* c, TipoDato elemento);

int pertenece (Conjunto c, TipoDato elemento);

int cardinal (Conjunto c);

Conjunto unionC (Conjunto cl, Conjunto c2);
Conjunto interseccionC (Conjunto cl, Conjunto c2);
int incluido (Conjunto cl, Conjunto c2);

Este archivo de cabecera, conjunto.h, hay que incluirlo en todos los archivos con cédigo C que vaya a utilizar el tipo
Conjunto. Es importante recordar que antes de escribir la sentencia inc1ude hay que asociar un tipo predefinido a TipoDato.
Por ejemplo, si los elementos del conjunto son las coordenadas de un punto en el plano:

typedef struct
{
float x;
float y;
} Punto;

typedef Punto TipoDato;
#Finclude “conjunto.h”

Las funciones cuyos prototipos han sido ya escritos, se codifican y se guardan en el archivo conjunto.c . La compilacion
de conjunto.c da lugar al archivo con el codigo objeto que se ensamblara con el cddigo objeto de otros archivos fuente
que hacen uso del TAD Conjunto.

CAPITULO 17 Tipos abstractos de datos TAD/objetos

Codificacion
Archivo conjunto.c
typedef struct {var(s)} Tipo;

typedef Tipo TipoDato;
#include “conjunto.h”

/* iguales() devuelve 1(cierto) si todos Tos campos lo son.
La implementacién depende del tipo concreto de los dato
del conjunto.

)

int iguales (TipoDato el, TipoDato e?2)
{
return (el.vl == e2.vl) && (el.v2 == e2.v2)

void conjuntoVacio(Conjunto* c)
{
¢ -» cardinal = 0;
c -> capacidad = M;
c -> cto = (TipoDato*)malloc (M*sizeof(TipoDato));

int esVacio(Conjunto c)
{
return (c.cardinal == 0);

void afiadir (Conjunto* c, TipoDato elemento)
{

if (!pertenece(*c, elemento))
{
/* verifica si hay posiciones libres,
en caso contrario amplia el conjunto */
if (¢ -> cardinal == ¢ -> capacidad)
{
Conjunto nuevo;
int k, capacidad;
capacidad = (¢ -> capacidad + M)*sizeof(TipoDato)
nuevo.cto = (TipoDato*) malloc(capacidad);

for (k = 0; k < ¢ -> capacidad; k++)
nuevo.cto[k] = ¢ -> ctol[k];

free(c -> cto);
c -> cto = nuevo.cto;
}

c -> ctol[c -> cardinal++] = elemento;

@ CAPITULO 17 Tipos abstractos de datos TAD/objetos

void retirar (Conjunto* c, TipoDato elemento)

{
int k;

if (pertenece (*c, elemento))
{
k = 0;
while (!iguales (c -> ctol[k], elemento)) k++;

/* desde el elemento k hasta Ta UGltima posiciodn
mueve los elementos una posicién a la izquierda */

for (; k < ¢ -> cardinal ; k++)
c -> cto[k] = ¢ -> ctol[k+1]1;

¢ -»> cardinal—;
}

int pertenece (Conjunto c, TipoDato elemento)
{

int k, encontrado;

k = encontrado = 0;

while (k < c.cardinal && !encontrado)

{
encontrado = iguales (c.ctol[k], elemento);
k++;

}

return encontrado;

int cardinal(Conjunto c)
{
return c.cardinal;

Conjunto unionC(Conjunto cl, Conjunto c2)
{
Conjunto u;
int k;
u.cardinal = 0;
u.capacidad = cl.capacidad;
u.cto = (TipoDato*)malloc (u.capacidad*sizeof(TipoDato));

for (k = 0; k < cl.capacidad; k++)
u.ctolk] = cl.ctolk];
u.cardinal = cl.cardinal;

for (k = 0; k < c2.capacidad; k++)
afiadir (&u, c2.ctolk]);
return u;

Tipos abstractos de datos TAD/objetos @

Conjunto interseccionC (Conjunto cl, Conjunto c2)
{

Conjunto ic;

int k, 1;

ic.cardinal = 0;
ic.capacidad = cl.capacidad;
ic.cto = (TipoDato*)malloc (u.capacidad*sizeof(TipoDato));

for (k = 0; k < cl.capacidad; k++)
for (1 = 0; 1 < cl.capacidad; 1++)
if (iguales (cl.ctolk], c2.ctol[1]))
{
annadir (&ic, cl.ctolk]);
ic.cardinal++;
}
return ic;
}

int incluido (Conjunto cl, Conjunto c2)
{
int k;
if (cl.cardinal==0) return 1;
for (k = 0; k < cl.capacidad; k++)
if (!pertenece (c2, cl.ctol[k]))
return 0;
return 1;
17.9. Implementar el TAD Bolsa descrito en el ejercicio 17.4. Probar la implementacién con un programa que invoque a las ope-
raciones del tipo abstracto Bolsa.
Codificacion (Consultar la pagina web del libro)
17.10. Implementar el TAD Cadena descrito en el ejercicio 17.3. Probar la implementacion con un programa que realice diversas
operaciones con cadenas.

Anélisis del problema

En primer lugar es conveniente definir el contenido de un fichero de cabecera para definir los prototipos de las funciones
que se implementaran y el tipo de datos “cadena”.

Codificacion
cadena.h

ftdefine N 100
typedef char cadena [N];

cadena cadenavacia ();

@ CAPITULO 17 Tipos abstractos de datos TAD/objetos

cadena asignar (cadena cadl, cadena cad?2);

int longitud (cadena cad);

int buscar (cadena cad, char c);

cadena concatenar (cadena cadl, cadena cad2);
cadena extraer (cadena cad, int pos, int NumCar)

Las funciones cuyos prototipos han sido ya escritos, se codifican en el archivo cadena.c.
ffinclude cadena.h

cadena cadenavacia ()

{
char *vacia = (char*) malloc(80);
return vacia;

cadena asignar (cadena cadl, cadena cad?2)
{

return strcat (cadl, cad?);

int longitud (cadena cad)
it
return (strlen (cad));

int buscar (cadena cad, char c)
{
return (strchr (cad, c));

cadena concatenar (cadena cadl, cadena cad?)

{

return (strcat(cadl,cad2));

cadena extraer (cadena cad, int pos, int NumCar)
{

char *aux = (char*) malloc (numcar + 1);

int i,j = 0;

for (i = pos; i < pos+numcar; i ++)
aux[jl = cadl[i];
return aux;

Un programa que pruebe las funciones anteriores podria ser el siguiente:

main()

{
cadena cadl;
cadena cad2, cad3;

Tipos abstractos de datos TAD/objetos

cadl = cadenavacia ();
cad2 = cadenavacia ();
cad2 = cadenavacia ();

printf (“Introduzca una cadena de caracteres:

scanf (*%s”, cadl);

printf (“\nSu cadena tiene %d caracteres.\n”,

E

longitud(cadl));

printf (“Esta es la cadena con las dos mitades intercambiadas\n”);

mitad = (int)(longitud(cadl)/2);
cad2 = extraer (cadl, 0, mitad);
cad3 = extraer (cadl, mitad+l, mitad);
cad3 = concatenar (cad3, cad?2);
puts (cad3);
}

Debera ser compilado junto con el fichero cadena.c que contiene las implementaciones de las funciones.

17.11. Implementar el TAD Matriz especificado en el ejercicio 17.7 con una estructura dindmica. Escribir un programa que hacien-
do uso del TAD Matriz se realicen operaciones diversas y escriba las matrices generadas.

Codificacion (Consultar la pagina web del libro)

PROBLEMAS PROPUESTOS

17.1.

17.2.

17.3.

17.4.

Implementar el TAD Complejo especificado en el ejerci-
cio 17.5. Escribir un programa en el que se realicen
diversas operaciones con nimeros complejos.

Implementar el TAD Vector especificado en el ejercicio
17.6 con una estructura dinamica

Disefiar el TAD Grafo como un conjunto de nodos y de
aristas. Las operaciones del tipo abstracto seran:
CrearGrafo, AfiadirNodo, AfadirArista, GrafoVacio
(verifica si tiene nodos o aristas), Recorrido en
Profundidad, RecorridoenAnchura, Cuantos (determina
el nimero de nodos y el nimero de aristas), Union de
dos grafos y Conectados (Verifica si existe un camino
entre dos nodos). Realizar la especificacion informal y
formal considerando como constructores las operaciones
CrearGrafo, AfiadirNodo y AfadirArista.

Implementar el TAD Grafo especificado en el ejercicio
anterior con una estructura dindmica. Escribir un pro

17.5.

17.6.

17.7.

grama que haciendo uso del TAD. Grafo se realicen ope-
raciones diversas.

Disefiar el TAD Arbol Binario ordenado. Las operacio-
nes del tipo abstracto seran: CrearArbol, AfiadirNodo,
ArbolVacio (verifica si tiene nodos), Recorridoen
Profundidad, RecorridoenAnchura, Cuantos (determina
el niamero de nodos), Union de dos &rboles y Equilibrar
el arbol. Realizar la especificacion informal y formal
considerando como constructores las operaciones
CrearArbol y AfadirNodo.

Implementar el TAD Arbol Binario ordenado especifica-
do en el ejercicio anterior con una estructura dinamica.
Escribir un programa que haciendo uso del TAD Arbol
Binario ordenado se realicen operaciones diversas.

Disefiar el TAD Buzdn de Mensajes. Las operaciones del
tipo abstracto seran: CrearBuzon, AbrirBuzon,
BuzonVacio, RecibirMensaje (recibir el Gltimo mensaje),

@ CAPITULO 17 Tipos abstractos de datos TAD/objetos

EnviarMensaje, VaciarBuzon, DestruirBuzon. Realizar ponerlo en un estado determinado), DestruirSemaforo,
la especificacion informal y formal considerando como AbrirSemaforo, CerrarSemaforo, EsperarSemaforo
constructor la operacion CrearBuzon. (Esperar a que se abrir el seméaforo y cerrarlo). Realizar

la especificacion informal y formal.
17.8. Implementar el TAD Buzdn de Mensajes especificado en
el ejercicio anterior con una estructura dinamica. 17.10. Implementar el TAD Seméforo especificado en el ejerci-
Escribir un programa que haciendo uso del TAD Buzon cio anterior. Escribir un programa que haciendo uso del
de Mensajes se realicen operaciones diversas. TAD Seméforo se realicen operaciones diversas.

17.9. Disefiar el TAD Seméforo. Las operaciones del tipo abs-
tracto seran: CrearSemaforo (Crear un semaforo y

18.1

CAPITULO 18

Listas enlazadas

En este capitulo se comienza el estudio de las estructuras de datos dinamicas. Al contrario que las estructuras de datos estati-
cas (arrays - listas, vectores y tablas - y estructuras) en las que su tamafio en memoria se establece durante la compilacién y
permanece inalterable durante la ejecucién del programa, las estructuras de datos dindmicas crecen y se contraen a medida que
se ejecuta el programa.

La estructura de datos que se estudiara en este capitulo es la lista enlazada (ligada o encadenada, “linked list”) que es una
coleccion de elementos (denominados nodos) dispuestos uno a continuacion de otro, cada uno de ellos conectado al siguiente
elemento por un “enlace” o “puntero”. Las listas enlazadas son estructuras muy flexibles y con numerosas aplicaciones en el
mundo de la programacion

Fundamentos teoéricos

Gracias a la asignacion dindmica de variables, se pueden implementar listas de modo que la memoria fisica utilizada se corres-
ponda con el nimero de elementos de la tabla. Para ello se recurre a los punteros (apuntadores). Una lista enlazada es una
secuencia de elementos dispuestos uno detrés de otro, en la que cada elemento se conecta al siguiente elemento por un “enla-
ce” 0 “puntero”. La idea consiste en construir una lista cuyos elementos llamados nodos se componen de dos partes 0 campos:
la primera parte o campo contiene la informacion y es, por consiguiente, un valor de un tipo genérico (denominado Dato,
TipoElemento, Info, etc.) y la segunda parte o campo es un puntero (denominado enlace o sgt, sig, etc.) que apunta al siguien-
te elemento de la lista. La representacion grafica es la siguiente.

. > e . > e, . > €3 ——> - S

€1, €, ...e,, son valores del tipo TipoElemento.

Figura 18.1 Lista enlazada.

18.2 Clasificacion de las listas enlazadas

Las listas se pueden dividir en cuatro categorias:
« Listas simplemente enlazadas. Cada nodo (elemento) contiene un Gnico enlace que conecta ese nodo al nodo siguiente o nodo
sucesor.

@ CAPITULO 18 Listas enlazadas

18.3

« Listas doblemente enlazadas. Cada nodo contiene dos enlaces, uno a su nodo predecesor y el otro a su nodo sucesor.

« Lista circular simplemente enlazada. Una lista enlazada simplemente en la que el Gltimo elemento se enlaza al primer ele-
mento.

« Lista circular doblemente enlazada. Una lista doblemente enlazada en la que el dltimo elemento se enlaza al primer elemen-
to y viceversa.

Por cada uno de estos cuatro tipos de estructuras de listas, se puede elegir una implementacion basada en arrays
0 una implementacion basada en punteros.

Operaciones en listas enlazadas

Las operaciones sobre listas enlazadas mas usuales son: Declaracion de los tipos nodo y puntero a nodo; inicializacion o cre-
acion; insertar elementos en una lista; eliminar elementos de una lista; buscar elementos de una lista; recorrer una lista enla-
zada; comprobar si la lista esta vacia.

EJEMPLO 18.1 Declaracién de un Nodo

En C, se puede declarar un nuevo tipo de dato por un nodo mediante las palabras reservadas
Struct de la siguiente forma

struct Nodo typedef struct Nodo typedef double Elemento;
{ { Struct nodo
int info; int info; {
struct Nodo* sig: struct Nodo *sig; Elemento info;
b }NODO; struct nodo *sig;

b

Puntero de cabecera y cola.Un puntero al primer nodo se llama puntero cabeza. En ocasiones, se mantiene también
un puntero al Ultimo nodo de una lista enlazada. El Gltimo nodo es la cola de la lista, y un puntero al Gltimo nodo es el
puntero cola. Cada puntero a un nodo debe ser declarado como una variable puntero.

Puntero nulo. La palabra NULL representa el puntero nulo NULL, que es una constante de la biblioteca estandar
std1ib.h de C. Este puntero se usa: en el campo sig del nodo final de una lista enlazada; en una lista vacia.
Operador -> de seleccion de un miembro. Si p es un puntero a una estructura y m es un miembro de la estructura,
entonces p -> m accede al miembro m de la estructura apuntada por P. EI simbolo “->” es un operador simple. Se
denomina operador de seleccion de componente.

P -> msignifica lo mismo que (*p).m

EJEMPLO 18.2 Construccion de una lista.

Un algoritmo para la creacién de una lista enlazada afiadiendo dado por el principio de la lista es el siguiente:
Declarar el tipo de dato y el puntero ant y nl

inicio

ant < NULL

nl < NULL

mientras queden datos por afiadir a la lista hacer
Leer dato
Asignar memoria para un elemento (nuevopuntero) utilizando a (malloc(), calloc(), realloc()
nuevopuntero->info < dato;
nuevopuntero ->sig < NULL
si ant = NULL entonces
ant < nuevopuntero

CAPITULO 18 Listas enlazadas @

nl < ant
sino
ant -> sig < nuevopuntero
nl < nuevopountero
fin si
fin mientras
fin

18.3.1 INSERCION DE UN ELEMENTO EN UNA LISTA

El algoritmo empleado para afiadir o insertar un elemento en una lista enlazada varia dependiendo de la posicién en que se
desea insertar el elemento. La posicién de insercién puede ser:

INSERCION DE UN NUEVO ELEMENTO EN LA CABEZA DE UNA LISTA

El proceso de insercién se puede resumir en este algoritmo:

« Asignar un nuevo nodo a un puntero ptrnodo que apunte al nuevo nodo nuevonodo que se va a insertar en la lista.
« Situar el nuevo elemento en el campo dato (el) del nuevo nodo nuevonodo.

« Hacer que el campo enlace sig del nuevo nodo nuevonodo apunte a la cabeza (primer nodo) de la lista original.

* Hacer que cabeza (puntero primero) apunte al nuevo nodo que se ha creado.

EJEMPLO 18.3 Insercién en la cabeza de la lista

Nodo * ptrnodo;

ptrnodo = & nuevonodo;
nuevonodo.dato = el;
nuevonodo.sig = cabeza;
cabeza = ptrnodo;

INSERCION DE UN NUEVO NODO QUE NO ESTA EN LA CABEZA DE LISTA

Se puede insertar en el centro o al final de la lista. El algoritmo de la nueva operacion insertar requiere los pasos siguientes:

« Asignar memoria al nuevo nodo apuntado por el puntero nuevo.

« Situar el nuevo elemento en el campo dato (e1) del nuevo nodo.

« Hacer que el campo enlace sig del nuevo nodo nuevo apunte al nodo que va después de la posicion del nuevo nodo nuevo.

« En la variable puntero ant hay que tener la direccion del nodo que esté antes de la posicion deseada (siempre existe) para el
nuevo nodo. Hacer que ant -> sig apunte al nuevo nodo que se acaba de crear.

INSERCION AL FINAL DE LA LISTA

La insercion al final de la lista es un caso particular de la anterior. La Unica diferencia es que el enlace s g de nuevo nodo siem-
pre apunta a NULL

EJEMPLO 18.4 Insercién en otro lugar de la lista

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;

nuevo-»>sig = ptrnodo->sig;

ant->sig = nuevo;

18.3.2 ELIMINACION DE UN NODO EN UNA LISTA

El algoritmo para eliminar un nodo que contiene un dato se puede expresar en estos pasos:
« Buscar el nodo que contiene el dato. Hay que tener la direccion del nodo a eliminar y la del nodo inmediatamente anterior.

@ CAPITULO 18 Listas enlazadas

« El puntero sig del nodo anterior ha de apuntar al sig del nodo a eliminar.
« Si el nodo a eliminar es el Primero, se modifica Primero para que tenga la direccion del nodo sig del nodo a eliminar
* Se libera la memoria ocupada por el nodo.

EJEMPLO 18.5 Eliminacién de un nodo
ant->sig = ptrnodo->sig;

if (Primero == ptrnodo) Primero = ptrnodo->sig;
free (ptrnodo);

18.4 Lista doblemente enlazada

En una lista doblemente enlazada, cada elemento contiene dos punteros, aparte del valor almacenado en el elemento; un pun-
tero apunta al siguiente elemento de la lista (sig) y el otro puntero apunta al elemento anterior de la lista (ant). Existe una
operacion de insertar y eliminar (borrar) en cada direccion.

Figura 18.2 Insercion de un nodo en una lista doblemente enlazada.

Figura 18.2 Eliminacién de un nodo en una lista doblemente enlazada.

EJEMPLO 18.6 Declaracién de una lista doblemente enlazada

Una lista doblemente enlazada con valores de tipo int necesita para ser declarada dos punteros (sig, ant) Yy el valor del
campo elemento (el):

typedef int Item;

struct Unnodo

{
Item el;
struct Unnodo *sig;
struct Unnodo *ant;

b

typedef struct Unnodo Nodo;

18.4.1 INSERCION DE UN ELEMENTO EN UNA LISTA DOBLEMENTE ENLAZADA

El algoritmo empleado para afiadir o insertar un elemento en una lista doble varia dependiendo de la posicion en que se desea
insertar el elemento. La posicion de insercidn puede ser: en la cabeza (elemento primero) de la lista; en el final de la lista (ele-
mento Ultimo); antes de un elemento especificado, o bien después de un elemento especificado.

CAPITULO 18 Listas enlazadas @

INSERCION DE UN NUEVO ELEMENTO EN LA CABEZA DE UNA LISTA DOBLE

El proceso de insercién se puede resumir en este algoritmo:

« Asignar memoria a un nuevo nodo apuntado por nuevo que es una variable puntero local que apunta al nuevo nodo que se va
a insertar en la lista doble.

« Situar el nodo nuevo el elemento que se va a insertar en el campo dato (e1) del nuevo nodo nuevo.

« Hacer que el campo enlace sig del nuevo nodo nuevo apunte a la cabeza (primer nodo) de la lista original, y que el campo
enlace ant del nodo cabeza apunte al nuevo nodo nuevo si es que existe. En caso de que no exista no hacer nada.

* Hacer que cabeza (puntero de la lista) apunte al nuevo nodo que se ha creado.

EJEMPLO 18.7 Insercién en cabeza de lista doble

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;

nuevo->sig = cabeza;

cabeza->ant = nuevo;

cabeza = nuevo;

INSERCION DE UN NUEVO NODO QUE NO ESTA EN LA CABEZA DE LISTA

La insercion de un nuevo nodo en una lista doblemente enlazada se puede realizar en un nodo intermedio o final de ella. El
algoritmo de la nueva operacion insertar requiere las siguientes etapas:

« Asignar memoria al nuevo nodo apuntado por el puntero nuevo.

« Situar el nuevo elemento en el campo dato (e1) del nuevo nodo nuevo.

« Hacer que el campo enlace sig del nuevo nodo nuevo apunte al nodo que va después de la posicion del nuevo nodo ptrno-
do (o bien a NULL en caso de que no haya ningin nodo después de la nueva posicion). EI campo ant del nodo siguiente
ptrnodo al que ocupa la posicion del nuevo nodo nuevo tiene que apuntar a nuevo Si s que existe. En caso de que no exis-
ta no hacer nada.

« Tomar la direccion del nodo que esta antes de la posicion deseada para el nuevo nodo nuevo. Si esta direccion es la varia-
ble puntero ant y hacer que ant->sig apunte al nuevo nodo nuevo. El enlace ant del nuevo nodo nuevo ponerlo apuntan-
doa ant.

EJEMPLO 18.8 Insercién de un nodo en el centro de una lista doble

En este caso siempre existe el nodo anterior ant y el nodo siguiente ptrnodo, con lo que la insercion supuesto que ya
se han colocado los dos punteros es :

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;

nuevo-»>sig = ptrnodo->sig;
ptrnodo->ant = nuevo;

ant->sig = nuevo;

18.4.2 ELIMINACION DE UN ELEMENTO EN UNA LISTA DOBLEMENTE ENLAZADA

El algoritmo para eliminar un nodo que contiene un dato es similar al algoritmo de borrado para una lista simple. Ahora la direc-
cioén del nodo anterior se encuentra en el puntero ant del nodo a borrar. Los pasos a seguir son:

« Blsqueda del nodo que contiene el dato. Se ha de tener la direccion del nodo a eliminar y la direccion del anterior (ant).

* El puntero sig del nodo anterior (ant) tiene que apuntar al puntero sig del nodo a eliminar, ptrnodo esto en el caso de no
ser el nodo primero de la lista. En caso de que sea el primero de la lista el puntero de la lista debe apuntar al puntero sig del
nodo a eliminar ptrnodo .

« El puntero ant del nodo siguiente a borrar tiene que apuntar al puntero ant del nodo a eliminar, esto en el caso de no ser el
nodo ultimo. En el caso de que el puntero a eliminar sea el Gltimo no hacer nada.

@ CAPITULO 18 Listas enlazadas

« Por Gltimo se libera la memoria ocupada por el nodo a eliminarptrnodo.
EJEMPLO 18.9 Eliminacién en una lista doble
ant->sig = ptrnodo->sig;

ptrnodo->sig->ant = ptrnodo->ant;
free (ptrnodo);

18.5 Listas circulares

En las listas lineales simples o en las dobles siempre hay un primer nodo y un dltimo nodo que tiene el campo de enlace a nulo.
Una lista circular, por propia naturaleza no tiene ni principio ni fin. Sin embargo, resulta Util establecer un nodo a partir del
cual se acceda a la lista y asi poder acceder a sus nodos insertar, borrar etc.

. > -4 > 5.0 | 7.5 15

z i

A\

Figura 13.4 Lista circular.

INSERCION DE UN ELEMENTO EN UNA LISTA CIRCULAR

El algoritmo empleado para afiadir o insertar un elemento en una lista circular varia dependiendo de la posicién en que se desea
insertar el elemento que inserta el nodo en la lista circular. En todo caso hay que seguir los siguientes pasos:

* Asignar memoria al nuevo nodo nuevo Yy almacenar el dato.

« Si la lista esté vacia, enlazar el campo sig del nuevo nodo nuevo con el propio nuevo nodo, nuevo y poner el puntero de la
lista circular en el nuevo nodo nuevo.

« Si la lista no esta vacia se debe decidir el lugar donde colocar el nuevo nodo nuevo, quedandose con la direccion del nodo
inmediatamente anterior ant. Enlazar el campo sig de nuevo nodo nuevo con el campo sig del nodo anterior ant. Enlazar
el campo sig del nodo anterior ant con el nuevo nodo nuevo. Si se pretende que el nuevo nodo nuevo ya insertado sea el
primero de la lista circular, mover el puntero de la lista circular al nuevo nodo nuevo. En otro caso no hacer nada.

EJEMPLO 18.10 Insercion en lista circular

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;
if (primero==NULL)
{
nuevo->sig = nuevo;
primero = nuevo;
}
else {
nuevo->sig = antanterior->sig;
anterior->sig = nuevo;
}

ELIMINACION DE UN ELEMENTO EN UNA LISTA CIRCULAR

El algoritmo para eliminar un nodo de una lista circular es el siguiente:

« Buscar el nodo que contiene el dato quedandose con el nodo anterior ant.
« Se enlaza el campo sig el nodo anterior ant con el campo siguiente sig del nodo a borrar. Si la lista contenia un solo nodo

se pone a NULL la lista.

CAPITULO 18 Listas enlazadas @

« En caso de que el nodo a eliminar sea el referenciado por el puntero de acceso a la lista, Lc, y contenga mas de un nodo se
modifica Lc para que tenga la direccion del nodo anterior ant o bien el campo sig de Lc. (si la lista se quedara vacia hacer
que Lc tome el valor NULL).

* Por dltimo, se libera la memoria ocupada por el nodo.

EJEMPLO 18.11 Eliminacion en lista circular

ant->sig = ptrnodo->sig;
if (Lc == Lc->sig)
Lc=NULL;
else if (ptrnodo == Lc)
Lc = ant->sig;

PROBLEMAS RESUELTOS

18.1. Escriba una funcién que devuelva cierto si la lista esta vacia y falso en otro caso, y otra que cree una lista vacia.

18.2.

Coadificacion
Si se supone siguiente declaracion:

typedef int Item;
typedef struct Registro
{

Item el;

struct Registro* sig;
}Nodo;

La codificacion de la funcién Esvacia sera:

Int Esvacia(Nodo * Primero)
{
return(Primero == NULL);

La codificacion de la funcion Vacial sera:

Void Vacial(Nodo ** Primero)
{
*Primero == NULL;

Escriba una funcién entera que devuelva el nimero de nodos de una lista enlazada.
Codificacion
Si se supone la declaracién del problema anterior se tiene:

int NumerNodos(Nodo *Primero)
{

int k = 0;

Nodo *p;

@ Listas enlazadas

p = Primero;
while (p != NULL)
{

k++;
p = p->sig;
}
return(k);

18.3. Escriba una funcién que elimine el nodo que ocupa la posicion i de una lista enlazada ordenada.

Analisis del problema

Para resolver el problema se necesita recorrer la lista contando el nimero de elementos que van pasando, y cortar el reco-
rrido, cuando la lista esté vacia, o cuando se haya llegado a la posicidn que se busca. Una vez terminado el primer bucle de
busqueda en el caso de que haya que eliminar el elemento, se borra teniendo en cuenta si es 0 no el primer elemento de
acuerdo con lo indicado en la teoria.

Codificacion

Si se supone la declaracion realizada en el problema 13,1 se tiene:.

void EliminaPosicion (Nodo** Primero, int i)

{

int k = 0;
Nodo *ptr, *ant;

ptr = *Primero;

ant = NULL;

while ((k < i) && (ptr != NULL))
{

k++;

ant = ptr;

ptr = ptr->sig;
}
if(k == 1)

{
if(ant == NULL)
*Primero = ptr->sig;
else
ant->sig = ptr->sig;
free(ptr);
}

18.4. Escriba una funcién que reciba como parametro una lista enlazada apuntada por Primero, un dato cualquiera e inserte en la
lista enlazada un nuevo nodo con la informacién almacenada en dato y de tal forma que sea el primer elemento de la lista.

Analisis del problema

Los pasos que se seguiran son: asignar memoria a un nuevo puntero nuevo; situar el nuevo dato en el campo e1; mover el
campo sig de nuevo puntero nuevo al puntero Primero Yy hacer que Primero apunte a nuevo. Esta funcion trabaja correc-
tamente, alin cuando la lista esté vacia, siempre que previamente se haya inicializado a NULL.

18.5.

Listas enlazadas @

Codificacion
Si se supone la siguiente declaracion:

typedef int Item;
typedef struct Registro
{

Item el;

struct Registro * sig;
}Nodo;

La codificacion de la funcion sera:

void InsertarprimerolLista(Nodo** Primero, Item dato)
{

Nodo *nuevo

nuevo = (Nodo*)malloc(sizeof(Nodo));

nuevo -> el = dato;

nuevo -> sig = *Primero;

*Primero= nuevo;

Escriba una funcién que reciba como parametro un puntero ant que apunte a un nodo de una lista enlazada e inserte el
valor recibido en el parametro dato como un nuevo nodo que esté inmediatamente después de ant (Insercién en el centro
y final de una lista).

Anélisis del problema

Se crea un nuevo nodo apuntado por nuevo, donde se almacena el dato, para posteriormente poner como siguiente del nuevo
nodo nuevo el siguiente de ant, para por Gltimo enlazar el siguiente de ant con nuevo.

Codificacion
Si se supone la siguiente declaracion:

typedef int Item;
typedef struct Registro
{

Item el;

struct Registro* sig;
INodo;

La codificacion de la funcion sera:

void InsertarlLista(Nodo* ant, Item dato)
{
Nodo *nuevo;

nuevo = (Nodo*)malloc(sizeof(Nodo));
nuevo -> el = dato;

nuevo -> sig = ant -> sig;

ant -> sig = nuevo;

@ Listas enlazadas

18.6. Escriba una funcién que reciba como datos un puntero al primer nodo de una lista enlazada y un dato a buscar y devuel-
va NULL si el dato no esté en la lista y un puntero a la primera aparicion del dato en otro caso.

Anélisis del problema

Mediante un bucle for controlado por la condicion de fin de lista, se recorre la lista. En caso de encontrarlo se devuelve el
puntero pt, en otro caso se devuelve NULL. Los pardmetros son Primero que es puntero de cabeza de una lista enlazada,
y dato que es el valor que se busca en la lista.

Coadificacion
Si se supone la siguiente declaracion:

typedef int Item;
typedef struct Registro
{

Item el;

struct Registro* sig;
INodo;

La codificacion de la funcion sera:

Nodo* BuscarLista (Nodo* Primero, Item dato)
{
Nodo *ptr;

for (ptr = Primero; ptr != NULL; ptr = ptr ->sig)
if (ptr->el == dato)

return ptr;
return NULL;

18.7. Escriba un programa que genere una lista enlazada de ndmeros aleatorios de tal manera que se almacenen en la lista en el
orden en el que han sido generados. Posteriormente se presentara en pantalla toda la lista para después mostrar todos aque-
llos datos que ocupen una posicion par en la lista.

Anélisis del problema

La solucion se ha estructurado de la siguiente forma:

e Una funcion InsertalistaDespues que tiene como parametros por referencia los punteros Primero y ant, que repre-
sentan un puntero al primer elemento de la lista y otro al nodo inmediatamente anterior al Gltimo elemento de la lista, y
como parametro por valor entrada que representa el dato a insertar. Esta funcion inserta en la lista apuntada por Primero
y después del puntero ant un nuevo nodo con la informacion dada en entrada, cambiando el puntero ant, Yy si es nece-
sario el puntero Primero.

« Una funcién NuevoNodo que da un puntero a un nodo cuya informacion se le ha pasado en el parametro x.

e Una funcién Escribelista que recibe como parametro un puntero a una lista enlazada y la presenta en pantalla.

e Una funcion Escribelistapares que recibe como parametro un puntero a una lista enlazada y presenta en pantalla todos
los elementos de la lista que ocupan una posicion par.

« El programa principal se encarga de rellenar aleatoriamente la lista y realizar las llamadas correspondientes.

Codificacion (Consultar la pagina web del libro)

Listas enlazadas @

18.8. Escriba un programa que genere una lista aleatoria de nimeros enteros, los inserte en una lista enlazada. Posteriormente
nos presente la lista enlazada completa, y los elementos de la lista enlazada que son pares.

Anélisis del problema

Se declara una constante MX que sera el maximo nimero entero aleatorio que se generara. El programa se ha estructurado de

la siguiente forma:

» Una funcion InsertaPrimero insertara el dato que se ponga como entrada en una lista apuntada por el puntero Primero.

* Una funcion NuevoNodo dara un puntero a un nuevo registro en el que se ha almacenado la informacién que se le pase
como dato.

« El programa principal, mediante un bucle for generara nimeros aleatorios y los insertara en la lista hasta que se genere
el nimero aleatorio cero. Mediante un bucle for se escriben todos los elementos de la lista enlazada, y mediante otro
bucle for se escribe sélo aquellos elementos de la lista que sean pares.

Codificacion

#finclude <stdio.h>
#finclude <stdlib.h>
f#include <time.h>
ffdefine MX 99
typedef int Item;
typedef struct Registro
{

Item el;

struct Registro* sig;
JNodo;

void InsertaPrimero(Nodo** Primero, Item entrada);
Nodo* NuevoNodo(Item Xx);

void main()

{
Item d;
Nodo *Primero, *ptr;
int k;

Primero = NULL;
randomize();
for (d = random(MX); d;) // Termina cuado se genera el numero 0
{
InsertaPrimero(&Primero, d);
d = random(MX) ;
}
printf(“\n\n”);
printf(“ se escriben todos Tos datos de la lista Tista \n”);
for (k = 0, ptr = Primero; ptr;)
{
printf(“%d “,ptr->el);
k4++;
printf(“%c”,(k % 10?° “:’\n’)); /*cada 10 datos salta de linea */
ptr = ptr->sig;
}
printf(“\n\n”);

18.9.

printf(“ se escriben los datos pares de la Tista

for (k = 0,ptr = Primero; ptr;)
{
if (ptr->el%2 == 0)
{
printf(“%d “,ptr->el);
k++;
printf(“%c”, (k%10?” “:’\n’));
}
ptr = ptr->sig;

void InsertaPrimero(Nodo** Primero,

{

Nodo *nuevo ;

nuevo = NuevoNodo(dato);
nuevo -> sig = *Primero;
*Primero = nuevo;

Nodo* NuevoNodo(Item x)

{

Nodo *a ;

a = (Nodo*)malloc(sizeof(Nodo));
a -> el = x;

a -> sig = NULL;

return a;

Item dato)

\n”);

Listas enlazadas

/*10 datos salta de linea */

Escriba una funcion que reciba como parametro una lista enlazada, y un dato, y borre de la lista enlazada la primera apa-
ricion del dato.

Analisis del problema

Mediante un bucle mientras se encuentra si existe, el puntero ptr apunta al primer nodo que contiene el datoy en ant se queda
con el puntero anterior. En caso de que no esté el dato en la lista (ptr
lista, se distinguen el caso de no ser el primero de la lista y el que lo sea, para por ultimo liberar la memoria ocupada.

Codificacion

void Suprime (Nodo** Primero,

{

Nodo* ptr, *ant;
int enc = 0;

ptr = *Primero;
ant = ptr;
while ((lenc) && (ptr != NULL))
{
enc = (ptr->el == dato);
if (lenc)
{

Item dato)

NULL) no se hace nada. En caso de que esté en la

Listas enlazadas @

ant = ptr;
ptr ptr -> sig;
}

}
if (ptr != NULL)
{
if (ptr == *Primero)
*Primero = ptr->sig;
else
ant -> sig = ptr->sig;
free(ptr);

18.10. Escriba un programa que lea del teclado una lista de nimeros enteros los inserte en una lista enlazada ordenada crecien-
temente, presente la lista enlazada ordenada, y pida una sucesion de datos del teclado que seran borrados de la lista orde-
nada.

Analisis del problema
La solucion se ha planteado de la siguiente forma:

. Un programa principal se encarga de hacer las declaraciones y llamar a las distintas funciones en bucles do while. El
fin de la entrada de datos viene dado por el centinela - 1.

. La funcién NuevoNodo se encarga de crear un nodo donde almacenar el dato que recibe como parametro, y coloca el
campo siguiente a NULL .

. Lafuncion Escribir se encarga de presentar en pantalla la lista enlazada ordenada.

. Lafuncién InsertarEnOrden recibe como parametro una lista enlazada ordenada y un dato y lo inserta dejandola de
nuevo ordenada. Para realizarlo, primeramente crea el nodo donde almacenara el dato, si es el primero de la lista lo
inserta, y en otro caso mediante un bucle while recorre la lista hasta encontrar donde colocar el dato. Una vez encon-
trado el sitio se realiza la insercion de acuerdo con el algoritmo correspondiente.

. Lafuncion borrarEnOrden se encarga de buscar la primera aparicion de dato en una lista enlazada ordenada y borrar-
lo. Para ello realiza la busqueda de la posicion donde se encuentra la primera aparicion del dato quedandose con el pun-
tero ptry con el puntero ant (anterior). Posteriormente realiza el borrado teniendo en cuenta que sea el primero de la
lista 0 que no lo sea.

Codificacion

ffinclude <stdio.h>
##include <stdlib.h>
f#include <time.h>
ffdefine MX 100
typedef int Item;
typedef struct Registro
{

Item el;

struct Registro* sig;
}Nodo;

void InsertarEnOrden(Nodo** Primero, Item Dato);
Nodo* NuevoNodo(Item Xx);

void Escribir(Nodo* Primero);

void BorrarkEnOrden(Nodo** Primero, Item Dato);

CAPITULO 18 Listas enlazadas

CAPITULO 18 Listas enlazadas

Listas enlazadas

18.11. Escriba una funcion que reciba como dato una lista enlazada y un dato y elimine todos los nodos de la lista que cumplan

la condicion de que su informacidn sea estrictamente mayor que el valor dado en dato.
Anélisis del problema

La funcion usa tres punteros: ptr que es el puntero con el que se recorre la lista, ant que es el puntero inmediatamente ante-
rior a ptr, y p que es el puntero usado para liberar memoria. La codificacion se ha realizado de tal forma que el puntero
ptr recorre la lista mediante un bucle while, cuando un nodo cumple la condicién de ser eliminado, se borra de la lista,
teniendo siempre en cuenta si es el primer elemento de la lista 0 no lo es. Si el nodo no cumple la condicién de borrado sim-
plemente se avanza en la lista.

Codificacion

void EliminaMayores(Nodo **Primero, Item Dato)
it
Nodo *ptr, *ant, *p;
Ant = NULL;
Ptr = *Primero;
while (ptr != NULL)
if (ptr->el>Dato)
if (ant == NULL)
{
p = *Primero;
*Primero = ptr->sig;
ptr = *Primero;
free(p);
}
else

ant->sig = ptr->sig;
p = ptr;
ptr = ptr->sig;
free(p);

}

else

{

ant = ptr;

ptr = ptr->sig;

18.12. Un conjunto es una secuencia de elementos todos del mismo tipo, sin duplicados. Escriba un programa para representar

un conjunto de enteros mediante una lista enlazada. El programa debe contemplar las operaciones:EscribeConjunto;
AnadeConjunto; PerteneceConjunto; BorraConjunto; CardinalConjunto; VaciaConjunto; EsVacioConjunto;
RellenaConjunto.

Anélisis del problema
El programa que se codifica representa los conjuntos como listas simplemente enlazadas sin ordenar. La implementacion

puede mejorarse en cuanto a eficiencia si se implementan como listas enlazadas ordenadas crecientemente, o bien como
arboles binarios de busqueda AVL. La solucidn se divide en los siguientes modulos:

CAPITULO 18 Listas enlazadas

. Un programa principal que se encarga de llamar a los distintos mddulos de programa.

. La funcion VaciaConjunto que crea el conjunto vacio creando una lista vacia.

. Lafuncién EsVacioConjunto que decide si un conjunto es vacio.

. Lafuncién RellenaConjunto que afiade aleatoriamente elementos a un conjunto.

« La funcion CardinalConjunto que nos dice cuantos elementos hay almacenados en el conjunto.

. Lafuncién BorraConjunto que se encarga de borrar un elemento del conjunto.

. Lafuncion PerteneceConjunto que decide si un elemento se encuentra en el conjunto.

. Lafuncién AnadeConjunto que se encarga de afiadir un elemento al conjunto como primer elemento.

. Lafuncion EscribeConjunto que se encarga de escribir los elementos que se encuentran en el conjunto.

Codificacion

j#include <stdio.h>
#finclude <stdlib.h>
#include <time.h>
ffdefine MX 99
typedef int Item;
typedef struct Registro
{

Item el;

struct Registro* sig;
}Nodo;

Nodo* NuevoNodo(Item Xx);
void EscribeConjunto(Nodo * Primero);

void AnadeConjunto(Nodo** Primero, Item dato);
int PerteneceConjunto (Nodo* Primero, Item dato);
void BorraConjunto (Nodo** Primero, Item dato);

int CardinalConjunto(Nodo *Primero);
void VaciaConjunto(Nodo **Primero);
int EsVacioConjunto(Nodo *Primero);
void RellenaConjunto(Nodo **Primero);

void main()

{
Nodo *Primero;
RellenaConjunto(&Primero);
EscribeConjunto(Primero);

void RellenaConjunto(Nodo **Primero)
{
Item d;
*Primero = NULL;
randomize();
for (d = random(MX); d;)
{
if (!PerteneceConjunto(*Primero, d))
AnadeConjunto(Primero,d);
d = random(MX) ;

CAPITULO 18 Listas enlazadas

CAPITULO 18 Listas enlazadas @

Nodo *nuevo;
if(iPerteneceConjunto(*Primero, dato))
{

nuevo = (Nodo*)malloc(sizeof(Nodo));

nuevo -> el = dato;

nuevo -> sig = *Primero;

*Primero = nuevo;

int PerteneceConjunto (Nodo* Primero, Item dato)

{
Nodo *ptr;
for (ptr = Primero; ptr != NULL; ptr = ptr ->sig)
if (ptr-> el == dato)
return 1;
return 0;

void BorraConjunto (Nodo** Primero, Item dato)
{

Nodo* ptr, *ant;

int enc = 0;

ptr = *Primero; ant = ptr;

while ((! enc) && (ptr != NULL))

{
enc = (ptr->el == dato);

if (! enc)
{
ant = ptr;
ptr = ptr -> sig;

}
if (ptr != NULL)

{

if (ptr == *Primero)
*Primero = ptr->sig;
else

ant -> sig = ptr->sig;
free(ptr);

}
18.13. Con la representacion de Conjuntos realizada en el ejercicio anterior, afiada las operaciones basicas: Unidn, Interseccion,
Diferencia, Inclusion.
Analisis del problema

Se codifican a continuacion las siguientes funciones

. UnionDeConjuntos que realiza la union del conjunto C1 con el C2 en el Conjunto C3. Para realizarlo lo Gnico que se
hace es afiadir todos los elementos del conjunto C1 y C2 al conjunto C3, previamente inicializado a NULL.

@ Listas enlazadas

. DiferenciaDeConjunto que realiza la diferencia del conjunto C1 con el C2 dejando el resultado en 3. Por lo tanto C3
contendré todos los elementos de C1 que no estén en C2.

. InclusionDeConjuntos que decide si el conjunto C1 esta incluido en el 2. Para que esto ocurra deben estar todos los
elementos de C1 en C2.

. InterseccionDeConjuntos que pone en C3 la interseccion de los conjuntos C1y €2. Por lo tanto C3 contendra todos los
elementos de C1 que estén a su vez en C2.

Cadificacion (Consultar la pagina web del libro)

18.14. Escriba una funcién que reciba como parametro dos listas enlazadas ordenas crecientemente y de como resultado otra lista
enlazada ordenada que sea mezcla de las dos.

Analisis del problema

Para mezclar dos listas enlazadas, se usa un nodo ficticio apuntado por el puntero p, para asegurar que todos los elementos
se insertaran al final de la lista que seréd la mezcla. Para ello se lleva un puntero u que apuntara siempre al Gltimo elemen-
to de la lista que debido al nodo ficticio siempre existira. Al final de la mezcla se elimina el elemento ficticio. La mezcla de
las dos listas se realiza avanzando con dos punteros p1 y p2 por las listas L1y L2. Un primer bucle while avanzara o bien
por L1 o bien por L2 insertando en la lista mezcla, dependiendo de que el dato mas pequefio esté en L1 0 en L2, hasta que
una de las dos listas se termine. Los dos bucles while posteriores se encargan de terminar de afiadir a la lista mezcla los
elementos que queden o bien de L1 o bien de L2.
Se usa la funcién NuevoNodo Yy las declaraciones de los problemas vistos anteriormente.

Codificacién
void MezclarlistasOrdenadas(Nodo *L1, Nodo *L2, Nodo **L3)
it

Nodo *pl, *p2, *p, *u, *nn;

nn = NuevoNodo(-32767);

p = nn;
u = nn;
pl = L1;
p2 = L2;

while (pl && p2)
if (pl->el < p2->el)
{
nn = NuevoNodo(pl->el);
u->sig = nn;

u = nn;

pl = pl->sig;
}

else

nn = NuevoNodo(p2->el);
u->sig = nn;

u = nn;
p2 = p2->sig;

}

while (pl)

{
nn = NuevoNodo(pl->el);
u->sig = nn;
u = nn;

Listas enlazadas @

pl = pl->sig;
}
while (p2)
{
nn = NuevoNodo(p2->el);
u->sig =nn;
u = nn;
p2 = p2->sig;
}
*L3 = p->sig;
free(p);

18.15. Implementar un programa C que tenga las siguientes opciones de una Lista Doblemente Enlazada. InsertaPrincipioLD;
VacialLD; EsVacialLD; generaPorEIFinalLD; generaPorEIPrincipioLD; InsertaAntLD; EscribeLista; InsertaListaDespuesLD

Analisis del problema

El programa que se codifica declara una lista doblemente enlazada, y un programa principal se encarga de llamar a las dis-
tintas funciones que a continuacion se especifica.

« InsertaPrincipiolD. Recibe como parametro un puntero a una lista doble, un dato y realiza la insercién de un nuevo
nodo en la lista como primer elemento cuya informacién es el valor recibido en dato.

. Vaciald. Esuna funcion que recibe como pardmetro una lista doble y la pone a vacia.

. EsvacialD. Es una funcién que recibe como parametro una lista doble y decide si esté vacia.

« GeneraPorElPrincipiolD. Es una funcion que usando la funcion que usando la funcion InsertaPrincipioLD, genera
numeros aleatorios y los inserta en una lista doble por el principio.

. InsertalistaDespueslD. Es una funcion que recibe como parametro un puntero Primero a una Lista enlazada Doble
y un puntero ant que apunta al dltimo nodo de la Lista Doble, e inserta un nuevo nodo como dltimo elemento de la Lista
Doble cuya informacion esta dada por el valor de d. Ademas de realizar la insercion mueve adecuadamente los punteros
Primeroy ant.

. GeneraPorElFinal Esuna funcion que usando la funcion InsertaListaDespuesLD, genera nimeros aleatorios y los inser-
ta en una lista doble por el final.

. Escribelista. Escribe los elementos de la lista doblemente en lazada.

. InsertaAntLD. Inserta después del nodo apuntado por ant que siempre existe un nuevo nodo cuya informacion es la
recibida por dato.

Codificacion

#include <stdio.h>
#finclude <stdlib.h>
#include <time.h>
jtdefine MX 100
typedef int Item;
typedef struct unnodo
{

Item el;

struct unnodo* sig, *ant;
}Nodo;

void InsertaPrincipiolLD(Nodo ** Primero, Item dato);
void VacialLD(Nodo ** Primero);
int EsVacialLD(Nodo *Primero);

CAPITULO 18 Listas enlazadas

CAPITULO 18 Listas enlazadas

void GeneraPorElPrincipiolLD(Nodo **Primero)

{
Item d;
Nodo *p;

p = NULL;

randomize();

for (d=random(MX); d;)

{
InsertaPrincipiolD(&p, d);
d = random(MX) ;

}

*Primero=p;

Listas enlazadas

18.16. Escriba una funcién que reciba como pardmetro un puntero a una Lista Doblemente Enlazada ademas de un valor alma-

cenado en dato, y elimine la primera aparicion de ese dato en la lista Doble.

Analisis del problema

En primer lugar se procede a buscar la primera aparicién del elemento en la Lista Doblemente Enlazada. Una vez que se
haya encontrado, se resuelve el problema del borrado al comienzo de la lista moviendo el puntero *Primero y si es necesa-
rio el puntero ptr->sig. Posteriormente se resuelve el problema de borrado en el centro de la lista, para lo cual hay que
mover los punteros ptr->ant->sig y ptr->sig->ant. Por Gltimo se resuelve el problema del borrado al final de la lista
moviendo el puntero ptr->sig. Una vez que se han realizado los enlaces, se libera la memoria.

Codificacion

void EliminalLD(Nodo **Primero,
{

Nodo* ptr;

int enc = 0;

Item dato)

ptr = *Primero;final de linea //busqueda

while ((ptr!=NULL) && (lenc))
{

enc = (ptr->el == dato);
if (lenc)

ptr = ptr -> sig;

}
if (ptr != NULL)

{

if (ptr == *Primero)

{

*Primero = ptr->sig;

if (ptr->sig != NULL)
ptr->sig->ant = NULL;

else
if (ptr->sig != NULL)
{
ptr -> ant ->sig = ptr

-> sig;

ptr -> sig -> ant = ptr -> ant;

// comienzo

// centro

Listas enlazadas @

}

else
{
ptr -> ant -> sig = NULL; // final
}
free(ptr);

}

18.17. Escriba una funcion que elimine la primera aparicion de un dato en una Lista Doblemente Enlazada ordenada crecientemente.

Anélisis del problema

Mediante un bucle while controlado por el puntero ptr y la variable légica enc, se busca la posicion donde se debe encon-
trar la primera aparicion del dato. Después de haber encontrado la posicion se comprueba que realmente se encuentra el dato.
Los casos a considerar para el borrado son: a) primero y Gltimo; b) primero y no Gltimo c) Gltimo y no primero; d) no pri-
mero y no Gltimo.

Después de haber movido los punteros correspondientes, se libera la memoria.

Codificacion

void BorrarEnOrdenlLD(Nodo** Primero, Item Dato)
{

Nodo *ant, *ptr;

int enc=0;

ant = NULL;
ptr= *Primero;
while ((! enc) && (ptr != NULL))
{
enc = (Dato <= (ptr->el));
if (! enc)
{
ant = ptr;
ptr = ptr->sig;

}

if (enc)
enc = ((ptr->el) == Dato);
if (enc)
{
if (ant == NULL) // primero
if (ptr->sig == NULL) // primero y ultimo
*Primero = NULL;
else // primero y no ultimo

{
ptr->sig->ant = NULL;
*Primero = ptr->sig;

}

else // no primero
if (ptr->sig == NULL) // no primero y ultimo

ant->sig = NULL;
else // no primero y no ultimo

@ Listas enlazadas

ant->sig = ptr->sig;
ptr->sig->ant = ant;
}
free(ptr);

18.18. Escriba una funcién que inserte un ndmero entero en una lista Doblemente enlazada y ordenada crecientemente.
Analisis del problema

En primer lugar se llama a la funcién NuevoNodoLD que reservara la memoria donde almacenara el Dato y se inicializaran
los campos ant 'y sig a NULL del puntero nuevo donde se ha almacenado el dato. Mediante un bucle whi1e controlado por
la variable l6gica enc y el puntero p, que inicialmente se ponen a falso y a la propia lista, se busca la posicién donde se debe
insertar el nuevo dato. Ademas hay que quedarse en el puntero ant con la posicion del nodo anterior. Una vez encontrada la
posicién, la insercion se puede producir en; a) principio y final b) caso principio y no final c) caso final y no principio d)
caso no principio y no final. Se codifica también la funcién NuevoNodolD y la funcion GegeraOrdenadolD, que se encar-
ga de generar aleatoriamente la lista doblemente enlazada ordenada.

Codificacion

ffdefine MX 100
typedef int Item;
typedef struct unnodo
{
Item el;
struct unnodo* sig, *ant;
}Nodo;

Nodo* NuevoNodolLD(Item x)
{

Nodo *n;

n = (Nodo*)malloc(sizeof(Nodo));
n -> sig = NULL;
n
n

->ant = NULL;
-> el = x;
return n;

void InsertartEnOrdenlLD(Nodo** Primero, Item Dato)
{

Nodo *nuevo, *ant, *p;

int enc;

nuevo = NuevoNodolLD(Dato);

p = *Primero;

ant = NULL;

enc = 0;

while ((! Enc) && (p != NULL))

{

Listas enlazadas @

enc = (Dato <= p->el);

if (lenc)
{
ant = p;
p = p->sig;
}
t
if (*Primero == NULL) // primero y ultimo
*Primero = nuevo;
else
if (ant == NULL) // primero no ultimo

{
nuevo-»>sig = p;
p->ant = nuevo;
*Primero = nuevo;

}

else
if(p == NULL) // ultimo no primero
{
nuevo->ant = ant;
ant->sig = nuevo;
}
else // no ultimo no primero

{
nuevo-»>sig = p;
nuevo->ant = ant;
ant->sig = nuevo;
p->ant = nuevo;

void GeneraOrdenadaD(Nodo **Primero)
{

Item d;

Nodo *p;

p = NULL;

randomize();

for (d = random(MX); d;)

{
InsertarEnOrdenlD(&p, d);
d = random(MX);

i

*Primero = p;

18.19. Se tiene una lista simplemente enlazada de ndmeros reales. Escriba una funcion para obtener una lista doblemente enlaza-
da ordenada respecto del campo e7, con los valores de la lista simple.
Analisis del problema
Para resolver el problema planteado simplemente hay que cambiar la funcién GeneraOrdenadalD hecha en el ejercicio

18.18, de tal manera que reciba ademas la lista simplemente enlazada como parametro, y en lugar del bucle for recorrer la
lista simple mediante un bucle while por ejemplo realizando la misma llamada.

@ Listas enlazadas

Codificacion

typedef int Item;
typedef struct unnodo
{
Item el;
struct unnodo* sig, *ant;
}Nodo;

typedef struct unnodols
{

Item el;

struct unnodols* sig;
}Nodols;

void GeneraOrdenadalDaPartirSimple(Nodo**Primero,Ndols*Primerols)
{

Nodo *pld;

Nodols *pls

pld = NULL;

pls =Primerols;

while (pls)

{
InsertarEnOrdenlD(&pld, pls->el);
pls = pls->sig;

}

*Primero = p;

18.20. Escriba una funcion que tenga como parametro el puntero Primerols al primer nodo de una lista simplemente enlazada y
retorne un puntero a una lista doble con los mismos campos que la lista enlazada simple pero en orden inverso.

Analisis del problema

Para resolver el problema s6lo que recorrer la lista enlazada simple e ir insertando en una lista doble por el final.
Codificacion

typedef int Item;
typedef struct unnodo
{
Item el;
struct unnodo* sig, *ant;
fNodo;

typedef struct unnodols
{

Item el;

struct unnodols* sig;
}Nodols;

Listas enlazadas @

void InsertalistaDespuesLD(Nodo **Primero,Nodo **ant, Item d)
{
Nodo *nuevo

nuevo = (Nodo*)malloc(sizeof(Nodo));
nuevo->el = d;
nuevo -> sig = NULL;
if(*ant == NULL)
{
*ant = nuevo;
*Primero = *ant;
nuevo-> ant = NULL;
}
else
{
(*ant)->sig = nuevo;
nuevo -> ant = *ant;
*ant=nuevo;

nodo * GeneraPorElFinallLD(Nodols *Primero)
{

Item d;

Nodo *p,*ptr;

Nodols 1s;

p = NULL;

ptr = NULL;

1s = Primero;

while(ls != NULL)

{
InsertalistaDespueslD(&p, &ptr, Is->el);
1s = Is->sig;

}

return(p);

18.21. Escriba las declaraciones y funciones necesarias para trabajar con una lista circular.
Anélisis del problema
El programa que se presenta se estructura de la siguiente forma:

- En primer lugar se realizan las declaraciones necesarias para tratar la Lista Circular.

- El Programa principal se encarga de realizar las llamadas correspondientes.

. Vacialc. Es una funcién que nos crea una Lista Circular vacia.

. EsVacialc. Es una funcién que da verdadero cuando la Lista Circular esta vacia.

. NuevoNodolc. Es una funcién que devuelve un puntero a un nuevo nodo en el que se ha almacenado el dato x.

. InsertalistaCircular. Realiza la insercién en una lista circular del valor dato. Lo hace teniendo en cuenta que
Primero es un puntero que apunta al Gltimo elemento que se afiadid a la lista, y a continuacidn inserta un nuevo nodo en

@ Listas enlazadas

la Lista Circular como ultimo elemento, para lo cual aparte de realizar los correspondientes enlaces, debe mover el pun-
tero Primero para que apunte siempre al Gltimo elemento que se afiadié. De esta forma el primer elemento de la lista
siempre estard en el nodo Primero->sig.

. GeneraPorElFinallc. Crea una lista circular de nimeros enteros aleatorios, realizando las inserciones con la funcién
InsertalistaCircular.

. Escribelistalc. Se encarga de escribir la lista circular. Si la Lista Circular esta vacia no hace nada. En otro caso lo que
hace es mediante un puntero ptr, se toma el primer elemento que estara siempre en el sig del puntero que apunte a la
lista circular, y mediante un bucle escribe el dato, y avanza ptr hasta que haya dado una vuelta completa.

. EliminaPrimerolc .Se encarga de eliminar el primer nodo de la lista circular que estara siempre en Primero->sig. S6lo
hay que tener en cuenta que si la lista esta vacia no se puede borrar. Si tiene un solo dato la lista se quedara vacia y habra
que liberar memoria. Si tiene mas de un dato habra que mover el puntero Primero->siga Primero->sig-> sigy libe-
rar la memoria del nodo que se ha puenteado.

. EliminarLc .Se encarga de buscar la primera aparicion de dato y borrarla de la lista circular. Lo hace de la siguiente
forma. Si la lista esta vacia no hay nada que hacer. En otro caso con una variable légica enc y con un puntero ptr reali-
za la basqueda del dato, controlando no realizar un bule infinito. Una vez encontrado el elemento se realiza el borrado
teniendo en cuenta: Si la lista contiene un solo valor se quedara vacia. Si el nodo a borrar es el apuntado por Primero,
habra que mover este puntero, en otro caso no habrad que moverlo. Siempre que se borre un nodo habré que puentearlo.

Codificacion

#Finclude <stdio.h>
f#finclude <stdlib.h>
#include <time.h>
fidefine MX 100
typedef int Item;
typedef struct NuevoNodo
{

Item el;

struct NuevoNodo* sig;
JNodolc;

void Vacialc(NodoLc ** Primero);

int EsVacialc(NodoLc *Primero);

NodolLc* NuevoNodolLc(Item Xx);

void InsertalistaCircular(NodolLc ** Primero,Item dato);
void GeneraPorElFinallc(Nodolc **Primero);

void Escribelistalc(NodoLc * Primero);

void EliminarlLc (NodolLc** Primero, Item dato);

void EliminaPrimerolc(NodoLc **Primero);

void main(void)
{
NodolLc *Primero;

GeneraPorElFinallLc(&Primero);
EscribelListalc(Primero);

void VacialLc(NodolLc ** Primero)

{

*Primero = NULL;

CAPITULO 18 Listas enlazadas

CAPITULO 18 Listas enlazadas

Listas enlazadas @

*Primero = NULL;
else
{
if (p == *Primero)
*Primero = ptr;
ptr->sig = p->sig;
}
free(p);
}

18.22. Se tiene una Lista Circular de palabras. Escribir una funcién que cuente el nimero de veces que una palabra dada esta en
la lista.

Analisis del problema

Para resolver el problema basta con declarar item de tipo cadena y recorrer la lista circular contando el nimero de apari-
ciones que tiene. Para realizar las comparaciones se usa la funcion strcmp () que recibe como parametro dos cadenas de
caracteres y devuelve el valor 0 si son iguales. Si la lista estd vacia devolvera el valor cero. En otro caso, mediante un bucle
while controlado por “dar la vuelta a la lista”, se va comprobando y contando las igualdades entre cadenas con la funcién
stremp() .

Codificacion

f#include <stdio.h>
ffinclude <string.h>

typedef char *Item;
typedef struct NuevoNodo
{

Item el;

struct NuevoNodo* sig;
JNodolc;

int AparicoponesEnLc(NodoLc *Primero, char *cad)
{

int cont = 0;

NodolLc *ptr;

ptr = Primero;
if(ptr == NULL)
return (cont);
else
{
if (strcmp(ptr->el,cad) == 0)

cont++;
// mentras no de la vuelta
while (ptr->sig != Primero)

{
ptr = ptr->sig;
if(strcmp(ptr->el,cad) == 0)
cont++;

@ Listas enlazadas

}
return(cont);

18.23. Escriba una funcién que tenga como argumento una lista circular de ndmeros enteros. La funcion debe devolver el dato del

nodo con mayor valor.
Analisis del problema

Para resolver el problema basta con recorrer la lista circular almacenando el valor maximo. Si la lista esta vacia se devuel-
ve un valor muy negativo equivalente a menos infinito. En otro caso, el mayor es ptr->el, (previamente ptr toma el valor
de Primero) y mediante un bucle while controlado por “dar la vuelta a la lista”, se calcula el nuevo mayor por el algorit-
mo voraz clésico.

Codificacion

Item MayorlLc(Nodolc *Primero)
{
Item Mayor;
NodolLc *ptr;
ptr=Primero;
if(ptr == NULL)
return (-32767);
else
{
Mayor = ptr->el;
// mentras no de la vuelta
while (ptr->sig != Primero)
{
ptr = ptr->sig;
if(Mayor <(ptr->el))
Mayor = ptr->el;
}
return(Mayor);

PROBLEMAS PROPUESTOS

18.1.

18.2.

En una lista enlazada de nimeros enteros se desea afia- 18.3. Se tiene una lista de simple enlace, el campo dato es un

dir un nodo entre dos nodos consecutivos con campos registro(estructura) con los datos de un alumno: nom-
dato de distinto signo; el valor del campo dato del nuevo bre, edad, sexo. Escribir una funcioén para transformar
nodo que sea la diferencia en valor absoluto. la lista de tal forma que si el primer nodo es de un

alumno de sexo masculino el siguiente sea de sexo
Escribir una funcién para crear una lista doblemente femenino.

enlazada de palabras introducidas por teclado. La fun-

cién debe tener un argumento puntero Ld en el que se 18.4. Una lista circular de cadenas esta ordenada alfabética-
devuelva la direccion del nodo que esta en la posicion mente. El puntero Lc tiene la direccién del nodo alfabé-
intermedia. ticamente mayor, apunta al nodo alfabéticamente menor.

CAPITULO 18 Listas enlazadas

18.5.

18.6.

18.7.

18.8.

18.9.

Escribir una funcion para afiadir una nueva palabra, en el
orden que le corresponda, a la lista.

Dada la lista del ejercicio anterior escribir una funcién
que elimine una palabra dada.

Se tiene un archivo de texto de palabras separadas por un
blanco o el carécter de fin de linea. Escribir un programa
para formar una lista enlazada con las palabras del archi-
vo. Una vez formada la lista se pueden afadir nuevas
palabras o borrar alguna de ellas. Al finalizar el progra-
ma escribir las palabras de la lista en el archivo.

Un polinomio se puede representar como una lista enlaza-
da. El primer nodo de la lista representa el primer término
del polinomio, el segundo nodo al segundo término del
polinomio y asi sucesivamente. Cada nodo tiene como
campo dato el coeficiente del término y el exponente.

Escribir un programa que permita dar entrada a polino-
mios en X, representandolos con una lista enlazada sim-
ple. A continuacion obtener una tabla de valores del
polinomio para valores de x = 0.0, 0.5, 1.0, 1.5, ... , 5.0

Teniendo en cuenta la representaciéon de un polinomio
propuesta en el problema anterior hacer los cambios
necesarios para que la lista enlazada sea circular. El pun-
tero de acceso debe de tener la direccion del dltimo tér-
mino del polinomio, el cuél apuntara al primer término.

Segun la representacion de un polinomio propuesta en el
problema 18.7, escribir un programa para realizar las
siguientes operaciones:

Obtener la lista circular suma de dos polinomios.
Obtener el polinomio derivada.

Obtener una lista circular que sea el producto de dos
polinomios.

18.19.

18.11.

18.12.

18.13.

18.14.

18.15.

Escribir un programa para obtener una lista doblemente
enlazada con los caracteres de una cadena leida desde el
teclado. Cada nodo de la lista tendrd un caracter. Una
vez que se tiene la lista ordenarla alfabéticamente y
escribirla por pantalla.

Escribir un programa en el que dados dos archivos F1,
F2 formados por palabras separadas por un blanco o fin
de linea, se creen dos conjuntos con las palabras de F1 y
F2 respectivamente. Posteriormente encontrar las pala-
bras comunes y mostarlas por pantalla.

Utilizar una lista doblemente enlazada para controlar
una lista de pasajeros de una linea aérea. El programa
principal debe ser controlado por menu y permitir al
usuario visualizar los datos de un pasajero determinado,
insertar un nodo (siempre por el final), eliminar un pasa-
jero de la lista. A la lista se accede por un puntero al pri-
mer nodo Yy otro al Gltimo nodo.

Para representar un entero largo, de mas de 30 digitos,
utilizar una lista circular teniendo el campo dato de cada
nodo un digito del entero largo. Escribir un programa en
el que se introduzcan dos enteros largos y se obtenga su
suma.

Un vector disperso es aquel que tiene muchos elementos
que son cero. Escribir un programa que permita repre-
sentar mediante listas enlazadas un vector disperso. Los
nodos de la lista son los elementos de la lista distintos de
cero; en cada nodo se representa el valor del elemento y
el indice(posicién del vector). El programa ha de reali-
zar las operaciones: sumar dos vectores de igual dimen-
sion y hallar el producto escalar.

Escriba una funcion que tenga como argumento una lista
circular de nimeros enteros. La funcion debe devolver el
dato del nodo con mayor valor.

19.1

CAPITULO 19

Pilas y colas

En este capitulo se estudian en detalle las estructuras de datos pila y cola que son probablemente las mas frecuentemente utilizadas
en los programas ordinarios. Son estructuras de datos que almacenan y recuperan sus elementos atendiendo a un estricto orden. Las
pilas se conocen también como estructuras LIFO (Last-in, first-out, Gltimo en entrar- primero en salir) y las colas como estructuras
FIFO (First-in, First-out, primero en entrar- primero en salir). Entre las numerosas aplicaciones de las pilas destaca la evaluacion
de expresiones algebraicas, asi como la organizacion de la memoria. Las colas tienen numerosas aplicaciones en el mundo de la
computacion: colas de mensajes, colas de tareas a realizar por una impresora, colas de prioridades.

Concepto de pila

Una pila (stack) es una estructura de datos que cumple la condicion: “los elementos se afiaden o quitan (borran) de la misma s6lo
por su parte superior (cima) de la pila”. Debido a su propiedad especifica “Ultimo en entrar, primero en salir” se le conoce a las
pilas como estructura de datos LIFO (last-in, first-out). Las operaciones usuales en la pila son Insertar y Quitar. La operacion
Insertar (push) afiade un elemento en la cima de la pila y la operacién Quitar (pop) elimina o saca un elemento de la pila.

Insertar Quitar

Cima

«— Fondo

Figura 19.1 Operaciones bésicas de una pila.

@ CAPITULO 19 Pilas y colas

19.2

La pila se puede implementar mediante arrays en cuyo caso su dimension o longitud es fija, y mediante punteros o listas
enlazadas en cuyo caso se utiliza memoria dindmica y no existe limitacion en su tamafio. Una pila puede estar vacia (no tiene
elementos) o llena (en el caso de tener tamafio fijo, si no caben més elementos en la pila).

ESPECIFICACION DE UNA PILA

Las operaciones que sirven para definir una pila y poder manipular su contenido son las siguientes:

Tipo de dato Dato que se almacena en la pila.

AnadeP (push) Insertar un dato en la pila.

BorrarP (pop) Sacar (quitar) un dato de la pila.

EsVaciaP Comprobar si la pila no tiene elementos.
EstallenaP Comprobar si la pila esta llena de elementos.
PrimeroP Extrae el primer elemento de la pila sin borrarlo.

EL TIPO PILA IMPLEMENTADO CON ARRAYS

En C para definir una pila con arrays se utiliza una estructura. Los miembros de la estructura pila incluyen una lista (array) y
un indice o puntero a la cima de la pila; ademés una constante con el maximo nimero de elementos limita la longitud de la pila.
El método usual de introducir elementos en una pila es definir el fondo de la pila en la posicion 0 del array, es decir, definir una
pila vacia cuando su cima vale —=1 (el puntero de la pila almacena el indice del array que se esta utilizando como cima de la
pila). La cima de la pila se va incrementando en uno cada vez que se afiade un nuevo elemento, y se va decrementando en uno
cada vez que se borra un elemento. Los algoritmos de introducir “insertar” (push) y quitar “sacar” (pop) datos de la pila utili-
zan el indice del array como puntero de la pila son:

Insertar (push). Verificar si la pila no esta llena. Incrementar en uno el puntero de la pila. Almacenar el elemento en la posi-
cion del puntero de la pila.

Quitar (pop). Verificar si la pila no esta vacia. Leer el elemento de la posicion del puntero de la pila. Decrementar en uno
el puntero de la pila.

En el caso de que el array que define la pila tenga TamanioPila elementos, el indice o puntero de la pila, estaran com-
prendidas en el rango 0 a TamanioPila-1 elementos, de modo que en una pila llena el puntero de la pila apunta a
TamanioPila-1yenuna pilavacia el puntero de la pila apuntaa -1, ya que 0, teéricamente, sera el indice del primer elemento.

EL TIPO PILA IMPLEMENTADO CON PUNTEROS

Para implementar una pila con punteros basta con usar una lista simplemente enlazada, con ello la pila estara vacia si la lista
apunta a NULL. La pila teéricamente nunca estara llena. Los algoritmos de introducir “insertar” (push) y quitar “sacar” (pop)
datos de la pila son:

Insertar (push). Basta con afiadir un nuevo nodo con el dato que se quiera insertar como primer elemento de la lista (pila).
Quitar (pop). \Verificar si la lista (pila) no esta vacia. Extraer el valor del primer nodo de la lista (pila). Borrar el primer nodo
de la lista (pila).

Concepto de cola

Los elementos se eliminan (se quitan) de la cola en el mismo orden en que se almacenan, y por consiguiente, una cola es una
estructura de tipo FIFO (first-in/firs-out, primero en entrar/primero en salir o bien primero en llegar/primero en ser servido).

Las acciones que estan permitidas en una cola son: Creacion de una cola vacia; Verificacion de que una cola esta vacia;
Afiadir un dato al final de una cola; Eliminacion de un dato de la cabeza de la cola.

1.° 2° 3.° 4.° Ultimo

Frente T T Final

CAPITULO 19 Pilas y colas @

EL TIPO COLA IMPLEMENTADO CON ARRAYS

La definicion de una Co1a ha de contener un array para almacenar los elementos de la cola, y dos marcadores o punteros (varia-
bles) que mantienen las posiciones frente 'y final de la cola. Cuando un elemento se afiade a la cola, se verifica si el mar-
cador final apunta a una posicién valida, entonces se afiade el elemento a la cola y se incrementa el marcador final en 1.
Cuando un elemento se elimina de la cola, se hace una prueba para ver si la cola esta vacia y, si no es asi, se recupera el ele-
mento de la posicion apuntada por el marcador (puntero) frente y éste se incrementa en 1.Este procedimiento funciona bien
hasta la primera vez que el puntero de frente alcanza el extremo del array quedando o bien vacio o bien lleno.

DEFINICION DE LA ESPECIFICACION DE UNA COLA

Se define en primer lugar el tipo genérico TipoDato. El TDA Cola contiene una lista cuyo maximo tamafio se determina por
la constante MaxTamC. Se definen dos tipos de variables puntero o marcadores, frente y final. Estos son los punteros de
cabecera y cola o final respectivamente.

AnadeC Afiade un elemento a la cola.
BorrarC Borra el primer elemento de la cola.
VaciaC Deja la cola sin ningun elemento
EsvaciaC Decide si una cola esta vacia.
EstallenaC Decide si una cola esta llena.
PrimeroC Extrae el primer elemento de la cola.

Cuando un elemento se afiade a la cola, se hace una prueba para comprobar si el marcador final apunta a una posicion
valida, a continuacion se afiade el elemento a la cola y el marcador final se incrementa en uno. Cuando se elimina un ele-
mento de la cola, se realiza una prueba para comprobar si la cola esta vacia, y si no es asi, se recupera el elemento que se
encuentra en la posicion apuntada por el marcador de frente y el marcador de frente se incrementa en uno. Este procedi-
miento funciona bien hasta que el marcador final alcanza el tamafio maximo del array. Si durante este tiempo se han pro-
ducido eliminaciones, habra espacio vacio al principio del array. Sin embargo, puesto que el marcador final apunta al extremo
del array, implicara que la cola esta llena y ningln dato mas se afiadira.

Existen diversas soluciones a este problema:

Retroceso Consiste en mantener fijo a uno el valor de frente, realizando un desplazamiento de una
posicion para todas las componentes ocupadas cada vez que se efectlia una supresion.

Reestructuracion Cuando final llega al maximo de elementos se desplazan las componentes ocupadas hacia
atras las posiciones necesarias para que el principio coincida con el primera posicion del
array.

Mediante un array circular ~ Un array circular es aquel en el cual se considera que la primera posicion sigue a la dltima.

n-1 0 <+— Cabeza

Final

Cola circular Cola circular vacia

La variable frente essiempre la posicion del elemento que precede al primero de la cola y se avanza en el sentido de las agu-
jas del reloj. La variable final es la posicién en donde se hizo la Gltima insercion. Después que se ha producido una insercion,
final se mueve circularmente a la derecha. La implementacion del movimiento circular “calcular siguiente” se realiza utili-
zando la teoria de los restos:

@ CAPITULO 19 Pilas y colas

Mover Final adelante = (Final+1)%MaxTamC Siguiente de Final
Mover Frente adelante = (Frente+l) % MaxTamC Siguiente de Frente

Para implementar los algoritmos que formalizan la gestion de colas en un array circular hay que tener en cuenta que Frente
apunta siempre a una posicion anterior donde se encuentra el primer elemento de la colay Final apunta siempre a la posicion
donde se encuentra el Gltimo de la cola. Por lo tanto la parte esencial de las tareas de gestion de una cola son:

« Creacion de una cola vacia: hacer Frente = Final = 0.

« Comprobar si una cola esta vacia: ;es Frente == Final?.

» Comprobar si una cola esté llena: ¢es(Final+1)% MaxTamC == Frente ?. No se confunda con cola vacia.

« Afiadir un elemento a la cola: si la cola no esta llena, afiadir un elemento en la posicion siguiente a Final y se establece:
Final = (Final+1)%MaxTamC.

« Eliminacién de un elemento de una cola: si la cola no esta vacia, eliminarlo de la posicién siguiente a Frente Yy estable-
cer Frente = (Frente+l) % MaxTamC.

REALIZACION DE UNA COLA CON UNA LISTA ENLAZADA

La implementacion de una cola con una lista enlazada utiliza dos punteros para acceder a la lista. El puntero Frente y el pun-
tero Final. El puntero Frente referencia al primer elemento de la cola. El puntero Final referencia al Gltimo elemento en
ser afiadido, el Ultimo que seré retirado. Con esta representacion no tiene sentido la operacién que prueba si la cola esta llena

Frente Final

€1 ——» €2 IS > €3 ... €n

ey, €,, ..., son valores del tipo TipoDato

Cola con lista enlazada

PROBLEMAS RESUELTOS

19.1

Escriba las primitivas de gestion de una pila implementada con un array.
Anélisis del problema

Se define en primer lugar una constante MaxTamaPila de valor 100 valor méximo de los elementos que podré contener la

pila. Se define la pila como una estructura cuyos campos (miembros) seran el puntero cima que apuntara siempre al Gltimo

elemento afiadido a la pila y un array A cuyos indices variaran entre 0 y MaxTamaPila-1. Posteriormente se implementan
las las primitivas

e VaciaP. Crea la pila vacia poniendo la cima en el valor -1.

e EsvaciaP. Decide si la pila estd vacia. En este caso ocurrird cuando su cima valga -1.

e EstallenaP. Sibien no es una primitiva basica de gestion de una pila; la implementacion se realiza con un array convie-
ne disponer de ella para prevenir posibles errores. En este caso la pila estard llena cuando la cima apunte al valor
MaxTamaPila-1.

» AnadeP . Afiade un elemento a la pila. Para hacerlo comprueba en primer lugar que la pila no esté llena, y en caso afirma-
tivo, incrementa la cima en una unidad, para posteriormente poner en el array A en la posicién cima el elemento.

* PrimeroP. Comprueba que la pila no esté vacia, y en caso de que asi sea, dara el elemento del array A almacenado en la
posicién apuntada por la cima.

* BorrarP. Se encarga de eliminar el altimo elemento que entrd en la pila. En primer lugar comprueba que la pila no esté
vacia en cuyo caso, disminuye la cima en una unidad.

« Pop. Esta operacion extrae el primer elemento de la pila y lo borra. Puede ser implementada directamente, o bien llaman-
do a las primitivas PrimeroP y posteriormente a Borrarp.

* Push. Esta primitiva coincide con AnadeP.

CAPITULO 19 Pilas y colas

@ Pilas y colas

}

Aux = P->A[P->cimal];
P->cima—;

return Aux;

TipoDato PrimeroP(Pila P)
{
TipoDato Aux;
if (EsVaciaP(P))
{
puts(“Se intenta sacar un elemento en pila vacia”);
exit (1);
}
Aux = P.A[P.cimal;
return Aux;

void BorrarP(Pila* P)
{
if (EsVaciaP(*P))
{
puts(“Se intenta sacar un elemento en pila vacia”);
exit (1);
}
P->cima --;

int EsVaciaP(Pila P)
{
return P.cima == -1;

int EstallenaP(Pila P)

{
return P.cima == MaxTamaPila-1;

19.2. Escribir un programa que usando las primitivas de gestion de una pila, lea datos de la entrada (-1 fin de datos) los alma-
cene en una pila y posteriormente visualice dicha la pila.

Analisis del problema

Si se supone que el archivo pilaarray.cpp contiene todas las primitivas de gestion de una pila, para resolver el problema
bastara con declarar TipoDato como un entero incluir el archivo pilaarray.cpp anterior, y mediante un programa principal
en un primer bucle while se leen los datos y se almacenan en una pila, para posteriormente en otro bucle extraer datos de
la pila y presentarlos en pantalla.

Codificacién
Typedef char TipoDato

f#include <pilaarray.cpp>
void main()

19.3.

Pilas y colas @

Pila P;
int x;

VaciaP(&P)

do

{
printf(“dame dato -1=fin \n”);
scanf(“%d”,&x);

if (x != -1)
AnadeP (&P, x);
while (x != -1);

}
printf(“escritura de la pila\n”);
while(!EsVaciaP(P))
{
printf(“%zd \n”,PrimeroP(P));
BorrarP(&P);

Escriba las primitivas de gestion de una pila implementada con una lista simplemente enlazada.

Anélisis del problema

Se define la pila como una lista simplemente enlazada. Posteriormente se implementan las primitivas:

VaciaP. Crea la pila vacia poniendo la pila P a NULL.

EsvaciaP. Decide si pila vacia. Esto ocurrird cuando P valga NULL.

AnadeP. Afiade un elemento a la pila. Para hacerlo, lo Unico que se debe hacer, es afiadir un nuevo nodo que contenga
como informacion el elemento que se quiera afiadir y ponerlo como primero de la lista enlazada.

PrimeroP. En primer lugar se comprobara que la pila (lista) no esté vacia, y en caso de que asi sea dara el campo el alma-
cenado en el primer nodo de la lista enlazada.

BorrarP. Se encarga de eliminar el Gltimo elemento que entré en la pila. En primer lugar se comprueba que la pila no esté
vacia en cuyo caso, se borra el primer nodo de la pila (lista enlazada).

Pop.Esta operacion extrae el primer elemento de la pila y lo borra. Puede ser implementada directamente, o bien llaman-
do a las primitivas PrimeroP y posteriormete a BorrarpP.

Push. Esta primitiva coincide con AnadeP.

NuevoNodo. Es una funcion auxiliar de la implementacién que se encarga de reservar memoria para la operacion AnadeP .
EstallenaP. En esta implementacion no tiene ningln sentido, ya que se supone que la memoria dindmica es en princi-
pio inagotable.

Codificacion

#include <stdio.h>
#include <stdlib.h>

typedef int TipoDato;
typedef struct unnodo

{

TipoDato el;
struct unnodo *sig;

}Nodo;

CAPITULO 19 Pilas y colas

19.4.

Pilas y colas @

return Aux;

TipoDato PrimeroP(Pila *P)
{
TipoDato Aux;

if (EsVaciaP(P))

{
puts(“Se intenta sacar un elemento en pila vacia”);
exit (1);

}

Aux = P->el;

return Aux;

void BorrarP(Pila** P)
{
Pila *nn;

if (EsVaciaP(*P))

{
puts(“Se intenta sacar un elemento en pila vacia”);
exit (1);

}

nn =(*P);

(*P)= nn->sig;

free(nn);

int EsVaciaP(Pila *P)
{
return P == NULL;

Usando las primitivas de gestion de una pila de enteros escriba las siguientes funciones: EscribePila que recibe como para-
metro una pila y la escribe, CopiaPila que copia una pila en otra. DaVueltaPila que da la vuelta a una pila.

Analisis del problema

Usando el archivo pilalista.cpp en el que se tiene ya la implementacion de las primitivas de una pila, lo Unico que se

debe hacer es implementar las siguientes funciones:

. EscribePila que recibe como parametro por valor una pila y mediante un bucle while, se van extrayendo, borrando, y
escribiendo los elementos de la pila.

. CopiaPila que recibe como parametro por valor una pila p y devuelve en Pcop una copia exacta de la pila P. Para ello
basta con volcar la pila P en una pila Paux auxiliar, para posteriormente volcar la pila Paux en la pila Pcop.

. DaVueltaPila que recibe como parametro por valor la pila P y vuelca su contenido en la pila Pcop.

Codificacién
void CopiaPila (Pila *P, Pila**Pcop)

{
Pila *Paux;

@ Pilas y colas

TipoDato e;

VaciaP(&Paux);
while (! EsVaciaP(P))
{
e = PrimeroP(P);
BorrarP(&P);
AnadeP (&Paux,e);
}
VaciaP(Pcop);
while (! EsVaciaP(Paux))
{
e = PrimeroP(Paux);
BorrarP(&Paux) ;
AnadeP(Pcop,e);

void DaVueltaPila (Pila *P, Pila**Pcop)

{
TipoDato e;

VaciaP(Pcop);

while (!EsVaciaP(P))

{
e = PrimeroP(P);
BorrarP(&P);
AnadeP(Pcop,e);

void EscribePila(Pila *P)
{
TipoDato e;

while (! EsVaciaP(P))
{
e = PrimeroP(P);
BorrarP(&P);
printf(“%Zd\n”, e);

19.5. Escriba las funciones MayorPila, MenorPila, MediaPila que calculan el elemento mayor menor y la media de una pila de
enteros.

Analisis del problema

Al igual que en el ejercicio anterior se usa el archivo pilalista.cpp en el que se tiene ya la implementacién de las primitivas

de una pila, lo Unico que resta es implementar las siguientes funciones:

. MayorPila, calcula el elemento mayor, inicializando la variable Mayor a un nimero muy pequefio, y mediante un bucle
voraz controlado por ser vacia la pila se extraen los elementos de la pila reteniendo el mayor de todos.

« MenorPila, calcula el elemento menor. Se realiza de manera analoga a la funcién MayorPila.

Pilas y colas @

. MediaPila que calcula la media de una pila, para lo cual basta acumular los datos que contiene la pila en un acumula-
dor Total y con contador k contar los elementos que hay, para devolver el cociente real.

Codificacion (Se encuentra en la pagina web del libro)

19.6. Escriba las funciones LiberarPila y SonlgualesPilas que respectivamente libera todos los nodos de una pila implementada
con listas y decide si dos pilas son iguales.

Anélisis del problema

Al igual que en el ejercicio anterior se usa el archivo pilalista.cpp en el que se tiene ya la implementacion de las primiti-

vas de una pila, lo Gnico que resta por hacer es implementar las siguientes funciones:

. LiberarPila que mediante un bucle mientras se encarga de ir extrayendo los elementos de la pila y mediante la fun-
cién Borrarp irlos eliminado.

. SonlgualesPilas. Dos pilas son iguales si tienen el mismo ndmero de elementos y ademas coinciden en el orden de
colocacion. Por lo tanto basta con un bucle mientras, controlado por haber datos en las dos pilas y haber sido todos los
elementos extraidos anteriormente iguales, extraer un elemento de cada una de las pilas y seguir decidiendo sobre su
igualdad. Al final del bucle debe ocurrir que las dos pilas estén vacias y ademas que la variable logica que controla el
bucle sea verdadera.

Codificacion

void LiberarPila(Pila**P)
{
while (!EsVaciaP(*P))
BorrarP(P);

int SonlgualesPilas(Pila *P, Pila* P1)
{

int sw = 1;

TipoDato e,el;

while (! EsVaciaP(P) && !EsVaciaP(Pl) && sw)
{
e = PrimeroP(P);
BorrarP(&P);
el = PrimeroP(P1);
BorrarP(&P1);
sw = (e == el);
}
return (sw && EsVaciaP(P)&& EsVaciaP(P1));

19.7. Escriba un programa que lea una frase y decida si es palindroma. Una frase es palindroma si se puede leer igual de izquier-
da a derecha y de derecha a izquierda. Ejemplo para no es palindroma, pero alila si que lo es.
Anélisis del problema
Para resolver el problema usaremos una funcién que nos lea una frase caracter a caracter poniéndola en una pila, cuando se

haya terminado se da la vuelta la pila en otra pila Pcop. La frase sera palindroma si las dos pilas son iguales. En la codifi-
cacion que se presenta se implementan ademas las funciones DaVueltaPilay SonIgualesPilas.

@ CAPITULO 19 Pilas y colas

Codificacion

void DaVueltaPila (Pila *P,Pila**Pcop)
{
TipoDato e;
VaciaP(Pcop);
while (! EsVaciaP(P))
{
e = PrimeroP(P);
BorrarP(&P);
AnadeP(Pcop, e);

int SonlIgualesPilas(Pila *P, Pila* P1)
{
int sw = 1;

TipoDato e, el;
while (! EsVaciaP(P) && !EsVaciaP(Pl) && sw)
{
e = PrimeroP(P);
BorrarP(&P);
el = PrimeroP(P1);
BorrarP(&P1);
sw=(e == el);
}
return (sw && EsVaciaP(P)&& EsVaciaP(P1l));

int palindroma()
{
Pila *P, *Pcop;
char ch;
puts(“ frase a comprobar que es palindroma”)
VaciaP(&P);
for(;(ch = getchar()) != ‘\n’;)
AnadeP (&P, ch);
DaVueltaPila(P, &Pcop);
return (SonIgualesPilas(P,Pcop));

19.8. ¢Cual es la salida de este segmento de cddigo, teniendo en cuenta que el tipo de dato de la pila es int:?.

Pila *P;

int x=4, y;

VaciaP(&P);

AnadeP(&P.x);

printf(“\n%d *“,PrimeroP(P));
BorrarP(&P);
AnadeP(&P,32);
y=PrimeroP(P);

BorrarP(P);

19.9.

Pilas y colas @

AnadeP(&PyY));
do

{
printf(*\n%d”,PrimeroP(P));
BorrarP(P);

}
while (jEsVaciaP(P));

Solucion

Se vacia la pila y posteriormente se afiade el dato 4. Se escribe el primero de la pila que es 4. Se borra el primer elemento
de la pila con lo que se vuelve a quedar vacia. Se afiade el nimero 32 a la pila, para después borrarlo, y luego afiadirlo. El
ultimo bucle extrae el nimero 32 de la pila, lo escribe y después de borrarlo la pila se queda vacia con lo que se sale del
bucle. Es decir la solucidn es:

4
32

Escribir una funcion para determinar si una secuencia de caracteres de entrada es de la forma: x&Y.Donde X es una cade-
na de caracteres e Y es la cadena inversa. El carécter & es el separador y siempre se supone que existe.

Anélisis del problema

Se usan tres pilas. En la primera se introducen todos los caracteres que estén antes que el caracter &. En la segunda se intro-
ducen todos los caracteres que estén después de &. Seguidamente se da la vuelta a la primera pila para dejar los caracteres
en el mismo orden en el que se leyeron. Por ultimo se devuelve el valor “son iguales las dos pilas”. Las funciones
DaVueltaPilay Sonlgualespilas son las mismas del problema 19.7.

Codificacion

int extrana()

{
Pila *P, *P1,*Pcop;
char ch;

puts(“ frase a comprobar que es extrafia”);

VaciaP(&P)

for(;(ch = getchar()) != ‘&’;)
AnadeP (&P, ch);

VaciaP(&P1);

for(;(ch = getchar()) != ‘\n’;)
AnadeP(&P1, ch);

DaVueltaPila(P, &Pcop);

return (SonIgualesPilas(P1l, Pcop));

19.10. Escribir una funcién que haciendo uso del tipo Pila de caracteres, procese cada uno de los caracteres de una expresion que

viene dada en una linea de caracteres. La finalidad es verificar el equilibrio de paréntesis, llaves y corchetes. Por ejemplo,
la siguiente expresion tiene un nimero de paréntesis equilibrado:

((atb)*5) - 7
a esta otra expresion le falta un corchete:

2*[(a+b)/2.5 + x - 7*y

@ Pilas y colas

Analisis del problema

Para comprobar el equilibrio de paréntesis y corchetes, es preciso comprobar que tienen el mismo nimero de abiertos que
cerrados y que ademas aparecen en el orden correspondiente. Se usa una pila por la que pasaran sélo los paréntesis abier-
tos y los corchetes abiertos en el orden en que aparecen. Cada vez que aparezca un paréntesis cerrado o un corchete cerra-
do, se extrae un elemento de la pila, comprobando su igualdad con el ultimo que se ha leido, almacenado en una variable
I6gica sw el valor verdadero o falso dependiendo de que se satisfaga la igualdad. Por lo tanto si con un bucle for contro-
lado por el fin de linea y por el valor verdadero de una variable sw de tipo légico (previamente inicializada a verdadero),
se leen los caracteres y realiza lo indicado cuando termine el bucle puede ser que sw sea falso, en cuyo caso la expresién
no es correcta, 0 que se sea verdadero, en cuyo caso la expresion sera correcta si la pila esta vacia.

Codificacion

int equilibrio()
it
Pila *P;
char ch,e,sw=1 ;

puts(“ frase a comprobar equilibrio de parentesis”);
VaciaP(&P);
for(;(ch = getchar()) != ‘\n’ && sw;)
if ((ch = () || (ch = “[*))
AnadeP (&P, ch);
else
if ((ch = “)’) || (ch = “1"))
if(| EsVaciaP(P))
{
e = PrimeroP(P);
BorrarP(&P);
sw = e==ch;
}
else
sw = 0;
if (sw)
sw = EsVaciaP(P);
return (sw);

19.11. Escribir las declaraciones necesarias y las primitivas para gestionar una cola mediante un array circular.
Analisis del problema

Las declaraciones necesarias son una estructura que contiene dos punteros frente y final y un array que puede almacenar
MaxTamC datos. MasTamC es una constante previamente definida. Final apuntara siempre al Gltimo elemento que se afiadid
lacola, y Frente siempre a una posicion antes de donde se encuentra el primer elemento, entendiendo que la posicion ante-
rior a la 0 es MaxTamC-1, y para el resto una menos. Analogamente la posicion siguiente de MaxTamC -1 esla 0, y para
el resto es una unidad més. De esta manera la cola estard vacia cuando Frente y Final apuntan a la misma posicion, y la
cola estara llena cuando al calcular el siguiente valor de Final se tiene el Frente, ya que si Se permitiera avanzar a Final
se confundiria cola vacia con cola llena. Para calcular el siguiente valor tanto de Frente como de Final basta con hacer
Frente = (Frente+1)%MaxTamC; igual método con Final. Las primitivas de gestion de la cola son:

- VaciaC. Crea una cola vacia, para lo cual basta con poner el Frente y el Final en la posicion 0.
. EsVaciaC. Decide si una cola esta vacia. Es decir, si Frente == Final.

CAPITULO 19 Pilas y colas @

. EstallenaC. Decide si la cola esta llena. Es decir, si (Final+1)%MaxTamC == Frente.

. PrimeroC. Extrae el primer elemento de la cola que se encuentra en (Frente+1)MaxTamC. Previamente a esta operacion
ha de comprobarse que la cola no esté vacia.

« AnadeC. Afiade un elemento a la cola. Este elemento se afiade a la posicion del array (Fina+1)%MaxTamC. Final también
debe ponerse en esa posicion. Previamente a esta operacion ha de comprobarse si la cola esta llena.

. BorrarC. Elimina el primer elemento de la cola. Para ello basta con hacer Frente =(Frente+1)%MaxTamC. Previamente
a esta operacion ha de comprobarse que la cola no esta vacia.

Codificacion

#finclude <stdio.h>
#finclude <stdlib.h>
jtdefine MaxTamC 100
typedef int TipoDato;
typedef struct
{
int frente, final;
TipoDato A[MaxTamC];
jCola;

void VaciaC(Cola* C);

void AnadeC(Cola* C,TipoDato e);
void BorrarC(Cola* C);

TipoDato PrimeroC(Cola C);

int EsVaciaC(Cola C);

int EstallenaC(Cola C);

void VaciaC(Cola* C)
{
C->frente = 0;
C->final = 0;

void AnadeC(Cola* C, TipoDato e)
{
if (EstallenaC(*C))
{
puts(“desbordamiento cola”);
exit (1);
}
C->final = (C->final + 1) % MaxTamC;
C->A[C->finall = e;

TipoDato PrimeroC(Cola C)
{
if (EsVaciaC(C))
{
puts(“Elemento frente de una cola vacia”);
exit (1);
}
return (C.A[(C.frente+l) % MaxTamC]);

@ Pilas y colas

int EsVaciaC(Cola C)
{
return (C.frente == C.final);
}
int EstallenaC(Cola C)
{
return (C.frente == (C.final+l) % MaxTamC);

void BorrarC(Cola* C)
{
if (EsVaciaC(*C))
{
puts(“Eliminacidén de una cola vacia”);
exit (1);
}
C->frente = (C->frente + 1) % MaxTamC;

19.12. Usando las primitivas de gestion de colas escriba funciones para generar aleatoriamente una cola, escribir una cola, cal-
cular el nimero de elementos de una cola, y eliminar de una cola todos los elementos mayores que un elemento que se pasa
como parametro.

Analiis del problema

Las funciones que se codifican son las siguientes:

GeneraColaAleatoriamente. Recibe como parametro una cola. Declara una constante Max y afiade a la cola nimeros ale-
atorios comprendidos entre 0 y Max- 1. El final de la entrada de datos viene dado por haber generado el nimero aleatorio 0.
EscribeCola. Recibe como parametro una cola y la presenta en pantalla. Para ello mediante un bucle while extrae ele-
mentos de la cola y los escribe.

NumeroDeElementosCola. Informa de elementos tiene una cola. Para resolver el problema, usa un contador que se inicia-
liza a cero, y se incremente en una unidad, cada vez que un bucle while extrae un elemento de la cola.

EliminaMayores. Recibe como parametro una cola y un elemento e. Mediante un bucle while pone en una cola C1 todos
los elementos de la cola que se recibe como parametro que cumplen la condicion de ser menores o iguales que el elemento
€ que se recibe como pardmetro.

Codificacion (Se encuentra en la pagina web del libro)
19.13. Escriba las declaraciones necesarias y las primitivas de gestion de una cola implementada con listas enlazadas.
Anélisis del problema

Se declaran en primer lugar todos los tipos de datos necesarios para una lista enlazada. Una cola seré una estructura con dos
punteros a la lista frente que apuntara al primer elemento de la cola y final que apuntara al Gltimo elemento.

. VaciaC . Crea una cola vacia, para lo cual basta con poner el Frente y el Final a NULL.

. EsVaciaC. Decide si una cola esté vacia. Es decir si Frente y Final valen NULL.

. EstallenaC. Esta funcion no es ahora necesaria ya que teéricamente no hay limites.

- PrimeroC. Extrae el primer elemento de la cola que se encuentra en el nodo Frente. Previamente a esta operacion ha de
comprobarse que la cola no esté vacia.

. AnadeC. Afiade un elemento a la cola. Este elemento se afiade en un nuevo nodo que sera el siguiente de Final en el caso
de que la cola no esté vacia. Si la cola estd vacia el Frente debe apuntar a este nuevo nodo. En todo caso el final
siempre debe moverse al nuevo nodo.

CAPITULO 19 Pilas y colas @

. BorrarC. Elimina el primer elemento de la cola. Para hacer esta operacién la cola no debe estar vacia. El borrado se rea-
liza avanzando Frente al nodo siguiente, y liberando la memoria correspondiente.

. EliminarcC. Esta primitiva libera toda la memoria que tenga una cola ya creada. Se realiza mediante un bucle controlado
por el Final de lista, liberando la memoria ocupada por cada nodo en cada una de las iteraciones del bucle.

#finclude <stdio.h>
ffinclude <stdlib.h>
typedef int TipoDato;
struct Nodo
{

TipoDato el;

struct Nodo* sig;

typedef struct
{
Nodo * Frente;
Nodo * Final;
jCola;

void VaciaC(Cola* C);

void AnadeC(Cola* C,TipoDato el);
void EliminarC(Cola* C);

void BorrarC(Cola* C);

TipoDato PrimeroC(Cola C);

int EsVaciaC(Cola C);

Nodo* crearnodo(TipoDato el);

void VaciaC(Cola* C)
{
C->Frente =NULL;
C->Final = NULL;

Nodo* crearnodo(TipoDato el)
{

Nodo* nn;

nn = (Nodo*)malloc(sizeof(Nodo));
nn->el = el;

nn->sig = NULL;

return nn;

int EsVaciaC(Cola C)
{
return (C.Frente == NULL);

void AnadeC(Cola* C,TipoDato el)
{

Nodo* a;

a = crearnodo(el);

@ Pilas y colas

if (EsVaciaC(*C))
C->Frente = a;

else
C->Final->sig = a;
C->Final = a;

void BorrarC(Cola* C)
{
Nodo *a;

if (lEsVaciaC(*C))

{
a = C->Frente;
C->Frente = C->Frente->sig;
if(C->Frente == NULL)
C->Final == NULL;
free(a);

}

else

{
puts(“Error eliminacién de una cola vacia”);
exit(-1);

TipoDato PrimeroC(Cola C)
{
if (EsVaciaC(C))
{
puts(“Error: cola vacia”);
exit(-1);
}
return (C.Frente->el);

void EliminaC(Cola* C)
{

for (; C->Frente;)

{

Nodo* n;
n = C->Frente;

C->Frente = C->Frente->sig;
free(n);

19.14. Escribir una funcién que tenga como argumentos dos colas del mismo tipo. Devuelva cierto si las dos colas son idénticas
Analisis del problema

Se usan para resolver el problema las primitivas de gestion de colas implementando una funcion SonIgualesColas que dara
el valor verdadero cuando las dos colas tengan igual nimero de elementos y ademas estén colocadas en el mismo orden.

Pilas y colas @

Codificacion

int SonlIgualescolas(Cola *C, Cola* Cl)
{

int sw=1;

TipoDato e,el;

while (!EsVaciaC(C)&& !EsVaciaC(Cl)&& sw)
{

e = PrimeroC(C);

BorrarC(&C);

el = PrimeroC(C1);

BorrarP(&C1);

sw =(e == el);

return (sw && EsVaciaC(C)&& EsVaciaC(Cl));

19.15. Considerar una cola de nombres representada por una array circular con 6 posiciones, el campo frente con el valor: Frente
= 2, y los elementos de la Cola: Mar, Sella, Centurion. Escribir los elementos de la cola y los campos siguiente de Frente
y Final segun se realizan estas operaciones:
- Afadir Gloria y Generosa a la cola.
- Eliminar de la cola.
- Afadir Positivo.
. Afiadir Horche a la cola.
. Eliminar todos los elementos de la cola.

Solucion

. Tras la primera operacion se escribira Mar y Generosa, quedando la cola con Mar, Sella, Centurion Gloria, Generosa.

. Después de realizar la segunda operacion se escribira Sella y Generosa, quedando la cola con Sella, Centurién Gloria,
Generosa.

. Después de afadir Positivo se escribira Sella y Positivo y la cola contendra los siguientes elementos Sella, Centurion
Gloria, Generosa, Positivo.

- Al afadir Horche a la cola se producira un error ya que la cola esta llena interrumpiéndose la ejecucion del programa.

19.16. Escriba una funcién que reciba como parametro una cola de nimeros enteros y nos devuelva el mayor y el menor de la cola.
Analisis del problema
Se usan las primitivas de gestion de colas implementadas con listas, lo Unico que hay que hacer es inicializar Mayor y menor
al primer elemento de la cola, y mediante un bucle voraz controlado por si se vacia la cola, ir actualizando las variables
mayor y menor.
Codificacion
void Mayormenor(Cola *C, TipoDato * Mayor, TipoDato *menor)
{
TipoDato M,m,e;
M = -32767;

m 32367;
while(!EsVaciaC(*C))

e=PrimeroC(*C);
BorrarC(C);
if(M<e)
M=e;
if(m>e)
m=e;
}
*Mayor=M;

*menor=m;

}

PROBLEMAS PROPUESTOS

19.1.

19.2.

19.3.

19.4.

Obtener una secuencia de 10 elementos reales, guardar-
los en un array y ponerlos en una pila. Imprimir la
secuencia original y, a continuacién, imprimir la pila
extrayendo los elementos.

Una bicola es una estructura de datos lineal en la que la
insercion y borrado se pueden hacer tanto por el extremo
frente como por el extremo final. Suponer que se ha
elegido una representacion dindmica, con punteros, y
que los extremos de la lista se denominan frente y
final. Escribir la implementacion de las operaciones:

InsertarFrente(), InsertarFinal(),
EliminarFrente() y EliminarFinal().

Considere una bicola de caracteres, representada en un
array circular. El array consta de 9 posiciones. Los extre-
mos actuales y los elementos de la bicola:

frente = 5 final = 7 Bicola: A,C,E
Escribir los extremos y los elementos de la bicola segin
se realizan estas operaciones:

« Afadir los elementos F y K por el final de la bicola.

« Afadir los elementos R, W y V por el frente de la
bicola.

« Afadir el elemento M por el final de la bicola.

« Eliminar dos caracteres por el frente.

« Afadir los elementos Ky L por el final de la bicola.

« Afiadir el elemento S por el frente de la bicola.

Se tiene una pila de enteros positivos. Con las operacio-
nes basicas de pilas y colas escribir un fragmento de

19.5.

19.6.

19.7.

19.8.

Pilas y colas

codigo para poner todos los elementos que son par de la
pila en la cola.

Con un archivo de texto se quieren realizar las siguientes
acciones: formara una lista de colas, de tal forma que cada
nodo de la lista esté la direccién de una cola que tiene todas
las palabras del archivo que empiezan por una misma letra.
Visualizar las palabras del archivo, empezando por la cola
que contiene las palabras que comienzan por a, a conti-
nuacion las de la letra b, a si sucesivamente.

Escribir un programa en el que se generen 100 nimeros ale-
atorios en el rango -25 +25 y se guarden en una pila
implementada mediante un array considerado circular. Una
vez creada la cola, el usuario puede pedir que se forme otra
cola con los nimeros negativos que tiene la cola original.

Escribir un programa en el que se manejen un total de
n=5 pilas: P,, P,, P;, P, y Ps. La entrada de datos sera
pares de enteros (i,j) talque 1 < abs(i) < n.De
tal forma que el criterio de seleccion de pila:

* Si i es positivo, debe de insertarse el elemento j en la
pila P;.

* Si i es negativo, debe de eliminarse el elemento j de la
pila P;.

« Si i es cero, fin del proceso de entrada.

Los datos de entrada se introducen por teclado. Cuando
termina el proceso el programa debe de escribir el con-
tenido de la n Pilas en pantalla.

Modificar el programa 19.7 para que la entrada sean tri-
plas de nimeros enteros (i,j,k), donde i, j tienen el

CAPITULO 19 Pilas y colas

19.9.

mismo significado que en 19.8, y k es un nimero entero
que puede tomar los valores -1, 0 con este significado:

* -1, hay que borrar todos los elementos de la pila.
* 0, el proceso es el indicado en 19.8 con i vy j.

Un pequefio supermercado dispone en la salida de tres
cajas de pago. En el local hay 25 carritos de compra.
Escribir un programa que simule el funcionamiento,
siguiendo las siguientes reglas:

« Si cuando llega un cliente no hay ningun carrito dispo-
nible, espera a que lo haya.

« Ningun cliente se impacienta y abandona el supermer-
cado sin pasar por alguna de las colas de las cajas.

« Cuando un cliente finaliza su compra, se coloca en la cola
de la caja que hay menos gente, y no se cambia de cola.

* En el momento en que un cliente paga en la caja, el
carro de la compra que tiene queda disponible.

Representar la lista de carritos de la compra y las cajas
de salida mediante colas.

19.10. Se trata de crear una cola de mensajes que sirva como

buzén para que los usuarios puedan depositar y recoger
mensajes. Los mensajes pueden tener cualquier formato,
pero deben contener el nombre de la persona a la que
van dirigidos y el tamafio que ocupa el mensaje. Los
usuarios pueden dejar sus mensajes en la cola y al reco-
gerlos especificar su nombre por el que recibiran el pri-
mer mensaje que estd a su nombre o una indicacion de
que no tienen ningin mensaje para ellos. Realizar el pro-
grama de forma que muestre una interfaz con las opcio-
nes indicadas y que antes de cerrarse guarde los
mensajes de la cola en un fichero binario del que pueda
recogerlos en la siguiente ejecucion.

20.1

CAPITULO 20

Arboles

El &rbol es una estructura de datos muy importante en informatica y en ciencias de la computacion. Los arboles son estructu-
ras no lineales al contrario que los arrays y las listas enlazadas que constituyen estructuras lineales.

Los arboles son muy utilizados en informatica para representar formulas algebraicas como un método eficiente para bus-
quedas grandes y complejas, aplicaciones diversas tales como inteligencia artificial o algoritmos de cifrado. Casi todos los sis-
temas operativos almacenan sus archivos en &rboles o estructuras similares a arboles. Ademas de las aplicaciones citadas, los
arboles se utilizan en disefio de compiladores, procesadores de texto y algoritmos de busqueda.

En el capitulo se estudiara el concepto de arbol general y los tipos de arboles mas usuales, binario y binario de busqueda.
Asimismo se estudiaran algunas aplicaciones tipicas del disefio y construccion de arboles

Arboles generales

Un éarbol es un tipo estructurado de datos que representa una estructura jerarquica entre sus elementos. La definicion de un
arbol viene dada recursivamente de la siguiente forma: un arbol o es vacio o se considera formado por un nodo raiz y un con-
junto disjunto de arboles llamados subarboles del raiz. Es posible representar graficamente un arbol de diversas formas:

B
A(B)IC((E)F))D@)))
E
Al C
F
D| G

Figura 20.1 Representacion de arboles.

L 370 CAPITULO 20 Arboles

TERMINOLOGIA

Las siguientes definiciones forman parte de la terminologia especifica:

« Nodos son los elementos o vértices del arbol.

« Cada nodo excepto la raiz tiene un Gnico antecesor o0 ascendiente denominado padre.

« Hijo es un nodo descendiente inmediato de otro nodo de un arbol.

« Se llama grado de un nodo al nimero de sus hijos.

* Nodo hoja es un nodo de grado 0.

» Hermanos son los nodos hijos del mismo padre.

« Cada nodo de un arbol tiene asociado un nimero entero nivel que se determina por el nimero de antecesores que tiene
desde la raiz, teniendo en cuenta que el nivel de la raiz es cero.

« Profundidad o altura de un arbol es el maximo de los niveles de todos los nodos del arbol.

 Un Bosque es una coleccion de dos o mas arboles.

« Grado de un érbol es el méaximo de los grados de sus nodos.

EJEMPLO 20.1 En el siguiente arbol indique el nivel de cada nodo, el grado de algunos nodos, el grado del arbol,
asi como su profundidad.

Nivel 0 -

Nivel 1

Nivel 2

padres: A, B, E, F
hijos: B, E,F, C,D, G, H, G, |
hermanos: {B, E, F}, {C, D}, {G, H, I}

hojas: C, D, E, G, H, |

Tiene profundidad 5. El grado del nodo B es 2. El grado del arbol es 3 ya que el grado maximo de todos sus nodos lo
da el nodo F que tiene grado 3.

20.2 Arboles binarios

Un arbol binario es aquél en el cual cada nodo tiene como méximo grado dos.

« Un &rbol binario es equilibrado cuando la diferencia de altura entre los subarboles de cualquier nodo es como méaximo una
unidad.

« Un arbol binario esta perfectamente equilibrado, si los subarboles de todos los nodos tienen todos la misma altura.

« Un arbol binario se dice que es completo si todos los nodos interiores, es decir aquellos con descendientes, tienen dos hijos.

« Un érbol binario se dice lleno si todas sus hojas estdn al mismo nivel y todo sus nodos interiores tienen cada uno dos hijos.
Si un arbol binario es lleno entonces es completo.

CAPITULO 20 Arboles L 371

EJEMPLO 20.2 Dibuje tres arboles, uno completo, otro degenerado y otro lleno.

a) completo

b) degenerado

c) lleno

20.3 Estructura y representaciéon de un arbol binario

La estructura de un arbol binario es aquella en la cual en cada nodo se almacena un dato y su hijo izquierdo e hijo derecho. En
C puede representarse de la siguientes forma.

typedef int TipoElemento; /* Puede ser cualquier tipo */
struct NodoA
{
TipoElemento el;
struct NodoA *hi, *hd;
b
typedef struct NodoA EArbolBin;
typedef EArbolBin *ArbolBinario;

20.4 Arboles de expresion

Una expresion es una secuencia de operadores y operandos debidamente relacionados que forman una formula. Un arbol de
expresion es un arbol binario con las siguientes propiedades:

« Cada hoja es operando.
« Los nodos raiz e internos son operadores.
« Los subarboles son subexpresiones en las que el nodo raiz es un operador.

«» CAPITULO 20 Arboles

20.5

20.6

CONSTRUCCION DE ARBOLES DE EXPRESION

Para la construccion de un arbol de expresion a partir de la notacion infija se utilizan, como estructuras de datos, una pila de
operadores y otra pila de operadores de punteros arbol. Un algoritmo de paso de la notacion infija a postfija es el siguiente:

« Si se lee un operando se crea un arbol de un solo nodo y se mete en la pila de arboles.

« Si se lee un operador se pone en la pila de operadores, de acuerdo con la siguiente regla: el operador se pone en esta pila si
tienen prioridad mayor que el que esta en la cumbre de la pila o bien la pila esta vacia. Si tiene prioridad menor o igual prio-
ridad que el de la cima, se sacan los que hubiera en la pila de mayor o igual prioridad (hasta que quede uno de prioridad mayor
0 bien la pila esté vacia)y se coloca en ella éste Gltimo. El paréntesis abierto se considera como operador de prioridad méxi-
ma para obligar a que entre en la pila cuando se lee, y sdlo puede salir de la pila cuando aparece un paréntesis derecho.

« Cuando se acaba la entrada de datos hay que sacar todos los operadores que hubiera en la pila.

« Al sacar un operador de la pila de operadores hay que extraer, de la de la pila de arboles, los dos ultimos arboles (se consi-
dera s6lo operadores binarios). Con éstos tres elementos, se forma un nuevo arbol cuya raiz almacena el operador y los pun-
teros hi, hd apuntan a los dos ultimos arboles extraidos de la pila de arboles. Posteriormente se coloca el nuevo arbol en la
pila de arboles.

« El proceso termina cuando se acaba la entrada y la pila de operadores queda vacia. El &rbol de expresiones que se esta bus-
cando se encuentra en la cima de la pila de arboles.

Recorridos de un arbol

Se denomina recorrido al proceso que permite acceder una sola vez a cada uno de los nodos del arbol. Existen diversas formas
de efectuar el recorrido de un arbol binario:
Recorrido en anchura:
« Consiste en recorrer los distintos niveles (del inferior al superior), y dentro de cada nivel, los diferentes nodos de izquier-
da a derecha (o bien de derecha a izquierda).
Recorrido en profundidad:
Preorden RID. Visitar laraiz, recorrer en preorden el subarbol izquierdo, recorrer en preorden el subarbol derecho.

Inorde IDR. Recorrer inorden el subarbol izquierdo, visitar la raiz, recorrer inorden el subarbol derecho.
Postorden IDR. Recorrer en postorden el subarbol izquierdo, recorrer en postorden el subarbol derecho, visitar la
raiz.

Existen otros tres recorridos mas en profundidad pero apenas se usan: RDI, DRI, DIR.

EJEMPLO 20.3 Exprese los recorridos Preorden, Enorden y Postorden del siguiente arbol:

RID-ABD,E,C,F, G

IRD-D,B,E,AFC, G

DRI- G,C,FAEB,D

Arbol binario de busqueda

Un arbol binario de busqueda es aquel en el cual, dado un nodo cualquiera del arbol, todos los datos almacenados en el subar-
bol izquierdo son menores que el dato almacenado en este nodo, mientras que todos los datos almacenados en el subarbol dere-
cho son mayores que el dato almacenado en este nodo. En caso de igualdad de claves deben almacenarse en una estructura de
datos auxiliar que salga de cada nodo.

CAPITULO 20 Arboles «»

EJEMPLO 20.4 El siguiente arbol binario es de bldsqueda.

20.7 Operaciones en arboles binarios de busqueda

Las operaciones mas usuales sobre arboles binarios de blsqueda son: blsqueda de un nodo; insercion de un nodo; borrado de
un nodo.

BUSQUEDA

La bdsqueda de un nodo comienza en el nodo raiz y sigue estos pasos:

« Si el arbol esta vacio la busqueda termina con fallo.

« La clave buscada se compara con la clave del nodo raiz.

« Si las claves son iguales, la busqueda se detiene con éxito.

« Si la clave buscada es mayor que la clave raiz, la busqueda se reanuda en el subarbol derecho. Si la clave buscada es menor
que la clave raiz, la busqueda se reanuda con el subarbol izquierdo.

INSERCION

La operacidn de insercion de un nodo es una extension de la operacion de bisqueda. El algoritmo es:

* Asignar memoria para una nueva estructura nodo.

« Buscar en el arbol para encontrar la posicion de insercion del nuevo nodo, que se colocard siempre como un nuevo nodo
hoja.

« Enlazar el nuevo nodo al arbol. Para ello en el proceso de bisqueda hay que quedarse con el puntero que apunta a su padre
y enlazar el nuevo nodo a su padre convenientemente. En caso de que no tenga padre(arbol vacio), se pone el arbol apun-
tando al nuevo nodo.

BORRADO

La operacion de borrado de un nodo es una extension de la operacién de bisqueda. Después de haber buscado el nodo a borrar
hay que tener en cuenta:

« Si el nodo es hoja, se suprime, asignando nulo al puntero de su antecesor.

« Si el nodo tiene Unico hijo. El nodo anterior se enlaza con el hijo del que se quiere borrar.

« Si tiene dos hijos. Se sustituye el valor almacenado en el nodo por el valor, inmediato superior (0 inmediato inferior). Que
se encuentra en un avance a la derecha (izquierda) del nodo a borrar y todo a la izquierda (derecha), hasta que se encuen-
tre NULL. Posteriormente se borra el nodo que almacena el valor inmediato superior (o inmediato inferior) que tiene como
maximo un hijo.

« Por Gltimo hay que liberar el espacio en memoria ocupado el nodo.

@ Arboles

PROBLEMAS RESUELTOS

20.1.

20.2.

20.3.

20.4.

Explicar por qué cada una de las siguientes estructuras no es un arbol binario.

Solucion

La primera no es un arbol binario ya que el nodo cuyo contenido es B tiene tres hijos y le maximo nimero de hijos de un
arbol binario es dos. La segunda porque hay dos caminos distintos para ir al nodo F y por tanto no se expresa la jerarquia de
la definicién de arbol. La tercera por la misma razén que la segunda.

Considérese el arbol siguiente:

a) ¢Cuadl es su altura?.

b) ¢Estéa el arbol equilibrado?. ¢ Porqué?.

c) Listar todos los nodos hoja.

d) ¢Cual es el predecesor inmediato (padre) del nodo U?.
e) Listar los hijos del nodo R.

f) Listar los sucesores del nodo R.

Solucién

a) Su altura es cuatro.

b) El arbol esta equilibrado ya que la diferencia de las alturas de los
subarboles izquierdo y derecho es como maximo uno.

c¢) Los nodos hoja son: W, T, X, V.

d) El predecesor inmediato (padre) del nodo U es el nodo que contiene R.

e) Los hijos del nodo R son Uy V.

f) Los sucesores del nodo R son U, V, X.

Para el arbol del ejercicio anterior realizar los siguientes recorridos: RDI, DRI, DIR

Solucién

Recorrido RDI : P,R,V, U, X, Q, T, S, W.
Recorrido DRI : V,R, X, U,P, T, Q, S, W.
Recorrido DIR: V, X, U, R, T,W, S, Q, P.

Escriba las declaraciones necesarias para trabajar con arboles binarios de nimeros enteros y las funciones CrearNodo,
Construir, Hijo Izquierdo e Hijo Derecho.

Arboles @

Analisis del problema

« Para hacer la declaracion basta con declarar el tipo elemento como un entero, y definir una estructura que almacene ele-
mentos de ese tipo y dos punteros a la propia estructura.

« La funcion CrearNodo es una funcidn que se encarga de recibir un dato como parametro, y devuelve un nodo de tipo arbol
con su hijo izquierdo e hijo derecho apuntando a NULL.

« La funcion Construir recibe como parametro un dato asi como dos arboles, y retorna un arbol cuya raiz es un nodo que
contiene el dato y cuyos hijos izquierdo y derecho son los punteros arboles que recibe como parametro.

e La funcién Hi (Hijo Izquierdo), recibe como parametro un arbol y devuelve su Hijo lzquierdo si es que lo tiene.

* La funcién Hd (Hijo Derecho), recibe como pardmetro un arbol y devuelve su Hijo Derecho si es que lo tiene.

Codificacion

#include <stdio.h>
#include <stdlib.h>
#Finclude <string.h>

typedef int TipoElemento;
struct nodo
{
TipoETlemento el;
truct nodo *hi, *hd;
g
typedef struct nodo Nodo;

Nodo* CrearNodo(TipoElemento el);

Nodo* Construir(TipoElemento el, Nodo * hi, Nodo * hd);
Nodo* Hi(Nodo * a);

Nodo* Hd(Nodo * a);

Nodo* CrearNodo(TipoElemento el)
{
Nodo* t;

t = (Nodo*) malloc(sizeof(Nodo));

t -> el = el;
t ->hi =t -> hd = NULL;
return t;

Nodo* Construir(TipoElemento el, Nodo * hi, Nodo * hd)
{

Nodo *nn;

nn = CrearNodo(el);

nn->hi = hi;

nn->hd = hd;

return(nn);

Nodo* Hi(Nodo * a)
{
if(a)
return(a->hi);

@ Arboles

else

{
printf(“ error en Hi \n”);
return(NULL) ;

}

Nodo* Hd(Nodo * a)
{
if(a)
return(a->hd);
else
{
printf(“ error en Hd \n”);
return(NULL) ;

void main ()
it

20.4. Escribir las sentencias necesarias para construir un arbol cuya raiz sea el nimero 9, cuyo hijo izquierdo sea el 6 y cuyo
hijo derecho sea el 12.

Codificacién
Nodo * hi,*hd, *a;
hi=Construir(6, NULL, NULL);

hd=Construir(12, NULL, NULL);
a=Constgruir(9,hi,hd);

20.5. Escribir funciones para construir un arbol vacio, decidir si un arbol es vacio, y decidir si un arbol es una hoja.
Anélisis del problema

Usando una declaracion de arbol se tiene las siguientes funciones:

VaciaA : crea el arbol vacio (NULL).

EsVacioA: proporciona el valor verdadero si el arbol que recibe como parametro esta vacio y falso en otro caso.
EsHoja: decide si un arbol es una hoja; es decir, si su hijo izquierdo e hijo derecho son vacios.

Codificacién
int EsVacioA(Nodo *a)

{
return(a == NULL);

20.6.

Arboles @

void VaciaA(Nodo **a)
{
(*a) = NULL;

int Eshoja(Nodo *a)
{
if (a)
return((a->hi == NULL)&& a->hd == NULL);
else
return (0);

Escribir funciones que digan el numero de hojas de un arbol, el nimero de nodos de un arbol, el nimero de nodos que no
son hojas, la altura de un arbol, y los nodos que hay en un cierto nivel.

Anélisis del problema

Las funciones solicitadas se codifican recursivamente:

e Altura. La funcion se calcula de la siguiente forma: un arbol esta vacio su altura es cero, y si no esta vacio su altura es
uno mas que el maximo de las alturas de cada uno de sus hijos.

 NdeHojas. Para calcular el nimero de hojas de un arbol, basta con observar, que si un arbol es vacio su nimero de horas
es cero. Si no esta vacio, hay dos posibilidades, que el arbol sea una hoja en cuyo caso vale 1, o que no lo sea con lo que
para calcularlas basta con sumar las hojas que tenga el hijo izquierdo y el hijo derecho.

* NdeNodos. Si un arbol es vacio el nimero de nodos que tiene es cero, y si no esta vacio el nimero de nodos es uno mas
que la suma del nimero de lo nodos que tenga su hijo izquierdo y su hijo derecho.

* NdeNodosInternos. Se calcula restando los valores de las funciones NdeNodos y NdeHojas.

* NodosNivel. Si el arbol estd vacio los nodos que hay en ese nivel es cero. En otro caso, hay que contar o escribir el nodo
si esta en el nivel 1, y en caso de que no lo esté hay que calcular los nodos existentes en el nivel inmediatamente siguien-
te (restar uno al nivel que buscamos) de su hijo izquierdo e hijo derecho.

Codificacion

int Altura(Nodo *a)
{
if (la)
return(0);
else
{
int ai,ad;

ai = Altura(a->hi);
ad = Altura(a->hd);
if (ai < ad)

return (1 + ad);
else

return (1 + ai);

int NdeHojas(Nodo *a)
{
if (la)

20.7.

return(0);
else
return (NdeHojas(a->hi) + NdeHojas(a->hd));

int NdeNodos(Nodo *a)
{
if(la)
return(0);
else
return(1+ NdeNodos(a->hi) + NdeNodos(a->hd));

int NdeNodosInternos(Nodo *a)
{
return (NdeNodos(a)-NdeHojas(a));
}
void NodosNivel(Nodo *a, int n)
{

if (a)
if (n = 1)
printf(“%Zd\n”, a->el);
else

{
NodosNivel(a->hi,n - 1);
NodosNivel(a->hd,n - 1);

Escriba funciones que copien un arbol en otro, y que den la imagen especular.

Anélisis del problema

Arboles

* Copia. Es una funcion que recibe como parametro un arbol a y da una copia exacta de él. Para resolver el problema se
hace lo siguiente: si el arbol es vacio una copia de él es el propio arbol vacio. En otro caso hay que copiar en un nuevo

nodo el dato almacenado en la raiz y después copiar el hijo izquierdo e hijo derecho.

* Fspejo. El espejo de un arbol vacio es el propio arbol vacio. El espejo de un arbol no vacio (imagen especular) se obtie-
ne cambiando entre si el hijo izquierdo y el hijo derecho. Por lo tanto la funcion es andloga a la de Copia, excepto que se

cambian los pardmetros de llamada (el hijo izquierdo pasa a ser hijo derecho y reciprocamente).

Codificacion

void Copiar (Nodo *a, Nodo **Acop)
{
if (a)
{
(*Acop) = CrearNodo(a->el);
Copiar(a->hi,&(*Acop)->hi);
Copiar(a->hd,&(*Acop)->hd);

void Espejo (Nodo *a, Nodo **Aesp)
{

Arboles @

if (a)

(*Aesp) = CrearNodo(a->el);
Espejo(a->hi, & (*Aesp)->hd);
Espejo(a->hd, & (*Aesp)->hi);

20.8. Escriba funciones para hacer los recorridos recursivos en profundidad Inorden, Preorden, Postorden.
Analisis de problema

De los seis posibles recorridos en profundidad IDR, IRD, DIR, DRI, RID, RDI se pide IDR, IRD RID.

 Inorden. Se recorre el hijo izquierdo, se visita la raiz y se recorre el hijo derecho. Por lo tanto la funcion debe codificar-
se de la siguiente forma: Si el arbol es vacio no se hace nada. En otro caso, se recorre recursivamente el hijo izquierdo, se
escribe la raiz, y posteriormente se recorre recursivamente el hijo derecho.

* Preorden. Se visita la raiz. Se recorre el hijo izquierdo, y después se recorre el hijo derecho. Por lo tanto la codificacion
es analoga ala de Inorden, pero cambiando el orden de Ilamadas.

 Postorden. Se recorre el hijo izquierdo, se recorre e hijo derecho, y posteriormente se visita la raiz.

Codificacion

void Inorden(Nodo *a)
{
if (a)

Inorden(a->hi);
printf(“%d “, a->el);
Inorden(a->hd);

void Preorden(Nodo *a)
{
if (a)
{
printf(“%d “, a->el);
Preorden(a->hi);
Preorden(a->hd);

void Postorden(Nodo *a)
{
if (a)
{
Postorden(a->hi);
Postorden(a->hd);
printf(“%d “, a->el);
}

@ Arboles

20.9. Se dispone de un arbol binario de elementos de tipo entero. Escriba funciones que calculen:
a) La suma de sus elementos.
b) La suma de sus elementos que son maltiplos de 3.

Anélisis del problema

Para resolver el problema basta con implementar las dos funciones efectuando al hacer un recorrido del arbol las corres-
pondientes operaciones.

Caodificacion

int Suma (Nodo*a)
{
if(a)
return(a->el + Suma(a->hi) + Suma(a->hd));
else
return(0);

int SumaMultimpos (Nodo*a)
it
if(a)
if (a->el%3)
return(a->el + SumaMultiplos(a->hi)+SumaMultiplos(a->hd));
else
return(SumaMultimplos(a->hi) + SumaMultiplos(a->hd));
else
return(0);

20.10. Escribir una funcién booleana Identicos que permita decir si dos arboles binarios son iguales.
Analisis del problema
Dos arboles son idénticos si tiene la misma estructura y contienen la misma informacion en cada uno de sus distintos nodos.
Coadificacion
int Idénticos (Nodo *a, Nodo * al)
{
if (a)
if (al)

return((a->el == al->el) && Identicos(a->hi,al->hi && Identicos(a->hdal->hd));
else // a # NULL y al es NULL

return(0);
else
if (al) // a es NULL y al no
return(0);
else

return(l);

Arboles @

20.11. Construir una funcion recursiva para escribir todos los nodos de un arbol binario de bisqueda cuyo campo clave sea mayor
que un valor dado (el campo clave es de tipo entero).

Anélisis del problema
Basta con hacer un recorrido del arbol y escribir los que cumplan la condicion dada.
Codificacion

void RecorreMayores(Nodo *a, TipoElemento el)
{
if (a)
{
if(a->el > el)
printf(“%d “, a->el);
RecorreMayores(a->hi, el);
RecorreMayores(a->hd, el);

20.12. Dado un arbol binario de biusqueda disefie una funcién que liste los nodos del arbol ordenados descendentemente.
Analisis del problema
Basta con hacer el recorrido DRI del &rbol.
Solucién

void Escribe(Nodo *a)
{
if (a)
{
Escribe(a->hd);
printf(“&d “, a->el);
Escribe(a->hi);

20.13. Escribir un programa que cree un arbol binario con nimeros generados aleatoriamente y muestre por pantalla:
* La altura de cada nodo del &rbol.
« La diferencia de altura entre rama izquierda y derecha de cada nodo.

Anélisis del problema

El programa que se presenta tiene las siguientes funciones:

e Altura. Calcula la altura del arbol que se le pasa como parametro.

e GeneraAleatoriamente. Genera aleatoriamente un arbol binario de busqueda usando la funcién AnadeA (Codificada en
un ejercicio posterior 20.17) que afiade nimero enteros a un arbol binario de bdsqueda.

* EscribeA. Escribe el arbol de acuerdo con el recorrido DIR.

» MuestraP. Muestra en pantalla para cada nodo las condiciones pedidas usando un recorrido IRD.

Codificacion (Se encuentra en la pagina web del libro)

@ Arboles

20.14. Escriba una funcion que realice el recorrido en anchura de un arbol binario.
Anélisis del problema

Para hacer el recorrido en anchura se usa el esquema de arriba abajo y de izquierda a derecha. También se codifica el esque-
ma de arriba abajo y de derecha a izquierda, mediante las funciones AnchuralID y AnchuraDI. Para ambas funciones se usa
una cola de arboles por la que pasaran todos los arboles que apunten a los nodos del arbol.

.- AnchuralD. Se creaen primer lugar la cola vacia. Si el arbol original es vacio no se hace nada y en otro caso se afiade
el propio arbol a la cola. Ahora mediante un bucle mientras controlado por la condicién es vacia la cola, se extrae el arbol
que esta como primer elemento, se borra de la cola, se escribe la informacion almacenada en el nodo raiz, y posterior-
mente se afiade el arbol hijo izquierdo del nodo raiz a la cola si esta no vacio y posteriormente el arbol hijo derecho del
nodo raiz a la cola si esta no vacio.

. AnchuraDI. Es analoga a la anterior, pero la final se cambia el orden de afiadir a la cola el arbol hijo izquierdo y el arbol
hijo derecho.

En la codificacion que se presenta, se incluye la declaracion de arbol la de cola, y se omiten las primitivas de gestion de una

cola.

Codificacion

typedef int TipoElemento;
struct nodo
{

TipoETlemento el;

struct nodo *hi, *hd;
E
typedef struct nodo Nodo;

// gestion de Cola
struct NodoC
{

Nodo *el;

struct NodoC* sig;

typedef struct
{
NodoC * Frente;
NodoC * Final;
}Cola;

// Las primitivas de gestién d e una cola son omitidas

void AnchuralID(Nodo *a)
{
Cola C;
Nodo *al;
VaciaC(&C);
if (a)
{
AnadeC(&C,a);
while (!EsVaciaC(C))
{
al = PrimeroC(C);

Arboles @

BorrarC(&C);

printf(“%d \n”, al->el);

if (al->hi != NULL)
AnadeC(&C, al->hi);

if (al->hd != NULL)
AnadeC(&C, al->hd);

void Anchura DI(Nodo *a)
{
Cola C; Nodo *al;

VaciaC(&C);
if (a)
{
AnadeC(&C,a);
while (!EsVaciaC(C))
{
al = PrimeroC(C);
BorrarC(&C);
printf(“%d \n”, al->el);
if (al->hd != NULL)
AnadeC(&C, al->hd);
if(al->hi != NULL)
AnadeC(&C, al->hi);

20.15. Escriba las funciones para recorrer un arbol en inorden y preorden iterativamente.
Analisis del problema

Una manera de resolver el problema es usar la técnica general de eliminacion de la recursividad. En este caso se usa una pila

de arboles, por la que pasaran punteros a todos los nodos del arbol de la siguiente forma.

. InordenNoRecursivo. Usa una pila de arboles no escritos. Inicialmente se pone la pila a vacio y después mediante un bucle
repetir que termina cuando la pila esta vacia y cuando el ultimo hijo derecho del nodo del que se ha escrito su raiz (y por tanto
también su hijo izquierdo) esté vacio. Hay que estar seguros de que cuando se escriba un nodo ya se ha escrito su hijo izquier-
do. Para ello el primer bucle while se desplaza (baja) por los hijos izquierdos afiadiendo los punteros correspondientes a la
pila hasta asegurar que el primer arbol almacenado en la cumbre e la pila ya se ha escrito su hijo izquierdo, y falta por escri-
bir su raiz y su hijo derecho. Por tanto, a cada vuelta del bucle do while y después de haberse ejecutado el bucle while (pos-
terior) hay en la cumbre de la pila de arboles no escritos un puntero a un arbol del que se ha escrito su hijo izquierdo y falta
por escribir su raiz y el hijo derecho. Por lo tanto después del bucle whiTe hay que extraer un dato de la pila, escribir su raiz
para posteriormente tratar su hijo derecho, afiadiéndolo a la pila repitiendo el proceso general.

. PreordenNoRecursivo. Usa una pila de arboles escritos. Inicialmente se pone la pila a vacio y después se usa un
bucle repetir que termina cuando la pila esta vacia y cuando el Gltimo hijo derecho del nodo del que se ha escrito su
hijo derecho y su raiz esta vacio. Hay que asegurar que cuando se escriba un hijo izquierdo ya se ha escrito su raiz.
Para ello el primer bucle while se desplaza (baja) por los hijos izquierdos escribiendo la informacion de la raiz y afia-
diendo los punteros correspondientes a la pila hasta asegurar que el primer arbol almacenado en la cumbre de la pila
ya se ha escrito su hijo izquierdo y su raiz, y falta por escribir su hijo derecho. Por tanto a cada vuelta del bucle do
while y después de haberse ejecutado el bucle while (posterior) hay en la cumbre de la pila de arboles escritos, un

20.16.

Arboles

puntero a un arbol del que se ha escrito su raiz y su hijo izquierdo y falta por escribir el hijo derecho. Al terminar el
bucle while hay que extraer un dato de la pila, para posteriormente tratar su hijo derecho, afiadiéndolo a la pila repi-

tiendo el proceso general.

Se presentan a continuacion las declaraciones necesarias y las dos funciones pedidas. Se usa una pila de arboles que no esta
incluida.

Codificacion (Se encuentra en la pagina web del libro)

Escriba una funcidn recursiva y otra iterativa que se encargue de buscar la informacion dada en un elemento en un arbol
binario de blusqueda.

Anélisis del problema

Se usa una definicion de arboles como la usada los ejercicios anteriores, y se implementa la funcion BuscarA vy
BuscarAlterativo que busca el nodo que contenga el elemento.
BuscarA. Realiza la busqueda recursiva de la siguiente forma: si el arbol esté vacio la bisqueda termina con fallo. Si no
esta vacio, la busqueda termina con éxito si la informacién almacenada en la raiz coincide con la que se esta buscando,
en otro caso habra que continuar la bisqueda o por el hijo izquierdo o bien por el hijo derecho dependiendo de la com-

paracion entre el elemento que se busca y la informacion almacenada en el nodo.

BuscarAlterativo. Realiza la blusqueda devolviendo un puntero al nodo anterior ademas del puntero al nodo que se
busca. Para ello se usa un interruptor enc que se inicializa a falso, y mediante un bucle mientras no enc y no se haya
terminado el arbol hacer: si coinciden los contenidos poner enc a verdadero, en otro caso se desplaza a la izquierda o la

derecha quedandose con su anterior dependiendo del contenido de la raiz y del elemento que se esté buscando.

Codificacion

Nodo* BuscarA (Nodo* p, TipoElemento el)

{

Nodo*BuscarAlterativo(Nodo * a, Nodo** ant,

{

if (lp)
return 0;
else if (el = p -> el)
return p;
else if (el < p -> el)
return BuscarA (p -> hi, el);
else
return BuscarA (p -> hd, el);

int enc;
Nodo *anterior;

enc = 0;
anterior = NULL;
while (lenc && (a!=NULL))
{
if (a->el == el)
enc = 1;
else
{
anterior = a

TipoElemento el)

Arboles @

if (el < a->el)
a = a->hi;
else
a = a->hd;

}
*ant = anterior;
return a;

20.17. Escriba una funcién recursiva y otra iterativa que se encargue de insertar la informacion dada en un elemento en un arbol
binario de busqueda.

Analisis del problema

Se usa una definicion de arboles como la de los ejercicios anteriores, y se implementa la funcion AnadeA 'y

AnadeAlterativo que insertan el nodo que contenga el elemento.

. AnadeA. Realiza la insercion recursiva de la siguiente forma: si el arbol esta vacio se inserta el nuevo nodo como una hoja
de un arbol llamando a la funcién CrerarNodo. Si no esta vacio si la informacion almacenada en la raiz coincide con la
que estd buscando habria que tratar las claves repetidas almacenandolas en una estructura de datos auxiliar (no se hace),
en otro caso habra que continuar la insercién o por el hijo izquierdo o bien por el hijo derecho dependiendo de la com-
paracion entre el elemento que vamos a insertar y la informacion almacenada en el nodo.

. AnadeAlterativo. Se llama a la funcion BuscarAlterativo programada en el ejercicio anterior 20.16 y después se
inserta el nodo si la basqueda terminé en fallo teniendo en cuenta que puede ser el raiz total o bien un hijo izquierdo o
bien un hijo.

. CreaNodo. Esuna funcion auxiliar que recibe como parametro un elemento y devuelve un puntero a un arbol que es una
hoja y que contiene la informacion del elemento.

Codificacion
Nodo* CrearNodo(TipoElemento el)
{

Nodo* t;

t = (Nodo*) malloc(sizeof(Nodo));

t -> el = el;
t ->hi = t -> hd = NULL;
return t;

void AnadeA (Nodo** a, TipoElemento el)
{

if (1(*a))
*a = CrearNodo(el);
ellisie
i Cell = (al=>el)
printf(“ valor %d repetido no se inserta\n”,el);
else

if (el < (*a) -> el)
AnadeA (&((*a) -> hi), el);
else
AnadeA (&((*a) -> hd), el);

@ Arboles

void AnadeAlterativo(Nodo** a, TipoElemento el)
{
Nodo *nn, *al, *ant;

al = BuscarAlterativo(*a, &ant, el);
if (al==NULL)
{
nn = CrearNodo(el);
if (ant == NULL)
*a = nn;
else
if(el < ant->el)
ant->hi = nn;
else
ant->hd = nn;
}
else
printf(“ nodo duplicado no se inserta \n”);

20.18. Escriba funciones iterativas y recursivas para borrar un elemento de un arbol binario de bdsqueda.
Analisis del problema

El borrado que se implementa es el explicado en la teoria, usando la técnica del predecesor inmediato que se encuentra uno

a la izquierda y todo a su derecha. Las funciones que lo codifican son:

. BorrarARecursivo. Realiza la busqueda del nodo a borrar recursivamente, y una vez encontrado el nodo considera los
tres casos. No tiene hijo izquierdo, en cuyo caso se enlaza el puntero con su hijo derecho. No tiene hijo derecho, en cuyo
caso se enlaza el nodo con su hijo izquierdo. Tiene dos hijos, en cuyo caso se llama a una funcién recorred que se encar-
ga de buscar el sucesor inmediato, copia la informacidon en el nodo que se quiere borrar y cambia el nodo a borrar que es
el que es ahora el predecesor inmediato. Por Gltimo se libera memoria.

. Recorred. Es una funcién recursiva que hace lo indicado anteriormente y realiza el enlace con el hijo izquierdo del pre-
decesor inmediato.

. BorrarAlterativo. Realiza a bisqueda del nodo a borrar iterativamente. En el caso de éxito en la bisqueda considera
los tres casos considerados en el BorrarARecursivo, pero ahora, al realizar los dos primeros casos (no tiene hijo izquier-
do, o no tiene hijo derecho) ha de tener en cuenta si el nodo a borrar es el raiz del arbol (ant==NULL) a la hora de reali-
zar los enlaces. Para el caso del borrado del nodo con dos hijos, la bisqueda del predecesor inmediato se realiza
iterativamente mediante la condicion no tiene hijo derecho. Una vez encontrado, se intercambian la informacion y se pro-
cede al borrado del nodo predecesor inmediato.

. BorrarA. Realiza la basqueda recursivamente de acuerdo con la funcidn BorrarARecursivo, pero en lugar de llamar a
la funcién recorred, realiza el borrado iterativamente tal y como lo hace la funcién BorrarAIterativo.

Codificacion

void BorrarARecursivo (Nodo** a, TipoElemento el)
{
if (1(*a))
printf(“!! Registro con clave %d no se encuentra !!. \n”,el);
else
if (el < (*a)->el)
BorrarA(&(*a)->hi, el);
else
if (el > (*a)->el)

CAPITULO 20 Arboles

CAPITULO 20 Arboles

Arboles
(*r) = ab->hd;
else
if (ab->hd == NULL)
(*r) = ab->hi;
else

{
Nodo* a, *p;
p = ab;
a ab->hi;
while (a->hd)
{

= a:
a->hd;

o0 T
Il

}

ab->el =

if (p ==
ab->hi =

a-vel;
ab)
a->hi;

//p->hi

else

p->hd = a->hi;

free(ab);
}

PROBLEMAS PROPUESTOS

20.1.

20.2.

Para cada una de las siguientes listas de letras

a) Dibujar el arbol binario de basqueda que se construye
cuando las letras se insertan en el orden dado.

b) Realizar recorridos en inorden, preorden y postorden
del arbol y mostrar la secuencia de letras que resultan
en cada caso.

(i) M Y T, E R
(ii) R, E, M, Y, T
(iii) T, Y, M, E, R
(iv) C 0 R, N F

L A K, E S

Dibujar los arboles binarios que representan las siguien-
tes expresiones:

a) (A+B)/(C-D)

b) A+B+C/D

C) A-(B-(C-D)/(E+F))
d) (A+B)*((C+D)/(E+F))
€) (A-B)/((C*D)-(E/F))

/* mayor de los menores */

no enlaza bien por ser una copia

20.3.

20.4.

20.5.

20.6.

El recorrido preorden de un cierto arbol binario produce
ADFGHKLPQRWZ y el recorrido en inorden produce
GFHKDLAWRQPZ . Dibujar el &rbol binario.

Escribir un programa que procese un arbol binario cuyos
nodos contengan caracteres y a partir del siguiente ment
de opciones:

: Insertar un caracter
: Buscar un caracter

I (seguido de un caracter)
B (seguido de un carécter)

RE : Recorrido en orden

RP : Recorrido en preorden
RT : Recorrido postorden
SA : Salir

Escribir una funcién booleana a la que se le pase un pun-
tero a un arbol binario y devuelva verdadero (true) si el
arbol es completo y falso en caso contrario.

Crear un archivo de datos en el que cada linea contenga
la siguiente informacion

20.7.

20.8.

Columnas 1-20 Nombre
21-31 Nuamero de la Seguridad Social
32-78 Direccion

Escribir un programa que lea cada registro de datos de
un arbol, de modo que cuando el arbol se recorra utili-
zando recorrido en orden, los nimeros de la seguridad
social se ordenen en orden ascendente. Imprimir una
cabecera “DATOS DE EMPLEADOS ORDENADOS
POR NUMERO SEGURIDAD SOCIAL”. A continua-
cion se han de imprimir los tres datos utilizando el
siguiente formato de salida.

Columnas:1-11 Namero de la Seguridad Social 25-44
Nombre; 58-104 Direccion.

Escribir un programa que lea un texto de longitud inde-
terminada y que produzca como resultado la lista de
todas las palabras diferentes contenidas en el texto, asi
como su frecuencia de aparicion. Hacer uso de la estruc-
tura arbol binario de bdsqueda, cada nodo del arbol que
tenga una palabra y su frecuencia.

Crear un archivo de datos en el que cada linea contenga
la siguiente informacién: Nombre 30 -caracteres;
Numero de la Seguridad Social 10 caracteres; Direccion
24 caracteres. Escribir un programa que lea cada regis-
tro de datos en un arbol, de modo que cuando el arbol se
recorra en orden los nimeros de la Seguridad Social se
almacenen en orden ascendente. Imprimir una cabecera
“DATOS DE EMPLEADOS ORDENADOS POR

CAPITULO 20 Arboles

NUMERO DE LA SEGURIDAD SOCIAL” y a conti-
nuacién imprimir los datos del arbol con el formato
Columnas: 1-10 Numero de la Seguridad Social; 20-50

Nombre; 55-79 Direccion

20.9. Disefiar un programa interactivo que permita dar altas,
bajas, listar, etc. en un arbol binario de busqueda.

20.10. Dados dos arboles binarios de busqueda indicar median-
te un programa si los arboles tienen o no elementos
comunes.

20.11.Un arbol binario de busqueda puede implementarse
con un array. La representacion no enlazada corres-
pondiente consiste en que para cualquier nodo del
arbol almacenado en la posicion | del array, su hijo
izquierdo se encuentra en la posicion 2*1 y su hijo
derecho en la posicion 2*1 + 1. Disefiar a partir de esta
representacion las correspondientes funciones para
gestionar interactivamente un arbol de ndmeros ente-
ros. (Comente el inconveniente de esta representacion
de cara al maximo y minimo nimero de nodos que
pueden almacenarse).

20.12. Una matriz de N elementos almacena cadenas de carac-
teres. Utilizando un arbol binario de bisqueda como
estructura auxiliar ordene ascendentemente la cadena de
caracteres.

20.13. Escriba un programa C que lea una expresion correcta en
forma infija y la presente en notacién postfija.

A.1

APENDICE A

Compilacion de programas C
en UNIX y LINUX

La forma de compilar programas C en el entorno UNIX varia considerablemente entre las diferentes plataformas UNIX. Las
versiones de Linux y FreeBSD 3.4 de UNIX usan el potente compilador GNU. Para conocer la version disponible se ejecuta la
orden:

$ gcc —version
2.7.2.3
$

La orden cc es la mas usada en las plataformas de UNIX para compilar programas C, como se muestra en la siguiente
sesion de una version de BSD:

$ type cc

cc is a tracked alias for /usr/bin/cc

$ 1s -11 /usr/bin/cc

7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/cc

$ type gcc

gcc is a tracked alias for /usr/bin/gcc

$ 1s -1i /usr/bin/gcc

7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/gcc
$

Otras plataformas UNIX proporcionan sus propios compiladores de C y C++, los cuales difieren substancialmente en las
opciones que permiten del compilador de GNU, asi como en los mensajes que se producen y su capacidad de optimizacién. A
continuacion se veran algunas de las diferencias.

Orden (comando) de compilacion cc
La mayoria de las plataformas UNIX invocan sus compiladores de C con el nombre cc. Las plataformas Linux y FreeBSD

tienen el nombre de comando gcc, ademas del nombre cc. Algunas veces el compilador de GNU es instalado como gcc en
plataformas comerciales para distinguirlo del estandar. Por ejemplo, HP incluye un compilador no ANSI con su sistema ope-

@ APENDICE A Compilacion de programas C en UNIX y LINUX

rativo HPUX, que es denominado el compilador “envuelto” (este compilador es suficiente para reconstruir un nuevo kernel para
HPUX). El compilador ANSI debe ser adquirido por separado y, cuando se instala, reemplaza al comando cc.

Sin embargo, dentro de la misma plataforma, hay también hay otras opciones. HPUX 10.2 soporta el compilador cc y el
compilador conforme con POSIX (estandar) c89. La plataforma IBM AlX 4.3 soporta un compilador “extendido” de C, cc,
y un compilador de ANSI C, x1c 0 c89. La diferencia entre los compiladores x1c y c89 en AlX son las opciones por defec-
to configuradas. Las opciones, relativamente estandarizadas, son:

OPCION -C

Esta opcion es probablemente la mas estandarizada universalmente. La opcién -c indica que el compilador deberia producir
un archivo (fichero) objeto (fichero.o) pero sin intentar enlazar para obtener un ejecutable. Esta opcidn se usa cuando se com-
pilan varios modulos fuentes separados que seran enlazados juntos en una etapa posterior por medio del enlazador. Por ejem-
plo, se ha editado el archivo fuente ecuacion.c, la compilacion con el comando cc y la opcion -c:

$ cc -c ecuacion.c

El resultado de la compilacion es un listado con los errores sintacticos del programa. O bien, de no haber errores, el archi-
vo con el codigo objeto ecuacion.o. Una vez generado el cddigo objeto, se enlaza y se genera el archivo ejecutable:

$ cc ecuacion.o
El siguiente ejemplo muestra como se compila y enlaza en un solo paso:
$ cc hello.c

Esta orden, de paso Unico, traduce el archivo fuente escrito en C hello.c; el resultado de la compilacion, si no hay
errores, es el archivo ejecutable a.out. EI nombre de fichero a.out es el nombre por defecto de un ejecutable que se
genera como salida del compilador y del enlazador (link). Esta practica se remonta al menos a 1970 cuando UNIX esta-
ba escrito en lenguaje ensamblador sobre el PDP-11. El nombre de los archivos de salida por defecto del enlazador de
Digital Equipment (DEC) también es a.out.

El programa C se puede escribir en varios médulos y cada uno estar guardado en un archivo. La compilacion puede hacer-
se archivo tras archivo y después enlazarse para formar el archivo ejecutable. Por ejemplo, la aplicacion de calculo de nomi-
nas se escribe en los archivos independientes: nominal.c, nomina2.c y nomina3.c. Lacompilacién de cada archivo fuente:

$ cc -c nominal.c
$ cc -c nomina2.c
$ cc -c nomina3.c
A continuacion se enlazan los tres archivos objetos generados (una vez que no hay errores sintacticos) como sigue:
$ cc nominal.o nomina2.o0 nomina3.o
el resultado es el archivo ejecutable a.out. Laorden cc con la opcién -c, ejecutado para cada archivo fuente, produce, res-

pectivamente, los archivos nominal.o, nomina2.oynomina3.o. Después, laorden cc acepta cada archivo objeto como entra-
da y produce el archivo ejecutable final con el nombre a.out. A continuacion, se puede ejecutar el programa generado.

OPCION -0

Esta opcién es también bastante estandar. La opcién -o permite al usuario especificar el nombre del archivo de salida. Por
ejemplo, para el archivo ecuacion.c podria hacerse:

$ cc -c ecuacion.c -o mat_ecuacion.o

La opcion -c indica que se va a producir un archivo objeto y la opcion -o nombrara el archivo objeto de salida como
mat_ecuacion.o.

APENDICE A Compilacion de programas C en UNIX y LINUX @

La opcidn -o puede usarse también para nombrar el archivo ejecutable. Por ejemplo, el archivo ejecutable que se genera,
a continuacion, se nombra prog_ecuacion:

$ cc mat_ecuacion.o -o prog_ecuacion

OPCION -G (DEPURACION)

Esta opcion estandar indica al compilador que debe generarse informacién de depuracion en la salida de la compilacion. Esta
informacién de depuracion hace que sea posible que el depurador haga referencia al codigo fuente y a los nombres de las varia-
bles, asi como el analisis de un archivo core tras abortar un programa. Incluya esta opcion cuando se necesite depurar un pro-
grama interactivamente o realizar un andlisis post-mortem de un archivo core. Hay que asegurarse de usar esta opcion con
todos los mddulos objetos que vayan a ser inspeccionados por el depurador.

OPCION -D (DEFINE)

Esta opcidn estandar del compilador de C permite definir un simbolo de macro desde la linea de comandos del compilador.
Frecuentemente es utilizada sobre todo desde el archivo makefile pero no esté limitada a esta préactica. Por ejemplo:

$ cc -c -D POSIX_C_SOURCE=199309L hello.c

define la macro constante en C _POSIX_C_SOURCE con el valor 199309L. Esta definicion de macro tiene el efecto de elegir
un estandar particular POSIX de entre los ficheros incluidos en la compilacion. Se pueden definir macros adicionales en la
misma linea de 6rdenes

$ cc -c -D_POSIX_C_SOURCE=199309L -DNDEBUG hello.c

En este ejemplo se han definido dos macros para el archivo hello.c, la primera _P0SIX_C_SOURCE, y a continuacion la
macro NDEBUG (sin valor), con el fin de deshabilitar la generacion de cddigo en las innovaciones a la macro assert(3) den-
tro del programa.

OPCION -1 (INCLUSION)

La opcidn estandar -1 permite especificar directorios adicionales para buscar archivos de inclusién include. Por ejemplo, si
se tienen archivos adicionales include localizados en un directorio inusual tal como /usr/Tocal/include, se podria afiadir
la opcién -1 como sigue:

$ cc -c¢ -I/usr/local/include hello.c

Pueden afiadirse mas de una opcidn -1 en la linea de comandos, y los directorios seran recorridos en el orden dado. Por
ejemplo, si se ejecuta el comando:

$ cc -c -I/usr/local/include -I/opt/include gestion.c

Si el programa fuente (gestion.c) contiene la directiva #include “file.h”, entonces muchos compiladores (no-GNU)
de UNIX procesaran la directiva buscando, primero, en el directorio actual, después en todos los directorios dados por la opcion
-1 y finalmente en el directorio /usr/include. Los mismos compiladores (no-GNU) de UNIX procesarén la directiva de C
fHinclude <file.h> de la misma forma, excepto que no buscan en el directorio actual. Sin embargo, el compilador de GNU
extiende algo la opcién -1 como sigue:

e -1-, los directorios que preceden a una opcion -1- son recorridos solamente para las directivas de la forma #inclu-
de “file.h”.

* Los directorios proporcionados con las opciones -1 que siguen a una opcion -1- se recorren para las dos formas
#include “file.h” yidinclude <file.h>.

* Si no aparece ninguna opcion -1- en la linea de comandos, entonces el comportamiento es el mismo que para los com-
piladores no GNU de C.

@ APENDICE A Compilacién de programas C en UNIX y LINUX

Un ejemplo de todo esto es el comando de compilacion siguiente:
$ gcc -c -I/usr/tipodato/include -I- -I/opt/oracle/include convo.c

La ejecucion del comando del ejemplo permite a la directiva del preprocesador de C #include “pila.h” incluir el archi-
VO /usr/tipodato/include/pila.h. Esta otra directiva #finclude <sqlca.h>, recorre los directorios que siguen a la
opcion -1-, entonces incluiria al fichero /opt/oracle/include/sqlca.h. Esto ocurre porque la forma <file.h> noes
buscada en los directorios que preceden a la opcion -1 -

OPCION -E (EXPANDIR)

Esta opcidn es relativamente estandar entre los compiladores de C de UNIX. Permite modificar la linea de comandos para hacer
que el compilador envie el codigo preprocesado en C a la salida estandar sin llegar a compilar el cédigo. Esto es (til para con-
trolar las directivas de preprocesamiento y las macros de C. La salida de lo que sera compilado puede ser redirigida a otro archi-
VO para que después se examine con un editor.

$ cc -c¢ -E hello.c > cpp.out

En el ejemplo anterior, la opcion -E hace que los archivos include y el programa sean preprocesados y redirigidos
hacia el archivo cpp.out. Después, se puede examinar el archivo cpp.out con un editor para determinar como seréa el
codigo final en C. Esto es Util especialmente cuando se trata de depurar el efecto de macros en C que en ocasiones provo-
can errores de compilacion dificiles de diagnosticar.

OPCION -O (OPTIMIZAR)

Esta opcion no es estandar entre los compiladores. Algunos compiladores requieren que un argumento siga a la -0, otros no y
otros aceptaran opcionalmente un argumento. FreeBSD acepta lo siguiente:

-0 y -01 especifican optimizacion de nivel 1.

-02 especifica optimizacién de nivel 2 (optimizacién mayor).
-03 especifica optimizacion de nivel 3 (més que -02).

-00 especifica sin optimizacion.

Para el compilador de GNU, estas opciones pueden estar repetidas, y la tltima es la que establece el nivel final de optimi-
zacion. Por ejemplo:

$ gcc -c -03 -00 elipse.c

compila sin optimizar porque al final aparece -00.
En contraste con el compilador GNU, el compilador de HP soporta las siguientes opciones de para niveles crecientes de
optimizacion:

Optimizacion por defecto +00

Nivel 1 de optimizacién +01

Nivel 2 de optimizacién +02 (equivale a -0, sin argumentos, de FREEBSD)
Nivel 3 de optimizacion +03

Nivel 4 de optimizacion +04

El compilador de IBM AIX 4.3 soporta las opciones -0, -02 y -03 para niveles crecientes de optimizacion. Todo ello
acentla la necesidad de revisar para cada sistema las opciones del compilador en la pagina de cc del manual correspondiente.

La optimizacién analiza el cddigo compilado, c6digo objeto, para aumentar la eficiencia en la ejecucion de las instruccio-
nes. Cuanto mayor es el nivel de optimizacién mejor es el codigo ejecutable producido, por contra, mayor es el tiempo de com-
pilacion.

APENDICE B

Compilacion de programas C
en WINDOWS

Existen diversos entornos de compilacion de programas C para Windows. Uno muy popular, gratuito y de gran fiabilidad, disefia-
do en la University of Virginia es Icc-win32. Es un entorno de programacion completo que permite editar, compilar y ejecutar pro-
gramas escritos en lenguaje C. El compilador se adapta a las especificaciones ANSI C Y se puede descargar gratuitamente de
Internet en la direccion Web:

http://www.cs.virginia.edu/~lcc-win32

o bien en

http://www.qg-software-solutions.com

La instalacion de lcc-win32 crea el icono de acceso:

Acceso a lcc-win32

Seleccionando el icono Wedit se accede al entorno integrado de desarrollo, tipico de sistemas Windows

[wedit-lolro

File Edt Search Project Design Compiler Utls Yersions Analysis Window Help

O] build search

http://www.cs.virginia.edu/~lcc-win32
http://www.q-software-solutions.com

@ APENDICE B Compilacién de programas C en Windows

B.1 Editar un programa

Este entorno de programacion permite editar sin necesidad de utilizar otra aplicacion. La forma mas sencilla y rapida de editar
un programa es la siguiente: pulse File en la parte superior del mena principal; a continuacion New y en el mend que se des-
pliega File. Escriba el nombre del programa y acepte con el botén Ok:

M ame?

Saludos.c [

Ahora comience a teclear las sentencias del programa fuente; una vez terminado guarde el programa fuente mediante
Ctrl+S.

B.2 Compilacion

Seleccione el mend Compiler y la opcion Compile. El entorno 1cc le sugiere unas acciones relativas al proyecto en el cual se
va a agrupar el programa; elija New Project . EI compilador se pone en marcha y en la pantalla inferior se muestran los erro-
res de compilacién. En el programa se corrigen los errores; se vuelve a guardar (Ctrl+S) y de nuevo se compila. El proceso de
depuracidn se repite hasta que no haya mas errores.

B.3 Ejecucién

Seleccione el ment Compiler y la opcion Execute. La ejecucién abre una nueva ventana en la que se muestran los resultados
de la ejecucion del programa.

B.4 Crear un proyecto

Las aplicaciones escritas en C se componen de un nimero determinado de funciones y de una funcion principal (
main()). Normalmente, estas funciones se agrupan en dos o mas archivos. Cada archivo (archivo fuente) se compila y depu-
ra de forma individual, o sea se realiza una compilacion independiente.

Para gestionar la compilacion independiente se crea un proyecto. En el proyecto se agrupan los distintos archivos que for-
man la aplicacion; cada archivo se compila y depura independientemente. Una vez compilado cada archivo, se enlazan para
formar el archivo ejecutable.

Los pasos a seguir para crear un proyecto y ejecutar el programa:
1. Seleccione Project en el men principal y a continuacion elija Create.

2. Teclee el nombre del proyecto y el camino (path) donde se ubicara.
Proyecto Saludos, situado en C:\MisProgramas:
Pulse la opcion Create.

3. A continuacion, pulse No, o bien Next en las nuevas pantallas que le presenta la aplicacion 1cc. Llegara a un pantalla
en la cual pulsara End; es la dltima por la que navegara para crear el esqueleto del proyecto.

4. Edite cada archivo: para ello pulse en File, y opcién New File. Una vez creado el archivo se debe afiadir al proyecto,
para ello pulse Proyect y después Add/Delete files .

APENDICE B Compilacién de programas C en Windows

Definition of a new project

M ame of the project

(ithaut (5 51 das

Ty [Sokdos
Hel

Saurces

working [o —

directary: % M |sF'r0_g_rtamas |

Output directary

Objects and [

executables |

Optiohz

(=) Single user [Use versioning system
() Multi uger [Use framewark.

Type of project
() 'windows application () Static Library [lib]
() Cansale &pplication (O Dynamic Link Library (dI)

Archivo entrada.c:

#include <stdio.h>
void entradaNombre(char nom[])
{
printf(“ Tu nombre: ?7);
gets(nom);

5. Compile el archivo. Pulse Proyect, elija Check syntax Si hay errores de compilacién, se realizan las correcciones en el
archivo: se guarda (Ctrl+S) y se vuelve a realizar la compilacién con Check syntax.

6. Edite cada archivo fuente, repitiendo los pasos 4 y 5.
Archivo progSuerte.c:

#include <stdio.h>
void entradaNombre(char nom[]);

void main()
{
char nombre[41];
entradaNombre(nombre);
printf(“\n Hola %s, felices vacaciones \n”, nombre);

7. En el mend principal pulse Proyect, elija Make para enlazar los archivos que forman el proyecto y crear el archivo eje-
cutable. Por ultimo, Execute ejecutara el programa.

Recursos Web
de programacion

LIBROS

Existen numerosos libros de C para cualquier nivel de aprendizaje. Recogemos en este apartado aquellos que consideramos méas
sobresalientes para su formacién y posterior vida profesional de programador en C.

American National Standards Institute (ANSI) . Programming Language C, ANSI X3.159- 1989. Manual de especifi-
caciones del lenguaje ANSI C, conocido como C89

International Organization for Standardization (1SO). ISO/IEC 9899:1990... (C89) y ISO/IEC 9899;1999 (C99)

Deitel, P. J. y Deitel, H. M. C: How to Program. Prentice-Hall, 1994. Excelente libro cuyos autores son muy reconocidos
en el mundo editorial tanto anglosajén como espafiol , donde se han traducido muchas de sus obras.

Fischer, Alice E., Eggert, David W., Ross, Stephen M. Applied C: An Introduction and More. Boston (USA): McGraw-
Hill, 2001. Libro excelente que proporciona una perspectiva tedrico-practica sobresaliente.

Feuer, Alan R. The C Puzzle Book. Addison-Wesley, 1998.

Es una excelente eleccion para todos los programadores que desean ampliar su conocimiento basico del lenguaje de pro-
gramacion C y totalmente compatible con la version estandar ANSI C. Construido sobre reglas y experiencias practicas es una
obra muy completa para la comprension de la sintaxis y semantica de C.

Harbison, Samuel P., Tartan Laboratories. C: A Reference Manual, 4/e. Prentice Hall, 1995. Este libro contiene en deta-
Ile todo el lenguaje de programacion en C. La claridad, los Utiles ejemplos y discusiones de compatibilidad con C++ lo dife-
rencia, esencialmente, de otras referencias. Existen numerosos compiladores de C en los diferentes sistemas operativos mas
utilizados: Windows, Unix y Linux. Para los lectores estudiantes una buena opcién es el empleo de Linux, un sistema operati-
Vo gratuito de gran potencia y con facilidad de “descarga” del sistema y del compilador de la Red.

Horton, Ivor. Beginning C. Third edition. New York: Aprress, 2004. Magnifico libro para el aprendizaje del lenguaje C
dirigido a principiantes y con un enfoque practico Jones, Bradley y Aitken, Peter. C in 21 Days.Sixth Edition. Indianapolis,
USA: Sams, 2003. Magnifico y voluminoso libro practico de programacion en C

Joyanes, Luis, Castillo, Andres, Sanchez, Lucas y Zahonero Martinez, Ignacio. Programacion en C. Libro de proble-
mas. Madrid: McGraw-Hill, 2002. Libro complementario de esta obra, con un fundamento eminentemente tedrico-practico y
con gran cantidad de ejemplos, ejercicios y problemas resueltos.

Joyanes Aguilar, Luis, y Zahonero Martinez, Ignacio. Programacion en C. 22 edicién. McGraw-Hill, 2005. Libro emi-
nentemente didactico pensado para cursos profesionales o universitarios de programacién en C. Complementario en el aspec-
to tedrico de este libro.

@ APENDICE C Recursos Web de programacion

Kernighan, Brian y Ritchie, Dennis M. The C programming Language. 2/e. Prentice Hall, 1988.

Este libro es la referencia definitiva de los autores del lenguaje. Imprescindible para el conocimiento con profundidad del
lenguaje C. Traducido al castellano como El Lenguaje de Programacion C, segunda edicién (ANSI-C), Prentice-Hall, 1991.

Kernighan, Brian W. y Pike, Rob. The Unix Programming Environment. Prentice-Hall, 1984, traducido al espafiol como
El entorno de programacion Unix (Prentice-hall, 1987). Describe y explica el sistema operativo Unix a nivel de usuario y de
programador de aplicaciones no distribuidas (un poco anticuado para las versiones actuales, pero excelente).

Kelley, Al.. A Book on C. Addison-Wesley, 1997. Libro sencillo para el aprendizaje de C

Koenig, Andrew. C Traps and Pitfalls. Addison-Wesley, 1988. Es un magnifico libro para aprender a programar a nivel
avanzado en C y C++ tanto para profesionales como para estudiantes.

Oualline, Steve. Practical C Programming. O"Reilly & Associates, 1997. Libro muy interesante con una gran cantidad de
reglas practicas y consejos eficientes para progresar adecuadamente en el mundo de la programacion.

Plauger, P. J. C The Standard Library. Prentice-Hall, 1992

Un excelente manual de referencia de sintaxis del lenguaje _ANSI C. Referencia obligada como elemento de consulta para
el programador en su trabajo diario.

Sedgewick, Robert. Algoritms in C. Addison-Wesley, 3/e, 1997.

Excelente libro para el conocimiento y aprendizaje del disefio y construccién de algoritmos. Es una obra clésica que el
autor ha realizado para otros lenguajes como C++.

Summit, Steve y Lafferty, Deborah. C Programming Fags: Frequently Asked Questions. Addison-Wesley, 1995.

Contiene mas de 400 preguntas y dudas frecuentes sobre C junto con las respuestas correspondientes. Aunque este recur-
so contiene mucha informacion atil, el libro es mas un almacen de preguntas y respuestas que una referencia completa.

Tondo, Clovis L., Gimpel, Scott E., C Programming Kernighan, Brian W. The C Answer Boock: Solutions to the
Exercices in the C Programming Language, Second Edition., Prentice-Hall, 1993. Contiene las explicaciones
completas de todos los ejercicios de la segunda edicion del libro de Kernighan y Ritchie. Es ideal para utilizar en cualquier
curso de C. Un estudio cuidadoso de este libro le ayudara a comprender ANSI C y mejorara sus destrezas de programa-
cion.

Van Der Linden, Peter. Expert C Programming, 1994. En esta obra se recogen todo tipo de reglas y consejos de progra-
macion para sacar el mayor rendimiento posible a la programacion en C.

SITIOS DE INTERNET

REVISTAS
C/C++ Users Journal Www.cuj.com
Dr. Dobb’s Journal www.ddj.com
MSDN Magazine msdn.microsoft.com/msdnmag
Sys Admin WWw.Samag.com
Software Development Magazine www.sdmagazine.com
UNIX Review www.review.com
Windows Developper’s Journal www.wdj.com
C++ Report www.creport.com
Journal Object Orientd Programming www.joopmag.com

PAGINAS WEB IMPORTANTES DE C/C++

ccp.servidores.net/cgi-lib/buscador
www.msj.com/msjquery.html
Revista Microsoft Systems Journal

www.Shareware.com
Software shareware

msdn.microsoft.com/developer
Pagina oficial de Microsoft sobre Visual C++

APENDICE C Recursos Web de programacion @

www.borTand.com
Péagina oficial del fabricante Inprise/Borland

www.lysator.liu.se/c/
The Development of the C Language

//en.wikibooks.org/wiki/Programming:C
Programaming C en Wikibooks

Historia de C en la enciclopedia Wikipedia (10 paginas excelentes)
//en.wikipedia.org/wiki/C_programming_language

Pagina web de Bjarne Stroustrup
http://www.research.att.com/~bs/C++.html

Pagina de Dennis M. Ritchie
www.cs.bell-Tabs.com/who/dmr/index.html

Preguntas y respuestas frecuentes sobre C (FAQ)
www.fags.org/faqs/C-faq/faq
www.fags.org/faqs/C-faq/faq/index.html (de Steve Summit)

TUTORIALES

www.help.com/cat/2/259/hc/index-9.html
www.lysator.liu.se/c
www.anubis.dkung.dk/JTC1/SC22/WG14
www.uib.es/c-calculo/manuals/altrese/cursc.htm
www.help.com/cat/259/hc/index-9.htm]l

PREGUNTAS Y RESPUESTAS FRECUENTES SOBRE C (FAQ)

www.eskimo.com|/~scs/C-faq/top.html
www.fags.org/faqs/C-faq/faq
www.help.com/cat/2/259/hc/index-9.html
www.lysator.liu.se/c
www.anubis.dkung.dk/JTC1/SC22/WG14
www.uib.es/c-calculo/manuals/altrese/cursc.htm
www.help.com/cat/259/hc/index-9.htm]l
http://www.parashift.com/c++-faqg-lite/
cplusplus.com

http://www.cplusplus.com/

Cc99

www.comeaucomputing.com/techtalk/c99

REVISTAS DE INFORMATICA / COMPUTACION DE PROPOSITO GENERAL Y/O C
EN SECCIONES ESPECIALIZADAS DE PROGRAMACION Y EN PARTICULAR DE C/C++

PC Magazine wwWw.ppcmag.com
Linux Magazine www.Tinux-mag.com
PC World www.pcworld.com

Java Report www.javareport.com

@ APENDICE C Recursos Web de programacion

Sigs www.sigs.com

Java Pro www.java-pro.com
PC Actual www.pc-actual.com
PC World Espafia www.idg.es/pcworld
Dr.Dobb’s (en esparfiol) www . mkm-pi.com
Visual C++ Developer Journal. www.vcdj.com/

COMPILADORES

Thefreecountrycom
www.thefreecountry.com/compilers/cpp.shtml

Compilador GCC de GNU/Linux (Free Software Foundation)
//gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/

CompiladoresWin32 C/C++ de Willus.com
www.willus.com/ccomp.shtml

Compiladores e interpretes C/C++
www.latindevelopers.com/res/C++/compilers

Compilador Lxx-Win32 C de Jacob Navia
www.cs.virginia.edu/~lcc-win32/

El Rincén del C
www.elrincondec.com/compile

Visual Studio Beta 2005
//msdn2.microsoft.com/Tibrary/default.aspx

ORGANIZACIONES INFORMATICAS ESPECIALIZADAS EN C/C++

ACCU (Association of C and C++ Users).
www.accu.org/

ANSI(American National Standards Institute).
www.ansi.org

Comité ISO/IEC JTC1/SC22/WG14-C.
anubis.dkuug.dk/JTC1/SC22/WG14/
Comité encargado de la estandarizacion y seguimiento del C.

Comité ISO/IEC JTC1/SC22/WG21-C++.
anubis.dkuug.dk/jtcl/sc22/wg2l/
Comité encargado de la estandarizacion y seguimiento del C++.

ISO (International Organization for Standardization).
www.iso.ch/
Organizacion de aprobacion de estandares de ambito internacional (entre ellos de C/C++)

ISO/IEC JTC1/SC22/WG14-C
Grupo de trabajo de estandarizacion internacional de la version C99

APENDICE C Recursos Web de programacion @

ESTANDARES DE C

K&R (The C Programming Language, 1978)
ANSI C (Comité ANSI X3.159-1989, 1989)
ANSI C (adoptado por 1SO como ISO/IEC 9899 :1990, 1990)

C99 (1SO 9899:1999)

MANUALES DE C ESTANDAR Y LIBRERIAS DE C

www.dinkunware.com/ (bibTioteca de C)
www.open-std.org/jtcl/sc22/wgl4/www/c99Rationalev5.10.pdf (Revision 5.10 de Abril de 2003, manual de mas

de 200 péginas)
www.sics.se/~pd/I1S0-C-FDIS.1999-04.pdf, (manual de mas de 500 paginas)

A
Acceso aleatorio, 295-297
fseek(), 246
ftell(), 246
SEEK_SET, 246
SEEK_CUR, 246
SEEK_END, 246
almacén libre, 212
algoritmo, 13
analisis, 14
caracteristicas, 13
definicién, 13
de ordenacion, 161
de blsqueda, 161
disefio, 14
ambito, 98
de programa, 98
de una funcion, 98
del archivo fuente, 98
apuntadores (punteros), 191
arbol, 369
binario, 370
borrado, 373
de busqueda, 372, 373
de expresion, 371
general, 369
insercion, 373
recorrido, 372
terminologia, 400
archivos binarios, 246
fwrite(), 244
fread(), 244
fopen(), 244
fclose(), 244
fputc(), 244
ordenacion, 274
mezcla directa, 276
fusion, 274
organizacion, 274
directos (aleatorios), 270
registro,s 267
archivo de cabecera 25
archivo indexado,s 272
funcioén hash, 271
colisiones, 271
archivo secuencial, 268
argc, 248
argv, 248

arrays, 137
almacenamiento, 138
arrays de punteros, 193
asignacion de memoria, 212
cadenas de texto, 138
como parametros, 140
de caracteres, 138
declaracién, 137
inicializacion, 138
inicializa,r 138
multidimensionales, 139
subindices, 137
tamafio, 138

arrays y punteros, 193

arreglos (véase arrays)

ASCII, 225

asercion, 17

asignacion, 37
de cadena,s 226

asignacion dindmica de memoria 211-213

asociatividad 43

B

Biblioteca de ejecucion, 10
Bits, 3
Bucle, 17, 71
bandera, 72
condicién, 72
controlado por centinela, 72
controlado por indicador, 72
infinito, 72
invariante 17,
buffer de entrada / salida, 243
busqueda, 161
secuencial, 163
binaria, 163

C

C, Lenguaje de programacion, 10

C++, 11, 296

cadenas de caracteres, 225
inicializacion, 226
funciones de cadena, 228
conversion de cadenas, 229

Indice

punteros a cadenas, 226
Calidad del software, 17
Integridad, 17, 297
Robustez, 17, 297
callo(), 213
campos de bit, 179
caracter nulo, 225
CD-ROM, 3
char, 225
cintas, 5
clase, 297
codigo fuente, 8
codigo objeto, 9
cola, 348-350
concepto, 348
especificacion, 349
implementacion, 349
compilacion, 9
computadora, 1
multimedia, 6
const puntero, 195
constantes, 29
caracter, 29
de cadena, 29
declaradas, 30
definidas, 29
enumeradas, 29
literales, 29
reales, 20
simbdlicas, 29
comentario, 27
compatibilidad, 17
correccion, 17

conversion de cadenas a nimeros

atof (),229
atoi(), 229
atol (), 229

cortafuego, 6

D

datos tipos TAD, 295
depuracion, 15
diagrama de flujo, 14

directivas del preprocesador, 25

disefio del algoritmo, 14
divide y venceras, 14

doble cola, 366
documentacion, 15
DVD,5

E

Editor, 9

ejecucion de un programa, 9-10, 14

enlazador, 9
ensamblador, 8

entrada y salida por archivos, 243

flujos, 243

entrada estandar, 243
salida estandar, 243
apertura de un archivo, 244
fopen(), 244

binario, 246

texto, 244

FILE, 243

modo de apertura, 244
fclose(), 244

EOF, 244

funciones de lectura y escritura, 244

acceso aleatorio, 246
enum, 176
enumeraciones 29, 176
EOF, 244
Errores
De compilacion, 9
De tiempo de ejecucion, 9
Especificacion de tipo, 298
expresion condicional ¢:, 41
estructuras
de control, 55, 47
selectivas, 55
repetitivas, 71
estructura (struct), 173-175
miembro, 173
nombre, 173
inicializacion, 174
operador punto (.), 174
operador flecha (->), 174
asignacion, 174
estructuras anidadas, 174
arrays, 157
evaluacion en cortocircuito, 40
expresiones, 37
extensibilidad, 17

F

FIFO, 348
flujos de entrada / salida, 243
apertura, 244
flux(), 246
free(), 213
funciones, 95
aritméticas, 38

concepto, 26, 95
declaracién, 96
definidas por el usuario, 26
estructura, 95
pardmetros, 97
puntero a funcién
prototipos, 96
en linea, 98
funciones de cadena
memcpy (), 228
strcat(), 228
strchr(), 228
stremp(), 228
stricmp(), 228
strcpy(), 228
strncpy (), 228
strespn(), 228
strien(), 228
strncat(), 228
strnemp(), 228
strnset(), 228
strpbrk(), 228
strrchr(), 228
strspn(), 228
strrevt(), 228
strstr(), 229
strtok(), 229
de entrada salida
printf(), 245
scanf(), 245
funciones de lectura escritura
de ficheros
fputc(), 244
putc(), 244
getc(), 245
fgetc(), 244
fputs(), 244
gets(), 226
fprintf(), 245
fscanf(), 245
feof(), 245
rewind(), 245

H

Hardware, 1, 2, 4
Heap, 211
HTML, 6

identificador, 27
integridad, 17
interfaz, 3
Internet, 6
intérprete, 9
invariante, 17
IMP,6

L
lectura de cadenas
getch(), 226
getche(), 226
gets(), 226
putchar(), 226
puts(), 226
scanf, 226
lectura de ficheros
fread(), 246
lenguaje
de alto nivel, 7
de bajo nivel, 7
interpretado, 9
maquina, 7
traductores, 8
LIFO, 347
lista
circular, 316
enlazada, 311
doblemente enlazada, 314
lista circular, 316
eliminacion, 316
insercioén, 316
lista doblemente enlazada, 314
declaracién, 314
eliminacion, 315
insercion, 315
lista enlazada, 312
cabecera, 312
clasificacion, 312
eliminacion, 313
insercion, 313
operaciones, 312
Literal de cadena, 225

M

macros, 393
main(), 348
mallo(), 212
manual
de mantenimiento, 15
de usuario, 15
modelo de memoria, 212
monticulo (heap), 212

N

NULL, 225

0]

operador, 37
(), 42
->, 41
., 41

iNDICE

iNDICE

[1,42

&, 41

*, 41

aritmético, 38

asignacion, 37, 41

asociatividad, 43

condicional, 41

conversion de tipos, 40

coma, 42

de bits, 40

de desplazamiento de bits, 41

de direccion, 41

de incremento, 39

de decremento, 39

especiales, 40

l6gicos, 40

prioridad, 43

relacionales, 39

sizeof, 42
ordenacion, 161

por burbuja, 161

por insercion, 163

por shell, 163

por seleccion, 162

rapida (QuickSort), 163

P

P2P, 6

PDA,6

palabras
reservadas, 27
reservadas ANSI C,

parametros, 87

paso por referencia, 195

paso por valor, 195

periférico, 3

pila
cima, 347
concepto, 347
especificaciones, 348
implementacion, 348

POP, 6

postcondicién, 16

precondicion, 16

preprocesador, 25

prioridad, 43

procedimientos, 95

programa, 14
codificacion, 14
compilacion, 14
depuracion, 14
documentacion, 42
ejecucion, 14
elementos, 27
mantenimiento, 14
verificacion, 15

programacion, 16

estructurada, 16
teorema, 16
pseudocodigo, 5
puntero a archivo, 244
punteros (apuntadores)
aritmética de punteros, 194
arrays, 193
arrays de punteros concepto, 191
declaracién, 191
inicializacion estética, 192
indireccion, 192
nulos NULL, 6, 192
operador &, 192
operador*, 192
puntero a estructura, 193
puntero a funcién, 196
puntero constante, 195
puntero doble, 192
punteros de cadenas, 227
paso por referencia, 195
void, 192
y arrays, 195

R

realloc(), 213
redes, 5
WAN, 5, 6
LAN, 5
reutilizacion, 17
robustez, 16
recursividad, 123
funciones, 123
infinita, 123
versus iteracion, 124

S

segmento de c6digo, 212
segmento de datos, 212
sentencias, 55
break, 57
continue,
do while, 74
for, 73
i f anidadas, 56
if con dos alternativas, 56
if con una alternativo, 55
nula, 55
return, 95
switch, 57
while, 57
sistema operative, 6
sizeof, 42
SMTP, 6
software, 1, 2, 6
stack (pila), 347

static, 100
stderr, 243
stdin, 243
stdio.h, 243
stdout, 243
stream, 243
string.h, 227
struct, 173, 174

T

miembro, 174

nombre, 174
inicializacién, 174
operador punto (.), 174
operador flecha (->), 174
asignacion, 174

arrays, 174

tabla, 137
tipos

abstractos TAD, 295

enumerados, 176

definidos por usuario, 177
void, 27

transportabilidad, 16
typedef, 177

U

UAL, 2,4

UCP, 2,4

UC, 2,4

unién (union), 176

\%

definicién, 176
miembros, 176
memoria, 177
acceso 177

variable, 30

automaticas, 99
declaracién, 30

definicién dinamicas estaticas, 100

extemas, 99
globales, 99
nombres, 30
puntero, 191
registro, 100

verificacioén, 15
void, 27

WWW, 6

jiEstudia a tu propio ritmo y
aprueba tu examen con Schaum!

Los Schaum son la herramienta esencial para la preparacion de tus examenes.
Cada Schaum incluye:

Teoria de la asignatura con definiciones,
principios y teoremas claves.

Problemas resveltos y totalmente explicados,
en grado creciente de dificultad.

Problemas propuestos con sus respuestas.

www.mcgraw-hill.es

	C. ALGORITMOS, PROGRAMACIÓN Y ESTRUCTURAS DE DATOS
	PÁGINA LEGAL
	CONTENIDO
	PRÓLOGO
	1 INTRODUCCIÓN A LAS COMPUTADORAS Y A LOS (...)
	1.1 Organizacion física de una computadora
	1.2 Redes
	1.3 El software (los programas)
	1.4 Lenguajes de programación
	1.5 El lenguaje C: historia y características
	Referencias bibliográficas y lecturas suplementarias
	Ejercicios de repaso

	2 FUNDAMENTOS DE PROGRAMACIÓN
	2.1 Fases en la resolución de problemas
	2.1.1. Análisis del problema
	2.1.2 Diseño del algoritmo
	2.1.3 Codificación de un programa
	2.1.4 Compilación y ejecución de un programa
	2.1.5 Verificación y depuración
	2.1.6 Documentación y mantenimiento

	2.2 Programación estructurada
	2.2.1. Recursos abstractos
	2.2.2. Diseño descentente (top down)
	2.2.3 Estructuras de control
	2.2.4 . Teorema de la programación estructurada

	2.3 Métodos formales de verificación de programas
	2.4 Factores de calidad del software
	Problemas resueltos
	Problemas propuestos

	3 EL LENGUAJE C: ELEMENTOS BÁSICOS
	3.1 Estructura general de un programa en C
	3.1.1 Directivas del preprocesador
	3.1.2 Declaraciones globales
	3.1.3 Función Main
	3.1.4 Funciones definidas por el usuario

	3.2 Los elementos de un programa C
	3.3 Tipos de datos en C
	3.3.1 Enteros (INT)
	3.3.2 Tipos de coma flotante
	3.3.3. CARACTERES

	3.4 El tipo de dato lógico
	3.5 Constantes
	3.6 Variables
	3.7 Entradas y salidas
	Problemas resueltos
	Problemas propuestos

	4 OPERADORES Y EXPRESIONES
	4.1 Operadores y expresiones
	4.2 El operador de asignación
	4.3 Operadores aritméticos
	4.4 Operadores de incrementación y decrementación
	4.5 Operadores relacionales
	4.6 Operadores lógicos
	4.7 Operadores de manipulación de bits
	4.7.1 Operadores de asignación adicionales
	4.7.2 Operadores de desplazamiento de bits
	4.7.3 Operadores direcciones

	4.8 Operador condicional
	4.9 Operador coma
	4.10 Operadores especiales
	4.11 El operador
	4.12 Conversiones de tipos
	4.13 Prioridad y asociatividad
	Problemas resueltos
	Problemas propuestos

	5 ESTRUCTURAS DE SELECCIÓN: SENTENCIAS IF Y SWITCH
	5.1 Estructuras de control
	5.2 La sentencia if con una alternativa
	5.3 Sentencia if de dos alternativas: if-else
	5.4 Sentencia de control switch
	5.5 Expresiones condicionales: el operador ?:
	5.6 Evaluación en cortocircuito de expresiones lógicas
	Problemas resueltos
	Problemas propuestos

	6 ESTRUCTURAS DE CONTROLÑ: BUCLES
	6.1 La sentencia while
	6.1.1 Miscelánea de control de bucles while

	6.2 Repetición: el bucle for
	6.3 Repetición: el bucle do...while
	6.4 Comparación de bucles while, for y do-while
	Problemas resueltos
	Problemas propuestos

	7 FUNCIONES
	7.1 Concepto de función
	7.2 Estructura de una función
	7.3 Prototipos de las funciones
	7.4 Parámetros de una función
	7.5 Funciones en línea, macros con argumentos
	7.6 Ámbito (alcance)
	7.7 Clases de almacenamiento
	7.8 Concepto y uso de funciones de biblioteca
	7.9 Miscelánea de funciones
	Problemas resueltos
	Problemas propuestos

	8 RECURSIVIDAD
	8.1 La naturaleza de la recursividad
	8.2 Funciones recursivas
	8.3 Recursión versus iteración
	8.4 Recursión infinita
	8.5 Algoritmos divide y vencerás
	Problemas resueltos
	Problemas propuestos

	9 ARRAYS (LISTAS Y TABLAS)
	9.1 Arrays
	9.2 Inicialización de un array
	9.3 Arrays de caracteres y cadenas de texto
	9.4 Arrays multidimensionales
	9.5 Utilización de arrays como parámetros
	Problemas propuestos
	Problemas propuestos

	10 ALGORITMOS DE ORDENACIÓN Y BÚSQUEDA
	10.1 Ordenación
	10.2 Ordenación por burbuja
	10.3 Ordenación por selección
	10.4 Ordenación por inserción
	10.5 Ordenación Shell
	10.6 Ordenación rapida (QuickSort)
	10.7 Búsqueda en listas: búsqueda secuencial y binaria
	Problemas resueltos
	Problemas propuestos

	11 ESTRUCTURAS Y UNIONES
	11.1 Estructuras
	11.2 Uniones
	11.3 Enumeraciones
	11.4 Sinonimo de un tipo de datos: Typedef
	11.5 Campos de bit
	Problemas resueltos
	Problemas propuestos
	Problemas de programación de gestión

	12 PUNTEROS (APUNTADORES)
	12.1 Concepto de puntero (apuntador)
	12.2 Punteros NULL y VOID
	12.3 Punteros y arrays
	12.4 Aritmética de punteros
	12.5 Punteros como argumentos de funciones
	12.6 Punteros a funciones
	Problemas resueltos
	Problemas propuestos
	Problemas de programación de gestión

	13 ASIGNACIÓN DINÁMICA DE MEMORIA
	13.1 Gestión dinámica de la memoria
	13.2 Función malloc()
	13.3 Liberación de memoria, función free()
	13.4 Funciones calloc() y realloc()
	Problemas resueltos
	Problemas propuestos

	14 CADENAS
	14.1 Concepto de cadena
	14.2 Inicialización de variables de cadena
	14.3 Lectura de cadenas
	14.4 Las funciones de STRING.H
	14.5 Conversión de cadenas a números
	Problemas propuestos
	Problemas propuestos

	15 ENTRADA Y SALIDA POR ARCHIVOS
	15.1 Flujos
	15.2 Apertura de un archivo
	15.3 Funciones de lectura y escritura
	15.4 Archivos binarios de C
	15.5 Datos externos al programa con argumentos de main()
	Problemas resueltos
	Problemas propuestos
	Problemas propuestos de progración de gestión

	16 ORGANIZACIÓN DE DATOS EN UN ARCHIVO
	16.1 Registros
	16.2 Organización de archivos
	16.2.1 Organización secuencial
	16.2.2 Organización directa

	16.3 Archivos con direccionamiento hash
	16.4 Archivos secuenciales indexados
	16.5 Ordenación de archivos: ordenación externa
	Problemas resuelttos
	Problemas propuestos

	17 TIPOS ABSTRACTOS DE DATOS TAD/OBJETOS
	17.1 Tipos de datos
	17.2 Tipos abstractos de datos
	17.3 Especificación de los TAD
	Problemas resueltos
	Problemas propuestos

	18 LISTAS ENLAZADAS
	18.1 Fundamentos teóricos
	18.2 Clasificación de las listas enlazadas
	18.3 Operaciones en listas enlazadas
	18.3.1 Inserción de un welemento en una lista
	18.3.2 Elimimnación de un nodo en una lista

	18.4 Lista doblemente enlazada
	18.4.1 Inserción de un elemento en una lista doblemente enlazada
	18.4.2 Eliminación de un elemento en una lista doblemente enlazada

	18.5 Listas circulares
	Problemas resueltos
	Problemas propuestos

	19 PILAS Y COLAS
	19.1 Concepto de pila
	19.2 Concepto de cola
	Problemas resueltos
	Problemas propuestos

	20 ÁRBOLES
	20.1 Árboles generales
	20.2 Árboles binarios
	20.3 Estructura y representación de un árbol binario
	20.4 Árboles de expresión
	20.5 Recorridos de un árbol
	20.6 Árbol binario de busqueda
	20.7 Operaciones en árboles binarios de búsqueda
	Problemas resueltos
	Problemas propuestos

	APÉNDICE A: COMPILACIÓN DE PROGRAMAS C EN UNIX Y LUNUX
	APÉNDICE B: COMPILACIÓN DE PROGRAMAS C: EN WINDOWS
	APÉNDICE C: RECURSOS WEB DE PROGRAMACIÓN
	ÍNDICE

