

C
Algoritmos, programación

y estructuras de datos

rimeras paginas 13/6/05 10:17 Página I

rimeras paginas 13/6/05 10:17 Página II

C
Algoritmos, programación

y estructuras de datos

LUIS JOYANES AGUILAR
ANDRÉS CASTILLO SANZ
LUCAS SÁNCHEZ GARCÍA

IGNACIO ZAHONERO MARTÍNEZ
Departamento de Lenguajes y Sistemas Informáticos e Ingeniería del Software

Facultad de Informática/Escuela Universitaria de Informática
Universidad Pontificia de Salamanca campus Madrid

MADRID • BOGOTÁ • BUENOS AIRES • CARACAS • GUATEMALA • LISBOA • MÉXICO
NUEVA YORK • PANAMÁ • SAN JUAN • SANTIAGO • SÃO PAULO

AUCKLAND • HAMBURGO • LONDRES • MILÁN • MONTREAL • NUEVA DELHI • PARÍS
SAN FRANCISCO • SIDNEY • SINGAPUR • ST. LOUIS • TOKIO • TORONTO

rimeras paginas 13/6/05 10:17 Página III

La información contenida en este libro procede de una obra original entregada por los autores. No obstante, McGraw-
Hill/Interamericana de España no garantiza la exactitud o perfección de la información publicada. Tampoco asume ningún tipo de
garantía sobre los contenidos y las opiniones vertidas en dichos textos.

Este trabajo se publica con el reconocimiento expreso de que se está proporcionando una información, pero no tratando de prestar
ningún tipo de servicio profesional o técnico. Los procedimientos y la información que se presentan en este libro tienen sólo la inten-
ción de servir como guía general.

McGraw-Hill ha solicitado los permisos oportunos para la realización y el desarrollo de esta obra.

C. Algoritmos, programación y estructuras de datos. Serie Schaum

No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por
cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de los
titulares del Copyright.

McGraw-Hill/Interamericana
de de España, S. A. U.

DERECHOS RESERVADOS © 2005, respecto a la primera edición en español, por
McGRAW-HILL/INTERAMERICANA DE ESPAÑA, S. A. U.
Edificio Valrealty, 1ª planta
Basauri, 17
28023 Aravaca (Madrid)

www.mcgraw-hill.es
universidad@mcgraw-hill.com

ISBN: 84-481-4514-3
Depósito legal: M.

Editor: Carmelo Sánchez González
Compuesto en CD-FORM, S.L.
Impreso en

IMPRESO EN ESPAÑA - PRINTED IN SPAIN

rimeras paginas 13/6/05 10:17 Página IV

mailto: universidad@mcgraw-hill.com

Contenido

Prólogo ... XI

Capítulo 1 Introducción a las computadoras y a los lenguajes de programación .. 1
1.1 Organizacion física de una computadora ... 1
1.2 Redes .. 5
1.3 El software (los programas) ... 6
1.4 Lenguajes de programación ... 7
1.5 El lenguaje C: historia y características... 10
Referencias bibliográficas y lecturas suplementarias ... 11
Ejercicios de repaso .. 12

Capítulo 2 Fundamentos de programación... 13
2.1 Fases en la resolución de problemas.. 13

2.1.1 Análisis del problema .. 14
2.1.2 Diseño del algoritmo.. 14
2.1.3 Codificación de un programa... 14
2.1.4 Compilación y ejecución de un programa ... 14
2.1.5 Verificación y depuración.. 15
2.1.6 Documentación y mantenimiento .. 15

2.2 Programación estructurada... 16
2.2.1 Recursos abstractos .. 16
2.2.2 Diseño descendente (Top Down) ... 16
2.2.3 Estructuras de control .. 16
2.2.4 Teorema de la programación estructurada... 16

2.3 Métodos formales de verificación de programas... 16
2.4 Factores de calidad del software .. 17
Problemas resueltos... 18
Problemas propuestos.. 24

Capítulo 3 El lenguaje C: elementos básicos ... 25
3.1 Estructura general de un programa en C.. 25

3.1.1 Directivas del preprocesador.. 25
3.1.2 Declaraciones globales... 25
3.1.3 Función main() ... 26
3.1.4 Funciones definidas por el usuario .. 26

3.2 Los elementos de un programa C ... 27
3.3 Tipos de datos en C.. 27

3.3.1 Enteros (int) ... 27
3.3.2 Tipos de coma flotante (float/double) ... 28
3.3.3 Caracteres (char).. 29

3.4 El tipo de dato lógico ... 29
3.5 Constantes .. 29
3.6 Variables ... 30
3.7 Entradas y salidas... 30

rimeras paginas 13/6/05 10:17 Página V

CONTENIDOVI

Problemas resueltos... 31
Problemas propuestos.. 35

Capítulo 4 Operadores y expresiones ... 37
4.1 Operadores y expresiones .. 37
4.2 El operador de asignació .. 37
4.3 Operadores aritméticos... 38
4.4 Operadores de incrementación y decrementación ... 39
4.5 Operadores relacionales ... 39
4.6 Operadores lógicos... 40
4.7 Operadores de manipulación de bits .. 40

4.7.1 Operadores de asignación adicionales ... 41
4.7.2 Operadores de desplazamiento de bits (>>, <<).. 41

4.8 Operador condicional ... 41
4.9 Operador coma , ... 42

4.10 Operadores especiales (), [] .. 42
4.11 El operador sizeof ... 42
4.12 Conversiones de tipos ... 42
4.13 Prioridad y asociatividad... 43

Problemas resueltos... 44
Problemas propuestos.. 53

Capítulo 5 Estructuras de selección: sentencias if y switch.. 55
5.1 Estructuras de control... 55
5.2 La sentencia if con una alternativa... 55
5.3 Sentencia if de dos alternativas: if-else.. 56
5.4 Sentencia de control switch .. 57
5.5 Expresiones condicionales: el operador ?:... 57
5.6 Evaluación en cortocircuito de expresiones lógicas ... 58
Problemas resueltos... 58
Problemas propuestos.. 69

Capítulo 6 Estructuras de control: bucles... 71
6.1 La sentencia while .. 71

6.1.1 Miscelánea de control de bucles while ... 72
6.2 Repetición: el bucle for ... 73
6.3 Repetición: el bucle do...while .. 74
6.4 Comparación de bucles while, for y do-while ... 74
Problemas resueltos... 75
Problemas propuestos.. 92

Capítulo 7 Funciones .. 95
7.1 Concepto de función .. 95
7.2 Estructura de una función .. 95
7.3 Prototipos de las funciones .. 96
7.4 Parámetros de una función... 97
7.5 Funciones en línea, macros con argumentos ... 98
7.6 Ámbito (alcance) .. 98
7.7 Clases de almacenamiento ... 99
7.8 Concepto y uso de funciones de biblioteca.. 100
7.9 Miscelánea de funciones .. 100
Problemas resueltos... 101
Problemas propuestos.. 121

rimeras paginas 13/6/05 10:17 Página VI

CONTENIDO VII

Capítulo 8 Recursividad ... 123
8.1 La naturaleza de la recursividad .. 123
8.2 Funciones recursivas .. 123
8.3 Recursión versus iteración .. 124
8.4 Recursión infinita ... 125
8.5 Algoritmos divide y vencerás .. 125
Problemas resueltos... 125
Problemas propuestos.. 135

Capítulo 9 Arrays (listas y tablas) .. 137
9.1 Arrays ... 137
9.2 Inicialización de un array... 138
9.3 Arrays de caracteres y cadenas de texto .. 138
9.4 Arrays multidimensionales... 139
9.5 Utilización de arrays como parámetros.. 140
Problemas resueltos... 140
Problemas propuestos.. 159

Capítulo 10 Algoritmos de ordenación y búsqueda ... 161
10.1 Ordenación ... 161
10.2 Ordenación por burbuja ... 161
10.3 Ordenación por selección... 162
10.4 Ordenación por inserción ... 162
10.5 Ordenación Shell .. 163
10.6 Ordenación rapida (QuickSort) .. 163
10.7 Búsqueda en listas: búsqueda secuencial y binaria.. 163
Problemas resueltos... 165
Problemas propuestos.. 170

Capítulo 11 Estructuras y uniones .. 173
11.1 Estructuras .. 173
11.2 Uniones... 175
11.3 Enumeraciones ... 176
11.4 Sinonimo de un tipo de datos: Typedef .. 177
11.5 Campos de bit... 179
Problemas resueltos... 180
Problemas propuestos.. 190
Problemas de programación de gestión .. 190

Capítulo 12 Punteros (apuntadores) ... 191
12.1 Concepto de puntero (apuntador)... 191
12.2 Punteros NULL y VOID ... 192
12.3 Punteros y arrays .. 192
12.4 Aritmética de punteros ... 194
12.5 Punteros como argumentos de funciones... 195
12.6 Punteros a funciones .. 196
Problemas resueltos... 197
Problemas propuestos.. 209

Capítulo 13 Asignación dinámica de memoria .. 211
13.1 Gestión dinámica de la memoria.. 211
13.2 Función malloc() ... 212
13.3 Liberación de memoria, función free()... 213
13.4 Funciones calloc() y realloc() ... 213
Problemas resueltos... 214

rimeras paginas 13/6/05 10:17 Página VII

CONTENIDOVIII

Problemas propuestos.. 223

Capítulo 14 Cadenas ... 225
14.1 Concepto de cadena ... 225
14.2 Inicialización de variables de cadena... 226
14.3 Lectura de cadenas ... 226
14.4 Las funciones de STRING.H ... 227
14.5 Conversión de cadenas a números ... 229
Problemas resueltos... 231
Problemas propuestos.. 240

Capítulo 15 Entrada y salida por archivos ... 243
15.1 Flujos.. 243
15.2 Apertura de un archivo... 244
15.3 Funciones de lectura y escritura... 244
15.4 Archivos binarios de C... 246
15.5 Datos externos al programa con argumentos de main() ... 248
Problemas resueltos... 249
Problemas propuestos.. 265

Capítulo 16 Organización de datos en un archivo.. 267
16.1 Registros... 267
16.2 Organización de archivos... 268

16.2.1 Organización secuencial ... 268
16.2.2 Organización directa... 270

16.3 Archivos con direccionamiento hash .. 271
16.4 Archivos secuenciales indexados .. 272
16.5 Ordenación de archivos: ordenación externa ... 274
Problemas resueltos... 277
Problemas propuestos.. 293

Capítulo 17 Tipos abstractos de datos TAD/objetos .. 295
17.1 Tipos de datos... 295
17.2 Tipos abstractos de datos ... 296
17.3 Especificación de los TAD .. 298
Problemas resueltos... 298
Problemas propuestos.. 309

Capítulo 18 Listas enlazadas .. 311
18.1 Fundamentos teóricos... 311
18.2 Clasificación de las listas enlazadas .. 311
18.3 Operaciones en listas enlazadas ... 312

18.3.1 Inserción de un elemento en una lista ... 313
18.3.2 Eliminación de un nodo en una lista ... 313

18.4 Lista doblemente enlazada ... 314
18.4.1 Inserción de un elemento en una lista doblemente enlazada .. 314
18.4.2 Eliminación de un elemento en una lista doblemente enlazada.. 315

18.5 Listas circulares.. 316
Problemas resueltos... 317
Problemas propuestos.. 344

Capítulo 19 Pilas y colas .. 347
19.1 Concepto de pila... 347
19.2 Concepto de cola .. 348

rimeras paginas 13/6/05 10:17 Página VIII

CONTENIDO IX

Problemas resueltos... 350
Problemas propuestos.. 366

Capítulo 20 Árboles.. 369
20.1 Árboles generales ... 369
20.2 Árboles binarios ... 370
20.3 Estructura y representación de un árbol binario .. 371
20.4 Árboles de expresión.. 371
20.5 Recorridos de un árbol ... 372
20.6 Árbol binario de busqueda ... 372
20.7 Operaciones en árboles binarios de búsqueda ... 373
Problemas resueltos... 374
Problemas propuestos.. 389

Apéndice A. Compilación de programas C en UNIX y LINUX... 391
Apéndice B. Compilación de programas C en Windows .. 395
Apéndice C. Recursos Web de programación ... 399

Índice.. 405

rimeras paginas 13/6/05 10:17 Página IX

rimeras paginas 13/6/05 10:17 Página X

Introducción
Desde que Kernighan y Ritchie escribieran en 1975 su mítico libro Programación en C, con el que tantos y tantos lectores y
estudiantes del mundo entero hemos aprendido C y siguen aprendiendo, ¿qué ha cambiado desde entonces en el mundo de la
programación? Realmente, poco y mucho. C sigue siendo el lenguaje más utilizado para aprender fundamentos y técnicas de
programación tanto en la universidad como en los institutos tecnológicos y centros de formación profesional. C++ sigue rei-
nando en el aprendizaje de la programación orientada a objetos, aunque Java ya es un gran rival. Java y C# se han erigido como
lenguajes por excelencia en el mundo profesional de la programación, la ingeniería de software, la ingeniería Web y las tele-
comunicaciones.

C es un lenguaje ideal para aprender la programación de computadoras. C es un lenguaje muy compacto ya que su sinta-
xis es sencilla y fácil para aprender a escribir aplicaciones reales. Es también un lenguaje muy potente ya que se utiliza mucho
en programación en todos los niveles, desde controladores de dispositivos y componentes de sistemas operativos hasta aplica-
ciones a gran escala. Existen compiladores de C para cualquier entorno de programación y de sistemas operativos, tales como
Windows, Unix, Linux, Mac, etc., de modo que cuando usted haya aprendido C estará en condiciones de programar en cual-
quier contexto y entorno actual. También observará que C en una base excelente para continuar su formación en programación
orientada a objetos con C++ y luego migrar a Java o C# en función del ambiente profesional en que se desenvuelva.

Todas las carreras universitarias de Ciencias e Ingeniería, así como los estudios de Formación Profesional (sobre todo en
España los ciclos superiores) requieren un curso básico de algoritmos y de programación con un lenguaje potente y profesio-
nal pero que sea simple y fácil de utilizar. C es idóneo para aprender a programar directamente las técnicas algorítmicas y de
programación en asignaturas tales como Introducción a la Programación, Fundamentos de Programación o Metodología de

la Programación o con otros nombres tales como Algoritmos, Programación I, etc. C sigue siendo el lenguaje universal más
utilizado y recomendado en planes de estudio de universidades y centros de formación de todo el mundo. Organizaciones como
ACM, IEEE, colegios profesionales, siguen recomendando la necesidad del conocimiento en profundidad de técnicas y de len-
guajes de programación estructurada con el objetivo de “acomodar” la formación del estudiante a la concepción, diseño y cons-
trucción de algoritmos y de estructuras de datos. El conocimiento profundo de algoritmos unido a técnicas fiables, rigurosas y
eficientes de programación preparan al estudiante o al autodidacta para un alto rendimiento en programación y la preparación
para asumir los retos de la programación orientada a objetos en una primera fase y las técnicas y métodos inherentes a inge-
niería de software en otra fase más avanzada.

La mejor manera para aprender a programar una computadora es pensar y diseñar el algoritmo que resuelve el problema,
codificar en un lenguaje de programación (C en nuestro caso) y depurar el programa una y otra vez hasta entender la gramáti-
ca y sus reglas de sintaxis, así como la lógica del programa. Nunca mejor dicho, aprender practicando. El lenguaje C se pres-
ta a escribir, compilar, ejecutar y verificar errores. Por esta razón hemos incluido en la estructura del libro las introducciones
teóricas imprescindibles con el apoyo de numerosos ejemplos, luego hemos incorporado numerosos ejercicios y problemas de
programación con un análisis del problema y sus códigos fuente, y en numerosas ocasiones se presenta la salida o ejecución de
los respectivos programas.

La estructura del libro en la colección Schaum
Esta edición al ha sido escrita dentro de la prestigiosa colección Schaum de McGraw-Hill, como un manual practico para
la enseñanza de la programación de computadoras estudiando con el lenguaje de programación C. Debido a los objetivos
que tiene esta antigua colección, el enfoque es eminentemente práctico con el necesario estudio teórico que permita avan-
zar de modo rápido y eficaz al estudiante en su aprendizaje de la programación en C. Pensando en colección los cuatro auto-
res hemos escrito este libro con un planteamiento eminentemente teórico-práctico como son todos los pertenecientes a esta

Prólogo

rimeras paginas 13/6/05 10:17 Página XI

PRÓLOGOXII

colección con el objetivo de ayudar a los lectores a superar sus exámenes y pruebas prácticas en sus estudios de formación
profesional o universitarios, y mejorar su aprendizaje de modo simultáneo pero con unos planteamientos prácticos: analizar
los problemas, escribir los códigos fuente de los programar y depurar estos programas hasta conseguir el funcionamiento
correcto y adecuado.

Hemos añadido un complemento práctico de ayuda al lector. En la página oficial del libro (http://www.mhe.es/joyanes),
encontrará el lector todos los códigos fuente incluidos en la obra y que podrá descargar de Internet. Pretendemos no solo evi-
tar su escritura desde el teclado para que se centre en el estudio de la lógica del programa y su posterior depuración (edición,
compilación, ejecución, verificación y pruebas) sino también para que pueda contrastar el avance adecuado de su aprendizaje.
También en la página Web encontrará otros recursos educativos que confiamos le ayudarán a progresar de un modo eficaz y
rápido.

¿Qué necesita para utilizar este libro?
C. Algoritmos, Programación y Estructura de Datos,, está diseñado para enseñar métodos de escritura de programas útiles tan
rápido y fácil como sea posible, aprendiendo a la par tanto la sintaxis y funcionamiento del lenguaje de programación como las
técnicas de programación y los fundamentos de construcción de algoritmos básicos. El contenido se ha escrito pensando en un
lector que tiene conocimientos básicos de algoritmos y de programación C, y que desea aprender a conocer de modo práctico
técnicas de programación.

El libro es eminentemente práctico con la formación teórica necesaria para obtener el mayor rendimiento en su aprendi-
zaje. Pretende que el lector utilice el libro para aprender de un modo práctico las técnicas de programación en C, necesarias
para convertirle en un buen programador de este lenguaje.

Para utilizar este libro y obtener el máximo rendimiento se necesitará una computadora con un compilador C, una biblio-
teca instalada de modo que se puedan ejecutar los ejemplos del libro y un editor de texto para preparar sus archivos de código
fuente. Existen numerosos compiladores de C en el mercado y también numerosas versiones shareware (libres de costes) dis-
ponibles en Internet. Idealmente, se debe elegir un compilador que sea compatible con la versión estándar de C del American
Nacional Standards Institute (ANSI), C99, que es la versión empleada en la escritura de este libro. La mayoría de los actuales
compiladores disponibles de C++ , comerciales o de dominio público, soportan C, por lo que tal vez ésta pueda ser una opción
muy recomendable (en el Apéndice C, encontrará numerosos lugares de Internet, donde podrá encontrar compiladores, inclu-
so gratuitos, para practicar con los numerosos ejemplos y ejercicios que incluimos en esta obra.)

Aunque el libro está concebido como un libro de problemas con los fundamentos teóricos mínimos imprescindibles para
avanzar en su formación y se puede y debe utilizar de modo independientes, existe una posibilidad de utilizar este libro con
otro de los mismos autores Programación en C, 2ª edición, publicado en 2005, también por McGraw-Hill. Este otro libro se
escribió tanto en la 1ª como en la 2ª edición, como un libro eminentemente didáctico para cursos universitarios o profesiona-
les de introducción a la programación y sigue un contenido similar a la obra que el lector tiene en sus manos, por lo que ambos
pueden ser complementarios, uno eminentemente teórico-práctico y otro, el publicado en la colección Schaum, eminentemen-
te práctico.

Usted puede utilizar cualquier editor de texto, tales como Notepad o Vi, para crear sus archivos de programas fuente, aun-
que será mucho mejor utilizar un editor específico para editar código C, como los que suelen venir con los entornos integrados
de desarrollo, bien para Windows o para Linux. Sin embargo, no deberá utilizar un procesador de textos, tipo Microsoft Word,
ya que normalmente los procesadores de texto o de tratamiento de textos comerciales, incrustan o “embeben” códigos de for-
matos en el texto que no serán entendidos por su compilador.

De cualquier forma, si usted sigue un curso reglado, el mejor método para estudiar este libro es seguir los consejos de su
maestro y profesor tanto para su formación teórica como para su formación práctica. Si usted es un autodidacta o estudia de
modo autónomo, la recomendación entonces será que compile, ejecute y depure de errores sus programas, tanto los propuestos
en el libro, como los que usted diseñe, a medida que vaya leyendo el libro, tratando de entender la lógica del algoritmo y la sin-
taxis del lenguaje en cada ejercicio que realice.

¿Cómo está organizado el libro?
Todos los capítulos siguen una estructura similar: breve Introducción al capítulo; fundamentos teóricos básicos necesarios

para el aprendizaje con numerosos ejemplos; problemas resueltos en C, donde se incluye el análisis del problema y el algorit-
mo (código en C); y por último, todos los capítulos contienen una colección de problemas propuestos, cuyo objetivo es facili-
tar al lector la medición de su aprendizaje

rimeras paginas 13/6/05 10:17 Página XII

http://www.mhe.es/joyanes

PRÓLOGO XIII

Capítulo 1. Introducción a la ciencia de la computación y a la programación. Explica y describe los conceptos funda-
mentales de la computación y de los lenguajes de programación.

Capítulo 2. Fundamentos de programación. Se introduce al lector en los conceptos fundamentales de algoritmos y sus
herramientas de representación. Así mismo se describen los tipos clásicos de programación con especial énfasis en la progra-
mación estructurada soporte del lenguaje C.

Capítulo 3. El lenguaje C. Elementos básicos. Introduce a la estructura y los componentes principales de un programa en
C: datos, constantes, variables y las operaciones básicas de entrada/salida.

Capítulo 4. Operadores y expresiones. Se aprende el uso de los operadores aritméticos, relacionales y lógicos para la mani-
pulación de operaciones y expresiones en C. Se estudian también operadores especiales y conversiones de tipos, junto con
reglas de prioridad y asociatividad de los operadores en las expresiones y operaciones matemáticas.

Capítulo 5. Estructuras de selección: sentencias if y switch. Introduce a las sentencias de selección fundamentales en
cualquier programa. Se examina el uso de sentencias compuestas o bloques así como el uso de operadores condicionales y eva-
luación de expresiones lógicas.

Capítulo 6. Estructuras de control: bucles. Se aprende el concepto de bucle o lazo y el modo de controlar la ejecución de
un programa mediante las sentencias for, while y do-while. También se explica el concepto de anidamiento de bucles y
bucles vacíos; se proporcionan ejemplos útiles para el diseño eficiente de bucles.

Capítulo 7. Funciones. Examina las funciones en C, una parte importante de la programación. Aprende programación
estructurada – un método de diseño de programas que enfatiza en el enfoque descendente para la resolución de problemas
mediante la descomposición del problema grande en problemas de menor nivel que se implementan a su vez con funciones.

Capítulo 8. Funciones recursivas. La recursividad o propiedad de una función o expresión de llamarse a sí misma es una
de las técnicas más importantes en la construcción de algoritmos.

Capítulo 9. Arrays (listas y tablas). Explica un método sencillo pero potente de almacenamiento de datos. Se aprende como
agrupar datos similares en arrays o “arreglos” (listas y tablas) numéricas

Capítulo 10. Ordenación y búsqueda.. Enseña los métodos para ordenar listas y tablas, así cómo búsqueda de datos en lis-
tas y tablas. Se estudian los algoritmos clásicos más sencillos y eficientes tanto de ordenación como de búsqueda

Capítulo 11. Estructuras y uniones. Se describen conceptos básicos de estructuras, uniones y enumeraciones: declaración,
definición, iniciación, uso y tamaño. Las operaciones fundamentales de acceso a estructuras, arrays de estructuras y estructu-
ras anidadas se analizan también en este capítulo; se muestra de modo práctico como usar estructuras y uniones para conseguir
las necesidades del programa; se explican las diferencias entre estructuras y uniones, así como el uso de la palabra reservada
typedef.

Capítulo 12. Punteros (Apuntadores). Presenta una de las características más potentes y eficientes del lenguaje C, los pun-
teros. Se describe con detalle los punteros, arrays de punteros, punteros de cadena, aritmética de punteros, punteros constan-
tes, punteros como argumentos de funciones, punteros a funciones y a estructuras. De un modo práctico aprende el modo de
utilizar punteros a punteros y cómo se pueden utilizar los arrays de punteros para manipular las cadenas, que se estudiarán en
profundidad en el capítulo 14.

Capítulo 13. Asignación dinámica de memoria. Se describe la gestión dinámica de la memoria y las funciones asociadas
para esas tareas: alloc(), free(), calloc() y realloc(). Se proporcionan reglas de funcionamiento de esas fun-
ciones y reglas para asignación de memoria.

Capítulo 14. Cadenas. Se describe el concepto de cadena (string) así como las relaciones entre punteros, arrays y cadenas
en C. Se introducen conceptos básicos de manipulación de cadenas junto con operaciones básicas tales como longitud, conca-
tenación, comparación, conversión y búsqueda de caracteres y cadenas. Se describen las funciones más notables de la biblio-
teca string.h.

Capítulo 15. Entrada y salida de archivos. Se estudia el concepto de flujo (stream) y los diferentes métodos de apertura de
archivos, junto con los conceptos de archivos binarios y funciones para el acceso aleatorio. Muestra de un modo práctico como C
utiliza los flujos, examina los flujos predefinidos y el modo práctico de trabajar con la pantalla, la impresora y el teclado.

Capítulo 16. Organización de datos en un archivo. Los conceptos clásicos de registros y organización de archivos se estu-
dian en el capítulo. Dos tipos de archivo especiales tales como los secuenciales indexados y con direccionamiento hash son moti-
vo de estudio específico. Por último se analizan métodos de ordenación de archivo tanto externa como por mezcla directa.

Capítulo 17 Tipos de datos (TAD/Objetos). La programación orientada a objetos es el paradigma más importante después
del paradigma estructurado. El rol de la abstracción, la modularidad y los tipos abstractos de datos son analizados en este capí-
tulo. Se describen la especificación e implementación de tipos abstractos de datos en C como primer nivel de objetos.

Capítulo 18. Listas enlazadas. Una lista enlazada es una estructura de datos que mantiene una colección de elementos,
pero el número de ellos no se conoce por anticipado o varía en un rango amplio., La lista enlazada se compone de elementos
que contienen un valor y un puntero. El capítulo describe los fundamentos teóricos, tipos de listas y operaciones que se pue-
den realizar en la lista enlazada.

rimeras paginas 13/6/05 10:17 Página XIII

PRÓLOGOXIV

Capítulo 19. Pilas y colas. Las estructuras de datos más utilizadas desde el punto de vista de abstracción e implementa-
ción son las pilas y colas. Su estructura, diseño y manipulación de los algoritmos básicos se explican en el capítulo.

Capítulo 20. Árboles. Las estructuras de datos no lineales y dinámicas son muy utilizadas en programación. . Los árboles
son una de las estructuras más conocidas en algoritmia y en programación ya que son la base para las técnicas de programa-
ción avanzada.

Apéndices
Compilación de programas C en UNIX y Linux
Compilación de programas C en Windows
Recursos de programación Web

C y la Web
C. Algoritmos, Programación y Estructura de Datos es básicamente un libro práctico para aprender a programar con gran can-
tidad de problemas resueltos y sus códigos fuente respectivos. Por esta razón y con el objetivo principal de que el lector se cen-
tre en el enunciado del problema, en la resolución del algoritmo y en su codificación y dado el carácter reiterativo que en
muchos casos requiere la codificación, se han incluido todos los códigos fuente de los ejercicios y problemas del libro en su
dirección Web oficial: http://www.mhe.es/joyanes. De igual forma, y como ayuda al lector y al maestro/profesor, en el
portal del libro se incluyen también ejercicios y problemas complementarios, tutoriales, bibliografía complementaria, etc Así
mismo el profesor tiene a su disposición, si así lo desea una página específica donde encontrará material didáctico comple-
mentario que puede ser de su interés: diapositivas (acetatos, slides)

AGRADECIMIENTOS
A nuestro editor Carmelo Sánchez que con sus sabios consejos técnicos y editoriales siempre contribuye a la mejor edición de
nuestros libros. Nuestro agradecimiento eterno, amigo y editor. También y como siempre, a todos nuestros compañeros del
departamento de Lenguajes y Sistemas Informáticos e Ingeniería de Software de la Facultad de Informática y de la Escuela
Universitaria de Informática de la Universidad Pontificia de Salamanca en el campus de Madrid que en esta ocasión y como
siempre nos animan, aconsejan y asesoran en la distribución de los temas y nos dan sus opiniones para mejora de nuestras obras.
Gracias, colegas y amigos. Naturalmente a nuestros lectores, razón de ser de nuestro libro. Confiamos no defraudar la confianza
depositada en esta obra y aspiramos a que su progresión en el aprendizaje de la programación sea todo lo rápida y eficiente que
deseamos. Por último, un agradecimiento especial a todos los profesores y maestros que han utilizado nuestra obra
Programación en C; muchos nos habéis animado a escribir este nuevo libro de modo complementario y que sirviera tanto de
modo independiente como unido al libro citado en talleres y prácticas de programación. Nuestro agradecimiento más sincero a
todos y nuestra disponibilidad si así lo consideran oportuno.

Los autores

En Madrid, Mayo de 2005

rimeras paginas 13/6/05 10:17 Página XIV

http://www.mhe.es/joyanes.

Las computadoras (ordenadores) electrónicas modernas son uno de los productos más importantes del siglo XXI ya que se han
convertido en un dispositivo esencial en la vida diaria y han cambiado el modo de vivir y de hacer negocios. El papel de los
programas de computadoras es fundamental; sin una lista de instrucciones a seguir, la computadora es virtualmente inútil. Los
lenguajes de programación permiten escribir esos programas.

En el capítulo se introduce a conceptos importantes tales como la organización de una computadora, el hardware, el soft-
ware y sus componentes, y a los lenguajes de programación más populares y en particular a C. En esta obra, usted comenzará
a estudiar la ciencia de las computación, la ingeniería informática o la ingeniería de sistemas a través de uno de los lenguajes
de programación más versátiles disponibles hoy día, el lenguaje C, y también la metodología a seguir para la resolución de
problemas con computadoras.

1.1 Organizacion física de una computadora
Una computadora (también ordenador) es un dispositivo electrónico, utilizado para procesar información y obtener resulta-
dos, capaz de ejecutar cálculos y tomar decisiones a velocidades millones o cientos de millones más rápidas que puedan hacer-
lo los seres humanos. En el sentido más simple una computadora es “un dispositivo” para realizar cálculos o computar. El
término sistema de computadora o simplemente computadora se utiliza para enfatizar que, en realidad, son dos partes distin-
tas: hardware y software. El hardware es el computador en sí mismo. El software es el conjunto de programas que indican a
la computadora las tareas que debe realizar. Las computadoras procesan datos bajo el control de un conjunto de instrucciones
denominadas programas de computadora. Estos programas controlan y dirigen a la computadora para que realice un conjunto
de acciones (instrucciones) especificadas por personas especializadas, los programadores de computadoras.

Los datos y la información se pueden introducir en la computadora por su entrada (input) y a continuación se procesan
para producir su salida (output, resultados), como se observa en la Figura 1.1. La computadora se puede considerar como una
unidad en la que se ponen ciertos datos (datos de entrada), se procesan estos datos y produce un resultado (datos de salida o
información). Los datos de entrada y los datos de salida pueden ser, realmente, de cualquier tipo, texto, dibujos, sonido, imá-
genes,…. El sistema más sencillo para comunicarse una persona con la computadora es mediante un teclado, una pantalla
(monitor) y un ratón (mouse). Hoy día existen otros dispositivos muy populares tales como escáneres, micrófonos, altavoces,
cámaras de vídeo, etc.; de igual manera, mediante módems, es posible conectar su computadora con otras computadoras a tra-
vés de la red Internet.

1

CAPÍTULO 1

Introducción
a las computadoras y a los
lenguajes de programación

ap.1 11/6/05 21:37 Página 1

Los dos componentes principales de una computadora son: Hardware y Software. Hardware es el equipo físico o los dis-
positivos asociados con una computadora. El conjunto de instrucciones que indican a la computadora aquello que debe hacer
se denomina software o programas. Este libro se centra en el la enseñanza y aprendizaje de la programación o proceso de escri-
bir programas.

Una computadora consta fundamentalmente de cinco componentes principales: dispositivo(s) de entrada; dispositivos de
salida; unidad central de proceso (UCP) o procesador (compuesto de la UAL, Unidad Aritmética y Lógica, y la UC, Unidad
de Control); memoria principal o central; memoria secundaria o externa y los programas.

Las computadoras sólo entienden un lenguaje binario digital o lenguaje máquina. El programa se debe transferir primero de la
memoria secundaria a la memoria principal antes de que pueda ser ejecutado. Los datos se deben proporcionar por alguna fuen-
te. La persona que utiliza un programa (usuario de programa) puede proporcionar datos a través de un dispositivo de entrada. Los
datos pueden proceder de un archivo (fichero), o pueden proceder de una máquina remota vía una conexión de red.

Los paquetes de datos (de 8, 16, 32, 64 o más bits a la vez) se mueven continuamente entre la UCP (CPU) y todos los demás
componentes (memoria RAM, disco duro, etc.). Estas transferencias se realizan a través de buses. Los buses son los canales de
datos que interconectan los componentes del PC.

DISPOSITIVOS DE ENTRADA/SALIDA (E/S)

Los dispositivos de Entrada/Salida (E/S) [Input/Output (I/O) en inglés] permiten la comunicación entre la computadora y el
usuario. Los dispositivos de entrada, como su nombre indica, sirven para introducir datos (información) en la computadora para
su proceso. Dispositivos de entrada típicos son los teclados; otros son: lectores de tarjetas - ya en desuso -, lápices ópticos,
palancas de mando (joystick), lectores de códigos de barras, escáneres, micrófonos, etc. Hoy día tal vez el dispositivo de

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación2

Figura 1.1 Proceso de información en una computadora.

Figura 1.2 Organización física de una computadora.

Programa

COMPUTADORA

datos de
entrada

datos de (resultados)
salida

(entrada)

UCP (Procesador)

Unidad de control

Memoria central

Unidad aritmética
y lógica

Dispositivos
de entrada

Dispositivos
de salida

Memoria externa
almacenamiento

permanenete

bus

ap.1 11/6/05 21:37 Página 2

entrada más popular es el ratón (mouse) que mueve un puntero sobre la pantalla que facilita la interacción usuario-máquina.
Los dispositivos de salida permiten representar los resultados (salida) del proceso de los datos. El dispositivo de salida típico
es la pantalla o monitor. Otros dispositivos de salida son: impresoras (imprimen resultados en papel), trazadores gráficos
(plotters), reconocedores de voz, altavoces, etc.

El teclado y la pantalla constituyen - en muchas ocasiones - un único dispositivo, denominado terminal. En ocasiones a la
impresora se la conoce como dispositivo de copia dura (“hard copy”), debido a que la escritura en la impresora es una copia
permanente (dura) de la salida, y a la pantalla se le denomina en contraste: dispositivo de copia blanda (“soft copy”), ya que
se pierde la pantalla actual cuando se visualiza la siguiente.

Los dispositivos de entrada/salida y los dispositivos de almacenamiento secundario o auxiliar (memoria externa) se cono-
cen también con el nombre de dispositivos periféricos o simplemente periféricos ya que, normalmente, son externos a la com-
putadora. Estos dispositivos son unidad de discos (disquetes, CD-ROM, DVD, cintas, etc.), videocámaras, teléfonos celulares
(móviles), etc.

MEMORIA

La memoria principal es uno de los componentes más importantes de una computadora y sirve para el almacenamiento de
información (datos y programas). La memoria central de una computadora es una zona de almacenamiento organizada en cen-
tenares o millares de unidades de almacenamiento individual o celdas. El término bit (dígito binario) se deriva de las palabras
inglesas “binary digit” y es la unidad de información más pequeña que puede tratar una computadora. El término byte es muy
utilizado en la jerga informática y, normalmente, se suelen conocer a las palabras de 16 bits como palabras de 2 bytes, y a las
palabras de 32 bits como palabras de 4 bytes.

La memoria central de una computadora puede tener desde unos centenares de millares de bytes hasta millones de bytes.
Como el byte es una unidad elemental de almacenamiento, se utilizan múltiplos para definir el tamaño de la memoria central:
Kilo-byte (KB) igual a 1.024 bytes (210), Megabyte (MB) igual a 1.024 x 1.024 bytes (220 =1.048.576), Gigabyte (GB) igual
a 1.024 MB (230 = 1.073.741.824). Las abreviaturas MB y GB se han vuelto muy populares como unidades de medida de la
potencia de una computadora.

EJEMPLO 1.1 Unidades de medida de almacenamiento

Byte Byte (B) equivale a 8 bits
Kilobyte Kbyte (KB) equivale a 1.024 bytes (210)
Megabyte Mbyte (MB) equivale a 1.024 Kbytes (220)
Gigabyte Gbyte (GB) equivale a 1.024 Mbytes (230)
Terabyte Tbyte (TB) equivale a 1.024 Gbytes (240)
Petabyte Pbyte (PB) equivale a 1.024 Tbytes (250)
Exabyte Ebyte (EB) equivale a 1.024 Ebytes (260)
Zettabyte Zbyte (ZB) equivale a 1.024 Ebytes (270)
Yotta Ybyte (YB) equivale a 1.024 Ybytes (280)

1 TB = 1.024 GB 1 GB = 1.024 MB = 1.048.576 KB = 1.073.741.824 B

ESPACIO DE DIRECCIONAMIENTO

Para tener acceso a una palabra en la memoria se necesita un identificador o dirección. Cada celda o byte tiene asociada una
única dirección que indica su posición relativa en memoria y mediante la cual se puede acceder a la posición para almacenar o
recuperar información. La información almacenada en una posición de memoria es su contenido. El contenido de estas direc-
ciones o posiciones de memoria se llaman palabras, que como ya se ha comentado pueden ser de 8, 16, 32 y 64 bits. Por con-
siguiente, si trabaja con una máquina de 32 bits, significa que en cada posición de memoria de su computadora puede alojar 32
bits, es decir 32 dígitos, bien ceros o unos.

El número de posiciones únicas identificables en memoria se denomina espacio de direccionamiento. Por ejemplo en una
memoria de 64 kilobytes (KB) y un tamaño de palabra de un byte tienen un espacio de direccionamiento que varia de 0 a 65.535
direcciones de memoria (64KB, 64x1.024=65.536)

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación 3

ap.1 11/6/05 21:37 Página 3

LA MEMORIA PRINCIPAL

La memoria central (RAM, Random, Access Memory) o simplemente memoria se utiliza para almacenar de modo tempo-
ral información, datos y programas. En general, la información almacenada en memoria puede ser de dos tipos: las instruccio-
nes de un programa y los datos con los que operan las instrucciones. Para que un programa se pueda ejecutar (correr, rodar,
funcionar,..., en inglés run), debe ser situado en la memoria central, en una operación denominada carga (load) del programa.
Después, cuando se ejecuta (se realiza, funciona) el programa, cualquier dato a procesar por el programa se debe llevar a la
memoria mediante las instrucciones del programa. En la memoria central, hay también datos diversos y espacio de almacena-
miento temporal que necesita el programa cuando se ejecuta con el fin de poder funcionar.

Es un tipo de memoria volátil (su contenido se pierde cuando se apaga la computadora); esta memoria es, en realidad, la
que se suele conocer como memoria principal o de trabajo. La memoria ROM, es una memoria que almacena información de
modo permanente en la que no se puede escribir (viene pregrabada por el fabricante) ya que es una memoria de sólo lectura.

Con el objetivo de que el procesador pueda obtener los datos de la memoria central más rápidamente, la mayoría de los pro-
cesadores actuales (muy rápidos) utilizan con frecuencia una memoria denominada caché que sirve para almacenamiento inter-
medio de datos entre el procesador y la memoria principal.

LA UNIDAD CENTRAL DE PROCESO (UCP)

La Unidad Central de Proceso, UCP (Central Processing Unit, CPU, en inglés), dirige y controla el proceso de información
realizado por la computadora. La UCP procesa o manipula la información almacenada en memoria y consta de dos compo-
nentes: unidad de control (UC) y unidad aritmético-lógica (UAL). La unidad de control (Control Unit, CU) coordina las acti-
vidades de la computadora y determina qué operaciones se deben realizar y en qué orden; asimismo controla y sincroniza todo
el proceso de la computadora. La unidad aritmético-lógica (Aritmethic-Logic Unit, ALU) realiza operaciones aritméticas y
lógicas, tales como suma, resta, multiplicación, división y comparaciones. Las series de operaciones requeridas para procesar
una instrucción de máquina se llaman ciclo de la máquina. Los ciclos de máquina se suelen medir en nanosegundos o pico-
segundos.

El procesador o microprocesador es un chip (circuito integrado) que controla y realiza las funciones y operaciones. En
realidad el microprocesador representa a la Unidad Central de Proceso. Todas las UCP tienen una velocidad de trabajo, regu-
lada por un pequeño cristal de cuarzo, y que se conoce como frecuencia de reloj. El número de ciclos de reloj por segundo se
mide en hertzios. La velocidad de los microprocesadores se mide en MHz o en GHz.

DISPOSITIVOS DE ALMACENAMIENTO SECUNDARIO (ALMACENAMIENTO MASIVO)

La memoria secundaria, mediante los dispositivos de almacenamiento secundario, proporciona capacidad de almacenamiento
fuera de la UCP y del almacenamiento o memoria principal. El almacenamiento secundario es no volátil. Las unidades (drives,

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación4

 .

Figura 1.3. Memoria central de una computadora

Contenido de la dirección 997325

.

.

.

3
2
1
0

999
998
997

direcciones

ap.1 11/6/05 21:37 Página 4

en inglés), periféricos o dispositivos de almacenamiento secundario son dispositivos que actúan como medio de soporte para
almacenar los datos –temporal o permanentemente- que ha de manipular la CPU durante el proceso en curso y que no puede
contener la memoria principal.

Las tecnologías de almacenamiento secundario más importantes son discos magnéticos, discos ópticos y cintas magnéticas.
La información almacenada en la memoria secundaria se conserva en unidades de almacenamiento denominadas archivos

(ficheros, files en inglés) que pueden ser tan grandes como se desee. Los resultados de los programas se pueden guardar como
archivos de datos y los programas que se escriben se guardan como archivos de programas, ambos en la memoria auxiliar.

Los discos son dispositivos formados por componentes electromagnéticos que permiten un acceso rápido a bloques
físicos de datos. La información se registra en la superficie del disco y se accede a ella por medio de cabezas de lectura/escri-
tura que se mueven sobre la superficie. Los discos magnéticos se clasifican en disquetes (flopy disk) y discos duros (hard
disk).

Los discos ópticos difieren de los tradicionales discos duros o discos magnéticos en que los primeros utilizan un haz de
láser para grabar la información. Son dispositivos de almacenamiento que utilizan la misma tecnología que los dispositivos
compactos de audio para almacenar información digital. Los dos grandes modelos existentes en la actualidad son los discos
compactos (CD) y los discos versátiles digitales (DVD).

El CD-ROM (Compact Disk-Read Only Memory, Disco compacto - Memoria de solo lectura) es el medio ideal para alma-
cenar información de forma masiva que no necesita ser actualizada con frecuencia (dibujos, fotografías, enciclopedias,...). La
llegada de estos discos al mercado hizo posible el desarrollo de la multimedia, es decir, la capacidad de integrar medios de todo
tipo (texto, imágenes, sonido e imágenes).

El DVD (Digital Versatil Disk): Videodisco digital (DVD-+R, DVD-+RW, DVD-RAM) nació en 1995, gracias a un
acuerdo entre los grandes fabricantes de electrónica de consumo, estudios de cine y de música (Toshiba, Philips, Hitachi.,
JVC,...). Son dispositivos de alta capacidad de almacenamiento, interactivos y con total compatibilidad con los medios exis-
tentes. Es capaz de almacenar hasta 26 CD con una calidad muy alta y con una capacidad que varía , desde los 4.7 GB del tipo
de una cara y una capa hasta los 17 GB de la de dos caras y dos capas.

Las cintas magnéticas son los primeros dispositivos de almacenamiento de datos que se utilizaron y por ello, hasta hace
poco tiempo – y aún hoy- han sido los más empleados para almacenar copias de seguridad. Poseen una gran capacidad de alma-
cenamiento pero tienen un gran inconveniente, son dispositivos de almacenamiento de acceso secuencial. Por esta razón, la
rapidez de acceso a los datos en las cintas es menor que en los discos.

Las cintas de audio digital (DAT, Digital Audio Tape) son unidades de almacenamiento con capacidad para grabar varios
GB de información en un único cartucho. Una memoria flash, también comercializada como un disco, es un pequeño almacén
de memoria móvil de pequeño tamaño.

Un dispositivo de entrada es cualquier dispositivo que permite que una persona envíe información a la computadora. Los
dispositivos de entrada, por excelencia, son un teclado y un ratón. El uso del ratón y de menús facilita dar órdenes al compu-
tador y es mucho más sencillo que las tediosas órdenes con combinaciones de teclas que siempre se deben memorizar. Algunos
dispositivos de entrada no tan típicos pero cada vez más usuales en las configuraciones de sistemas informáticos son: escáner,
lápiz óptico, micrófono y reconocedor de voz.

1.2 Redes
Hoy día los computadores autónomos (standalone) prácticamente no se utilizan (excepción hecha del hogar) y están siendo
reemplazados hasta en los hogares y en las pequeñas empresas, por redes de computadores. Una red es un conjunto de com-
putadores conectados entre sí para compartir recursos.

Las redes se pueden clasificar en varias categorías siendo las más conocidas las redes de área local (LAN, local area net-
work) y las redes de área amplia (WAN, wide area network). Una WAN es una red que enlaza muchos computadores persona-
les y redes de área local en una zona geográfica amplia. La red más conocida y popular en la actualidad es la red Internet que
está soportada por la World Wide Web.

El sistema cliente-servidor divide el procesamiento de las tareas entre los computadores “cliente” y los computadores “ser-
vidor” que a su vez están conectados en red. A cada máquina se le asignan funciones adecuadas a sus características. El clien-
te es el usuario final o punto de entrada a la red y normalmente en un computador personal de escritorio o portátil, o una
estación de trabajo. El usuario, normalmente interactúa directamente sólo con la parte cliente del sistema, normalmente, para
entrada o recuperación de información y uso de aplicaciones para análisis y cálculos posteriores.

El servidor proporciona recursos y servicios a otros computadores de la red (los clientes). El servidor puede ser desde un
gran computador a otro computador de escritorio pero especializado para esta finalidad y mucho más potente. Los servidores
almacenan y procesan los datos compartidos y también realizan las funciones no visibles, de segundo plano (back-end), a los

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación 5

ap.1 11/6/05 21:37 Página 5

usuarios, tales como actividades de gestión de red, implementación de bases de datos, etc. Otra forma de sistema distribuido es
la computación P2P (peer-to-peer) que es un sistema que enlaza a los computadores vía Internet o redes privadas de modo que
pueden compartir tareas de proceso. El modelo P2P se diferencia del modelo de red cliente/servidor en que la potencia de pro-
ceso reside solo en los computadores individuales de modo que trabajan juntos colaborando entre sí, pero sin un servidor o
cualquier otro computador los controle.

Una red de área local (LAN, local area network) normalmente une a decenas y a veces centenares de computadores en
una pequeña empresa u organismo público. Una red global, tal como Internet, que se expande a distancias mucho mayores y
conecta centenares o millares de máquinas que a su vez se unen a redes más pequeñas a través de computadores pasarela (gate-
way). Un computador pasarela (gateway) es un puente entre una red tal como Internet en un lado y una red de área local en el
otro lado. La computadora también suele actuar como un cortafuegos (firewall) cuyo propósito es mantener las transmisiones
ilegales, no deseadas o peligrosas fuera del entorno local.

INTERNET Y LA WORLD WIDE WEB

Internet, conocida también como la Red de Redes, se basa en la tecnología Cliente/Servidor. Las personas que utilizan la Red
controlan sus tareas mediante aplicaciones Web tal como software de navegador. Todos los datos incluyendo mensajes de
correo-e y las páginas Web se almacenan en servidores. Un cliente (usuario) utiliza Internet para solicitar información de un
servidor Web determinado situado en computador lejano.

Las plataformas cliente incluyen PC y otros computadores, pero también un amplio conjunto de dispositivos electrónicos
(handheld) tales como PDA, teléfonos móviles, consolas de juegos, etc., que acceden a Internet de modo inalámbrico (sin
cables) a través de señales radio.

La World Wide Web (WWW) o simplemente la Web fue creada en 1989 por Bernards Lee en el CERN (European
Laboratory for Particles Physics) aunque su difusión masiva comenzó en 1993 como medio de comunicación universal. La Web
es un sistema de estándares aceptados universalmente para almacenamiento, recuperación, formateado y visualización de infor-
mación, utilizando una arquitectura cliente/servidor. Se puede utilizar la Web para enviar, visualizar, recuperar y buscar infor-
mación o crear una página Web. La Web combina texto, hipermedia, sonidos y gráficos, utilizando interfaces gráficas de usuario
para una visualización fácil.

Para acceder a la Web se necesita un programa denominado navegador Web (browser). Se utiliza el navegador para visua-
lizar textos, gráficos y sonidos de un documento Web y activar los enlaces (links) o conexiones a otros documentos. Cuando se
hace clic (con el ratón) en un enlace a otro documento se produce la transferencia de ese documento situado en otro computa-
dor a su propio computador.

La Web se basa en un lenguaje estándar de hipertexto denominado HTML (Hypertext Markup Language) que da formatos
a documentos e incorpora enlaces dinámicos a otros documentos almacenados en el mismo computador o en computadores
remotos.

Otros servicios que proporciona la Web y ya muy populares para su uso en el mundo de la programación son: el correo elec-
trónico y la mensajería instantánea. El correo electrónico (e-mail) utiliza protocolos específicos para el intercambio de mensa-
jes: SMTP (Simple Mail Transfer Protocol), POP (Post Office Protocol) e IMAP (Internet Message Action Protocol).

1.3 El software (los programas)
Las operaciones que debe realizar el hardware son especificadas por una lista de instrucciones, llamadas programas, o softwa-
re. Un programa de software es un conjunto de sentencias o instrucciones al computador. El proceso de escritura o codifica-
ción de un programa se denomina programación y las personas que se especializan es esta actividad se denominan
programadores. Existen dos tipos importantes de software: software del sistema y software de aplicaciones. Cada tipo reali-
za una función diferente.

Software del sistema es un conjunto generalizado de programas que gestiona los recursos del computador, tal como el
procesador central, enlaces de comunicaciones y dispositivos periféricos. Los programadores que escriben software del siste-
ma se llaman programadores de sistemas. Software de aplicaciones son el conjunto de programas escritos por empresas o
usuarios individuales o en equipo y que instruyen a la computadora para que ejecute una tarea específica. Los programadores
que escriben software de aplicaciones se llaman programadores de aplicaciones.

SISTEMA OPERATIVO

Cuando un usuario interactúa con un computador, la interacción está controlada por el sistema operativo. Un usuario se comu-
nica con un sistema operativo a través de una interfaz de usuario de ese sistema operativo. Los sistemas operativos modernos

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación6

ap.1 11/6/05 21:37 Página 6

utilizan una interfaz gráfica de usuario, IGU (Graphical User Interface, GUI) que hace uso masivo de iconos, botones, barras
y cuadros de diálogo para realizar tareas que se controlan por el teclado o el ratón (mouse) entre otros dispositivos.
Normalmente el sistema operativo se almacena de modo permanente en un chip de memoria de sólo lectura (ROM). Otra parte
del sistema operativo puede residir en disco que se almacena en memoria RAM en la inicialización del sistema por primera vez
en una operación que se llama carga del sistema (booting)

El sistema operativo dirige las operaciones globales de la computadora, instruye a la computadora para ejecutar otros pro-
gramas y controla el almacenamiento y recuperación de archivos (programas y datos) de cintas y discos. Gracias al sistema
operativo es posible que el programador pueda introducir y grabar nuevos programas, así como instruir a la computadora para
que los ejecute. Los sistemas operativos pueden ser: monousuarios (un solo usuario) y multiusuarios, o tiempo compartido
(diferentes usuarios), atendiendo al número de usuarios y monocarga (una sola tarea) o multitarea (múltiples tareas) según las
tareas (procesos) que puede realizar simultáneamente. C corre prácticamente en todos los sistemas operativos, Windows 95,
Windows NT/2000, Windows XP, UNIX, Linux,... y en casi todas las computadoras personales actuales PC, Mac, Sun, etc.

TIPOS DE SISTEMAS OPERATIVOS

Las diferentes características especializadas del sistema operativo permiten a los computadores manejar muchas diferentes
tareas así como múltiples usuarios de modo simultáneo o en paralelo, bien de modo secuencial. En base a sus características
específicas los sistemas operativos se pueden clasificar en varios grupos:

La multiprogramación permite a múltiples programas compartir recursos de un sistema de computadora en cualquier
momento. Con multiprogramación, un grupo de programas se ejecutan alternativamente y se alternan en el uso del procesador.
Cuando se utiliza un sistema operativo de un único usuario, la multiprogramación toma el nombre de multitarea.

Un sistema operativo multiusuario es un sistema operativo que tiene la capacidad de permitir que muchos usuarios com-
partan simultáneamente los recursos de proceso del la computadora. Dada la alta velocidad de transferencia de las operaciones,
la sensación es que todos los usuarios están conectados simultáneamente a la UCP.

Un sistema operativo trabaja en multiproceso cuando puede enlazar a dos o más UCP para trabajar en paralelo en un único
sistema de computadora. El sistema operativo puede asignar múltiples UCP para ejecutar diferentes instrucciones del mismo
programa o de programas diferentes simultáneamente, dividiendo el trabajo entre las diferentes UCP.

1.4 Lenguajes de programación
Como se ha visto en el apartado anterior, para que un procesador realice un proceso se le debe suministrar en primer lugar un
algoritmo adecuado. El procesador debe ser capaz de interpretar el algoritmo, lo que significa:

• comprender las instrucciones de cada paso,
• realizar las operaciones correspondientes.

Cuando el procesador es una computadora, el algoritmo se ha de expresar en un formato que se denomina programa. Un
programa se escribe en un lenguaje de programación. Los principales tipos de lenguajes utilizados en la actualidad son tres:

• lenguajes máquina,
• lenguaje de bajo nivel (ensamblador),
• lenguajes de alto nivel.

Los lenguajes máquina son aquellos que están escritos en lenguajes directamente inteligibles por la máquina (computa-
dora), ya que sus instrucciones son cadenas binarias. Las instrucciones en lenguaje máquina dependen del hardware de la com-
putadora y, por tanto, diferirán de una computadora a otra. Las ventajas de programar en lenguaje máquina son la posibilidad
de cargar (transferir un programa a la memoria) sin necesidad de traducción posterior, lo que supone una velocidad de ejecu-
ción superior a cualquier otro lenguaje de programación. Los inconvenientes - en la actualidad - superan a las ventajas, lo que
hace prácticamente no recomendables los lenguajes máquina. Estos inconvenientes son:

• dificultad y lentitud en la codificación,
• poca fiabilidad,
• dificultad grande de verificar y poner a punto los programas,
• los programas sólo son ejecutables en el mismo procesador (UPC, Unidad Central de Proceso)

Los lenguajes de bajo nivel son más fáciles de utilizar que los lenguajes máquina, pero, al igual, que ellos, dependen de
la máquina en particular. El lenguaje de bajo nivel por excelencia es el ensamblador (assembly language). Las instrucciones

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación 7

ap.1 11/6/05 21:37 Página 7

en lenguaje ensamblador son instrucciones conocidas como nemotécnicos (mnemonics). Por ejemplo, nemotécnicos típicos de
operaciones aritméticas son: en inglés, ADD, SUB, DIV, etc.; en español, SUM, RES, DIV, etc.

EJEMPLO 1.2 Programación en lenguaje de bajo nivel

Una instrucción típica de suma sería:

ADD M, N, P

Esta instrucción podía significar «sumar el número contenido en la posición de memoria M al número almacenado en
la posición de memoria N y situar el resultado en la posición de memoria P ». Evidentemente, es mucho más sencillo
recordar la instrucción anterior con un nemotécnico que su equivalente en código máquina:

0110 1001 1010 1011

Un programa escrito en lenguaje ensamblador no puede ser ejecutado directamente por la computadora - en esto se dife-
rencia esencialmente del lenguaje máquina -, sino que requiere una fase de traducción al lenguaje máquina. El programa ori-
ginal escrito en lenguaje ensamblador se denomina programa fuente y el programa traducido en lenguaje máquina se conoce
como programa objeto, ya directamente inteligible por la computadora. El traductor de programas fuente a objeto es un pro-
grama llamado ensamblador (assembler).

Los lenguajes ensambladores presentan la ventaja frente a los lenguajes máquina de su mayor facilidad de codificación y,
en general, su velocidad de cálculo. Los inconvenientes más notables de los lenguajes ensambladores son:

• Dependencia total de la máquina, lo que impide la transportabilidad de los programas (posibilidad de ejecutar un progra-
ma en diferentes máquinas).

• La formación de los programas es más compleja que la correspondiente a los programadores de alto nivel, ya que exige
no sólo las técnicas de programación, sino también el conocimiento del interior de la máquina.

Hoy día los lenguajes ensambladores tienen sus aplicaciones muy reducidas en la programación de aplicaciones y se cen-
tran en aplicaciones de tiempo real, control de procesos y de dispositivos electrónicos, etc.

Los lenguajes de alto nivel son los más utilizados por los programadores. Los programas escritos en lenguaje de alto nivel
son portables o transportables, lo que significa la posibilidad de poder ser ejecutados con poca o ninguna modificación en dife-
rentes tipos de computadoras. Los lenguajes de alto nivel presentan las siguientes ventajas:

• El tiempo de formación de los programadores es relativamente corto comparado con otros lenguajes.
• La escritura de programas se basa en reglas sintácticas similares a los lenguajes humanos.
• Las modificaciones y puestas a punto de los programas son más fáciles.
• Reducción del coste de los programas.
• Transportabilidad.

Los inconvenientes se concretan en:
• Incremento del tiempo de puesta a punto, al necesitarse diferentes traducciones del programa fuente para conseguir el pro-

grama definitivo.
• No se aprovechan los recursos internos de la máquina, que se explotan mucho mejor en lenguajes máquina y ensambla-

dores.
• Aumento de la ocupación de memoria.
• El tiempo de ejecución de los programas es mucho mayor.

Los lenguajes de programación de alto nivel existentes hoy son muy numerosos, aunque la práctica demuestra que su uso
mayoritario se reduce a

C C++ COBOL FORTRAN Pascal Visual BASIC VB.Net Java C#

El mundo Internet consume gran cantidad de recursos en forma de lenguajes de programación tales como Java, HTML,
XML, JavaScript, PHP, etc.

Los traductores de lenguaje son programas que traducen a su vez los programas fuente escritos en lenguajes de alto nivel
a código máquina. Los traductores se dividen en compiladores e interpretes

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación8

ap.1 11/6/05 21:37 Página 8

Un intérprete es un traductor que toma un programa fuente, lo traduce y a continuación lo ejecuta. Un compilador es un
programa que traduce los programas fuente escritos en lenguaje de alto nivel – C, FORTRAN, C++, Java,...- a lenguaje máqui-
na. Los programas escritos en lenguaje de alto nivel se llaman programas fuente y el programa traducido programa objeto o
código objeto. El compilador traduce - sentencia a sentencia - el programa fuente. Los lenguajes compiladores típicos son : C,
Pascal, FORTRAN y COBOL.

LA COMPILACIÓN Y SUS FASES

La compilación es el proceso de traducción de programas fuente a programas objeto. El programa objeto obtenido de la com-
pilación ha sido traducido normalmente a código máquina. Para conseguir el programa máquina real se debe utilizar un pro-
grama llamado montador o enlazador (linker). El proceso de montaje conduce a un programa en lenguaje máquina
directamente ejecutable (Fig. 1.4)

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación 9

Programa fuente

Compilador
(traductor)

Programa objeto

Montador

Programa ejecutable
En lenguaje máquina

Figura 1.4 Fases de la compilación.

El proceso de ejecución de un programa escrito en un lenguaje de programación y mediante un compilador suele tener los
siguientes pasos:

• Escritura del programa fuente con un editor.
• Compilar el programa con el compilador C.
• Verificar y corregir errores de compilación (listado de errores).
• Obtención del programa objeto.
• El enlazador (linker) obtiene el programa ejecutable.
• Se ejecuta el programa y, si no existen errores, se obtendrá la salida del programa.

Compilador
(traductor)

Datos
Programa
Ejecutable

Programa

Resultados

Figura 1.5 Ejecución de un programa.

ap.1 11/6/05 21:37 Página 9

El proceso de ejecución sería el mostrado en las figuras 1.5 y 1.6.

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación10

En el capítulo 2 se describirá en detalle el proceso completo y específico de ejecución de programas en lenguaje C

1.5 El lenguaje C: historia y características
C es el lenguaje de programación de propósito general asociado, de modo universal, al sistema operativo UNIX. Sin embargo,
la popularidad, eficacia y potencia de C, se ha producido porque este lenguaje no está prácticamente asociado a ningún siste-
ma operativo, ni a ninguna máquina, en especial. Esta es la razón fundamental, por la cual C, es conocido como el lenguaje de

programación de sistemas, por excelencia.
C es una evolución de los lenguajes BCPL –desarrollado por Martin Richards- y B –desarrollado por Ken Thompson en

1970- para el primitivo UNIX de la computadora DEC PDP-7. C nació realmente en 1978, con la publicación de The C
Programming Languaje, de Brian Kernighan y Dennis Ritchie (Prentice Hall, 1978). En 1983, el American National Standard
Institute (ANSI), una organización internacional de estandarización, creó un comité (el denominado X3J11) cuya tarea funda-
mental consistía en hacer “una definición no ambigua del lenguaje C, e independiente de la máquina”. Con esta definición de
C se asegura que cualquier fabricante de software que vende un compilador ANSI C incorpora todas las características del len-
guaje, especificadas por el estándar. Esto significa también que los programadores que escriban programas en C estándar ten-
drán la seguridad de que correrán sus modificaciones en cualquier sistema que tenga un compilador C.

C es un lenguaje de alto nivel, que permite programar con instrucciones de lenguaje de propósito general. También, C se
define como un lenguaje de programación estructurado de propósito general; aunque en su diseño también primó el hecho de
fuera especificado como un lenguaje de programación de sistemas, y esta característica le proporciona una enorme cantidad de
potencia y flexibilidad.

El estándar ANSI C formaliza construcciones no propuestas en la primera versión de C, en especial, asignación de estruc-
turas y enumeraciones. Entre otras aportaciones, se definió esencialmente, una nueva forma de declaración de funciones (pro-
totipos). Pero, es esencialmente la biblioteca estándar de funciones, otra de sus grandes aportaciones.

Hoy, en el siglo XXI, C sigue siendo uno de los lenguajes de programación más utilizados en la industria del software, así
como en institutos tecnológicos, escuelas de ingeniería y universidades. Prácticamente todos los fabricantes de sistemas ope-
rativos, UNIX, Linux, MacOS, Solaris,... soportan diferentes tipos de compiladores de lenguaje C.

Figura 1.6 Fases de ejecución de un programa.

Programa fuente

Compilador

Programa

Programa ejecutable

Ejecucción

Montador

Modificación
programa
fuente

Existen
errores en la
compilación

Sí

No

ap.1 11/6/05 21:37 Página 10

VENTAJAS DE C

El lenguaje C tiene una gran cantidad de ventajas sobre otros lenguajes, y son, precisamente, la razón fundamental de que des-
pués de casi dos décadas de uso, C siga siendo uno de los lenguajes más populares y utilizados en empresas, organizaciones y
fábricas de software de todo el mundo. Algunas ventajas que justifican el uso todavía creciente del lenguaje C en la progra-
mación de computadoras son:

• El lenguaje C es potente y flexible.
• C se utiliza por programadores profesionales para desarrollar software en la mayoría de los modernos sistemas de com-

putadora.
• Se puede utilizar C para desarrollar sistemas operativos, compiladores, sistemas de tiempo real y aplicaciones de comu-

nicaciones.
• Un programa en C puede ser escrito para un tipo de computadora y trasladarse a otra computadora con pocas o ninguna

modificación (propiedad conocida como portabilidad).

C se caracteriza por su velocidad de ejecución. En los primeros días de la informática, los problemas de tiempo de ejecu-
ción se resolvían escribiendo todo o parte de una aplicación en lenguaje ensamblador (lenguaje muy cercano al lenguaje
máquina).

Debido a que existen muchos programas escritos en C, se han creado numerosas bibliotecas C para programadores profe-
sionales que soportan gran variedad de aplicaciones. Existen bibliotecas del lenguaje C que soportan aplicaciones de bases de
datos, gráficos, edición de texto, comunicaciones, etc.

En la actualidad son muchos los fabricantes de compiladores C, y se pueden encontrar en el comercio y de distribución gra-
tuita tanto en empresas de distribución como en Internet para los sistemas operativos Windows, Linux, Unix y Mac, entre otros.
Todos los compiladores del lenguaje C++ pueden ejecutar programas escritos en lenguaje C, preferentemente si cumplen el
estándar ANSI C.1

REFERENCIAS BIBLIOGRÁFICAS y LECTURAS SUPLEMENTARIAS
JOYANES AGUILAR, Luis (2003). Fundamentos de programación. Algoritmos, Estructuras de datos y Objetos, 3ª edición,
Madrid: McGraw-Hill.

Libro de referencia para el aprendizaje de la programación con un lenguaje algorítmico. Libro complementario de esta obra
y que ha cumplido ya quince años desde la publicación de su primera edición

KARBO, Michael B. (2004) Arquitectura del PC. Teoría y Práctica, 2ª edición. Barcelona: PC-Cuadernos Técnicos, nº 17,
KnowWare E.U.R.L (www.pc-cuadernos.com).

Excelente manual de hardware. Eminentemente práctico con una gran cantidad de información. Al formar parte de una
colección editada de modo periódico, tiene un precio muy económico. Recomendable por su calidad y bajo coste.

LAUDON, Kennet C. y LAUDON, Jane P. (2003). Essentials of Management Information Systems. Fifth edition. Upper
Saddle River: New Jersey: Prentice Hall,

Magnífico libro sobre sistemas de información. Escrito con sencillez pero con un gran rigor técnico. Está acompañado de
una gran cantidad de gráficos y figuras ilustrativas. Actualizado totalmente a los modernos sistemas de información.
Recomendable para continuar formándose en informática fundamental y de modo complementario a la lectura de esta obra.

LÓPEZ CRUZ, Pedro A. (2004). Hardware y componentes. Madrid: Anaya.
Completo y actualizado libro del hardware de un computador. Contiene las características técnicas junto con sus corres-
pondientes explicaciones no solo del computador como máquina sino de todos sus componentes tanto internos como exter-
nos. Es una excelente referencia para conocer más sobre todos los dispositivos hardware modernos de un computador.

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación 11

1 Opciones gratuitas buenas puede encontrar en el sitio del fabricante de software Borland. También puede encontrar y descargar un compilador excelente Dev-C++
en software libre que puede compilar código C y también código C++, en www.bloodshed,net y en www.download.com puede así mismo encontrar diferen-
tes compiladores totalmente gratuitos. Otros numerosos sitios puede encontrar en software gratuito en numerosos sitios de la red. Los fabricantes de software y de
computadoras (IBM, Microsoft, HP,…) ofrecen versiones a sus clientes aunque normalmente no son gratuitos

ap.1 11/6/05 21:37 Página 11

www.pc-cuadernos.com
www.bloodshed,net
www.download.com

EJERCICIOS DE REPASO
1. La siguiente no es una ventaja del Lenguaje C

• Se pueden escribir sistemas operativos y programas
importantes para el sistema.

• Está en lenguaje binario.
• Es adecuado para escribir programas portables entre

máquinas diferentes.

2. Las fases de ejecución de un programa en C son:
• Análisis, Diseño e Implementación.
• Compilación. Enlazado y Ejecución.
• Depuración, Compilación y Verificación.

3. La Web utiliza sobre todo como lenguaje de programación
• Los lenguajes C y C++.
• Lenguaje HTML.
• Lenguajes máquina.

4. Si un sistema operativo permite trabajar a la vez a varias
personas se diría que es:
• Un sistema multiproceso.
• Un sistema multitarea.
• Un sistema multiusuario.

5. Un cortafuegos es un componente importante de:
• Un sistema conectado a Internet.
• La Unidad Central de Procesamiento.
• Los sistemas de almacenamiento secundario.

6 ¿Que parte de una computadora está dividida en palabras?
• La memoria del sistema.
• Los archivos que están en un disco USB.
• Los programas ejecutables.

7. Los siguientes, son protocolos de Internet
• IMAP, SMTP, HTTP.
• CPU, ALU, USB.
• LAN, WAN, DEC.

8. ¿En cuál de estos tipos de aplicación estaría justificado usar
Lenguaje Ensamblador para programar:
• Compiladores.
• Aplicaciones de Tiempo Real.
• Páginas Web.

9. Si se quisiese buscar alguna ventaja para elegir un lenguaje
máquina para programar sería:
• Por su facilidad de uso y depuración.
• Por su rapidez de codificación.
• Por su rapidez de ejecución.

10. El lenguaje C fue creado por:
• El gobierno de Estados Unidos.
• Una comisión de la organización ANSI.
• Brian Kernighan y Dennis Ritchie.

MAÑAS, José Antonio. (2004). Mundo IP: Introducción a los secretos de Internet y las Redes de Datos. Madrid. Ediciones
Nowtilus.

Libro completo sobre Redes de Datos e Internet. Muy docente. Escrito por un catedrático de la Universidad Politécnica de
Madrid, su estilo es muy agradable, sencillo, sin por ello dejar el rigor científico y técnico. Recomendable para el lector que
desee conocer el mundo de Internet y de las Redes de Datos, por otra parte necesarios para la formación de todo progra-
mador en C. Conveniente su lectura en paralelo con esta obra o a su terminación.

CAPÍTULO 1 Introducción a las computadoras y a los lenguajes de programación12

ap.1 11/6/05 21:37 Página 12

Este capítulo le introduce a la metodología a seguir para la resolución de problemas con computadoras y con un lenguaje de
programación tal como C.

La resolución de un problema con una computadora se hace escribiendo un programa, que exige al menos los siguientes pasos:

1. Definición o análisis del problema.
2. Diseño del algoritmo.
3. Transformación del algoritmo en un programa.
4. Ejecución y validación del programa.

Uno de los objetivos fundamentales de este libro es el aprendizaje y diseño de algoritmos. Este capítulo introduce al lector
en el concepto de algoritmo y de programa, así como en las herramientas que permiten “dialogar” al usuario con la máquina:
los lenguajes de programación.

2.1 Fases en la resolución de problemas
El proceso de resolución de un problema abarca desde la descripción inicial del problema hasta el desarrollo de un programa
de computadora que lo resuelva. El proceso de diseño de programas tiene una serie de fases que generalmente deben seguir
todos los programadores. Estas fases son: análisis del problema; diseño del algoritmo; codificación; compilación y ejecución,
verificación; depuración; mantenimiento y documentación.

Las dos primeras fases conducen a un diseño detallado en forma de algoritmo. En la tercera fase se implementa el algorit-
mo en código escrito en un lenguaje de programación. En la fase de compilación y ejecución se traduce y ejecuta el programa.
En las fases de verificación y depuración el programador busca errores de las etapas anteriores y las elimina.

Es importante definir el concepto de algoritmo. Un algoritmo es un conjunto finito de reglas que proponen una serie de
operaciones que sirven para resolver un determinado problema y que cumple las siguientes características:

• Finito. Debe acabar siempre tras un número finito de pasos, si bien este número de pasos puede ser arbitrariamente grande.
• “Definibilidad”. Cada paso del algoritmo debe definirse de modo preciso. Las acciones del algoritmo deben estar expre-

sadas sin ambigüedad.
• Efectividad. Las operaciones del algoritmo deben ser básicas, estar expresadas de modo exacto y deben ejecutarse en un

tiempo finito.

13

CAPÍTULO 2

Fundamentos
de programación

ap.02 11/6/05 21:38 Página 13

• Entrada. Todo algoritmo debe tener cero o más datos de entrada.
• Salida. Todo algoritmo debe tener cero o más datos de salida.

Son ejemplos de algoritmos básicos: calcular el máximo común divisor de dos números; decidir si un numero es primo; cal-
cular el mayor de una secuencia de números; etc.

2.1.1 ANÁLISIS DEL PROBLEMA
Consiste en definir el problema y especificar claramente aquello que es necesario para su resolución. Para hacer el análisis hay
que responder a las siguientes preguntas: ¿qué entrada tiene el problema?; ¿cuál es la salida deseada?; ¿qué método produce
la salida deseada a partir de los datos de entrada? Normalmente la definición del problema comienza analizando los requisi-
tos del usuario; pero estos requisitos con frecuencia suelen ser imprecisos y difíciles de escribir. La fase de especificación
requiere normalmente una gran comunicación entre los programadores y los futuros usuarios del sistema.

2.1.2 DISEÑO DEL ALGORITMO
En esta etapa hay que indicar cómo hace el algoritmo la tarea solicitada, y eso se traduce en la construcción de un algoritmo.
Los métodos más eficaces se basan en la técnica divide y vencerás. El problema se divide en subproblemas, y a continuación
se divide cada uno de estos subproblemas en otros hasta que pueda ser implementada una solución. Esta fase de diseño es bas-
tante larga, pero hay que tener en cuenta que el gasto de tiempo en la fase de diseño será ahorro de tiempo cuando se escriba
y depure el programa. El resultado final del diseño es una solución que debe ser fácil de traducir a estructuras de datos y estruc-
turas de control de un lenguaje de programación específico.

HERRAMIENTAS DE PROGRAMACIÓN

Las dos herramientas más comúnmente utilizadas para diseñar algoritmos son: diagramas de flujo y pseudocódigos.

• Diagrama de flujo (flowchart). Es una representación gráfica de un algoritmo. Los símbolos utilizados han sido nor-
malizados por el Instituto Norteamericano de Normalización (ANSI).

• Pseudocódigo. Es una herramienta de programación en la cual las instrucciones escriben en palabras similares al inglés
o español, que facilitan tanto la escritura como la lectura de programas. En esencia el pseudocódigo (también seudocódi-
go) se puede definir como un lenguaje de especificación de algoritmos. Aunque no existen reglas para la escritura del
pseudocódigo en español, se ha recogido una notación estándar que se utilizará en este libro y que ya es muy empleada
en muchos libros de programación.

2.1.3 CODIFICACIÓN DE UN PROGRAMA
Consiste en escribir en un lenguaje de programación el algoritmo creado en la fase de diseño, debiendo seguirse las siguientes
reglas:

• Si un problema se ha dividido en subproblemas los algoritmos que resuelven cada subproblema deben ser codificados y
probados independientemente.

• Deben usarse como identificadores términos significativos usando nombres para los datos, y verbos para los subpro-
gramas.

• Ha de tenerse especial cuidado en la comunicación de los distintos subprogramas, siendo recomendable que esta comu-
nicación se realice siempre mediante los parámetros.

• Sólo deben usarse variables globales si son datos inherentes e importantes del programa.
• El sangrado (indentación) así como los buenos comentarios facilitan la posterior lectura del código.

2.1.4 COMPILACIÓN Y EJECUCIÓN DE UN PROGRAMA
Una vez que el algoritmo se ha convertido en programa fuente, es preciso introducirlo mediante un procesador de texto en la memo-
ria de la computadora, para que mediante un compilador pueda ser traducido a lenguaje máquina. Si tras la compilación se presen-
tan errores (errores de compilación) es necesario volver a editar el programa y corregirlos. Una vez corregidos los errores hay que
ejecutar el programa, obteniéndose la salida de resultados, siempre que no existan errores (errores de ejecución).

CAPÍTULO 2 Fundamentos de programación14

ap.02 11/6/05 21:38 Página 14

2.1.5 VERIFICACIÓN Y DEPURACIÓN
La depuración de un programa es el proceso de encontrar los errores del programa y corregir o eliminar dichos errores. Para
ello hay que eliminar los errores de ejecución y los errores lógicos. Esta eliminación de errores se efectúa proporcionando al
programa datos de entrada válidos que conducen a una solución conocida. También deben incluirse datos no válidos para com-
probar la capacidad de detección de errores del programa.

Si bien el método de depuración es muy usado y proporciona buenos resultados; si se quiere estar seguros de que un pro-
grama funciona correctamente, hay que probar todos los posibles datos de entrada o una muestra suficientemente significati-
va, o bien verificar el programa, operación consistente en demostrar formalmente que el programa funciona correctamente.

2.1.6 DOCUMENTACIÓN Y MANTENIMIENTO
La documentación de un programa consiste en la descripción de cada uno de los pasos que hay que realizar para resolver el
problema. La documentación de un programa puede ser interna (contenida en las líneas de comentario) o externa (contenida
en análisis, diagramas de flujo, pseudocódigos, manuales de usuario con instrucciones de ejecución del programa etc.).

MANUAL DE USUARIO

Este manual es un documento comercial importante convierte al programa en más accesible y asequible al usuario. Es frecuente
que este manual se edite como libro, aunque también suele incluirse en el propio programa en cuyo caso se denomina manual
de ayuda en línea. Debe abarcar al menos los siguientes puntos:

• Órdenes necesarias para cargar el programa en memoria desde el almacenamiento secundario (disco) y para arrancar su
funcionamiento.

• Nombres de los archivos externos a los que accede el programa.
• Formato de todos los mensajes de error o informes.
• Opciones en el funcionamiento del programa.
• Descripción detallada de la función realizada por el programa.
• Descripción detallada, preferiblemente con ejemplos, de cualquier salida producida por el programa.
• Instrucciones para la instalación del programa.

El mantenimiento del programa consiste en corregir posibles errores futuros de ejecución del programa, y en mejorar el pro-
grama añadiendo nuevas características o modificando las ya existentes debido a la necesidad de ejecutarlo en un nuevo entor-
no, la aparición de nuevo hardware o el cambio de las necesidades del usuario. Después de cada cambio, la documentación
debe ser actualizada.

MANUAL DE MANTENIMIENTO

El manual de mantenimiento es la documentación requerida para mantener un programa durante su ciclo de vida. Se divide en
dos categorías: documentación interna y documentación externa.

La documentación interna incluye:

• Cabecera de programa (con comentarios que reflejen el nombre del programador, fecha, versión, breve descripción del
programa).

• Nombres significativos para describir identificadores.
• Comentarios significativos, encerrados entre llaves { } o bien paréntesis/asteriscos (* *), relativos a: misión de los módu-

los de que consta el programa; especificación de precondiciones y postcondiciones; explicación de partes confusas del
algoritmo o descripción clara y precisa de los modelos de datos fundamentales y las estructuras de datos seleccionadas
para su representación.

• Claridad de estilo y formato: una sentencia por línea, indentación (sangrado), líneas en blanco para separar módulos (pro-
cedimientos, funciones, unidades, etc.).

La documentación externa es ajena al programa fuente y se suele incluir en un manual que acompaña al programa. La
documentación externa debe incluir:

• Listado actual del programa fuente, mapas de memoria, referencias cruzadas, etc.

CAPÍTULO 2 Fundamentos de programación 15

ap.02 11/6/05 21:38 Página 15

• Especificación del programa: documento que define el propósito y modo de funcionamiento del programa.
• Diagrama de estructura que representa la organización jerárquica de los módulos que comprende el programa.
• Explicaciones de fórmulas complejas.
• Especificación de los datos a procesar: archivos externos incluyendo el formato de las estructuras de los registros, campos etc.
• Formatos de pantallas utilizados para interactuar con los usuarios.
• Cualquier indicación especial que pueda servir a los programadores que deben mantener el programa.

2.2 Programación estructurada
La programación estructurada consiste en escribir un programa de acuerdo con las siguientes reglas: el programa tiene un
diseño modular; los módulos son diseñados descendentemente; cada módulo de programa (subprograma) se codifica usando
las tres estructuras de control (secuencia, selección e iteración). Una definición más formal de programación estructurada es el
conjunto de técnicas que incorporan: recursos abstractos, diseño descendente y estructuras básicas de control.

2.2.1 RECURSOS ABSTRACTOS
Descomponer un programa en términos de recursos abstractos consiste en descomponer acciones complejas en términos de
acciones más simples capaces de ser ejecutadas en una computadora. La modularidad y la abstracción procedimental son com-
plementarias, pudiéndose cambiar el algoritmo de un módulo sin afectar al resto de la solución de un problema. Una abstrac-
ción procedimental separa el propósito de un subprograma de su implementación. Una vez que el subprograma se haya
codificado se puede usar sin necesidad de conocer su cuerpo y basta con su nombre y una descripción de sus parámetros.

2.2.2 DISEÑO DESCENDENTE (TOP DOWN)
El diseño descendente se encarga de resolver un problema realizando una descomposición en otros más sencillos, mediante el méto-
do de refinamiento por pasos. Se descompone el problema en etapas o estructuras jerárquicas, de forma que se puede considerar
cada estructura desde los puntos de vista: ¿qué hace? ¿cómo lo hace?. El resultado de esta jerarquía de módulos es que cada módu-
lo se refina por los de nivel más bajo que resuelven problemas más pequeños y contienen más detalles sobre los mismos.

2.2.3 ESTRUCTURAS DE CONTROL
Las estructuras de control sirven para especificar el orden en que se ejecutarán las distintas instrucciones de un algoritmo.
Este orden de ejecución determina el flujo de control del programa. Las tres estructuras básicas de control son: secuencia, selec-
ción, iteración. La programación estructurada hace los programas más fáciles de escribir, verificar, leer y mantener, utilizan-
do un número limitado de estructuras de control que minimizan la complejidad de los problemas.

2.2.4 TEOREMA DE LA PROGRAMACIÓN ESTRUCTURADA
El teorema de la programación estructurada de Böhm y Jacopini (1966) dice que todo programa propio puede ser escrito
usando solamente tres tipos de estructuras básicas de control que son: secuencia, selección, iteración. Un programa se dice que
es propio si: tiene un solo punto de entrada y otro de salida; existen caminos desde la entrada hasta la salida que se pueden
seguir y que pasan por todas las partes del programa; todas las instrucciones son ejecutables y no existen bucles infinitos.

2.3 Métodos formales de verificación de programas
Verificar un programa consiste en demostrar que el programa funciona correctamente. Para realizar esta verificación, hay que
usar fórmulas matemáticas que deben expresar la semántica del programa, aportadas por la lógica de primer orden. La verifi-
cación formal es, en general, compleja y requiere conocimientos matemáticos avanzados, que comienzan con las precondi-
ciones que deben cumplir los datos de entrada para llegar a las postcondiciones que deben cumplir los datos de salida, mediante
los axiomas y las reglas de la lógica de primer orden. Para realizar la verificación formal de un programa hay que usar el sis-
tema formal de Hoare (conjunto finito de axiomas y reglas de inferencia que sirven para razonar sobre la corrección parcial de
un programa), y demostrar que el programa siempre termina mediante la obtención de expresiones cota. En este libro sólo se

CAPÍTULO 2 Fundamentos de programación16

ap.02 11/6/05 21:38 Página 16

consideran los siguientes conceptos clave: asertos, precondiciones postcondiciones e invariantes, que ayudan a documentar
corregir y clarificar el diseño de módulos y de programas.

Aserciones. Un aserto es una frase que describe la semántica de las variables y datos en un punto de un algoritmo. Estos
asertos se escriben como comentarios y forman parte de la documentación del programa. Para expresar formalmente estos aser-
tos se usan fórmulas de la lógica de primer orden. La lógica de primer orden emplea para su sintaxis además de los operado-
res lógicos (or, not, and...) los cuantificadores para todo (∀)y existe (∃).

Precondiciones y postcondiciones. Las precondiciones y postcondiciones son afirmaciones sencillas sobre condiciones al
principio y al final de los módulos. Una precondición de un procedimiento es una afirmación lógica sobre sus parámetros de
entrada; esta afirmación debe ser verdadera cuando se llama al procedimiento, para que éste comience a ejecutarse. Una pos-
tcondición de un procedimiento es una afirmación lógica que describe el cambio en el estado del programa producido por la
ejecución del procedimiento; la postcondición describe el efecto de llamar al procedimiento. En otras palabras, la postcondi-
ción indicada será verdadera después que se ejecute el procedimiento.

Precondición . Predicado lógico que debe cumplirse al comenzar la ejecución de un módulo.
Postcondición. Predicado lógico que debe cumplirse al acabar la ejecución de un determinado módulo, siempre que se haya

cumplido previamente la precondición.
Invariantes de bucles. Un invariante es un condición que es verdadera tanto antes como después de cada iteración (vuel-

ta) y que describe la semántica del bucle. Se utiliza para documentar el bucle y sobre todo para determinar la corrección del
mismo. Los siguientes cuatro puntos han de ser verdaderos:

• El invariante debe ser verdadero antes de que comience la ejecución por primera vez del bucle.
• Una ejecución del bucle debe mantener el invariante. Esto es, si el invariante es verdadero antes de cualquier iteración del

bucle, entonces se debe demostrar que es verdadero después de la iteración.
• El invariante debe capturar la exactitud del algoritmo, demostrando que, si es verdadero cuando termina el bucle, el algo-

ritmo es correcto.
• El bucle debe terminar después de un número finito de iteraciones.

La identificación de invariantes de bucles, ayuda a escribir bucles correctos. Se representa el invariante como un comenta-
rio que precede a cada bucle.

2.4 Factores de calidad del software

La construcción de software de calidad debe cumplir las siguientes características:

• Eficiencia: La eficiencia de un software es su capacidad para hacer un buen uso de los recursos de la computadora. Un
sistema eficiente es aquel que usa pocos recursos de espacio y de tiempo.

• Transportabilidad (portabilidad): La transportabilidad o portabilidad es la facilidad con la que un software puede ser
transportado sobre diferentes sistemas físicos o lógicos.

• Fácil de usar: Un software es fácil de utilizar cuando el usuario puede comunicarse con él de manera cómoda.
• Compatibilidad: Facilidad de los productos para ser combinados con otros y usados en diferentes plataformas hardware

o software.
• Corrección: Capacidad de los productos software de realizar exactamente las tareas definidas por su especificación.
• Extensibilidad: Facilidad que tienen los productos de adaptarse a cambios en su especificación. Existen dos principios

fundamentales para conseguir esta característica, diseño simple y descentralización.
• Robustez: Capacidad de los productos software de funcionar, incluso, en situaciones anormales.
• Verificabilidad: La verificabilidad, facilidad de verificación, de un software, es su capacidad para soportar los procedi-

mientos de validación y de aceptar juegos de test o ensayo de programas.
• Reutilización: Capacidad de los productos de ser reutilizados, en su totalidad o en parte, en nuevas aplicaciones.
• Integridad: La integridad es la capacidad de un software a proteger sus propios componentes contra los procesos que no

tengan el derecho de acceder.

CAPÍTULO 2 Fundamentos de programación 17

ap.02 11/6/05 21:38 Página 17

PROBLEMAS RESUELTOS1

2.1. Escriba el pseudocódigo de un algoritmo que lea tres números y si el primero es positivo calcule el producto de los otros
dos, y en otro caso calcule la suma.

Análisis del problema

Se usan tres variables enteras Numero1, Numero2, Numero3 , en las que se leen los datos, y otras dos variables Producto
y Suma en las que calcularemos o bien el producto o bien la suma.

Algoritmo

Algoritmo Producto_o_Suma
Variables
Entero Nuemro1, Numero2, Numero3, Producto,Suma
Inicio
Leer(Numero1, Numero2, Numero3)
Si (Numero1 > 0) entonces

Producto ← Numero2 * Numero3
Escribe(‘El producto de los dos últimos números es‘, Producto)

Sino
Suma ← Numero2 + Numero3
Escribe(‘ La suma de los dos últimos números es ‘, Suma)

Fin si
Fin

2.2. Escribir el pseudocódigo de un algoritmo que sume los 50 primeros números naturales.

Análisis del problema

Se usa una variable Contador que cuenta los 50 primeros números naturales y una variable suma, para almacenar las suce-
sivas sumas, 1, 1+2, 1+2+3,.....

Algoritmo

Algoritmo cincuenta
Variables
Entero Contador, Suma
Inicio

Contador ← 0
Suma ← 0
Mientras Contador <= 50 hacer

Suma ← Suma + Contador
Contador ← Contador + 1

Fin mientras
Escribe(Suma)

fin

2.3. Escribir el pseudocódigo de un programa que lea 100 número enteros y calcule el mayor.

CAPÍTULO 2 Fundamentos de programación18

1 Estos problemas tiene como objetivo fundamental familiarizar al lector con la escritura de algoritmos y programas; le aconsejamos compile y ejecute los
mismos en una computadora observando sus resultados. A medida que avance en el estudio de capítulos posteriores entenderá su lógica y modo de fun-
cionamiento, y le sugerimos los revise en ese momento.

ap.02 11/6/05 21:38 Página 18

Análisis del problema

Se usa una variable entera Numero que se encarga de leer los números. Otra variable entera Mayor contiene en cada momen-
to el mayor de los números leídos hasta el momento. Se programa un bucle que lee los números y en cada iteración alma-
cena en la variable Mayor el número leído hasta el momento que sea el mayor de todos. En una variable Contador se lleva
la cuenta de los números leídos

Algoritmo

Algoritmo ElMayor
Variables
Entero Numero, Mayor, Contador
Inicio

Leer(Numero)
Mayor ← Numero
Contador ← 1
Mientras Contador < 50 hacer

Contador ← Contador + 1
Leer(Numero)
Si(Mayor < Numero) entonces
Mayor ← Numero

Fin si
Fin mientras
Escribe(Mayor)

Fin

2.4. Escribir y compilar un programa C que lea 5 números enteros desde el teclado y calcule su suma. Exprese el invariante del
bucle como una aserción hecha en lenguaje natural.

Análisis del problema

Para escribir el programa, basta con definir una constante n que tome el valor 5, y mediante un bucle controlado por
el contador c, ir leyendo números del teclado en la variable Numero y sumarlos en un acumulador Suma. Por lo tanto,
el invariante del bucle debe decir si se han leído c números, siendo c menor o igual que n y en Suma se han acumula-
do los c números leídos.

Codificación

#include <stdio.h>
#define n 5
void main ()
{
int c, Numero, Suma;
c = 0;
Suma=0
while(c < n)
{
c = c + 1;
scanf("%d",&Numero);
Suma = Suma + Numero;
/* invariante= se han leído c números siendo c menor o igual

que n y en Suma se han acumulado los c números leídos*/
}

CAPÍTULO 2 Fundamentos de programación 19

ap.02 11/6/05 21:38 Página 19

printf("su suma es %d\n", Suma);
}

2.5. ¿Cuál es el invariante del bucle siguiente escrito en C?

Indice = 1; Suma = A[0];
while (Indice < N - 1)
{

Indice = Indice + 1;
Suma = Suma + A[Indice]

}

Análisis del problema

El invariante del bucle debe ser un predicado que se cumpla antes de la ejecución del bucle, al final de la ejecución de cada
iteración del bucle y por supuesto en la terminación. Se supone que A es un vector cuyos valores se puedan sumar, y que los
índices varían en el rango 0 hasta el N-1. En este caso el invariante del bucle debe expresar que en el acumulador suma se
han sumado los elementos del array hasta la posición Indice.

Indice

INV ≡ �Suma = Σ A(k)� ^ (Indice ≤ N – 1)
k = 0

Solución

Indice = 0;
Suma = A[0];
while (Indice < N - 1)
{
Indice = Indice + 1;
Suma = Suma + A[Indice]

Indice

INV ≡ �Suma = Σ A(k)� ^ (Indice ≤ N – 1)
k = 0

}
INV ^ (Indice ≥ N – 1)

2.6. Escriba el invariante del siguiente bucle escrito en C. Suponga que n >= 0.

Indice = 0;
Maximo= A[0]
while (Indice != (n - 1))
{

Indice = Indice + 1;
If(Máximo < A[indice])
Maximo = A[Indice]

}

Análisis del problema

El invariante debe expresar que Máximo contiene el elemento mayor del array desde las posiciones 0 hasta la posición
Indice y que además se encuentra en esas posiciones.

CAPÍTULO 2 Fundamentos de programación20

ap.02 11/6/05 21:38 Página 20

Solución

Indice = 0; Maximo = A[0];
INV ≡ ^ (0 ≤ Indice ≤ n – 1) ^ (∀ k(0 ≤ k ≤ Indice → Máximo ≥ A(k))^ ∃k(0 ≤ k ≤ Indice ^ Máximo = A(k))) ^ (Indice ≤
n – 1)

while (Indice != (n-1))
{
Indice = Indice + 1;
if (Maximo < A[indice])
Maximo = A[Indice];

INV ≡ ^ (0 ≤ Indice ≤ n – 1) ^ (∀ k(0 ≤ k ≤ Indice → Máximo ≥ A(k))^ ∃k(0 ≤ k ≤ Indice ^ Máximo = A(k))) ^ (Indice
≤ n – 1)

}

INV ^ (Indice = n – 1)

2.7. Escriba un programa en C que calcule la parte entera de la raíz cuadrada de un número positivo n usando solamente sumas
de número naturales y comparaciones entre ellos. Exprese fórmulas de la lógica de primer orden que indiquen la semánti-
ca del programa en cada uno de sus puntos.

Análisis del problema

El programa que se desarrolla está basado en la propiedad del cuadrado de una suma (x+1)2 = x2 + 2x +1. Con la propiedad
anterior y haciendo uso de un algoritmo voraz (variable x) de izquierda a derecha que avance con paso uno, y almacenando en
una variable y los valores de 2x + 1, se puede obtener el valor de (x+1)2 si se tiene previamente almacenado el valor de x2.

Sea x un contador de números naturales. Sea y un contador de impares de números naturales (y = 2x+1) y z el cuadra-
do de x+1, (z = (x+1)2). De acuerdo con estas propiedades si se inicializan convenientemente las variables x, y, z, el
siguiente bucle calcula la parte entera de la raíz cuadrada del número n.

while (z <= n)
{
x = x + 1;
y = y + 2;
z = z + y;

}

Con lo anteriormente dicho, la codificación del algoritmo pasa por leer el valor de n positivo, e inicializar convenientemen-
te las variables x, y, z a los valores 0, 1, 1, respectivamente.

Solución

#include <stdio.h>
int main()
{

int x, y, z, n;
printf("introduzca valor de n \n");
scanf("%d", &n);
x = 0;
y = 1;
z = 1;
while (z <= n)

CAPÍTULO 2 Fundamentos de programación 21

ap.02 11/6/05 21:38 Página 21

{
x = x + 1;
y = y + 2;
z = z + y;

}
printf("%d %d %d\n",x,y,z);

}
Las fórmulas que siguen expresan la semántica del programa hecha con la sintaxis de la lógica de primer orden.

#include <stdio.h>
int main()
{

int x,y,z,n;
printf("introduzca valor de n\n");
scanf("%d", &n);
x = 0; y = 1; z = 1;

0 ≤ n (x = 0) ^ (y = 1) ^ (z = 1) ^ (0 ≤ n) → (z = (x + 1)2) ^ (y = 2x + 1) ^ (0 ≤ n) ^ (x2 <= n)

while (z <= n)
{

INV ^ (z ≤ n) → (z + y + 2 = (x + 1 + 1)2) ^ (y + 2 = 2(x + 1) + 1) ^ (0 ≤ n) ^ ((x + 1)2 <= n)

x = x + 1;

(z + y + 2 = (x + 1)2) ^ (y + 2 = 2x + 1) ^ (0 ≤ n) ^ (x2 <= n)

y = y + 2;

(z + y = (x + 1)2) ^ (y = 2x + 1) ^ (0 ≤ n) ^ (x2 <= n)

z = z + y;

INV ≡ (z = (x + 1)2) ^ (y = 2x + 1) ^ (0 ≤ n) ^ (x2 <= n)
}

printf("%d %d %d\n",x,y,z);
}

(z = (x + 1)2) ^ (y = 2x + 1) ^ (0 ≤ n) ^ (x2 <= n) ^ (z > n) → (0 ≤ n) ^ x = [n]

2.8. Escriba un programa en C que calcule el producto de dos números naturales usando sólo sumas. Exprese fórmulas de la
lógica de primer orden que indiquen la semántica del programa en cada uno de sus puntos.

Análisis del problema

Para resolver el problema se recuerda que para multiplicar dos números positivos basta con sumar tantas veces uno de ellos
a una variable como unidades indique el otro. De esta manera si se usa un bucle voraz descendente, y si en las variables x,
e y contienen los datos, y en p se quiere obtener el producto, se tiene de manera obvia el siguiente bucle.

while (x != 0)
{

CAPÍTULO 2 Fundamentos de programación22

ap.02 11/6/05 21:38 Página 22

x = x - 1;
p = p + y;

}

La inicialización de las variables x, e y, será respectivamente a los dos datos iniciales y, en este problema, p a cero.

Codificación

#include <stdio.h>
int main()
{

int a, b, x, y, p;
printf(" dame a >0 y b >0 ‘); scanf("%d %d",&a,&b);
x = a; y = b; p = 0;
while (x != 0)
{

x = x - 1;
p = p + y;

}
printf("%d %d %d\n", a, b, p);

}

Las fórmulas que siguen expresan la semántica del programa hecha con la sintaxis de la lógica de primer orden.

#include <stdio.h>
int main()
{

int a, b, x, y, p;
printf(" dame a >0 y b >0 "); scanf("%d %d",&a,&b);

(a ≥ 0) ^ (b ≥ 0)
x = a;
y = b;

(x = a) ^ (x ≥ 0) ^ (b ≥ 0)
(p + x ∗ y = a ∗ b) ^ (a ≥ 0)

while (x != 0)
{

INV ^ (x ≠ 0) → (p + y + (x – 1) ∗ y = a ∗ b) ^ (x > 0)

x = x - 1;
(p + y + x ∗ y = a ∗ b) ^ (x ≥ 0)

p = p + y ;
INV ≡ (p + x · y = a ∗ b) ^ (x ≥ 0)

}
(p = a ∗ b)

printf("%d %d %d\n",a, b, p);
}

CAPÍTULO 2 Fundamentos de programación 23

ap.02 11/6/05 21:38 Página 23

CAPÍTULO 2 Fundamentos de programación24

PROBLEMAS PROPUESTOS
2.1. Escriba el pseudocódigo de un algoritmo para:

• Sumar dos números enteros.
• Restar dos números enteros.
• Multiplicar dos números enteros.
• Dividir dos números enteros.

2.2. Escriba el pseudocódigo de un algoritmo que lea la base
y la altura de un triángulo y calcule su área.

2.3. El máximo común divisor de dos números enteros posi-
tivos es aquel número entero que divide a los dos núme-
ros y es el mayor de todos. Escriba un algoritmo que
calcule el máximo común divisor de dos números.
Exprese en lenguaje natural el invariante del bucle.

2.4. Escriba un algoritmo que lea tres números enteros y deci-
da si uno de ellos coincide con la suma de los otros dos.

2.5. Diseñar un algoritmo que lea e imprima una serie de
números distintos de cero. El algoritmo debe terminar

con un valor cero que no se debe imprimir. Visualizar el
número de valores leídos.

2.6. Diseñar un algoritmo que imprima y sume la serie de
números 3, 6, 9,..... 99.

2.7. Diseñe un algoritmo que calcule la suma de los enteros
1, 2,....,30. Exprese el invariante del bucle mediante
especificación informal y formal.

2.8. Escriba un programa C que presente en pantalla todas las
potencias enteras de 2 que sean menores o iguales que
100. Exprese el invariante del bucle formalmente.

2.9. Escriba un algoritmo que sume los números pares com-
prendidos entre 20 y 100 ambos inclusive.

2.10. Verifique el algoritmo del ejercicio 2.9

ap.02 11/6/05 21:38 Página 24

Una vez que se le ha enseñado a crear sus propios programas, se analizan los fundamentos del lenguaje de programación C. Este
capítulo comienza con un repaso de los conceptos teóricos y prácticos relativos a la estructura de un programa enunciados en el capí-
tulo anterior, dada su gran importancia en el desarrollo de aplicaciones, incluyendo además los siguientes temas:

• creación de un programa;
• elementos básicos que componen un programa;
• tipos de datos en C y cómo se declaran;
• concepto de constantes y su declaración;
• concepto y declaración de variables;
• tiempo de vida o duración de variables;
• operaciones básicas de entrada/salida.

3.1 Estructura general de un programa en C
Una función en C es un grupo de instrucciones que realizan una o más acciones. Un programa C puede incluir: directivas de
preprocesador; declaraciones globales; la función main(); funciones definidas por el usuario; comentarios del programa.

3.1.1 DIRECTIVAS DEL PREPROCESADOR
El preprocesador consta de directivas que son instrucciones al compilador. Todas las directivas del preprocesador comienzan con el
signo de libro o “almohadilla " (#) y no terminan en punto y coma ya que no son instrucciones del lenguaje C. La directiva
#include indica al compilador que lea el archivo fuente (archivo cabecera o de inclusión) que viene a continuación de ella y su con-
tenido lo inserte en la posición donde se encuentra dicha directiva. Estas instrucciones son de la forma #include <nombrearch.h>
o bien #include "nombrearch.h". La directiva #define indica al preprocesador que defina un item de datos u operación para el
programa C. Por ejemplo, la directiva #define TAM 10 sustituirá el valor 10 cada vez que TAM aparezca en el programa.

3.1.2 DECLARACIONES GLOBALES
Las declaraciones globales indican al usuario que las constantes o variables así declaradas son comunes a todas las funciones
de su programa. Se sitúan antes de la función main(). La zona de declaraciones globales puede incluir declaraciones de varia-
bles además de declaraciones de prototipos de función.

25

CAPÍTULO 3

El lenguaje C:
elementos básicos

ap.03 11/6/05 21:38 Página 25

EJEMPLO 3.1 Se realizan declaraciones de ámbito global.

#include <stdio.h>
/* Definición de macros */

#define MICONST1 0.50
#define MICONS2 0.75

/* Declaraciones globales */
int Calificaciones;
int ejemplo (int x);
int main()
{
...

}

3.1.3 FUNCIÓN MAIN()
Cada programa C contiene una función main()que es un punto inicial de entrada al programa. Su estructura es:

int main()
{
...
bloque de sentencias

}

Además de la función main(), un programa C consta de una colección de subprogramas que en C siempre son funciones.
Las sentencias de C situadas en el cuerpo de la función main(), o de cualquier otra función, deben terminar en punto y coma.

3.1.4 FUNCIONES DEFINIDAS POR EL USUARIO
C proporciona funciones predefinidas (denominadas funciones de biblioteca) y definidas por el usuario. Se invocan por su
nombre y los parámetros opcionales que incluye. Después de que la función sea llamada, el código asociado con la fun-
ción se ejecuta y, a continuación, se retorna a la función llamadora. En C, las funciones definidas por el usuario requie-
ren una declaración o prototipo en el programa, que indica al compilador el nombre por el cual ésta será invocada, el tipo
y el número y tipo de sus argumentos. Las funciones de biblioteca requieren que se incluya el archivo donde está su decla-
ración.

EJEMPLO 3.2 Programa típico con una función main() y declaración de codificación de una función prueba().

#include <stdio.h>
void prueba();
int main()
{
prueba();
return 0;

}

void prueba()
{
printf ("Mis primeros pasos \n");

}

Un comentario es cualquier información que se añade a su archivo fuente. Los comentarios en C estándar comienzan
con la secuencia /* y terminan con la secuencia */ (los compiladores C++ admiten también el tipo de comentario que
empieza por //)

CAPÍTULO 3 El lenguaje C: elementos básicos26

ap.03 11/6/05 21:38 Página 26

3.2 Los elementos de un programa C
Los elementos básicos de un programa C son : identificadores; palabras reservadas; comentarios; signos de puntuación; sepa-

radores y archivos cabecera.

Identificador. Un identificador es una secuencia de caracteres, letras, dígitos y subrayados. El primer carácter debe ser una

letra (no un subrayado). Las letras mayúsculas y minúsculas son diferentes. Pueden tener cualquier longitud, pero el compila-

dor ignora a partir del carácter 32. No pueden ser palabras reservadas.

Palabras reservadas. Una palabra reservada, tal como void, es una característica del lenguaje C asociada con algún sig-

nificado especial. Una palabra reservada no se puede utilizar como nombre de identificador, objeto o función. Ejemplos de pala-

bras reservadas son: asm, auto, break, case, char, const, continue, default, etc.
Comentarios. Los comentarios se encierran entre /* y */ pueden extenderse a lo largo de varias líneas. Los comentarios

son ignorados por el compilador.

Signos de puntuación y separadores. Todas las sentencias de C deben terminar con un punto y coma. Los separado-

res son espacios en blanco, tabulaciones, retornos de carro y avances de línea.

Otros signos de puntuación son:

! % ^ & * () - + = { } ~

[] \ ; ´ : < > ? , . / "

Archivos de cabecera. Un archivo de cabecera es un archivo especial que contiene las declaraciones de objetos y funciones de

la biblioteca que son añadidos en el lugar donde se insertan. Un archivo cabecera se inserta con la directiva #include.

3.3 Tipos de datos en C
Los tres tipos de datos básicos de C son: enteros; números de coma flotante (reales) y caracteres. La Tabla 3.1 recoge los prin-

cipales tipos de datos básicos, sus tamaños en bytes y el rango de valores que puede almacenar.

Tabla 3.1 Tipos de datos simples de C.

Tipo Ejemplo Tamaño Rango
en bytes Mínimo..Máximo

char 'C' 1 0..255

short -15 2 -128..127

int 1024 2 -32768..32767

unsigned int 42325 2 0..65535

long 262144 4 -2147483648..2147483637

float 10.5 4 3.4*(10-38)..3.4*(1038)

double 0.00045 8 1.7*(10-308)..1.7*(10308)

long double 1e-8 8 igual que double

3.3.1 ENTEROS (INT)

Los tipos enteros se almacenan internamente en 2 bytes de memoria. La Tabla 3.2 resume los tres tipos enteros básicos, junto

con el rango de valores y el tamaño usual en bytes (depende de cada compilador C).

CAPÍTULO 3 El lenguaje C: elementos básicos 27

ap.03 11/6/05 21:38 Página 27

Tabla 3.2 Tipos de datos enteros.

Tipo C Rango de valores Uso recomendado

int -32.768 .. +32.767 Aritmética de enteros, bucles for, conteo.

unsigned int 0 .. 65.535 Conteo, bucles for, índices.

short int -32.768 .. +32.767 Aritmética de enteros, bucles for, conteo.

DECLARACIÓN DE VARIABLES

La forma más simple de una declaración de variable en C es declarar el tipo de dato y a continuación el nombre de la variable,
seguida, opcionalmente de su valor inicial <tipo de dato> <nombre de variable> = <valor inicial>. Se pueden tam-
bién declarar múltiples variables en la misma línea:

<tipo_de_dato> <nom_var1>, <nom_var2> ... <nom-varn>

C permite escribir constantes enteras en octal (base 8) o hexadecimal (base 16). La Tabla 3.3 muestra ejemplos de cons-
tantes enteras representadas en sus notaciones decimal, hexadecimal y octal.

Tabla 3.3 Constantes enteras en tres bases diferentes.

Base 10 Base 16 Base 8
Decimal Hexadecimal (Hex) Octal

8 0x08 010

10 0x0A 012

16 0x10 020

65536 0x10000 0200000

24 0x18 030

17 0x11 021

Si el rango de los tipos enteros básicos no es suficientemente grande para sus necesidades, se consideran tipos enteros lar-
gos. La Tabla 3.4 muestra los dos tipos de datos enteros largos. Ambos tipos requieren 4 bytes de memoria (32 bits) de alma-
cenamiento.

Tabla 3.4 Tipos de datos enteros largos.

Tipo C Rango de valores

long -2147483648 .. 2147483647

unsigned long 0 .. +4294967295

3.3.2 TIPOS DE COMA FLOTANTE (FLOAT/DOUBLE)

Los tipos de datos de coma (punto) flotante representan números reales que contienen una coma (un punto) decimal, tal como
3.14159, o números muy grandes, tales como 1.85 e +15 = 1,85*1015. La declaración de las variables de coma flotante es igual
que la de variables enteras. C soporta tres formatos de coma flotante. El tipo float requiere 4 bytes de memoria, double
requiere 8 bytes y long double requiere 10 bytes. La Tabla 3.5 muestra los tipos de datos en coma flotante.

CAPÍTULO 3 El lenguaje C: elementos básicos28

ap.03 11/6/05 21:38 Página 28

Tabla 3.5 Tipos de datos en coma flotante.

Tipo C Rango de valores Precisión

float 3.4 x 10-38 .. 3.4 x 1038 7 dígitos

double 1.7 x 10-308 .. 1.7 x 10308 15 dígitos

long double 3.4 x 10-4932 .. 1.1 x 104932 19 dígitos

3.3.3 CARACTERES (CHAR)
C procesa datos carácter (tales como texto) utilizando el tipo de dato char. Este tipo representa valores enteros en el rango
-128 a +127. El lenguaje C proporciona el tipo unsigned char para representar valores de 0 a 255 y así representar todos los
caracteres ASCII. Los caracteres se almacenan internamente como números, y por tanto se pueden realizar operaciones arit-
méticas con datos tipo char.

EJEMPLO 3.4 Definir e inicializar una variable de tipo char, a continuación convertir a mayúscula.

char car = 'b';
car = car - 32;

El ejemplo convierte b (código ASCII 98) a B (código ASCII 66).

3.4 El tipo de dato lógico
Los compiladores de C no incorporan el tipo de dato lógico. C usa el tipo int para simular el tipo lógico interpretando todo
valor distinto de 0 como "verdadero" y el valor 0 como "falso". Una expresión lógica que se evalúa a 0 se considera falsa; una
expresión lógica que se evalúa a 1 (o valor entero distinto de 0) se considera verdadera.

3.5 Constantes
Una constante es un objeto cuyo valor no puede cambiar a lo largo de la ejecución de un programa.

Constantes literales. Las constantes literales o constantes, en general, se clasifican en cuatro grupos, cada uno de los
cuales puede ser de cualquiera de los tipos: constantes enteras; constantes reales; constantes de caracteres; constantes de
cadena.

Constantes enteras. Son una sucesión de dígitos precedios o no por el signo + o – dentro de un rango determinado. Por
ejemplo, 234, y -456.

Constantes reales. Son una sucesión de dígitos con un punto delante, al final o en medio y seguidos opcionalmente de un
exponente: Por ejemplo, 82.347, .63, 83., 47e-4,.25E7 y 61.e+4.

Constantes carácter. Una constante carácter (char) es un carácter del código ASCII encerrado entre apóstrofes. Por ejem-
plo, 'A', 'b', 'c'.

Constantes cadena. Una constante cadena es una secuencia de caracteres encerrados entre dobles comillas. Por ejemplo,
"123", "12 de octubre 1492", "esto es una cadena". En memoria, las cadenas se representan por una serie de carac-
teres ASCII más un 0 o nulo que es definido en C mediante la constante NULL.

Constantes definidas (simbólicas). Las constantes pueden recibir nombres simbólicos mediante la directiva #define.

EJEMPLO 3.5 Se ponen nombres simbólicos a constantes de interés.

#define NUEVALINEA '\n'
#define PI 3.1415929 /* valor de la constante Pi */

Constantes numeradas. Las constantes enumeradas permiten crear listas de elementos afines. Por ejemplo:

enum dias {Lunes, Martes, Miercoles, Jueves, Viernes, Sabado, Domingo};

CAPÍTULO 3 El lenguaje C: elementos básicos 29

ap.03 11/6/05 21:38 Página 29

Al procesar esta sentencia el compilador enumera los identificadores comenzando por 0. Después de declarar un tipo de
dato enumerado, se pueden crear variables de ese tipo, como con cualquier otro tipo de datos.

Constantes declaradas const y volatile. El cualificador const permite dar nombres simbólicos a constantes. Su valor
no puede ser modificado por el programa. Su formato es: const tipo nombre = valor; La palabra reservada volatile actúa
como const, pero su valor puede ser modificado no sólo por el propio programa, sino también por el hardware o por el soft-
ware del sistema.

3.6 Variables
En C una variable es una posición con nombre (identificador) de memoria donde se almacena un valor de un tipo de dato. Su
valor puede cambiar a lo largo de la ejecución del programa.

Delaración. Una declaración de una variable es una sentencia que proporciona información de la variable al compilador
C. Es preciso declarar las variables antes de utilizarlas. Su sintaxis es:

tipo nombre;

tipo es el nombre de un tipo de dato conocido por el C y nombre es un identificador C.

3.7 Entradas y salidas
La biblioteca C proporciona facilidades para entrada y salida. Los programas que utilizan estas facilidades requieren incluir el
archivo de cabecera stdio.h .

Salida. La función printf()visualiza en la pantalla datos del programa, transforma los datos, que están en representa-
ción binaria, a ASCII según los códigos transmitidos. El formato general que tiene la función es:

printf(cadena_de_control, dato1, dato2, ..., dato);

cadena_de_control contiene los tipos de los datos y forma de mostrarlos.
dato1, dato2 ... variables, constantes, o en general expresiones de salida.

Los códigos de formato más utilizados y su significado:

%d El dato se convierte a entero decimal.
%o El dato entero se convierte a octal.
%x El dato entero se convierte a hexadecimal.
%u El dato entero se convierte a entero sin signo.
%c El dato se considera de tipo carácter.
%e El dato se considera de tipo float o double se convierte a notación científica.
%f El dato se considera de tipo float o double se convierte a notación decimal.
%g El dato se considera de tipo float o double se convierte al código %e o %f. dependiendo de la representa-

ción mas corta.
%s El dato ha de ser una cadena de caracteres.

Entrada. La función mas utilizada para la entrada de datos a través del teclado es scanf(). Su formato es:

scanf (cadena_de_control, var1, var2, var3, ...,varn);

cadena_de_control contiene los tipos de los datos y si se desea su anchura.
var1, var2 ... variables del tipo de los códigos de control.

CAPÍTULO 3 El lenguaje C: elementos básicos30

ap.03 11/6/05 21:38 Página 30

Salida de cadenas de caracteres. Con la función printf() se puede dar salida a cualquier dato, asociándolo el código que le
corresponde. En particular, para dar salida a una cadena de caracteres se utiliza el código %s. Para salida de cadenas, la biblio-
teca C proporciona la función específica puts(); tiene un solo argumento, que es una cadena de caracteres; escribe la cadena
en la salida estándar (pantalla) y añade el fin de línea.

Entrada de cadenas de caracteres. La entrada de una cadena de caracteres se hace con la función mas general scanf()
y el código %s. scanf() con el código %s capta palabras, el criterio de terminación es el encontrarse un blanco, o bien fin
de línea. La biblioteca de C dispone de una función específica para leer una cadena de caracteres. Es la función gets(),
que lee del dispositivo estándar de entrada una cadena de caracteres. Termina la captación con un retorno de carro.
gets(variable_cadena);

CAPÍTULO 3 El lenguaje C: elementos básicos 31

PROBLEMAS RESUELTOS
3.1. ¿Cual es la salida del siguiente programa?.

#include <stdio.h>
#define prueba "esto es una prueba"
int main()
{

char cadena[21]="sale la cadena.";
puts(prueba);
puts("Escribimos de nuevo.");
puts(cadena);
puts(&cadena[8]);
return 0;

}

Solución

esto es una prueba
Escribimos de nuevo.
sale la cadena.
cadena.

3.2. Codifique un programa en C que escriba en dos líneas distintas las frases
Bienvenido a la programación en C
Pronto comenzaremos a programar en C.

Codificación

#include <stdio.h>
int main()
{

printf("Bienvenido a la programación en C\n");
printf(" Pronto comenzaremos a programar en C\n");
return 0;

}

Los códigos de formato más comunes son los ya indicados en la salida.

ap.03 11/6/05 21:38 Página 31

3.3. Codifique un programa en C que copie en un array de caracteres la frase es un nuevo ejemplo en C y lo escriba en la pan-
talla.

Codificación

#include <stdio.h>
#include <string.h>

int main()
{

char ejemplo[50];
strcpy (ejemplo, " Es un nuevo ejemplo de programa en C\n");
printf(ejemplo);
return 0;

}

3.4. ¿ Cual es la salida del siguiente programa?.

#include <stdio.h>
#define Constante "de declaracion de constante."
int main(void)
{

char Salida[21]="Esto es un ejemplo" ;
puts(Salida);
puts(Constante);
puts("Salta dos lineas\n");
puts("y tambien un");
puts(&Salida[11]);
puts("de uso de la funcion puts.");
return 0;

}

Solución

Esto es un ejemplo
de declaracion de constante.
Salta dos lineas

y tambien un
ejemplo
de uso de la funcion puts.

3.5. ¿Cuál es la salida del siguiente programa?.

#include <stdio.h>
int main()
{

char pax[] = "Juan Sin Miedo";
printf("%s %s\n",pax,&pax[4]);
puts(pax);
puts(&pax[4]);
return 0;

}

CAPÍTULO 3 El lenguaje C: elementos básicos32

ap.03 11/6/05 21:38 Página 32

Solución

Juan Sin Miedo Sin Miedo
Juan Sin Miedo
Sin Miedo

3.6. Escriba y ejecute un programa que escriba su nombre y dirección.

Codificación

#include <stdio.h>
int main()

{
printf(" Lucas Sánchez García\n");
printf(" Calle Marquillos de Mazarambroz, 2\n");
printf(" Mazarambroz, TOLEDO\n");
printf(" Castilla la Mancha, ESPAÑA\n");
return 0;

}

3.7. Escribir y ejecutar un programa que escriba una página de texto con no más de 50 caracteres por línea.

Codificación (Consultar en la página web del libro)

3.8. Depurar el siguiente programa.

#include <stdio.h>
void main()
{

printf("El lenguaje de programación C)

Solución

A la codificación anterior le falta en la orden printf, terminar con \n". Además el programa debe terminar con }.

El programa depurado es el siguiente:

#include <stdio.h>
void main()
{

printf(" El lenguaje de programación C\n");
}

3.9. Escriba un programa que escriba la letra B con asteriscos.

Codificación

#include <stdio.h>
void main()
{

printf("*******\n");
printf("* *\n");

CAPÍTULO 3 El lenguaje C: elementos básicos 33

ap.03 11/6/05 21:38 Página 33

CAPÍTULO 3 El lenguaje C: elementos básicos34

printf("* *\n");
printf("* *\n");
printf("*******\n");
printf("* *\n");
printf("* *\n");
printf("* *\n");
printf("*******\n");

}

3.10. Escriba un programa C que lea las iniciales de su nombre y primer apellido y las escriba en pantalla seguidas de un punto.

Análisis del problema

Se declaran dos variables de tipo char una para leer la inicial del nombre y otra para leer la inicial del primer apellido.

Codificación

#include <stdio.h>
int main()
{

char n, a;
printf("Introduzca la incial de su nombre y su apellido: ");
scanf("%c %c",&n,&a);
printf("Hola, %c . %c .\n",n,a);
return 0;

}

3.11. Escriba un programa que lea una variable entera y cuatro reales y las escriba en pantalla.

Codificación

#include <stdio.h>
int main()
{

int v1 ;
float v2,precio, b,h;
printf("Introduzca v1 y v2: ");
scanf("%d %f",&v1,&v2); /*lectura valores v1 y v2 */
printf("valores leidos: %d %f\n", v1,v2);
printf("Precio de venta al público\n");
scanf("%f",&precio); /*lectura de precio */
printf("Precio de venta %f\n", precio);
printf("Base y altura: "); /*lectura de base y altura */
scanf("%f %f\n",&b,&h);
printf("Base y altura %f %f\n", b, h);
return 0;

}

3.12. Escriba un programa que lea la base y la altura de un cilindro y las presente en pantalla.

Codificación

#include <stdio.h>

ap.03 11/6/05 21:38 Página 34

int main()
{

float base, altura;
printf("Introduzca base: ");
scanf("%f",&base);
printf("Introduzca altura\n");
scanf("%f",&altura);
printf("Base leída %f\n", base);
printf("Altura leída %f ", altura);
return 0;

}

CAPÍTULO 3 El lenguaje C: elementos básicos 35

PROBLEMAS PROPUESTOS
3.1. Escribir y depurar un programa que visualice la letra A

con asteriscos.

3.2. Escribir un programa que lea un testo de cinco líneas y
lo presente en pantalla.

3.3. Escribir un programa que lee 5 número enteros y tres
números reales y los escriba.

3.4. Escribir y ejecutar un programa que lea su nombre y
dirección y lo presente.

3.5. ¿Cuál es la salida del siguiente programa?.

#include <stdio.h>
int main()
{
char p[] = "Esto es una prueba";
printf("%s %s\n",p, &p[2]);
puts(p);
puts(&p[2]);
return 0;

}

3.6. Depurar el siguiente programa

#include <stdio.h>
void main()
{

printf("Esto es un ejemplo);
}

3.7. Escribir un programa que presente en pantalla los 5 pri-
meros números impares.

3.8. Escribir un programa que lea la base y la altura de un tra-
pecio y calcule su área y la presente en pantalla.

3.9. Escribir un programa que calcule lea el radio de una cir-
cunferencia y calcule su perímetro.

3.10. Realizar un programa que lea tres números reales y
escriba su suma y su producto.

ap.03 11/6/05 21:38 Página 35

ap.03 11/6/05 21:38 Página 36

Los programas de computadoras se apoyan esencialmente en la realización de numerosas operaciones aritméticas y matemáti-
cas de diferente complejidad. Este capítulo muestra como C hace uno de los operadores y expresiones para la resolución de
operaciones. Los operadores fundamentales que se analizan en el capítulo son:

• aritméticos, lógicos y relacionales;
• de manipulación de bits;
• condicionales;
• especiales.

Además se analizarán las conversiones de tipos de datos y las reglas que seguirá el compilador cuando concurran en una
misma expresión diferentes tipos de operadores. Estas reglas se conocen como prioridad y asociatividad.

4.1 Operadores y expresiones
Los programas C constan de datos, sentencias de programas y expresiones. Una expresión es, una sucesión de operadores y
operandos debidamente relacionados para formar expresiones matemáticas que especifican un cálculo.

4.2 El operador de asignación
El operador de asignación tiene la siguiente sintaxis:

variable = expresión

donde variable es un identificador válido de C declarado como variable. El operador = asigna el valor de la expresión dere-
cha a la variable situada a su izquierda. Este operador es asociativo por la derecha, eso permite realizar asignaciones múltiples.
Así, a = b = c = 10; equivale a que las variables a, b y c se asigna el valor 10. Esta propiedad permite inicializar varias
variables con una sola sentencia. Además del operador de asignación =, C proporciona cinco operadores de asignación adi-
cionales dados en la Tabla 4.1.

37

CAPÍTULO 4

Operadores y expresiones

ap.04 11/6/05 21:39 Página 37

Tabla 4.1 Operadores de asignación de C.

Símbolo Uso Descripción

= a = b Asigna el valor de b a a.

*= a *= b Multiplica a por b y asigna el resultado a la variable a.

/= a /= b Divide a entre b y asigna el resultado a la variable a.

%= a %= b Fija a al resto de a/b.

+= a += b Suma b y a y lo asigna a la variable a.

-= a -= b Resta b de a y asigna el resultado a la variable a.

EJEMPLO 4.1 El siguiente fragmento de programa asigna a las variables de la izquierda los valores de la derecha.

codigo = 3467
fahrenheit = 123.456;
coordX = 525;
coordY = 725;

4.3 Operadores aritméticos
Los operadores aritméticos sirven para realizar operaciones aritméticas básicas. Estos operadores vienen recogidos en la Tabla
4.2 y su prioridad y asociatividad en la Tabla 4.3

Tabla 4.2 Operadores aritméticos.

Operador Tipos enteros Tipos reales Ejemplo

+ Suma Suma x + y

- Resta Resta b – c

* Producto Producto x * y

/ División entera: cociente División en coma flotante b / 5

% División entera: resto b % 5

Los paréntesis se pueden utilizar para cambiar el orden usual de evaluación de una expresión determinada por su prioridad
y asociatividad.

Tabla 4.3 Prioridad y asociatividad.

Prioridad (mayor a menor) Asociatividad

+, - (unitarios) izquierda-derecha (→)

*, /, % izquierda-derecha (→)

+, - izquierda-derecha (→)

EJEMPLO 4.2 ¿Cuál es el resultado de la expresión: 7 * 10 –5%3 * 4 + 9?

Los sucesivos pasos en el cálculo son los siguientes:

70 – 5% 3 * 4 + 9
70 – 2 * 4 + 9
70 – 8 + 9
62 + 9
71

CAPÍTULO 4 Operadores y expresiones38

ap.04 11/6/05 21:39 Página 38

4.4 Operadores de incrementación y decrementación
De las características que incorpora C, una de las más útiles son los operadores de incremento ++ y decremento –- dados en la
Tabla 4.4. Estos operadores tienen la propiedad de que pueden utilizarse como sufijo o prefijo. El resultado de la expresión
puede ser distinto, dependiendo del contexto.

m = n++;
m = ++n; .

En el primer caso, se realiza primeramente la asignación y después se incrementa en una unidad. En el segundo caso, se
incremente n en una unidad y posteriormente se realiza la asignación.

Tabla 4.4 Operadores de incrementación (++) y decrementación (--).

Incrementación Decrementación

++n, n++ --n n--

n += 1 n -= 1

N = n + 1 n = n – 1

EJEMPLO 4.3 Diferencias entre operadores de preincremento y postincremento.

#include <stdio.h>
/* Test de operadores ++ y –- */

void main()
{

int m = 99, n;
n = ++m;
printf(“m = %d, n = %d\n”,m,n);
n = m++;
printf(“m = %d, n = %d\n”,m,n);
printf(“m = %d \n”,m++);
printf(“m = %d \n”,++m);

}

EJECUCIÓN

m = 100, n = 100
m = 101, n = 100
m = 101
m = 103

4.5 Operadores relacionales
C no tiene tipos de datos lógicos. En su lugar se utiliza el tipo int para este propósito, con el valor entero 0 que representa a
falso y distinto de cero a verdadero. Operadores tales como >= y == que comprueban una relación entre dos operandos se lla-
man operadores relacionales y se utilizan en expresiones de la forma:

expresión1 operador_relacional expresión2

expresión1 y expresión2 expresiones compatibles C
operador_relacional un operador de la tabla siguiente

CAPÍTULO 4 Operadores y expresiones 39

ap.04 11/6/05 21:39 Página 39

La Tabla 4.5 muestra los operadores relacionales que se pueden aplicar a operandos de cualquier tipo de dato estándar:
char, int, float, double, etc.

Tabla 4.5 Operadores relacionales de C.

Operador Significado Ejemplo

== Igual a a == b

!= No igual a a != b

> Mayor que a > b

< Menor que a < b

>= Mayor o igual que a >= b

<= Menor o igual que a <= b

4.6 Operadores lógicos
Los operadores lógicos se utilizan con expresiones para devolver un valor verdadero (cualquier entero distinto de cero) o un
valor falso (0). Los operadores lógicos de C son: not (!), and (&&) y or(||). El operador lógico ! (not, no) produce
falso (cero) si su operando es verdadero (distinto de cero) y viceversa. El operador lógico && (and, y) produce verdadero sólo
si ambos operandos son verdadero (no cero); si cualquiera de los operandos es falso produce falso. El operador lógico || (or,
o) produce verdadero si cualquiera de los operandos es verdadero (distinto de cero) y produce falso sólo si ambos operandos
son falsos. El operador ! tiene prioridad más alta que &&, que a su vez tiene mayor prioridad que ||. La asociatividad es de
izquierda a derecha.

Evaluación en cortocircuito. En C los operandos de la izquierda de && y || se evalúan siempre en primer lugar; si el valor
del operando de la izquierda determina de forma inequívoca el valor de la expresión, el operando derecho no se evalúa. Esto
significa que si el operando de la izquierda de && es falso o el de || es verdadero, el operando de la derecha no se evalúa.
Esta propiedad se denomina evaluación en cortocircuito.

4.7 Operadores de manipulación de bits
Los operadores de manipulación o tratamiento de bits (bitwise) ejecutan operaciones lógicas sobre cada uno de los bits de los
operandos. Cada operador de manipulación de bits realiza una operación lógica bit a bit sobre datos internos. Los operadores
de manipulación de bits se aplican sólo a variables y constantes char, int y long, y no a datos en coma flotante. La Tabla
4.6 recoge los operadores lógicos bit a bit

Tabla 4.6 Operadores lógicos bit a bit.

Operador Operación

& y (and) lógica bit a bit.

| o (or) lógica (inclusiva) bit a bit.

^ o (xor) lógica (exclusiva) bit a bit (or exclusive, xor).

~ Complemento a uno (inversión de todos los bits).

<< Desplazamiento de bits a izquierda.

>> Desplazamiento de bits a derecha.

CAPÍTULO 4 Operadores y expresiones40

ap.04 11/6/05 21:39 Página 40

4.7.1 OPERADORES DE ASIGNACIÓN ADICIONALES
Los operadores de asignación abreviados están disponibles para operadores de manipulación de bits. Estos operadores vienen
recogidos en la tabla 4.7

Tabla 4.7 Operadores de asignación adicionales.

Símbolo Uso Descripción

<<= a <<= b Desplaza a a la izquierda b bits y asigna el resultado a a.

>>= a >>= b Desplaza a a la derecha b bits y asigna el resultado a a.

&= a &= b Asigna a a el valor a&b.

^= a ^= b Establece a a a^b.

|= a | bEstablece a a a|b.

4.7.2 OPERADORES DE DESPLAZAMIENTO DE BITS (>>, <<)
Efectúa un desplazamiento a la derecha (>>) o a la izquierda (<<) de n posiciones de los bits del operando, siendo n un núme-
ro entero. Los formatos de los operadores de desplazamiento son:

1. valor << numero_de_bits;
2. valor >> numero_de_bits;

El valor puede ser una variable entera o carácter, o una constante. El número_de_bits determina cuántos bits se desplazaran.

4.7.3 OPERADORES DE DIRECCIONES
Los operadores recogidos en la Tabla 4.7 permiten manipular las direcciones de las variables y objetos en general.

Tabla 4.7 Operadores de direcciones.

Operador Acción

* Lee o modifica el valor apuntado por la expresión. Se corresponde con un puntero y el resultado es del
tipo apuntado.

& Devuelve un puntero al objeto utilizado como operando, que debe ser un lvalue (variable dotada de una
dirección de memoria). El resultado es un puntero de tipo idéntico al del operando.

. Permite acceder a un miembro de un objeto agregado (unión, estructura).

-> Accede a un miembro de un objeto agregado (unión, estructura) apuntado por el operando de la izquierda.

4.8 Operador condicional
El operador condicional ?, es un operador ternario que devuelve un resultado cuyo valor depende de la condición comproba-
da. Tiene asociatividad a derechas. El formato del operador condicional es:

expresion_C ? expresion_v : expresion_f;

Se evalúa expresion_C y su valor (cero es falso, distinto de cero es verdadero) determina cuál es la expresión a ejecutar;
si la condición es verdadera se ejecuta expresion_v y si es falsa se ejecuta expresion_f . La precedencia de ? es menor que
la de cualquier otro operando tratado hasta ese momento. Su asociatividad es a derecha.

CAPÍTULO 4 Operadores y expresiones 41

ap.04 11/6/05 21:39 Página 41

EJEMPLO 4.4 Usos del operador condicional ? :

n >= 0 ? 1 : -1 /*1 si n es positivo, -1 si es negativo */
m >= n ? m : n /* devuelve el mayor valor de m y n */

4.9 Operador coma ,
El operador coma permite combinar dos o más expresiones separadas por comas en una sola línea. Se evalúa primero la expre-
sión de la izquierda y luego las restantes expresiones de izquierda a derecha. La expresión más a la derecha determina el resul-
tado global. El uso del operador coma es como sigue:

expresión1, expresión2, expresión3, ..., expresión

Cada expresión se evalúa comenzando desde la izquierda y continuando hacia la derecha.

EJEMPLO 4.5 Se concatenan expresiones con el operador coma (,).

int i, j, resultado;
int i;
resultado = j = 10, i = j, ++i;

En primer lugar, a j se asigna el valor 10, a continuación a i se asigna el valor de j. Por último, i se incrementa a 11. El
valor de esta expresión y, por tanto el valor asignado a resultado es 11.

4.10 Operadores especiales (), []

C admite algunos operadores especiales que sirven para propósitos diferentes. Cabe destacar:(),[].
El operador () es el operador de llamada a funciones. Sirve para encerrar los argumentos de una función, efectuar conver-

siones explícitas de tipo, indicar en el seno de una declaración que un identificador corresponde a una función, resolver los con-
flictos de prioridad entre operadores.

El operador [] sirve para dimensionar los arrays y designar un elemento de un array o una matriz.

4.11 El operador sizeof
C proporciona el operador sizeof, que toma un argumento, bien un tipo de dato o bien el nombre de una variable (escalar,
array, registro, etc.), y obtiene como resultado el número de bytes que ocupa. El formato del operador es:

sizeof(nombre_variable)
sizeof(tipo_dato)
sizeof(expresión)

4.12 Conversiones de tipos
Las conversiones de tipos pueden ser implícitas (ejecutadas automáticamente) o explícitas (solicitadas específicamente por el
programador).

Conversión implícita. C hace muchas conversiones de tipos automáticamente. Convierte valores cuando se asigna un valor de
un tipo a una variable de otro tipo; C convierte valores cuando se combinan tipos mixtos en expresiones; C convierte valores cuan-
do se pasan argumentos a funciones. Los tipos fundamentales (básicos) pueden ser mezclados libremente en asignaciones y expre-
siones. Las conversiones se ejecutan automáticamente: los operandos de tipo más bajo se convierten a los de tipo más alto de
acuerdo con las siguientes reglas: si cualquier operando es de tipo char, short o enumerado se convierte en tipo int; si los ope-
randos tienen diferentes tipos, la siguientes lista determina a qué operación convertirá. Esta operación se llama promoción integral.

CAPÍTULO 4 Operadores y expresiones42

ap.04 11/6/05 21:39 Página 42

int, unsigned int, long, unsigned long , float, double

El tipo que viene primero, en esta lista, se convierte en el que viene segundo.
Conversiones explícitas. C fuerza la conversión explícita de tipos mediante el operador de molde (cast). El operador molde

tiene el formato:(tiponombre)valor . Convierte valor a tiponombre. El operador molde (tipo) tiene la misma prioridad que
otros operadores unitarios tales como +, - y !.

4.13 Prioridad y asociatividad
La prioridad o precedencia de operadores determina el orden en el que se aplican los operadores a un valor. Los operadores del
grupo 1 tienen mayor prioridad que los del grupo 2, y así sucesivamente:

• Si dos operadores se aplican al mismo operando, el operador con mayor prioridad se aplica primero.
• Todos los operadores del mismo grupo tienen igual prioridad y asociatividad.
• La asociatividad izquierda-derecha significa aplicar el operador más a la izquierda primero, y en la asociatividad derecha-

izquierda se aplica primero el operador más a la derecha.
• Los paréntesis tienen la máxima prioridad.

La prioridad de los operadores viene indicada en la Tabla 4.8

Tabla 4.8 Prioridad de los operadores.

Prioridad Operadores Asociatividad

1 _ -> [] () I – D

2 ++ -- ~ ! - + & * sizeof D – I

3 .* ->* I – D

4 * / % I – D

5 + - I – D

6 << >> I – D

7 < <= > >= I – D

8 == != I – D

9 & I – D

10 ^ I – D

11 | I – D

12 && I – D

13 || I – D

14 ?: (expresión condicional) D – I

15 = *= /= %= += -= <<= >>= &= ||= ^= D – I

16 , (operador coma) I – D

I - D : Izquierda – Derecha.

D - I : Derecha – Izquierda.

CAPÍTULO 4 Operadores y expresiones 43

ap.04 11/6/05 21:39 Página 43

PROBLEMAS RESUELTOS
4.1. Determinar el valor de las siguientes expresiones aritméticas.

15 / 12 15 % 12
24 / 12 24 % 12
123 / 100 123 % 100
200 / 10 200 % 100

Solución

15 / 12 = 1 15 % 12 = 3
24 / 12 = 2 24 % 12 = 0
123 / 100 = 1 123 % 100 = 23
200 / 100 = 2 200 % 100 = 0

4.2. ¿Cuál es el valor de cada una de las siguientes expresiones?.

a) 15 * 14 - 3 * 7
b) -4 * 5 * 2
c) (24 + 2 * 6) / 4 =9
d) 3 + 4 *(8 * (4 - (9 + 3) / 6)) = 67
e) 4 * 3 * 5 + 8 * 4 * 2 – 5 = 119
f) 4 - 40 / 5 = -4
g) (-5) % (-2) = -1

Solución

a) 15 * 14 - 3 * 7 = 189
b) -4 * 5 * 2 = -40
c) (24 + 2 * 6) / 4 = 9
d) 3 + 4 *(8 * (4 - (9 + 3) / 6)) = 67
e) 4 * 3 * 5 + 8 * 4 * 2 – 5 = 119
f) 4 - 40 / 5 = -4
g) (-5) % (-2) = -1

4.3. Escribir las siguientes expresiones aritméticas como expresiones de computadora: La potencia puede hacerse con la fun-
ción pow(), por ejemplo (x + y)2 ==pow(x+y,2).

a) + 1 d) g)

b) e) (a + b) h)

c) x + + 1 e) [(a + b)2]2 i) (x + y)2 . (a - b)

Solución

a) x / y + 1
b) (x + y) / (x - y)

y
z

xy
mn

c
d

x + y
x – y

xy
1 – 4x

b
c + d

x
y

CAPÍTULO 4 Operadores y expresiones44

ap.04 11/6/05 21:39 Página 44

c) x + y / z
d) b / (c + d)
e) (a + b) * (c / d)
f) pow(pow(x + y, 2), 2)
g) x * y / (1 – 4 * x)
h) x * y / (m * n)
i) pow(x + y, 2) * (a - b)

4.4. ¿Cuál de los siguientes identificadores son válidos?

N 85 Nombre
MiProblema AAAAAAAAAA
Mi Juego Nombre_Apellidos
MiJuego Saldo_Actual
write 92
m&m Universidad Pontificia
registro Set 15
A B * 143Edad

Solución

N Correcto
MiProblema Correcto
Mi Juego Incorrecto (lleva espacio en blanco)
MiJuego Correcto (lleva espacio en blanco)
write Correcto
m&m Incorrecto
registro Correcto
A B Correcto
85 Nombre Incorrecto (comienza por número)
AAAAAAAAAA Correcto
Nombre_Apellidos Correcto
Saldo_Actual Correcto
92 Incorrecto (número)
Universidad Pontificia Incorrecto (lleva espacio en blanco)
Set 15 Incorrecto (lleva espacio en blanco)
*143Edad Incorrecto (no puede comenzar por *)

4.5. Si x es una variable entera e y una variable carácter. ¿Qué resultados producirá la sentencia scanf(“%d %c” ,& x, & y) si
la entrada es?.
a) 5 c
b) 5C

Solución

Se asigna a la variable x el valor 5 y a la variable y el carácter c o el C mayúscula. Si se ejecuta el programa siguiente:

#include <stdio.h>
int main()
{

int x;
char y ;
scanf("%d %c",& x, & y);

CAPÍTULO 4 Operadores y expresiones 45

ap.04 11/6/05 21:39 Página 45

printf("%d %d %c", x, y, y);
return 0;

}

para el caso a la salida es 5 99 c (99 es el valor ASCII del carácter c)

para el caso b la salida es 5 67 C (67 es el valor ASCII del carácter C)

4.6. Realizar un programa que lea un entero, lo multiplique por 2 y a continuación lo escriba de nuevo en la pantalla.

Codificación

#include <stdio.h>
int main()
{

int x;
printf(" dame un numero entero\n");
scanf("%d", &x);
x = 2 * x;
printf("su doble es %d", x);
return 0

}

4.7. Realizar un programa que solicite al usuario la longitud y anchura de una habitación y a continuación visualice su super-
ficie con cuatro decimales.

Codificación

#include <stdio.h>
int main()
{

float x,y;
printf(" dame la longitud de la habitacion\n");
scanf("%f",&x);
printf(" dame la anchurade la habitacion\n");
scanf("%f",&y);
printf("su superficie es %10.4f", x * y);
return 0;

}

4.8. ¿Cuáles son los resultados visualizados por el siguiente programa, si los datos proporcionados son 5 y 8 ?.

#include <stdio.h>
const int M = 6;
int main()
{

int a, b, c;
puts("Introduce el valor de a y de b");
scanf("%d %d",&a,&b);
c = 2 * a - b;
c -= M;
b = a + c - M;
a = b * M;

CAPÍTULO 4 Operadores y expresiones46

ap.04 11/6/05 21:39 Página 46

printf("\n a = %d\n",a);
b = - 1;
printf(" b= %6d c= %6d",b,c);
return 0;

}

Solución

Los valores visualizados son:
a = -30
b = -1 c = -4

4.9. Un sistema de ecuaciones lineales
ax + by = c
dx + ey = f
se puede resolver con las siguientes fórmulas :

x = y =

Diseñar un programa que lea dos conjuntos de coeficientes (a, b, c, d, e, f) y visualice los valores de x e y.

Codificación

#include <stdio.h>
int main()
{

float a, b, c,d,e,f,denominador,x,y;
puts("Introduce el valor de a de b y de c");
scanf("%f %f %f",&a,&b,&c);
puts("Introduce el valor de d de e y de f");
scanf("%f %f %f",&d,&e,&f);
denominador= a*e-b*d;
if (denominador==0)

printf(" no solucion\n");
else
{

x = (c * e – b * f) / denominador;
y = (a * f – c * d) / denominador;
printf("la solucion es\n");
printf("%f %f \n", x, y);

}
return 0;

}

4.10. Teniendo como datos de entrada el radio y la altura de un cilindro, calcular el área total y el volumen del cilindro.

Análisis del problema

Sabiendo que el área total de un cilindro es igual a la suma de las áreas de los dos círculos mas el área del rectángulo for-
mado por la longitud de la circunferencia y la altura del cilindro, y que el volumen se obtiene multiplicando la superficie de
la base del círculo por la altura del cilindro, el siguiente programa realiza las tareas solicitadas:

af – cd
ae – bd

ce – bf
ae – bd

CAPÍTULO 4 Operadores y expresiones 47

ap.04 11/6/05 21:39 Página 47

Codificación

#include <stdio.h>
const float pi = 3.141592;
int main()
{

float base, altura, area, volumen;
puts("Introduce el valor de la base y la altura");
scanf("%f %f",&base,&altura);
if ((base <= 0)||(altura <= 0))

printf(" no solucion\n");
else
{

area = 2 * pi * base * base + 2 * pi * base * altura;
volumen = pi * base * base * altura;
printf("la solucion es\n");
printf("area total = %f \n", area);
printf("volumen = %f \n", volumen);

}
return 0;

}

4.11. Calcular el área de un triángulo mediante la fórmula :

Área =

donde p es el semiperímetro, p = (a + b + c)/2, y a, b, c los tres lados del triángulo.

Análisis del problema

Para que el triángulo exista debe cumplirse que los lados sean todos positivos, y además que la suma de dos lados cuales-
quiera sea mayor que el otro lado. El programa que se codifica comprueba que los datos leídos cumplen las condiciones.

Codificación

#include <stdio.h>
#include <math.h>
int main()
{

float a,b,c,p,area;
puts("Introduce el valor de los tres lados");
scanf("%f %f %f",&a, &b, &c);
if ((a <= 0) || (b <= 0) || (c <= 0) ||

((a + b) < c) || ((a + c) < b) || ((b + c) < a))
printf(" no solucion\n");

else
{

p =(a + b + c)/ 2;
area = pow(p * (p – a) * (p – b) * (p - c) , 0.5);
printf("la solucion es\n");
printf("area = %f \n", area);

}
return 0;

}

CAPÍTULO 4 Operadores y expresiones48

(p*(p – a)*(p - b)(p - c))�����������������

ap.04 11/6/05 21:39 Página 48

4.12. Construir un programa para obtener la hipotenusa y los ángulos agudos de un triángulo rectángulo a partir de las longi-
tudes de losa catetos.

Análisis del problema

Se calcula la hipotenusa por la fórmula del teorema de Pitágoras, y se obtiene el ángulo mediante la función inversa del seno
que es asin(). Además se convierte el valor devuelto por la función arco seno a grados (la función arco seno da su resulta-
do en radianes).

Codificación

#include <stdio.h>
#include <math.h>
int main()
{

const float pi = 3.141592;
float cateto1, cateto2, hipotenusa, angulo;
puts("Introduce el valor de los catetos");
scanf("%f %f",&cateto1, &cateto2);
if ((cateto1 <= 0) || (cateto2 <= 0))

printf(" no solucion\n");
else
{

hipotenusa = sqrt(cateto1 * cateto1 + cateto2 * cateto2);
angulo = 180 / pi * asin(cateto1 / hipotenusa); /* ángulo en grados */
printf("la solucion es\n");
printf("hipotenusa = %f \n", hipotenusa);
printf(" angulo = %f º\n", angulo);
printf(" otro angulo = %f º\n", 90 - angulo);

}
return 0;

}

4.13. La fuerza de atracción entre dos masas, m1 y m2 separadas por una distancia d, está dada por la fórmula:

F =

donde G es la constante de gravitación universal, G = 6.673.x 10-8 cm3/g. seg2

Escriba un programa que lea la masa de dos cuerpos y la distancia entre ellos y a continuación obtenga la fuerza gravita-
cional entre ella. La salida debe ser en dinas; un dina es igual a gr. cm/seg2.

Análisis del problema

Simplemente hay que leer las dos masas y aplicar la fórmula correspondiente.

Codificaión.

#include <stdio.h>
#include <math.h>
int main()
{

const float G = 6.673e-8;

G* m1 *m2

d2

CAPÍTULO 4 Operadores y expresiones 49

ap.04 11/6/05 21:39 Página 49

float masa1,masa2, distancia,fuerza;
puts(" dame la masa de los dos cuerpos en gramos\n");
scanf("%f %f",&masa1, &masa2);
puts(" dame la distancia entre ellos en centimetros\n");
scanf("%f",&distancia);
if ((masa1 <= 0) || (masa2 <= 0) || (distancia <= 0))

printf(" no solucion\n");
else

{
fuerza = G * masa1 * masa2 / (distancia * distancia);
printf("la solucion es\n");
printf("Fuerza en dinas = %f \n", fuerza);

}
return 0;

}

4.14. Escribir un programa que lea dos enteros y calcule e imprima su producto, cociente y el resto cuando el primero se divide
por el segundo.

Análisis del problema

Se leerán en dos variables enteras los datos y se calcularán en las variables producto, cociente y resto los resultados.

Codificación

#include <stdio.h>
int main()
{

int a, b, producto, cociente, resto;
puts(" introduzca dos numeros\n");
scanf("%d %d", &a, &b);
producto = a * b;
cociente = a / b;
resto = a % b;
printf(" producto = %d\n", producto);
printf(" cociente = %d\n", cociente);
printf(" resto = %d\n", resto);
return 0;

}

4.15. Escribir un programa C que lea dos números y visualice el mayor.

Codificación

#include <stdio.h>
int main()
{

int x, y, Mayor;
puts(" introduzca dos numeros\n");
scanf("%d %d", &x, &y);
Mayor = x;
if (x < y)

Mayor = y;

CAPÍTULO 4 Operadores y expresiones50

ap.04 11/6/05 21:39 Página 50

printf(" el mayor es %d\n", Mayor);
return 0;

}

4.16. Escribir un programa en el que se introducen como datos de entrada la longitud del perímetro de un terreno, expresada con
tres números enteros que representan hectómetros, decámetros y metros respectivamente. Se ha de escribir, con un rótulo
representativo, la longitud en decímetros.

Análisis del problema

El programa que se codifica lee los hectómetros, decámetros y metros y realiza las conversiones correspondientes.

Codificación

#include <stdio.h>
int main()
{

int hectometros, decametros, metros, decimetros;
printf("Introduzca hectometros, decametros y metros ");
scanf("%d %d %d",&hectometros, &decametros, &metros);
decímetros = ((hectómetros * 10 + decametros) * 10 + metros)*10;
printf (" numero de decimetros es %d \n", decimetros);
return 0;

}

4.17. Escribir un programa que desglose cierta cantidad de segundos introducida por teclado en su equivalente en semanas, días,
horas, minutos y segundos.

Análisis del problema

El programa que se codifica lee el número de segundos y realiza las conversiones, teniendo en cuenta que un día tiene 24
horas, una hora 60 minutos, y un minuto 60 segundos.

Codificación

#include <stdio.h>
int main()
{

int semanas, dias, horas, minutos, segundos, acu;
printf("Introduzca segundos ");
scanf("%d",&acu);
segundos = acu % 60;
acu = acu / 60;
minutos = acu % 60;
acu = acu / 60;
horas = acu % 24;
acu = acu / 24;
dias = acu % 7;
semanas = acu / 7;
printf (" numero de segundos %d\n", segundos);
printf (" numero de minutos %d\n", minutos);
printf (" numero de horas %d\n", horas);
printf (" numero de dias %d\n", dias);

CAPÍTULO 4 Operadores y expresiones 51

ap.04 11/6/05 21:39 Página 51

printf (" numero de semanas %d\n", semanas);
return 0;

}

4.18. La famosa ecuación de Einstein para conversión de una masa m en energía viene dada por la fórmula: E = cm3, c es la
velocidad de la luz y su valor es: c= 2.997925 x 1010m/sg.

Escribir un programa que lea una masa en gramos y obtenga la cantidad de energía producida cuando la masa se convierte
en energía.
Nota: Si la masa se da en gramos, la fórmula produce le energía en ergios.

Codificación

#include <stdio.h>
int main()
{

float m, energia;
const float c = 2.997925e+10;
puts(" introduzca masa\n");
scanf("%f", &m);
energia = c * m * m * m;
printf(" energia en ergios %e\n", energia);
return 0;

}

4.19. Disñar un programa que permita convertir una medida dada en pies a sus equivalentes en: a) yardas, b) pulgadas, c) cen-
tímetros y d) metros (1 pie = 12 pulgadas, 1 yarda = 3 pies, 1 pulgada = 2.54 cm. 1 m = 100 cm). Leer el número de pies
e imprimir el número de yardas, pies, pulgadas, centímetros y metros.

Análisis del problema

El programa leerá el número de pies y realizará las transformaciones correspondientes de acuerdo con las equivalencias.

Codificación

#include <stdio.h>
int main()
{

float pies, pulgadas, yardas, metros, centimetros;
puts(" introduzca pies\n");
scanf("%f", &pies);
pulgadas = pies * 12;
yardas = pies / 3;
centímetros = pulgadas * 2.54;
metros = centímetros / 100;
printf(" pies %f \n", pies);
printf(" pulgadas %f\n", pulgadas);
printf(" yardas %f\n", yardas);
printf(" centimetros %f\n", centimetros);
printf(" metros %f\n", metros);
return 0;

}

CAPÍTULO 4 Operadores y expresiones52

ap.04 11/6/05 21:39 Página 52

4.20. Escriba un programa que lea cuatro números enteros y nos calcule su media.

Análisis del problema

Se leerán los cuatro números enteros y se calculará la media en una variable de tipo real, obligando a que el cociente sea un
número real.

Codificación

#include <stdio.h>
int main()
{

int n1, n2, n3, n4;
float media;
puts(" introduzca los cuatro números\n");
scanf("%d %d %d %d", &n1, &n2, &n3, &n4);
media = (n1 + n2 + n3 + n4) / 4.0;
printf(" la media es %f \n", pmedia);
return 0;

}

CAPÍTULO 4 Operadores y expresiones 53

PROBLEMAS PROPUESTOS

4.1. Una temperatura Celsius (centígrados) puede ser con-
vertida a una temperatura equivalente F de acuerdo a la
siguiente fórmula :

F = () c + 32

Escribir un programa que lea la temperatura en grados
Celsius y la escriba en F.

4.2. Realizar un programa que lea la hora de un día de nota-
ción de 24 horas y la respuesta en notación de 12 horas.
Por ejemplo, si la entrada es 13:45, la salida será:

1: 45 PM

El programa pedirá al usuario que introduzca exacta-
mente cinco caracteres. Por ejemplo, las nueve en punto
se introduce como

09:00

4.3. Realizar un programa que determine si un año es bisies-
to. Un año es bisiesto si es múltiplo de 4 (por ejemplo
1984). Sin embargo, los años múltiplos de 100 sólo son
bisiestos cuando a la vez son múltiples de 400 (por ejem-
plo, 1800 no es bisiesto, mientras que 2000 si lo es).

4.4. Construir un programa que indique si un número intro-
ducido por teclado es positivo, igual a cero, o negativo,
utilizar para hacer la selección el operador ?.

4.5. Implementar un programa que lea tres números y escri-
ba el mayor y el menor.

4.6. Implementar un programa que lea tres números y calcu-
le la media.

4.7. Implementar un programa que lea el radio de un círculo
y calcule su área, así como la longitud de la circunfe-
rencia de ese radio.

4.8. Implementar un programa que lea el radio y la altura de
un cono y calcule su volumen y área total.

4.9. Implementar un programa que lea tres enteros de tres
dígitos y calcule e imprima su suma y su producto. La
salida será justificada a derecha

4.10. Implementar un programa que lea 3 números y si el
tercero es positivo calcule y escriba la suma de los
tres números, y si es negativo calcule y escriba su pro-
ducto.

9

5

ap.04 11/6/05 21:39 Página 53

ap.04 11/6/05 21:39 Página 54

Los programas definidos hasta este punto se ejecutan de modo secuencial, es decir, una sentencia después de otra. La ejecución
comienza con la primera sentencia de la función y prosigue hasta la última sentencia, cada una de las cuales se ejecuta una sola
vez. Esta forma de programación es adecuada para resolver problemas sencillos. Sin embargo, para la resolución de problemas
de tipo general se necesita la capacidad de controlar cuáles son las sentencias que se ejecutan y en qué momentos. Las estruc-
turas o construcciones de control controlan la secuencia o flujo de ejecución de las sentencias. Las estructuras de control se
dividen en tres grandes categorías en función del flujo de ejecución: secuencia, selección y repetición.

Este capítulo considera las estructuras selectivas o condicionales –sentencias if y switch– que controlan si una sentencia
o lista de sentencias se ejecutan en función del cumplimiento o no de una condición.

5.1 Estructuras de control
Las estructuras de control controlan el flujo de ejecución de un programa o función. Las instrucciones o sentencias se orga-
nizan en tres tipos de estructuras de control que sirven para controlar el flujo de la ejecución: secuencia, selección (decisión) y
repetición.

5.2 La sentencia if con una alternativa
La sentencia if tiene dos alternativas o formatos posibles. El formato más sencillo tiene la sintaxis siguiente:

if (Expresión lógica) Sentencia

La sentencia if funciona de la siguiente manera. Si Expresión es verdadera, se ejecuta Acción (Sentencia); en caso
contrario no se ejecuta Acción (Sentencia).

55

CAPÍTULO 5

Estructuras de selección:
sentencias if y switch

ap.05 11/6/05 21:39 Página 55

EJEMPLO 5.1 Prueba de divisibilidad.

int main()
{
int n, d;
printf("Introduzca dos enteros: ");
scanf("&d &d",&n,&d);
if (n%d == 0) printf(" %d es divisible por %d\n",n,d);
return 0;

}

EJECUCIÓN

Introduzca dos enteros: 24 4
24 es divisible por 4

5.3 Sentencia if de dos alternativas: if-else
Este formato de la sentencia if tiene la siguiente sintaxis:

if (exprresión) Acción1 else Acción2

Cuando se ejecuta la sentencia if-else, se evalúa Expresión. Si Expresión es verdadera, se ejecuta Acción1 y en caso
contrario se ejecuta Acción2.

Una sentencia if es anidada cuando la sentencia de la rama verdadera o la rama falsa, es a su vez una sentencia if. Una
sentencia if anidada se puede utilizar para implementar decisiones con varias alternativas o multi-alternativas.

CAPÍTULO 5 Estructuras de selección if y swicht56

Expresión

Acción

verdadera falsa

Figura 5.1 Diagrama de flujo de una sentencia básica if.

Sintaxis:

if (condición1)
sentencia1;

else if (condición2)
sentencia2;

.

.

.
else if (condiciónn)
sentencian;

else
sentencia;

ap.05 11/6/05 21:39 Página 56

EJEMPLO 5.2 Calcular el mayor de dos números leídos del teclado y visualizarlo en pantalla.

#include <stdio.h>
int main()
{
int x, y;
printf("Introduzca dos enteros: ");

scanf("%d %d",&x,&y);
if (x > y)
printf("%6d\n", x);

else
printf("%6d\n", y);
return 0;

}

EJECUCIÓN

Introduzca dos enteros: 17 54
54

5.4 Sentencia de control switch
La sentencia switch es una sentencia C que se utiliza para hacer una selección entre múltiples alternativas. La expresión
selector debe ser un tipo ordinal (int, char,...). Cada etiqueta es un valor único, constante, y cada etiqueta debe tener
un valor diferente de los otros. La expresión de control o selector se evalúa. Si su valor es igual a una de las etiquetas case
– por ejemplo, etiquetai – entonces la ejecución comenzará con la primera sentencia de la secuencia secuenciai y continua-
rá hasta que se encuentra el final de la sentencia de control switch, o hasta encontrar la sentencia break.

CAPÍTULO 5 Estructuras de selección if y swicht 57

Sintaxis:

switch (selector)
{
case etiqueta1 : sentencias1;
case etiqueta2 : sentencias2;
.
.
.
case etiquetan : sentenciasn;
default: sentencias; /* opcional */

}

5.5 Expresiones condicionales: el operador ?:

Una expresión condicional tiene el formato C ? A : B y es realmente una operación ternaria (tres operandos) en la cual C,A
y B son los tres operandos y ? : es el operador.

Sintaxis:

condición ? expresión1: expresión2

ap.05 11/6/05 21:39 Página 57

PROBLEMAS RESUELTOS
5.1. ¿Qué errores de sintaxis tiene la siguiente sentencia?.

if x > 25.0
y = x

else
y = z;

Solución

La expresión correcta debe ser la siguiente:

if (x > 25.0)
y = x;

else
y = z;

Por tanto le falta los paréntesis en la expresión lógica y un punto y coma después de la sentencia de asignación y = x.

5.2. ¿Qué valor se le asigna a consumo en la sentencia if siguiente si velocidad es 120?.

if (velocidad < 80)
consumo = 10.00;

condición es una expresión lógica
expresión1/expresión2 son expresiones compatibles de tipos

La expresión primerose evalúa condición, si el valor de condición es verdadera (distinto de cero) entonces se devuelve
como resultado el valor de expresión1; si el valor de condición es falsa (cero) se devuelve como resultado el valor de expre-
sión2.

EJEMPLO 5.3 Se utiliza una expresión condicional para llamar, alternativamente a f1(x) o a f2(x).

x == y ? f1(x) : f(x,y);

es equivalente a la siguiente sentencia:

if (x == y)
f1(x);

else
f2(x , y);

5.6 Evaluación en cortocircuito de expresiones lógicas
La evaluación en cortocircuito de una expresión lógica significa que se puede detener la evaluación de una expresión lógica
tan pronto como su valor pueda ser determinado con absoluta certeza. C realiza evaluación en cortocircuito con los operadores
&& y ||, de modo que evalúa primero la expresión más a la izquierda, de las dos expresiones unidas por && o bien por ||. Si
de esta evaluación se deduce la información suficiente para determinar el valor final de la expresión (independiente del valor
de la segunda expresión), el compilador de C no evalúa la segunda expresión. Esto permite disminuir en general el tiempo de
ejecución. Por esta razón el orden de las expresiones con operadores && y || puede ser crítico en determinadas situaciones.

CAPÍTULO 5 Estructuras de selección if y swicht58

ap.05 11/6/05 21:39 Página 58

CAPÍTULO 5 Estructuras de selección if y swicht 59

else if (velocidad > 100)
consumo = 12.00;

else if (velocidad > 120)
consumo = 15.00;

Solución

Si velocidad toma el valor de 120 entonces necesariamente consumo debe tomar el valor de 12.00.

5.3. ¿Cuál es el error del siguiente código?

if (x < y < z) printf("%d < %d < %d\n",x,y,z);

Solución

El error que presenta la sentencia es que x < y < z no es una expresión lógica. Debería haberse puesto (x < y) && (y < z).

5.4. ¿Qué salida producirá el código siguiente, cuando se empotra en un programa completo y primera_opcion vale 1?. ¿ Y
si primera_opcion vale 2?.

int primera_opcion;

switch (primera_opcion + 1)
{
case 1:
puts("Cordero asado");
break;

case 2:
puts("Chuleta lechal");
break;

case 3:
puts("Chuletón");

case 4:
puts("Postre de pastel");
break;

default:
puts("Buen apetito");

}

Solución

En el primer caso aparece escrito Chuleta lechal
En el segundo caso aparece escrito Chuletón y en la siguiente línea Postre de pastel, ya que case 3: no lleva la orden
break.

5.5. Escribir una sentencia if-else que visualice la palabra Alta si el valor de la variable nota es mayor que 100 y Baja si el
valor de esa nota es menor que 100.

Solución

#include <stdio.h>
int main()
{

ap.05 11/6/05 21:39 Página 59

CAPÍTULO 5 Estructuras de selección if y swicht60

int nota;
printf(" dame nota: ");
scanf("%d", ¬a);
if (nota < 100)

printf(" Baja ");
else if (x >100)m

printf("Alta");
return 0;

}

5.6. Realizar un programa que determine el mayor de tres números.

Análisis del problema

Se realiza mediante un algoritmo voraz, de tal manera, que el mayor de un solo número es siempre el propio número. Si ya
se tiene el mayor de una lista de números, y si a esa lista se le añade un nuevo número entonces el mayor o bien es el que
ya se tenía, o bien es el nuevo.

Codificación

#include <stdio.h>
int main()
{

int n1,n2,n3, mayor;
puts(" introduzca tres nuumeros ");
scanf(" %d %d %d", &n1, &n2,&n3);
mayor = n1;
if(mayor < n2)

mayor = n2;
if(mayor < n3)

mayor = n3;
printf(" el mayor es %d\n", mayor);
return 0;

}

5.7. Escribir una sentencia if-else que clasifique un entero x en una de las siguientes categorías y escriba un mensaje adecuado:

x < 0 o bien 0 ≤ x ≤ 100 o bien x > 100

Solución

#include <stdio.h>
int main()
{

int x = 10;
if (x < 0)

printf("%d es negativo\n",x);
else if (x <= 100)

printf("0 <= x = %d <= 100\n", x);
else

printf("x = %d > 100\n", x);
return 0;

}

ap.05 11/6/05 21:39 Página 60

CAPÍTULO 5 Estructuras de selección if y swicht 61

5.8. Se trata de escribir un programa que clasifique enteros leídos del teclado de acuerdo a los siguientes criterios: si es 30 o
mayor, o negativo, visualizar un mensaje en ese sentido; en caso contrario, si es un nuevo primo, potencia de 2, o un núme-
ro compuesto, visualizar el mensaje correspondiente.

Análisis del problema

Se programa una función primo() que decide si un número es primo. Se inicializa una variable d a 2 y un bucle while incre-
menta d en una unidad cada vez que se ejecuta hasta encontrar un número d que divida al número que se quiere comprobar
que es primo. El número será primo si el único divisor encontrado es el propio número. Se programa una función p2() que
decide si un número es potencia de 2. Para comprobarlo se inicializa una variable d a 2, y mientras el número sea divisible
por d lo que se hace es dividir el número por d. Por tanto el número cumplirá la condición de ser potencia de 2 si al final
toma el valor uno.

Codificación

#include <stdio.h>
// función primo

int primo(int x)
{

int d = 2;
// los únicos primos son los que son divisibles

// por si mismos y por la unidad.
while (x %d != 0)

d++;
return (d == x);

}
// función potencia de dos

int p2(int x)
{

int d = 2;
while (x %d == 0)

x = x / 2;
return (x == 1);

}
// programa principal

int main()
{

int x;
puts(" introduzca numero entero \n");
scanf(" %d ", &x);
if (x < 0)

printf("%d es negativo\n", x);
else if (x > 30)

printf(" x = %d > 30\n",x);
elseif (primo(x))
{

if (x == 2)
printf("x= %d es primo y potencia de dos\n",x);

else
printf("x = %d es primo y no potencia de dos \n", x);

}
else if (p2(x))

printf("x = %d es compuesto y potencia de dos\n", x);

ap.05 11/6/05 21:39 Página 61

CAPÍTULO 5 Estructuras de selección if y swicht62

else
printf("x = %d es compuesto y no potencia de dos\n",x);

return 0;
}

5.9. Escribir un programa que determine si un año es bisiesto. Un año es bisiesto si es múltiplo de 4 (por ejemplo 1984). Sin
embargo, los años múltiplos de 100 sólo son bisiestos cuando a la vez son múltiples de 400 (por ejemplo, 1800 no es bisies-
to, mientras que 2000 sí lo es).

Análisis del problema

Se diseña una función bisiesto() que decide si un número entero positivo representa a un año bisiesto.

Codificación

#include <stdio.h>
int bisiesto(int x);

int main()
{

int x;
puts(" introduzca año entero \n");
scanf(" %d", &x);
if (bisiesto(x))

printf("%d es bisiesto\n", x);
else

printf (" %d no es un año bisiesto \n", x);
return 0;

}

int bisiesto(int x)
{

if (x % 400 ==0)
return 1;

else if (x % 100 == 0)
return 0;

else
return (x % 4 == 0);

}

5.10. Escribir un programa que calcule el número de días de un mes, dados los valores numéricos del mes y el año.

Análisis del problema

Se programa una función ndd() que calcula el número de días de un mes de un año concreto. La función llama a bisies-
to()(ejercicio 5.9), que, como su nombre indica, determina si un año es bisiesto (Febrero, 29 días). El programa principal
lee y valida tanto el dato año como el dato mes.

Codificación (Consultar la página web del libro)

ap.05 11/6/05 21:39 Página 62

CAPÍTULO 5 Estructuras de selección if y swicht 63

5.11. Escribir un programa que introduzca el número de un mes (1 a 12) y visualice el número de días de ese mes.

Análisis del problema

Para resolver el problema, hay que tener en cuenta que el mes 2 corresponde a febrero que puede tener 29 o 28 días depen-
diendo de si es o no bisiesto el año correspondiente. De esta forma, además de leer el mes, se lee el año, y mediante la fun-
ción bisiesto() (ejercicio 5.9), se decide si febrero tiene 28 o 29 días. El resto de los meses tiene 31 días excepto Abril,
Junio, Septiembre y Noviembre.

Codificación

#include <stdio.h>
int bisiesto(int x) ;

int main()
{

int mes, ano;
puts(" introduzca mes entre 1 y 12 \n");
scanf(" %d", &mes);
puts(" introduzca año \n");
scanf(" %d", &ano);
if (mes == 2)

if(bisiesto(ano))
printf(" tiene 29 dias\n");

else
printf(" tiene 28 dias\n");

else
if((mes == 4) || (mes == 6) || (mes == 9) || (mes == 11))

printf(" tiene 30 dias \n");
else printf(" tiene 31 dias \n");

return 0;
}

5.12. Escribir y comprobar un programa que resuelva la ecuación cuadrática (ax2 + bx + c = 0).

Análisis del problema

Para resolver el problema se ha tenido en cuenta que:

1. Si a <> 0 se presentan tres casos: el primero con dos soluciones dada por la fórmula que da la solución de la ecuación
de segundo grado cuando el discriminante es positivo. El segundo con una solución dada por la fórmula cundo el discri-
minante es cero. El tercero con dos soluciones complejas, dada por la fórmula cuando el discriminante es negativo.

2. Si a = 0 se presentan a su vez otros tres casos: el primero es cuando b <>0 cuya solución -c/b. El segundo es cuan-
do b = 0 y c = 0, que es evidentemente una identidad. El tercero cuando b = 0 y c <> 0 que no puede tener solu-
ción.

Codificación (Consultar la página web del libro)

5.13. Escriba una sentencia que escriba menor, si el valor de la variable dato es menor que cero, y mayor, si el valor de dato es
mayor que cero.

ap.05 11/6/05 21:39 Página 63

CAPÍTULO 5 Estructuras de selección if y swicht64

Solución

#include <stdio.h>
void main()
{

float x;
printf(" dame dato\n");
scanf("%f", &x);
if(x < 0)
printf(" menor que cero ");

if (x > 0)
printf("mayor que cero");

}

5.14. Escribir un programa que lea tres enteros y emita un mensaje que indique si están o no en orden numérico.

Solución

Se leen los tres datos y se comprueba la condición con una sentencia de selección doble.

#include <stdio.h>
void main()
{

float x, y, z;
printf(" dame tres datos\n");
scanf("%f %f %f", &x,&y,&z);
if((x <= y) && (y <= z))

printf(" ordenados ");
else

printf("no ordenados");
}

5.15. Codificar un programa que escriba la calificación correspondiente a una nota, de acuerdo con el siguiente criterio:

0 a < 5.0 Suspenso
5 a < 6.5 Aprobado
6.5 a < 8.5 Notable
8.5 a < 10 Sobresaliente
10 Matrícula de honor

Análisis del problema

El programa lee la nota en una variable real, y mediante if anidados escribirá el resultado pedido.

Codificación

#include <stdio.h>
void main()
{

float nota;
printf(" dame nota\n");
scanf("%f", ¬a);
if((nota < 0.0) || (nota > 10))

ap.05 11/6/05 21:39 Página 64

CAPÍTULO 5 Estructuras de selección if y swicht 65

printf(" error en nota ");
else if (nota < 5.0)

printf("Suspenso");
else if(nota < 6.5)

printf("Aprobado");
else if (nota < 8.5)

printf("Notable");
else if (nota < 10)

printf("Sobresaliente");
else

printf("Matricula de Honor");
}

5.16. Escriba un programa que determine el mayor de 5 números leídos del teclado.

Análisis del problema

El programa lee un numero real Mayor. Posteriormente, lee en una iteración otros cuatro números quedándose en cada una
de ellas en la variable Mayor con el número mayor leído hasta el momento.

Codificación

#include <stdio.h>
void main()
{

float x, Mayor;
int i;
printf(" dame numero\n");
scanf("%f" , &Mayor);
for(i = 2; i <= 5; i++)
{

printf(" dame numero\n");
scanf("%f" , &x);
if(Mayor < x)

Mayor = x;
}
printf(" el mayor es %f\n", Mayor);

}

5.17. Se desea calcular el salario neto semanal de los trabajadores de una empresa de acuerdo a las siguientes normas:

Horas semanales trabajadas < =38 a una tasa dada.
Horas extras (38 o más) a una tasa 50 por 100 superior a la ordinaria.
Impuestos 0 por 100, si el salario bruto es menor o igual a 50.000 pesetas.
Impuestos 10 por 100, si el salario bruto es mayor de 50.000 pesetas.

Análisis del problema

Se escribe un programa que lee las Horas, la Tasa, calcula las horas extras, así como el Salario Bruto y el Salario Neto de
acuerdo con los especificado.

ap.05 11/6/05 21:39 Página 65

CAPÍTULO 5 Estructuras de selección if y swicht66

Codificación

#include <stdio.h>
void main()
{

float Horas, Extras, Tasa, SalarioBruto, SalarioNeto;
printf(" dame Horas\n");
scanf("%f" , &Horas);
if (Horas <= 38)

Extras = 0;
else
{

Horas = 38;
Extras = Horas - 38;

}
printf("introduzca Tasa\n");
scanf("%f",&Tasa);
SalarioBruto = Horas * Tasa + Extras * Tasa * 1.5;
if (SalarioBruto < 50000.0)

SalarioNeto = SalarioBruto;
else

SalarioNeto = SalarioBruto * 0,9;
printf(" Salario bruto %f \n", SalarioBruto);
printf(" Salario neto %f \n", SalarioNeto) ;

}

5.18. ¿Qué salida producirá el siguiente código, cuando se empotra en un programa completo?

int x = 2;
puts("Arranque");
if (x <= 3)
if (x != 0)

puts("Hola desde el segundo if");
else

puts("Hola desde el else.");
puts("Fin\nArranque de nuevo");
if (x > 3)
if (x != 0)

puts("Hola desde el segundo if.");
else

puts("Hola desde el else.");
puts("De nuevo fin");

Solución

Arranque
Hola desde el segundo if
Fin
Arranque de nuevo
De nuevo fin

ap.05 11/6/05 21:39 Página 66

CAPÍTULO 5 Estructuras de selección if y swicht 67

5.19. ¿Cuál es el error de este código?

printf("Introduzca n:");
scanf("%d", &n);
if (n < 0)

puts("Este número es negativo. Pruebe de nuevo .");
scanf("%d", &n);

else

printf("conforme. n = %d\n", n);

Solución

El error está determinado porque el else no está bien enlazado con el if. O bien se elimina una de las dos sentencias o bien
se pone llaves, como se indica a continuación.

#include <stdio.h>
void main()
{

int n;
printf("Introduzca n:");
scanf("%d", &n);
if (n < 0)
{

puts("Este número es negativo. Pruebe de nuevo .");
scanf("%d", &n);

}
else

printf("conforme. n= %d\n", n);
}

5.20. ¿Qué hay de incorrecto en el siguiente código?

if (x = 0)
printf("%d = 0\n", x);

else

printf("%d != 0\n", x);

Solución

La sentencia anterior tiene de incorrecta que x = 0 es una sentencia de asignación y no es una expresión lógica. Lo que el
programador es probable que haya querido poner es:

if (x == 0)
printf("%d = 0\n", x);

else
printf("%d != 0\n", x);

5.21. Cuatro enteros entre 0 y 100 representan las puntuaciones de un estudiante de un curso de informática. Escribir un pro-
grama para encontrar la media de estas puntuaciones y visualizar una tabla de notas de acuerdo al siguiente cuadro:

ap.05 11/6/05 21:39 Página 67

CAPÍTULO 5 Estructuras de selección if y swicht68

Media Puntuación

[90 , 100] A
[80, 90) B
[70, 80) C
[60, 70) D
[0, 60) E

Análisis del problema

El programa que se escribe, lee las cuatro notas enteras, calcula la media real, y escribe la media obtenida y su puntuación
de acuerdo con la tabla anterior.

Codificación

#include <stdio.h>
void main()
{

int nota1,nota2,nota3,nota4;
float media;
printf("Dame nota 1 ");
scanf("&d", ¬a1);
printf("Dame nota 2 ");
scanf("&d", ¬a2);
printf("Dame nota 3 ");
scanf("&d", ¬a3);
printf("Dame nota 4 ");
scanf("&d", ¬a4);
media = (float)(nota1 + nota2 + nota3 + nota4) / (float)4;
if((media < 0) || (media > 100))

printf("fuera de rango ");
else if(media >= 90)

printf(" media = %f A", media);
else if(media >= 80)

printf(" media = %f B", media);
else if(media >= 70)

printf(" media = %f C", media);
else if(media >= 60)

printf(" media = %f D", media);
else

printf(" media = %f E", media);
}

ap.05 11/6/05 21:39 Página 68

CAPÍTULO 5 Estructuras de selección if y swicht 69

PROBLEMAS PROPUESTOS
5.1. Explique las diferencias entre las sentencias de la colum-

na de la izquierda y de la columna de la derecha. Para
cada una de ellas deducir el valor final de x si el valor
inicial de x es 0.

if (x >= 0) if (x >= 0)
x++; x++;

else if (x >= 1); if (x >= 1)
x += 2; x += 2;

5.2. El domingo de Pascua es el primer domingo después de la
primera luna llena posterior al equinoccio de primavera, y
se determina mediante el siguiente cálculo sencillo:

A = año mod 19
B = año mod 4
C = año mod 7
D = (19 * A + 24) mod 30
E = (2 * B + 4 * C + 6 * D + 5) mod 7
N = (22 + D + E)

Donde N indica el número de día del mes de marzo (si N
es igual o menor que 3) o abril (si es mayor que 31).
Construir un programa que determine fechas de domin-
gos de Pascua.

5.3. Determinar el carácter asociado a un código introducido
por teclado corresponde a un carácter alfabético, dígito,
de puntuación, especial o no imprimible.

5.4. Escribir un programa que lea la hora de un día de nota-
ción de 24 horas y la respuesta en notación de 12 horas.
Por ejemplo, si la entrada es 13:45, la salida será: 1:45
PM. El programa pedirá al usuario que introduzca exac-
tamente cinco caracteres. Por ejemplo, las nueve en
punto se introduce como: 09:00.

5.5. Escribir un programa que acepte fechas escritas de modo
usual y las visualice como tres números. Por ejemplo, la
entrada 15, Febrero 1989 producirá la salida 15 02 1989

5.6. Escribir un programa que acepte un número de tres dígi-
tos escrito en palabra y a continuación los visualice
como un valor de tipo entero. La entrada se termina con
un punto. por ejemplo, la entrada doscientos vein-
ticinco producirá la salida 225.

5.7. Escribir un programa que acepte un año escrito en cifras
arábigas y visualice el año escrito en números romanos,
dentro del rango 1000 a 2000.
Nota: Recuerde que V = 5 X = 10 L = 50 C = 100
D = 500 M = 1000

IV = 4 XL = 40 CM = 900
MCM = 1900 MCML = 1950 MCMLX = 1960
MCMXL = 1940 MCMLXXXIX = 1989

5.8. Se desea redondear un entero positivo N a la centena
más próxima y visualizar la salida. Para ello la entrada
de datos debe ser los cuatro dígitos A, B, C, D, del ente-
ro N. Por ejemplo, si A es 2, B es 3, C es 6 y D es 2,
entonces N será 2362 y el resultado redondeado será
2400. Si N es 2342, el resultado será 2300, y si N =
2962, entonces el número será 3000. Diseñar el progra-
ma correspondiente.

5.9. Se quiere calcular la edad de un individuo, para ello se
va a tener como entrada dos fechas en el formato día (1
a 31), mes (1 a 12) y año (entero de cuatro dígitos),
correspondientes a la fecha de nacimiento y la fecha
actual, respectivamente. Escribir un programa que cal-
cule y visualice la edad del individuo. Si es la fecha de
un bebé (menos de un año de edad), la edad se debe dar
en meses y días; en caso contrario, la edad se calculará
en años.

5.10. Se desea leer las edades de tres de los hijos de un matri-
monio y escribir la edad mayor, la menor y la media de
las tres edades.

ap.05 11/6/05 21:39 Página 69

ap.05 11/6/05 21:39 Página 70

Una de las características de las computadoras que aumentan considerablemente su potencia es su capacidad para ejecutar una
tarea con gran velocidad, precisión y fiabilidad. Las tareas repetitivas es algo que los humanos encuentran difíciles y tediosas de
realizar. En este capítulo se estudian las estructuras de control iterativas o repetitivas que realizan la repetición o iteración de
acciones. C soporta tres tipos de estructuras de control: los bucles while, for y do-while. Estas estructuras de control o sen-
tencias repetitivas controlan el número de veces que una sentencia o listas de sentencias se ejecutan.

6.1 La sentencia while
Un bucle while tiene una condición del bucle (una expresión lógica) que controla la secuencia de repetición. La posición de
esta condición del bucle es delante del cuerpo del bucle y significa que en un bucle while se evalúa la condición antes de que
se ejecute el cuerpo del bucle. La Figura 6.1 representa el diagrama del bucle while. El diagrama indica que la ejecución de la
sentencia o sentencias se repite mientras la condición del bucle permanece verdadera (true) y termina cuando se hace falsa
(false). En otras palabras, el cuerpo de un bucle while se ejecutará cero o más veces.

71

CAPÍTULO 6

Estructuras de control:
bucles

Figura 6.1 Diagrama del bucle while.

Condición_bucle

sentencia

falsa

verdadera

ap.06 11/6/05 21:39 Página 71

while palabra reservada C
condición_bucle expresión lógica o booleana
sentencia sentencia simple o compuesta

EJEMPLO 6.1 Bucle mientras para escribir de 0 a 10

int x = 0;
while (x < 10)

printf("X: %d", x++);

6.1.1 MISCELÁNEA DE CONTROL DE BUCLES While
Si la variable de control no se actualiza, el bucle se ejecutará "siempre". Tal bucle se denomina bucle infinito. En otras pala-
bras un bucle infinito (sin terminación) se producirá cuando la condición del bucle permanece y no se hace falsa en ninguna
iteración.

Bucles controlados por centinelas. Un centinela es un valor que sirve para terminar el proceso del bucle. Este valor debe
ser elegido con cuidado por el programador para que no afecte al normal funcionamiento del bucle.

Bucles controlados por indicadores (banderas). En C se utiliza como bandera una variable entera que puede tomar dos
valores, 1 ó 0. Un bucle controlado por bandera – indicador- se ejecuta hasta que se produce el suceso anticipado y se cambia
el valor del indicador. Para que un bucle esté controlado por una bandera previamente debe ponerse la bandera a 1 (true, ver-
dadero), y cuando se produzca el suceso que decide que hay que salirse del bucle se cambia el valor de la bandera a 0 (false,
falso).

La sentencia break en los bucles. La sentencia break se utiliza para la salida de un bucle while o do-while, también se
utiliza dentro de una sentencia switch, siendo éste su uso más frecuente.

while (condición1)
{
if (condición2)

break;
/* sentencias */

}

El uso de break en un bucle no es muy recomendable ya que puede hacer difícil la comprensión del comportamiento del
programa. En particular, suele hacer muy difícil verificar los invariantes de los bucles.

EJEMPLO 6.2 El siguiente código extrae y visualiza valores de entrada desde el dispositivo estándar de entrada
hasta que se encuentra un valor especificado.

CAPÍTULO 6 Estructuras de control: bucles72

Sintaxis:

1 while (condición_bucle)
sentencia; cuerpo

2 while (condición_bucle)
{

sentencia-1;
sentencia-2;

.

. cuerpo

.
sentencia-n;

}

ap.06 11/6/05 21:39 Página 72

int clave=-1;
int entrada;
while (scanf("%d", &entrada))
{
if (entrada != clave)
printf("%d\n", entrada);

else
break;

}

6.2 Repetición: el bucle for

El bucle for es el más adecuado para implementar bucles controlados por contador, que son bucles en los que un conjunto de
sentencias se ejecutan una vez por cada valor de un rango especificado, de acuerdo al algoritmo: por cada valor de una varia-
ble_contador de un rango específico ejecutar sentencias. El bucle for se diferencia del bucle while en que las operaciones de
control del bucle se sitúan en un solo sitio: la cabecera de la sentencia.

CAPÍTULO 6 Estructuras de control: bucles 73

El bucle for contiene las cuatro partes siguientes:

• Parte de inicialización: inicializa las variables de control del bucle. Se pueden utilizar variables de control del bucle simples
o múltiples.

• Parte de condición: contiene una expresión lógica que hace que el bucle realice las iteraciones de las sentencias, mientras que
la expresión sea verdadera.

• Parte de incremento: incrementa o decrementa la variable o variables de control del bucle.
• Sentencias: acciones o sentencias que se ejecutarán por cada iteración del bucle.

EJEMPLO 6.3 Suma de los 10 primeros números múltiplos de tres.

#include <stdio.h>
int main()
{
int n, suma = 0;
for (n = 1; n <= 10; n++)
suma += 3*n;

printf("La suma de los 10 primeros múltiplos de tres es:%d",suna);
return 0;

}

Sentencias break y continue. La sentencia break termina la ejecución de un bucle, o, en general de cualquier sentencia.
La sentencia continue hace que la ejecución de un bucle vuelva a la cabecera del bucle.

EJEMPLO 6.4 Se escribe un bucle y para descartar un determinado valor clave se utiliza continue.

#include <stdio.h>
int main()
{

Sintaxis:

for (Inicialización; CondiciónIteración; Incremento)
Sentencias

ap.06 11/6/05 21:39 Página 73

int clave,i;
puts("Introduce -1 para acabar.");
for (i = 0; i < 5; i++)
{
if (clave == -1) continue;
scanf("%d",&clave);
}

}

Si en este bucle se introduce el valor de –1, entonces el bucle itera, como máximo 5 veces, pero no vuelve a leer ninguna
clave ya que la orden continue hace que se itere, y no se pase por la orden scanf().

6.3 Repetición: el bucle do...while

La sentencia do-while se utiliza para especificar un bucle condicional que se ejecuta al menos una vez.

CAPÍTULO 6 Estructuras de control: bucles74

Sintaxis:

do
sentencia

while (expresión)

La construcción do comienza ejecutando sentencia. Se evalúa a continuación expresión; si expresión es verdadera,
entonces se repite la ejecución de sentencia. Este proceso continúa hasta que expresión es falsa.

EJEMPLO 6.5 Bucle para imprimir las letras minúsculas del alfabeto.

char car = 'a';
do
{
printf("%d ",car);
car ++;

} while (car <= 'z');

6.4 Comparación de bucles while, for y do-while
Tabla 6.1 Formatos de los bucles

while El uso más frecuente es cuando la repetición no está controlada por contador; el test de condición precede
a cada repetición del bucle; el cuerpo del bucle puede no ser ejecutado. Se debe utilizar cuando se desea
saltar el bucle si la condición es falsa.

for Bucle de conteo cuando el número de repeticiones se conoce por anticipado y puede ser controlado por un
contador; también es adecuado para bucles que implican control no contable del bucle con simples etapas
de inicialización y de actualización; el test de la condición precede a la ejecución del cuerpo del bucle.

do-while Es adecuada cuando se debe asegurar que al menos se ejecuta el bucle una vez.

ap.06 11/6/05 21:39 Página 74

CAPÍTULO 6 Estructuras de control: bucles 75

PROBLEMAS RESUELTOS
6.1. Cuál es la salida del siguiente segmento de programa?.

for (cuenta = 1; cuenta < 5; cuenta++)
printf("%d ",(2 * cuenta));

Solución

En cada iteración se escribe el doble del valor de cuenta que ha sido previamente inicializada a uno. Por tanto se escribirán
los valores 2, 4, 6, 8. Cuando cuenta toma el valor de 5, no entra en el bucle.
Puede comprobarse fácilmente este resultado ejecutando el siguiente programa:

#include <stdio.h>
void main()
{

int cuenta;
for (cuenta = 1; cuenta < 5; cuenta++)

printf("%d ",(2 * cuenta));
}

6.2. ¿Cuál es la salida de los siguientes bucles?.

1. for (n = 10; n > 0; n = n – 2)
{

printf("Hola");
printf(" %d \n",n);

}

2. double n = 2;
for (; n > 0; n = n - 0.5)
printf("%g ",n);

Solución

1. En este primer caso la variable n se inicializa al valor 10 y se decrementa en cada iteración dos unidades saliendo del bucle
cuando es negativa o nula. Por tanto la salida será:

Hola 10
Hola 8
Hola 6
Hola 4
Hola 2

Si se ejecuta el siguiente programa puede comprobarse los resultados:

#include <stdio.h>
void main()
{

int n;
for (n = 10; n > 0; n = n-2)

{

ap.06 11/6/05 21:39 Página 75

CAPÍTULO 6 Estructuras de control: bucles76

printf("Hola");
printf(" %d \n",n);

}
}

2. En este segundo caso la variable n se inicializa al valor 2 y se decrementa en cada iteración 0.5 unidades saliendo del bucle
cuando es negativa o nula. Por tanto la salida será: 2 1.5 1 0.5. Si se ejecuta el siguiente programa puede comprobarse
los resultados.

#include <stdio.h>
void main()
{

double n = 2;
for (; n > 0; n = n - 0.5)

printf("%g ", n);
}

6.3 ¿Cuál es la salida de los siguientes bucles?.

int n, m;
for (n = 1; n <= 10; n++)

for (m = 10; m >= 1; m - -)
printf("%d veces %d = %d \n", n , m, n * m);

Solución

La variable n toma los valores 1, 2, 3,...., 10. Para cada uno de estos valores la variable m toma los valores 10,9, 8, 7,....., 1.
Por lo tanto la salida son las tablas de multiplicar de los números 1, 2, ... 10, pero en el orden inverso.

6.4. Escriba un algoritmo que usando un bucle for infinito, y una sentencia break calcule la suma de los n > 0 primeros núme-
ros que se lean del teclado. El número n es un dato y es el primero de la secuencia.

Análisis del problema

En primer lugar se lee el valor de n que cumpla la condición pedida, para posteriormente mediante un bucle for infinito leer
los números del teclado hasta que se cumpla que se haya leído la n indicada.

Codificación

#include <stdio.h>
int main()
{
int n, c = 0, x, suma = 0; /* inicialización */
do

{
printf("Cuantos números? ");
scanf("%d", &n);}

while (n < 0);
for (;;) /* bucle for que no termina nunca */
{

if(c < n)
/* test */

{

ap.06 11/6/05 21:39 Página 76

CAPÍTULO 6 Estructuras de control: bucles 77

scanf("%d", &x) ;
suma += x;
c++; /* incremento */

}
else

break;
}
printf("suma =% d", suma);
return 0;

}

6.5. Diseñar un programa que lea un límite máximo entero positivo, una base entera positiva, y visualice todas las potencias de
la base, menores que el valor especificado en límite máximo.

Análisis del problema

Se implementan tres bucles. Un primer bucle do-while, valida la entrada del límite entero positivo. Un segundo bucle
do-while, valida la entrada de la base entera positiva. Un tercer bucle controlado por un for escribe las distintas poten-
cias.

Codificación

#include <stdio.h>
void main()
{

int max_limit, base, pot;
do
{

printf(" introduzca numero positivo ");
scanf("%d", &max_limit);

}
while (max_limit < 0);
do
{

printf(" introduzca base positiva ");
scanf("%d", &base);

}
while (base < 0);
printf("sucesivas potencias de %d \n", base);
for (pot = 1; pot <= max_limit; pot *= base)

printf("%d \n", pot);
}

6.6. ¿Qué hace el siguiente bucle while? Reescribirlo con sentencias for y do-while.

num = 10;
while (num <= 100)
{

printf("%d \n", num);
num += 10;

}

ap.06 11/6/05 21:39 Página 77

CAPÍTULO 6 Estructuras de control: bucles78

Análisis del problema

El programa anterior escribe en pantalla los siguientes números 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. En el siguiente pro-
grama se han escrito las sentencias equivalentes al while anterior con un bucle for, y con un bucle do while en un mismo
programa.

Codificación

#include <stdio.h>
int main()
{

int num = 10;
while (num <= 100)
{

printf("%d \n",num);
num += 10;

}
// con bucle for

for (num = 10;num <= 100;num += 10)
printf("%d \n", num);

// con bucle do while
num = 10;
do
{

printf("%d \n", num);
num += 10;

}
while (num <= 100);
return 0;

}

6.7. ¿Cuál es la salida del siguiente fragmento de programa?.

#include <stdio.h>
int main()
{

int i,j;
i = 1;

while (i * i < 10)
{

j = i ;
while (j * j < 100)

{
printf("%d ", i + j);
j *= 2;

}
printf("\n");

i++;
}
return 0;

}

ap.06 11/6/05 21:39 Página 78

CAPÍTULO 6 Estructuras de control: bucles 79

Solución

En el bucle controlado por la variable i, los valores que puede tomar ésta son i = 1, 2, 3. En el momento que i toma el
valor de 4, se sale del bucle ya que 4*4 no es menor que 10. En el bule controlado por la variable j, se observa que j se ini-
cializa en los valores 1, 2, 3, respectivamente, y en cada iteración se va multiplicando por dos. Así cuando i vale 1 los
valores que toma la variable j son 1, 2, 4, 8, y cuando toma el valor de 16 se sale del bucle ya que 16 * 16 es mayor
que 100. Cuando i vale 2, los valores que toma la variable j son 2, 4, 8, y cuando toma el valor de 16 se sale del bucle
al igual que antes. Cuando i vale 3, la variable j toma los valores 3, 6, y cuando toma el valor de 12 se sale del bucle.
Teniendo en cuenta lo anteriormente dicho, se tiene que la salida producida será:

2, 3, 5, 9
4, 6, 10
6, 9
6.8

6.8. Diseñe un algoritmo que sume los 20 primeros números impares.

Análisis del problema

Se necesita un acumulador suma que será donde se sumen los respectivos números impares. Para calcular los 20 primeros
números impares basta con recorrer mediante un bucle for los números del 0 al 19 y si i es la variable que lo controla, el
correspondiente número impar es 2 * i + 1.

Codificación

#include <stdio.h>
int main()
{

int i, suma = 0;
for (i = 0; n <= 19; i++)
suma += 2 * i + 1;

printf("La suma de los 20 primeros números impares: %d",suma);
return 0;

}

6.9. Escriba un programa que lea un número n1, y escriba la tabla de multiplicar del número.

Análisis del problema

Se lee el número y mediante un bucle for y se itera 10 veces escribiendo los resultados.

Codificación

#include <stdio.h>
int main()
{

int n1,n2;
printf("introduzca numero \n");
scanf("%d", &n1);
printf(" tabla de multiplicar del %d \n", n1);
for (n2 = 1; n2 <= 10; n2++)

printf(" %d X %d = %d\n", n1, n2, n1 * n2);
return 0;

}

ap.06 11/6/05 21:39 Página 79

CAPÍTULO 6 Estructuras de control: bucles80

6.10. Escriba un programa que escriba la tabla de multiplicar del 1, 2,....,9.

Análisis del problema

Se hace de una manera análoga al ejercicio anterior, pero ahora anidando dos bucles for, y sin leer ningún dato.

Codificación

#include <stdio.h>
int main()
{

int n1,n2;
char ch;
for (n1 = 1;n1 <= 9; n1++)
{

printf(" tabla de multiplicar del %d \n", n1);
for (n2 = 1; n2 <= 10; n2++)

printf(" %d X %d = %d\n", n1, n2, n1 * n2);
scanf("%c", &ch);

}
return 0;

}

6.11. Diseñar e implementar un programa que solicite a su usuario un valor no negativo n y visualice la siguiente salida:

1 2 3 n-1 n
1 2 3 n-1
...
1 2 3
1 2
1

Análisis del problema

Un primer bucle debe validar la entrada del dato n. Para escribir la tabla anterior se implementan dos bucles anidados.

Codificación

#include <stdio.h>
int main()
{

int i, j, n;
do
{

printf("valor de n >0\n");
scanf("%d", &n);

}
while (n <= 0);

// termina la lectura de n
for (i = n; i >= 1; i--) // para cada una de las filas descendentemente
{

for (j = 1;j <= i; j++)
// para cada una de las columnas

ap.06 11/6/05 21:39 Página 80

CAPÍTULO 6 Estructuras de control: bucles 81

printf("%2d", j);
printf("\n"); // salta de línea

}
return 0;

}

6.12. Implementar y ejecutar un programa que invierta los dígitos de un entero positivo dado.

Análisis del problema

Para resolver el problema se inicializa una variable n1 a cero. Un bucle controlado por una variable n (la leída) termina cuan-
do su valor es cero. En cada iteración del bucle se calcula en la propia variable n el valor del cociente entero de n entre 10.
Así si la variable n toma el valor de 234, en las sucesivas iteraciones irá tomando los valores 234, 23, 2 y cero. En cada
iteración del bucle, se va calculando el resto del cociente entero de n entre 10. Es decir se van calculando los valores, 4, 3,
2. Para conseguir obtener el número invertido, basta con observar que 432 = 4*10*10+ 3*10+2 =
(((0*10+4)*10+3)*10+2). (Método de Horner de evaluación de polinomios). Es decir, basta con acumular en n1 el valor
de n1 multiplicado por 10 y sumarle el resto de la división entera. De todo lo dicho anteriormente, se deduce obviamente el
siguiente programa.

Codificación

#include <stdio.h>
int main()
{

int i, n, n1;
do
{

printf("valor de n >0\n");
scanf("%d", &n);

}
while (n <= 0);
n1 = 0;
while (n != 0)
{

i = n % 10;
n = n / 10;
n1 = n1 * 10 + i;

}
printf(" número invertido %d", n1);
return 0;

}

6.13. Implementar el algoritmo de Euclides que encuentra el máximo común divisor de dos números enteros y positivos.

Análisis del problema

El algoritmo transforma un par de enteros positivos (n, m) en una par (n1, m1), dividiendo repetidamente el entero mayor
por el menor y reemplazando el mayor por el menor y el menor por el resto. Cuando el resto es 0, el número más pequeño
distinto de cero de la pareja será el máximo común divisor de la pareja original.

La codificación que se realiza, lee primeramente los números enteros n y m, validando la entrada. Posteriormente median-
te otro bucle se efectúan las correspondientes transformaciones para obtener el máximo común divisor.

ap.06 11/6/05 21:39 Página 81

CAPÍTULO 6 Estructuras de control: bucles82

Codificación

#include <stdio.h>
int main()
{

int r, n, m;
do
{

printf("valor de n >0\n");
scanf("%d", &n);

} while (n <= 0);
do
{

printf("valor de m >0\n");
scanf("%d", &m);

} while (m <= 0);
/* no es necesario comenzar en n con el mayor, ya que el
algoritmo de Euclides lo primero que hace es intercambiar
valores */

printf(" el maximo comum divisor entre %3d y %3d\n", n, m);
r= n % m;
while (r != 0)
{

n = m;
m = r;
r = n % m;

}
printf(" es %3d\n", m);
return 0;

}

6.14. Escriba un algoritmo que lea dos números enteros positivos y calcule el mínimo común múltiplo de los dos números.

Análisis del problema

Una forma sencilla de resolver el problema es tener en cuenta que siempre el producto de dos números positivos cualesquiera
coincide con el producto del máximo común divisor por el mínimo común múltiplo. Entonces, modificando el problema
6.13, se puede obtener el mínimo común múltiplo. Otra manera también sencilla de resolverlo, es tomar el mínimo común
múltiplo como el mayor de los dos números, y mediante un bucle que itere mientras que los números dados no dividan al
mínimo común múltiplo hacer incrementar en una unidad el mínimo común múltiplo.

Codificación

#include <stdio.h>
int main()
{

int n, m, mcm;
do
{

printf("valor de n >0\n");
scanf("%d", &n);

} while (n <= 0);
do

ap.06 11/6/05 21:39 Página 82

CAPÍTULO 6 Estructuras de control: bucles 83

{
printf("valor de m > 0\n");
scanf("%d", &m);

} while (m <= 0);
if(n < m)

mcm = m ;
else

mcm = n ;
while ((mcm % m != 0)||(mcm % n != 0))

mcm++;
printf(" el minimo comun multiplo es %3d\n", mcm);
return 0;

}

6.15. Escribir un programa que lea el radio de una esfera y visualice su área y su volumen.

Análisis del problema

Teniendo en cuenta que las fórmulas que dan el área y volumen de una esfera son: a = 4πr2, v = 4/3πr3 para resolver
el problema sólo se tiene que leer el radio (positivo), validarlo en un bucle y aplicar las fórmulas anteriores para obtener el
área y el volumen.

Codificación

#include <stdio.h>
int main()
{

float r, a, v, pi = 3.141592;
do
{

printf("valor del radio > 0\n");
scanf("%f", &r);

} while (r <= 0);
// fin entrada de datos

a = 4 *pi * r * r;
v = 4.0 / 3 * pi * r * r * r;

// calculado el área y el volumen
printf("el area y volumen de la esfera de radio r=%f es:\n", r);
printf("area = %f \n volumen = %f \n", a, v);
return 0;

}

6.16. Escriba un programa que escriba los valores de la función seno(2x)-x para los valores de x igual a 0, 0.5,1.0,......9.5,10.

Análisis del problema

Se define la constante simbólica m como 10 y una "función en línea" f(x) (también llamada una macro con argumentos).
El bucle se realiza 21 veces; en cada iteración el valor de x se incrementa en 0.5, se calcula el valor de la función y se
escriben los resultados.

Codficación

#include <math.h>

ap.06 11/6/05 21:39 Página 83

CAPÍTULO 6 Estructuras de control: bucles84

#include <stdio.h>
#define M 10
#define f(x) sin(2 * x) - x
int main()
{

double x;
for (x = 0.0; x <= M; i += 0.5)

printf("%f = f\n", x, f(x);
return 0;
}

6.17. Escribir un programa que calcule y visualice el más grande, el más pequeño y la media de n números (n>0). El valor de n
se solicitará al principio del programa y los números serán introducidos por el usuario.

Análisis del problema

Primeramente se lee el número n en bucle do-while que valide que es positivo. Posteriormente se lee el primer número de
la serie, y se inicializa el mayor, el menor y la media a ese número. Un bucle for va leyendo el resto de los número, y
mediante la técnica voraz (el mejor de todos es o el mejor de todos los anteriores o es el que se acaba de leer) se recalcu-
lan los nuevos mínimo y máximo, y a la vez se acumula en media el último valor leído. Al final se escriben los resultados y
la media que es la suma obtenida en la variable media divido por n.

Codificación

#include <stdio.h>
int main()
{
int i, n;
float M, m, media, num;
do
{

printf("valor de n >0\n");
scanf("%d", &n);

} while (n <= 0);
// fin de entrada de datos

printf ("introduzca %d numeros \n", n);
scanf("%f", &num);
M = num;
m = num;
media = num;

// bucle voraz
for (i = 2; i <= n; i++)
{

scanf("%f",&num);
if (M < num)

M = num;
if (m > num)

m = num;
media = media + num;

// se recalcularon los nuevos máximos, mínimos y suma= media
}
media = media / n;
printf(" media = %f \n", media);

ap.06 11/6/05 21:39 Página 84

CAPÍTULO 6 Estructuras de control: bucles 85

printf(" menor = %f \n", m);
printf(" mayor = %f \n", M);
return 0;
}

6.18. Un número perfecto es un entero positivo, que es igual a la suma de todos los enteros positivos (excluido el mismo) que son
divisores del número. El primer número perfecto es 6, ya que los divisores de 6 son 1, 2, 3 y 1 + 2 + 3 = 6.
Escribir un programa que lea un número entero positivo n y decida si es perfecto.

Análisis del problema

Se lee el número n en un bucle validando la entrada. Posteriormente en un bucle for, prueba todos los posibles candidatos
a divisores menores que n (basta con empezar en 1 y avanzar de uno en uno hasta llegar a n-1. Podría mejorarse el bucle
llegando sólo a la raíz cuadrada de n). Estos divisores se van acumulando en un acumulador, para al final del bucle com-
probar la condición de perfecto y dar el mensaje correspondiente.

Codficación

#include <stdio.h>
int main()
{

int i, n, resto, acu;
do
{

printf("valor de n > 0\n");
scanf("%d", &n);

}
while (n <= 0);
acu = 0;

// acu contendrá en todo momento la suma de todos lo divisores
// conocidos de n menores que i

for (i = 1; i < n; i++)
{

resto = n % i;
if (resto == 0) acu += i; /* nuevo divisor*/

}
if (n == acu)

printf(" el numero %d es perfecto\n", n);
else

printf(" el numero %d no es perfecto \n", n);
return 0;

}

6.19. El valor de ex se puede aproximar por la suma

1 + x + + +...+

Escribir un programa que tome un valor de x como entrada y visualice la suma para cada uno de los valores de 1 a 100.

Análisis del problema

El problema se resuelve teniendo en cuenta que para calcular el valor de la serie, basta con ir acumulando los sucesivos valo-
res del término, y que cada término de la serie se obtiene del inmediatamente anterior, multiplicando por x y dividiendo por

xn

n!

x3

3!

x2

2!

ap.06 11/6/05 21:39 Página 85

CAPÍTULO 6 Estructuras de control: bucles86

i, siendo i un contador que indica el número de término que se está sumando. Por ejemplo x3/3!= x2/2!*(x/3). El tér-
mino cero es 1, el término 1 es x, y así sucesivamente.

Codificación

#include <stdio.h>
int main()
{

int i;
float x, t, e;
printf("valor de x \n");
scanf("%f", &x);
e = 1;
t = 1;

// se han inicializado el valor de e y del término t
printf(" distintos valores \n");
for (i = 1; i <= 100; i++)
{

t *= x / i;
// se recalculó el nuevo término

e += t;
// se recalculó la nueva suma

printf(" i= %d , e= %f \n", i, e);
}
return 0;

}

6.20. El matemático italiano Leonardo Fibonacci propuso el siguiente problema. Suponiendo que un par de conejos tiene un par
de crías cada mes y cada nueva pareja se hace fértil a la edad de un mes. Si se dispone de una pareja fértil y ninguno de
los conejos muere, ¿cuántas parejas habrá después de n años? Mejorar el problema calculando el número de meses nece-
sarios para producir un número dado de parejas de conejos.

Análisis del problema

Para resolver el problema, basta con observar que en cada mes el número de parejas fértiles, coincide con la suma de las
parejas fértiles que había en los dos meses inmediatamente anteriores, con lo que para obtener el resultado, basta con usar
una variable auxiliar aux en la cual se suman los dos valores que se tiene en los dos meses anteriores, para actualizar de
nuevo los valores de los nuevos meses de acuerdo con lo indicado. El programa que se codifica posteriormente, lee pri-
meramente un número n positivo. Inicializa f1 y f2 con los valores 1, para posteriormente en un bucle for de uno en
uno y comenzando por el valor 2, hacer aux=f1+f2, f1=f2 y f2=aux (f1 es el mes anterior y f2 es el actual). Para mejo-
rar la solución solicitada, basta con leer el número de parejas, y entrar en un bucle while controlado, en este caso, por la
condición ser menor que np, y realizar la misma operación que se hizo en el bucle for. Al final se escribe el valor de la
variable i que va contando el número de iteraciones.

Codificación

#include <stdio.h>
int main()
{

int n, i, f1 ,f2, aux, np;
do
{

printf("valor de n \n");

ap.06 11/6/05 21:39 Página 86

CAPÍTULO 6 Estructuras de control: bucles 87

scanf("%d", &n);
} while (n < 0);
f1 = 1;
f2 = 1;

// Se calculan los sucesivos términos de la sucesión de fibonacci
for (i = 2; i <= n; i++)
{

aux = f1 + f2;
f1 = f2;
f2 = aux;

}
printf(" valor de fibonacci para n= %d, es %d \n", n, f2);

// comienza la mejora
printf ("numero de parejas necesarias \n");
scanf("%d", &np);

// se supone que np es positivo.
f1 = 1;
f2 = 1;
i = 1;
while (f 2 < np)
{

aux = f1 + f2;
f1 = f2;
f2 = aux;
i++;

}
printf(" numero de meses %d \n", i);
return 0;

}

6.21. Determinar si un número dado leído del teclado es primo o no.

Análisis del problema

Un número positivo es primo, si sólo tiene por divisores el uno y él mismo. Teniendo en cuenta que si hay un número i que
divide a otro n menor que la raíz cuadrada de n, entonces hay otro que también lo divide que es mayor que la raíz cuadrada
de n, se tiene que basta con comprobar los posibles divisores menores o iguales que la raíz cuadrada del número dado. El
programa codificado, se ha realizado con un solo bucle, en el cual se van comprobando los posibles divisores, siempre y
cuando, no se haya encontrado ya algún divisor anterior, o no se tenga que controlar ningún otro divisor. La codificación
que se realiza, lee primeramente el valor de n, validando que sea positivo, y posteriormente se realiza con otro bucle lo
expuesto anteriormente.

Codifcación

#include <stdio.h>
int main()
{

int primo, i, n;
do
{

printf("valor de n >0\n");
scanf("%d", &n);

} while (n <= 0);

ap.06 11/6/05 21:39 Página 87

CAPÍTULO 6 Estructuras de control: bucles88

primo = 1;
//inicialmente el número es primo

for (i = 2; (i * i < n) & primo; i++)
/* mientras sea primo y queden posibles divisores menores

o iguales que la raíz de n hacer */
{

primo = (n % i) != 0;
}
if (primo)

printf(" el numero %d es primo\n", n);
else

printf(" el numero %d no es primo \n", n);
return 0;

}

6.22. Calcular la suma de la serie 1/1 +1/2 + ... + 1/n donde n es un número que se introduce por teclado.

Análisis del problema

Para realizar la suma de la serie, basta con acumular en una variable s los distintos valores de los términos t = 1/i.
Previamente se lee del el valor del número de términos n validando la entrada y posteriormente con un bucle for contro-
lado por la variable i se va realizando la correspondiente acumulación.

Codficación

#include <stdio.h>
int main()
{
int i,n;
float t, s;
do

{
printf("valor de n \n");
scanf("%d", &n);

} while (n <= 0);
s = 1;
for (i = 1; i <= n; i++)
{

t = 1.0 / i;
// para obligar a que la división sea real se pone 1.0

s += t;
}
printf(" valor de la suma = %f\n", s);
return 0;

}

6.23. Calcular la suma de los términos de la serie: 1/2 + 2/22 + 3/23 + ... + n/2n.

Análisis del problema

Para realizar la suma de la serie, basta con acumular en una variable s los distintos valores de los términos t = i/2i.
Previamente se lee del el valor del número de términos n validando la entrada, y posteriormente se realiza la acumulación
mediante un bucle for.

ap.06 11/6/05 21:39 Página 88

CAPÍTULO 6 Estructuras de control: bucles 89

Codificación

#include <stdio.h>
#include <math.h>
int main()
{

int i, n;
float t, s;
do
{

printf("valor de n \n");
scanf("%d", &n);

} while (n <= 0);
s = 1;
for (i = 1; i <= n; i++)
{

t = float(i) / pow(2, i);
// Se obliga a que el cociente sea real.

s += t;
}
printf(" valor de la suma = %f\n", s);
return 0;

}

6.24. Encontrar un número natural n más pequeño tal que la suma de los n primeros números naturales exceda el valor de una
cantidad introducida por el teclado máximo.

Análisis del problema

En primer lugar se lee el valor de la cantidad introducida por teclado máximo validando la entrada; a continuación, se acu-
mula la serie dada por los distintos números naturales, hasta que se exceda el valor introducido. Esto se realiza mediante
un bucle for cuya salida viene dada precisamente por el valor s >= máximo.

Codificacion

#include <stdio.h>
int main()
{

int n;
float s, maximo;
do
{

printf("valor maximo n \n");
scanf("%f", &maximo);

} while (maximo <= 0);
s = 0;
for (n = 0; s < maximo;)
{

n++ ;
s += n;

}
printf(" valor de la suma = %6.2f\n", s);
printf(" valor del numero de terminos = %d\n", n);
return 0;

}

ap.06 11/6/05 21:39 Página 89

CAPÍTULO 6 Estructuras de control: bucles90

6.25. Escriba un programa que lea un número entero positivo y calcule su factorial, mediante un for, un while y mediante un do-
while.

Análisis del problema

Primeramente se lee el valor del número n1, mediante una sentencia do-while validando el dato para posteriormente escri-
bir los tres bucles, con sus correspondientes inicializaciones.

Codificación (Se encuentra en la página web del libro)

6.26. Encontrar el número mayor de una serie de números introducidos por teclado.

Análisis del problema

La codificación realizada, comienza pidiendo el primer número que será distinto de –1. Posteriormente, se lee la serie de
números. El fin de la entrada de datos viene dado por el valor de –1. El cálculo del máximo se realiza en el cuerpo del segun-
do bucle controlado por el valor –1 mediante la técnica, "el mayor de todos hasta el último leído coincide con el mayor del
último número que se ha leído o bien coincide con el mayor de todos los que se leyeron anteriormente".

Codificación

#include <stdio.h>
int main()
{

int s, maximo;
do
{

printf(" introduzca primer valor <> -1 \n");
scanf("%d", &maximo);

} while (maximo == -1);
s = maximo;
while (s != -1)
{

printf(" introduzca valor -1= fin \n");
scanf("%d", &s);
if(s != -1)

if (maximo < s)
máximo = s;

}
printf(" valor del maximo= %d\n", maximo);
return 0;

}

6.27. Calcular todos los números de tres cifras tales que la suma de los cuadrados de las cifras es igual al valor del número.

Análisis del problema

La solución se plantea mediante un bucle que recorre todos los números de tres cifras. En cada iteración del bucle se calcu-
la cada una de las cifras del número y se comprueba la condición en cuyo caso se escribe. Si el número i =c3c2c1 enton-
ces la condición indicada es i =c1*c1+ c2*c2+ c3*c3. Para calcular las cifras basta con usar el cociente y la división
entera.

ap.06 11/6/05 21:39 Página 90

CAPÍTULO 6 Estructuras de control: bucles 91

Codificación

#include <stdio.h>
int main()
{

int c1, c2, c3, i, x;
printf(" lista de numeros que cumplen la condicion\n");
for(i = 100; i <= 999; i++)
{

x = i ;
c1 = x % 10;
x= x / 10;
c2 = x % 10;
x = x / 10;
c3 = x;

// ya se han calculado las tres cifras
if(c1 * c1 + c2 * c2 + c3 * c3 == i)

printf(" numero %d\n", i);
}
return 0;

}
6.28. Escriba un programa que sume los números pares comprendidos entre 2 y 100.

Análisis del problema

Se inicializa una variable suma a 2 y otra variable numero a 4. Posteriormente mediante un bucle while se suman los núme-
ros pares que va tomando numero a la variable suma, hasta que número sobrepase el valor de 100.

Codificación

#include <stdio.h>
#include <stdlib.h>

int main()
{

int numero, suma;
suma = 2;
numero = 4;
while (numero <= 100)
{

suma = suma + numero;
numero = numero + 2;

}
printf("\nSuma pares entre 2 y 100 = %d", suma);

return 0;
}

6.29. Escriba un programa que lea números enteros del teclado y cuente los ceros que se introducen. El final de datos viene dado
cuando se pulse por teclado una tecla distinta de s o S.

Codificación (Consultar la página web del libro)

ap.06 11/6/05 21:39 Página 91

CAPÍTULO 6 Estructuras de control: bucles92

PROBLEMAS PROPUESTOS
6.1. Seleccione y escriba el bucle adecuado que mejor resuel-

va las siguientes tareas:
a) Sumar de serie 1/2+1/3+1/4+1/5+...+1/50.
b) Lectura de la lista de calificaciones de un examen de

Historia.
c) Visualizar la suma de enteros en el intervalo 11...50.

6.2. ¿Cuál es la salida del siguiente bucle?:

suma = 0;
while (suma < 100)
suma += 5;

printf(" %d \n",suma);

6.3. ¿Cuál es la salida de los siguientes bucles?:

A for (i = 0; i < 10; i++)
printf(" 2* %d = %d \n", i, 2 * i);

B for (i = 0; i <= 5; i++)
printf(" %d ",2 * i + 1);

C for (i = 1; i < 4; i++)
{
printf(" %d ",i);
for (j = i; j >= 1; j--)
printf(" %d \n",j);

}

6.4. Describir la salida de los siguientes bucles:

A for (i = 1; i <= 5; i++)
{

printf(" %d \n",i);
for (j = i; j >= 1; j-=2)
printf(" %d \n",j);
}

B for (i = 3; i > 0; i--)
for (j = 1; j <= i; j++)

for (k = i; k >= j; k--)
printf("%d %d %d \n", i, j, k);

C for (i = 1; i <= 3; i++)
for (j = 1; j <= 3; j++)
{

for (int k = i; k <= j; k++)
printf("%d %d %d \n", i, j, k);

putchar('\n');
}

6.5. Diseñar e implementar un programa que cuente el núme-
ro de sus entradas que son positivos, negativos y cero.

6.6. Diseñar e implementar un programa que extraiga valores
del flujo de entrada estándar y a continuación visualice
el mayor y el menor de esos valores en el flujo de salida
estándar. El programa debe visualizar mensajes de
advertencias cuando no haya entradas.

6.7. Diseñar e implementar un programa que solicite al usua-
rio una entrada como un dato tipo fecha y a continuación
visualice el número del día correspondiente del año.
Ejemplo, si la fecha es 30 12 1999, el número visualiza-
do es 364.

6.8. Un carácter es un espacio en blanco si es un blanco (' '),
una tabulación ('\t'), un carácter de nueva línea ('\n')
o un avance de página ('\f'). Diseñar y construir un
programa que cuente el número de espacios en blanco de
la entrada de datos.

6.9. Escribir un programa que lea las temperaturas en grados
Celsius e imprima las equivalente en grados Fahrenheit.

6.10. Escribir un programa que convierta: (a) centímetros a
pulgadas; (b) libras a kilogramos.
(Ver problema propuesto 4.1)

6.11. Escribir un programa que lea 3 enteros positivos dia, mes
y anno y a continuación visualice la fecha que represente,
el número de días, del mes y una frase que diga si el año es
o no bisiesto. Ejemplo, 4/11/1999 debe visualizar 4 de
Noviembre de 1999. Ampliar el programa de modo que
calcule la fecha correspondiente a 100 días más tarde.

6.12. En una empresa de computadoras, los salarios de los
empleados se van a aumentar según su contrato actual:

Contrato Aumento %
0 a 9.000 dólares 20
9.001 a 15.000 dólares 10
15.001 a 20.000 dólares 5
más de 20.000 dólares 0

Escribir un programa que solicite el salario actual del
empleado y calcule y visualice el nuevo salario.

6.13. La constante pi (3.1441592...) es muy utilizada en
matemáticas. Un método sencillo de calcular su valor es:

Pi = 4 * � � * � � * � � * � � ...6
7

6
5

4
5

2
3

ap.06 11/6/05 21:39 Página 92

CAPÍTULO 6 Estructuras de control: bucles 93

Escribir un programa que efectúe este cálculo con un
número de términos especificados por el usuario.

6.14. Escribir un programa que visualice un cuadrado mágico
de orden impar n, comprendido entre 3 y 11; el usuario
elige el valor de n. Un cuadrado mágico se compone de
números enteros comprendidos entre 1 y n2. La suma de
los números que figuran en cada línea, cada columna y
cada diagonal son idénticas. Un ejemplo es:

8 1 6
3 5 7
4 9 2

Un método de construcción del cuadrado consiste en
situar el número 1 en el centro de la primera línea, el
número siguiente en la casilla situada encima y a la dere-
cha, y así sucesivamente. Es preciso considerar que el
cuadrado se cierra sobre sí mismo: la línea encima de la
primera es de hecho la última y la columna a la derecha

de la última es la primera. Sin embargo, cuando la posi-
ción del número caiga en una casilla ocupada, se elige la
casilla situada debajo del número que acaba de ser situa-
do. Puede verse una solución con arrays en el ejercicio
resuelto 9.13.

6.15. Calcular la media de las notas introducidas por teclado
con un diálogo interactivo semejante al siguiente:

¿Cuántas notas? 20
Nota 1 : 7.50
Nota 2: 6.40
Nota 3: 4.20
Nota 4: 8.50
...
Nota 20: 9.50
Media de estas 20: 7.475

6.16. Contar el número de enteros negativos introducidos en
una línea.

ap.06 11/6/05 21:39 Página 93

ap.06 11/6/05 21:39 Página 94

Una función es un miniprograma dentro un programa. Las funciones contienen varias sentencias bajo un sólo nombre, que un
programa puede utilizar una o más veces para ejecutar dichas sentencias. Las funciones ahorran espacio, reduciendo repeticio-
nes y haciendo más fácil la programación, proporcionando un medio de dividir un proyecto grande en módulos pequeños más
manejables. En otros lenguajes como BASIC o ensamblador se denominan subrutinas; en Pascal, las funciones son equivalen-
tes a funciones y procedimientos. C, C++, JAVA, C# utilizan funciones.

Este capítulo examina el papel (rol) de las funciones en un programa C. Las funciones pueden existir de modo autónomo o bien
como miembros de una clase. Como ya conoce, cada programa C tiene al menos una función main(); sin embargo, cada programa
C consta de muchas funciones en lugar de una función main() grande. La división del código en funciones hace que las mismas se
puedan reutilizar en su programa y en otros programas. Después de que escriba, pruebe y depure su función, se puede utilizar nue-
vamente una y otra vez. Para reutilizar una función dentro de su programa, sólo se necesita llamar a la función.
Si se agrupan funciones en bibliotecas otros programas pueden reutilizar las funciones, por esa razón se puede ahorrar tiempo
de desarrollo. Y dado que las bibliotecas contienen rutinas presumiblemente comprobadas, se incrementa la fiabilidad del pro-
grama completo.

Las funciones son una de las piedras angulares de la programación en C y un buen uso de todas las propiedades básicas ya
expuestas, así como de las propiedades avanzadas de las funciones, le proporcionarán una potencia, a veces impensable, a sus
programaciones. La compilación separada y la recursividad son propiedades cuyo conocimiento es esencial para un diseño efi-
ciente de programas en numerosas aplicaciones.

7.1 Concepto de función
Un programa C se compone de varias funciones, cada una de las cuales realiza una tarea principal. El mejor medio para escri-
bir un programa es escribir funciones independientes para cada tarea que haga el programa. Cada función realiza una determi-
nada tarea y cuando se ejecuta return o termina el código de la función, se retorna al punto en que fue llamada por el programa
o función principal.

7.2 Estructura de una función
Una función es, sencillamente, un conjunto de sentencias que se pueden llamar desde cualquier parte de un programa. Las fun-
ciones en C no se pueden anidar. En C todas las funciones son externas o globales, es decir, pueden ser llamadas desde cual-
quier parte del programa. La estructura de una función en C es:

95

CAPÍTULO 7

Funciones

ap.07 11/6/05 21:40 Página 95

tipo_de_retorno nombreFunción (lista De Parámetros)
{
cuerpo de la función
return expresión

}

tipo_de_retorno tipo de valor devuelto por la función o la palabra reservada void si la función no devuelve ningún
valor.

nombreFunción identificador o nombre de la función.
ListaDeParámetros lista de declaraciones de los parámetros de la función separados por comas.
expresión valor que devuelve la función.

Los aspectos más sobresalientes en el diseño de una función son:

• Tipo de resultado. Es el tipo de dato que devuelve la función C .
• Lista de parámetros. Es una lista de parámetros con tipos que utilizan el formato siguiente: tipo1 parámetro1, tipo2
parámetro2, ...

• Cuerpo de la función. Se encierra entre llaves de apertura ({) y cierre (}).
• Paso de parámetros. El paso de parámetros en C se hace siempre por valor.
• Declaración local. Las constantes, tipos de datos y variables declaradas dentro de la función son locales a la misma y no per-

duran fuera de ella.
• Valor devuelto por la función. Mediante la palabra reservada return se puede devolver el valor de la función.
• La llamada a una función. Debe ser una sentencia de otra función. Esta sentencia debe ser tal que debe haber coincidencia en

número orden y tipo entre la lista de parámetros formales y actuales de la función.

EJEMPLO 7.1: Codifica la función suma() y se muestra su estructura.

CAPÍTULO 7 Funciones96

float suma(float num1,float num2)
{

float resp;
resp = num1 + num2;
return resp;

}

tipo de resultado lista de parámetros

cabecera de la función

valor
devuelto

declaración
de variables

7.3 Prototipos de las funciones
La declaración de una función se denomina prototipo. Específicamente un prototipo consta de los siguientes elementos: nom-
bre de la función, lista de argumentos encerrados entre paréntesis y un punto y coma. En C no es necesario incluir el prototipo
aunque si es recomendable para que el compilador pueda hacer chequeos en las llamadas a las funciones. Los prototipos se sitú-
an normalmente al principio de un programa, antes de la definición de la función main(). El compilador utiliza los prototipos
para validar que el número y los tipos de datos de los argumentos reales de la llamada a la función son los mismos que el núme-
ro y tipo de argumentos formales en la función llamada. Si una función no tiene argumentos, se ha de utilizar la palabra reser-
vada void como lista de argumentos del prototipo (también se puede escribir paréntesis vacíos). Un formato especial de
prototipo es aquel que tiene un número no especificado de argumentos, que se representa por tres puntos (...)

EJEMPLO 7.2 Calcular el área de un rectángulo. El programa se descompone en dos funciones, además de main().

#include <stdio.h>
float area_rectangulo(float b, float a); /* declaración */
float entrada(); /* prototipo o declaración */

ap.07 11/6/05 21:40 Página 96

int main()
{
float b, h;
printf(“\n Base del rectangulo: “);
b = entrada();
printf(“\n Altura del rectangulo: “);
h = entrada();
printf(“\n Area del rectangulo: %.2f”,area_rectangulo(b,h));
return 0;

}
/* devuelve número positivo */

float entrada()
{

float m;
do {
scanf(“\%f”,&m);
} while (m <= 0.0);
return m;

}
/* calcula el area de un rectángulo */

float area_rectangulo(float b, float a)
{

return (b*a);
}

7.4 Parámetros de una función
C siempre utiliza el método de parámetros por valor para pasar variables a funciones. Para que una función devuelva un valor a
través de un argumento hay que pasar la dirección de la variable, y que el argumento correspondiente de la función sea un punte-
ro, es la forma de conseguir en C un paso de parámetro por referencia. C permite utilizar punteros para implementar parámetros
por referencia, ya que por defecto, en C el paso de parámetros es por valor. Los parámetros por valor reciben copias de los valo-
res de los argumentos que se les pasan. La asignación a parámetros valor de una función nunca cambian el valor del argumento
original pasado a los parámetros. Los parámetros por referencia (declarados con *, punteros) reciben la dirección de los argu-
mentos pasados; a éstos les debe de preceder del operador &, excepto los arrays. En una función, las asignaciones a parámetros
referencia (punteros) cambian los valores de los argumentos originales. Con el objeto de añadir seguridad adicional a las funcio-
nes, se puede añadir a la descripción de un parámetro el especificador const, que indica al compilador que son sólo para pasar
información al interior de la función. Si se intenta modificar este parámetro se producirá un mensaje de error.

EJEMPLO 7.3 Esquema del paso de parámetros por valor en la llamada a una función.

CAPÍTULO 7 Funciones 97

main()
{

int i = 6;
func(i);
return 0;

}

void func(int i)
{

printf(“%d”,i);
i++;

}

ap.07 11/6/05 21:40 Página 97

EJEMPLO 7.4. Esquema de paso de parámetros por referencia.

int i = 3, j = 50;
printf("i = %d y j = %d \n”, i,j);
intercambio(&i, &j);
printf("i = %d y j = %d \n”, i,j);

void intercambio(int* a, int* b)
{
int aux = *a;
*a = *b;
*b = aux;

}

7.5 Funciones en línea, macros con argumentos
Las funciones en línea se usan cuando la función es una expresión (su código es pequeño y se utiliza muchas veces en el pro-
grama). Realmente no son funciones, el preprocesador expande o sustituye la expresión cada vez que es llamada. La sintaxis
general es :

#define NombreMacro(parámetros sin tipos) expresión_texto

La definición ocupará sólo una línea, aunque si se necesita más texto, se puede situar una barra invertida (\) al final
de la primera línea y continuar en la siguiente, en caso de ser necesarias más líneas proceder de igual forma; de esa mane-
ra se puede formar una expresión más compleja. Entre el nombre de la macro y los paréntesis de la lista de argumentos no
puede haber espacios en blanco. Es importante tener en cuenta que en la macros con argumentos no hay comprobación de
tipos.

EJEMPLO 7.5 Función en línea para definir una función matemática.

#include <stdio.h>
#define fesp(x) (x*x + 2*x –1)

void main()
{
float x;
for (x = 0.0; x <= 6.5; x += 0.3)
printf(“\t f(%.1f) = %6.2f “,x, fesp(x));

}

7.6 Ámbito (alcance)
El ámbito es la zona de un programa en la cual es visible una variable. Existen cuatro tipos de ámbitos: programa, archivo fuen-
te, función y bloque. Normalmente la posición de la sentencia en el programa determina el ámbito.

• Las variables que tienen ámbito de programa pueden ser referenciadas por cualquier función en el programa completo; tales
variables se llaman variables globales. Para hacer una variable global, declárela simplemente al principio de un programa,
fuera de cualquier función.

• Una variable que se declara fuera de cualquier función y cuya declaración contiene la palabra reservada static tiene ámbi-
to de archivo fuente. Las variables con este ámbito se pueden referenciar desde el punto del programa en que están declara-
das hasta el final del archivo fuente.

• Una variable que tiene ámbito de una función se puede referenciar desde cualquier parte de la función. Las variables decla-
radas dentro del cuerpo de la función se dice que son locales a la función.

CAPÍTULO 7 Funciones98

ap.07 11/6/05 21:40 Página 98

• Una variable declarada en un bloque tiene ámbito de bloque y puede ser referenciada en cualquier parte del bloque, desde el
punto en que está declarada hasta el final del bloque. Las variables locales declaradas dentro de una función tienen ámbito de
bloque de la función; no son visibles fuera del bloque.

EJEMPLO 7.6 Declaración de variables y funciones en ámbitos diferentes.

int i; /*Ambito de programa */
static int j; /*Ambito de archivo */
float func(int k) /* K ámbito de función */
{

{
int m; /*Ambito de bloque */
...

}
}

7.7 Clases de almacenamiento
Los especificadores de clases (tipos) de almacenamiento permiten modificar el ámbito de una variable. Los especificadores
pueden ser uno de los siguientes: auto, extern, register, static y typedef.

Variables Automáticas. Las variables que se declaran dentro de una función se dice que son automáticas (auto), signifi-
cando que se les asigna espacio en memoria automáticamente a la entrada de la función y se les libera el espacio tan pronto se
sale de dicha función. La palabra reservada auto es opcional.

EJEMPLO 7.7 Declaración de variables automáticas.

auto int xl; es igual que int x1;

Variables Externas. Cuando una variable se declara externa, se indica al compilador que el espacio de la variable está defi-
nida en otro archivo fuente.

EJEMPLO 7.8 Declara que la función leerReal() está implementada en otro archivo fuente. También, declara la
variable f definida en otro archivo.

/* archivo fuente exter1.c */
#include <stdio.h>
extern void leerReal(void); /* función definida en otro archivo; no es estrictamente

necesario extern, se asume por defecto */
float f;
int main()
{
leerReal();
printf("Valor de f = %f",f);
return 0;

}
/* archivo fuente exter2.c */

#include <stdio.h>
void leerReal(void)
{
extern float f; /* variable definida en otro archivo (extern1.c) */
printf("Introduzca valor en coma flotante: ");
scanf(“%f”,&f);

}

CAPÍTULO 7 Funciones 99

ap.07 11/6/05 21:40 Página 99

En el archivo extern2.c la declaración externa de f indica al compilador que f se ha definido en otra parte (archivo).
Posteriormente, cuando estos archivos se enlacen, las declaraciones se combinan de modo que se referirán a las mismas posi-
ciones de memoria.

Variables registro. Precediendo a la declaración de una variable con la palabra reservada register, se sugiere al compi-
lador que la variable se almacene en uno de los registros hardware del microprocesador. Para declarar una variable registro,
hay que utilizar una declaración similar a: register int k;. Una variable registro debe ser local a una función, nunca puede
ser global al programa completo.

Variables estáticas. Las variables estáticas no se borran (no se pierde su valor) cuando la función termina y, en con-
secuencia, retienen sus valores entre llamadas a una función. Al contrario que las variables locales normales, una variable
static se inicializa sólo una vez y se declaran precediendo a la declaración de la variable con la palabra reservada
static.

EJEMPLO 7.9 Se declaran dos variables con almacenamiento permanente (static).

func_uno()
{
int i;
static int j = 25; /*j, k variables estáticas */
static int k = 100;
...

}

7.8 Concepto y uso de funciones de biblioteca
Todas las versiones de C ofrecen una biblioteca estándar de funciones que proporciona soporte para operaciones utilizadas con
más frecuencia. Las funciones estándar o predefinidas, se dividen en grupos; todas las funciones que pertenecen al mismo
grupo se declaran en el mismo archivo de cabecera. Los nombres de los archivos de cabecera estándar utilizados en los pro-
gramas se muestran a continuación encerrados entre corchetes tipo ángulo:

<assert.h> <ctype.h> <errno.h> <float.h>
<limits.h> <locale.h> <math.h> <setjmp.h>
<signal.h> <stdarg.h> <stddef.h> <stdio.h>
<stdlib.h> <string.h> <time.h>

7.9 Miscelánea de funciones
Funciones de carácter. El archivo de cabecera <ctype.h> define un grupo de funciones/macros de manipulación de carac-
teres. Todas las funciones devuelven un resultado de valor verdadero (distinto de cero) o falso (cero).

Funciones numéricas. Virtualmente cualquier operación aritmética es posible en un programa C. Las funciones matemá-
ticas disponibles son las siguientes: trigonométricas; logarítmicas; exponenciales; funciones matemáticas de caracter general;
aleatorias. La mayoría de las funciones numéricas están en el archivo de cabecera math.h; las funciones de valor absoluto abs
y labs están definidas en stdlib.h, y las funciones de división entera div y ldiv también están en stdlib.h.

Funciones de fecha y hora. Los microprocesadores tiene un sistema de reloj que se utiliza principalmente para controlar
el microprocesador, pero se utiliza también para calcular la fecha y la hora. El archivo de cabecera time.h define estructuras,
macros y funciones para manipulación de fechas y horas. La fecha se guarda de acuerdo con el calendario gregoriano
(mm/dd/aa). Las funciones time y clock devuelven, respectivamente, el número de segundos desde la hora base y el tiempo
de CPU empleado por el programa en curso.

Funciones de utilidad. El lenguaje C incluye una serie de funciones de utilidad que se encuentran en el archivo de cabe-
cera stdlib.h como las siguientes: abs(n), que devuelve el valor absoluto del argumento n.; atof(cad) convierte los dígi-
tos de la cadena cad a número real; atoi(cad), atol(cad) convierte los dígitos de la cadena cad a número entero y entero
largo respectivamente.

Visibilidad de una función. El ámbito de un elemento es su visibilidad desde otras partes del programa y la duración de
un objeto es su tiempo de vida, lo que implica no sólo cuánto tiempo existe la variable, sino cuando se crea y cuando se hace

CAPÍTULO 7 Funciones100

ap.07 11/6/05 21:40 Página 100

disponible. El ámbito de un elemento en C depende de donde se sitúe la definición y de los modificadores que le acompañan.
Se puede decir que un elemento definido dentro de una función tiene ámbito local (alcance local), o si se define fuera de cual-
quier función, se dice que tiene un ámbito global.

Compilación separada. Los programas grandes son más fáciles de gestionar si se dividen en varios archivos fuente, tam-
bién llamados módulos, cada uno de los cuales puede contener una o más funciones. Estos módulos se compilan y enlazan por
separado posteriormente con un enlazador, o bien con la herramienta correspondiente del entorno de programación. Cuando
se tiene más de un archivo fuente, se puede referenciar una función en un archivo fuente desde una función de otro archivo
fuente. Al contrario que las variables, las funciones son externas por defecto. De modo opcional y por razones de legibilidad,
puede utilizar la palabra reservada extern con el prototipo de función.

CAPÍTULO 7 Funciones 101

PROBLEMAS RESUELTOS
7.1. La función factorial se define de la siguiente forma. Factorial(n) = 1 si n=0, y factorial(n) = n* factorial(n-1) si n>0.

Escriba la función factorial, y un programa que la llame para distintos valores de n.

Análisis del problema

La función factorial, se programa no recursivamente, usando un bucle ascendente, inicializando un acumulador a 1 y multi-
plicando en cada iteración el acumulador por la variable de control del bucle.

Codificación

#include "stdio.h"
float factorial (int x);

void main (void)
{

float x,y,i;
printf(" dame dos números ");
scanf("%f%f",&x,&y);
for (i = x; i <= y; i++)
{

printf("%8.0f %s %8.0f\n",i,"factorial", factorial(i));}
}

}
float factorial (int x)
{

float i,f;
f = 1.0 ;
for (i = 1; i <= x; i++)

f = f * i;
return (f);

}

7.2. Escriba una función que intercambie el valor de dos números enteros y un programa que realice las llamadas.

Análisis del problema

Se escribirá una función inter1() que intercambia el valor de los números enteros, realizando la transmisión de paráme-
tros por referencia.

ap.07 11/6/05 21:40 Página 101

CAPÍTULO 7 Funciones102

Codificación

#include "stdio.h";
void main(void)
{

int x,y;
printf(" dame dos enteros \n");
scanf(" %d %d",&x,&y);
inter1(&x,&y);
printf (" cambiados %d %d \n",x,y);

}
void inter1(int *a, int *b)
{

int aux ;
aux = *a;
*a = *b;
*b = aux;

}

7.3. Escriba dos macros que permitan calcular el área lateral y el volumen de un cilindro.

Análisis del problema

El volumen de un cilindro viene dado por volumen= pi*radio2* altura y el Areatotal viene dada por
Areatotal=2*pi*radio*altura+ pi*radio2. Para resolver el problema basta con declarar las variables correspondien-
tes declarar la constante pi y los dos macros que permitan definir las dos funciones, con lo que la codificación queda de la
siguiente forma.

Codificación

#include <stdio.h>
const float Pi = 3.141592;
#define VOLCILINDRO(radio,altura) ((Pi*(radio*radio)*altura))
#define AREATOTAL(radio,altura) (2*Pi*radio*altura+Pi*radio*radio)

int main()
{
float radio, altura, volumen, Areatotal;
do
{

printf("Introduzca radio del cono:\n ");
scanf("%f",&radio);
printf("Introduzca altura del cono:\n ");
scanf("%f",&altura);

}while ((radio <= 0) || (altura <= 0));
volumen = VOLCILINDRO(radio, altura);
Areatotal = AREATOTAL(radio, altura);
printf("El volumen del cilindro es: %f\n",volumen);
printf("El area tetla n del cilindro es: %f\n",Areatotal);
return 0;
}

7.4. Escriba una función que lea tres números enteros del teclado y devuelva el mayor.

ap.07 11/6/05 21:40 Página 102

Análisis del problema

La función que resuelve el problema no tiene ningún parámetro, y lo que hace es leer secuencialmente los tres números y
calcular el mayor. Se codifica también un programa principal que se encarga de llamar a la función anterior.

Codficación

#include "stdio.h"
int mayor ();

void main (void)
{

printf(" el mayor es %d ",mayor());
}

int mayor ()
{

int i,m ;
printf(" dame numero \n");

scanf("%d", &m);
printf(" dame numero \n");
scanf("%d", &i);
if (i > m)

m = i;
printf(" dame numero \n");
scanf("%d", &i);
if (i > m)

m = i;
return (m);

}

7.5. Escriba un programa que calcule los valores de la función funcionx definida de la siguiente forma:

funcionx(0) = 0,
funcionx(1) = 1
funcionx(2) = 2
funcionx(n) = funcionx(n-3)+ 2*funcionx(n-2)+funcionx(n-1) si n > 2.

Análisis del problema

La función funcionx está definida recursivamente. Para programarla se puede usar la idea de definir tres variables loca-
les estáticas que guarden los últimos valores obtenidos de la funciónx. De esta forma si se le llama desde un bucle desde,
hasta el valor que se quiera calcular se obtiene la lista de valores de la función que es la siguiente 0, 1, 2, 4, 9, 19,
41,.....

Codificación

#include <stdio.h>
long int funcionx();
int main()
{

int n,i;
printf("Cuantos numeros de la funcionx ?: ");

CAPÍTULO 7 Funciones 103

ap.07 11/6/05 21:40 Página 103

scanf("%d",&n);
printf("\nSecuencia de funcionx: 0,1,2");
for (i = 3; i <= n; i++)

printf(",%d",funcionx());
return 0;

}
long int funcionx()
{

static int x = 0;
static int y = 1;
static int z = 2;
int aux;
aux = x + 2 * y + z ;
x = y;
y = z;
z = aux;
return z;

}

7.6. Escriba una función que tenga como parámetro dos números enteros positivos n y m, y calcule el cociente de la división
entera del mayor de ellos entre el menor mediante sumas y restas.

Análisis del problema

Un programa principal leerá los dos números y llamará a la función cociente que se encargará de resolver el problema. La
función cociente determina el mayor y el menor de los dos números almacenándolos en las variables Mayor y menor.
Mediante un acumulador inicializado a la variable menor y un contador, c, inicializado a cero, se cuenta el número de veces
que es necesario sumar el menor para sobrepasar (ser estrictamente mayor) el número Mayor. Como c se ha inicializado a
cero, cuando en el acumulador ya se ha sumando una vez el menor, el resultado final solicitado será el dado por el acumu-
lador c.

Codificación

#include "stdio.h"
int cociente (int n, int m);
void main (void)
{

int n,m;
do
{

printf(" dame dos numeros :");
scanf("%d %d",&n,&m);

} while ((n <= 0) || (m <= 0));
printf(" el cociente es %d \n", cociente(n,m));

}

int cociente (int n, int m)
{

int c, Mayor, menor, acu ;
if (n < m)
{

Mayor = m;
menor = n;

CAPÍTULO 7 Funciones104

ap.07 11/6/05 21:40 Página 104

}
else
{

Mayor = n;
menor = m;

}
acu = menor;
c = 0;
while (acu <= Mayor)
{

acu += menor;
c++;

}
return (c);

}

7.7. Escriba una función que tenga como parámetro dos números enteros positivos n y m, y calcule el resto de la división ente-
ra del mayor de ellos entre el menor mediante suma y restas.

Análisis del problema

Un programa principal leerá los dos números asegurándose que son positivos mediante un bucle do-while y llamará a la
función resto que se encargará de resolver el problema. La función resto, primeramente, determina el mayor y el menor
de los dos números almacenándolos en las variables Mayor y menor. Mediante un acumulador inicializado a la variable
menor y mediante un bucle while se suma al acumulador el valor de menor, hasta que el valor del acumulador sea mayor
que el número Mayor. Necesariamente el resto debe ser el valor de la variable Mayor menos el valor de la variable acumu-
lador acu menos el valor de la variable menor.

Codificación

#include "stdio.h"
int resto(int n, int m);

void main (void)
{

int n, m;
do
{

printf(" dame dos numeros :");
scanf("%d %d",&n,&m);

} while ((n <= 0) || (m <= 0));
printf(" el cociente es %d \n", resto(n,m));

}

int resto(int n, int m)
{

int Mayor, menor, acu ;
if (n < m)
{

Mayor = m;
menor = n;

}
else

CAPÍTULO 7 Funciones 105

ap.07 11/6/05 21:40 Página 105

{
Mayor = n;
menor = m;

}
acu = menor;
while (acu <= Mayor)

acu += menor;
return (Mayor – acu - menor);

}

7.8. Escriba un programa que calcule los valores de la función funcionx definida de la siguiente forma:

funcionx(0) = 0,
funcionx(1) = 1
funcionx(2) = 2
funcionx(n) = funcionx(n-3)+ 2*funcionx(n-2)+funcionx(n-1) si n > 2.

Análisis del problema

El ejercicio número 7.5 se ha programado mediante variables static aquí se resuelve mediante un bucle, y sólo se retorna
el resultado final.

Codificación

#include <stdio.h>
long int funcionx(int n);
int main()
{

int n,i;
printf("Cuantos numeros de la funcionx ?: ");
scanf("%d",&n);
printf("\nSecuencia de funcionx: 0,1,2");
for (i = 3; i <= n; i++)

printf(",%d",funcionx(i));
return 0;

}

long int funcionx(int n)
{

long int x = 0 ,y = 1,z = 2, i, aux;
if (n <= 2)

return (n);
else
{

for (i = 3; i <= n;i++)
{

aux = x + 2 * y + z ;
x = y;
y = z;
z = aux;

}
return z;
}

}

CAPÍTULO 7 Funciones106

ap.07 11/6/05 21:40 Página 106

7.9. Escriba una función que calcule la suma de los divisores de un número entero positivo.

Análisis del problema

La función divisores calculará la suma de todos los divisores del número incluyendo el uno y el propio número. Para rea-
lizarlo basta con inicializar un acumulador a cero, y mediante un bucle for recorrer todos los números naturales desde el
uno hasta el propio n, y cada vez que un número sea divisor de n sumarlo al acumulador correspondiente. En la codificación
se incluye un programa principal que se encarga de leer el número y de llamar a la función divisores.
Codificación

#include "stdio.h"
int divisores (int n);

void main (void)
{

int n;
do
{

printf(" dame un numero :");
scanf("%d",&n);}

} while (n <= 0);
printf("la suma de divisores es %d \n",divisores(n));

}

int divisores(int n)
{

int i, acu;
acu = 0;
for(i = 1; i <= n; i++)

if (n % i == 0)
acu += i;

return (acu);
}

7.10. Escriba una función que decida si un número es perfecto.

Análisis del problema

Se programa la función perfecto, de tal manera que sólo se suman los posibles divisores del número n que recibe como
parámetro comprendido entre 1 y n - 1. Esta función es de tipo lógico, y por lo tanto devuelve el valor de la expresión
acu==n.

Codificación

int perfecto(int n)
{

int i,acu ;
acu = 0;
for(i = 1; i < n; i++)

if (n % i == 0)
acu += i;

return (acu == n);
}

CAPÍTULO 7 Funciones 107

ap.07 11/6/05 21:40 Página 107

7.11. Escriba una función que decida si dos número enteros positivos son amigos. Dos números son amigos, si la suma de los divi-
sores distintos de sí mismo de cada uno de ellos coincide con el otro número. Ejemplo 284 y 220 son dos números amigos.

Análisis del problema

Para resolver el problema basta con usar la función divisores implementada en el ejercicio 7.9 y escribir la función ami-
gos que detecta la condición. También se presente un programa principal que llama a las funciones.

Codificación

#include "stdio.h"
int divisores (int n);
int amigos (int n, int m);

void main (void)
{

int n, m;
do
{

printf(" dame dos numeros :");
scanf("%d %d",&n, &m);

} while ((n <= 0) || (m <= 0));
if (amigos(n, m))
printf(" los numeros %d %d son amigos\n", n);

else
printf(" loa numeroa %d %d no son amigos\n", n);

}

int divisores(int n)
{

int i,acu ;
acu=0;
for(i = 1; i < n; i++)

if (n % i == 0)
acu += i;
return (acu);

}

int amigos (int n, int m)
{

return ((n == divisores(m)) && (m == divisores(n)));
}

7.12. Escriba una función que decida si un número entero positivo es primo.

Análisis del problema

Un número entero positivo es primo, si sólo tiene por divisores la unidad y el propio número. Una posible forma de resolver el
problema consiste en comprobar todos los posibles divisores desde el dos hasta uno menos que el dado. El método que se usa,
aplica la siguiente propiedad: “si un número mayor que la raíz cuadrada de n divide al propio n es porque hay otro número ente-
ro menor que la raíz cuadrada que también lo divide”. Por ejemplo: si n vale 64 su raíz cuadrada es 8, el número 32 divide a
64 que es mayor que 8 pero también lo divide el número 2 que es menor que 8, ya que 2*32 =64. De esta forma para decidir
si un número es primo basta con comprobar si tiene divisores menores o iguales que su raíz cuadrada por supuesto eliminando
la unidad. El programa que se codifica a continuación, usa esta propiedad, en la función lógica primo.

CAPÍTULO 7 Funciones108

ap.07 11/6/05 21:40 Página 108

Codificación

#define TRUE 1
#define FALSE 0

int primo(int n)
{

int i,tope, p;
p = TRUE;
i = 2;
printf("%d",tope);
while (p && (i <= tope))
{

p =!(n % i == 0);
i++;

}
return (p);

}

7.13. Se define un número c elevado a un número entero n(n>0) como el producto de c por sí mismo n veces. Escriba un pro-
grama que calcule la potencia de varios números.

Análisis del problema

Se programa la función potencia, mediante un bucle que multiplica por sí mismo el primer parámetro tantas veces como
indique el segundo. El programa principal lee el exponente n y calcula la potencia de varios números.

Codificación

#include "stdio.h"
float potencia (float a, int n);

void main (void)
{

float x,y,i;
int n;
printf(" dame dos numeros ");
scanf("%f%f",&x,&y);
printf(" dame el exponente entero");
scanf("%d",&n);
for (i = x; i <= y; i+=1.0)
{

printf("%8.0f %s %8d %s ",i, "elevado a", n,"es");.
printf("%8.0f\n",potencia(i,n));

}
}

float potencia (float a, int n)
{

float i,f;
f = 1.0;
for (i = 1.0; i <= n; i+=1.0)

f = f * a;

CAPÍTULO 7 Funciones 109

ap.07 11/6/05 21:40 Página 109

return (f);
}

7.14. Escriba una función para calcular las coordenadas x e y de la trayectoria de un proyectil de acuerdo a los parámetros ángu-
lo de inclinación alfa y velocidad v a intervalos de 0.1 s.

Análisis del problema

Las fórmulas que dan las coordenadas x e y del proyectil son:

x = v*cos(alfa)*t
y = v*seno(alfa) - a*t2 / 2

donde alfa es un ángulo que está en el primer cuadrante v es la velocidad inicial y a= 40m/s2 es la aceleración. La función
debe terminar cuando y valga cero.

Codificación

void tratectoria(float a, float v)
{

float t, x, y;
printf(" x y");
printf(" 0 0");
t = 0.1;
y = 1.0 ;
while (y > 0)
{

x = v * cos(a) * t;
y = v * sin(a) * t – 40 /2 * t * t;
printf(" %f %f \n", x, y);

t = t + 0.1;
}

}

7.15. Se define el número combinatorio m sobre n de la siguiente forma: .

=

Escriba un programa que lea los valores de m y de n y calcule el valor de m sobre n.

Análisis del problema

El programa se codifica usando la función factorial, y programando la función combinatorio, con sus correspondientes
llamadas. El programa principal se encarga de leer los datos m y n y de llamar a la función combinatorio.

Codificación

#include "stdio.h"
int factorial (int x);
int combinatorio(int m, int n);

void main(void)

m!—————
n!(m – n)!

m� �n

CAPÍTULO 7 Funciones110

ap.07 11/6/05 21:40 Página 110

{
int m, n, s;
printf(" dame dos numeros enteros ");
scanf("%d%d",&m, &n);
if (m < n)
{

printf("%8i %s %8.i %s",n,"sobre",m,"=");
printf("%8i\n", combinatorio(n,m));

}
else
{

printf("%8i %s %8.i %s",m,"sobre",n,"=");
printf("%8i\n", combinatorio(m,n));

}
}

int factorial (int x)
{

int i,f ;
f = 1 ;
for (i = 1; i <= x; i++)

f = f * i;
return (f);

}

int combinatorio(int m,int n)
{

return(factorial(m) / (factorial(n) * factorial(m - n)));
}

7.16. Dado un número real p entre cero, un número entero n positivo, y otro número entero i comprendido entre o y n, se sabe que
si un suceso tiene probabilidad de que ocurra p, y el experimento aleatorio se repite n veces, la probabilidad de que el suce-
so ocurra i veces viene dado por la función binomial de parámetros n , p e i dada por la siguiente fórmula.

Probabilidad (X = i) = pi (1 – p)n – i

Escriba un programa que lea los valores de p, n e i, y calcule el valor dado por la función binomial.

Análisis del problema

El problema usa la función factorial, combinatorio, potencia, y además la binomial programada de acuerdo con la
fórmula.

Codificación

#include "stdio.h"
float factorial (int x);
float combinatorio(int m,int n);
float potencia (float a, int n);
float binomial(float p, int i, int n);

void main (void)
{

n� �i

CAPÍTULO 7 Funciones 111

ap.07 11/6/05 21:40 Página 111

int n, i;
float p;
do
{

printf(" dame porbabilidad p y valor de n ");
scanf("%f %i",&p,&n);

} while ((p <= 0) || (p >= 1) || (n <= 0));
do
{

printf(" dame valor de i entre 0 y el valor de n \n");
scanf("%i",&i);

} while ((i < 0) || (i > n));
printf("%8f\n", binomial(p, i, n));

}

float factorial (int x)
{

float i, f;
f = 1 ;
for (i = 1; i <= x; i++)

f = f*i;
return (f);

}

float combinatorio(int m, int n)
{

float x ;
x = factorial(m)/(factorial(n)*factorial(m-n));
return(x);

}

float potencia (float a, int n)
{

float i,f ;
f = 1.0 ;
for (i = 1; i <= n; i++)

f = f * a;
return (f);

}

float binomial(float p, int i, int n)
{

return(combinatorio(n,i) * potencia(p,i) * potencia(1-p,n-i));
}

7.17. Escriba un programa que mediante funciones calcule:

• Las anualidades de capitalización si se conoce el tiempo, el tanto por ciento y el capital final a pagar.
• El capital c que resta por pagar al cabo de t años conociendo la anualidad de capitalización y el tanto por ciento.
• El número de años que se necesitan para pagar un capital c a un tanto por ciento r.

CAPÍTULO 7 Funciones112

ap.07 11/6/05 21:40 Página 112

Análisis del problema

El programa se codifica de la siguiente forma: la función menu, se encarga de realizar las llamadas a los distintos apartados
del problema. La función aa calcula la anualidad de capitalización, teniendo en cuenta que viene dada por:

aa =

La función cc calcula el apartado segundo teniendo en cuenta que viene dada por la fórmula:

cc = a(1 + r)

La función tt calcula el tercer apartado, teniendo en cuenta que viene dada pro la fórmula:

tt =

El programa principal, se encarga de leer los datos, y realizar las distintas llamadas.

Codificación

#include <math.h>
#include <stdio.h>
float cc (float r, float t, float a);
float tt(float r, float a, float c);
float aa(float r, float t, float c);
int menu(void);

void main (void)
{

int opcion;
float c, r, t, a;
for (;;)
{

char sigue;
opcion = menu();
switch (opcion)
{

case 1: printf(" dame r t y a\n");
scanf("%f%f%f",&r,&t,&a);
c = cc(r / 100, t, a);
printf(" capital = %f \n", c);
scanf("%c",&sigue);
break;

case 2: printf(" dame r t y c\n");
scanf("%f%f%f",&r,&t,&c);
a= aa(r / 100, t, c);
printf(" anualidad = %f \n", a);
scanf("%c",&sigue);
break;

cr
log �1 + —————�a(1 + r)
——————————

log(1 + r)

(1 + r)t – 1�—————�r

cr
—————————
(1 + r)((1 + r)t – 1)

CAPÍTULO 7 Funciones 113

ap.07 11/6/05 21:40 Página 113

case 3: printf(" dame r a y c\n");
scanf("%f%f%f",&r,&a,&c);
t= tt(r / 100, a, c);
printf(" años = %f \n ", t);
scanf("%c",&sigue);
break;

case 4: exit();
break;

}
}

}

float cc(float r, float t, float a)
{

return (a* (1 + r) * (pow(1 + r, t) - 1) / r);
}

float aa(float r, float t, float c)
{

return (c * r / ((1 + r) * (pow(1 + r, t) - 1)));
}

float tt(float r, float a, float c)
{

float x;
x = c * r / (a * (1 + r));
return (log(1 + x) / log(1 + r));

}

int menu(void)
{

char s[80];
int c;
printf(" 1. calcular anualidad A de capitalización \n");
printf(" 2. calcular el capital C al cabo de t años \n");
printf(" 3. calcular el numero de años \n");
printf(" 4 fin \n");
do
{

printf (" introduzca opción \n");
gets(s);
c = atoi(s);

} while (c < 0 || c > 4);
return c;

}

7.18 La ley de probabilidad de que ocurra el suceso r veces de la distribución de Poisson de media m viene dado por:

Probabilidad (X = r) = e–m

Escriba un programa que calcule mediante un menú el valor de:

mr

—–
r!

CAPÍTULO 7 Funciones114

ap.07 11/6/05 21:40 Página 114

a) El suceso ocurra exactamente r veces.
b) El suceso ocurra a lo sumo r veces.
c) El suceso ocurra por lo menos r veces.

Análisis del problema

Se programa una función menú que elige entre las tres opciones.
Se programa una función Poisson que calcula

Probabilidad (X = r) = e–m

y la

Probabilidad (X ≤ r) = e–m

que resuelven el apartado a y el b.

Para resolver el apartado c basta con observar que:

Probabilidad (X ≥ r) = 1 + Probabilidad (X = r) – Probabilidad (X ≤ r)

El programa principal, lee los valores de r, el valor de la media m y llama al menú.

Codificación (Consultar la página web del libro)

7.19 La función seno viene definida mediante el siguiente desarrollo en serie.

sen(x) = (–1)i

Escriba una función que reciba como parámetro el valor de x así como una cota de error, ycalcule el seno de x con un error
menor que la cota que se le pase.

Análisis del problema

Las fórmula que calcula los valores de sen (x) puede obtenerse de la siguiente forma:

sen(x)= t1+t3+t5+t7+t9+........

donde

t1 = x y ti = – ti – 2

La función seno se programa teniendo en cuenta las fórmulas anteriores, y además la parada se realiza, cuando se han suma-
do, como máximo 10 términos (i=20), o el siguiente término a sumarse tiene un valor absoluto menor que una cota de error
que se le pasa como parámetro.
El programa principal lee los valores de valor1, valor2, incremento, y cota de error y llame a la función coseno de
biblioteca y la compare con el valor calculado mediante la función programada, para los valores:

valor1, valor1+incremento, valor1+ 2*incremento,...

hasta que se sobrepase el valor2.

x · x———–
i(i – 1)

x2i + 1

———–
(2i + 1)!

n

Σ
i = 0

mr

—–
i!

r

Σ
i = 0

mr

—–
r!

CAPÍTULO 7 Funciones 115

ap.07 11/6/05 21:40 Página 115

Codificación

#include <math.h>
#include <stdio.h>
float seno(float x, float error);

void main (void)
{

float error,valor1,valor2, inc, x;
do
{

printf (" dame valor1 valor2 inc error positivo ");
scanf(" %f %f %f %f", &valor1, &valor2,&inc,&error);

} while ((valor1 > valor2) || (inc <0) || (error <0));
for (x = valor1; x <= valor2; x += inc)

printf(" %f %f %f \n", x , sin(x), seno(x,error));
}

float seno(float x, float error)
{

float term,suma,xx;
int i, ii ;
suma = x;
i= 1;
term = x;
xx = x * x;
while (fabs(term) > error && i < 20)
{

i += 2;
term = -term * xx/(i * (i - 1));
suma = suma + term;

}
return(suma);

}

7.20 La función clotoide viene definida por el siguiente desarrollo en serie, donde A y θ son datos.

x = A�
_
2
_
Θ (–1)i

Escriba un programa en calcule los valores de la clotoide para el valor de A =1 y para los valores de θ siguientes 0, π/20,
2π/20,3π/20,......, π. La parada de la suma de la serie, será cuando el valor absoluto del siguiente término a sumar sea
menor o igual que 1 e-10.

Análisis del problema

Las fórmulas que calculan los distintos valores de x y de y, pueden obtenerse de la siguiente forma:

x = t0+t2+t4+t6+t8+........
y = t1+t3+t5+t7+t9+........

siendo t0 = A�
_
2
_
Θ y ti = (–1)i – 1 Θti – 1

2i – 1———–
i(2i + 1)

Θ2i

—————–
(4i + 1)(2i)!

n

Σ
i = 0

CAPÍTULO 7 Funciones116

ap.07 11/6/05 21:40 Página 116

Se programa la función term, que calcula ti en función de ti-1 , i , θ.
Se programa la función clotoide, que recibe como datos el valor de a y el de θ y devuelve como resultado los valores de
x e y.
El programa principal, calcula el valor de π mediante la función arcocoseno, para posteriormente mediante un bucle, rea-
lizar las distintas llamadas a la función clotoide.

Codificación (Se encuentra en la página web del libro)

7.21 La función coseno viene definida mediante el siguiente desarrollo en serie.

cos(x) = (–1)i

Escribe una función que reciba como parámetro el valor de x así como una cota de error, y calcule el coseno de x con un
error menor que la cota que se le pase. Compare el valor obtenido, por la función de biblioteca y la programada.

Análisis del problema

Las fórmula que calcula los valores de cos(x) puede obtenerse de la siguiente forma:

cos(x)= t0+t2+t4+t6+t8+...

donde t0 = 1 y ti = – ti – 2

La función coseno se programa teniendo en cuenta las fórmulas anteriores, y además la parada se realiza, cuando se han
sumado, como máximo 20 términos (i=20), o el siguiente término a sumarse tiene un valor absoluto menor que una cota de
error que se le pasa como parámetro.
El programa principal lee los valores de valor1, valor2, incremento , y cota de error y llame a la función coseno de
biblioteca y la compare con el valor calculado mediante la función programada, para los valores:

valor1, valor1+ incremento, valor1+ 2*incremento ,...

hasta que se sobrepase el valor2.

Codificación

#include <math.h>
#include <stdio.h>
float coseno(float x, float error);

void main (void)
{

float error,valor1,valor2, inc, x;
do
{

printf (" dame valor1 valor2 inc error positivo ");
scanf(" %f %f %f %f", &valor1, &valor2,&inc,&error);

} while ((valor1 > valor2) || (inc <0) || (error <0));
for (x = valor1; x <= valor2; x += inc)

printf(" %f %f %f \n", x ,cos(x),coseno(x, error));
}

float coseno(float x, float error)

x · x———–
i(i – 1)

x2i

——
(2i)!

n

Σ
i = 0

CAPÍTULO 7 Funciones 117

ap.07 11/6/05 21:40 Página 117

{
float term, suma, xx;
int i, ii;
suma = 1.0;
i = 0;
term = 1.0;
xx = x * x;
while (fabs(term) > error && i < 20)
{

i += 2;
term = -term * xx/(i * (i - 1));
suma = suma + term;

}
return(suma);

}

7.22 La descomposición en base 2 de todo número, permite en particular que todo número en el intervalo (0,1), se pueda escri-
bir como límite de la serie

±

donde la elección del signo sg(i) depende del número que se trate.
El signo del primer término es siempre positivo. Una vez calculado los signos de los n primeros, para calcular el signo

del siguiente término se emplea el esquema: signo es positivo sg(n+1)=+1 si se cumple:

2
sg(i)

> x

en caso contrario, sg(n+1)= -1.
Escriba un programa que calcule el logaritmo en base dos de un número x>0 con un error absoluto menor o igual que

épsilon (x y épsilon son datos).

Análisis del problema

Si x está en el intervalo (0,1) entonces log2(x) = -log2(1/x). Si x es mayor que 2 entonces es obvio que log2(x) = 1
+ log2(x/2).
Por tanto para programar la función log2() basta con tener en cuenta las propiedades anteriores. El problema se resuelve
escribiendo las siguientes funciones:

• Alog2 que calcula el logaritmo en base 2 de cualquier x, y que llamará a las funciones alog01, alog12, o bien alog1i.
• Alog12 se programa teniendo en cuenta el desarrollo de la serie en el intervalo [1,2].
• La función signo determina en el propio avance del desarrollo de la suma.
• La función Alog01, se programa, de acuerdo con la propiedad del intervalo (0,1). Llamará, o bien a la función alog12,

o bien a la función alog1i, dependiendo de que 1/x sea menor, o igual que dos, o bien sea estrictamente mayor.
• La función alog2i, se programa de acuerdo con la propiedad de los números estrictamente mayores que dos.

El programa principal lee la cota de error, y llama a la función alog2 para varios valores de prueba. Se muestra el resulta-
do obtenido de la función alog2 y con la función de librería log().

Codificación

#include <math.h>
#include <stdio.h>

1—
2i

n

Σ
i = 1

1—
2i

n

Σ
i = 1

CAPÍTULO 7 Funciones118

ap.07 11/6/05 21:40 Página 118

float alog2(float x, float eps);
float alog01(float x, float eps);
float alog12(float x, float eps);
float alog2i(float x, float eps);

void main (void)
{

float x, eps;
do
{

printf(" dame cota de error positiva ");
scanf("%f",&eps);

} while (eps <= 0);
printf(" dato log2 máquina \n");
for (x= 0.01; x <= 1.06; x += 0.05)
{

printf("%6.3f %10.6f",x, alog2(x, eps));
printf("%10.6f\n",log(x) / log(2));

}
}

float alog2(float x, float eps)
{

float valor;
if(x<= 0)
{

printf (" error logaritmo negativo ");
exit(1);

}
else if (x < 1)

valor = alog01(x, eps);
else if(x <= 2)
valor = alog12(x, eps);

else
valor = alog2i(x, eps);

return valor;
}

float alog01(float x, float eps)
{

if ((1 / x) > 2.0)
return (-alog2i(1 / x, eps));

else
return(-alog12(1 / x, eps));

}

float alog12(float x, float eps)
{

float term = 1.0, suma = 1.0;
l2 = log(2.0);
while (fabs(term) > eps)
{

term = term / 2;

CAPÍTULO 7 Funciones 119

ap.07 11/6/05 21:40 Página 119

if (exp(l2 * suma) <= x)
suma += term;

else
suma -= term;

}
return(suma);

}

float alog2i(float x, float eps)
{

float acu = 0;
while (x > 2)
{

x = x / 2;
acu = acu + 1;

}
acu = acu + alog12(x, eps);
return (acu);

}

7.23 Escriba un programa para gestionar fracciones.

Análisis del problema

El problema se ha estructurado de la siguiente forma.

• Una función mcd, calcula el máximo común divisor de dos números naturales, mediante el conocido algoritmo de
Euclides. Para ello convierte los dos números en positivos.

• Una función mcm calcula el mínimo común múltiplo de dos números enteros, usando la propiedad siguiente: el máximo
común divisor, multiplicado por el mínimo común múltiplo de dos números coincide con el producto de ambos números.

• Una función simplificaf, que simplifica una fracción dejando siempre el signo negativo, en caso de que la fracción sea
negativa en el numerador.

• Una función leerf, se encarga de leer una fracción, asegurándose de que el denominador sea distinto de cero y que ade-
más el numerador y denominador sean primos entre sí.

• Una función escribef, se encarga de escribir una fracción en la salida.
• Las funciones sumaf, restaf, multiplicaf, dividef, se encarga de sumar, restar, multiplicar y dividir fracciones.
• La función elige se encarga de leer un número comprendido entre los dos que se le pasen como parámetro.
• La función leerfracciones se encarga de leer dos fracciones.
• Por último, el programa principal, mediante un menú llama a las distintas funciones.

Codificación (Consultar la página web del libro)

CAPÍTULO 7 Funciones120

ap.07 11/6/05 21:40 Página 120

CAPÍTULO 7 Funciones 121

PROBLEMAS PROPUESTOS
7.1. Escriba una función dígito que determine si un carácter

es uno de los dígitos, 0,1,2,....

7.2. Realice un procedimiento que realice la conversión de
coordenadas polares (r,a) a cartesianas. Nota: x =
r*cos(a), y = r*sin(a).

7.3. Escriba una función que calcule la media de un conjun-
to de n>0 números leídos del teclado.

7.4. Escriba una función que decida si un número entero es
capicúa.

7.5. Escriba una función que sume los 30 primeros números
impares.

7.6. Dado el valor de un ángulo escribir un programa que
muestre el valor de todas las funciones trigonométricas
correspondientes al mismo.

7.7. Escriba una función que calcule la suma de los 20 pri-
meros números primos.

7.8. Escriba una función que encuentre y escriba todos los
números perfectos menores que un valor constante max.

7.9. Escriba un programa que mediante funciones determine
el área del círculo correspondiente a la circunferencia
circunscrita de un triángulo del que se conocen las coor-
denadas de los vértices.

7.10. Escriba un programa que lea dos enteros positivos n, y
b y mediante una función CambiarBase visualice la
correspondiente representación del número n en la
base b.

ap.07 11/6/05 21:40 Página 121

ap.07 11/6/05 21:40 Página 122

123

La recursividad (recursión) es la propiedad que posee una función de permitir que dicha función puede llamarse a sí misma.
Se puede utilizar la recursividad como una alternativa a la iteración. La recursión es una herramienta poderosa e importante en
la resolución de problemas y en programación. Una solución recursiva es normalmente menos eficiente en términos de tiem-
po de computadora que una solución iterativa debido a las operaciones auxiliares que llevan consigo las llamadas suplementa-
rias a las funciones; sin embargo, en muchas circunstancias el uso de la recursión permite a los programadores especificar
soluciones naturales, sencillas, que serían, en caso contrario, difíciles de resolver.

8.1 La naturaleza de la recursividad
Una función recursiva es aquella que se llama a sí misma bien directamente, o bien a través de otra función. En matemáticas
existen numerosas funciones que tienen carácter recursivo de igual modo numerosas circunstancias y situaciones de la vida
ordinaria tienen carácter recursivo. Una función que contiene sentencias entre las que se encuentra al menos una que llama a
la propia función se dice que es recursiva.

8.2 Funciones recursivas
Una función recursiva es una función que se invoca a sí misma de forma directa o indirecta. En recursión directa el código
de la función f() contiene una sentencia que invoca a f(), mientras que en recursión indirecta f() invoca a la fución g()
que invoca a su vez a la función p(), y así sucesivamente hasta que se invoca de nuevo a la función f(). Un requisito para que
un algoritmo recursivo sea correcto es que no genere una secuencia infinita de llamadas sobre sí mismo. Cualquier algoritmo
que genere una secuencia de este tipo puede no terminar nunca.

EJEMPLO 8.1 Una función con recursividad directa

int f(int x)
{

if (x <= 0)
return 2;

else

CAPÍTULO 8

Recursividad

ap.08 11/6/05 21:41 Página 123

return(n + 2 * f(n - 2));
}

La recursividad indirecta se produce cuando una función llama a otra, que eventualmente terminará llamando de nuevo a
la primera función. Puede generalizarse mediante tres funciones f1(), f2() , f3(). La función f1() realiza una llamada a
f2(). La función f2() realiza una llamada a f3(). La función f3() realiza una llamada a f1().Cuando se implementa una
función recursiva es preciso considerar una condición de terminación (caso base), ya que en caso contrario la función conti-
nuaría indefinidamente, llamándose a sí misma y llegaría un momento en que la memoria se agotaría. En consecuencia, sería
necesario establecer en cualquier función recursiva la condición de parada de las llamadas recursivas y evitar indefinidamen-
te las llamadas.

EJEMPLO 8.2. Implementación de dos funciones con recursividad indirecta.

float f(float y);

float g(float y)
{

if (y <= 3)
return (y);

else
return(y + f(y - 2));

}

float f (float y)
{

if (y <= 2)
return (y);

else
return(y + g(y - 2));

}

8.3 Recursión versus iteración
Tanto la iteración como la recursión se basan en una estructura de control: la iteración utiliza una estructura repetitiva y la
recursión utiliza una estructura de selección. La iteración y la recursión implican ambas repetición: la iteración utiliza explí-
citamente una estructura repetitiva mientras que la recursión consigue la repetición mediante llamadas repetidas a funciones.
La recursión invoca repetidamente al mecanismo de llamadas a funciones y en consecuencia se necesita un tiempo suplemen-
tario para realizar cada llamada. Esta característica puede resultar cara en tiempo de procesador y espacio de memoria. Las fun-
ciones con llamadas recursivas utilizan memoria extra en las llamadas; existe un límite en las llamadas, que depende de la
memoria de la computadora. En caso de superar este límite ocurre un error de desbordamiento (overflow). La iteración se pro-
duce dentro de una función de modo que las operaciones suplementarias de las llamadas a la función y asignación de memo-
ria adicional son omitidas. Toda función recursiva puede ser transformada en otra función con esquema iterativo, para ello a
veces se necesitan pilas donde almacenar cálculos parciales y valores de variables locales. La razón fundamental para elegir la
recursión es que existen numerosos problemas complejos que poseen naturaleza recursiva y, en consecuencia, son más fáciles
de diseñar e implementar con algoritmos de este tipo.

EJEMPLO 8.3 Escribir una función no recursiva que permita generar los números de fibonacci.

La secuencia de números de fibonacci: 0, 1, 1, 2, 3, 5, 8, 13 … se obtiene partiendo de los números 0, 1 y a partir de
ellos cada número se obtiene sumando los dos anteriores:

an = an-1 + an-2. La función fibonacci tiene dos variables static, x e y. Se inicializan x a 0 y a 1, a partir de esos valo-
res se calcula el número de fibonacci actual, y, dejando preparado x para la siguiente llamada. Al ser variables static
mantienen el valor entre llamada y llamada:

CAPÍTULO 8 Recursividad124

ap.08 11/6/05 21:41 Página 124

CAPÍTULO 8 Recursividad 125

long int fibonacci()
{
static int x = 0;
static int y = 1;
y = y + x;
x = y - x;
return y;

}
/* bucle para escribir n números de l fibonacci */

for (i = 2; i < n; i++)
printf(“,%ld”, fibonacci());

8.4 Recursión infinita
La recursión infinita se produce cuando una llamada recursiva realiza otra llamada recursiva y ésta a su vez otra llamada recur-
siva y así indefinidamente. El flujo de control de una función recursiva requiere para una terminación normal distinguir los
casos generales y triviales:

• Al caso general de un problema debe proporcionar una solución general mediante la realización de una o varias llamadas
recursivas para un subproblema o subproblemas más pequeño.

• Al caso o casos triviales, debe proporcionar una solución trivial que no incluya llamadas recursivas.

8.5 Algoritmos divide y vencerás
El diseño de algoritmos basados en la técnica divide y vence consiste en transformar (dividir) un problema de tamaño n en pro-
blemas más pequeños, de tamaño menor que n pero similares al problema original, de modo que resolviendo los subproblemas
y combinando las soluciones se pueda construir fácilmente una solución del problema completo (vencerás). Normalmente, el
proceso de división de un problema en otros de tamaño menor conduce a problemas unitarios, caso base, cuya solución es
inmediata. A partir de la obtención de la solución del problema para el caso base, se combinan soluciones que amplían el tama-
ño del problema resulto, hasta que el problema original queda resuelto. La implementación de estos algoritmos se puede reali-
zar con funciones recursivas.

PROBLEMAS RESUELTOS
8.1. Escriba una función recursiva para calcular el factorial de un número entero positivo.

Análisis del problema

Si n es un numero positivo se sabe que 0!=1 y si n>0 entonces se tiene que n! = n*(n-1)!. La función factorial codi-
fica el algoritmos recursivamente .

Codificación

int factorial(int n)
{

int aux;

ap.08 11/6/05 21:41 Página 125

if (n <= 1)
aux = 1;

else
aux = n * factorial(n - 1);

return(aux);
}

8.2. Escriba una función que calcule la potaneicia an recursivamente, siendo n positivo.

Análisis del problema

La potencia de an es 1 si n = 0 y es a * nn-1 en otro caso.

Codificación

float potencia(float a, int n)
{

if (n <= 0)
return(1);

else
return(a * potencia(a, n - 1));

}

8.3. Escriba una función que dado un número entero positivo n calcule el número de fibonacci asociado.

Análisis del problema

Los números de fibonacci son 0, 1, 1 , 2, 3, 5, 8, 13, ... donde para n=0 fibonacci(0)=0, para n=1 fibo-
nacci(1)=1, y si n>1 tenemos que fibonacci(n) = fibonacci(n - 1) + fibonacci(n - 2).

Codificación

int fibonacci(int n)
{

if (n <= 1)
return(n);

else
return(fibonacci(n -1)+ fibonacci(n - 2));

}

8.4. Escriba una función recursiva que calcule el cociente de la división entera de n entre m, siendo m y n dos números enteros
positivos recursivamente.

Análisis del problema

El cociente de la división entera de n entre m, siendo ambos números enteros positivos se calcula de la siguiente forma si
n < m entonces cociente(n,m)= 0, si n >= m entonces cociente(n, m) = 1 + cociente(n - m, m).

Codificación

int cociente(int n, int m)
{

if (n < m)

CAPÍTULO 8 Recursividad126

ap.08 11/6/05 21:41 Página 126

CAPÍTULO 8 Recursividad 127

return(0);
else

return(1 + cociente(n - m, m));
}

8.5. Escriba una función recursiva que calcule los valores de la función funcionx definida de la siguiente forma:
funcionx(0) = 0,
funcionx(1) = 1
funcionx(2) = 2
funcionx(n) = funcionx(n-3)+ 2*funcionx(n-2)+funcionx(n-1) si n > 2.

Análisis del problema

La función funcionx está definida recursivamente por lo que su codificación sigue exactamente el esquema indicado. Los
primeros valores de esta función son;. 0, 1, 2, 4, 9, 19, 41,...

Coficación

int funcionx(int n)
{

if (n <= 2)
return(n);

else
return(funcionx(n-3) + 2 * funcionx(n-2) + funcionx(n-1));

}

8.6. Escriba una función recursiva que lea números enteros positivos ordenados crecientemente del teclado, elimine los repeti-
dos y los escriba al revés. El fin de datos viene dado por el número especial 0.

Análisis del problema

La función recursiva que se escribe tiene un parámetro llamado ant que indica el último número leído. Inicialmente se llama
a la función con el valor –1 que se sabe que no puede estar en la lista. Lo primero que se hace es leer un número n de la
lista. Como el final de la lista viene dada por 0, si se lee el 0 entonces “se rompe” la recursividad y se da un salto de línea.
En caso de que el número leído no sea 0 se tienen dos posibilidades: la primera es que n no coincida con el anterior dado en
ant, en cuyo caso se llama a la recursividad con el valor de ant, dado por n, para posteriormente y a la vuelta de la recur-
sividad escribir el dato n; la segunda es que n coincida con ant, en cuyo caso se llama a la recursividad con el nuevo valor
de ant, dado por n, pero ahora a la vuelta de la recursividad no se escribe n pues está repetido.

Codificación

#include <stdio.h>
int elimina (int ant);

int main()
{

elimina(-1);
return 0;

}

int elimina(int ant)
{

int n;

ap.08 11/6/05 21:41 Página 127

CAPÍTULO 8 Recursividad128

scanf(“%d”,&n);
if(n == 0)

printf(“\n”);
else if (!(n == ant))
{

elimina (n);
printf(“%d”, n);

}
else

elimina(n);
return(0);

}

8.7. El problema de las torres de Hanoi general tiene tres varillas o torres denominadas Origen, Destino y Auxiliar y un con-
junto de n>0 discos de diferentes tamaños. Cada disco tiene una perforación en el centro que le permite colocarse en cual-
quiera de las torres. En la varilla Origen se encuentran colocados inicialmente los n discos de tamaños diferentes ordenados
de mayor a menor, como se muestra en el dibujo. Se trata de llevar los n discos de la varilla Origen a la varilla Destino uti-
lizando las siguientes reglas:

1. Sólo se puede llevar un solo disco cada vez.
2. Un disco sólo puede colocarse encima de otro con diámetro ligeramente superior.
3. Si se necesita puede usarse la varilla Auxiliar.

Análisis del problema

El problema de pasar 3 discos del pivote origen al destino se puede resolver en tres pasos:

Paso 1: pasar 2 discos de la varilla Origen a la varilla Auxiliar.
Paso2: pasar un disco a la varilla Origen a la Destino.
Paso 3: pasar dos discos de la varilla Auxiliar a la Destino.

El paso 1, vulnera la primera regla, pero para solucionarlo, se puede recurrir a la misma mecánica: mover 1 disco de la vari-
lla Origen a la Destino; mover el siguiente disco a la varilla Auxiliar; mover el disco de la varilla Destino a la
Auxiliar:

Fases del Paso 1

El paso 2 se realiza de la manera óbvia, y el paso 3 es análogo al paso 1.

Origen

1

Destino

2

Auxiliar

3

Origen

1

Destino

2

Auxiliar

3

Origen

1

Destino

2

Auxiliar

3
Origen

1

Destino

2

Auxiliar

3

Origen

1

Destino

2

Auxiliar

3

ap.08 11/6/05 21:41 Página 128

CAPÍTULO 8 Recursividad 129

Algorítmicamente, el problema tiene una solución muy sencilla usando la recursividad y la técnica divide y vence. Para
resolver el problema basta con observar que si sólo hay un disco n=1 (caso trivial), entonces se lleva directamente de la
varilla Origen a la varilla Destino. Si hay que llevar n > 1 (caso general) discos de la varilla Origen a la varilla
Destino, entonces:
Se llevan n-1 discos de la varilla Origen a la Auxiliar.
Se lleva un solo disco de la varilla Origen a la Destino.
Se traen los n-1 discos de la varilla Auxiliar a la Destino.

Codificación

#include <stdio.h>
#include <stdlib.h>

void Hanoi(int n, int Origen, int Destino, int Auxiliar)
{

if (n == 1)
printf(“llevo disco %3d dela varilla %3d a la varilla %3d\n”, n, Origen, Destino);
else
{

Hanoi(n - 1, Origen, Auxiliar, Destino);
printf(“llevo disco %3d dela varilla %3d a la varilla %3d\n”, n, Origen, Destino);
Hanoi(n - 1, Auxiliar, Destino, Origen) ;

}
}

int main()

char sig;
Hanoi(3, 1, 2, 3);
puts(“\nPresione una tecla para continuar . . . “);
scanf (“%c”,&sig);
return 0;

}

Ejecución

8.8. Realizar una función recursiva que calcule el producto de números naturales.

Análisis del problema

El producto x*y si x e y son números naturales se define recursivamente de la siguiente forma:

x * 0 = 0 si y == 0
x * y = x * (y - 1) + x si y > 0

ap.08 11/6/05 21:41 Página 129

Codificación

#include <stdio.h>
#include <stdlib.h>

int producto (int x, int y)
{

if (y == 0)
return(0);

else
return(producto(x, y –1) + x);

}

int main()
{

int x, y;
do
{

printf(“dame x e y >= 0\n”);
scanf(“%d %d”, &x,&y);

} while (x < 0 || y < 0);
printf(“el producto de %d por %d es:%d\n”,x, y, producto(x,y));
return 0;

}

8.9. Codificar un programa que mediante la técnica de recursividad indirecta escriba el alfabeto en minúsculas.

Análisis del problema

La codificiación usa dos funciones recursivas f1() que llama a la función f2() y f2() que llama a la función f1(). Ambas
funciones reciben como parámetro un carácter c, y si ese carácter es menor que ´z´ entonces lo escriben; sitúan el carácter
c en el siguiente carácter y llaman a la otra función. En caso de que el carácter c que reciben como parámetro sea el ´z´ lo
escriben y no realizan ninguna llamada recursiva. El programa principal simplemente se encarga de llamar a una función (en
este caso f1()) con ´a´.

Codificación

#include <stdio.h>

void f1(char c);
void f2(char c);

int main()
{
f1(‘a’);
printf(“\n”);
return 0;

}

void f1(char c)
{

if (c < ‘z’)
{

CAPÍTULO 8 Recursividad130

ap.08 11/6/05 21:41 Página 130

CAPÍTULO 8 Recursividad 131

printf(“%c “, c);
c++;
f2(c);

}
else

printf(“%c”, c);
}

void f2(char c)
{

if (c < ‘z’)
{

printf(“%c “, c);
c++;
f1(c);

}
else

printf(“%c”, c);
}

8.10. Escriba una función recursiva que calcule la suma de los n primeros términos de la serie armónica.

s = ∑
n

i=1

Análisis del problema

La suma de la serie armónica realizada descendentemente puede definirse recursivamente de la siguiente forma:

S(1) = 1 si i = 1
S(i) = 1 / i + S(i - 1) si i > 1

Si se realiza ascendentemente la definición recursiva es:

S1(i,n) = 1 / i si i = n
S1(i,n) = 1 / i + S1(i + 1, n + 1) si i < n

Se codifica el programa principal y las dos versiones. Hay que tener en cuenta que si i es entero entonces 1/i da como
resultado el entero 0. Para evitarlo hay que obligar a que el operador / realice la división real. Esto se codifica en el pro-
blema como 1/(flota)i.

Codificación

#include <stdio.h>
float S(int i)
{

if (i == 1)
return 1;

else
return(1 / (float)i + S(i - 1));

}

float S1(int i, int n)

1
i

ap.08 11/6/05 21:41 Página 131

{
if (i == n)

return 1/ (float)i;
else

return(1 / (float)i + S1(i + 1, n));
}

int main()
{

printf(“\n %f, la otra %f \n”, S(6), S1(1,6));
return 0;

}

8.11. Escriba una función iterativa y otra recursiva para calcular el valor aproximado del número e, sumando la serie:

e=1 + 1/1 ! + 1/2 ! + ... + 1/n !

hasta que los términos adicionales a sumar sean menores que 1.0e-8.

Análisis del problema

La función loge(), calcula iterativamente la suma de la serie indicada de la siguiente forma: la variable delta contendrá
en todo momento el valor del siguiente término a sumar. Es decir tomará los valores de 1, 1/1!, 1/2!, 1/3!, ... 1/n!.
La variable suma contendrá las sumas parciales de la serie, por lo que se inicializa a cero, y en cada iteración se va suman-
do el valor de delta. La variable n contendrá los valores por los que hay que dividir delta en cada iteración para obtener
el siguiente valor de delta conocido el valor anterior. La función logeR() codifica la serie recursivamente. Tiene como
parámetro el valor de n y el valor delta. El valor de n debe ser incrementado en una unidad en cada llamada recursiva. El
parámetro delta contiene en cada momento el valor del término a sumar de la serie. Si el término a sumar es mayor o igual
que 1.0 e-8, se suma el término a la llamada recursiva de la función recalculando en la propia llamada el nuevo valor de
delta (dividiéndolo entre n+1). Si el término a sumar delta es menor que 1.0 e-8 se retorna el valor de 0, ya que se ha
terminado de sumar la serie.

Codificación

#include <stdio.h>

double loge(void)
{

double suma, delta;
int n;
suma =0;
delta = 1.0;
n = 0;
do
{

suma += delta;
n++;
delta = delta/n;

} while (delta >= 1.0e-8);
return suma;

}

CAPÍTULO 8 Recursividad132

ap.08 11/6/05 21:41 Página 132

CAPÍTULO 8 Recursividad 133

double logeR(int n, float delta)
{

if (delta >= 1.0e-8)
return (delta + logeR(n + 1, delta / (n + 1)));

else
return 0;

}

int main()
{

double aux, aux1;
char sig;
aux = logeR(0, 1.0);
aux1 = loge();
printf (“ recursivo %f \n no recursivo %f \n”, aux, aux1);
puts(“\nPresione una tecla para continuar . . . “);
scanf (“%c”,&sig);
return 0;

}

Ejecución

8.12. Escriba una función recursiva que calcule la función de Ackermann definida de la siguiente forma:
A(m, n) = n + 1 si m = 0
A(m, n) = A (m- 1, 1) si n = 0
A(m, n) = A(m – 1, A(m, n – 1)) si m > 0, y n > 0

Análisis del problema

La función recursiva queda perfectamente definida en el propio problema por lo que su codificación en C se realiza exac-
tamente igual que la propia definición. En la codificación se incluye un programa principal con sucesivas llamadas a la fun-
ción Akerman.

Codificación

#include <stdio.h>
double akerman (int m, int n)
{

if (m == 0)
return n + 1;

else
if (n == 0)

return (akerman(m - 1,1));
else

return (akerman(m - 1, akerman(m, n - 1)));
}

int main()
{

long a;

ap.08 11/6/05 21:41 Página 133

int i, j;
char sig;
for (i = 1; i <= 3; i++)
{

printf(“ fila %d :”, i);
for (j = 1; j <= 8; j++)
{

a = akerman (i, j);
printf (“ %d “, a);

}
printf (“\n”);

}
puts(“\nPresione una tecla para continuar . . . “);
scanf (“%c”,&sig);
return 0;

}

Ejecución

8.13. Escriba una función recursiva que calcule el máximo de un vector de enteros.

Análisis del problema

Suponiendo que el vector tenga al menos dos elementos, el elemento mayor se puede calcular recursivamente, usando la
función max()que devuelva el mayor de dos enteros que reciba como parámetros. Posterioremente se puede definir la fun-
ción maxarray() que calcula el máximo del array recursivamente con el siguiente planteamiento:

Caso trivial : n == 1, solución trivial max(a[0],a[1])
Caso general: n > 1, maxarray = max(maxarray(a,n-1),a[n])

Codificación

int max(int x, int y)
{

if (x < y)
return y;
else
return x;

}

int maxarray(int a[], int n)
{

if (n ==1)
return (max(a[0], a[1]));

else
return(max(maxarray(a, n - 1), a[n]));

}

CAPÍTULO 8 Recursividad134

ap.08 11/6/05 21:41 Página 134

CAPÍTULO 8 Recursividad 135

8.14. Escriba una función recursiva, que calcule el producto de los elementos de un vector v que sean mayores que un valor b.

Análisis del problema

Se programa la función producto de la siguiente forma: la función tiene como parámetros el vector v, el valor de b, y un
parámetro n que indica que falta por resolver el problema para los datos almacenados en el vector desde la posición 0 hasta
la n. De esta forma si n vale 0 el problema tiene una solución trivial: si v[0] < = b devuelve 1, y si v[0] > b devuel-
ve v[0]. Si n es mayor que 0, entonces, debe calcularse recursivamente el producto desde la posición 0 hasta la n-1 y des-
pués multiplicarse por v[n] en el caso de que v[n] sea mayor que b.

Codificación

float producto(float v[], float b, int n)
{

if (n == 0)
if (v[0] <= b)

return 1;
else

return v[0];
else

if (v[n] <= b)
return producto(v, b, n - 1);

else
return v[n]* producto(v, b, n - 1);

}

PROBLEMAS PROPUESTOS
8.1 Diseñar una función recursiva de prototipo int voca-

les(const char * cd) para calcular el número de
vocales de una cadena.

8.2 Diseñar una función recursiva que calcule la suma de los
elementos de un vector recursivamente.

8.3 Aplique el esquema de los algoritmos divide y vence
para que dados las coordenadas (x,y) de dos puntos en el
plano, que representan los extremos de un segmento, se
dibuje el segmento.

8.4 Diseñar una función recursiva que sume los n primeros
números naturales. Compuebe el resultado en otra fun-
ción sabiendo que la suma de los primeros n números
enteros responde a la fórmula:
1 + 2 + 3 +...+ n = n(n + 1) /2

8.5 Un palíndromo es una palabra que se escribe exacta-
mente igual leída en un sentido o en otro. Palabras tales
como level, deed, ala, etc., son ejemplos de palíndro-
mos. Aplicar el esquema de los algoritmos divide y
vence para escribir una función recursiva que devuelva
1, si una palabra pasada como argumento es un palín-
dromo y en caso contrario devuelva 0. Escribir un pro-
grama en el que se lea una cadena hasta que esta sea
palíndromo.

8.6 Diseñar un programa que tenga como entrada una
secuencia de números enteros positivos (mediante una
variable entera). El programa debe hallar la suma de los
dígitos de cada entero y encontrar cual es el entero cuya
suma de dígitos es mayor. La suma de dígitos calcúlese
con una función recursiva.

ap.08 11/6/05 21:41 Página 135

CAPÍTULO 8 Recursividad136

8.7 Leer un número entero positivo n<10. Calcular el des-
arrollo del polinomio (x + 1)n. Imprimir cada potencia
x2 de la forma x**i.

Sugerencia:
(x + 1)n = Cn,nx

n + Cn, n-1x
n-1 + Cn, n-2x

n-2 + ... +Cn, 2x
2 +

Cn,1x
1 + Cn,0x

0

donde Cn,n y Cn,0 son 1 para cualquier valor de n

La relación de recurrencia de los coeficientes binomiales
es:

C(n, 0) = 1
C(n, n) = 1
C(n, k) = C(n-1, k-1) + C(n-1, k)

8.8 Sea A una matriz cuadrada de n x n elementos, el deter-
minante de A se puede definir de manera recursiva:

a. Si n==1 entonces Deter(A)= a1,1
b. Para n > 1, el determinante es la suma alternada de
productos de los elementos de una fila o columna elegi-
da al azar por sus menores complementarios. A su vez,
los menores complementarios son los determinantes de
orden n-1 obtenidos al suprimir la fila y columna en
que se encuentra el elemento.

La expresión matemática es:

Det(A)= ∑
n

i=1
(-1)i+j*A[i,j]*Det(Menor(A[i,j]))

para cualquier columna j

8.9 Diseñar un programa que transforme números enteros en
base 10 a otro en base b. Siendo la base b de 2 a 9. La
transformación se ha de realizar siguiendo una estrategia
recursiva.

ap.08 11/6/05 21:41 Página 136

En capítulos anteriores se han descrito las características de los tipos de datos básicos o simples (carácter, entero y coma flo-
tante). Así mismo, se ha aprendido a definir y utilizar constantes simbólicas utilizando const, #define y el tipo enum. En este
capítulo se continua con el examen de los restantes tipos de datos de C, examinando especialmente el tipo array o arreglo (lista
o tabla) y aprenderá el concepto y tratamiento de los arrays. Un array almacena muchos elementos del mismo tipo, tales como
veinte enteros, cincuenta números de coma flotante o quince caracteres. El array es muy importante por diversas razones. Una
muy importante es almacenar secuencias o cadenas de texto. Hasta el momento C, proporciona datos de un sólo carácter; uti-
lizando el tipo array, se puede crear una variable que contenga un grupo de caracteres.

9.1 Arrays
Un array o arreglo (lista o tabla) es una secuencia de datos del mismo tipo. Los datos se llaman elementos del array y se
numeran consecutivamente 0, 1, 2, 3...(valores índice o subíndice del array). En general, el elemento i-ésimo está en la
posición i-1. De modo que si el array a tiene n elementos, sus nombres son a[0], a[1],...,a[n-1]. El tipo de elemen-
tos almacenados en el array puede ser cualquier tipo de dato de C, incluyendo estructuras definidas por el usuario, como se
describirá más tarde.

Un array se declara de modo similar a otros tipos de datos, excepto que se debe indicar al compilador el tamaño o longitud
del array. Para indicar al compilador el tamaño o longitud del array se debe hacer seguir al nombre, el tamaño encerrado entre
corchetes. La sintaxis para declarar un array de una dimensión determinada es:

tipo nombreArray[numeroDeElementos];

Observación: C no comprueba que los índices del array están dentro del rango definido.

El índice de un array se denomina, con frecuencia, subíndice del array. El método de numeración del elemento i-ésimo con
el índice o subíndice i-1 se denomina indexación basada en cero. Su uso tiene el efecto de que el índice de un elemento del
array es siempre el mismo que el número de “pasos” desde el elemento inicial a[0] a ese elemento. Por ejemplo, a[3] está a
3 pasos o posiciones del elemento a[0].

137

CAPÍTULO 9

Arrays1

(listas y tablas)

1 En Latinoamérica es muy frecuente el uso del término arreglo como traducción del término array.

ap.09 11/6/05 21:41 Página 137

EJEMPLO 9.1 Posiciones válidas de un array.

En el array int a[10] los índices válidos son a[0], a[1],..,a[9]. Pero si se considera a[15] no se proporciona un
mensaje de error y el resultado puede ser impredecible.

Los elementos de los arrays se almacenan en bloques contiguos de memoria. En los programas se pueden referenciar ele-
mentos del array utilizando fórmulas o expresiones enteras para los subíndices. Los arrays de caracteres funcionan de igual
forma que los arrays numéricos, partiendo de la base de que cada carácter ocupa normalmente un byte. Hay que tener en cuen-
ta, que en las cadenas de caracteres el sistema siempre inserta un último carácter (el carácter nulo) para indicar fin de cadena.

El operador sizeof devuelve el número de bytes necesarios para contener su argumento. Si se usa sizeof para solici-
tar el tamaño de un array, esta función devuelve el número de bytes reservados para el array completo. Conociendo el tipo
de dato almacenado en el array y su tamaño, se tiene la longitud del array, mediante el cociente sizeof(a)/tamaño(dato).
Al contrario que otros lenguajes de programación, C no verifica el valor del índice de la variable que representa al array esté
dentro del rango de variación válido, por lo que si se sobrepasa el valor máximo declarado, los resultados pueden ser impre-
decibles.

EJEMPLO 9.2 Posiciones ocupadas por los elementos de un array.

Si a es un array de número reales y cada número real ocupa 4 bytes, entonces si el elemento a[0] ocupa la dirección
x, el elemento a[i] ocupa la dirección de memoria x + (i-1)*4.

9.2 Inicialización de un array
Se deben asignar valores a los elementos del array antes de utilizarlos, tal como se asignan valores a variables. Para asignar
valores a cada elemento del array de enteros p, se puede escribir:

p[0] = 10; p[1] = 20; p[2] = 30; p[3] = 40

La primera sentencia fija p[0] al valor 10, p[1] al valor 20, etc. Sin embargo, este método no es práctico cuando el array
contiene muchos elementos. El método utilizado, normalmente, es inicializar el array completo en una sola sentencia. Cuando
se inicializa un array, el tamaño del array se puede determinar automáticamente por las constantes de inicialización. Estas cons-
tantes se separan por comas y se encierran entre llaves.

EJEMPLO 9.3 Declaraciones e inicialización de arrays.

int num[6] = {10, 20, 30, 40, 50, 60};
int x[] = {1,2,3} /*Declara e inicializa un array de 3 elementos */
char ch[] = {‘L’,’u’,’c’,’a’,’s’}; /*Declara un array de 5 datos */

9.3 Arrays de caracteres y cadenas de texto
Una cadena de texto es un conjunto de caracteres. C soporta cadenas de texto utilizando un array de caracteres que contenga
una secuencia de caracteres. Sin embargo, no se puede asignar una cadena a un array del siguiente modo: Cadena = “ABC-
DEF”. La función de la biblioteca estándar strcpy() (“copiar cadenas”) permite copiar una constante de cadena en una cade-
na. Para copiar el nombre “Ejemplo” en el array x, se puede escribir:

strcpy(x,”Ejemplo”); /*Copia Ejemplo en x */

EJEMPLO 9.4 Inicialización de una cadena de caracteres.

Una cadena de caracteres es un array de caracteres que contiene al final el carácter carácter nulo (\0). Mediante la
sentencia declarativa char Cadena[] = “abcdefg” el compilador inserta automáticamente un carácter nulo al final
de la cadena, de modo que la secuencia real sería:

CAPÍTULO 9 Arrays (listas y tablas)138

ap.09 11/6/05 21:41 Página 138

char Cadena[7] = “ABCDEF”;

Cadena

9.4 Arrays multidimensionales
Los arrays multidimensionales son aquellos que tienen más de una dimensión y, en consecuencia, más de un índice. Los arrays
más usuales son los de dos dimensiones, conocidos también por el nombre de tablas o matrices. Sin embargo, es posible crear
arrays de tantas dimensiones como requieran sus aplicaciones, esto es, tres, cuatro o más dimensiones. Los elementos de los
arrays se almacenan en memoria por filas. Hay que tener en cuenta que el subíndice más próximo al nombre del array es la fila
y el otro subíndice, la columna. La sintaxis para la declaración de un array de dos dimensiones es:

<TipoElemento><nombrearray>[<NúmeroDeFilas<][<NúmeroDeColumnas>]

La sintaxis para la declaración de un array de tres dimensiones es:

<tipodedatoElemento><nombrearray> [<Cota1>] [<Cota2>][<Cota3>]

EJEMPLO 9.5 Declaración y almacenamiento de array

Dada la declaración: int a[5][6];
El orden de almacenamiento es el siguiente:

a[0][0],a[0][1],a[0][2],...a[0][5],a[1][0],a[1][1],....a[1][5],.......,a[4][0],
a[4][1],....a[4][5].

Los arrays multidimensionales se pueden inicializar, al igual que los de una dimensión, cuando se declaran. La inicia-
lización consta de una lista de constantes separadas por comas y encerradas entre llaves, como en el ejemplo siguiente:

int ejemplo[2][3] = {1,2,3,4,5,6};

El formato general para asignación directa de valores a los elementos es para la inserción de elementos:

<nombre array>[indice fila][indice columna] = valor elemento.

Para la extracción de elementos:

<variable> = <nombre array> [indice fila][indice columna]

Las funciones de entrada o salida se aplican de igual forma a los elementos de un array unidimensional. Se puede acce-
der a los elementos de arrays bidimensionales mediante bucles anidados. Su sintaxis general es:

int IndiceFila, IndiceCol;

for (IndiceFila = 0; IndiceFila < NumFilas; ++IndiceFila)
for (IndiceCol = 0; IndiceCol < NumCol; ++IndiceCol)
Procesar elemento[IndiceFila][IndiceCol];

CAPÍTULO 9 Arrays (listas y tablas) 139

A B C D E F \0

ap.09 11/6/05 21:41 Página 139

9.5 Utilización de arrays como parámetros
En C todos los arrays se pasan por referencia (dirección) a las funciones. C trata automáticamente la llamada a una función
como si hubiera situado el operador de dirección & delante del nombre del array que realiza la llamada. La declaración en la
función de un parámetro tipo array se realiza con uno de los formatos siguientes:

1. <tipo de datoElemento> <nombre array> [<Cota1>]
2. <tipo de datoElemento> <nombre array> []

En arrays bidimensionales se realiza siempre indicando el número de columnas de la siguiente forma:

<tipo de datoElemento> <nombre array> [<Cota1>][cota2]. O bien,
<tipo de datoElemento> <nombre array> [][cota2]

Cuando se pasa un array a una función, se pasa realmente sólo la dirección de la celda de memoria donde comienza el array.
Este valor se representa por el nombre del array. La función puede cambiar el contenido del array accediendo directamente a
las celdas de memoria en donde se almacenan los elementos del array.

EJEMPLO 9.6 Declaración de funciónes con parámetros array:

float suma(float a[5]) ,o float suma(float a[]), o bien float suma(float *a).
void calcula (flota x[][5])

En el caso de la función suma(), si se tiene declarado int b[5], una posible llamada a la función sería suma(b).

Cuando se utiliza una variable array como argumento, la función receptora puede no conocer cuántos elementos existen en
el array. Aunque la variable array apunta al comienzo del mismo, no proporciona ninguna indicación de donde termina el array.
Se pueden utilizar dos métodos alternativos para permitir que una función conozca el número de argumentos asociados con un
array que se pasa como argumento de una función:

a) Situar un valor de señal al final del array, que indique a la función que se ha de detener el proceso en ese momento.
b) Pasar un segundo argumento que indica el número de elementos del array.

La técnica de paso de arrays como parámetros se utiliza, también, para pasar cadenas de caracteres a funciones. Las cade-
nas terminan en nulo (‘\0’ o nulo, es el carácter cero del código de caracteres ASCII) por lo que el primer método dado ante-
riormente sirve para controlar el tamaño de un array.

CAPÍTULO 9 Arrays (listas y tablas)140

PROBLEMAS PROPUESTOS
9.1. ¿Cuál es la salida del siguiente programa?.

#include <stdio.h>
void main(void)

{
int i; int Primero[21];
for (i = 1; i <= 6; i++)

scanf(“%d”,&Primero[i]);
for(i = 3; i > 0; i - -)

printf(“%4d”,Primero[2*i]);
return;

}

ap.09 11/6/05 21:41 Página 140

Solución

Si la entrada de datos es por ejemplo: 3 7 4 –1 0 6. Estos se colocan en las posiciones del array números
1,2,3,4,5,6 y por lo tanto la salida será 6 -1 7 ya que el bucle es descendente y se escriben las posiciones del array
números 6 4 y 2.

9.2. ¿Cuál es la salida del siguiente programa?.

#include <stdio.h>
void main(void)
{

int i,j,k; int Segundo[21];
scanf(“%d”,&k);

for(i =3; i <= k;)
scanf(“%d”,&Segundo[i++]);

j = 4;
printf(“%d %5d\n”,Segundo[k],Segundo[j+1]);

}

Solución

Si la entrada de datos es por ejemplo 6 3 0 1 9. Estos números se almacenan en k el número 6 y el resto en las posi-
ciones del array 3, 4, 5, 6. Por lo tanto la salida de resultados serán los números 9 1.

9.3. ¿Cuál es la salida del siguiente programa?.

#include <stdio.h>
void main(void)
{

int i,j,k;int Primero[21];
for(i = 0; i < 10;i++)

Primero[i] = i + 3;
scanf(“%d %d”,&j,&k);
for(i = j; i <= k;)

printf(“%d\n”,Primero[i++]);
}

Solución

Si la entrada de datos es por ejemplo 7 2, el programa no tendrá ninguna salida ya que el segundo bucle es ascendente y
el límite inferior es mayor que el superior. Si la entrada de datos es por ejemplo 2 7, el programa escribirá las posiciones
del array 2, 3, 4, 5, 6, 7 que se han inicializado, previamente, con los valores 5, 6, 7, 8, 9, 10.

9.4. ¿Cuál es la salida del siguiente programa?.

void main(void)
{

int i, j ,k;
int Primero[21], Segundo[21];

for(i = 0; i < 12; i++)
scanf(“%d”,&Primero[i]);

for(j = 0; j < 6; j++)
Segundo[j] = Primero[2*j] + j;

CAPÍTULO 9 Arrays (listas y tablas) 141

ap.09 11/6/05 21:41 Página 141

for(k = 3; k < 7; k++)
printf(“%d %d \n”,Primero[k+1],Segundo [k-1]);

}

Solución

Si la entrada de datos es 2 7 3 4 9 –4 6 –5 0 5 –8 10, y teniendo en cuenta que el programa lee primeramente 12
números almacenándolos consecutivamente en el array Primero, para posteriormente almacenar 6 valores en el array
Segundo en las posiciones 0,1,2,3,4,5 que en este caso serán respectivamente 2, 3+1, 9+2, 6+3, 0+4, -8+ 5, la
salida de resultados será:
9 11

-4 9
6 4

-5 3

9.5. Escriba un programa que lea por filas una matriz de orden 3 por 4 (tres filas y cuatro columnas) y la escriba por colum-
nas.

Análisis del problema

Se definen las constantes filas y columnas. En primer lugar, mediante dos bucles anidados, se lee la matriz por filas y pos-
teriormente se escribe por columnas mediante otros dos bucles anidados.

Codificación

#include <stdio.h>
#define filas 3
#define columnas 4
void main(void)
{

int i,j;
int M[filas][columnas];

// lectura por filas
for(i = 0; i < filas; i++)
for (j = 0;j < columnas; j++)
scanf(“%d”,M[i][j]);

// escritura por columnas
for(j = 0; j < columnas;j++)
{

for (i = 0; i< filas;i++)
printf(“%5d”,M[i][j]);

printf(“\n”);
}

}

9.6. Escriba un programa que lea una matriz cuadrada la presente en pantalla, y presente la suma de todos los números que no
están en la diagonal principal.

Análisis del problema

El problema se resuelve en un solo programa principal. Dos bucles for anidados leen la matriz, otros dos bucles anidados
la escriben, y otros dos bucles anidados se encargan de realizar la suma de los elementos que no están en la diagonal prin-
cipal, que son aquellos que cumplen la condición i<>j.

CAPÍTULO 9 Arrays (listas y tablas)142

ap.09 11/6/05 21:41 Página 142

Codificación

#include <stdio.h>
#define filas 5
void main(void)
{

int i,j, suma; int M[filas][filas];
// lectura por filas
for(i = 0; i < filas; i++)
for (j = 0;j < filas;j++)

scanf(“%d”,M[i][j]);
// escritura por filas

for(i = 0; i < filas;i++)
{

for (j = 0; j < filas;j++)
printf(“%5d”,M[i][j]);

printf(“\n”);
}
suma=0; // realización de la suma
for(i = 0; i < filas;i++)

for (j = 0; j < filas;j++)
if(!(i == j))

suma += M[i][j];
printf(“ suma &d \n”, suma);

}

9.7. Escriba un programa C que intercambie el valor de la fila i con la fila j, de una matriz cuadrada de orden 7.

Análisis del problema

El programa que se presenta, sólo muestra el segmento de código que se encarga de intercambiar la fila i con la fila j.

Codificación

#include <stdio.h>
#define filas 5
void main(void)
{

int i,j, k, aux;
int M[filas][filas];

// intercambio de fila i con fila j
for (k = 0;k < filas;k++)
{

aux = M[i][k];
M[i][k] = M[j][k];
M[j][k] = aux;

}
}

9.8. Escriba un programa en C que declare un vector de longitud máxima max, y llame a funciones que se encarguen de leer el
vector, escribirlo, sumar dos vectores, restar dos vectores, hacer cero a un vector, rellenar el vector de unos.

CAPÍTULO 9 Arrays (listas y tablas) 143

ap.09 11/6/05 21:41 Página 143

Análisis del problema

La solución se plantea de la siguiente forma. Las funciones que se encargan de resolver cada uno de los apartados tienen un
parámetro entero n que indica la dimensión del vector, y un vector de longitud máxima max = 11. El programa principal se
encarga de llamar a los distintos módulos. Las funciones que resuelven el problema son:

rellena. Se encarga de leer de la entrada, las n componentes del vector.
escribe. Se encarga de presentar los distintos valores de las componentes del vector.
suma. Se encarga de recibir como parámetros dos vectores a y b, y dar como resultado, el vector suma c.
resta. Se encarga de recibir como parámetros dos vectores a y b y dar como resultado el vector diferencia c.
cero. Inicializa a cero todas las componentes del vector.
Identidad. Pone todas las componentes del vector a uno.

Codificación (Consultar en la página web del libro)

9.9. Escriba un programa que lea un total de 10 números enteros, calcule la suma de todos ellos así como la media presentan-
do los resultados.

Análisis del problema

Una constante NUM nos declara el valor 20. Dos bucles for se encargan de leer los datos y de calcular los resultados.

Codificación

#include <stdio.h>
#define NUM 10
int main()
{

int numeros[NUM];
int i, total=0;
for (i = 0; i < NUM; i++)
{

printf(“ Iintroduzca el número: que ocupa poscion %d :”,i);
scanf(“%d”,&numeros[i]);

}
printf(“\n Lista de números leidos: “);
for (i = 0; i < NUM; i++)
{

printf(“%d “,numeros[i]);
total += numeros[i];

}
printf(“\nLa suma total de todos los números es %d”,total) ;
printf(“\n La media es %f”,float(total)/NUM) ;
return 0;

}

9.10. Escriba funciones C que usando las definiciones del ejercicio 9.8 se encargue de asignar a un vector otro vector, que escri-
ba, el mayor y menor elemento de un vector así como sus posiciones, que decida si un vector es simétrico, antisimético, y
mayoritario.

Análisis del problema

La solución se plantea mediante la programación de las siguientes funciones:

CAPÍTULO 9 Arrays (listas y tablas)144

ap.09 11/6/05 21:41 Página 144

• asigna. Recibe como parámetro un vector a y devuelve un vector b que es una copia del vector a.
• mayormenor. Se encarga de escribir el mayor y menor elemento del vector así como las posiciones en que se encuentra.
• simétrico. Decide si un vector es simétrico. (Un vector de n datos se dice que es simétrico si el contenido de la posición

i_ésima coincide con el que ocupa la posición n-i_ésima, siempre que el número de elementos que almacene el vector
sea n).

• antisimétrico. Decide si un vector es antisimétrico. (Un vector de n datos se dice que es antisimétrico si el contenido
de la posición i_ésima coincide con el que ocupa la posición n-i_ ésima cambiada de signo, siempre que el número de ele-
mentos que almacene el vector sea n).

• Mayoritario. Decide si un vector es mayoritario. (Un vector de n datos se dice que es mayoritario, si existe un elemen-
to almacenado en el vector que se repite más de n/2 veces).

Codificación (Consultar en la página web del libro)

9.11. Escriba funciones que calculen el producto escalar de dos vectores, la norma de un vector y el coseno del ángulo que for-
man.

Análisis del problema

El producto escalar de dos vectores de n componentes se define de la siguiente forma:

pe(n,a,b) = a(i) · b(i)

la norma de un vector de n componentes se define de la siguiente forma:

norma(n,a) =� a(i) · a(i) = �—
p

—
e(n

—
,a
—
,a
—
)

El coseno del ángulo que forman dos vectores de n componentes se define de la siguiente forma:

n

Σa(i) · b(i) pe(n,a,b)
i = 1coseno(n,a,b) = ———————————— = ———————————

n n�Σa(i) · a(i) ·Σb(i) · b(i) norma(n,a) · norma(n,b)
i = 1 i = 1

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define max 11
float productoescalar(int n, float a[max],float b[max]);
float norma(int n, float a[max]);
float coseno(int n, float a[max], float b[max]);

float productoescalar(int n, float a[max], float b[max])
{

int i; float acu;
acu = 0;
for (i = 0; i < n; i++)

acu += a[i] * b[i];
return acu;

n

Σ
i = 1

n

Σ
i = 1

CAPÍTULO 9 Arrays (listas y tablas) 145

ap.09 11/6/05 21:41 Página 145

}

float norma(int n, float a[max])
{

float aux;
aux = productoescalar(n,a,a);
aux = sqrt(aux);
return aux;

}

float coseno(int n, float a[max], float b[max])
{

float aux;
aux = productoescalar(n,a,b) / (norma(n,a) * norma(n,b));
return aux;

}

9.12. Escriba funciones para calcular la media m, desviación media dm, desviación típica dt, media cuadrática mc y media armó-
nica ma, de un vector de hasta n elementos siendo n un dato.

Análisis del problema

La media, desviación media, desviación típica, media cuadrática, y media armónica se definen de la siguiente forma:

n
m = �Σa(i)�/n

i = 1

n

Σabs (a (i) – m)
i = 1dm = ————————

n

n

Σa (i)2

i = 1mc =�————
n

n
ma = ————n 1Σ ——

i = 1 a (i)

n

Σ t(a) – m)2

i = 1dt =�——————
n

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define max 11
float m(int n, float a[max]);
float dm(int n, float a[max]);

CAPÍTULO 9 Arrays (listas y tablas)146

ap.09 11/6/05 21:41 Página 146

float mc (int n, float a[max]);
float ma(int n, float a[max]);
float dt (int n, float a[max]);

float m(int n, float a[max])
{

int i;
float aux;
aux = 0;
for(i = 0; i < n; i++)

aux += a[i];
return aux / n;

}
float dm(int n, float a[max])
{

int i;
float aux, media;
aux = 0;
media = m(n,a);
for(i = 0; i < n; i++)

aux += abs(a[i]- media);
return aux / n;

}

float mc (int n, float a[max])
{

int i;
float aux;
aux = 0;
for(i = 0; i < n; i++)

aux +=a[i] * a[i];
return sqrt(aux / n);

}
float ma(int n, float a[max])
{

int i;
float aux;
aux=0;
for(i = 0; i < n; i++)

aux += 1/a[i];
return n / aux;

}

float dt (int n, float a[max])
{

int i;
float aux = 0,media;
media = m(n,a);
for(i = 0; i < n; i++)

aux+=(a[i] - media) * (a[i] - media);
return sqrt(aux / n);

}

CAPÍTULO 9 Arrays (listas y tablas) 147

ap.09 11/6/05 21:41 Página 147

9.13. Escriba un programa que lea un número natural impar n menor o igual que 11, y calcule un cuadrado mágico de orden n.
Un cuadrado de orden n*n se dice que es mágico si contiene los valores 1, 2 ,3,.....n*n , y cumple la condición de que la
suma de los valores almacenados en cada fila y columna coincide.

Análisis del problema

En un array bidimensional se almacenará el cuadrado mágico. El problema se resuelve usando las siguientes funciones:
• Una función sig que tiene como parámetro dos números enteros i y n, de tal manera que i es mayor o igual que cero

y menor o igual que n - 1. La función devuelve el siguiente valor de i que es i + 1. En el caso de que al sumarle a i
el valor 1, i tome el valor n se le asigna el valor de 0. Sirve para ir recorriendo los índices de las filas de la matriz que
almacenará el cuadrado mágico de orden n.

• Una función ant que tiene como parámetro dos números enteros i y n, de tal manera que i es mayor o igual que cero
y menor o igual que n - 1. La función devuelve el anterior valor de i que es i - 1. En el caso de que al restarle a i el
valor 1, i tome el valor -1 se le asigna el valor de n - 1. Sirve para ir recorriendo los índices de las columnas de la
matriz que almacenará el cuadrado mágico de orden n.

• Una función comprueba que escribe la matriz que almacena el cuadrado mágico y además escribe la suma de los valores de
cada una de las filas y de cada una de las columnas, visualizando los resultados, para poder ser comprobado por el usuario.

• Una función cuadrado que calcula el cuadrado mágico mediante el siguiente conocido algoritmo:

• Se pone toda la matriz a ceros, para indicar que las casillas están libres.
• Se inicializa la fila i = 1 la columna j = n / 2.
• Mediante un bucle que comienza por el valor 1, se van colocando los valores en orden creciente hasta el n * n de la

siguiente forma.

• Si la posición fila i columna j de la matriz está libre se almacena , y se recalcula la fila con la función ant y la
columna con la función sig.

• Si la posición fila i columna j de la matriz está ocupada se recalcula i aplicándole dos veces la función sig y se
recalcula j aplicándole una vez la función ant. Se almacena el valor en la posición fila i columna j (siempre está
libre), para posteriormente recalcular la fila con la función ant y la columna con la función sig.

Codificiación

#include <stdio.h>
#define max 11
int sig(int i, int n);
int ant(int i, int n) ;
void cuadrado(int n, int a[][max]);
void comprueba(int n, int a[][max]);

int main()
{

int n, a[max][max];
do
{

printf(“introduzca valor de n <= %d e impar \n”, max);
scanf(“ %d”, &n);
// bucle que controla que n está en el rango indicado y que
//n es impar

} while ((n <= 0) ||(n > max) ||(n% 2 == 0)) ;
cuadrado(n,a);
comprueba(n,a);
return 0;

}

CAPÍTULO 9 Arrays (listas y tablas)148

ap.09 11/6/05 21:41 Página 148

int sig(int i, int n)
// calcula el siguiente de i en circulo. Los valores son: 0,1...n-1
{

i++;
if(i > n - 1)

i = 0;
return i;

}

int ant(int i, int n)
//calcula el anterior de i en circulo. Los valores son 0,1...n-1
{

i– –;
if(i < 0)

i = n - 1;
return i;

}

void cuadrado(int n, int a[][max])
// encuentra el cuadrado mágico de orden n mediante el
// algoritmo voraz
{

int i,j,k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[i][j] = 0;

j = n/2;
i = 1;
for (k = 1; k <= n * n; k++)

if (a[i][j] == 0)
{

a[i][j] = k;
i = ant(i,n);
j = sig(j,n);

}
else
{

i = sig(i,n);
j = ant(j,n);
i = sig(i,n);
a[i][j] = k;
i = ant(i,n);
j = sig(j,n);

}
}

void comprueba(int n, int a[][max])
// escribe el cuadrado magico asi como la suma de los
// elementos de cada fila, y cada columna
{

int i,j, acu;
printf(“ cuadrado mágico de orden %d\n”, n);

CAPÍTULO 9 Arrays (listas y tablas) 149

ap.09 11/6/05 21:41 Página 149

printf(“ ultima columna = suma de elementos de fila\n”);
printf(“ ultima fila = suma de elementos de columna\n”);
for (i = 0; i < n; i++)
{

acu = 0;
for (j = 0; j < n; j++)
{

printf(“%4d”, a[i][j]);
acu += a[i][j];

}
printf(“%6d \n”, acu);

}
for (j = 0; j < n; j++)
{

acu = 0;
for (i = 0; i < n;i++)

acu += a[i][j];
printf(“%4d”, acu);

}
}

9.14. Implementar un programa que permita visualizar el triángulo de Pascal

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

En el triángulo de Pascal cada número es la suma de los dos números situados encima de él. Este problema se debe resol-
ver utilizando primeramente un array bidimensional y posteriormente uno de una sola dimensión.

Análisis del problema

Se declaran dos array uno bidimensional a y otro unidimensional. La solución se estructura de la siguiente forma:
• Un módulo pascalbi tiene como parámetros el array bidimensional y una variable entera y calcula el triángulo de Pascal

de orden n.
• Un módulo escribebi tiene como parámetros el array bidimensional y una variable entera y escribe el triángulo de pas-

cal de orden n.
• Un módulo pascaluni tiene como parámetros el array unidimensional y una variable entera , calcula y escribe el triángulo de

Pascal de orden n. En este módulo el bucle j se hace descendente para no “pisar” los valores anteriormente calculados.

Codificación

#include <stdio.h>
#define max 11
void pascalbi(intn, int a[][max]);
void escribebi(intn, int a[][max]);
void pascaluni(int n, intaa[max]);

int main()
{

CAPÍTULO 9 Arrays (listas y tablas)150

ap.09 11/6/05 21:41 Página 150

int n, a[max][max],aa[max];
do
{

printf(“int roduzca valor de n <= %d \n”, max);
scanf(“ %d”, &n);

} while ((n < = 0) ||(n > max)) ;
pascalbi(n,a);
escribebi(n,a);
pascaluni(n,aa);
return 0;

}
void pascalbi(int n, int a[][max])

calcula el tringulo de Pascal
{

int i,j;
for (i =0; i < n; i++)

for (j = 0;j <= i; j++)
if(j == 0 || j == i)
a[i][j] = 1;
else

a[i][j]= a[i - 1][j - 1] + a[i - 1][j];
}

void escribebi(int n, int a[][max])
// escribe el triangulo de Pascal

{
int i,j;
printf(“ Triangulo de Pascal de orden %d\n”, n);
for (i = 0; i < n;i++)
{
for (j = 0; j <= i; j++)

printf(“%4d”, a[i][j]);
printf(“ \n”);

}
}

void pascaluni(int n, int aa[max])
{

int i,j;
printf(“ Triangulo de Pascal de orden %d\n”, n);
for (i = 0; i < n; i++)
{

for (j = i; j > =0; j—)
if (i == j|| j == 0)

aa[j] = 1;
else

aa[j] = aa[j] + aa[j - 1];
for (j = 0; j <= i;j++)

printf(“%4d”, aa[j]);
printf(“\n”);

}
}

CAPÍTULO 9 Arrays (listas y tablas) 151

ap.09 11/6/05 21:41 Página 151

9.15. Escriba tres funciones en C que calculen la suma de dos matrices, la resta de dos matrices y el producto de dos matrices.

Análisis del problema

Las tres funciones tienen como parámetro una variable entera y las matrices a, b, c.
En la matriz c se devuelve el resultado de la operación:
Suma c(i, j) = a(i, j) + b(i, j)

Resta c(i, j) = a(i, j) – b(i, j)

Producto c(i, j) = a(i, k) · b(k, j)

Codificación

#include <stdio.h>
#include <stdlib.h>
#define max 11
void suma(int n,float a[][max],float b[][max], float c[][max]);
void resta(int n,float a[][max],float b[][max],float c[][max]);
void produc(int n,floata[][max],float b[][max],float c[][max]);

void resta(int n, float a[][max],float b[][max],float c[][max])
{

int i,j;
for (i = 0;i < n; i++)

for (j = 0; j < n; j++)
c[i][j] = a[i][j] - b[i][j];

}

void suma(int n,float a[][max],float b[][max], float c[][max])
{

int i,j;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
c[i][j] = a[i][j] + b[i][j];

}

void produc(int n,float a[][max],float b[][max],float c[][max])
{

int i,j,k;
float acu;
for (i = 0; i <n; i++)

for (j = 0; j < n; j++)
{

acu = 0;
for (k = 0;k < n;k++)

acu += a[i][k] * b[k][j];
c[i][j] = acu;

}
}

9.16. Escriba funciones en C que calculen la matriz cero la matriz identidad, asigne una matriz a otra, y usando la función pro-
ducto definida en el ejercicio anterior calcule la potencia de una matriz.

Σ
k

CAPÍTULO 9 Arrays (listas y tablas)152

ap.09 11/6/05 21:41 Página 152

Análisis del problema

La matriz cero y la matriz identidad se calculan mediante sendas funciones que reciben como parámetros una variable ente-
ra n y devuelve en la matriz a la solución. La asignación de matrices se resuelve mediante una función que recibe como pará-
metro una matriz y devuelve la matriz copia como resultado de la asignación. La matriz potencia se calcula mediante una
función que recibe como parámetros una variable entera n, otra variable entera m que indica el exponente al que hay que
elevar la primera matriz que se recibe como parámetro y devuelve en otra matriz el resultado de calcular la potencia m_ésima
de la matriz.

Cero c(i, j) = 0 si
1 i = j

Identidad c(i, j) = � 0
si

i ≠ j
Potencia b = am

Asigna b(i, j) = a(i, j)

Codificación (Consultar la página web del libro)

9.17. Escriba funciones que calculen la traspuesta de una matriz cuadrada sobre sí misma, y decidan si una matriz es simética o
antisimética.

Análisis del problema

La traspuesta de una matriz a viene dada por la matriz que se obtiene cambiando la fila i por la columna i. Es decir b es la
matriz traspuesta de a si se tiene que b(i,j) = a(j,i). Una matriz es simétrica si a(i,j) = a(j,i). Una matriz es
antisimétrica si a(i,j)= -a(j,i). La solución viene dada por las tres funciones que reciben como parámetro la matriz a y
su dimensión, y en el primer caso devuelve la traspuesta en la propia matriz, y en el segundo y en el tercer caso, devuelven
verdadero o falso dependiendo de que cumplan o no la condición.

Codificación

#include <stdio.h>
#include <stdlib.h>
#define max 11
void traspuesta(int n, float a[][max]);
int simetrica (int n, float a[][max]);
int antisimetrica (int n, float a[][max]);

void traspuesta(int n, float a[][max])
{

int i,j;
float aux;
for (i = 0; i < n; i++)

for (j = 0; j < i; j++)
{

aux = a[i][j];
a[i][j] = a[j][i];
a[j][i] = aux;

}
}

int simetrica (int n, float a[][max])

CAPÍTULO 9 Arrays (listas y tablas) 153

ap.09 11/6/05 21:41 Página 153

{
int i,j,sime = 1;
for (i = 0; i < =n; i++)

for (j = 0;j <= n; j++)
if (!(a[i][j] == a[j][i]))

sime = 0;
return sime;

}
int antisimetrica (int n, float a[][max])
{

int i,j,sime;
sime=1;
for (i = 0; i <= n; i++)

for (j = 0; j <= n;j++)
if (!(a[i][j] == -a[j][i]))

sime = 0;
return sime;

}

9.18. Escriba una función que encuentre el elemento mayor y menor de una matriz, así como las posiciones que ocupa y se escri-
ban por pantalla.

Análisis del problema

La solución se presente mediante una función que recibe la dimensión de la matriz y la propia matriz, y calcula ambos ele-
mentos sendos bucles voraces, que calculan a la vez el mayor y el menor, así como las posiciones.

Codificiación

#include <stdio.h>
#define max 11
void mayormenor(int n, float a[][max]);

void mayormenor(int n, float a[][max])
//Calcula y escribe el mayor elemento de la matriz y su posición
//Calcula y escribe el menor elemento de la matriz y su posición
{

int i,j,iM, im, jM,jm ;
float mayor, menor;
mayor=a[0][0];
menor=mayor;
im=0;
iM=0;
jm=0;
jM=0;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
{

if (menor > a[i][j])
{

menor = a[i][j];
im = i;
jm = j;

CAPÍTULO 9 Arrays (listas y tablas)154

ap.09 11/6/05 21:41 Página 154

};
if (mayor < a[i][j])
{

mayor = a[i][j];
iM = i;
jM = j;}

}
printf(“ el mayor elemento es %6.0f\n”, mayor);
printf(“ la posicion del mayor es %5d %5d\n”, iM + 1,jM +1);
printf(“ el menor elemento es %6.0f\n”, menor);
printf(“ la posicion del menores %5d %5d\n”, im + 1, jm + 1);

}

9.19. Se dice que una matriz tiene un punto de silla si alguna posición de la matriz es el menor valor de su fila, y a la vez el mayor
de su columna. Escribir una función que tenga como parámetro una matriz de números reales, y calcule y escriba los pun-
tos de silla que tenga, así como las posiciones correspondientes.

Análisis del problema

Para resolver el problema se supone que la matriz no tiene elementos repetidos. La función recibe como parámetro un núme-
ro entero n, y una matriz de reales a[max][max] (max es una constante previamente declarada). La codificación se ha plan-
teado de la siguiente forma: un primer bucle recorre las distintas filas de la matriz. Dentro de ese bucle se calcula el
elemento menor de la fila y la posición de la columna en la que se encuentra. Posteriormente se comprueba si la columna en
la que se ha encontrado el elemento menor de la fila cumple la condición de que es el elemento mayor de la columna. En
caso positivo será un punto de silla.

Codificación

void puntosdesilla(int n, float a[][max])
{

int i,j, menor, jm,correcto;
printf(“ puntos de sillas\n”);
for(i = 0; i < n; i++)
{

menor = a[i][0];
jm = 0;
for(j = 1; j < n; j++)

if (menor > a[i][j])
{

menor =a[i][j];
jm=j;

}
correcto = 1;
j = 0;
while(correcto&&(j<n))
{

correcto = menor >= a[j][jm];
j++;

}
if (correcto)

printf(“silla en %d %d valor = %f \n”, i,jm,a[i][jm]);
}

}

CAPÍTULO 9 Arrays (listas y tablas) 155

ap.09 11/6/05 21:41 Página 155

9.20. Escriba un programa que lea en una cadena de caracteres un número entero, y convierta la cadena a número.

Análisis del problema

La variable cadena sirve para leer el número introducido por teclado en una variable tipo cadena de caracteres de longitud
máxima 80. La función valor_numerico, convierte la cadena de caracteres en un número entero con su signo. Esta función
se salta todos los blancos y tabuladores que se introduzcan antes del número entero que es dato. Para convertir la cadena en
número se usa esta descomposición: ‘2345’= 2*1000+3*100+4*10+5. La realización de estas operaciones es hecha por el
método de Horner:

2345 = (((0*10+ 2)*10+3)*10+4)*10+5

La obtención de, por ejemplo el número 3 se hace a partir del carácter ‘3’: 3 = ‘3’-’0’

Codificación

#include <stdio.h>
#include <string.h>
int valor_numerico(char cadena[]);

void main(void)
{

char cadena[80];
int numero;
printf(“dame numero: “);
gets(cadena);
numero= valor_numerico(cadena);
puts(cadena);
printf(“ valor leido %d \n “,numero);

}

int valor_numerico(char cadena[])
{

int i,n,sign;
/* salto de blancos y tabuladores */

for (i = 0; cadena[i] ==’ ‘ || cadena[i] == ‘\t’; i++);
/* determinación del signo*/

sign = 1;
if(cadena[i] == ‘+’ || cadena[i] == ‘-’)

sign = cadena[i++] == ‘+’ ? 1:-1;
/* conversión a número*/

n = 0;
for (; cadena[i] >= ‘0’ && cadena[i] <= ‘9’ ; i++)

n = 10*n + cadena[i] - ‘0’;
return (sign*n);

}

9.21. Escriba un programa en C que lea un número en base 10 en una variable entera. Lea una base y transforme el número leído
en base 10 a la otra base como cadena de caracteres. Posteriormente, lea un número como cadena de caracteres en una
cierta base y lo transforme al mismo número almacenado en una variable numérica escrito en base 10. Por último el últi-
mo número leído como cadena en una base, lo transforme a otro número almacenado en una cadena y escrito en otra base
que se leerá como dato.

CAPÍTULO 9 Arrays (listas y tablas)156

ap.09 11/6/05 21:41 Página 156

Análisis del problema

La solución se ha estructurado de la siguiente forma:
• Una función cambio recibe como dato el número almacenado en una variable numérica y lo transforma en el mismo núme-

ro almacenado en una cadena de caracteres en otra cierta base que también es recibida como parámetro en otra variable
entera. Para poder realizar lo indicado usa una cadena de caracteres llamada bases que almacena los distintos caracteres a
los que se transformarán los números: así por ejemplo el número 5 se transforma en ‘5’, el número 10 se transforma en
‘A’, el número 11 en ‘B’, etc. Se define un vector de enteros aux que almacena en cada una de las posiciones (como
resultado intermedio) el dígito entero al que corresponde cuando se pasa a la base que se recibe como parámetro. Para hacer
esto se usa el esquema siguiente: mientras la variable num sea distinta de cero hacer en la posición i del vector aux que
se almacene el resto de la división entera del número num entre la base, para posteriormente almacenar en la variable num
el cociente de la división entera del número entre la base. Para terminar se pasa el número a cadena de caracteres usando
el array bases.

• Una función valore recibe como parámetro la cadena de caracteres y la base en que está escrita, y lo trasforma a su corres-
pondiente valor numérico devolviéndolo en la propia función, que es declarada como de tipo entero largo. Para realizar la
operación se usa, al igual que en el ejercicio anterior el método de Horner de evaluación de un polinomio escrito en una
cierta base:

‘2345’base=(((0*base+2)*base+3)*base+4)*base + 5 .

• Para pasar de un número almacenado en una cadena de caracteres y escrito en una base al mismo número almacenado en
otra cadena de caracteres y escrito en otra base se usa la función cambiodoble que llama a las dos funciones anteriores.

• Por último el programa principal escribe usando el formato correspondiente un número entero almacenado en una varia-
ble entera en base octal y base hexadecimal.

Codificación (Consultar la página web del libro)

9.22. Escriba un programa que lea un texto de la entrada hasta fin de fichero y calcule el número de: letras a, letras e, letras i,
letras o, letras u leídas, y cuente el número de palabras y el número de líneas leídas.

Análisis del problema

Se declara un vector entero de cinco componentes que sirve para contar las vocales correspondientes. Un contador npal, cuen-
ta el número de palabras, y otro contador nlineas cuenta el número de líneas. Un bucle itera mientras no sea fin de archivo
(control + Z), y otro bucle itera mientras esté en una palabra, y además cuenta las vocales, en caso de que lo sean.

Codificación

#include <stdio.h>
#include <string.h>
#define max 5

void main(void)
{

int npal =0, nlin=0, cont[max];
char c;
clrscr();
printf (“ \t\t TEXTO \n”);
for (i = 0; i < max; i++)

cont[i] = 0;
while ((c = getchar()) != EOF)
{

while ((c != ‘\t’) && (c != ‘ ‘) && (c!=’\n’)&& (c!=EOF))

CAPÍTULO 9 Arrays (listas y tablas) 157

ap.09 11/6/05 21:41 Página 157

{
c=getchar();
if (c == ‘a’ || c == ‘A’) cont[0]++;
if (c ==’ e’ || c == ‘E’) cont[1]++;
if (c == ‘i’ || c == ‘I’) cont[2]++;
if (c == ‘o’ || c == ‘O’) cont[3]++;
if (c == ‘u’ || c == ‘U’) cont[4]++;

}
npal++;
if (c == ‘\n’)

nlin++;
}
printf(“ palabras %d lineas %d \n”, npal, nlin);
printf(“ numero de a_es %d \n”, cont[0]);
printf(“ numero de e_es %d \n”, cont[1]);
printf(“ numero de i_es %d \n”, cont[2]);
printf(“ numero de o_es %d \n”, cont[3]);
printf(“ numero de u_es %d \n”, cont[4]);
getch();

}

9.23. Escriba un programa que lea una frase, y decida si es palíndroma.

Análisis del problema

Una frase es palíndroma si puede leerse de igual forma de izquierda a derecha, que de derecha a izquierda, después de haber
eliminado los blancos. Por ejemplo la frase dabale arroz a la zorra el abad es palíndroma. Para resolver el problema, se lee
una frase en una cadena de caracteres. Se copia la frase en otra cadena de caracteres, eliminando los blancos. Posteriormente
mediante un bucle que llegue hasta la mitad de la frase, se comprueba si la letra que ocupa la posición i_ésima coincide con
la correspondiente que ocupa la posición n-i_ésima, siendo n la longitud de la cadena.

Codificación

#include <stdio.h>
#include <string.h>

void main(void)
{

char cadena[80], cadena1[80];
int i,j, palindroma;
printf(“dame cadena “); gets(cadena);
j=0;
for(i = 0; cadena[i]; i++)

if (cadena[i] != ‘ ‘)
{

cadena1[j] = cadena[i];
j++;

}
palindroma = 1;
i = 0;
while (i <= j / 2 && palindroma)
{

palindroma = cadena1[i] == cadena1[j – 1 - i];

CAPÍTULO 9 Arrays (listas y tablas)158

ap.09 11/6/05 21:41 Página 158

i++;
}
if (palindroma)

printf(“ Es palindroma “);
else

printf(“ No es palindroma”);
}

9.24. Un número entero es primo si ningún otro número primo más pequeño que él es divisor suyo. A continuación escribir un
programa que rellene una tabla con los 100 primeros números primos y los visualice

Análisis del problema

El programa se ha estructurado de la siguiente forma:

• Se declaran la constante max y los valores lógicos TRUE y FALSE.
• El programa principal se encarga de declarar un array para almacenar los max números primos, y mediante un bucle for

se rellena de números primos, llamando a la función primo. El número n que se pasa a la función primo(n) se incremen-
ta en dos unidades (todos los números primos son impares). El primer número primo, que es el 2, es el único que no cum-
ple esta propiedad.

• Función primo. Un número entero positivo es primo, si sólo tiene por divisores la unidad y el propio número. El método
que se usa, aplica la siguiente propiedad “ si un número mayor que la raíz cuadrada de n divide al propio n es porque hay
otro número entero menor que la raíz cuadrada que también lo divide”. Por ejemplo. Si n vale 64 su raíz cuadrada es 8. El
número 32 divide a 64 que es mayor que 8 pero también lo divide el número 2 que es menor que 8, ya que 2*32 = 64. De
esta forma para decidir si un número es primo basta con comprobar si tiene divisores menores o iguales que su raíz cua-
drada por supuesto eliminando la unidad.

• Función escribe. Se encarga de escribir la lista de los 100 números primos en 10 líneas distintas.

Codificación (Consultar la página web del libro)

CAPÍTULO 9 Arrays (listas y tablas) 159

PROBLEMAS PROPUESTOS
9.1. Determinar la salida de cada segmento de programa para

el correspondiente archivo de entrada que se indica al
final.

int i,j,k;
int Primero[21];
for(j = 0; j < 7;)

scanf(“%d”,&Primero[j++]);
i = 0
j = 1;
while ((j < 6) && (Primero[j – 1] <
Primero[j]))
{

i++;
j++;

}

for(k = -1; k < j + 2;k = k+ 2)
printf(“%d”,Primero[++ k]);

20 60 70 10 0 40 30 90

9.2. Determinar la salida de cada segmento de programa.

int i,j,k;
int Tercero[6][12];
for(i = 0; i < 3; i++)

for(j = 0; j < 12; j++)
Tercero[i][j] = i + j + 1;

for(i = 0; i < 3; i++)
{

j = 2;
while (j < 12)

ap.09 11/6/05 21:41 Página 159

CAPÍTULO 9 Arrays (listas y tablas)160

{
printf(“%d \n”,i, j, Tercero[i][j]);
j += 3;

}
}

9.3. El juego del ahorcado se juega con dos personas (o una
persona y una computadora). Un jugador selecciona una
palabra y el otro jugador trata de adivinar la palabra adivi-
nando letras individuales. Diseñar un programa para jugar
al ahorcado . Sugerencia: almacenar una lista de palabras
en un array y seleccionar palabras aleatoriamente.

9.4. Escribir un programa que lea una colección de cadenas
de caracteres de longitud arbitraria. Por cada cadena
leída, su programa hará lo siguiente:

a) Imprimir la longitud de la cadena.
b) Contar el número de ocurrencia de palabras de cua-

tro letras.
c) Sustituir cada palabra de cuatro letras por una cadena

de cuatro asteriscos e imprimir la nueva cadena.

9.5. Diseñar un programa que determine la frecuencia de
aparición de cada letra mayúscula en un texto escrito por
el usuario (fin de lectura, el punto o el retorno de carro,
ASCII 13).

9.6. Escribir un programa que lea una cadena de caracteres y
la visualice en un cuadro.

9.7. Escribir un programa que lea una frase, sustituya todas
las secuencias de dos o más blancos por un solo blanco
y visualice la frase restante.

9.8. Escribir un programa que lea una frase y a continuación
visualice cada palabra de la frase en columna, seguido
del número de letras que compone cada palabra.

9.9. Escribir un programa que desplace una palabra leída
del teclado desde la izquierda hasta la derecha de la
pantalla.

9.10. Escribir un programa que lea una línea de caracteres, y
visualice la línea de tal forma que las vocales sean susti-
tuidas por el carácter que más veces se repite en la línea.

9.11. Escribir un programa que lea una serie de cadenas, a
continuación determine si la cadena es un identificador
válido según la sintaxis de C. Sugerencias: utilizar las
siguientes funciones: longitud (tamaño del identificador
en el rango permitido); primero (determinar si el nombre
comienza con un símbolo permitido); restantes (com-
prueba si los restantes son caracteres permitidos).

9.12. Se introduce una frase por teclado. Se desea imprimir cada
palabra de la frase en líneas diferentes y consecutivas.

9.13. Escribir un programa que tenga como entrada una pala-
bra y n líneas. Se quiere determinar el número de veces
que se encuentra la palabra en las n líneas.

9.14. Escribir un programa en el que se genere aleatoriamente
un vector de 20 números enteros. El vector ha de quedar
de tal forma que la suma de los 10 primeros elementos
sea mayor que la suma de los 10 últimos elementos.
Mostrar el vector original y el vector con la distribución
indicada.

ap.09 11/6/05 21:41 Página 160

Una de las tareas que realizan más frecuentemente las computadoras en el procesamiento de datos es la ordenación. El estudio
de diferentes métodos de ordenación es una tarea intrínsecamente interesante desde un punto de vista teórico y, naturalmente,
práctico. El capítulo estudia los algoritmos y técnicas de ordenación más usuales y su implementación en C. De igual modo
se estudiará el análisis de los diferentes métodos de ordenación con el objeto de conseguir la máxima eficiencia en su uso real.

10.1 Ordenación
La ordenación o clasificación de datos es la operación consistente en disponer un conjunto de datos en algún determinado
orden con respecto a uno de los campos de elementos del conjunto. En terminología de ordenación, el elemento por el cual está
ordenado un conjunto de datos (o se está buscando) se denomina clave. Una lista dice que está ordenada por la clave k si la
lista está en orden ascendente o descendente con respecto a esta clave. La lista se dice que está en orden ascendente si:

i < j implica que k[i] <= k[j]
y se dice que está en orden descendente si: i > j implica que k[i] <= k[j]

En todos los métodos de este capítulo, se utiliza el orden ascendente sobre vectores o listas (arrays unidimensionales). La
eficiencia es el factor que mide la calidad y rendimiento de un algoritmo. En el caso de la operación de ordenación, dos crite-
rios se suelen seguir a la hora de decidir qué algoritmo (de entre los que resuelven la ordenación: 1) tiempo menor de ejecu-
ción en computadora; 2) menor cantidad de memoria utilizada.

Los métodos de ordenación pueden ser internos o externos según que los elementos a ordenar estén en la memoria princi-
pal o en la memoria externa. Los métodos de ordenación se suelen dividir en dos grandes grupos:

• directos: burbuja, selección, inserción;
• indirectos (avanzados): shell, ordenación rápida, ordenación por mezcla, radixsort;

10.2 Ordenación por burbuja
En el método de ordenación por burbuja los valores más pequeños “burbujean” gradualmente (suben) hacia la cima o parte
superior del array de modo similar a como suben las burbujas en el agua, mientras que los valores mayores se hunden en la

161

CAPÍTULO 10

Algoritmos de ordenación
y búsqueda

ap.10 11/6/05 21:42 Página 161

parte inferior del array. La técnica consiste en hacer varias pasadas a través del array. En cada pasada, se comparan parejas suce-
sivas de elementos. Si una pareja está en orden creciente (o los valores son idénticos), se dejan los valores como están. Si una
pareja está en orden decreciente, sus valores se intercambian en el array. En el caso de un array (lista) con n elementos, la orde-
nación por burbuja requiere hasta n-1 pasadas. Por cada pasada se comparan elementos adyacentes y se intercambian sus valo-
res cuando el primer elemento es mayor que el segundo elemento. Al final de cada pasada, el elemento mayor ha “burbujeado”
hasta la cima de la sublista actual. Por ejemplo, después que la pasada 0 está completa, la cola de la lista A[n-1] está ordena-
da y el frente de la lista permanece desordenado. Las etapas del algoritmo son :

• En la pasada 0 se comparan elementos adyacentes
(A[0],A[1]),(A[1],A[2]),(A[2],A[3]),...(A[n-2],A[n-1])

• Se realizan n-1 comparaciones, por cada pareja (A[i],A[i+1]) se intercambian los valores si A[i+1] < A[i].
Al final de la pasada, el elemento mayor de la lista está situado en A[n-1] .

• En la pasada 1 se realizan las mismas comparaciones e intercambios, terminando con el elemento de segundo mayor valor
en A[n-2].

• El proceso termina con la pasada n-1, en la que el elemento más pequeño se almacena en A[0] .

EJEMPLO 10.1. Funcionamiento del algoritmo de la burbuja con un array de 5 elementos (50, 20, 40, 80, 30). Los
movimientos de claves que se realizan son:

50, 20, 40, 80, 30
20, 50, 40, 80, 30
20, 40, 50, 80, 30
20, 40, 50, 30, 80 el mayor se encuentra el último

20, 40, 30, 50, 80 ordenado

10.3 Ordenación por selección
El método de ordenación se basa en seleccionar la posición del elemento más pequeño del array y colocarlo en la posición que
le corresponde. El algoritmo de selección se apoya en sucesivas pasadas que intercambian el elemento más pequeño sucesiva-
mente con el primer elemento de la lista. En la primera pasada se busca el elemento más pequeño de la lista y se intercambia
con A[0], primer elemento de la lista. Después de terminar esta primera pasada, el frente de la lista está ordenado y el resto de
la lista A[1], A[2]...A[n-1] permanece desordenada. La siguiente pasada busca en esta lista desordenada y selecciona el
elemento más pequeño, que se almacena entonces en la posición A[1]. De este modo los elementos A[0] y A[1] están orde-
nados y la sublista A[2], A[3]...A[n-1] desordenada; entonces, se selecciona el elemento más pequeño y se intercambia
con A[2]. El proceso continúa n-1 pasadas; en ese momento la lista desordenada se reduce a un elemento (el mayor de la lista)
y el array completo ha quedado ordenado.

EJEMPLO 10.2. Funcionamiento del algoritmo de selección con un array de 5 elementos (50, 20, 40, 80, 30).

Los movimientos de claves que se realizan son:
50, 20, 40, 80, 30
20, 50, 40, 80, 30
20, 30, 40, 80, 50
20, 30, 40, 50, 80

10.4 Ordenación por inserción
El método de ordenación por inserción es similar al proceso típico de ordenar tarjetas de nombres (cartas de una baraja) por
orden alfabético, consistente en insertar un nombre en su posición correcta dentro de una lista que ya está ordenada. El algo-
ritmo considera que la lista a[0], a[1], ... a[i-1] está ordenada, posteriormente inserta el elemento a[i] en la posi-
ción que le corresponda para que la lista a[0], a[1], ... a[i-1] ,a[i] esté ordenada, moviendo hacia la derecha los
elementos que sean necesarios. Si un bucle que comienza en la posición i=1 y avanza de uno en uno hasta la posición n-1 y
realiza el proceso anterior, al terminar el proceso el vector estará ordenado.

CAPÍTULO 10 Algoritmos de ordenación y búsqueda 162

ap.10 11/6/05 21:42 Página 162

EJEMPLO 10.3 Funcionamiento del algoritmo de inserción con un array de 5 elementos (50, 20, 40, 80, 30).

Los movimientos de claves que se realizan son:
50, 20, 40, 80, 30
20, 50, 40, 80, 30
20, 40, 50, 80, 30
20, 40, 30, 50, 80

10.5 Ordenación Shell
La ordenación Shell se suele denominar también ordenación por inserción con incrementos decrecientes. Es una mejora de los
métodos de inserción directa en el que se comparan elementos que pueden ser no contíguos. El algoritmo es el siguiente:

1. Se divide la lista original en n/2 grupos de dos elementos, considerando un incremento o salto entre los elementos de n/2.
2. Se clasifica cada grupo por separado, comparando las parejas de elementos y si no están ordenados se intercambian.
3. Se divide ahora la lista en la mitad de grupos (n/4), con un incremento o salto entre los elementos también mitad (n/4), y

nuevamente se clasifica cada grupo por separado.
4. Así sucesivamente, se sigue dividiendo la lista en la mitad de grupos que en el recorrido anterior con un incremento o salto

decreciente en la mitad que el salto anterior, y después clasificando cada grupo por separado.
5. El algoritmo termina cuando se alcanza el tamaño de salto 1. En este caso puesto que se comparan elementos contiguos

cuando termine el proceso el vector estará ordenado.

El método de ordenación shell ordena ya que cuando el salto es 1 el método funciona como el burbuja.

EJEMPLO 10.4. Obtener las secuencias parciales del vector al aplicar el método Shell para ordenar en orden cre-
ciente la lista:
6 1 5 2 3 4 0

El número de elementos que tiene la lista es 6, por lo que el salto inicial es 6/2 = 3. La siguiente tabla muestra el núme-
ro de recorridos realizados en la lista con los saltos correspondiente.

Recorrido Salto Intercambios Lista
1 3 (6,2),(5,4),(6,0) 2 1 4 0 3 5 6
2 3 (2, 0) 0 1 4 2 3 5 6
3 3 ninguno 0 1 4 2 3 5 6
salto 3/2 = 1
4 1 (4,2),(4,3) 0 1 2 3 4 5 6
5 1 ninguno 0 1 2 3 4 5 6

10.6 Ordenación rapida (QuickSort)
El algoritmo conocido como quicksort (ordenación rápida) recibe su nombre de su autor, Tony Hoare. Usa la técnica divide y
vencerás y normalmente la recursividad en la implementación. El método se basa en dividir los n>0 elementos de la lista a orde-
nar en dos particiones separadas, de tal manera, que los elementos pequeños están en la izquierda, y los grandes a la derecha.
Para realizar esta dos particiones, se elige un pivote o elemento de partición y se colocan todos los elementos menores o igua-
les que él a la parte izquierda del array y los elementos mayores o iguales que él a la derecha. Posteriormente se ordena la
izquierda y la derecha recursivamente.

10.7 Búsqueda en listas: búsqueda secuencial y binaria
El proceso de encontrar un elemento específico de un array se denomina búsqueda. Las técnicas de búsqueda más utilizadas
son : búsqueda lineal o secuencial, la técnica más sencilla y búsqueda binaria o dicotómica, la técnica más eficiente.

CAPÍTULO 10 Algoritmos de ordenación y búsqueda 163

ap.10 11/6/05 21:42 Página 163

La búsqueda secuencial de una clave en un vector se basa en comparar la clave con los sucesivos elementos del vector tra-
tados secuencialmente (de izquierda a derecha o viceversa). Si el vector se encuentra ordenado, la búsqueda secuencial puede
interrumpirse sin éxito cuando se esté seguro de que no se puede encontrar la clave en el vector, ya que los elementos que que-
dan por comparar, se sabe que son mayores que la clave o bien menores.

La búsqueda binaria se aplica a vectores ordenados. Para buscar si una clave está en un vector se comprueba si la clave
coincide con el valor del elemento central. En caso de que no coincida, entonces se busca a la izquierda del elemento central,
si la clave a buscar es más pequeña que el elemento almacenado en la posición central y en otro caso se busca a la derecha.

CAPÍTULO 10 Algoritmos de ordenación y búsqueda 164

PROBLEMAS RESUELTOS
10.1. ¿Cuál es la diferencia entre ordenación por selección y ordenación por inserción?.

Solución

El método de ordenación por selección selecciona la posición del elemento más pequeño (más grande) y lo coloca en el
lugar que le corresponde. Por lo tanto, elige la posición del elemento más pequeño del vector y lo intercambia con el pri-
mero. Posteriormente elige la posición del siguiente más pequeño y lo intercambia con el que ocupa la posición segunda,
etc. El método de ordenación por inserción , a partir de una parte del vector ordenado (hasta la posición i-1), decide cual es
la posición donde debe colocar el elemento que ocupa la posición i del vector para que quede ordenado el vector hasta la
posición i (debe desplazar datos hacia la derecha).

10.2. Un vector contiene los elementos mostrados a continuación. Los primeros dos elementos se han ordenado utilizando un
algoritmo de inserción. ¿ cómo estarán colocados los elementos del vector después de cuatro pasadas más del algoritmo ?
3 , 13, 8, 25, 45, 23, 98, 58.

Solución

Después de la primera pasada los elementos estarán en el orden: 3 , 8, 13, 25, 45, 23, 98, 58.
Después de la segunda pasada los elementos estarán en el orden: 3 , 8, 13, 25, 45, 23, 98, 58.
Después de la tercera pasada los elementos estarán en el orden: 3 , 8, 13, 25, 45, 23, 98, 58.
Después de la cuarta pasada los elementos estarán en el orden: 3 , 8, 13, 23, 25, 45, 98, 58.

10.3. Dada la siguiente lista 47 , 3 21, 32, 56, 92. Después de dos pasadas de un algoritmo de ordenación, el array se ha
quedado dispuesto así:3, 21, 47, 32, 56, 92. ¿Qué algoritmo de ordenación se está utilizando (selección, burbuja o inser-
ción) ?. Justifique la respuesta.

Solución

El método de la burbuja no puede ser el empleado, ya que tras la primera pasada del método, los elementos deberían estar
en el orden siguiente: 3, 21, 32, 47, 56, 92. Es decir ya estarían ordenados.

El método de ordenación por selección, tras la primera pasada tendría los elementos colocados de la siguiente forma: 3,
47, 21, 32, 56, 92.

Tras la segunda pasada los elementos del vector estaría colocados : 3, 21, 47, 32, 56, 92. Por lo tanto este método puede
haber sido usado.

El método de ordenación por inserción tras la primera pasada los datos estarían: 3, 47, 21, 32, 56, 92. Una vez reali-
zada la segunda pasada la información del vector sería: 3, 21, 47, 32, 56, 92. Es decir, también podría haberse usado este
método de ordenación.

10.4. Un array contiene los elementos indicados más abajo. Utilizando el algoritmo de búsqueda binaria, trazar las etapas nece-
sarias para encontrar el número 88.
8, 13, 17, 26, 44, 56, 88, 97.

ap.10 11/6/05 21:42 Página 164

Solución

En la primera iteración del bucle la clave central sería 26, y como no coincide con la clave a buscar que es 88, entonces
habría que realizar la búsqueda en: 44, 56, 88, 97. En la segunda iteración del bucle, la clave central sería 26, y como tam-
poco coincide con la CLAVE a buscar que es 88, entonces habría que realizar la búsqueda en: 88, 97. En la tercera itera-
ción, la clave central es 88 que coincide con la clave que se busca, por lo tanto se terminaría el bucle con éxito.

10.5. Escriba una función que realice la ordenación interna de un vector de n elementos, por el método de ordenación de bur-
buja.

Análisis del problema

La ordenación por burbuja se basa en comparar elementos contiguos del vector e intercambiar sus valores si están desorde-
nados. Si el vector tiene los elementos a[0], a[1],....,a[n-1]. El método comienza comparando a[0] con a[1]; si
están desordenados, se intercambian entre sí. A continuación se compara a[1] con a[2]. Se continua comparando a[2]
con a[3], intercambiándolos si están desordenados,... hasta comparar a[n-2] con a[n-1] intercambiándolos si están
desordenadoS. Estas operaciones constituyen la primera pasada a través de la lista. Al terminar esta pasada el elemento
mayor está en la parte superior de la lista. El proceso descrito se repite durante n-1 pasadas teniendo en cuenta que en la
pasada i el se ha colocado el elemento mayor de las posiciones 0,.....,n-i en la posición n-i. De esta forma cuando i
toma el valor n-1, el vector está ordenado.

Codificación

void burbuja(int n, float a[max])
{

int i,j; float aux;
for (i = 0; i < n - 1; i++)
for(j = 0;j < n – 1 - i; j++)
if (a[j] > a[j + 1])
{
aux = a[j];
a[j] =a [j + 1];
a[j + 1] =aux;

}
}

10.6. Escriba una función que realice la ordenación interna de un vector de n elementos, por el método de ordenación de selec-
ción.

Análisis del problema

Se basa en el siguiente invariante “seleccionar en cada pasada el elemento más pequeño y colocarlo en la posición que le
corresponde”. De esta forma en una primera pasada, encuentra el menor de todos los elementos y lo coloca en la posición
primera del vector (la cero). En la segunda pasada encuentra el siguiente elemento más pequeño (el segundo elemento más
pequeño) y lo coloca en la posición número 2 (la uno). Y así continúa hasta que coloca los n-1 elementos más pequeños
quedando por tanto el vector ordenado.

Codificación

void selecion(int n, float a[max])
{

int i,j,k; float aux;
for (i = 0;i < n - 1; i++)

CAPÍTULO 10 Algoritmos de ordenación y búsqueda 165

ap.10 11/6/05 21:42 Página 165

{
k = i;
for(j = i + 1; j < n;j++)
if(a[j] < a[k])
k = j;

aux = a[k];
a[k] = a[i];
a[i] = aux;

}
}

10.7. Escriba funciones para realizar la búsqueda secuencial de un vector.

Análisis del problema

Si se supone declarada previamente una constante max, que es el tamaño del vector es, y que el elemento que se busca es x.
La búsqueda, devuelve un valor entero, que es –1 en el caso de que el elemento a buscar no esté en el vector. La búsqueda
secuencial se programa, primeramente de forma descendente (el bucle termina cuando ha encontrado el elemento, o cuando
no hay más elementos en el vector) suponiendo que el vector está ordenado, y posteriormente de forma ascendente (el bucle
termina cuando se ha encontrado el elemento, o cuando se está seguro de que no se encuentra en el vector), suponiendo que
el vector está ordenado.

Codificación

int Bsecdes(int n,float a[max], float x)
{

int enc = 0; int i = n - 1;
// Búsqueda secuencial descendente
while ((!enc) && (i >=0))
{

enc = (a[i] == x);
if (! enc)

i– –;
}
//Si se encuentra se devuelve la posición en el vector*/
if (enc)

return (i);
else

return (-1);
}

int Bsecor(int n , float a[max], float x)
{

int enc = 0; int i = 0;
// Búsqueda secuencial ascendente.

while ((!enc) && (i <max))
{
enc = (a[i] >= x);

//enc se hace verdadero cuando lo encuentra o no esta
if (! enc)

i++;
}
if (i < n)

CAPÍTULO 10 Algoritmos de ordenación y búsqueda166

ap.10 11/6/05 21:42 Página 166

enc = a[i] == x ;
//Si se encuentra el elemento se devuelve la posición

if (enc)
return (i);

else
return (-1);

}

10.8. Escriba funciones para realizar la búsqueda binaria de una clave en un vector ordenado ascendentemente.

Análisis del problema

La búsqueda dicotómica se programa, tomando en cada partición el elemento central c. Decidiendo si el elemento buscado
se encuentra en esa posición, o bien si hay que mover el índice izquierdo o derecho de la partición. El bucle que realiza la
búsqueda termina cuando ha encontrado el elemento o bien cuando los índices de la partición se han cruzado.

Codificación

int Bdicotomicacor(int n, float a[max], float x)
{

int iz,de, c, enc;
iz = 0;
de = n - 1;
enc = 0;
while((iz <= de)&& (!enc))
{

c = (iz + de)/ 2;
if (a[c] == x)

enc = 1;
else if (x < a[c])

// debe encontrarse a la izquierda de c. Retrocede de
de = c - 1 ;

else
// debe encontrarse a la derecha de c. Avanza iz

iz = c + 1;
}
if(enc)

return (c);
else

return (-1);
}

10.9. Escribir una función de búsqueda binaria aplicada a un array ordenado descendentemente.

Análisis del problema

La búsqueda dicotómica descendente de un vector ordenado descendentemente es análoga a la búsqueda dicotómica en un
vector ordenado ascendentemente. Solamente cambian los movimientos de los índices iz y de; esto se consigue simplemente
cambiando la condición de selección del if(x < a[c]) por esta otra if (x > a[c]) del ejercicio 10.8.

Codificación

int Bdicotomicades(int n, float a[max], float x)

CAPÍTULO 10 Algoritmos de ordenación y búsqueda 167

ap.10 11/6/05 21:42 Página 167

{
int iz,de, c, enc;
iz = 0;
de = n - 1;
enc = 0;
while((iz <= de) && (!enc))
{
c = (iz + de)/ 2;
if (a[c] == x)

enc = 1;
else if (x > a[c])

// debe encontrarse a la izquierda de c. Retrocede de
de = c - 1 ;

else
// debe encontrarse a la derecha de c. Avanza iz

iz = c + 1;
}
if(enc)
return (c);

else
return (-1);

}

10.10. Escriba dos funciones que realicen la ordenación interna de un vector de n elementos, por los método de ordenación de
inserción.

Análisis del problema

Se basa en realizar un total de n-1 iteraciones sobre un vector que almacene n datos. En la iteración número i, se cumple
antes de empezar que el vector se encuentra ordenado desde las posiciones 0,1,...., i-2., y al final de la pasada el vec-
tor queda ordenado hasta la posición número i-1. Para realizarlo, el método realiza una búsqueda secuencial o binaria (dos
métodos distintos) de la posición k donde debe colocarse el elemento que ocupa en el vector la posición i-1. Posteriormente
intercambia los contenidos de las posiciones k, e i-1. En la codificación que se presenta hay que tener en cuenta que si i
comienza por cero entonces el número de iteraciones es siempre uno más. Se codifica el método de ordenación por inser-
ción lineal y binaria.

Codificación (Consultar la página web del libro)

10.11. Escriba una función que realice la ordenación interna de un vector de n elementos, por los método de ordenación Shell.

Análisis del problema

Se divide el vector original (n elementos) en n/2 listas de dos elementos con un intervalo entre los elementos de cada lista
de n/2 y se clasifica cada lista por separado. Se divide posteriormente el vector en n/4 listas de cuatro elementos con un
intervalo o salto de n/4 y, de nuevo, se clasifica cada lista por separado. Se repite el proceso dividiendo en grupos n/8, n/16,
....(esta secuencia puede cambiarse) hasta que, en un último paso, se clasifica la lista de n elementos. La clasificación de cada
una de las listas puede hacerse por cualquier método en este caso se hará por el método de inserción lineal.

Codificación

void shell(int n, float a[max])
{

int i, j, k, salto;

CAPÍTULO 10 Algoritmos de ordenación y búsqueda168

ap.10 11/6/05 21:42 Página 168

float aux;
salto = n / 2;
while (salto > 0)
{
for (i = salto; i < n; i++)

{
j = i - salto;
while(j >= 0)

{
k = j + salto;

if (a[j] <= a[k])
j = -1;

else
{
aux = a[j];
a[j] = a[k];
a[k] = aux;
j = j - salto;

}
}

}
salto = salto / 2;

}
}

10.12. Escriba una función recursiva que implemente el método de ordenación rápida Quick_ Sort que ordene un array de n ele-
mentos.

Análisis del problema

El algoritmo de ordenación rápida divide el array a en dos subarrays (sublistas). Se selecciona un elemento específico del
array a[centro] llamado pivote y se divide el array original en dos subarrays, de tal manera que los elementos menores o
iguales que a[centro] se colocan en la parte izquierda y los mayores o iguales en la parte derecha. Posteriormente se orde-
nan la parte izquierda y la derecha mediante dos llamadas recursivas.

Codificación (Consultar la página web del libro)

10.13. Escribir una función que acepte como parámetro un vector que puede contener elementos duplicados. La función debe sus-
tituir cada valor repetido por -1 y devolver al punto donde fue llamado el vector modificado y escribir el l número de entra-
das modificadas (puede suponer que el vector dato no contiene el valor –1 cuando se llama a la función).

Análisis del problema

Se supone que el vector es de dimensión n, y que n<=max siendo max una constante previamente declarada. El contador nv
cuenta el número de veces que se cambia un valor por –1. El contador nv1, cuenta el número de elementos que en la ite-
ración i son cambiados por –1. El problema se ha resuelto de la siguiente forma: un bucle controlado por la variable i,
recorre el vector. Para cada posición i cuyo contenido sea distinto de la marca –1 se comprueba, se cuenta y se cambia por
el valor predeterminado –1 mediante otro bucle controlado por la variable entera j, aquellos valores que cumplen la condi-
ción a[i]==a[j], siempre que a[i]<>-1. Al final del bucle j, si se ha cambiado algún elemento por el valor predetermi-
nado, se cambia también el valor de la posición i, y por supuesto se cuenta.

CAPÍTULO 10 Algoritmos de ordenación y búsqueda 169

ap.10 11/6/05 21:42 Página 169

Codificación

void duplicados(int n, float a[max])
{

int i, j;
float aux, nv, nv1;
aux = -1;
nv = 0;
for (i = 0; i < n - 1; i++)
{

nv1 = 0;
for(j = 0; j < n - 1- i; j++)
if (a[i]!= -1)

if (a[j] == a[i])
{

a[j] = aux;
nv1++;

}
if (nv1 > 0)
{

a[i] = aux;
nv1++;
nv+ = nv1;

}
}
printf(“ numero de duplicados = %d \n”, nv);

}

CAPÍTULO 10 Algoritmos de ordenación y búsqueda170

PROBLEMAS PROPUESTOS
10.1. Un array de registros se quiere ordenar según el campo

clave fecha de nacimiento. Dicho campo consta de tres
subcampos: dia, mes y año de 2, 2 y 4 dígitos respectiva-
mente. Adaptar el método de la burbuja a esta ordenación.

10.2. Suponga que se tiene una secuencia de n números que
deben ser clasificados:

1. Si se utiliza el método de Shell, ¿cuántas compara-
ciones y cuántos intercambios se requieren para cla-
sificar la secuencia si: ya está clasificado; está en
orden inverso.

2. Realizar los mismos cálculos si se utiliza el algorit-
mo quicksort.

10.3. Escriba la función de ordenación correspondiente al
método Shell para poner en orden alfabético una lista de
n nombres.

10.4. Dado un vector x de n elementos reales, donde n es impar,
diseñar una función que calcule y devuelva la mediana de
ese vector. La mediana es el valor tal que la mitad de los
números son mayores que el valor y la otra mitad son
menores. Escribir un programa que compruebe la función.

10.5. Se trata de resolver el siguiente problema escolar. Dadas
las notas de los alumnos de un colegio en el primer curso
de bachillerato, en las diferentes asignaturas (5, por
comodidad), se trata de calcular la media de cada alum-
no, la media de cada asignatura, la media total de la clase
y ordenar los alumnos por orden decreciente de notas
medias individuales. Nota: utilizar como algoritmo de
ordenación el método Shell.

10.6. Escribir un programa de consulta de teléfonos. Leer un
conjunto de datos de 1000 nombres y números de telé-
fono de un archivo que contiene los números en orden

ap.10 11/6/05 21:42 Página 170

aleatorio. Las consultas han de poder realizarse por
nombre y por número de teléfono.

10.7. Realizar un programa que compare el tiempo de cálculo
de las búsquedas secuencial y binaria.

10.8. Se dispone de dos vectores, Maestro y Esclavo, del
mismo tipo y número de elementos. Se deben imprimir
en dos columnas adyacentes. Se ordena el vector
Maestro, pero siempre que un elemento de Maestro se
mueva, el elemento correspondiente de Esclavo debe
moverse también; es decir, cualquier acción hecha con
Maestro[i] debe hacerse a Esclavo[i]. Después de
reali-zar la ordenación se imprimen de nuevo los vec-
tores. Escribir un programa que realice esta tarea.
Nota: utilizar como algoritmo de ordenación el méto-
do quicksort.

10.9. Cada línea de un archivo de datos contiene información
sobre una compañía de informática. La línea contiene el
nombre del empleado, las ventas efectuadas por el
mismo y el número de años de antigüedad del empleado
en la compañía. Escribir un programa que lea la infor-
mación del archivo de datos y a continuación se visuali-
za. La información debe ser ordenada por ventas de
mayor a menor y visualizada de nuevo.

10.10. Se desea realizar un programa que realice las siguientes
tareas:

a) Generar, aleatoriamente, una lista de 999 números
reales en el rango de 0 a 2000.

b) Ordenar en modo creciente por el método de la burbuja.

c) Ordenar en modo creciente por el método Shell.
e) Buscar si existe el número x (leído del teclado) en la

lista. Aplicar la búsqueda binaria.

10.11. Ampliar el programa anterior de modo que pueda obte-
ner y visualizar en el programa principal los siguientes
tiempos:

t1. Tiempo empleado en ordenar la lista por cada uno de
los métodos.

t2. Tiempo que se emplearía en ordenar la lista ya orde-
nada.

t3. Tiempo empleado en ordenar la lista ordenada en
orden inverso.

10.12. Construir un método que permita ordenar por fechas y
de mayor a menor un vector de n elementos que con-
tiene datos de contratos (n <= 50). Cada elemento del
vector debe ser un objeto con los campos día, mes, año
y número de contrato. Pueden existir diversos contratos
con la misma fecha, pero no números de contrato repe-
tidos.

10.13. Se leen dos listas de números enteros, A y B de 100 y 60
elementos, respectivamente. Se desea resolver mediante
funciones las siguientes tareas:

a) Ordenar, aplicando el método de inserción, cada una
de las listas A y B.

b) Crear una lista C por intercalación o mezcla de las lis-
tas A y B.

c) Visualizar la lista C ordenada.

CAPÍTULO 10 Algoritmos de ordenación y búsqueda 171

ap.10 11/6/05 21:42 Página 171

ap.10 11/6/05 21:42 Página 172

Este capítulo examina estructuras, uniones, enumeraciones y tipos definidos por el usuario que permiten a un programador crear
nuevos tipos de datos. La capacidad para crear nuevos tipos es una característica importante y potente de C y libera a un progra-
mador de restringirse al uso de los tipos ofrecidos por el lenguaje. Una estructura contiene múltiples variables, que pueden ser de
tipos diferentes. La estructura es importante para la creación de programas potentes, tales como bases de datos u otras aplicaciones
que requieran grandes cantidades de datos. Por otra parte, se analizará el concepto de unión, otro tipo de dato no tan importante
como las estructuras o los array y el concepto de estructura (struct), de gran importancia en el tratamiento de la información.

Un tipo de dato enumerado es una colección de miembros con nombre que tienen valores enteros equivalentes. Un type-
def es de hecho no un nuevo tipo de dato sino simplemente un sinónimo de un tipo existente.

11.1 Estructuras
Una estructura es una colección de uno o más tipos de elementos denominados miembros, cada uno de los cuales puede ser de
un tipo de dato diferente. Una estructura puede contener cualquier número de miembros, cada uno de los cuales tiene un nom-
bre único, denominado nombre del miembro.

Una estructura es un tipo de dato definido por el usuario, que se debe declarar antes de que se pueda utilizar. El formato de
la declaración es:

struct <nombre de la estructura>
{

<tipo de dato miembro1> <nombre miembro1>
<tipo de dato miembro2> <nombre miembro2>
...
<tipo de dato miembron> <nombre miembron>

};

Al igual que a los tipos de datos enumerados, a una estructura se accede utilizando una variable o variables que se deben
definir después de la declaración de la estructura. Del mismo modo que sucede en otras situaciones, en C existen dos concep-
tos similares a considerar, declaración y definición. Una declaración especifica simplemente el nombre y el formato de la
estructura de datos, pero no reserva almacenamiento en memoria; la declaración especifica un nuevo tipo de dato: struct
<nombre_estructura>. Por consiguiente, cada definición de variable para una estructura dada crea un área en memoria en
donde los datos se almacenan de acuerdo al formato estructurado declarado.

173

CAPÍTULO 11

Estructuras y uniones

ap.11 11/6/05 21:42 Página 173

Las variables de estructuras se pueden definir de dos formas: (1) listándolas inmediatamente después de la llave de cierre
de la declaración de la estructura, o (2) listando el tipo de la estructura creado seguida por las variables correspondientes en
cualquier lugar del programa antes de utilizarlas. Se puede asignar una estructura a otra.

Se puede inicializar una estructura de dos formas. Se puede inicializar una estructura dentro de la sección de código de su
programa, o bien se puede inicializar la estructura como parte de la definición. Cuando se inicializa una estructura como parte
de la definición, se especifican los valores iniciales, entre llaves, después de la definición de variables estructura. El formato
general en este caso:

struct <tipo> <nombre variable estructura> =
{ valor miembro1,

valor miembro2,
...

valor miembron
};

El operador sizeof se puede aplicar para determinar el tamaño que ocupa en memoria una estructura. Cuando se accede a
una estructura, o bien se almacena información en la estructura o se recupera la información de la estructura. Se puede acce-
der a los miembros de una estructura de una de estas dos formas: (1) utilizando el operador punto (.), o bien (2) utilizando el
operador flecha ->.

La asignación de datos a los miembros de una variable estructura se hace mediante el operador punto. La sintaxis en C es:

<nombre variable estructura> . <nombre miembro> = datos;

El operador punto proporciona el camino directo al miembro correspondiente. Los datos que se almacenan en un miembro
dado deben ser del mismo tipo que el tipo declarado para ese miembro.

El operador puntero, ->, sirve para acceder a los datos de la estructura a partir de un puntero. Para utilizar este operador se
debe definir primero una variable puntero para apuntar a la estructura. A continuación, se utiliza simplemente el operador pun-
tero para apuntar a un miembro dado. La asignación de datos a estructuras utilizando el operador puntero tiene el formato:

<puntero estructura> -> <nombre miembro> = datos;

Previamente habría que crear espacio de almacenamiento en memoria; por ejemplo, con la función malloc().
Si se desea introducir la información en la estructura basta con acceder a los miembros de la estructura con el operador punto o

el operador flecha(puntero). Se puede introducir la información desde el teclado o desde un archivo, o asignar valores calculados.
Se recupera información de una estructura utilizando el operador de asignación o una sentencia de salida (printf(),

puts() ...). Igual que antes, se puede emplear el operador punto o el operador flecha(puntero). El formato general toma uno
de estos formatos:

1. <nombre variable> = <nombre variable estructura>.<nombre miembro>;
o bien

<nombre variable> = <puntero de estructura> -> <nombre miembro>;
2. para salida:

printf(" ",<nombre variable estructura>.<nombre miembro>);
o bien

printf(" ",<puntero de estructura>-> <nombre miembro>);

Una estructura puede contener otras estructuras llamadas estructuras anidadas. Las estructuras anidadas ahorran tiempo en
la escritura de programas que utilizan estructuras similares. Se han de definir los miembros comunes sólo una vez en su pro-
pia estructura y a continuación utilizar esa estructura como un miembro de otra estructura. El acceso a miembros dato de estruc-
turas anidadas requiere el uso de múltiples operadores punto. Las estructuras se pueden anidar a cualquier grado. También es
posible inicializar estructuras anidadas en la definición.

Se puede crear un array de estructuras tal como se crea un array de otros tipos. Muchos programadores de C utilizan arrays
de estructuras como un método para almacenar datos en un archivo de disco. Se pueden introducir y calcular sus datos de disco
en arrays de estructuras y a continuación almacenar esas estructuras en memoria. Los arrays de estructuras proporcionan tam-
bién un medio de guardar datos que se leen del disco. Los miembros de las estructuras pueden ser asimismo arrays.

CAPÍTULO 11 Estructuras y uniones174

ap.11 11/6/05 21:42 Página 174

C permite pasar estructuras a funciones, bien por valor o bien por referencia, utilizando el operador &. Si la estructura es
grande, el tiempo necesario para copiar un parámetro struct a la pila puede ser prohibitivo. En tales casos, se debe conside-
rar el método de pasar la dirección de la estructura.

EJEMPLO 11.1 Declaración de diferentes estructuras

struct complejo
{

float x,y;
};

struct racional
{

int numerador;
int denominador;

};

struct fecha
{

unsigned int mes, dia, anyo;
};

struct tiempo
{

unsigned int horas, minutos;
};

struct direccion
{

char calle[40];
int num;
int codpost;
char ciudad [20];

}

struct entrada
{

char nombre[50];
struct direccion dir;
char telefonos [5][15];

};

11.2 Uniones
Las uniones son similares a las estructuras en cuanto que agrupan a una serie de variables, pero la forma de almacenamiento es dife-
rente y por consiguiente tiene efectos diferentes. Una estructura (struct) permite almacenar variables relacionadas juntas y alma-
cenadas en posiciones contiguas en memoria. Las uniones, declaradas con la palabra reservada union, almacenan también
miembros múltiples en un paquete; sin embargo, en lugar de situar sus miembros unos detrás de otros, en una unión, todos los miem-
bros se solapan entre sí en la misma posición. El tamaño ocupado por una unión se determina así: se analiza el tamaño de cada varia-
ble de la unión; el mayor tamaño de variable será el tamaño de la unión. La sintaxis de una unión es la siguiente:

union nombre {
tipo1 miembro1;
tipo2 miembro2;
...

};

CAPÍTULO 11 Estructuras y uniones 175

ap.11 11/6/05 21:42 Página 175

La cantidad de memoria reservada para una unión es igual a la anchura de la variable más grande. En el tipo union, cada
uno de los miembros dato comparten memoria con los otros miembros de la unión.

Una razón para utilizar una unión es ahorrar memoria. En muchos programas se deben tener varias variables, pero no nece-
sitan utilizarse todas al mismo tiempo. Para referirse a los miembros de una unión, se utiliza el operador punto (.), o bien el
operador -> si se hace desde un puntero a unión.

EJEMPLO 11.2 Declaración de una unión

union arg
{

int v;
char c[2];

} n;

printf (“Introduzca un número entero:”);
scanf (“%d”, &n.v);

printf (“La mitad más significativa del número es %i \n”, c[1]);
printf (“La mitad menos significativa del número es %i \n”, c[0]);
/* En algunos sistemas puede ser al revés */

11.3 Enumeraciones
Una enumeración es un tipo definido por el usuario con constantes de nombre de tipo entero. En la declaración de un tipo enum
se escribe una lista de identificadores que internamente se asocian con las constantes enteras 0, 1, 2

Formato

1. enum
{

enumerador1, enumerador2, ...enumeradorn.
};

2. enum nombre
{

enumerador1, enumerador2, ...enumeradorn.
};

En la declaración del tipo enum pueden asociarse a los identificadores valores constantes en vez de la asociación que por
defecto se hace (0, 1, 2 ...). Para ello se utiliza este formato:

3. enum nombre
{

enumerador1 = expresión_constante1,
enumerador2 = expresión_constante2,
...
enumeradorn = exprsesión_constanten

};

El tamaño en bytes de una estructura, de una unión o de un tipo enumerado se puede determinar con el operador sizeof.

EJEMPLO 11.3 Diferentes tipos de enumeraciones

enum tipo_operacion {deposito, retirada, aldia, estado};

enum tipo_operación op;
...

CAPÍTULO 11 Estructuras y uniones176

ap.11 11/6/05 21:42 Página 176

switch (op)
{

case deposito: realizar_deposito (args);
break;

case aldia: poner_al_dia (args);
break;

case retirada: retirar_fondos (args);
break;

case estado: imprimir_estado (args);
break;

default: imprimir_error (args);
}

11.4 Sinonimo de un tipo de datos: Typedef
La sentencia typedef permite a un programador crear un sinónimo de un tipo de dato definido por el usuario o de un tipo ya
existente.

EJEMPLO 11.4 Uso de typedef

Uso de typedef para declarar un nuevo nombre, Longitud, de tipo de dato double.

typedef double Longitud;

A partir de la sentencia anterior, Longitud se puede utilizar como un tipo de dato, en este ejemplo sinónimo de dou-
ble. La función Distancia(), escrita a continuación, es de tipo Longitud:

Longitud Distancia (const Punto& p, const Punto& p2)
{

...
Longitud longitud = sqrt(rcua);
return longitud;

}

Otros ejemplos:

typedef char* String;
typedef const char* string;

A continuación se pueden hacer las siguientes declaraciones con la palabra String o string:

String nombre = "Jesus Lopez Arrollo";
string concatena(string apell1, string apell2);

CAPÍTULO 11 Estructuras y uniones 177

Sintaxis:

typdef tipo_dato_definido nuevo_nombre;

Puede declararse un tipo estructura o un tipo unión y a continuación asociar el tipo estructura a un nombre con typedef.

typedef struct complejo complex;

/* definición de un array de complejos */

ap.11 11/6/05 21:42 Página 177

complex v[12];

typedef struct racional
{
int numerador;
int denominador;

} Racional;

Ahora se puede declarar la estructura numero utilizando el tipo complex y el tipo Racional:

typedef struct numero
{
complex a;
Racional r;

};

EJEMPLO 11.5 Uso de typedef

typedef struct fecha Fecha;
typedef struct tiempo Tiempo;
typedef enum tipo_operacion TipOperacion;

struct registro_operacion
{

long numero_cuenta;
float cantidad;
TipOperacion operacion;
Fecha f;
Tiempo t;

};

typedef struct registro_operacion RegistrOperacion;

RegistrOperacion entrada(void);

int main()
{

RegistrOperacion w;
w = entrada();

printf(“\n Operaci¢n realizada\n\n”);
printf(“\t%ld\n”,w.numero_cuenta);
printf(“\t%d-%d-%d\n”,w.f.dia,w.f.mes,w.f.anyo);
printf(“\t%d:%d\n”,w.t.horas,w.t.minutos);

return 0;
}

RegistrOperacion entrada(void)
{

int x, y, z;
RegistrOperacion una;

printf(“\nNúmero de cuenta: “);
scanf(“%ld”,&una.numero_cuenta);
puts(“\tTipo de operación”);
puts(“Deposito(0)”);

CAPÍTULO 11 Estructuras y uniones178

ap.11 11/6/05 21:42 Página 178

puts(“Retirada de fondos(1)”);
puts(“Puesta al dia(2)”);
puts(“Estado de la cuenta(3)”);
scanf(“%d”,&una.operacion);

printf(“\nFecha (dia mes año): “);
scanf(“%d %d %d”,&una.f.dia,&una.f.mes,&una.f.anyo);

printf(“Hora de la operacion(hora minuto): “);
scanf(“%d %d”,&una.t.horas,&una.t.minutos);

return una;
}

11.5 Campos de bit
El lenguaje C permite realizar operaciones con los bits de una palabra. Ya se han estudiado los operadores de manejo de bits:
>>, <<, Con los campos de bit, C permite acceder a un número de bits de una palabra entera. Un campo de bits es un
conjunto de bits adyacentes dentro de una palabra entera.

La sintaxis para declarar campos de bits se basa en la declaración de estructuras. El formato general:

struct identificador_campo {
tipo nombre1: longitud1;
tipo nombre2: longitud2;
tipo nombre3: longitud3;

.

.

.
tipo nombren: longitudn;

};
tipo ha de ser entero, int; generalmente unsigned int.
longitud es el número de bits consecutivos que se toman.

Al declarar campos de bits, la suma de los bits declarados puede exceder el tamaño de un entero; en ese caso se emplea la
siguiente posición de almacenamiento entero. No está permitido que un campo de bits solape los límites entre dos int.
En la declaración de una estructura puede haber miembros que sean variables y otros campos de bits. Los campos de bits se
utilizan para rutinas de encriptación de datos y fundamentalmente para ciertos interfaces de dispositivos externos. Los campos
de bits tienen ciertas restricciones. Así, no se puede tomar la dirección de una variable campo de bits; no puede haber arrays
de campos de bits; no se puede solapar fronteras de int. Depende del procesador el que los campos de bits se alineen de izquier-
da a derecha o de derecha a izquierda (conviene hacer una comprobación para cada procesador, utilizando para ello un union
con variable entera y campos de bits).

EJEMPLO 11.6 Estructuras con campos de bit

struct entrada
{
char nombre[50];
struct direccion dir;
char telefonos [5][15];
int edad;
int sexo:1; /* H: 1 – M: 0 */
int departamento:3; /* codigo <8 */
int contrato:3;
};

CAPÍTULO 11 Estructuras y uniones 179

ap.11 11/6/05 21:42 Página 179

CAPÍTULO 11 Estructuras y uniones180

PROBLEMAS RESUELTOS
11.1. Encuentre los errores en la siguiente declaración de estructura y posterior definición de variable.

struct hormiga
{

int patas;
char especie[41];
float tiempo;

};
hormiga colonia[100];

Es necesario conservar la palabra struct en la declaraciones de variables, a no ser que se añada una sentencia de tipo type-
def como la siguiente:
typedef struct hormiga hormiga;

11.2. Declare una tipo de datos para representar las estaciones del año.

enum estaciones {PRIMAVERA =1, VERANO=2, OTONO=O=3, INVIERNO=4};

11.3. Escriba un función que devuelva la estación del año que se ha leído del teclado. La función debe de ser del tipo declarado
en el ejercicio 2.

Análisis del problema

El tipo enumerado asocia enteros a nombres simbólicos, pero estos nombres simbólicos no pueden ser leídos desde una fun-
ción estándar como scanf. Por consiguiente el programa tiene que leer los valores enteros y traducirlos a los nombres sim-
bólicos que les corresponden según la definición del tipo enumerado.

Codificación

enum estaciones leerEstacion ()
{

int e;
printf("Introduzca el número de la estación del año:\n");
printf(" 1 – Primavera\n");
printf(" 2 – Verano\n");
printf(" 3 – Otoño\n");
printf(" 4 – Invierno\n");
scanf("%d", &e);
switch (e)
{

case 1: return (PRIMAVERA); break;
case 2: return (VERANO); break;
case 3: return (OTOÑO); break;
case 4: return (INVIERNO); break;
default: printf ("Entrada errónea \n"); return;

}
}

11.4. Declara un tipo de dato enumerado para representar los meses del año; el mes enero debe estar asociado al dato entero 1,
y así sucesivamente los demás meses.

ap.11 11/6/05 21:42 Página 180

enum meses {ENERO=1, FEBRERO=2, MARZO=3, ABRIL=4, MAYO=5,
JUNIO=6, JULIO=7, AGOSTO=8, SEPTIEMBRE=9,
OCTUBRE=10, NOVIEMBRE=11, DICIEMBRE=12};

11.5. Encuentra los errores del siguiente código

#include <stdio.h>
void escribe(struct fecha f);
int main()
{

struct fecha
{

int dia;
int mes;
int anyo;
char mes[];

} ff;
ff = {1,1,2000,"ENERO"};
escribe(ff);
return 1;

}

Análisis del problema

La inicialización de una estructura puede hacerse solamente cuando es estática o global. No se puede definir un array de
caracteres sin especificar el tamaño. La mayor parte de los compiladores tampoco permiten inicializar las estructuras de la
manera que aparece en el ejemplo fuera de la inicialización de variables globales. Para estar seguros habría que inicializar
la estructura fecha miembro a miembro.

11.6. ¿Con typedef se declaran nuevos tipos de datos, o bien permite cambiar el nombre de tipos de datos ya declarados?

Solución

La sentencia no añade ningún tipo de datos nuevo a los ya definidos en el lenguaje C. Simplemente permite renombrar un
tipo ya existente, incluso aunque sea un nuevo nombre para un tipo de datos básico del lenguaje como int o char.

11.7. Declara un tipo de dato estructura para representar un alumno; los campos que tiene que tener son: nombre, curso, edad,
dirección y notas de las 10 asignaturas. Declara otro tipo estructura para representar un profesor; los campos que debe
tener son: nombre, asignaturas que imparte y dirección. Por último declara una estructura que pueda representar un pro-
fesor o a un alumno.

Solución

struct alumno
{

char nombre [40];
int curso;
int edad;
char direccion[40];
int notas[10];

};
struct profesor {

char nombre [40];
char direccion[40];
char asignaturas[10][20];

CAPÍTULO 11 Estructuras y uniones 181

ap.11 11/6/05 21:42 Página 181

};
union univ {

struct alumno al;
struct profesor prof;

};

11.8. Definir tres variables correspondientes a los tres tipos de datos declarados en el ejercicio anterior y asignarles un nombre.

Solución

struct alumno a;
struct profesor p;
union univ un;

11.9. Escribe una función que devuelva un profesor o un alumno cuyos datos se introducen por teclado.

Análisis del problema

La estructura es devuelta por valor y la función ha de leer por separado cada uno de sus campos, accediendo a ellos por
medio del operador punto. Para algunos compiladores no está permitido devolver una estructura por valor. En estos casos
habría que devolver un puntero que contenga la dirección de la estructura creada o, aun mejor, pasar la estructura creada a
la propia función por referencia y que sea ésta la que modifique los miembros de la estructura, como se hace en el ejercicio
siguiente.

Codificación

struct alumno leerAlumno()
{

struct alumno aa;
int i;
printf(" Introduzca el nombre \n");
scanf("%s", aa.nombre);
printf(" Introduzca la edad \n");
scanf("%d", &aa.edad);
printf(" Introduzca su curso \n");
scanf("%d", &aa.curso);
printf(" Introduzca la dirección\n");
scanf("%s", aa.direccion);
for (i=0; i<10; i++)
{

printf(" Introduzca la nota de la asignatura %d \n", i);
scanf("%d", &aa.notas[i]);

}
return aa;

}

11.10. Escribe la misma función que en el ejercicio anterior, 11.9, pero pasando la estructura como argumento a la función.

Análisis del problema

Al pasar la estructura por referencia, por medio de un puntero a la misma, es necesario utilizar el operador flecha para acce-
der a cada uno de sus campos. La ventaja es que la estructura en este ejemplo no es una variable local, cuyo espacio de
memoria puede dar problemas al terminar de ejecutarse la función.

CAPÍTULO 11 Estructuras y uniones182

ap.11 11/6/05 21:42 Página 182

Codificación

leerAlumno(struct alumno *aa)
{

int i;
printf(" Introduzca el nombre \n");
scanf("%s", aa->nombre);
printf(" Introduzca la edad \n");
scanf("%d", &aa->edad);
printf(" Introduzca su curso \n");
scanf("%d", &aa->curso);
printf(" Introduzca la dirección\n");
scanf("%s", aa->direccion);
for (i=0; i<10; i++)
{

printf(" Introduzca la nota de la asignatura %d \n", i);
scanf("%d", &aa->notas[i]);

}
}

11.11. Escribe una función que tenga como entrada una estructura, profesor o alumno, y escriba sus campos por pantalla.

Análisis del problema

Es la operación inversa a la entrada. Se trata de acceder a cada uno de los campos de la estructura que se pasa como argu-
mento a la función, puesto que una función estándar como printf() no es capaz de mostrar correctamente los campos de
una estructura definida por el usuario en un programa; hay que recorrer cada uno de los campos miembro.

Codificación

mostrarAlumno(struct alumno *aa)
{

int i;
printf(" Nombre: %s\n", aa->nombre);
printf(" Edad: %d \n", aa->edad);
printf(" Curso: %d\n", aa->curso);
printf(" Dirección: %s\n", aa->direccion);
for (i=0; i<10; i++)

printf(" Nota de la asignatura %d: %d \n", i, aa->notas[i]);
}

11.12. Escribir un programa de facturación de clientes. Los clientes tienen un nombre, el número de unidades solicitadas, el
precio de cada unidad y el estado en que se encuentra: moroso, atrasado, pagado. El programa debe generar los diver-
sos clientes.

Análisis del problema

Se ha definido una estructura siguiendo la especificación del problema y con la misma se ha declarado un array que va a
guardar la información de cada cliente. Es decir, el array de estructuras funciona como una base de datos relacional, en la
que cada campo de la estructura corresponde a una columna de la base de datos y cada estructura corresponde a una línea o
registro de dicha base.

CAPÍTULO 11 Estructuras y uniones 183

ap.11 11/6/05 21:42 Página 183

Codificación

struct cliente
{

char nombre[100];
int numUnidades;
float precio;
char estado;

};
main()
{

struct cliente listado [100];
for (i=0; i<100; i++)
{

printf("Introduzca nombre del cliente: ");
scanf("%s",listado[i].nombre);
printf("\n Introduzca el número de unidades solicitadas: ");
scanf("%d",&listado[i].numUnidades);
printf("\n Introduzca el precio de cada unidad:");
scanf("%f",&listado[i].precio);
printf("\n Introduzca el estado del cliente (m\a\p)");
scanf("%c",&listado[i].estado);

}
}

11.13. Modifique el programa de facturación de clientes de tal modo que se puedan obtener los siguientes listados.

• Clientes en estado moroso.
• Clientes en estado pagado con factura mayor de una determinada cantidad.

Análisis del problema

La información requerida está en el array de estructuras que se considera como una tabla de la base de datos. Para realizar
el procesamiento del array hay que recorrerlo, por eso la sentencia de C que más se adecua a esta labor es la sentencia for
con una variable entera de control que recorre todos los posibles valores del índice de la tabla y para cada registro lee y pro-
cesa los campos que contienen la información relevante.

Para cumplir los requisitos del programa se supone que el estado del cliente está representado en la base de datos por un
carácter que lo simboliza. Así, por ejemplo, si el carácter que aparece es 'm', esto va a significar que el cliente es moroso y
si contienen una 'p' son clientes que han pagado ya sus facturas. Se supone también que lo que debe pagar cada cliente en
la factura se calcula multiplicando el precio de lo que adquirieron por el número de unidades adquiridas.

Codificación

Se muestran únicamente los dos bucles que presentan el modelo en que ha de procesar el array de estructuras.

for (i=0; i<100; i++)
{

if (listado[i].estado == 'm')
printf ("%s\n",listado[i].nombre);

}
for (i=0; i<100; i++)
{

if (listado[i].estado == 'p')

CAPÍTULO 11 Estructuras y uniones184

ap.11 11/6/05 21:42 Página 184

if (listado[i].precio * listado[i].numUnidades > maximo)
printf ("%s\n",listado[i].nombre);

}

11.14. Escribir un programa que permita hacer las operaciones de suma, resta y multiplicación de números complejos. El tipo com-
plejo ha de definirse como una estructura.

Análisis del problema

Un número complejo está formado por dos números reales, uno de los cuales se denomina parte real y el otro parte imagi-
naria. La forma normal de representar en matemáticas un número complejo es la siguiente: real + i * imaginario. Donde
el símbolo i se denomina «unidad imaginaria» y simboliza la raíz cuadrada de –1. Debido a su naturaleza compuesta, un
número complejo se representa de forma natural por una estructura con dos campos de tipo real que contendrán la parte real
y la imaginaria del número concreto. Las funciones que siguen, traducen las operaciones matemáticas tal y como se definen
en la aritmética de números complejos.

Codificación

struct complejo
{

float r;
float i;

};
struct complejo suma (struct complejo a, struct complejo b)
{

struct complejo c;
c.r = a.r + b.r;
c.i = a.i + b.i;
return c;

}
struct complejo resta (struct complejo a, struct complejo b)
{

struct complejo c;
c.r = a.r - b.r;
c.i = a.i - b.i;
return c;

}
struct complejo multiplicacion (struct complejo a, struct complejo b)
{

struct complejo c;
c.r = a.r*b.r - a.i*b.i;
c.i = a.r*b.i + a.i*b.r;
return c;

}

11.15. Un número racional se caracteriza por el numerador y denominador. Escriba un programa para operar con números racio-
nales. Las operaciones a definir son la suma, resta, multiplicación y división; además de una función para simplificar cada
número racional.

Análisis del problema

Un número racional posee entonces dos componentes, por lo cual será representado por una estructura con dos campos
miembro que corresponderán respectivamente al numerador y al denominador del número. Las operaciones aritméticas se

CAPÍTULO 11 Estructuras y uniones 185

ap.11 11/6/05 21:42 Página 185

traducen a la manipulación de sendas estructuras para cada uno de los operandos. Como el resultado debe ser otra estructu-
ra se añade un tercer parámetro a las funciones para recibir el resultado. Como el parámetro de salida ha de ser modificado,
la única posibilidad es que sea pasado por referencia por medio de un puntero teniendo en cuenta que ha de ser manipulado
de forma adecuada con el operador flecha para acceder a sus miembros.

Codificación (Consultar la página web del libro)

11.16. Se quiere informatizar los resultados obtenidos por los equipos de baloncesto y de fútbol de la localidad alcarreña Lupiana.

La información de cada equipo:
• Nombre del equipo.
• Número de victorias.
• Número de derrotas.

Para los equipos de baloncesto añadir la información:
• Número de pérdidas de balón.
• Número de rebotes cogidos.
• Nombre del mejor anotador de triples.
• Número de triples del mejor triplista.

Para los equipos de fútbol añadir la información:
• Número de empates.
• Número de goles a favor.
• Número de goles en contra.
• Nombre del goleador del equipo.
• Número de goles del goleador.

Escribir un programa para introducir la información para todos los equipos integrantes en ambas ligas.

Análisis del problema

Cada equipo ha de corresponder a solamente una estructura, de ahí que se defina un array de estructuras para contener la
información de cada uno y de todos los equipos. A la hora de leer los datos de cada equipo, así como en la salida de esos
datos, hay que tener en cuenta realizar ordenadamente dos movimientos. Por un lado hay que recorrer iterativamente por
medio de un bucle las posiciones del array de equipos. Al mismo tiempo y por cada posición del array habrá que acceder a
cada uno de los campos de la estructura correspondiente, teniendo en cuenta el tipo de datos que contiene para que la ope-
ración de entrada o salida se realice correctamente.

Codificación

struct baloncesto
{

char nombre[20];
int victorias;
int derrotas;
int perdidas;
int rebotes;
char mejorTriples [40];
int triples;

};
struct futbol
{

char nombre[20];

CAPÍTULO 11 Estructuras y uniones186

ap.11 11/6/05 21:42 Página 186

int victorias;
int derrotas;
int empates;
int golesAFavor;
int golesContra;
int golesGoleador;
char goleador[40];

};
main()
{

struct baloncesto equiposB [10];
struct futbol equiposF [10];
int i;
for (i=0, i<10; i++) leerEquipoBaloncesto (&equiposB[i]);
for (i=0, i<10; i++) leerEquipoFutbol (&equiposF[i]);

}
void leerEquipoBaloncesto (struct baloncesto *bal)
{

printf ("\n\tIntroducir nombre del equipo :");
scanf("%s",bal->nombre);
printf ("\n\tIntroducir el número de victorias conseguidas :");
scanf ("%d", &bal->victorias);
printf ("\n\tIntroducir el número de derrotas :");
scanf ("%d", &bal->derrotas);
printf ("\n\tIntroducir el número de pérdidas de balón :");
scanf ("%d", &bal->perdidas);
printf ("\n\tIntroducir el número de rebotes cogidos :");
scanf ("%d", &bal->rebotes);
printf ("\n\tIntroducir nombre del mejor triplista :");
scanf("%s", bal->mejorTriples);
printf ("\n\tIntroducir el número de rebotes cogidos :");
scanf ("%d", &bal->triples);

}
void leerEquipoFutbol (struct futbol *fut)
{

printf ("\n\tIntroducir nombre del equipo :");
scanf("%s", fut->nombre);
printf ("\n\tIntroducir el número de victorias conseguidas :");
scanf ("%d", &fut->victorias);
printf ("\n\tIntroducir el número de derrotas :");
scanf ("%d", &fut->derrotas);
printf ("\n\tIntroducir el número de empates :");
scanf ("%d", &fut->empates);
printf ("\n\tIntroducir el número de goles a favor :");
scanf ("%d", &fut->golesAFavor);
printf ("\n\tIntroducir el número de goles en contra :");
scanf ("%d", &fut->golesContra);
printf ("\n\tIntroducir nombre del mejor goleador :");
scanf("%s", fut->goleador);
printf ("\n\tIntroducir el número de goles del goleador :");
scanf ("%d", &fut->golesGoleador);

}

CAPÍTULO 11 Estructuras y uniones 187

ap.11 11/6/05 21:42 Página 187

11.17. Modificar el programa 16 para obtener los siguientes informes o datos.

• Listado de los mejores triplistas de cada equipo.
• Máximo goleador de la liga de fútbol.
• Suponiendo que el partido ganado son tres puntos y el empate 1 punto: equipo ganador de la liga de fútbol.
• Equipo ganador de la liga de baloncesto.

Análisis del problema

El procesamiento de la información de un array de estructuras se basa en determinar primero en qué campos de cada regis-
tro está la información que se precisa. Una vez determinado esto se trata de recorrer todo el array acumulando en una varia-
ble, en este caso, la indicación del registro que contiene el valor buscado. La búsqueda así realizada se denomina lineal,
porque recorre la totalidad del array para determinar el elemento que cumple las condiciones predeterminadas.

Se muestra el código de las funciones puesto que las llamadas a las mismas, que habría que realizar dentro del programa
solamente necesitan un parámetro y es el nombre del array que contiene los registros de todos los equipos tanto de fútbol,
como de baloncesto:

mejoresTriplistas (equiposB);
maximoGoleador (equiposF);
equipoGanadorFutbol (equiposF);
equipoGanadorBaloncesto (equiposB);

Codificación (Consultar la página web del libro)

11.18. Un punto en el plano se puede representar mediante una estructura con dos campos. Escribir un programa que realice las
siguientes operaciones con puntos en el plano.
• Dados dos puntos calcular la distancia entre ellos.
• Dados dos puntos determinar el punto medio de la línea que los une.

Análisis del problema

Las coordenadas de un punto en el plano de dos dimensiones son dos números reales que se representan en forma de estruc-
tura. Es decir, por cada punto se define una estructura. Cuando una función retorne como salida una estructura, un método
adecuado de hacerlo suele ser proporcionar una estructura para la salida pasándola por referencia al realizar la llamada de la
función. Esto es lo que se hace para la función que calcula el punto medio entre dos puntos dados.

Es importante recordar que la función scanf(), como cualquier función estándar de entrada y salida de C, no reconoce
las estructuras definidas por los programas. Por consiguiente la salida y la entrada de los valores de una estructura ha de rea-
lizarse siempre miembro a miembro, teniendo en cuenta exactamente cuál es el tipo de cada uno de ellos y si hay que refe-
renciarlos con el operador punto, porque se accede desde una variable creada desde la definición, o si es necesario usar el
operador flecha, porque sólo se posea un puntero a la estructura.

Codificación

struct punto
{

float x;
float y;

};
main()
{

struct punto p, q, r;
printf ("Introduzca las coordenadas de dos puntos. \n");
printf ("Primer punto. Coordenada x:");

CAPÍTULO 11 Estructuras y uniones188

ap.11 11/6/05 21:42 Página 188

scanf ("%f", &p.x);
printf ("\n Primer punto. Coordenada y:");
scanf ("%f", &p.y);
printf ("\n Segundo punto. Coordenada x:");
scanf ("%f", &q.x);
printf ("\n Segundo punto. Coordenada y:");
scanf ("%f", &q.y);
printf ("\n La distancia entre ambos puntos es de %f.\n, distancia (p, q));
medio (p,q, &r);
printf (El punto medio de la recta que une ambos puntos es: (%f, %f). \n", r.x, r.y);

}
float distancia (struct punto p1, struct punto p2)
{

return (sqrt(sqr(p1.x-p2.x) + sqr(p1.y-p2.y)));
}
medio (struct punto p1, struct punto p2, struct punto * p3)
{

p3->x = (p1.x + p2.x) /2 ;
p3->y = (p1.y + p2.y) /2 ;

}

11.19. Este programa busca en un archivo una secuencia de bytes. Si los encuentra, los sustituye por ceros. El programa está pen-
sado para ser llamado desde otros programas, por lo que debe devolver su resultado como código de error. Asimismo no
debe modificar la longitud total del fichero.

La invocación del programa debe tomar como argumentos el nombre del fichero y una lista de patrones separados por
comas, cada uno de los cuales debe ser de la forma siguiente: Puede contener caracteres sueltos que se interpretan literal-
mente, puede tener números hexadecimales de hasta dos dígitos terminados con el sufijo h y puede constar de un número
de hasta tres digitos en decimal seguido por el sufijo d.

Por ejemplo:
cambiabytes datos.dat 12d 1bh,[,3,x
Convierte a cero los códigos 12 1B y la secuencia de escape «[3x» en el fichero datos.dat.
Devuelve los siguientes códigos:
0 – Éxito.
1 – No existe el fichero.
2 - Faltan argumentos.
3 – No se puede abrir el fichero.
4 – No hay memoria suficiente.
5 – Argumento no válido.
6 - Error al leer el fichero.
7 - Error al escribir el fichero.

Análisis del problema

Este programa rellena un array de estructuras a partir de los argumentos de la línea de órdenes que le indican qué patrones
debe buscar en el fichero para ser reemplazados posteriormente. Cada estructura posee un campo para guardar el patrón, de
tipo cadena, y su longitud para facilitar su comparación.

Codificación (Consultar la página web del libro)

CAPÍTULO 11 Estructuras y uniones 189

ap.11 11/6/05 21:42 Página 189

CAPÍTULO 11 Estructuras y uniones190

PROBLEMAS PROPUESTOS
11.1. Escribir un programa que gestione una agenda de direccio-

nes. Los datos de la agenda se almacenan en memoria en
un array de estructuras, cada una de las cuales tiene los
siguientes campos:

nombre
dirección
teléfono fijo
teléfono móvil
dirección de correo electrónico

El programa debe permitir añadir una nueva entrada a la
agenda, borrar una entrada, buscar por nombre y elimi-
nar una entrada determinada por el nombre.

11.2. Escribir un programa que permita ordenar el array de
estructuras definido en el programa anterior por el
campo nombre de cada estructura. Utilizar los algorit-
mos de ordenación por el método de la burbuja, ordena-
ción por inserción y ordenación por selección.

11.3. A menudo, en el tratamiento de bases de datos es nece-
sario unir los datos de dos bases distintas cuyos regis-
tros tienen la misma estructura. Para estudiar los
aspectos involucrados en tal operación de mezcla de
bases de datos, suponga que tiene dos arrays del tipo
descrito en el ejercicio propuesto 1 y codifique el pro-
grama en C que los una en uno solo, eliminando los
duplicados que puedan existir entre los dos.

11.4. Diseñe una estructura de registro para una base de
empleados que contenga campos que codifiquen el esta-
do civil del empleado, el sexo y el tipo de contrato utili-
zando la menor cantidad de memoria posible, es decir,
utilizando campos de bits.

11.5. En la base de datos anterior cree un campo de tipo enu-
merado que permita determinar el departamento al que
pertenece un empleado, utilizando un nombre simbólico.

11.6. Escriba un programa para calcular el número de días que
hay entre dos fechas; declarar fecha como una estructura.

PROBLEMAS DE PROGRAMACIÓN
DE GESTIÓN
11.1. Suponga que tiene un array que guarda la información

de los empleados de una gran empresa. De cada emple-
ado se guarda el nombre, los dos apellidos, el número de
la Seguridad Social, el NIF, la edad, el departamento en
el que trabaja y la antigüedad en la empresa. Escriba un
programa en el que se ordene el array por el campo pri-
mer apellido y en caso de que el primer apellido coinci-
da por el segundo apellido. Si ambos apellidos coinciden
para algún registro ordenar entonces por el nombre.

11.2. Utilizando el array del ejercicio anterior escriba un pro-
grama que permita a un usuario por medio de un menú
elegir uno de los campos para realizar una búsqueda por
dicho campo en el array de registros.

11.3. Escriba un programa auxiliar que permita añadir nuevos
campos a la tabla de empleados, como por ejemplo, suel-

do anual y porcentaje de retenciones de impuestos. Una
vez modificado el array de estructuras, escriba un pro-
grama que permita a un usuario elegir un rango de regis-
tros de empleados especificando un apellido inicial y
otro final, o un departamento concreto, y produzca en la
salida la suma total de los sueldos que se les pagan a los
empleados seleccionados.

11.4. Escribir un programa que permita elaborar un informe a
partir del array de estructuras anterior con el siguiente
formato. Cada página contendrá los empleados de un
solo departamento. Al comienzo de cada página se indi-
ca por medio de una cabecera cada uno de los campos
que se listan y al departamento que corresponde el lista-
do. Los campos aparecen justificados a la derecha en
cada columna.

ap.11 11/6/05 21:42 Página 190

Los punteros en C tienen fama, en el mundo de la programación, de dificultad, tanto en el aprendizaje como en su uso. En este
capítulo se tratará de mostrar que los punteros no son más difíciles de aprender que cualquier otra herramienta de programa-
ción ya examinada o por examinar a lo largo de este libro. El puntero, no es más que una herramienta muy potente que puede
utilizar en sus programas para hacerlos más eficientes y flexibles. Los punteros son, sin género de dudas, una de las razones
fundamentales para que el lenguaje C sea tan potente y tan utilizado.

Una variable puntero (o puntero, como se llama normalmente) es una variable que contiene direcciones de otras variables.
Todas las variables vistas hasta este momento contienen valores de datos; por el contrario las variables puntero contienen valo-
res que son direcciones de memoria donde se almacenan datos. En resumen, un puntero es una variable que contiene una direc-
ción de memoria, y utilizando punteros su programa puede realizar muchas tareas que no serían posibles utilizando tipos de
datos estándar.

En este capítulo se estudiarán los diferentes aspectos de los punteros:

• Concepto y características
• Utilización de punteros.
• Asignación dinámica de memoria.
• Aritmética de punteros.
• Arrays de punteros.
• Punteros a punteros, funciones y estructuras.

12.1 Concepto de puntero (apuntador)
Cuando una variable se declara, se asocian tres atributos fundamentales con la misma: su nombre, su tipo y su dirección en
memoria. Al valor de una variable se accede por medio de su nombre. A la dirección de la variable se accede mediante el ope-
rador de dirección &. Un puntero es una variable que contiene una dirección de una posición de memoria que puede corres-
ponder o no a una variable declarada en el programa. La declaración de una variable puntero debe indicar el tipo de dato al que
apunta; para ello se hace preceder a su nombre con un asterisco (*):

<tipo de dato apuntado> *<identificador de puntero>

191

CAPÍTULO 12

Punteros
(apuntadores)

ap.12 11/6/05 21:43 Página 191

EJEMPLO 12.1 Inicialización de punteros

C no inicializa los punteros cuando se declaran y es preciso inicializarlos antes de su uso. Después de la inicialización,
se puede utilizar el puntero para referenciar los datos direccionados. Para asignar una dirección de memoria a un pun-
tero se utiliza el operador &. Este método de inicialización, denominado estático, requiere:

Asignar memoria estáticamente definiendo una variable y a continuación hacer que el puntero apunte al valor de la
variable.

int i; /*define una variable i*/
int *p; /*define un puntero a un entero p*/
p = &i; /*asigna la dirección de i a p */

CAPÍTULO 12 Punteros (apuntadores)192

El operador & devuelve la dirección de la variable a la cual se aplica.

Es un error asignar un valor a una variable puntero si previamente no se ha inicializado con la dirección de una variable o
se le ha asignado memoria dinámicamente. El uso de un puntero para obtener el valor al que apunta, es decir, su dato apunta-
do se denomina indireccionar el puntero (“desreferenciar el puntero”); para ello, se utiliza el operador de indirección *. La
Tabla 12.1 resume los operadores de punteros.

Tabla 12.1 Operadores de punteros

Operador Propósito

& Obtiene la dirección de una variable.
* Define una variable como puntero.
* Obtiene el contenido de una variable puntero.

12.2 Punteros NULL y VOID
Un puntero nulo no apunta a ningún dato válido; se utiliza para proporcionar a un programa un medio de conocer cuándo una
variable puntero no direcciona a un dato válido. Para declarar un puntero nulo se utiliza la macro NULL.

12.3 Punteros y arrays
Los arrays y los punteros están fuertemente relacionados en el lenguaje C. El nombre de un array es un puntero, contiene la
dirección en memoria de comienzo de la secuencia de elementos que forma el array. Es un puntero constante ya que no se puede
modificar, sólo se puede acceder para indexar a los elementos del array. Si se tiene la siguiente declaración de un array, la Figura
12.1 representa un array almacenado en memoria.

int lista[5] = {10, 20, 30, 40, 50};

Nota:

• Un puntero nulo no direcciona ningún dato válido. Un puntero void direcciona datos de un tipo no especifi-
cado. Un puntero void se puede igualar a nulo si no se direcciona ningún dato válido. NULL es un valor; void
es un tipo de dato.

• Un puntero puede apuntar a otra variable puntero. Para declarar un puntero a un puntero se hace preceder a la
variable con dos asteriscos (**).

ap.12 11/6/05 21:43 Página 192

EJEMPLO 12.2. Acceso a arrays mediante punteros

Se puede utilizar indistintamente notación de subíndices o notación de punteros. Dado que un nombre de un array con-
tiene la dirección del primer elemento del array, se debe indireccionar el puntero para obtener el valor del elemento. En
este ejemplo se ponen de manifiesto operaciones correctas y erróneas con nombres de array.

float v[10];
float *p;
float x = 100.5;
int j;

/* se indexa a partir de v */
for (j= 0; j<10; j++)

*(v+j) = j*10.0;
p = v+4; /* se asigna la dirección del quinto elemento */
v = &x; /* error: intento de modificar un puntero constante */

Se puede declarar un array de punteros, como un array que contiene como elementos punteros, cada uno de los cuales
apuntará a otro dato específico. La línea siguiente reserva un array de diez variables punteros a enteros:

int *ptr[10];

CAPÍTULO 12 Punteros (apuntadores) 193

Figura 12.1 Un array almacenado en memoria.

La Figura 12.2 muestra cómo C organiza este array. Cada elemento contiene una dirección que apunta a otros valores de
la memoria. Cada valor apuntado debe ser un entero. Se puede asignar a un elemento de ptr una dirección, tal como para
variables puntero o arrays. Así por ejemplo,

ptr[5] = &edad; /* ptr[5] apunta a la dirección de edad */
ptr[4] = NULL; /* ptr[4] no contiene dirección alguna */

Figura 12.2 Un array de 10 punteros a enteros.

Lista [0]

[1]

[2]

[3]

[4]

Lista

*(lista+1)

*(lista+2)

*(lista+3)

*(lista+4)

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Cada elemento puede apuntar a un entero
memoria

ap.12 11/6/05 21:43 Página 193

De igual forma, se podría declarar un puntero a un array de punteros a enteros.

int *(*ptr10)[];

paso a paso:

(*ptr10) es un puntero; ptr10 es un nombre de variable.
(*ptr10)[] es un puntero a un array
*(*ptr10)[] es un puntero a un array de punteros
int *(*ptr10)[] es un puntero a un array de punteros de variables int

Una matriz de números enteros, o reales, puede verse como un array de punteros; de tantos elementos como filas tenga
la matriz, apuntando cada elemento del array a un array de enteros, reales, de tantos elementos como columnas.

La inicialización de un array de punteros a cadenas se puede realizar con una declaración similar a ésta:

char *nombres_meses[12] = { "Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio",
"Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre" };

EJEMPLO 12.3 Uso de los punteros a cadenas

Considérese la siguiente declaración de un array de caracteres que contiene las veintiséis letras del alfabeto internacional.

char alfabeto[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Si p es un puntero a char. Se establece que p apunta al primer carácter de alfabeto escribiendo

p = &alfabeto[0]; /* o también p = alfabeto */

CAPÍTULO 12 Punteros (apuntadores)194

Es posible, entonces, considerar dos tipos de definiciones de cadena:

char cadena1[]="Hola viejo mundo";
/*array contiene una cadena */

char *cptr = "C a su alcance";
/*puntero a cadena, el sistema reserva memoria para la cadena*/

12.4 Aritmética de punteros
A un puntero se le puede sumar o restar un entero n; esto hace que apunte n posiciones adelante o atrás de la actual. A una varia-
ble puntero se le puede aplicar el operador ++, o el operador –– . Esto hace que contenga la dirección del siguiente, o anterior
elemento. No tiene sentido, por ejemplo, sumar o restar una constante de coma flotante.

A B C D E F G H I J K L M N O P Q R S T U V

P

X Y ZW

Figura 12.3 Un puntero alfabeto [15].

Operaciones no válidas con punteros:

• No se pueden sumar dos punteros.
• No se pueden multiplicar dos punteros.
• No se pueden dividir dos punteros.

P

ap.12 11/6/05 21:43 Página 194

Para crear un puntero constante se debe utilizar el siguiente formato:

<tipo de dato > *const <nombre puntero> = <dirección de variable >;

El formato para definir un puntero a una constante es:

const <tipo de dato elemento> *<nombre puntero> = <dirección de constante >;

Cualquier intento de cambiar el contenido almacenado en la posición de memoria a donde apunta creará un error de com-
pilación.

CAPÍTULO 12 Punteros (apuntadores) 195

Nota:

Una definición de un puntero constante tiene la palabra reservada const delante del nombre del puntero, mientras
que el puntero a una definición constante requiere que la palabra reservada const se sitúe antes del tipo de dato. Así,
la definición en el primer caso se puede leer como «punteros constante o de constante», mientras que en el segundo
caso la definición se lee «puntero a tipo constante de dato».

El último caso a considerar es crear punteros constantes a constantes utilizando el formato siguiente:

const <tipo de dato elemento> *const <nombre puntero> = <dirección de constante >;

Regla:

• Si conoce que un puntero siempre apuntará a la misma posición y nunca necesita ser reubicado (recolocado), defí-
nalo como un puntero constante.

• Si conoce que el dato apuntado por el puntero nunca necesitará cambiar, defina el puntero como un puntero a una cons-
tante.

12.5 Punteros como argumentos de funciones
Cuando se pasa una variable a una función (paso por valor) no se puede cambiar el valor de esa variable. Sin embargo, si se
pasa un puntero a una función (paso por dirección) se puede cambiar el valor de la variable a la que el puntero apunte.
El paso de un nombre de array a una función es lo mismo que pasar un puntero al array. Se pueden cambiar cualquiera de los
elementos del array. Sin embargo, cuando se pasa un elemento a una función, el elemento se pasa por valor.

EJEMPLO 12.4 Paso de argumentos por referencia

Hay que recordar que el paso de los parámetros en las llamadas a las funciones en C siempre se hace por valor. Si se
precisa pasar una variable por referencia, se pasará un puntero a dicha variable, como por ejemplo en la función que
intercambia el valor de los variables:

intercambia (int *a, int *b)
{
int aux;

aux = *a;
*a = *b;
*b = aux;
}

ap.12 11/6/05 21:43 Página 195

12.6 Punteros a funciones
Es posible también crear punteros que apunten a funciones. En lugar de direccionar datos, los punteros de funciones apuntan a códi-
go ejecutable. Al igual que los datos, las funciones se almacenan en memoria y tienen direcciones iniciales. Tales funciones se pue-
den llamar de un modo indirecto, es decir, mediante un puntero cuyo valor es igual a la dirección inicial de la función en cuestión.

La sintaxis general para la declaración de un puntero a una función es:

Tipo_de_retorno (*PunteroFuncion) (<lista de parámetros>);

Este formato indica al compilador que PunteroFuncion es un puntero a una función que devuelve el tipo Tipo_de_retor-
no y tiene una lista de parámetros.

Un puntero a una función es simplemente un puntero cuyo valor es la dirección del nombre de la función. Dado que el nom-
bre es, en sí mismo, un puntero, un puntero a una función es un puntero a un puntero constante.

CAPÍTULO 12 Punteros (apuntadores)196

La función asignada debe tener el mismo tipo de retorno y lista de parámetros que el puntero a función; en caso contra-
rio, se producirá un error de compilación. Los punteros a funciones también permiten pasar una función como un argumento
a otra función. Para pasar el nombre de una función como un argumento función, se especifica el nombre de la función como
argumento.

pf
f

int f(int n)

{

 /∗...
 ...

}

Figura 12.4 Puntero a función.

Recuerde:

var, nombre de una variable.
var[] es un array.
(*var[]) es un array de punteros.
(*var[])() es un array de punteros a funciones.
int (*var[])() es un array de punteros a funciones que devuelven valores de tipo int.

EJEMPLO 12.5. Uso de punteros a estructuras

struct punto {
float x;
float y;
} p, *puntp;

printf (“Introduzca las coordenadas: “);
scanf (“%f”, &p.x);
scanf (“%f”, &p.y);
puntp = &p;
printf (“Las coordenadas introducidas son (%f, %f)”, puntp->x, puntp->y);

Se puede declarar un puntero a una estructura tal como se declara un puntero a cualquier otro objeto. Cuando se refe-
rencia una estructura utilizando el puntero estructura, se emplea el operador -> para acceder a un miembro de ella.

ap.12 11/6/05 21:43 Página 196

PROBLEMAS RESUELTOS
12.1. Encuentre los errores en la siguiente declaración de punteros:

int x, *p, &y;
char* b= "Cadena larga";
char* c= 'C';
float x;
void* r = &x;

Es incorrecta sintácticamente la declaración int &y. No tiene ningún sentido en C.
Cuando un carácter está rodeado por comillas simples es considerado como una constante de tipo char no como una

cadena, para lo cual debería estar rodeado de dobles comillas:

char* c= "C";

No se puede declarar un puntero a tipo void.

12.2. Dada la siguiente declaración, escribir una función que tenga como argumento un puntero al tipo de dato y muestre por
pantalla los campos.

struct boton
{

char* rotulo;
int codigo;

};

La función puede ser la siguiente:

void mostrarBoton (struct boton *pb)
{

printf ("Rotulo del botón : %s\n", pb->rotulo);
printf ("Código asociado al boton : %d\n", pb->codigo);

}

12.3. ¿Qué diferencias se pueden encontrar entre un puntero a constante y una constante puntero?

Por medio de un puntero a constante se puede acceder a la constante apuntada, pero obviamente no está permitido modificar
su valor por medio del puntero. Un puntero declarado como constante no puede modificarse su valor, es decir la dirección
que contiene y a la que apunta.

12.4. Un array unidimensional se puede indexar con la aritmética de punteros. ¿Qué tipo de puntero habría que definir para
indexar un array bidimensional?

El tipo de puntero que se vaya a utilizar para recorrer un array unidimensional tendrá que ser el mismo tipo que el de los elementos
que compongan el array, puesto que va a ir apuntando a cada uno de ellos según los recorra. Para apuntar al array bidimensional
como tal, o lo que es lo mismo, para apuntar a su inicio, el compilador de C considera que un array bidimensional es en realidad
un array de punteros a los arrays que forman sus filas. Por tanto, será necesario un puntero doble o puntero a puntero, que contendrá
la dirección del primer puntero del array de punteros a cada una de las filas del array bidimensional o matriz.

Una array bidimensional se guarda en memoria linealmente, porque la memoria es lineal, fila a fila. Por consiguiente para
acceder a un elemento concreto de una fila y columna determinadas habrá que calcular primero en qué fila está y dentro de

CAPÍTULO 12 Punteros (apuntadores) 197

ap.12 11/6/05 21:43 Página 197

esa fila según su columna se calculará su posición dentro de la memoria. Para realizar esta operación no es necesario saber
cuántas filas contiene la matriz bidimensional pero sí cuántas columnas, para saber cuántos bytes ocupa cada fila. Esto se
verá en los ejercicios siguientes.

12.5. En el siguiente código se accede a los elementos de una matriz. Acceder a los mismos elementos con aritmética de punteros.

#define N 4
#define M 5
int f,c;
double mt[N][M];

. . .
for (f = 0; f<N; f++)
{

for (c = 0; c<M; c++)
printf("%lf ", mt[f][c]);

printf("\n");
}

Análisis del problema

Se define un puntero que apunte a la primera posición de la matriz y se calcula la posición de memoria donde se van encontrando
cada uno de los elementos de la matriz, a base de sumar la longitud de las filas desde el comienzo de la matriz y los elementos
desde el comienzo de la fila donde está situado el elemento al que se desea acceder. Si un elemento está en la fila 5, habrá que
saltar 5 filas enteras de elementos del tipo de la matriz, para situarse al comienzo de su fila en la memoria. Recordar que en C
los arrays siempre se numeran desde 0. Si el elemento que se busca está en la columna 3, hay que calcular tres posiciones desde
el comienzo de su fila calculado antes. Así se llega a la dirección donde se encuentra el elemento buscado. Para hacer estos cálculos
es imprescindible conocer el número de columnas de la matriz, que es igual al tamaño de cada fila. Sin este dato sería imposible
reconstruir la estructura de la matriz, partiendo sólo del espacio que ocupa en la memoria, ya que éste es puramente lineal. Una
vez que se tiene dicha dirección se accede a su contenido. Esta expresión es la misma que sustituye el compilador de C, cuando
compila la indirección que representan los operadores corchetes de los arrays.

Codificación

#define N 4
#define M 5
int f,c;
double mt[N][M], *pmt=mt;

. . .
for (f = 0; f<N; f++)
{

for (c = 0; c<M; c++)
printf("%lf ", *(pmt + f*M + c));

printf("\n");
}

Otra opción podría haber sido hacer que el puntero recorra la matriz, sabiendo que la matriz está almacenada en memoria
fila a fila de forma lineal.

#define N 4
#define M 5
int f,c;
double mt[N][M], *pmt=mt;

. . .
for (f = 0; f<N; f++)
{

CAPÍTULO 12 Punteros (apuntadores)198

ap.12 11/6/05 21:43 Página 198

for (c = 0; c<M; c++)
printf("%lf ", *pmt++);

printf("\n");
}

12.6. Escriba una función con un argumento de tipo puntero a double y otro argumento de tipo int. El primer argumento se
debe corresponder con un array y el segundo con el número de elementos del array. La función ha de ser de tipo puntero a
double para devolver la dirección del elemento menor.

Análisis del problema

Al hacer la llamada a la función se pasa el nombre del array a recorrer o un puntero con la dirección del comienzo del array.
De la misma manera el puntero que recibe la función puede ser tratado dentro de su código como si fuera un array, usando
el operador corchete, o como un simple puntero que se va a mover por la memoria. En ambos casos el segundo parámetro
de la función es imprescindible para no acceder fuera de la región de la memoria donde están los datos válidos del array
original almacenados.

Codificación

double *menorArray (double *v, int n)
{

int i, min = -1;
/* suponer que los elementos del array v son positivos */
double *menor;
for (i=0; i<n; i++)

if (v[i] < min) menor = &v[i];
/* o if (*v++ < min) menor = v-1; */
return menor;

}

12.7. ¿Qué diferencias se pueden encontrar entre estas dos declaraciones?

float mt[5][5];
float *m[5];

Análisis del problema

En la primera declaración se reserva memoria para una matriz de 25 números reales. En la segunda, sólo se reserva memoria
para un array de cinco punteros a reales.

¿Se podrían hacer estas asignaciones?:

m = mt;
m[1] = mt[1];
m[2] = &mt[2][0];

Ambas variables son del mismo tipo, pero son consideradas como constantes por ser nombres de arrays, por lo cual no se
puede modificar su contenido. La segunda asignación es correcta porque el compilador interpreta la expresión mt[1] como
conteniendo la dirección de la segunda fila de la matriz y por lo tanto su valor es del mismo tipo que m[1] en el lado de la
izquierda. La expresión de la derecha en la tercera asignación proporciona la dirección de la tercera fila de la matriz; por
consiguiente, es también de tipo puntero a real al igual que el lado derecho de la matriz.

12.8. Dadas las siguientes declaraciones de estructuras, escribe cómo acceder al campo x de la variable estructura t.

CAPÍTULO 12 Punteros (apuntadores) 199

ap.12 11/6/05 21:43 Página 199

struct fecha
{

int d, m, a;
float x;

};
struct dato
{

char* mes;
struct fecha* f;

} t;

Análisis del problema

La variable t es una variable de tipo estructura, por lo que se usa el operador punto para acceder al miembro f.
Desde el dato miembro f es necesario usar el operador flecha para acceder al campo x de la estructura fecha a la que
apunta.

t.f->x;

¿Qué problemas habría en la siguiente sentencia?

gets(t.mes);

El campo mes de la estructura fecha no apunta a ningún sitio, por lo cual dará problemas de asignación de memoria cuando
la función gets()intente colocar el resultado en el puntero que se le pasa como argumento. Para evitar esto sería necesario
reservar memoria antes de llamar a gets().

12.9. El prototipo de una función es

void escribe_mat(int** t, int nf, int nc);

La función tiene como propósito mostrar por pantalla la matriz. El primer argumento se corresponde con una matriz entera,
el segundo y tercero es el número de filas y columnas de la matriz. Escriba la implementación de la función aplicando la
aritmética de punteros.

void escribe_mat(int** t, int nf, int nc)
{

int f,c;
for (f=0; f<nf; f++)

for (c=0; c<nc, c++)
printf ("Elemento de la fila %d y columna %d: %d\n", f, c, *(t + f * nc + c));

}

12.10. Escriba un programa en el que se lean 20 líneas de texto, cada línea con un máximo de 80 caracteres. Mostrar por pantalla
el número de vocales que tiene cada línea.

Análisis del problema

Una forma de almacenar texto compuesto de líneas que son cadenas de caracteres consiste en partir de un puntero a cadenas,
es decir de un puntero de indirección doble que apunte a un array de punteros a cadenas de caracteres. Ese puntero, que el
programa denomina texto, apuntará a un array de punteros a cadenas que apuntarán cada uno de ellos a su vez a cada una
de las líneas de texto que el usuario vaya introduciendo por teclado. Como cada cadena es un array de caracteres, cada línea
funcionará como si fuera la fila de una matriz bidimensional, con la ventaja de que cada una tendrá sólo la longitud necesaria

CAPÍTULO 12 Punteros (apuntadores)200

ap.12 11/6/05 21:43 Página 200

para almacenar su contenido, sin que se desperdicie espacio de memoria sin usar como ocurriría si se hubiese definido una
matriz con todas las filas de la misma longitud.

Codificación

ENTRADA: 20 cadenas de caracteres
SALIDA: Número de vocales que contiene cada línea.

Para ajustar el tamaño de la memoria que ocupa cada cadena, en vez de reservar directamente el tamaño máximo para cada
línea, se lee en un array cada línea desde teclado y después se usan las funciones de manejo de cadenas para reservar espacio
para los caracteres leídos y para copiar la línea leída en ellos.

Para comprobar el número de vocales se accede a cada uno de los caracteres de la línea leída y se comparan por medio de
una sentencia switch con los caracteres correspondientes a las vocales, tanto mayúsculas como minúsculas.

main()
{

char **texto, *línea;
int i, vocales;
texto = (char **) malloc (20 * sizeof (char *));
línea = (char *) malloc (80 * sizeof (char));
for (i=0; i<20; i++)
{

gets(línea);
texto [i] = (char *) malloc (strlen (línea)+1);
strcpy (texto[i], línea);
/* Ahora comprobar las vocales que contiene la línea */
vocales = 0;
for (i=0; i<strlen(línea); i++)
{

switch (línea [i])
{

case 'a': case 'A':
case 'e': case 'E':
case 'i': case 'I':
case 'o': case 'O':
case 'u': case 'U': vocales++;

}
printf ("La línea contiene %d vocales. \n", vocales);

} /* for interno */
} /* for externo */

}

12.11. Escribir un programa que encuentre una matriz de números reales simétrica. Para ello, una función entera con entrada la
matriz determinará si ésta es simétrica. En otra función se generará la matriz con números aleatorios de 1 a 112.
Utilizar la aritmética de punteros en la primera función, en la segunda indexación.

Análisis del problema

Una matriz es simétrica si cada uno de sus elementos es igual a su simétrico con respecto a la diagonal principal. Una manera
de comprobarlo es recorrer la matriz y preguntar si cada elemento es idéntico al que se obtiene cambiando su fila por su
columna y su columna por su fila.

CAPÍTULO 12 Punteros (apuntadores) 201

ap.12 11/6/05 21:43 Página 201

Codificación

ENTRADA: Matriz generada aleatoriamente
SALIDA: Un valor entero que es cero si la matriz no es simétrica, uno si lo es.

Para recorrer una matriz utilizando punteros hay que recordar siempre que la matriz está almacenada linealmente en la
memoria línea a línea. Por consiguiente para situarse en un elemento concreto posicionarse primero en la fila correspondiente
sumando a la dirección del primer elemento el número de filas a saltar y para calcular la dirección en la fila requerida, sumar
tantas unidades al puntero como columnas haya que saltar para llegar. No hay que preocuparse de cuántos bytes hay que ir
sumando cada vez a la dirección puesto que eso lo realiza el compilador de forma automática a partir de la información del
tipo de datos a los que apunta el puntero. En este problema a reales (float).

main ()
{

float matriz [10][10];
crearMatriz (matriz);
if ((resp = simetrica (matriz))==1)

printf ("La matriz generada es simétrica. \n");
else

printf ("La matriz generada no es simétrica. \n");
}
crearMatriz (float m[][10])
{

int i,j;
randomize();
for (i=0; i<10; i++)

for (j=0; j<10; j++)
m[i][j] = rand () % 10;

}
int simetrica (float **mat)
{

int i,j, resp = 1;
for (i=0; i<10; i++)

for (j=0; j<10; j++)
if (i!= j)

if (*(mat + 10 *i + j) != *(mat + 10 *j +i))
{

resp =0;
return (resp);

}
return (resp);

}

12.12. En una competición de natación se presentan 16 nadadores. Cada nadador se caracteriza por su nombre, edad, prueba en
la que participa y tiempo(minutos, segundos) de la prueba. Escribir un programa que realice la entrada de los datos y calcule
la desviación estándar respecto al tiempo. Para la entrada de datos, definir una función que lea del dispositivo estándar el
nombre, edad, prueba y tiempo.

Análisis del problema

El primer paso es siempre definir una estructura con los datos que se necesitan para cada elemento. Para que haya espacio
para varios participantes, se crea también un array de estructuras del tipo definido. Aunque de antemano se sabe el número
de participantes se trabajará con un array de punteros a las estructuras. Así lo único que se crea en principio es un array de
punteros sin inicializar. Según se vayan leyendo los datos se irá reservando memoria para cada estructura y haciendo que el
puntero correspondiente del array apunte a ellas.

CAPÍTULO 12 Punteros (apuntadores)202

ap.12 11/6/05 21:43 Página 202

Otro uso común consiste en que cuando en una estructura un miembro es de tipo cadena, en vez de definirlo con una longitud
determinada, se declara como puntero a carácter, pues de esta manera sólo se reserva la memoria que se nececesita una vez
que se sepa qué cadena se ha de introducir en dicho campo. El ahorro en espacio de memoria es significativo cuando el
número de registros, en este caso estructuras, es grande.

Codificación

struct nadador
{

char * nombre;
int edad;
char *prueba;
struct tt
{

int min;
int seg;

} tiempo;
};
main()
{

struct nadador *participantes[16];
leerParticipantes (participantes);
desviacionEstandar (participantes);

}
leerParticipantes (struct nadador *participantes[])
{

int i;
for (i=0; i<16; i++)

leerNadador(participantes, i);
}
leerNadador (struct nadador ** p, int num)
{

char cadena[40];
*(p+i) = (struct nadador *) malloc (sizeof (struct nadador));
printf ("\n Introduzca el nombre : ");
gets(cadena);
p[i]->nombre = (char*) malloc (strlen(cadena)+1);
strcpy (p[i]->nombre, cadena);
printf ("\n Introduzca la edad : ");
scanf ("%d", &p[i]->edad);
printf ("\n Introduzca la prueba en la que participa : ");
gets(cadena);
p[i]->prueba = (char*) malloc (strlen(cadena)+1);
strcpy (p[i]->prueba, cadena);
printf ("\n Introduzca el tiempo de la prueba. Minutos y segundos : ");
scanf ("%d %d", &p[i]->tiempo.min, &p[i]->tiempo.seg);

}
desviacionEstandar (struct nadador *participantes[])
{

float media, desv, d;
int i;
for (i=0; i<16; i++)

media += participantes[i]->tiempo.min * 60 +

CAPÍTULO 12 Punteros (apuntadores) 203

ap.12 11/6/05 21:43 Página 203

participantes[i]->tiempo.seg;
media /= 16;
for (i=0; i<16; i++)
{

d = participantes[i]->tiempo.min * 60 +
participantes[i]->tiempo.seg – media;

desv += d * d;
}
desv /= 16;
printf ("La desviación estándar es: %f/n", sqrt(desv));

}

12.13. Se quiere evaluar las funciones f(x), g(x) y z(x) para todos los valores de x en el intervalo 0 ≤ x < 3.5 con incremento de
0.2. Escribir un programa que evalúe dichas funciones. Utilizar un array de punteros a función.
Las funciones son las siguientes:

f(x)= 3*ex –2x
g(x)= -x*sin(x)+ 1.5
z(x)= x3 - 2x + 1

Análisis del problema

Una vez que se entiende el mecanismo de los punteros a funciones su uso es muy sencillo. Se trata de definir las funciones
al estilo de C y después definir un array de punteros, a los que se asignan cada una de las funciones creadas. El acceso a
dichas funciones para su ejecución es similar a cuando se accede a cualquier otro dato por medio de punteros.

Codificación

float f (float x)
{

return (3 * exp(x) – 2*x);
}
float g (float x)
{

return (-x * sin (x) + 1.5);
}
float z (float x)
{

return (x *x * x – 2 *x + 1);
}
main ()
{

float (*func[3]) (float);
func [0] = f;
func [1] = g;
func [2] = z;
for (i=0; i <=2; i++)

for (x = 0.0; x < 3.5;
x += 0.2)

printf (" x = %f = %f \n", x, (*func [i])(x));
}

CAPÍTULO 12 Punteros (apuntadores)204

ap.12 11/6/05 21:43 Página 204

12.14. Se quiere sumar enteros largos, con un número de dígitos que supera el máximo entero largo. Los enteros tienen un máximo
de 40 dígitos. Para solventar el problema se utilizan cadenas de caracteres para guardar cada entero y realizar la suma. Escribir
un programa que lea dos enteros largos y realice la suma.

Análisis del problema

Como indica el enunciado el programa recoge los dos números como cadenas. De esta manera sus dígitos se guardan según
su código ASCII y no según su valor numérico. No es ningún problema la conversión entre códigos ASCII y valores
numéricos dado que C permite operar con caracteres y enteros convirtiéndolos unos en otros según se necesite.
Una vez que se tienen las dos cadenas hay que fijarse en que los dígitos menos significativos, que son por los que se empieza
a sumar, están al final de las cadenas, por lo cual o se da la vuelta a las cadenas (procedimiento que se verá en un capítulo
posterior) o, como en este caso, usar dos punteros para recorrer las cadenas con los números desde atrás adelante.

Codificación

main()
{

char num1[40], num2[40], res[40];
char *pnum1, *pnum2;
printf ("Introduzca el primer sumando: ");
gets (num1);
printf ("\n Introduzca el segundo sumando: ");
gets (num2);
long1 = strlen (num1);
long2 = strlen (num2);
pnum1 = num1[long1];
/* los punteros apuntan al final de cada cadena que es el primer dígito de número */
pnum2 = num2[long2];
i = long1>long2 ¿ long1 : long2; /* longitud cadena más larga */
res [i+1] = '\0';
do
{

suma = res[i] + (*pnum1–– -'0')+ (*pnum2–– -'0');
if (suma < 9)

res [i––] = suma + '0';
else
{

res [i––] = (suma % 10) + '0'; /* hay arrastre */
res[i] ++;

}
/* las conversiones de char a int y viceversa suponen –'0'-'0'+'0' */
} while (pnum1 >= num1 && pnum2 >= num2);
/* Hasta que se acabe el número con menos dígitos. */
/* Queda sumar el resto del número más largo. */
if (pnum1 > num1)

do
{

res[i––] += num1[i]
} while (i);

else if (pnum2 > num2)
do
{

res[i––] += num2[i]

CAPÍTULO 12 Punteros (apuntadores) 205

ap.12 11/6/05 21:43 Página 205

} while (i);
printf ("\nEl resultado es : %s\n", res);

}

12.15. Escribir una función que tenga como entrada una cadena y devuelva un número real. La cadena contiene los caracteres de
un número real en formato decimal (por ejemplo, la cadena «25.56» se ha de convertir en el correspondiente valor real).

Análisis del problema

Fundamentalmente se trata de ir recorriendo la cadena, utilizando un puntero, para calcular primero la parte entera del número
hasta encontrar el punto decimal y luego seguir por los dígitos después del punto para calcular los decimales del número
real.

Codificación

float cadenaanum (char * cadena)
{

char *pcad;int d = 1, signo;
float n;
/* saltar espacios en blanco iniciales */
for (pcad = cadena [0]; *pcad == ' '; pcad++);
/* averiguar el signo del número */
switch (*pcad)
{

case '-': signo = -1; pcad++; break;
case '+': pcad++;
default : signo = +1;

}
/* calcular la parte entera del número */
n = * pcad – '0'; /* convierte el dígito en decimal */
while (*++pcad >='0' && *pcad <= '9')

/* ¿el siguiente carácter es un dígito? */
n = n*10 + * pcad – '0';
/* convertir y añadir a parte entera del número /*

if (* pcad++ != '.')
return (signo * n);
/* el número sólo tiene parte entera así que devolver */

while ((*pcad >='0' && *pcad <= '9')
{

d *= 10;
n += (*pcad++ - '0') / d;

}
return (signo * n);

}

12.16. Escribir un programa para generar una matriz de 4 x 5 elementos reales, multiplicar la primera columna por cualquier otra
y mostrar la suma de los productos. El programa debe descomponerse en subproblemas y utilizar punteros para acceder a
los elementos de la matriz.

main()
{

float **mat, *productos;
randomize();

CAPÍTULO 12 Punteros (apuntadores)206

ap.12 11/6/05 21:43 Página 206

generarmatriz (mat);
multiplicacolumnas (mat, rand() % n, productos);
mostrarsumaproductos (productos);

}
generarmatriz (float **m)
{

m = (float **) malloc (4*5 * sizeof (float));
randomize();
for (i = 0; i <4; i++)

for (j = 0; j <5; j++)
*(m + i*5 + j) = rand () + rand()/ 1000 ;

}
multiplicacolumnas (float **m, int ncol, float *vp)
{

vp = (float *) malloc(5 * sizeof (float));
for (i = 0; i <4; i++)

*vp++ = *(m + i*5) * *(m + i*5 + ncol);
/* vp[i] = m[i][0] * m[i][ncol]; */

}
mostrarsumaproductos (float *v)
{

int suma = 0;
for (i = 0; i < 4; i++) suma += *v++;

printf ("%f \n", suma);
}

12.17. Desarrolle un programa en C que use una estructura para la siguiente información sobre un paciente de un hospital: nombre,
dirección, fecha de nacimiento, sexo, día de visita y problema médico. El programa debe tener una función para entrada de
los datos de un paciente, guardar los diversos pacientes en un array y mostrar los pacientes cuyo día de visita sea uno
determinado.

#define TAM 200
struct paciente
{

char *nombre;
char *direccion;
char fecha [10];
char sexo; /* V o H */
char diavisita [10];
char *problema;

};
main ()
{

char dia [10];
struct paciente *lista;
tomadatos(lista);
printf ("Introduzca la fecha de la consulta: (dd/mm/aaaa) ");
gets(dia);
mostrarconsulta (dia, lista);

}
tomadatos(struct paciente *lista)
{

int i;

CAPÍTULO 12 Punteros (apuntadores) 207

ap.12 11/6/05 21:43 Página 207

char buffer [80];
lista = (struct paciente*) malloc(TAM*sizeof(struct paciente));
printf (" Entrada de datos de los pacientes\n");
printf("====================== ========\n");
for (i = 0; i < TAM; i++)
{

printf ("Nombre del paciente :\n");
gets (buffer);
lista[i]->nombre = malloc (strlen (buffer) +1);
strcpy (lista[i]->nombre, buffer);
printf ("Direccion del paciente :\n");
gets (buffer);
lista[i]->direccion = malloc (strlen (buffer) +1);
strcpy (lista[i]->direccion, buffer);
printf ("Fecha de nacimiento (dd/mm/aaaa) \n");
gets(lista[i]->fecha);
printf ("Sexo del paciente\n");
lista[i]->sexo = getche();
printf ("Dia de visita (dd/mm/aaaa) \n");
gets(lista[i]->diavisita);
printf ("Problema médico del paciente :n");
gets (buffer);
lista[i]->problema = malloc (strlen (buffer) +1);
strcpy (lista[i]->problema, buffer);
printf ("¿Desea continuar? (S/N) \n");
if (getchar() == 'N') return;

}
}
mostrarconsulta (char * dia, struct paciente *lista)
{

int i;
printf (" Pacientes con visita el dia %s\n\n", dia);
printf (" ===================== ===================\n");
for (i = 0; i < TAM; i++)

if (!strcmp (dia, lista->diavisita))
printf ("\t%s\n", lista ->nombre);

}

12.18. Escribir un programa que permita calcular el área de diversas figuras: un triángulo rectángulo, un triángulo isósceles, un
cuadrado, un trapecio y un círculo. Utilizar un array de punteros de funciones, siendo las funciones las que permiten calcular
el área.

main()
{

int i;
float (*area[])() = {areaTriRect, areaTriIsoc, areaCuad, areaCirc };
printf ("Elija el tipo de figura : \n");
printf (" 1. Triángulo Rectángulo.\n");
printf (" 2. Triángulo Isósceles. \n");
printf (" 3. Cuadrado. \n");
printf (" 4. Círculo. \n");
scanf ("%d", &i);
printf ("El área de la figura es %f\n ", (*area[i])());

CAPÍTULO 12 Punteros (apuntadores)208

ap.12 11/6/05 21:43 Página 208

}
float areaTriRect()
{

float c1, c2;
printf ("Introduzca longitudes de catetos del triángulo: ");
scanf ("%f %f" &c1, &c2);
return (c1 * c2 / 2);

}
float areaTriIsoc()
{

float l1,l2;
printf ("Introduzca las longitudes de dos lados desiguales del triángulo: ");
scanf ("%f %f" &11, &12);
return (l1 * l2 / 2);

}
float areaCuad()
{

float l;
printf ("Introduzca la longitud de lado del cuadrado: ");
scanf ("%f" &1);
return (l * l);

}
float areaCirc
{

float r;
printf ("Introduzca el radio del círculo: ");
scanf ("%f" &r);
return (r * r * 3.1415);

}

CAPÍTULO 12 Punteros (apuntadores) 209

PROBLEMAS PROPUESTOS
12.1. Se tiene la ecuación 3*ex–7x = 0; para encontrar una raíz

(una solución) escribir tres funciones que implementen
respectivamente el método de Newton, Regula-Falsi y
Bisección. Mediante un puntero de función aplicar uno de
estos métodos para encontrar una raíz de dicha ecuación.

12.2. Se parte de una tabla de claves enteras desordenadas. Se
trata de mostrar las claves ordenadas sin modificar la
tabla, utilizando para ello un array paralelo de punteros
que apunten a cada una de las claves.

12.3. Escribir un programa que calcule el determinante de una
matriz cuadrada utilizando la expresión recursiva que lo
obtiene sumando los determinantes de las submatrices

que resultan de ir suprimiendo la primera fila de la
matriz original y una de las columnas. La fórmula suma
y resta alternativamente estos determinantes parciales
multiplicándolos previamente por el elemento de la pri-
mera fila de la matriz original cuya columna se ha
suprimido en la submatriz. Cada uno de los determi-
nantes de las submatrices ha de calcularse reservando
dinámicamente memoria para las submatrices corres-
pondientes.

12.4. Escribir una función que tome como entrada una cadena
de caracteres y devuelva un puntero a la misma cadena,
pero con los caracteres al revés, poniendo en primer
lugar el último de ellos.

ap.12 11/6/05 21:43 Página 209

CAPÍTULO 12 Punteros (apuntadores)210

PROBLEMAS DE PROGRAMACIÓN
DE GESTIÓN
12.1. Dado un array que contiene una serie de registros con los

datos de clientes de un establecimiento, realizar una fun-
ción en la que se dé como entrada un puntero al inicio
del array y el apellido de un cliente. La función debe
devolver la dirección del registro que contiene los datos
del cliente buscado o NULL si no lo encuentra. Incluir la
función en un programa que utilice el puntero resultado
para imprimir los datos del cliente.

12.2. La manera más usual para representar con el lenguaje C
una tabla de una base de datos es por medio de un array
de estructuras, correspondiendo un campo de la estruc-
tura a cada columna de la tabla. Suponer que se tiene un
catálogo de un almacén con los datos de cada uno de los
artículos en stock y que se desea cambiar el orden en que
aparecen en la tabla pero sin modificar en realidad el
orden en que fueron almacenados los registros en el
array. Escribir un programa que añada un campo de tipo
puntero al mismo tipo de estructura a cada registro. Una
vez transformado el array el programa ha de hacer que el
puntero de cada estructura apunte a la estructura que
estaría a continuación según un nuevo orden, por ejem-
plo, en orden creciente de número del artículo.

12.3. Utilizando el array de estructuras del ejercicio anterior
escribir una función que busque un artículo por su códi-
go utilizando el método de búsqueda binaria que apro-
vecha la ordenación de los registros por medio de los
punteros.

12.4. Para la gestión de un vídeo club se tienen los datos de todas
las películas que se pueden alquilar y de los clientes abo-
nados. Escribir un programa que cree dos arrays de estruc-
turas, uno para las películas de vídeo y otro para los
clientes con todos sus datos. La estructura de cada pelícu-
la tendrá un puntero a la estructura de la tabla de clientes
al registro del cliente que la ha alquilado. También al revés,
el registro de cada cliente tendrá un puntero al registro de
la película que tiene alquilada. El programa pedirá conti-
nuamente el nombre de cada cinta y a quién se presta o
quién la devuelve, colocando a continuación los punteros
de forma que apunten a los registros que correspondan.

12.5. Modificar el programa anterior para sacar por pantalla
un informe que indique las películas alquiladas y a
quién, los clientes y las películas que tienen y que per-
mita preguntar qué cliente tiene una determinada cinta.

12.6. Añadir a los dos ejercicios anteriores una función que
combine la información de las dos tablas, por ejemplo, cre-
ando una tabla que contenga el título de cada película con
el teléfono y la dirección que quien la tiene alquilada.

12.7. Al crecer el negocio se van a tener varios ejemplares de
la misma película y un mismo cliente va a poder tener a
la vez hasta cuatro cintas alquiladas. Aumentar el núme-
ro de punteros necesarios para manejar dicha situación y
modificar los programas de los ejercicios anteriores de la
manera adecuada.

ap.12 11/6/05 21:43 Página 210

Los programas pueden crear variables globales o locales. Las variables declaradas globales en sus programas se almacenan en
posiciones fijas de memoria, en la zona conocida como segmento de datos del programa, y todas las funciones pueden utilizar
estas variables. Las variables locales se almacenan en la pila (stack) y existen sólo mientras están activas las funciones que
están declaradas. Es posible, también, crear variables static (similares a las globales) que se almacenan en posiciones fijas de
memoria, pero sólo están disponibles en el módulo (es decir, el archivo de texto) o función en que se declaran; su espacio de
almacenamiento es el segmento de datos.

Todas estas clases de variables comparten una característica común: se definen cuando se compila el programa. Esto signi-
fica que el compilador reserva (define) espacio para almacenar valores de los tipos de datos declarados. Es decir, en el caso de
las variables globales y locales se ha de indicar al compilador exactamente cuántas y de qué tipo son las variables a asignar. O
sea, el espacio de almacenamiento se reserva en el momento de la compilación. Sin embargo, no siempre es posible conocer
con antelación a la ejecución cuánta memoria se debe reservar al programa.

En C se asigna memoria en el momento de la ejecución en el montículo o montón (heap), mediante las funciones malloc(),
realloc(), calloc() y free(), que asignan y liberan la memoria de una zona denominada almacén libre.

13.1 Gestión dinámica de la memoria
En numerosas ocasiones no se conoce la memoria necesaria hasta el momento de la ejecución. Por ejemplo, si se desea alma-
cenar una cadena de caracteres tecleada por el usuario, no se puede prever, a priori, el tamaño del array necesario, a menos que
se reserve un array de gran dimensión y se malgaste memoria cuando no se utilice. El método para resolver este inconvenien-
te es recurrir a punteros y a técnicas de asignación dinámica de memoria.

211

CAPÍTULO 13

Asignación dinámica
de memoria

Error típico de programación en C:

En C no se puede determinar el tamaño de un array en tiempo de ejecución.

El espacio de la variable asignada dinámicamente se crea durante la ejecución del programa, al contrario que en el caso de
una variable local cuyo espacio se asigna en tiempo de compilación. El programa puede crear o destruir la asignación dinámi-
ca en cualquier momento durante la ejecución. Se puede determinar la cantidad de memoria necesaria en el momento en que se
haga la asignación.

ap.13 11/6/05 21:43 Página 211

El código del programa compilado se sitúa en segmentos de memoria denominados segmentos de código. Los datos del progra-
ma, tales como variables globales, se sitúan en un área denominada segmento de datos. Las variables locales y la información de con-
trol del programa se sitúan en un área denominada pila. La memoria que queda se denomina memoria del montículo o almacén libre.
Cuando el programa solicita memoria para una variable dinámica, se asigna el espacio de memoria deseado desde el montículo.

El mapa de memoria del modelo de un programa grande es muy similar al mostrado en la Figura 13.1. El diseño exacto
dependerá del modelo de programa que se utilice. Para grandes modelos de datos, el almacén libre (heap) se refiere al área de
memoria que existe dentro de la pila del programa. Y el almacén libre es, esencialmente, toda la memoria que queda libre des-
pués de que se carga el programa.

En C las funciones malloc(), realloc(), calloc() y free() asignan y liberan memoria de un bloque de memo-
ria denominado el montículo del sistema. Las funciones malloc(), calloc() y realloc() asignan memoria utilizando
asignación dinámica debido a que puede gestionar la memoria durante la ejecución de un programa.

13.2 Función malloc()
La forma más habitual en C para obtener bloques de memoria es mediante la llamada a la función malloc(). La función reser-
va un bloque de memoria cuyo tamaño es el número de bytes pasados como argumento. malloc()devuelve un puntero, que
es la dirección del primer byte asignado de memoria. El puntero se utiliza para referenciar el bloque de memoria. El puntero
que devuelve es del tipo void*. La forma de llamar a la función malloc()es:

puntero = malloc(tamaño en bytes);

Generalmente se hará una conversión al tipo del puntero:

tipo *puntero;
puntero =(tipo *)malloc(tamaño en bytes);

CAPÍTULO 13 Asignación dinámica de memoria212

El operador unitario sizeof se utiliza con mucha frecuencia en las funciones de asignación de memoria. El operador se
aplica a un tipo de dato (o una variable), el valor resultante es el número de bytes que ocupa. Al llamar a la función malloc(
) puede ocurrir que no haya memoria disponible, en ese caso malloc()devuelve NULL. Hay que comprobar siempre el pun-
tero para asegurar que es válido, antes de que se asigne un valor al puntero. El prototipo es:

void* malloc(size_t n);

Figura 13.1 Mapa de memoria de un programa.

El montículo (almacén libre)

Toda la memoria que queda disponible
está disponible en asignaciones
dinámicas de memoria

Segmento de pila

La pila crece hacia abajo en memoria

Datos no inicializados

Segmento de código n

.

.

.

Segmento de código 2

Segmento de código 1

Memoria alta

SP

SS

DS

GS

Memoria baja

Cada segmento dato, código o pila de limita a 64 K

ap.13 11/6/05 21:43 Página 212

13.3 Liberación de memoria, función free()
Cuando se ha terminado de utilizar un bloque de memoria previamente asignado por malloc(), u otras funciones de asigna-
ción, se puede liberar el espacio de memoria y dejarlo disponible para otros usos, mediante una llamada a la función free().
El bloque de memoria suprimido se devuelve al espacio de almacenamiento libre, de modo que habrá más memoria disponible
para asignar otros bloques de memoria. El prototipo es:

void free(void *);

13.4 Funciones calloc() y realloc()
En la sintaxis de llamada, puntero es el nombre de la variable puntero al que se asigna la dirección de memoria de un bloque,
o NULL si falla la operación de asignación de memoria. El prototipo de calloc() es:

void* calloc(size_t numelementos, size_t tamaño);

La función realloc()permite ampliar un bloque de memoria reservado anteriormente. El puntero a bloque referencia a un
bloque de memoria reservado previamente con malloc(), calloc()o la propia realloc(). El prototipo de realloc() es:

void* realloc(void* puntero_a_bloque, size_t t);

El segundo argumento de realloc(), es el tamaño total que va a tener el bloque de memoria libre. Si se pasa cero (0) como
tamaño se libera el bloque de memoria al que está apuntando el puntero primer argumento, y la función devuelve NULL. Si el
primer argumento tiene el valor de NULL, la función reserva tanta memoria como la indicada por el segundo argumento, como
malloc().

Hay que tener en cuenta que la expansión de memoria que realiza realloc() puede hacerla en otra dirección de memo-
ria de la que contiene la variable puntero transmitida como primer argumento. En cualquier caso, realloc() copia los datos
referenciados por puntero en la memoria expandida. El prototipo de las funciones está en stdlib.h.

Se pueden crear dinámicamente arrays multidimensionales de objetos con las funciones de asignación de memoria. Para
crear un array bidimensional n x m, en primer lugar, se asigna memoria para un array de punteros(de n elementos), y después
se asigna memoria para cada fila (m elementos).

EJEMPLO 13.1 Definición de arrays dinámicos.

En C no se pueden definir arrays o matrices de tamaño variable. Sin embargo, se puede utilizar la asignación dinámica
de memoria para el mismo propósito.

#define N 200

int a[N];
int *b;
int i, tam;

b= (int*) malloc (N * sizeof (int));

for (i = 0; i < N; i++)
b[i] = a[i];

printf (“Introduzca un nuevo tamaño para el array b: “);
scanf (“%d”, &tam);

realloc (b, tam);

CAPÍTULO 13 Asignación dinámica de memoria 213

ap.13 11/6/05 21:43 Página 213

PROBLEMAS RESUELTOS
13.1. Encuentre los errores en las siguientes declaraciones y sentencias.

int n, *p;
char** dob= "Cadena de dos punteros";
p = n*malloc(sizeof(int));

Análisis del problema

Una cadena de caracteres se almacena en C como un array de caracteres de tipo char, por lo que puede ser accedido por un
puntero a char, pero no como un puntero doble:

char* dob= "Cadena de dos punteros";

La función malloc devuelve un puntero a la zona de memoria reservada en tiempo de ejecución, por lo cual no tiene senti-
do hacer una operación de multiplicación con la dirección que devuelve. El resultado sería válido sintácticamente, pero no
daría como resultado una dirección de memoria que se pudiera utilizar. Produciría un error grave de violación de acceso a
memoria. Habría que hacerlo así:

p = malloc (sizeof (int));

13.2. Dada la siguiente declaración, definir un puntero b a la estructura, reservar memoria dinámicamente para una estructura
asignando su dirección a b.

struct boton
{

char* rotulo;
int codigo;

};

Codificación

struct boton *b;
b = (struct boton *) malloc (sizeof (struct boton));

13.3. Una vez asignada memoria al puntero b del ejercicio 13.2 escribir sentencias para leer los campos rotulo y código.

Análisis del problema

Se trata de utiliza el operador de indirección flecha para acceder desde el puntero b a cada uno de los campos de la estructura:

Codificación

scanf ("%s", b->rotulo);
printf ("El rotulo del botón es: %s\n", b->rotulo);
scanf ("%d", &b->codigo);
printf ("El código del boton es: %d\n", b->codigo);

13.4. Declara una estructura para representar un punto en el espacio tridimensional. Declara un puntero a la estructura para
que tenga la dirección de un array dinámico de n estructuras punto. Utiliza la función calloc() para asignar memoria
al array y comprueba que se ha podido asignar la memoria requerida.

CAPÍTULO 13 Asignación dinámica de memoria214

ap.13 11/6/05 21:43 Página 214

struct punto3D
{

int x;
int y;
int z;

};
struct punto3D *poligono;
int n;
if ((poligono = (struct punto3D*) calloc (n, sizeof (struct punto3D))) == NULL)
{

printf ("Error de asignación de memoria dinámica");
exit(1);

}

13.5. Dada la declaración de la estructura punto del ejercicio anterior escribe una función que devuelva la dirección de un array
dinámico de n puntos en el espacio tridimensional. Los valores de los datos se leen del dispositivo de entrada(teclado).

Análisis del problema

La única forma de definir un array dinámico en C es declarar un puntero al tipo de datos de los elementos del array. Durante
la ejecución del programa se reservará memoria para tantos elementos como se requiera. El lenguaje C no permite declarar
un array sin especificar su tamaño en tiempo de compilación; ello no es problema para utilizar el puntero al array como si
se tratase del nombre de un array declarado como tal, puesto que C trata todos los arrays como punteros a sus elementos y
ve los corchetes como abreviaturas de operaciones con punteros para localizar la dirección de cada uno de sus elementos
según están dispuestos en la memoria.

Codificación

struct punto3D * leerPuntos (int numpuntos)
{

struct punto3D * poligono, *ppol;
int i;
if ((poligono = (struct punto3D*) calloc (numpuntos, sizeof (struct punto3D))) == NULL)
{

printf ("Error de asignación de memoria dinámica");
exit(1);

}
for (i=0, ppol = poligono; i<numpuntos; i++, ppol++)
{

printf ("\n\tIntroduzca coordenadas x,y,z siguiente punto :");
scanf ("%d %d %d", ppol->x, ppol->y, ppol->z);

}
return (poligono);

}

13.6. Dada la declaración del array de punteros:

#define N 4
char *linea[N];

escriba las sentencias del código fuente para leer N líneas de caracteres y asignar cada línea a un elemento del array.

CAPÍTULO 13 Asignación dinámica de memoria 215

ap.13 11/6/05 21:43 Página 215

Análisis del problema

La forma más eficiente de manejar un texto formado por líneas, que son cadenas de texto, es declarar un puntero doble a carác-
ter para que apunte a un array de punteros a carácter, los cuales serán los que contengan la dirección de comienzo de cada línea
del texto. Hay que recordar que se necesita un array que funcione como buffer temporal para leer cada línea y así poder cal-
cular la longitud que tienen, con lo que se sabe cuánta memoria se va a utilizar para cada línea y no reservar más que para los
caracteres de la cadena leída más uno para el carácter fin de cadena: '\0'.

Codificación

int i;
char temp[80];
for (i=0; i<N; i++)
{

printf ("\n Introduzca la siguiente línea: ");
gets (temp);
linea[i] = (char*) malloc (strlen (temp)+1);
strcpy (linea[i], temp);

}

13.7. Escriba una función que reciba el array dinámico creado en el ejercicio 13.4 y amplíe el array en otros m puntos del espacio.

Análisis del problema

Esta operación es muy sencilla ya que el array ha sido manejado en todo momento a partir de un solo puntero que apunta a
la primera posición de los datos. Solamente hay que pasar este puntero a la función realloc() para que busque un espa-
cio de memoria mayor y mueva allí los datos del array para seguir añadiendo más registros.

Codificación

struct punto3D * ampliarpoligono (struct punto3D * poligono, int m)
{

struct punto3D *ppol;
int i;
if ((poligono = (struct punto3D*) realloc (poligono, sizeof (struct punto3D)*m)) == NULL)
{

printf ("Error de reasignación de memoria dinámica");
exit(1);

}
for (i=0, ppol = poligono; i<m; i++, ppol++)
{

printf ("\n\tIntroduzca las coordenadas x, y, z del siguiente punto :");
scanf ("%d %d %d", ppol->x, ppol->y, ppol->z);

}
return (poligono);

}

13.8. Escriba una función que reciba las N líneas leídas en el ejercicio 13.6 y libere las líneas de longitud menor de 20 caracte-
res. Las líneas restantes han de quedar en orden consecutivo, desde la posición cero.

Análisis del problema

La declaración del array de líneas era:

CAPÍTULO 13 Asignación dinámica de memoria216

ap.13 11/6/05 21:43 Página 216

#define N 4
char *linea[N];

Ahora, suponiendo que el array contiene líneas válidas, se va a proceder a la eliminación de aquellas con una longitud menor
a 20 caracteres. Para que el array de líneas quede como se espera, además de eliminar las líneas hay que mover las siguien-
tes a la posición anterior, con el fin de que estén seguidas y sin huecos entre ellas que puedan revelarse a la hora de impri-
mirlas por pantalla.

Codificación

int i,j;
for (i=0; i<N; i++)
{

if (strlen (linea[i]) < 20)
{

free (linea[i]);
/* se libera el espacio ocupado por la línea corta */
for (j=i; j<N, linea[j]; j++)

/* se mueven sólo las líneas con contenido */
linea [j] = linea [j+1];

linea[j+1] = NULL;
}

}

13.9. ¿Qué diferencias existen entre las siguientes declaraciones?:

char *c[15];
char **c;
char c[15][12];

Análisis del problema

char *c[15];

Es un array de 15 punteros a datos de tipo char o cadenas de caracteres, pero estos punteros están sin inicializar: no apun-
tan a ninguna posición de memoria válida.

char **c;

Es una variable que puede contener la dirección de un puntero a datos de tipo char o cadenas de caracteres. Tampoco está
inicializado, por lo cual no apunta a ningún puntero válido a char.

char c[15][12];

Es una matriz de caracteres con 15 filas y 12 columnas. Tiene espacio de memoria ya reservado para 15 * 12 caracteres.

13.10. Escribe un programa para leer n cadenas de caracteres. Cada cadena tiene una longitud variable y está formada por cual-
quier carácter. La memoria que ocupa cada cadena se ha de ajustar al tamaño que tiene. Una vez leídas las cadenas se debe
realizar un proceso que consiste en eliminar todos los blancos, siempre manteniendo el espacio ocupado ajustado al núme-
ro de caracteres. El programa debe mostrar las cadenas leídas y las cadenas transformadas.

CAPÍTULO 13 Asignación dinámica de memoria 217

ap.13 11/6/05 21:43 Página 217

Análisis del problema

En primer lugar, para que cada línea sólo ocupe la memoria necesaria para sus caracteres y el carácter final de cadena, se
realiza el procedimiento de los ejercicios anteriores, esto es, leer la cadena en un buffer y después reservar memoria para la
línea leída nada más. Se dispone de un array de punteros a cadenas que van a ir conteniendo las direcciones de comienzo de
las cadenas según se vayan almacenando en memoria dinámicamente. Por otro lado, como hay que dejar las cadenas origi-
nales tal como están, el programa define otro array de punteros a cadenas para contener las cadenas transformadas.

Para direccionar cada línea en vez de utilizar el operador corchete se usa la operación de suma sobre el puntero de inicio
del array. Como los arrays siempre se comienzan a numerar desde la posición cero, la i-ésima línea está a una distancia i del
origen del array, posición a la que está apuntando el puntero declarado.

Codificación

main (int argc, char *argv[])
{

char **linea, **lineaT;
int n = atoi(argv[1]);
linea = (char **)malloc (n * sizeof char *);
lineaT = (char **)malloc (n * sizeof char *);
leerCadenas (linea, n);
transformarCadenas (linea, lineaT, n);
mostrarCadenas (linea, n);
mostrarCadenas (lineaT, n);

}
leerCadenas (char **linea, int n)
{

int i;
char temp[80];
for (i=0; i<n; i++)
{

printf ("\nIntroduzca la siguiente línea:");
gets (temp);
linea[i] = (char*) malloc (strlen (temp)+1);
strcpy (linea[i], temp);

}
}
transformarCadenas (char **lineas, char **lineasT, int n)
{

int i, j, k;
char cad [80];
for (i=0; i<n; i++)
{

lon = strlen (*(lineas+i));
strcpy (cad, *(lineas+i));
for (j=0; j <lon; j++)
{

if (cad[j] == ' ')
for (k = j; k<lon; k++)

cad [k] = cad [k+1];
cad[k]='\0';

}
strcpy (*(lineasT + i), cad);

}

CAPÍTULO 13 Asignación dinámica de memoria218

ap.13 11/6/05 21:43 Página 218

}
mostrarCadenas (char **lineas, int n)
{

int i, j;
for (i=0; i<n; i++)
{

lon = strlen (*(lineas+i));
for (j=0; j <lon; j++)

printf ("%c", *(*(lineas +i) + j));
printf ("\n");

}
}

13.11. Se quiere escribir un programa para leer números grandes (de tantos dígitos que no entran en variables long) y obtener la
suma de ellos. El almacenamiento de un número grande se ha de hacer en una estructura que tenga un array dinámico y
otro campo con el número de dígitos. La suma de dos números grandes dará como resultado otro número grande represen-
tado en su correspondiente estructura.

Análisis del problema

El número se leerá como cadena y se guardará como un array de enteros.

Codificación

struct grande
{

int *digitos;
int numdigitos;

};
main ()
{

struct grande sum1, sum2, res;
leerNumeroGrande (&sum1);
leerNumeroGrande (&sum2);
res = *sumarNumerosGrandes (&sum1, &sum2);
mostrarNumeroGrande (&res);

}
leerNumeroGrande (struct grande *numgr)
{

char buffer [100], *pbuf;
int i;
printf ("\n\tIntroduzca el número : ");
gets (buffer);
numgr->digitos = (int*) malloc ((strlen (buffer)+1) * sizeof (int));
numgr->numdigitos = strlen (buffer);
/* recorrer la cadena con el número y cada dígito
convertirlo a entero para guardarlo en el array de dígitos */
for (pbuf = buffer, i=0; pbuf – buffer < strlen (buffer); pbuf++, i++)

/* almacenar primero los dígitos menos significativos */
*(numgr->digitos + numgr->numdigitos-i) = *prbuf – '0';

}
struct grande *sumarNumerosGrandes (struct grande *ngr1, struct grande *ngr2)
{

CAPÍTULO 13 Asignación dinámica de memoria 219

ap.13 11/6/05 21:43 Página 219

int i, maxLong;
struct grande *result;
int *pgr1, *pgr2, *pres;
result = (struct grande *) malloc (sizeof (struct grande));
maxLong = ngr1->numdigitos > ngr2->numdigitos ngr1->numdigitos : ngr2->numdigitos;
result ->digitos = (int*) ma-lloc (maxLong * sizeof (int));
result->numdigitos = maxLong;
i=0;
pgr1 = ngr1->digitos;
pgr2 = ngr2->digitos;
pres = result->digitos;
while (i < ngr1->numdigitos && i++ < ngr2->numdigitos)

*pres++ = *pgr1++ + pgr2++;
if (i >= ngr1->numdigitos)

for (i = ngr1->numdigitos +1; i < ngr2->numdigitos; i++)
*pres++ = *pgr2++;

if (i >= ngr2->numdigitos)
for (i = ngr2->numdigitos +1; i < ngr1->numdigitos; i++)

*pres++ = *pgr1++;
/* calcular arrastre */
pres = result->digitos;
for (i=0; i< result->numdigitos; i++, pres++)

if (pres - '0' > 10)
{

*pres = (*pres) % 10);
*(pres+1) += 1;

}
return (result);

}
mostrarNumeroGrande (struct grande *ngr)
{

int i;
for (i=0; i< ngr->numdigitos; i++)

printf ("%c", *ngr->digitos++ + '0');
}

13.12. Se tiene una matriz de 20x20 elementos enteros. En la matriz hay un elemento repetido muchas veces. Se quiere generar otra
matriz de 20 filas y que en cada fila estén sólo los elementos no repetidos. Escribir un programa que tenga como entrada
la matriz de 20x20, genere la matriz dinámica solicitada y se muestre en pantalla.

Análisis del problema

Suponiendo que el elemento repetido es mayoritario, es decir, aparece en más de la mitad de posiciones de cada fila, lo pri-
mero es averiguar cuál es y después dejar en las filas de la nueva matriz sólo los otros elementos.

Codificación (Consultar la página web del libro)

13.13. Escribir un programa para generar una matriz simétrica con números aleatorios de 1 a 9. El usuario introduce el tamaño
de cada dimensión de la matriz y el programa reserva memoria libre para el tamaño requerido.

Análisis del problema

Una matriz simétrica es una matriz en la cual los elementos que son simétricos respecto al eje son los mismos. Por tanto,
solamente hay que generar la mitad de la matriz y asignar lo mismo a los dos elementos simétricos que intercambian sus

CAPÍTULO 13 Asignación dinámica de memoria220

ap.13 11/6/05 21:43 Página 220

posiciones de fila por columna y al revés. Como se está haciendo en todos los ejercicios, en vez de utilizar los operadores
corchetes para acceder a los elementos de la matriz bidimensional, se realiza la misma operación que hace el compilador, es
decir, calcular dónde comienza cada fila a partir del puntero al comienzo del array y el tamaño de cada columna y después
situar la dirección del elemento en la fila usando su número de columna.

Codificación

main()
{

int **simetrica, n, i, j;
randomize();
printf ("Introduzca la dimensión de la matriz simétrica: ");
scanf ("%d", &n);
simetrica = (int **) malloc (n*sizeof (int*));
for (i=0; i<n; i++)

simetrica[i] = (int *)malloc (n*sizeof (int));
for (i=0; i<n; i++)

for (j=0; j<n; j++)
*(simetrica[i] + j) =

*(simetrica[j] + i) = rand ()%10;
for (i=0; i<n; i++)

*(simetrica[i] + i) = 0;
}

13.14. Escribir un programa para manejar enteros no negativos como cadenas de caracteres. Teniendo como entrada un entero n
mayor que cero, transformar n en una cadena de dígitos, cad; mediante una función que tenga como entrada cad, trans-
formar el valor entero n en 2*n que será devuelto como otra cadena. La salida mostrará ambas cadenas.

Análisis del problema

Esta operación ha sido realizada ya en otros ejercicios. Solamente observe que después de hacer la operación dígito a dígi-
to, hay que tener en cuenta el arrastre, para que en cada carácter haya sólo una cifra y así corresponda su valor numérico con
el carácter (su código ASCII) correspondiente.

Codificación

main ()
{

int n;
char *cad, *cad2;
printf ("Escriba un número entero positivo: ");
scanf ("%d", &n);
ntoa (n, cad);
cad2 = doble (cad);

}
ntoa (int n, char *cad)
{

char aux[40];
char paux = aux;
while (n>0)
{

*paux++ = n % 10 + '0';
n = n / 10;

CAPÍTULO 13 Asignación dinámica de memoria 221

ap.13 11/6/05 21:43 Página 221

}
*paux = '0';
cad = (char *) malloc (sizeof (char) * (paux – aux));
strcpy(cad,aux);

}
char* doble (char *cad)
{

int i, longitud = strlen (cad);
char * aux, *cadDoble = (char *) malloc (longitud * sizeof(char)+2);
aux = cadDoble;
for (i=0; i<longitud; i++)

*aux++ = (*cad++ -'0') * 2 + '0';
return (normaliz (cadDoble));

}
char * normaliz (char * cad)
{

int i, longitud = strlen (cad);
char * aux = cad;
for (i=0; i<longitud; i++, aux++)

if (*aux - '0' > 10)
{/ * calcula el arrastre */

*aux = ((*aux – '0') % 10) + '0';
*(aux+1) += 1;

}
return cad;

}

13.15. Una malla de números enteros representa imágenes, cada entero expresa la intensidad luminosa de un punto. Un punto es
un elemento «ruido» cuando su valor se diferencia en dos o más unidades del valor medio de los ocho puntos que le rodean.
Escribir un programa que tenga como entrada las dimensiones de la malla, reserve memoria dinámicamente para una
matriz en la que se lean los valores de la malla. En una función que reciba una malla, devuelva otra malla de las mismas
dimensiones donde los elementos «ruido» tengan el valor 1 y los que no lo son valor 0. Todos los puntos que se encuentran
en el contorno de la malla no tienen «ruido».

Análisis del problema

En este caso la malla se diseña como un arreglo (array) bidimensional de filas y columnas, en vez de, como en otros casos,
definir primero un array de punteros que contendrán la dirección de las filas.

En la entrada de datos desde la línea de órdenes hacia el argumento argv de la función main, hay que recordar siempre
que los argumentos se almacenan como cadenas de caracteres a las que apuntan los punteros del array direccionado por
argv; por tanto, si un argumento es numérico, ha de ser convertido a entero antes de ser asignado a una variable entera o
real.

Codificación (Consultar la página web del libro)

CAPÍTULO 13 Asignación dinámica de memoria222

ap.13 11/6/05 21:43 Página 222

CAPÍTULO 13 Asignación dinámica de memoria 223

PROBLEMAS PROPUESTOS
13.1. En una competición de ciclismo se presentan n ciclis-

tas. Cada participante se representa por nombre, club,
puntos obtenidos y prueba en que participará en la
competición. La competición es por eliminación. Hay
pruebas de dos tipos: persecución y velocidad. En per-
secución participan tres ciclistas, el primero recibe 3
puntos y el tercero se elimina. En velocidad participan
4 ciclistas, el más rápido obtiene 4 puntos el segundo 1
y el cuarto se elimina. Las pruebas se van alternando,
empezando por velocidad. Los ciclistas participantes
en una prueba se eligen al azar entre los que en menos
pruebas han participado. El juego termina cuando no
quedan ciclistas para alguna de las dos pruebas. Se ha
de mantener arrays dinámicos con los ciclistas partici-
pantes y los eliminados. El ciclista ganador será el que
más puntos tenga.

13.2. Un polinomio, P(x), puede representarse con un array de
tantos elementos como el grado del polinomio más uno.
Escribir un programa que tenga como entrada el grado n
del polinomio, reserve memoria dinámicamente para un
array de n+1 elementos. En una función se introducirán

por teclado los coeficientes del polinomio, en orden
decreciente. El programa tiene que permitir evaluar el
polinomio para un valor dado de x.

13.3. Una operación común en el tratamiento digital de imáge-
nes consiste en aplicar un filtro para suavizar los bordes
entre las figuras dibujadas. Uno de estos filtros consiste en
modificar el valor de la imagen en cada punto por la
media de los valores de los ocho puntos que tiene a su
alrededor. Escribir un programa que parta de la imagen
como una matriz de elementos enteros que representan
cada uno de ellos la intensidad de cada píxel en la imagen
y que aplique la operación de filtrado descrita.

13.4. Escribir un programa que permita sumar, restar, multi-
plicar y dividir números reales con signo representados
con cadenas de caracteres con un solo dígito por carác-
ter.

13.5. Escribir una función que tome como entrada un número
entero y produzca una cadena con los dígitos de su
expresión en base binaria.

ap.13 11/6/05 21:43 Página 223

ap.13 11/6/05 21:43 Página 224

El lenguaje C no tiene datos predefinidos tipo cadena (string). En su lugar C, manipula cadenas mediante arrays de caracteres
que terminan con el carácter nulo ASCII ('\0'). Una cadena se considera como un array unidimensional de tipo char o
unsigned char. En este capítulo se estudiarán temas tales como:

• Cadenas en C.
• Lectura y salida de cadenas.
• Uso de funciones de cadena de la biblioteca estándar.
• Asignación de cadenas.
• Operaciones diversas de cadena (longitud, concatenación, comparación y conversión).
• Localización de caracteres y subcadenas; inversión de los caracteres de una cadena.

14.1 Concepto de cadena
Una cadena es un tipo de dato compuesto, un array de caracteres (char), terminado por un carácter nulo ('\0'), NULL (Fig. 14.1).

Una cadena (también llamada constante de cadena o literal de cadena) es "ABC". En memoria esta cadena consta de cua-
tro elementos: 'A', 'B', 'C' y '\0', o de otra manera, se considera que la cadena "ABC" es un array de cuatro elementos
de tipo char. El valor real de una cadena es la dirección de su primer carácter y su tipo es un puntero a char.

225

CAPÍTULO 14

Cadenas

L a(a) c a d e n a d e t e s t

L a(b) c a d e n a d e t e s t \0

Figura 14.1 (a) array de caracteres; (b) cadena de caracteres.

El número total de caracteres de una cadena en C es siempre igual a la longitud de la cadena más 1.

ap.14 11/6/05 21:44 Página 225

14.2 Inicialización de variables de cadena
Todos los tipos de arrays requieren una inicialización que consiste en una lista de valores separados por comas y encerrados
entre llaves.

char texto[81] = "Esto es una cadena";
char cadenatest[] = "¿Cuál es la longitud de esta cadena?";

La cadena texto puede contener 80 caracteres más el carácter nulo. La tercera cadena, cadenatest, se declara con una
especificación de tipo incompleta y se completa sólo con el inicializador. Dado que en el literal hay 36 caracteres y el compi-
lador añade el carácter '\0', un total de 37 caracteres se asignarán a cadenatest.

Ahora bien, una cadena no se puede inicializar fuera de la declaración. La razón es que un identificador de cadena, como
cualquier identificador de array, se trata como un valor de dirección, como un puntero constante.

Para asignar una cadena a otra hay que utilizar la función strcpy(). La función strcpy() copia los caracteres de la
cadena fuente a la cadena destino. La función supone que la cadena destino tiene espacio suficiente para contener toda la cade-
na fuente.

EJEMPLO 14.1 Inicialización de variables de tipo cadena

Es aconsejable declarar las cadenas que se inicializan de tipo estático.

static char cadena [] = “Cadena estática”;
char *cadena2;

/* No olvidar reservar espacio para cadenas gestionadas por medio de punteros */
cadena2 = (char*) malloc (strlen(cadena) + 1);
strcpy (cadena2, cadena);

14.3 Lectura de cadenas
La lectura usual de datos se realiza con la función scanf(); cuando se aplica a datos cadena el código de formato es %s. La fun-
ción da por terminada la cadena cuando encuentra un espacio en blanco o el fin de línea. Se puede utilizar la función gets(), la
cual permite leer la cadena completa, incluyendo cualquier espacio en blanco, hasta el carácter de fin de línea.

La función asigna la cadena al argumento transmitido a la función, que será un array de caracteres o un puntero (char*) a
memoria libre, con un número de elementos suficiente para guardar la cadena leída. Si ha habido un error en la lectura de la
cadena, devuelve NULL.

La función getchar() se utiliza para leer carácter a carácter. La llamada a getchar() devuelve el carácter siguiente del
flujo de entrada stdin. En caso de error, o de encontrar el fin de archivo, devuelve EOF (macro definida en stdio.h).

La función putchar() se utiliza para escribir en la salida (stdout) carácter a carácter. El carácter que se escribe es el trans-
mitido como argumento. Esta función (realmente es una macro definida en stdio.h) tiene como prototipo:

int putchar(int ch);

La función puts() escribe en la salida una cadena de caracteres, incluyendo el carácter fin de línea por lo que sitúa el pun-
tero de salida en la siguiente línea. El prototipo es:

int puts(const char*s);

Las funciones getch() y getche() leen un carácter tecleado sin esperar el retorno de carro. La diferencia entre ellas está
en que con getch() el carácter tecleado no se visualiza en pantalla (no hace eco en la pantalla), y con getche() sí hay eco
en la pantalla. El prototipo de ambas funciones se encuentra en al archivo conio.h

int getch(void);
int getche(void);

CAPÍTULO 14 Cadenas226

ap.14 11/6/05 21:44 Página 226

EJEMPLO 14.2 Lectura y escritura de cadenas

char entrada[40];
char *ptrchar;

printf (“Introduzca una cadena de caracteres: “);
ptrchar = gets (entrada);

printf (“\n Esta es la cadena introducida: “);
for (; *ptrchar != ‘\0’; ptrchar++)

putchar (*ptrchar);

puts (“\n Presione una tecla para terminar”);
getch ();

EJEMPLO 14.3 Manipulación de cadenas

Se desea leer líneas de texto, máximo de 80 caracteres, y contar el número de palabras que tiene cada línea.

Cada línea se lee llamando a la función gets(), con un argumento que pueda almacenar el máximo de caracteres de
una línea. Por consiguiente se declara la variable: char cad[81], que será el argumento de gets(). Con el fin de sim-
plificar, se supone que las palabras se separan con un espacio; entonces para contar las palabras se recorre el array cad
contando el número de espacios, la longitud de la cadena se determina con una llamada a strlen(). El número de pala-
bras será el número de espacios (blancos) contados, mas uno ya que la última palabra no termina con un espacio sino
con el retorno de carro. La ejecución termina tecleando al inicio de una línea ^Z (tecla “control” y Z); entonces la fun-
ción gets() devuelve NULL y termina el bucle.

#include <stdio.h>
#include <string.h>
void main()
{
char cad[81], *a;
int i, n;

puts (“Introduce líneas, separando las palabras con blancos.\n “);
a = gets (cad);
while (a != NULL)

{
n = 0;
for (i = 0; i < strlen(cad); i++)
if (cad[i] == ‘ ‘) n++; /* también se accede a los char con *(cad+i) */
if (i > 0) ++n;
printf (“Número de palabras: %d \n”, n);
a = gets (cad);
}

}

14.4 Las funciones de STRING.H
La biblioteca estándar de C contiene las funciones de manipulación de cadenas utilizadas más frecuentemente. Cuando se uti-
liza la función, se puede usar un puntero a una cadena o se puede especificar el nombre de una variable array de char. La Tabla
14.1 resume algunas funciones de cadena más usuales.

CAPÍTULO 14 Cadenas 227

ap.14 11/6/05 21:44 Página 227

CAPÍTULO 14 Cadenas228

Tabla 11.1. Funciones de <string.h>

Función Cabecera de la función y prototipo

memcpy() void* memcpy(void* s1, const void* s2, size_t n);
Reemplaza los primeros n bytes de *s1 con los primeros n bytes de *s2. Devuelve s1.

strcat() char* strcat(char*destino, const char*fuente);
Añade la cadena fuente al final de destino, concatena.

strchr() char* strchr(char* s1, int ch);
Devuelve un puntero a la primera ocurrencia de ch en s1. Devuelve NULL si ch no está en s1.

strcmp() int strcmp(const char*s1, const char*s2);
Compara alfabéticamente la cadena s1 a s2 y devuelve:
0 si s1 = s2
<0 si s1 < s2
>0 si s1 > s2

stricmp() int stricmp(const char*s1, const char*s2);
Igual que strcmp(), pero sin distinguir entre mayúsculas y minúsculas.

strcpy() char*strcpy(char*dest, const char*fuente);
Copia la cadena fuente a la cadena destino.

strncpy() char*strcpy(char*dest, const char*fuente, size_t num);
Copia la cadena fuente a la cadena destino.

strcspn() size_t strcspn(const char* s1, const char* s2);
Devuelve la longitud de la subcadena más larga de s1 que comienza con el carácter s1[0] y no contiene
ninguno de los caracteres de la cadena s2.

strlen() size_t strlen (const char*s)
Devuelve la longitud de la cadena s excluyendo el carácter nulo de terminación de la cadena.

strncat() char* strncat(char* s1, const char*s2, size_t n);
Añade los primeros n caracteres de s2 a s1. Devuelve s1. Si n >= strlen(s2), entonces strncat(s1,
s2, n) tiene el mismo efecto que strcat(s1, s2).

strncmp() int strncmp(const char* s1, const char* s2, size_t n);
Compara s1 con la subcadena formada por los primeros n caracteres de s2. Devuelve un entero negativo,
cero o un entero positivo, según que s1 lexicográficamente sea menor, igual o mayor que la subcadena
s2. Si n ≥ strlen(s2), entonces strncmp(s1, s2, n) y strcmp(s1, s2) tienen el mismo efecto.

strnset() char*strnset(char*s, int ch, size_t n);
Copia n veces el carácter ch en la cadena s a partir de la posición inicial de s (s[0]). El máximo de
caracteres que copia es la longitud de s .

strpbrk() char* strpbrk(const char* s1, const char* s2);
Devuelve la dirección de la primera ocurrencia en s1 de cualquiera de los caracteres de s2. Devuelve
NULL si ninguno de los caracteres de s2 aparece en s1.

strrchr() char* strrchr(const char* s, int c);
Devuelve un puntero a la última ocurrencia de c en s. Devuelve NULL si c no está en s. La búsqueda la
hace en sentido inverso, desde el final de la cadena al primer carácter, hasta que encuentra el carácter c.

strspn() size_t strspn(const char* s1, const char* s2);
Devuelve la longitud de la subcadena izquierda(s1[0])...) más larga de s1 que contiene únicamente
caracteres de la cadena s2.

Continúa

ap.14 11/6/05 21:44 Página 228

CAPÍTULO 14 Cadenas 229

strrev() char*strrev(char*s);
Invierte el orden de los caracteres de la cadena especificada en el argumento s; devuelve un puntero a
la cadena resultante.

strstr() char*strstr(const char*s1, const char*s2);
Busca la cadena s2 en s1 y devuelve un puntero a los caracteres donde se encuentra s2.

strtok() char* strtok(char* s1, const char* s2);
Analiza la cadena s1 en tokens (componentes léxicos), éstos delimitados por caracteres de la cadena
s2. La llamada inicial a strtok(s1, s2)devuelve la dirección del primer token y sitúa NULL al final
del token. Después de la llamada inicial, cada llamada sucesiva a strtok(NULL, s2) devuelve un
puntero al siguiente token encontrado en s1. Estas llamadas cambian la cadena s1, reemplazando cada
separador con el carácter NULL.

14.5 Conversión de cadenas a números
La función atoi() convierte una cadena a un valor entero. Su prototipo es:

int atoi(const char*cad);

La cadena debe tener la representación de un valor entero y el formato siguiente:

[espacio en blanco] [signo] [dígitos]

Si la cadena no se puede convertir, atoi() devuelve cero.
La función atof() convierte una cadena a un valor de coma flotante. Su prototipo es:

double atof(const char*cad);

La conversión termina cuando se encuentre un carácter no reconocido. La cadena de caracteres debe tener una
representación de caracteres de un número de coma flotante. Su formato es:

[espacio en blanco][signo][ddd][.][ddd][e/E][signo][ddd]

La función atol() convierte una cadena a un valor largo (long). Su prototipo es

long atol(const char*cad);

La utilidad las funciones strtol() y strtoul() radica en que convierten los dígitos de una cadena, en cual-
quier sistema de numeración (base), a entero (long) o a entero sin signo (unsigned long). El prototipo de las fun-
ciones se encuentra en stdio.h, es el siguiente:

long strtol (const char* c, char** pc, int base);
unsigned long strtoul (const char* c, char** pc, int base);

EJEMPLO 14.4 Conversión de cadenas a tipos numéricos

char *c = “ -49 2332”;
char **pc = (char**) malloc(1);
long n1;
unsigned long n2;
n1 = strtol (c,pc,0);
printf (“ n1 = %ld\n”, n1);
printf (“ cadena actual %s\n”, *pc);
c = *pc;

ap.14 11/6/05 21:44 Página 229

n2 = strtoul (c, pc, 10);
printf (“ n2 = %lu”, n2) ;

Ejecutando el fragmento de código se obtienen estos resultados:

n1 = -49
cadena actual 2332
n2 = 2332

La función strtod() convierte los dígitos de una cadena en un número real de tipo double. El primer argumento,
en la llamada, es la cadena; el segundo argumento es de salida, al cual la función asigna un puntero al carácter de la
cadena con el que terminó de formarse el número real. El prototipo de la función se encuentra en stdio.h, y es el
siguiente:

double strtod (const char* c, char** pc);

EJEMPLO 14.5 Conversión de cadenas a números reales

El siguiente programa muestra cómo obtener todos los números reales (tipo double) de una cadena. Se puede observar
el uso de la variable errno (archivo errno.h); la función asigna a errno la constante ERANGE si se produce un error
por overflow (desbordamiento) al convertir la cadena, y entonces devuelve la constante HUGE_VAL.

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>

void main (void)
{
char*c = “333.55553 444444.2 3e+1221”;
char **a;
double v=0 ;

a = (char**) malloc(1);
v = strtod (c, a);
if (errno != 0)

{
printf (“Error \”%d\” al convertir la cadena.”, errno);
exit (-1);
}

printf (“c = [%s], v = %lf\n”, c, v);
while ((**a) != ‘\0’)

{
c = *a;
v = strtod (c, a);
if (errno != 0)

{
printf (“Error \”%d\” al convertir la cadena.”, errno);
exit(-1);
}

printf(“c = [%s], v = %lf\n”, c, v);
}

}

CAPÍTULO 14 Cadenas230

ap.14 11/6/05 21:44 Página 230

PROBLEMAS PROPUESTOS
14.1. Se quiere leer del dispositivo estándar de entrada los n códigos de asignaturas de la carrera de Sociología. Escribe un seg-

mento de código para realizar este proceso.

Análisis del problema

Suponer que el número N de asignaturas está definido en una macro de la siguiente manera:

#define N 10

Cada asignatura tiene un código de cinco caracteres alfanuméricos, por lo cual se guardan en una cadena de caracteres.

Codificación

int i;
char asignatura [N][20], codigo [N][6];
for (i = 0; i<= N; i++)
{

printf ("\n\tEscriba el nombre de la asignatura: ");
gets (asignatura [i]);
printf ("\n\tEscriba el código de la asignatura: ");
gets (codigo [i]);

}

14.2. Para entrada de cadenas de caracteres, qué diferencia existe entre scanf("%s",cadena) y gets(cadena). ¿En qué casos
será mejor utilizar una u otra?

Análisis del problema

scanf() limita las variables que reconoce en la entrada por medio de los espacios en blanco que las separan; por tanto, no
es capaz de reconocer una línea que contenga espacios en blanco, porque para esta función cada palabra es una cadena dife-
rente. Por tanto, si se va a leer una cadena de caracteres que contenga espacios en blanco ha de hacerse con gets(). Por
otro lado gets() tiene el peligro de que aparentemente tiene un uso más sencillo que scanf() pero si no se le propor-
ciona una cadena de caracteres como argumento puede que no almacene correctamente la entrada.

14.3. Define un array de cadenas de caracteres para poder leer un texto compuesto por un máximo de 80 líneas. Escribe una fun-
ción para leer el texto; la función debe tener dos argumentos, uno el texto y el segundo el número de líneas.

Análisis del problema

Una de las ventajas de trabajar con punteros es poder reservar memoria dinámicamente, es decir, en tiempo de ejecución
para las variables necesarias. En este caso si se reservase un array entero de 80 posiciones por línea, se desperdiciaría todo
el espacio sobrante de las cadenas cuya longitud no llegase a 79 caracteres. Manejando punteros y reserva dinámica de
memoria se puede leer cada línea en un buffer temporal, para averiguar su longitud final; luego reservar tanta memoria como
sea precisa para la nueva línea, hacer que el puntero de la línea apunte a la primera posición de la memoria recién asignada
y por último, copiar la línea de texto desde el buffer a la nueva zona apuntada por el puntero de la línea.

El array necesario para manejar 80 líneas, implicará, por consiguiente, 80 punteros, por lo que su declaración podrá ser la
siguiente:

char *texto[80];

CAPÍTULO 14 Cadenas 231

ap.14 11/6/05 21:44 Página 231

Codificación

leerTexto (char**texto, int nlineas)
{

int i;
char buffer [80];
texto = (char**) malloc (nlineas * sizeof (char*));
for (i=0; i < nlineas ; i++)
{

gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto [i], buffer);

}
}

14.4. Escribir una función que tenga como entrada una cadena y devuelva el número de vocales, de consonantes y de dígitos de
la cadena.

Análisis del problema

Se solicita que la función devuelva tres valores y una función en C sólo puede devolver un valor, se opta por hacer que la
función tenga tres parámetros más de «salida». Con la semántica del paso por referencia, se pasan tres punteros a las varia-
bles que la función puede modificar para dejar los tres resultados que se piden, que no son más que tres contadores.
Para averiguar el tipo del carácter, recorrer la cadena por medio de un puntero auxiliar y comparar su código ASCII con el
de los números y las letras.

Codificación

cuentaLetras (char* cadena, int *vocales, int *consonantes, int
*digitos)

{
char* p = cadena;
while (*p != '\0')
{

if ((*p >= 'a' && *p <= 'Z') || ((*p >= 'a' && *p <= 'z'))
switch (*p)
{

case 'a': case 'A':
case 'e': case 'E':
case 'i': case 'I':
case 'o': case 'O':
case 'u': case 'U': (*vocales) ++;
default : (*consonantes) ++;

}
if (*p >= '0' && *p <= '9') (*digitos)++;

pp++;
}

}

14.5. ¿Qué diferencias y analogías existen entre las variables c1, c2, c3? La declaración es:

char**c1;
char*c2[10];
char*c3[10][21];

CAPÍTULO 14 Cadenas232

ap.14 11/6/05 21:44 Página 232

Análisis del problema

La variable c1 es un puntero que puede apuntar a un puntero a caracteres, pero no está inicializado con una dirección váli-
da. La variable c2 es un array de 10 punteros a caracteres, pero estos 10 punteros no apuntan a ningún dato válido. La varia-
ble c3 es una matriz con espacio para 210 punteros a caracteres no inicializados, accesibles según un arreglo de 10 filas de
21 elementos cada una de ellas.

14.6. Escribe una función que obtenga una cadena del dispositivo de entrada, de igual forma que char* gets(char*). Utilizar
para ello getchar().

Análisis del problema

La función gets() de la biblioteca estándar lee caracteres de la entrada estándar, normalmente el teclado, hasta que se le
introduce un salto de línea. Los caracteres que recibe son colocados en un buffer interno local y en la dirección donde indi-
que el argumento de la función, en caso de que disponga de uno. Esta es la razón por la que es conveniente utilizar gets()
siempre con un argumento que sea un puntero y apunte a una dirección de la memoria correcta, porque gets() no «mira»
donde coloca los caracteres, sino que se fía del puntero que se le pasa. Tampoco se puede contar con la dirección que devuel-
ve, porque al apuntar a un buffer interno, no lleva la cuenta cuando hay llamadas sucesivas, de colocar las cadenas que lee
en lugares diferentes de la memoria y los resultados pueden ser desagradables.

Codificación

char* gets2 (char* cadena)
{

char c, *p = cadena;
while (((c = getchar()) != EOF) || (c != '\n'))

*p++ = c;
*p = '\0';
return cadena;

}

14.7. Escribir una función que obtenga una cadena del dispositivo estándar de entrada. La cadena termina con el carácter de fin
de línea, o bien cuando se han leído n caracteres. La función devuelve un puntero a la cadena leída, o EOF si se alcanzó el
fin de fichero. El prototipo de la función debe de ser:

char* lee_linea(char*c, int n);

Análisis del problema

Como en el ejercicio anterior la función lee carácter a carácter de la entrada estándar y lo va colocando en la posición de
memoria a la que apunta el primer argumento, sin mirar si la dirección que recibe es una dirección verdaderamente libre.

Codificación

char* lee_linea(char*c, int n)
{

char ch, *cc = c;
if ((ch = getchar()) == EOF) return (EOF);
else *cc++ = ch;
while (((ch = getchar()) != '\n') || (cc - c < n))

*cc++ = ch;
*cc = '\0';
return c;

}

CAPÍTULO 14 Cadenas 233

ap.14 11/6/05 21:44 Página 233

14.8. Escribir un programa que lea un texto de cómo máximo 60 líneas, cada línea con un máximo de 80 caracteres. Una vez leído
el texto intercambiar la línea de mayor longitud por la línea de menor longitud.

Análisis del problema

Como el texto se maneja a partir de un array de punteros a caracteres que apuntan a cada una de las líneas, el manejo del
texto se hace verdaderamente sencillo. Solamente hay que tratar cada puntero como la línea a la cual apunta, pues todas las
funciones de gestión de cadenas esperan como argumento precisamente un puntero con la dirección del primer carácter de
la cadena.

Codificación

main()
{

char *texto[60];
int i, lmax, posmax, lmin, posmin;
char buffer [80];
for (i=0; i < 60 ; i++)
{

gets (buffer);
if (strlen (buffer) == 0) break;
if (strlen (buffer) < lmin)
{

posmin = i;
lmin = strlen (buffer);

}
if (strlen (buffer) > lmax)
{

posmax = i;
lmax = strlen (buffer);

}
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto [i], buffer);

}
strcpy (buffer, texto[posmin]);
strcpy (texto[posmin], texto[posmax]);
strcpy (texto[posmax], buffer);

}

14.9. Escribir un programa que lea una línea de texto y escriba en pantalla las palabras de que consta la línea. Utilizar las fun-
ciones de string.h.

Análisis del problema

El trabajo se realiza en realidad por la función strtok(), que utiliza un puntero interno para recorrer la cadena que se le
pasa como argumento la primera vez y se va parando en cada una de las ocurrencias de los separadores proporcionados.

Codificación

main()
{

char cad[80];
char*separador = " ";

CAPÍTULO 14 Cadenas234

ap.14 11/6/05 21:44 Página 234

char*ptr = cad;
gets (cad);
printf("\n%s\n",cad);
ptr = strtok(cad, separador);
printf("\tSe rompe en las palabras");
while (ptr)

{
printf("\n%s",ptr);
ptr = strtok(NULL, separador);

}
}

14.10. Se tiene un texto formado por un máximo de 30 líneas, del cual se quiere saber el número de apariciones de la palabra clave
CLAVE. Escribir un programa que lea el texto y la palabra CLAVE y, determine el número de apariciones de CLAVE en el
texto.

Análisis del problema

Se trata de realizar una búsqueda con strstr() en cada una de las líneas del texto individualmente, accediendo a las mis-
mas por medio de los punteros que apuntan hacia ellas.

Codificación

main()
{

char* texto[30], buffer [80], clave[15];
int i, veces, *ptr;
puts (" Introduzca la palabra clave a buscar: ");
gets (clave);
for (i=0; i < 30 ; i++)
{

gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto [i], buffer);
ptr = texto[i];
while ((ptr = strstr (ptr, clave)) != NULL) veces++;

}
printf ("La palabra clave %s aparece %d veces en el texto.\n", clave, veces);

}

14.11. Se tiene un texto de 40 líneas. Las líneas tienen un número de caracteres variable. Escribir un programa para almacenar el
texto en una matriz de líneas, ajustada la longitud de cada línea al número de caracteres. El programa debe leer el texto,
almacenarlo en la estructura matricial y escribir por pantalla las líneas en orden creciente de su longitud.

Análisis del problema

Como en C las cadenas de caracteres no guardan información acerca de su propia longitud, puesto que la marca de final de
línea , '\0', es suficiente para determinar su extensión, se usa un array auxiliar para guardar la longitud de cada línea y la
posición inicial que tienen en el texto. Después se ordena tal array por longitud de línea, tal y como se pide, y sólo resta for-
mar otro texto con las líneas del original en las posiciones que indica el array de longitudes. Se trata en definitiva de mani-
pular simplemente los punteros del texto, puesto que las propias líneas no tienen por qué ser trasladadas.

CAPÍTULO 14 Cadenas 235

ap.14 11/6/05 21:44 Página 235

Codificación

main()
{

char* texto[40], buffer [80];
int i, longlin[40][2];
puts (" Introduzca el texto línea a línea. \n ");
for (i=0; i < 40 ; i++)
{

gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto[i], buffer);
longlin [i][0] = strlen (buffer) +1;
longlin [i][1] = i;

}
ordenar (longlin);
for (i=0; i < 40 ; i++)

puts (texto[longlin[i][1]]);
}

14.12. Escribir un programa que lea líneas de texto, obtenga las palabras de cada línea y las escriba en pantalla en orden alfa-
bético. Se puede considerar que el máximo número de palabras por línea es 28.

Análisis del problema

Este ejercicio es sencillo puesto que la información que se solicita está dentro de cada línea por separado. Se trata de acce-
der a cada línea por medio del puntero donde se guardan y dividirse en palabras, guardarlas en una matriz auxiliar, ordenar-
las y mostrarlas ordenadas.

Codificación

main()
{

char* texto[100], buffer [80], palabras[28][20], *ptr;
int i, j;
puts (" Introduzca el texto línea a línea. \n ");
for (i=0; i < 100 ; i++)
{

gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto[i], buffer);
ptr = strtok(texto[i], " ");
j = 0;
while (ptr)
{

strcpy (palabras [j++], ptr);
ptr = strtok(NULL, " ");

}
ordenar (palabras);
for (i=0; i < 28 ; i++)
{

puts (palabras[i]);
palabras[i] [0] = '\0';

}
}

}

CAPÍTULO 14 Cadenas236

ap.14 11/6/05 21:44 Página 236

14.13. Se quiere leer un texto de como máximo 30 líneas y que ese texto se muestre de tal forma que aparezcan las líneas en orden
alfabético.

Codificación

main()
{

char* texto[30], buffer [80];
int i;
puts (" Introduzca el texto línea a línea .\n ");
for (i=0; i < 30 ; i++)
{

gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto[i], buffer);

}
ordenar (texto);
for (i=0; i < 30 ; i++)

puts (texto[i]);
}

14.14. Se sabe que en las líneas que forman un texto hay valores numéricos enteros, representan los kg de patatas recogidos en
una finca. Los valores numéricos están separados de las palabras por un blanco, o el carácter fin de línea. Escribir un pro-
grama que lea el texto y obtenga la suma de los valores numéricos.

Análisis del problema

La función estándar de conversión de cadenas en enteros, atoi(), devuelve 0 si no encuentra dígitos en la cadena que se
le pasa como argumento. Utilizando esta característica se puede separar en palabras las líneas del texto y aplicar a cada pala-
bra la función atoi(), si encuentra un número devolverá el número de kilos.

Codificación

main()
{

char* texto[100], buffer [80], *ptr;
int i, kilos, suma;
puts (" Introduzca el texto línea a línea. \n ");
for (i=0; i < 100 ; i++)
{

gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer) +1) * sizeof (char));
strcpy (texto[i], buffer);
ptr = strtok(texto[i], " ");
j = 0;
while (ptr)
{

if ((kilos = atoi (ptr)) != 0)
suma += kilos;

ptr = strtok(NULL, " ");
}
printf ("La suma total de los kg. recogidos es de %d\n", suma);

}
}

CAPÍTULO 14 Cadenas 237

ap.14 11/6/05 21:44 Página 237

14.15. Escribir un programa que lea una cadena clave y un texto de como máximo 50 líneas. El programa debe de eliminar las
líneas que contengan la clave.

Codificación

main()
{

char* texto[50], buffer [80], clave[15];
int i;
puts (" Introduzca la palabra clave a buscar: ");
gets (clave);
for (i=0; i < 50 ; i++)
{

gets (buffer);
texto [i] = (char*) malloc ((strlen (buffer)+1)
if (strstr (buffer, clave) == NULL)

strcpy (texto [i], buffer);
}

}

14.16. Se quiere sumar números grandes, tan grandes que no pueden almacenarse en variables de tipo long. Por lo que se ha pen-
sado en introducir cada número como una cadena de caracteres y realizar la suma extrayendo los dígitos de ambas cade-
nas. Hay que tener en cuenta que la cadena suma puede tener un carácter más que la máxima longitud de los sumandos.

Análisis del problema

Las condiciones del enunciado indican que no se puede convertir las cadenas en enteros, sumar los enteros y convertir el
resultado de vuelta en cadena. Así que con las cadenas tal cual se dan y carácter a carácter se convierten en dígitos y se suman
y se convierte la suma en un dígito del resultado, teniendo cuidado, claro está, en que si el resultado es mayor que 9 tiene
que haber arrastre sobre el dígito siguiente (en realidad el anterior en la cadena), puesto que en cada carácter solamente se
puede representar un dígito del 0 al 9.

Para facilitar el diseño del algoritmo, como los números se introducen como se escriben, desde las cifras más significati-
vas a las menos, se da la vuelta en la cadena, porque se suma al revés y así se hace que la suma se realice en el mismo sen-
tido del avance corriente de los índices de los arrays, esto es, en sentido creciente.

Codificación

char* leerGrandes (char* num1, char* num2)
{
/* para alinear los números dar la vuelta a las cadenas

487954558 855459784
+ 235869 + 968532

------------- -------------
488190427 724091884

así se pueden sumar los dígitos en el sentido del array */
char* rnum1, * rnum2, *result;
int i, mayor;
rnum1 = strrev (num1);
rnum2 = strrev (num2);
mayor = strlen (num1) > strlen (num2) ? strlen (num1) : strlen (num2);
result = (char*) malloc ((mayor +2) * sizeof (char));
for (i=0; i<=mayor; i++)

result[i] = *rnum1++ + *rnum2++;

CAPÍTULO 14 Cadenas238

ap.14 11/6/05 21:44 Página 238

for (i=0; i<=mayor; i++) /* cálculo del arrastre */
if (result[i] > 10)
{

result[i+1] += (int) result[i] / 10;
/* división entera */
resutl[i] %= 10;

}
return (strrev (result));

}

14.19. Un texto está formado por líneas de longitud variable. La máxima longitud es de 80 caracteres. Se quiere que todas las líne-
as tengan la misma longitud, la de la cadena más larga. Para ello se debe cargar con blancos por la derecha las líneas
hasta completar la longitud requerida. Escribir un programa para leer un texto de líneas de longitud variable y formatear
el texto para que todas las líneas tengan la longitud de la máxima línea.

Análisis del problema

Como en los ejercicios anteriores se trata línea por línea a partir de sus punteros. En cada línea se obtiene su longitud y se
escriben blancos a continuación hasta completar la longitud de la línea más larga más el 0 final.

Codificación

main()
{

char* texto[100], buffer [80], *ptr;
int i, j, mayor;
puts (" Introduzca el texto linea a linea.\n ");
for (i=0; i < 100 ; i++)
{

gets (buffer);
texto [i] = (char*) malloc (80 * sizeof (char));
strcpy (texto[i], buffer);
if (mayor < strlen (buffer))

mayor = strlen (buffer);
}
/* rellenado con blancos */
for (i=0; i < 100 ; i++)
{

texto[i]=realloc(texto[i], mayor+1);
for (j= strlen (texto[i]); j <mayor; j++)

*(texto[i] + j) = ' ';
texto[i][mayor+1] = '\0';

}
}

14.20. Escribir un programa que encuentre dos cadenas introducidas por teclado que sean anagramas. Se considera que dos cade-
nas son anagramas si contienen exactamente los mismos caracteres en el mismo o en diferente orden. Hay que ignorar los
blancos y considerar que las mayúsculas y las minúsculas son iguales.

Análisis del problema

Para averiguar si dos cadenas son anagramas, se necesita entonces saber qué letras tienen. Para eso se utiliza un array con
una posición para cada letra del abecedario. Este array contendrá el número de veces que se encuentra cada carácter cuyo

CAPÍTULO 14 Cadenas 239

ap.14 11/6/05 21:44 Página 239

código ASCII coincide con el valor de su posición en el array. Al final sólo se compara la información guardada en los arrays
de cada cadena.

Codificación

main()
{

char cad1[40], cad2[40];
char* ptr1 = cad1, *ptr2 = cad2;
int letras1[28], letras2[28], i;
gets (cad1);
cad1 = tolower (cad1);
gets (cad2);
cad2 = tolower (cad2);
for (i=0; i < 40; i++)
{

if (alpha (cad1[i]))
letras1[cad1[i] - 'a']++;

if (alpha (cad2[i]))
letras1[cad2[i] - 'a']++;

}
for (i=0; i < (28); i++)

if (letras1[i] != letras2[i])
return; puts ("Las cadenas introducidas no son anagramas. \n");

puts ("Las cadenas introducidas son anagramas. \n");
}

CAPÍTULO 14 Cadenas240

PROBLEMAS PROPUESTOS
14.1. La función atoi() transforma una cadena formada por

dígitos decimales en el equivalente número entero.
Escribir una función que transforme una cadena forma-
da por dígitos hexadecimales en un entero largo.

14.2. Escribir una función para transformar un número entero
en una cadena de caracteres formada por los dígitos del
número entero.

14.3. Escribir una función para transformar un número real en
una cadena de caracteres que sea la representación deci-
mal del número real.

14.4. Escribir un programa que lea una línea de texto y escri-
ba en pantalla las palabras de que consta la
línea sin utilizar las funciones de string.h. y particu-
larmente sin usar strtok().

14.5. Escribir un programa que lea líneas de texto, obtenga las
palabras que aparecen en él y las escriba en pantalla en

orden alfabético, añadiendo el número de veces que apa-
recen.

14.6. Un texto está formado por líneas de longitud variable.
La máxima longitud es de 80 caracteres. Se quiere que
todas las líneas tengan la misma longitud, la de la
cadena más larga. Para ello se debe rellenar con blan-
cos los espacios que ya existen entre las palabras. Tal
relleno debe ser lo más uniforme posible para que no
se note la transformación. Escribir un programa para
leer un texto de líneas de longitud variable y formate-
ar el texto para que todas las líneas tengan la longitud
de la máxima línea.

14.7. Un sistema de cifrado simple consiste en sustituir cada
carácter de un mensaje por el carácter que está situado a
tres posiciones alfabéticas por delante suyo. Escribir una
función que tome como parámetro una cadena y devuel-
va otra cifrada como se ha explicado.

ap.14 11/6/05 21:44 Página 240

CAPÍTULO 14 Cadenas 241

14.8. Otro sistema de encriptación consiste en sustituir cada
carácter del alfabeto por otro decidido de antemano,
pero siempre el mismo. Utilizar este método en una fun-
ción que tome como parámetros el mensaje a cifrar y una
cadena con las correspondencias ordenadas de los carac-
teres alfabéticos. La función devolverá un puntero a la
cadena cifrada del mensaje.

14.9. Escribir una función que cada vez que se le llame genere
un código alfanumérico diferente, devolviéndolo en forma
de cadena. El argumento de dicha función es el número de
caracteres que va a tener el código generado.

14.10. Escribir un programa que tome como entrada un progra-
ma escrito en lenguaje C de un fichero de texto y com-
pruebe si los comentarios están bien escritos. Es decir, se
trata de comprobar si después de cada secuencia '/*'
existe otra del tipo '*/', recordando que no se pueden
anidar comentarios.

14.11. Escriba una función que reciba una palabra y genere
todas las palabras que se pueden construir con sus letras.

ap.14 11/6/05 21:44 Página 241

ap.14 11/6/05 21:44 Página 242

Hasta este momento se han realizado las operaciones básicas de entrada y salida. La operación de introducir (leer) datos en el
sistema se denomina lectura y la generación de datos del sistema se denomina escritura. La lectura de datos se realiza desde
su teclado e incluso desde su unidad de disco, y la escritura de datos se realiza en el monitor y en la impresora de su sistema.

Las funciones de entrada/salida no están definidas en el propio lenguaje C, sino que están incorporadas en cada compila-
dor de C bajo la forma de biblioteca de ejecución. En C existe la biblioteca stdio.h estandarizada por ANSI; esta biblioteca
proporciona tipos de datos, macros y funciones para acceder a los archivos. El manejo de archivos en C se hace mediante el
concepto de flujo (streams) o canal, o también denominado secuencia. Los flujos pueden estar abiertos o cerrados, conducen
los datos entre el programa y los dispositivos externos. Con las funciones proporcionadas por la biblioteca se pueden tratar
archivos secuenciales, de acceso directo, archivos indexados...

En este capítulo aprenderá a utilizar las características típicas de E/S para archivos en C, así como las funciones de acceso
más utilizadas.

15.1 Flujos
Un flujo (stream) es una abstracción que se refiere a un flujo o corriente de datos que fluyen entre un origen o fuente (pro-
ductor) y un destino o sumidero (consumidor). Entre el origen y el destino debe existir una conexión o canal por la cual circu-
len los datos. La apertura de un archivo supone establecer la conexión del programa con el dispositivo que contiene al archivo.
Hay tres flujos o canales abiertos automáticamente:

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

Estas tres variables se inicializan al comenzar la ejecución del programa y todas ellas admiten secuencias de caracteres en
modo texto. Tienen el siguiente cometido:

stdin asocia la entrada estándar (teclado) con el programa.
stdout asocia la salida estándar (pantalla) con el programa.
stderr asocia la salida de mensajes de error (pantalla) con el programa.

El acceso a los archivos se hace con un buffer intermedio. Se puede pensar en el buffer como un array donde se van almace-
nando los datos dirigidos al archivo, o desde el archivo; el buffer se vuelca cuando de una forma u otra se da la orden de vaciarlo.

243

CAPÍTULO 15

Entrada y salida
por archivos

ap.15 11/6/05 21:44 Página 243

Por ejemplo, cuando se llama a una función para leer del archivo una cadena, la función lee tantos caracteres como quepan en el
buffer. Luego, la primera cadena del buffer es la que se obtiene; una siguiente llamada a la función obtendrá la siguiente cadena
del buffer, así hasta que se quede vacío y sea llenado con una posterior llamada a la función de lectura.

15.2 Apertura de un archivo
Para comenzar a procesar un archivo en C la primera operación a realizar es abrir el archivo. La apertura del archivo supone
conectar el archivo externo con el programa, e indicar cómo va a ser tratado el archivo: binario, texto. El programa accede a
los archivos a través de un puntero a la estructura FILE, la función de apertura devuelve dicho puntero.

La función para abrir un archivo es fopen(); el formato de llamada:

FILE *fopen(char *nombre_archivo, char *modo);
nombre ≡ cadena Contiene el identificador externo del archivo.
modo ≡ cadena Contiene el modo en que se va a tratar el archivo.

La función puede detectar un error al abrir el archivo, por ejemplo que el archivo no exista y se quiera leer, entonces devuel-
ve NULL.

fopen() espera como segundo argumento el modo de tratar el archivo. Fundamentalmente se establece si el archivo es
para leer, para escribir o para añadir; y si es de texto o binario. Los modos básicos se expresan como Modo en la Tabla 15.1.
A éstos se añade la t para modo texto, la b para modo binario.

Tabla 15.1 Modos de apertura de un archivo

Modo Significado

"r" Abre para lectura.
"w" Abre para crear nuevo archivo (si ya existe se pierden sus datos).
"a" Abre para añadir al final.
"r+" Abre archivo ya existente para modificar (leer/escribir).
"w+" Crea un archivo para escribir/leer (si ya existe se pierden los datos).
"a+" Abre el archivo para modificar (escribir/leer) al final. Si no existe es como w+.

Al terminar la ejecución del programa podrá ocurrir que haya datos en el buffer de entrada/salida, si no se volcasen en el
archivo quedaría éste sin las últimas actualizaciones. Siempre que se termina de procesar un archivo y siempre que se termine
la ejecución del programa los archivos abiertos hay que cerrarlos para que entre otras acciones se vuelque el buffer.

La función fclose() cierra el archivo asociado al puntero_file, devuelve EOF si ha habido un error al cerrar. El proto-
tipo es:

int fclose(FILE* puntero_file);

15.3 Funciones de lectura y escritura
Las funciones putc() y fputc()son idénticas, putc() está definida como macro. Escriben un carácter c en el archi-
vo asociado con el puntero a FILE. Devuelven el carácter escrito, o bien EOF si no puede ser escrito. El formato de llama-
da es:

putc(c, puntero_archivo);
fputc(c, puntero_archivo);

Las funciones getc() y fgetc(), leen un carácter (el siguiente carácter) del archivo asociado al puntero a FILE.
Devuelven el carácter leído o EOF si es fin de archivo (o si ha habido un error). El prototipo de ambas funciones es el
siguiente:

CAPÍTULO 15 Entrada y salida por archivos244

ap.15 11/6/05 21:44 Página 244

int getc(FILE* pf);
int fgetc(FILE* pf);

La función fputs() escribe una cadena de caracteres. La función devuelve EOF si no ha podido escribir la cadena, un valor
no negativo si la escritura es correcta; el formato de llamada es:

fputs(cadena, puntero_archivo);

La función fgets() lee una cadena de caracteres del archivo. Termina la captación de la cadena cuando lee el carácter de
fin de línea, o bien cuando ha leído n-1 caracteres, siendo n un argumento entero de la función. La función devuelve un pun-
tero a la cadena devuelta, o NULL si ha habido un error. El formato de llamada es:

fgets(cadena, n, puntero_archivo);

Las funciones printf() y scanf() permiten escribir o leer variables de cualquier tipo de dato estándar; los códigos de
formato (%d, %f …) indican a C la transformación que debe de realizar con la secuencia de caracteres(conversión a entero …).
La misma funcionalidad tienen fprintf() y fscanf() con los flujos a que se aplican. Estas dos funciones tienen como pri-
mer argumento el puntero asociado al archivo de texto. El prototipo de ambas funciones es el siguiente:

int fprintf(FILE* pf, const char* formato,. . .);
int fscanf(FILE* pf, const char* formato,. . .);

La función feof() devuelve un valor distinto de 0 (true) cuando se lee el carácter de fin de archivo, en caso contrario
devuelve 0 (false). El prototipo de la función es el siguiente:

int feof(FILE* pf);

Con la función rewind() se sitúa el puntero del archivo al inicio de éste. El prototipo:

void rewind(FILE* pf);

EJEMPLO 15.1 Lectura y escritura en un archivo (fichero) de texto

En un archivo (fichero) de texto la información se guarda en formas de cadenas de caracteres separadas por saltos de
línea. El programa siguiente solicita una serie de líneas al usuario, las escribe en un fichero y a continuación imprime.

FILE *ftexto;
char linea[80];

if ((ftexto = fopen (“ejemplo.txt”, “w+t”)) == NULL)
fprintf (stderr, “Error al abrir el archivo”);

while (!strcmp (linea, “fin”))
{
gets (linea);
fputs (linea, strlen(linea) + 1, ftexto);
}

printf (“Estas han sido las líneas recibidas:\n”);

while (!feof (ftexto))
{
fgets (linea, strlen(linea) + 1, ftexto);
puts (linea);
}

fclose (ftexto);

CAPÍTULO 15 Entrada y salida por archivos 245

ap.15 11/6/05 21:44 Página 245

Además, C dispone de la función fflush() para volcar y vaciar el buffer del archivo pasado como argumento. La fun-
ción devuelve 0 si no ha habido error, en caso de error devuelve la constante EOF. El prototipo es el siguiente:

int fflush (FILE* pf);

EJEMPLO 15.2 Uso de fflush()

En el siguiente fragmento se realiza una entrada de un número entero, llamando a scanf(), y de una cadena de carac-
teres, llamando a gets(). La llamada fflush (stdin) hace que se vacíe íntegramente el buffer de entrada, en caso
contrario quedaría el carácter fin de línea y gets() leería una cadena vacía.

int cuenta;
char b[81];
...
printf (“Cantidad: “);
scanf (“%d”, &cuenta);
fflush (stdin);
printf (“Dirección: “);
gets (b);

15.4 Archivos binarios de C
Para abrir un archivo en modo binario hay que especificar la opción b en el modo. Los archivos binarios son secuencias de
bytes. Los archivos binarios optimizan el espacio, sobre todo con campos numéricos. Así, almacenar en modo binario un ente-
ro supone una ocupación de 2 bytes o 4 bytes (depende del sistema), y un número real 4 bytes o 8 bytes; en modo texto pri-
mero se convierte el valor numérico en una cadena de dígitos (%6d, %8.2f ...) y después se escribe en el archivo.

La función fwrite() escribe un buffer de cualquier tipo de dato en un archivo binario. El prototipo de la función es:

size_t fwrite(const void * direccion_buffer, size_t tamaño,
size_t num_elementos, FILE * puntero_archivo);

La función fread() lee de un archivo n bloques de bytes y los almacena en un buffer. El número de bytes de cada bloque
(tamaño) se pasa como parámetro, al igual que la dirección del buffer (o variable) donde se almacena. El prototipo de la fun-
ción es:

size_t fread(const void * direccion_buffer, size_t tamaño,
size_t num_elementos, FILE * puntero_archivo);

Con la función fseek() se puede tratar un archivo en C como un array que es una estructura de datos de acceso aleato-
rio. fseek() sitúa el puntero del archivo en una posición aleatoria, dependiendo del desplazamiento y el origen relativo que
se pasan como argumentos.

El segundo argumento de fseek() es el desplazamiento, el tercero es el origen del desplazamiento. El prototipo es :
long fseek(FILE * puntero_archivo, long desplazamiento, int origen);

origen Posición desde la que se cuenta el número de bytes a mover. Puede tener tres valores, que son:
0 ⇒ SEEK_SET: Cuenta desde el inicio del archivo.
1 ⇒ SEEK_CUR: Cuenta desde la posición actual del puntero al archivo.
2 ⇒ SEEK_END: Cuenta desde el final del archivo.

La posición actual del archivo se puede obtener llamando a la función ftell() y pasando un puntero al archivo como
argumento. La función devuelve la posición como número de bytes (en entero largo: long int) desde el inicio del archivo
(byte 0). El prototipo es:

long int ftell(FILE *pf);

CAPÍTULO 15 Entrada y salida por archivos246

ap.15 11/6/05 21:44 Página 246

Otra forma de conocer la posición actual del archivo, o bien mover dicha posición es mediante las funciones fgetpos() y
fsetpos().La función fgetpos() tiene dos argumentos, el primero representa al archivo (flujo) mediante el puntero FILE
asociado. El segundo argumento de tipo puntero a fpos_t (tipo entero declarado en stdio.h) es de salida; la función le asig-
na la posición actual del archivo. La función fsetpos()se utiliza para cambiar la posición actual del archivo. La nueva posi-
ción se pasa como segundo argumento (de tipo const fpos_t*) en la llamada a la función. El primer argumento es el puntero
FILE asociado al archivo.

La dos funciones devuelven cero si no ha habido error en la ejecución, en caso contrario devuelven un valor distinto de cero
(el número del error). Sus prototipos están en stdio.h, son los siguientes:

int fgetpos (FILE* pf, fpos_t* p);
int fsetpos (FILE* pf, const fpos_t* p);

EJEMPLO 15.3 Lectura y escritura en un archivo binario

En un archivo se desea grabar la notas que tienen los alumnos de una asignatura junto al nombre del profesor y el
resumen de aprobados y suspensos. La estructura va ser la siguiente: Primer registro con el nombre de la asignatura
y curso.Segundo registro con el nombre del profesor, número de alumnos, de aprobados y suspensos.Cada uno de los
alumnos, con su nombre y nota.

Se crea un archivo binario (modo wb+) con la estructura que se indica en el enunciado. Antes de escribir el segundo
registro (profesor) se obtiene la posición actual, llamando a fgetpos(). Una vez que se han grabado todos los registros
de alumnos, se sitúa como posición actual, llamando a fgetpos(), el registro del profesor con el fin de grabar el núme-
ro de aprobados y suspensos. Naturalmente, según se solicitan las notas de los alumnos se contabiliza si la calificación
es aprobado o suspenso. La entrada de datos se realiza desde el teclado.

#include <stdlib.h>
#include <stdio.h>

typedef struct
{
char asg[41];
int curso;
} ASGTA;

typedef struct
{
char nom[41];
int nal, aprob, susp;
} PROFS;

typedef struct
{
char nom[41];
float nota;
} ALMNO;

void entrada (ALMNO* a);

void main (void)
{
ASGTA a;
PROFS h = {“ “, 0, 0, 0}; /* valores iniciales: alumnos, aprobados, suspensos */
ALMNO t;
FILE* pf;
int i;
fpos_t* p = (fpos_t*) malloc (sizeof(fpos_t));

CAPÍTULO 15 Entrada y salida por archivos 247

ap.15 11/6/05 21:44 Página 247

pf = fopen (“CURSO.DAT”, “wb+”);
if (pf == NULL)

{
printf (“Error al abrir el archivo, modo wb+”);
exit (-1);
}

printf (“Asignatura: “);
gets (a.asg);
printf (“Curso: “);
scanf (“%d%*c”, &a.curso);
fwrite (&a,sizeof(ASGTA), 1, pf);

printf (“Nombre del profesor: “);
gets (h.nom);
printf (“Número de alumnos: “);
scanf (“%d%*c”, &h.nal);
fgetpos (pf, p); /* guarda en p la posición actual */
fwrite (&h,sizeof(PROFS),1,pf);

for (i = 1; i <= h.nal; i++)
{
entrada (&t);
if (t.nota <= 4.5)

h.susp++;
else

h.aprob++;
fwrite (&t, sizeof(ALMNO), 1, pf);
}

fflush (pf);
fsetpos (pf, p); /*se sitúa en registro del profesor */
fwrite (&h, sizeof(PROFS), 1, pf);
fclose(pf);
}

void entrada(ALMNO* a)
{
printf (“Nombre: “);
gets (a -> nom);
printf (“Nota: “);
scanf (“%f%*c”, &(a -> nota));
}

15.5 Datos externos al programa con argumentos de main()
La función main() tiene dos argumentos opcionales: el primero es un argumento entero que contiene el número de paráme-
tros transmitidos al programa (incluyendo el mismo nombre del programa). El segundo argumento contiene los parámetros
transmitidos, en forma de cadenas de caracteres; por lo que el tipo de este argumento es un array de punteros a char. Puede
haber un tercer argumento que contiene las variables de entorno, definido también como array. El prototipo de main() será:

int main(int argc, char*argv[]);

Los nombres de los argumentos pueden cambiarse.

CAPÍTULO 15 Entrada y salida por archivos248

ap.15 11/6/05 21:44 Página 248

PROBLEMAS RESUELTOS
15.1. Escribir las sentencias necesarias para abrir un archivo de caracteres cuyo nombre y acceso se introduce por teclado en

modo lectura; en el caso de que el resultado de la operación sea erróneo, abrir el archivo en modo escritura.

Análisis del problema

Éstas son las operaciones básicas para realizar la apertura de un fichero. Una observación importante es que siempre se ha
de comprobar si la apertura del archivo ha sido realizada con éxito, puesto que es una operación que realiza el sistema ope-
rativo para el programa y queda fuera de control. En caso de que la apertura no fuera correcta, es recomendable abortar la
ejecución del programa para averiguar qué es lo ha podido ir mal.
ENTRADA: Nombre del archivo a abrir.

Codificación

FILE *fp;
char nombre[14]; /* tiene que haber espacio para el nombre completo */
printf ("Escriba el nombre del fichero: ");
gets (nombre);
if ((fp = fopen (nombre, "rt")) == NULL)
{

puts ("Error de apertura para lectura ");
fp = fopen (nombre, "wt");

}

15.2. Señale los errores del siguiente programa:

#include <stdio.h>
int main()
{

FILE* pf;
pf = fopen("almacen.dat");
fputs("Datos de los alma-cenes TIESO", pf);
fclose(pf);
return 0;

}

Análisis del problema

La función fopen() carece de segundo argumento para indicar el modo de apertura del archivo. Tampoco se comprueba que
el fichero se haya podido abrir sin errores, según el valor devuelto por la función fopen().

15.3. Se tiene un archivo de caracteres de nombre «SALAS.DAT». Escribir un programa para crear el archivo «SALAS.BIN» con
el contenido del primer archivo pero en modo binario.

Análisis del problema

Observar que la diferencia externa al usar un archivo binario y otro de texto está solamente en el argumento que indica el
modo de apertura, porque las operaciones de lectura y escritura se ocupan de leer o escribir la misma variable según el dife-
rente formato: en el archivo de texto byte a byte convirtiéndolo a y de su código ASCII y en el archivo binario se vuelva de
y a la memoria sin realizar ninguna transformación.

CAPÍTULO 15 Entrada y salida por archivos 249

ap.15 11/6/05 21:44 Página 249

Codificación

main()
{

FILE * pft, * pfb;
char línea[80];
if ((pft = fopen ("SALAS.DAT", "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
if ((pfb = fopen ("SALAS.BIN", "wb")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof(pft))
{

fgets (línea, 80, pft);
fwrite (línea, strlen (línea) +1, 1, pfb);

}
fclose (pft);
fclose (pfb);

}

15.4. La función rewind() sitúa el puntero del archivo en el inicio del archivo. Escribir una sentencia, con la función fseek(
) que realice el mismo cometido.

Análisis del problema

Como fseek() posiciona el puntero del fichero en la posición que indican sus dos últimos argumentos, hacer una llama-
da que posicione en el byte 0 desde el origen del fichero.
fseek(puntero_archivo, 0, SEEK_SET);

15.5. Utiliza los argumentos de la función main() para dar entrada a dos cadenas; la primera representa una máscara, la segun-
da el nombre de un archivo de caracteres. El programa tiene que localizar las veces que ocurre la máscara en el archivo.

Análisis del problema

La organización de un archivo de tipo texto es una serie de cadenas de caracteres almacenadas secuencialmente y separadas
por caracteres final de línea y salto de carro, que cuando se leen en memoria se convierten en cadenas terminadas en '\0',
como todas las cadenas del lenguaje C. Los caracteres están almacenados en un byte cuyo contenido es el código ASCII
correspondiente. Las funciones de entrada y salida, es decir, de lectura y escritura con archivos de modo texto son de dos
tipos, o leen y escriben byte a byte, carácter a carácter, o leen y escriben línea a línea.
En este programa se trata de leer cada línea de un archivo de texto y buscar en ella la ocurrencia de una subcadena denomi-
nada máscara, para lo cual se utilizan las funciones estándar de C de tratamiento de cadenas.

Codificación

main (int argc, char **argv)
{

FILE * pf;
char mascara[20], nombre[14], línea[80], *ptr;

CAPÍTULO 15 Entrada y salida por archivos250

ap.15 11/6/05 21:44 Página 250

int veces, i;
if (argc != 3)
{

printf ("Uso: programa máscara archivo.\n");
exit (1);

}
strcpy (mascara, argv[1]);
strcpy (nombre, argv[2]);
if ((pf = fopen (nombre, "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fgets (línea, 80, pf);
i++;
ptr = linea;
while (*ptr)

{
ptr++ = strstr (ptr, mascara);
printf ("La mascara aparece en la línea %d \n", i);
veces++;
}

}
printf ("La máscara aparece %d veces en el fichero. \n", veces);
fclose (pf);

}

15.6. Un archivo contiene enteros positivos y negativos. Utiliza la función fscanf() para leer el archivo y determinar el núme-
ro de enteros negativos.

Análisis del problema

Una vez dominadas las funciones de entrada y salida por teclado y consola de la biblioteca estándar de C, es muy fácil pro-
gramar con las funciones de entrada y salida para ficheros de texto, puesto que son las mismas. Así fscanf() es totalmente
similar a scanf(), solamente variando en que la segunda lee siempre de la entrada estándar —teclado—, mientras que la
primera puede leer de cualquier archivo abierto en modo texto.
Aunque esta operación es muy simple, es bueno entender el mecanismo de conversión que se está utilizando. El fichero
abierto contiene números enteros, pero al ser un archivo de texto esos números están almacenados no de forma binaria sino
como una cadena de caracteres que representan los dígitos y el signo del número en forma de secuencia de sus códigos ASCII
binarios.
Esto no quiere decir que haya que leer línea a línea y en cada una de ellas convertir las secuencias de códigos de caracteres
a los números enteros en binario correspondiente, para almacenarlos así en la memoria. Este trabajo es el que realiza la fun-
ción fscanf() cuando el formato indica que lo que se va a encontrar es un entero. Es la misma operación de conversión
que realiza la función scanf() cuando lee secuencias de códigos de teclas desde la entrada estándar.

Codificación

main (int argc, char **argv)
{

FILE * pf;
char mascara[20], nombre[14], línea[80];

CAPÍTULO 15 Entrada y salida por archivos 251

ap.15 11/6/05 21:44 Página 251

int num, neg;
if ((pf = fopen ("NUMEROS.TXT", "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fscanf (pf, "%d", &num);
if (num < 0) neg++;

}
printf ("El número de enteros no negativos en el fichero es %d \n", neg);
fclose (pf);

}

15.7. Un archivo de caracteres quiere escribirse en la pantalla. Escribir un programa para escribir el archivo, cuyo nombre viene
dado en la línea de órdenes, en pantalla.

Análisis del problema

Los archivos de texto están creados para ser leídos en memoria línea a línea, transformándose los caracteres final de línea
y salto de carro en el carácter terminado de cadena que entiende C en memoria. Por eso, para escribir el contenido de un
archivo en memoria basta con leer cada línea y escribirla en pantalla con cualquiera de las funciones que lo hacen.

Codificación

main (int argc, char **argv)
{

FILE * pf;
char nombre[14], línea[80];
if (argc != 2)
{

printf ("Uso: programa archivo.\n");
exit (1);

}
strcpy (nombre, argv[1]);
if ((pf = fopen (nombre, "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fgets (línea, 80, pft);
puts (línea);

}
fclose (pf);

}

15.8. Escribir una función que devuelva una cadena de caracteres de longitud n, del archivo cuyo puntero se pasa como argu-
mento. La función termina cuando se han leído los n caracteres o es fin de archivo. Utilizar la función fgetc().
El prototipo de la función pedida es:

char* leer_cadena(FILE* pf, int n);

CAPÍTULO 15 Entrada y salida por archivos252

ap.15 11/6/05 21:44 Página 252

Análisis del problema

La función fgetc()es usada para ir leyendo el fichero abierto en modo texto carácter a carácter, o lo que es lo mismo, byte
a byte.

Codificación

char* leer_cadena(FILE* pf, int n){
{

char cadena[n+1];
int i;
while (!feof(pf) || i <n)

cadena [i++] = (char) fgetc (pf);
cadena[i] = '\0';
return cadena;

}

15.9. Se quiere concatenar archivos de texto en un nuevo archivo. La separación entre archivo y archivo ha de ser una línea con
el nombre del archivo que se acaba de procesar. Escribir el programa correspondiente de tal forma que los nombres de los
archivos se encuentren en la línea de órdenes.

Análisis del problema

El segundo argumento de main(), llamado comúnmente argv, es un puntero a un array que contiene punteros que apun-
tan al inicio de las cadenas de caracteres donde el sistema guarda los elementos de la línea de órdenes. Como en este caso
esos elementos son nombres de archivos, se van a ir tomando uno a uno desde el segundo —porque el primero siempre es
el nombre del ejecutable del programa que permite su ejecución— para pasárselos a las funciones fopen() y así poder
abrir cada archivo necesario.

Codificación

main (int argc, char **argv)
{

FILE * pf, pfcat;
char nombre[14], línea[80];
int i = 2;
if (argc < 2)
{

printf ("Uso: programa lista de archivos. \n");
exit (1);

}
if ((pfcat = fopen (argv[1], "wt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
argc––;
while (––argc >0)
{

strcpy (nombre, argv[i++]);
if ((pf = fopen (nombre, "rt")) == NULL)
{

puts ("Error de apertura ");

CAPÍTULO 15 Entrada y salida por archivos 253

ap.15 11/6/05 21:44 Página 253

exit(1);
}
fputs (nombre, pfcat);
while (!feof (pf))
{

fgets (línea, 80, pf);
fputs (linea, pfcat);

}
fclose (pf);

}
fclose(pfcat);

}

15.10. Escribir una función que tenga como argumentos un puntero de un archivo de texto, un número de
línea inicial y otro número de línea final. La función debe mostrar las líneas del archivo comprendidas entre los límites indi-
cados.

Análisis del problema

Por supuesto, los archivos de texto no contienen líneas numeradas, a no ser que se hayan escrito en ellos incluyendo su nume-
ración. Pero como la lectura es secuencial, es necesario utilizar una variable entera a modo de índice o contador, para llevar
en todo momento el número de líneas leídas y esto puede servir para saber cuál es la posición de cada una de ellas.

Codificación

mostrarLineas (FILE *pf, int inicio, int fin)
{

char linea[80];
int i=1;
while (!feof (pf))
{

fgets (linea, 80, pf);
if (i >= inicio && i <= fin)

printf ("%d: %s/n", i++, linea);
{

}

15.11. Escribir un programa que escriba por pantalla las líneas de texto de un archivo, numerando cada línea del mismo.

Codificación

main (int argc, char **argv)
{

FILE * pf;
char nombre[14], línea[80];
int i;
if (argc != 2)
{

printf ("Uso: programa archivo.\n");
exit (1);

}
strcpy (nombre, argv[1]);
if ((pf = fopen (nombre, "rt")) == NULL)

CAPÍTULO 15 Entrada y salida por archivos254

ap.15 11/6/05 21:44 Página 254

{
puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fgets (línea, 80, pf);
printf ("%+4d : %s\n" i++, línea);

}
fclose (pf);

}

15.12. Escribir un programa que compare dos archivos de texto. El programa ha de mostrar las diferencias entre el primer archi-
vo y el segundo, precedidas del número de línea y de columna.

Análisis del problema

Si solamente se pidiera saber qué líneas son diferentes, se podría comparar cada línea con una función como strcmp(), pero
como se indica que es necesario saber en qué caracteres difieren, hay que comparar en cada par de líneas que se leen de cada
fichero cada carácter con el que está en la misma posición del otro archivo (fichero).

Codificación

main()
{

char linea1[80], linea2[80];
int numlinea, i;
FILE * pft, * pfb;
if ((pf1 = fopen ("TEXTOS.DAT", "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
if ((pf2 = fopen ("COPIA.DAT", "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof(pf1) && !feof(pf2))
{

fgets (línea1, 80, pf1);
fgets (línea2, 80, pf2);
numlinea ++;
for (i=0; i<80 || linea1[i] != linea2[i]; i++)

if (linea1[i] != linea2[i])
{

printf ("\n Linea %d y columna %d:", numlinea, i);
printf (" primer fichero -> %s segundo fichero -> %s",

&línea1[i], &linea2[i]);
}

}
fclose(pf1);
fclose(pf2);

}

CAPÍTULO 15 Entrada y salida por archivos 255

ap.15 11/6/05 21:44 Página 255

15.13. Un atleta utiliza un pulsómetro para sus entrenamientos. El pulsómetro almacena las pulsaciones cada 15 segundos, duran-
te un tiempo máximo de 2 horas. Escribir un programa para almacenar en un archivo los datos del pulsómetro del atleta,
de tal forma que el primer registro contenga la fecha, hora y tiempo en minutos de entrenamiento, a continuación los datos
del pulsómetro por parejas: tiempo, pulsaciones.

Análisis del problema

Los datos que hay que almacenar son de tipo struct, es decir definidos por usuario. Se podría convertir estos datos a cade-
nas y almacenarlos en un archivo de texto. Parece más directo utilizar un archivo binario, en el que se guardan los datos tal
y como están en memoria. Así se ahorraría una conversión al leer y escribir. Lo único que hay que tener en cuenta es que,
como los archivos binarios no tienen ninguna clase de marca sobre la estructura de lo que están almacenado en ellos, son los
programas los que tendrán que leer con las mismas estructuras con que se escribieron.

Codificación

struct entrenamiento
{

char fecha[11]; /* dd/mm/aaaaa */
char hora[9] /* hh:mm:ss */
int minutos;

} rege;
struct pulsom
{

char hora[9] /* hh:mm:ss */
int pulsaciones;

} regp;
main()

{
FILE * pf;
if ((pf = fopen ("ENTRENAM.DAT", "wb")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
printf ("\nFecha entrenamiento : ");
gets (rege.fecha);
printf ("\nHora entrenamiento: ");
gets (rege.hora);
printf ("\nDuración en minutos del entrenamiento: ");
scanf ("%d",®e.minutos);
fwrite (®e, sizeof (rege), 1, pf);
printf ("\n\n— Datos pulsómetro —");
for (m = 0; m < rege.minutos * 60 /15; m++)
{

printf ("\nHora : ");
gets (regp.hora);
printf ("\nPulsaciones : ");
scanf ("%d", ®p.pulsaciones);
fwrite (®p, sizeof (regp), 1, pf);

}
fclose(pf);

}

CAPÍTULO 15 Entrada y salida por archivos256

ap.15 11/6/05 21:44 Página 256

15.14. Se quiere obtener una estadística de un archivo de caracteres. Escribir un programa para contar el número de palabras
de que consta un archivo, así como una estadística de cada longitud de palabra.

Análisis del problema

La tabla longitudes tiene en cada uno de sus elementos el número de palabras con una longitud igual a su lugar en la
tabla. La variable numpalabras contiene el número total de palabras en el archivo.

Codificación

main()
{

int longitudes[20], numpalabras;
char línea[80];
FILE * pf;
if ((pf = fopen ("PRUEBA.DAT", "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof(pf))
{

fgets (línea, 80, pf);
for (i=0; i<80 || línea[i]; i++)
{

if (línea[i] == ' ')
{

numpalabras ++;
longitudes [longpal] ++;
longpal =0;

}
else longpal++;

}
}
fclose(pf);
printf("Número de palabras y %d", numpalabras);
for (i=0; i<20; i++)

printf("Aparecen y %d palabras de longitud y %d", longitudes[i], i);
}

15.15. En un archivo binario se encuentran pares de valores que representan la intensidad en miliamperios y el correspondiente
voltaje en voltios para un diodo. Por ejemplo:
0.5 0.35
1.0 0.45
2.0 0.55
2.5 0.58
. . .

El problema es que dado un valor del voltaje v, comprendido entre el mínimo valor y el máximo encontrar el correspon-
diente valor de la intensidad. Para ello el programa debe leer el archivo, formar una tabla y aplicar un método de interpo-
lación. Una vez calculada la intensidad, el programa debe de escribir el par de valores en el archivo.

CAPÍTULO 15 Entrada y salida por archivos 257

ap.15 11/6/05 21:44 Página 257

Análisis del problema

El programa va a leer los datos desde el fichero y con ellos va a formar una tabla en memoria. A partir de esta tabla se cal-
cularán los nuevos valores y se añadirán al final del array. Una vez terminada la operación se escribe de nuevo la tabla ente-
ra en el fichero.

Codificación

struct pares
{

float intensidad;
float voltaje;

};
main()
{

FILE * pf;
struct pares tabla [100], valor;
int i, l;
float volt;
if ((pf = fopen ("SALAS.DAT", "r+b")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while(!feof(pf))
{
fread (&valor, sizeof (valor), 1, pf);
tabla[i].intensidad = valor.intensidad;
tabla[i++].voltaje = valor.voltaje;

}
printf ("\nIntroduzca un valor de voltaje: ");
scanf ("%f", &volt);
mAmp = interpolacion (volt, &l);

/* calcula el valor de la intensidad interpolado y el lugar
de la tabla tras el que debería colocarse */

rewind(pf);
for (i=0; i<=l; i++)

fwrite (&tabla[i], sizeof (valor), 1, pf);
valor.intensidad = mAmp;
valor.voltaje = volt;
fwrite (&valor, sizeof (valor), 1, pf);
for (i=l+1; i<100; i++)

fwrite (&tabla[i], sizeof (valor), 1, pf);
fclose(pf);

}

15.16. Un profesor tiene 30 estudiantes y cada estudiante tiene tres calificaciones en el primer parcial. Almacenar los datos en un
archivo, dejando espacio para dos notas más y la nota final. Incluir un menú de opciones, para añadir más estudiantes,
visualizar datos de un estudiante, introducir nuevas notas y calcular nota final.

Análisis del problema

El menú indica una manera de especificar cuál de las operaciones que permite el programa se puede activar. La primera fun-
ción va a ir escribiendo las estructuras en el fichero según se va introduciendo la primera parte de las notas. Hay que recor-

CAPÍTULO 15 Entrada y salida por archivos258

ap.15 11/6/05 21:44 Página 258

dar que los archivos binarios no son más que secuencias de bits sin estructura alguna. La estructura la da el programa que
define qué estructura, o estructuras, necesita definir para los datos que va a escribir y leer.

De esta forma, una vez escritos los registros con las primeras notas, no hace falta más que leerlos de nuevo para añadir
más notas o calcular la nota final. Para volver a escribir la información en el disco sin tener que cargar todo en memoria y
volverlo a escribir entero, como el disco permite un acceso secuencial, se puede utilizar la función fseek() para, una vez
leído un registro y modificado en memoria, volver atrás al inicio de ese registro en el archivo y reescribirlo con la informa-
ción actualizada.

Codificación

struct nota
{

char nombre[40];
int notas[5];
int notafinal;

};
main()
{

int op;
puts ("Menú del programa de gestión de notas");
puts ("=====================");
puts ("(1) Introducir notas primer parcial.");
puts ("(2) Introducir notas segundo parcial.");
puts ("(3) Calcular notas finales.");
puts ("(4) Añadir nuevos alumnos.");
puts ("(5) Consultar notas.");
puts ("(0) Salir.");
puts ("Introduzca su opción.");
puts("");
scanf ("%d", &op);
switch (op)
{

case 0: exit (1);
case 1: primerParcial(); break;
case 2: segundoParcial(); break;
case 3: notasFinales(); break;
case 4: anhadir(); break;
case 5: consultar(); break;

}
}
primerParcial()
{

struct nota reg;
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fread (®, sizeof (reg), 1, pf);
visualizar (reg);

CAPÍTULO 15 Entrada y salida por archivos 259

ap.15 11/6/05 21:44 Página 259

puts ("Escriba nota primera");
scanf ("%d", ®.nota[0]);
puts ("Escriba nota segunda");
scanf ("%d", ®.nota[1]);
puts ("Escriba nota tercera");
scanf ("%d", ®.nota[2]);
fwrite (®, sizeof (reg), 1, pf);

}
fclose(pf);

}

segundoParcial()
{

struct nota reg;
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fread (®, sizeof (reg), 1, pf);
visualizar (reg);
puts ("Escriba nota cuarta");
scanf ("%d", ®.nota[3]);
puts ("Escriba nota quinta");
scanf ("%d", ®.nota[4]);
fwrite (®, sizeof (reg), 1, pf);

}
fclose(pf);

}

notasFinales()
{

struct nota reg;
int media;
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fread (®, sizeof (reg), 1, pf);
visualizar (reg);
media = (reg.notas[0] + reg.notas[1] + reg.notas[2]

+ reg.notas[3] + reg.notas[4]) / 5;
reg.notafinal = media;
fseek (pf, -sizeof (reg), SEEK_CUR);
fwrite (®, sizeof (reg), 1, pf);

}

CAPÍTULO 15 Entrada y salida por archivos260

ap.15 11/6/05 21:44 Página 260

fclose(pf);
}
visualizar (struct nota r)
{

printf ("\t\n Nombre del Alumno : %s.", r.nombre);
printf ("\t\n Notas : %d %d %d %d %d.", r.notas[0], r.notas[1], r.notas[2], r.notas[3],

r.notas[4]);
printf ("\t\n Nota final: %d\n.", r.notafinal);

}

anhadir()
{

struct nota reg;
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
fseek (pf, 0, SEEK_END);
printf ("\t\n Nombre del Alumno :");
gets (reg.nombre);
puts ("Escriba nota primera");
scanf ("%d", ®.nota[0]);
puts ("Escriba nota segunda");
scanf ("%d", ®.nota[1]);
puts ("Escriba nota tercera");
scanf ("%d", ®.nota[2]);
fwrite (®, sizeof (reg), 1, pf);
puts ("Escriba nota cuarta");
scanf ("%d", ®.nota[3]);
puts ("Escriba nota quinta");
scanf ("%d", ®.nota[4]);
fwrite (®, sizeof (reg), 1, pf);
fclose(pf);

}

consultar()
{

struct nota reg;
char alumno[40];
FILE * pf;
if ((pf = fopen ("NOTAS.DAT", "r+b")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
printf ("\t\n Nombre del Alumno :");
gets (alumno);
while (!feof (pf))
{

fread (®, sizeof (reg), 1, pf);
if (!strcmp (reg.nombre, alumno))

CAPÍTULO 15 Entrada y salida por archivos 261

ap.15 11/6/05 21:44 Página 261

{
visualizar (reg);
return;

}
}
puts ("Alumno no existente. \n");
fclose(pf);

}

15.17. Se quiere escribir una carta de felicitación navideña a los empleados de un centro sanitario. El texto de la carta se encuentra
en el archivo CARTA.TXT. El nombre y dirección de los empleados se encuentra en el archivo binario EMPLA.DAT, como una
secuencia de registros con los campos nombre y dirección. Escribir un programa que genere un archivo de texto por cada emple-
ado, la primera línea contiene el nombre, la segunda está en blanco, la tercera la dirección y en la quinta empieza el texto
CARTA.TXT.

Análisis del problema

En este problema lo único que hay que observar con cuidado es la secuencia de operaciones, puesto que para cada lectura de
datos de archivo binario hay que copiar el archivo de texto en el archivo resultado. También hay que fijarse en que hay que
operar de forma diferente los dos archivos pues son de tipos diferentes. El archivo binario posee datos que son cadenas de
caracteres, pero al estar almacenados de forma binaria hay que leerlos como tales, a partir de su estructura.

Codificación

struct empleado
{

char nombre[40];
char direccion [40];

};

main()
{

struct empleado reg;
FILE * pf, *pfc, *pff;
if ((pfc = fopen ("CARTA.TXT", "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
if ((pf = fopen ("EMPLA.DAT", "rb")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
if ((pff = fopen ("CARTAS.TXT", "wt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while (!feof (pf))
{

fread (®, sizeof (reg), 1, pf);
fputs (reg.nombre, pff);

CAPÍTULO 15 Entrada y salida por archivos262

ap.15 11/6/05 21:44 Página 262

fputs ("", pff);
fputs (reg.direccion, pff);
fputs ("", pff);
fputs ("", pff);
while (!feof(pfc))
{

fgets (línea, 80, pfc);
fputs (linea, pff);

}
}
fclose(pf);
fclose(pff);
fclose(pfc);

}

15.18. Se quiere crear un archivo binario formado por registros que representan productos de perfumería. Los campos de cada
registro son código de producto, descripción, precio y número de unidades. La dirección de cada registro viene dada por
una función hash que toma como campo clave el código del producto(tres dígitos):
hash(clave) = (clave modulo 97) + 1

El número máximo de productos distintos es 100. Las colisiones, de producirse, se situarán secuencialmente a partir del
registro número 120.

Análisis del problema

En un archivo binario en el que se escriben estructuras o registros de un único tipo, se puede considerar que esas estructu-
ras están numeradas, como lo estarían si estuviesen en un array en memoria. El lugar de cada estructura viene dado por su
posición desde el comienzo del archivo. El primer registro sería el cero siempre y así sucesivamente. Buscar el registro a par-
tir de su número de índice es tan sencillo como calcular el número del byte donde comienza dicho registro. Este byte se cal-
cula multiplicando el número del índice del registro por los bytes que ocupa cada registro. Una vez localizado el byte, sólo
resta pasarlo a la función fseek() para que posicione el puntero de lectura y escritura del archivo en él. Las operaciones de
lectura o escritura siempre se realizan desde la posición del puntero, avanzándole en un número de bytes igual al tercer pará-
metro de las llamadas fread() o fwrite() o igual al número de bytes leídos, en caso de que éste fuera menor.

En este problema se obtiene el número del registro, o lo que es lo mismo, la posición del archivo en la que va a ser escri-
to partir de una función que parte del contenido del propio registro. Ésta es la función llamada hash que permite también al
contrario encontrar la posición de un registro a partir de su contenido.

Codificación

struct producto
{

int codigo;
char descripcion[80];
float precio;
int unidades;

};
struct producto reg;
int hash;

main()
{

int colisiones = 120;
FILE * pf;
if ((pf = fopen ("PERFUM.DAT", "r+b")) == NULL)

CAPÍTULO 15 Entrada y salida por archivos 263

ap.15 11/6/05 21:44 Página 263

{
puts ("Error de apertura ");
exit(1);

}
printf ("\n\tCódigo de producto: ");
scanf ("%d", ®.codigo);
printf ("\n\t Descripción del producto: ");
gets (reg.descripcion);
printf ("\n\t Precio: ");
scanf ("%f", ®.precio);
printf ("\n\t Número de unidades: ");
scanf ("%d", ®.unidades);
hash = reg.codigo % 97 +1;
fseek (pf, hash * sizeof (reg), SEEK_SET);
fread (®, sizeof (reg), 1, pf);
if (reg.codigo == 0)

fwrite (®, sizeof (reg), 1, pf);
else
{

fseek (pf, colisiones++ * sizeof (reg), SEEK_SET);
fwrite (®, sizeof (reg), 1, pf);

}
fclose(pf);

}

15.19. Modificar el problema 15.13 para añadir un menú con opciones de añadir al archivo nuevos entrenamientos, obtener el
tiempo que se está por encima del umbral aeróbico (dato pedido por teclado) para un día determinado y media de las pul-
saciones.

Análisis del problema

En este programa cada función abre el fichero, lee todo su contenido, realiza las operaciones correspondientes y lo cierra.
Otra manera de hacerlo podría haber sido abrir el fichero una vez en la función principal y pasar el puntero al fichero a cada
una de las funciones para que operen sobre él, sea como parámetro o como una variable global al programa.

Codificación (Consultar la página web del libro)

15.20. Un archivo de texto consta en cada línea de dos cadenas de enteros separadas por el operador +, o –,. Se quiere formar un
archivo binario con los resultados de la operación que se encuentra en el archivo de texto.

Análisis del problema

Como de antemano se conoce el formato de las líneas que componen el fichero de texto y además es necesario hacer una
conversión de caracteres a enteros, se puede utilizar la función fscanf() para realizar ambas tareas: la lectura y la con-
versión, tras proporcionarles el formato concreto que va a encontrar en cada línea que lea.

Codificación

main()
{

char linea[80];
FILE * pf, *pfr;
int res, val1, val2;

CAPÍTULO 15 Entrada y salida por archivos264

ap.15 11/6/05 21:44 Página 264

if ((pf = fopen ("VALORES.TXT", "rt")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
if ((pfr = fopen ("RESULT.DAT", "wb")) == NULL)
{

puts ("Error de apertura ");
exit(1);

}
while(!feof(pf))
{

fgets (línea, 80, pf);
if (strchr (línea, ‘+’))
{

fscanf (pf, "%d+%d\n", &val1, &val2);
res = val1 + val2;
fwrite (&res, sizeof (int), 1, pfr);

}
if (strchr (línea, ‘-’))
{

fscanf (pf, "%d-%d\n", &val1, &val2);
res = val1 - val2;
fwrite (&res, sizeof (int), 1, pfr);

}
}
fclose(pf);
fclose(pfr);

}

CAPÍTULO 15 Entrada y salida por archivos 265

PROBLEMAS PROPUESTOS
15.1. Las funciones fgetpos() y fsetpos() devuelven la

posición actual del puntero del archivo, y establecen el
puntero en una posición dada. Escribir las funciones

pos_actual() y mover_pos(), con los prototipos:
int pos_actual(FILE* pf, long* p);
int mover_pos(FILE* pf, const long* p);

La primera función devuelve en p la posición actual del
archivo. La segunda función establece el puntero del
archivo en la posición p.

15.2. Un atleta utiliza un pulsómetro para sus entrenamientos.
El pulsómetro almacena las pulsaciones cada 15 segun-
dos, durante un tiempo máximo de 2 horas. Escribir un
programa para almacenar en un archivo los datos del pul-
sómetro del atleta, de tal forma que el primer registro

contenga la fecha, hora y tiempo en minutos de entrena-
miento, a continuación los datos del pulsómetro por
parejas: tiempo, pulsaciones. El archivo donde se alma-
cene la información ha de ser de tipo texto.

15.3. Escribir un programa para listar el contenido de un
determinado subdirectorio, pasado como parámetro a la
función main().

15.4. Escribir un programa que gestione una base de datos
con los registros de una agenda de direcciones y teléfo-
nos. Cada registro debe tener datos sobre el nombre, la
dirección, el teléfono fijo, el teléfono móvil, la direc-
ción de correo electrónico de una persona. El programa
debe mostrar un menú para poder añadir nuevas entra-
das, modificar, borrar y buscar registros de personas a
partir del nombre.

ap.15 11/6/05 21:44 Página 265

CAPÍTULO 15 Entrada y salida por archivos266

PROBLEMAS PROPUESTOS DE
PROGRAMACIÓN DE GESTIÓN
15.1. Mezclar dos archivos ordenados para producir otro

archivo ordenado consiste en ir leyendo un registro de
cada uno de ellos y escribir en otro archivo de salida el
que sea menor de los dos, repitiendo la operación con el
registro no escrito y otro leído del otro archivo, hasta que
todos los registros de los dos archivos hayan sido leídos
y escritos en el archivo de salida. Éste tendrá al final los
registros de los dos archivos de entrada pero ordenados.
Suponer que la estructura de los registros es:

struct articulo
{

long clave;
char nombre [20];
int cantidad;
char origen[10];

};

El campo clave es por el que tendrán que estar ordena-
dos los registros.

15.2. Se tiene que ordenar un archivo compuesto de registros
con las existencias de los artículos de un almacén. El
archivo es demasiado grande como para leerlo en memo-
ria en un array de estructuras, ordenar el array y escri-
birlo al final, una vez ordenado, en el disco. La única
manera es leer cada doscientos registros, ordenarlos en
memoria y escribirlos en archivos diferentes. Una vez
que se tienen todos los archivos parciales ordenados hay
que irlos mezclando, como se indica en el ejercicio ante-
rior, sucesivamente hasta tener un archivo con todos los
registros del original, pero ordenados. Utilizar la estruc-
tura del ejercicio anterior.

15.3. En un archivo de texto se conserva la salida de las trans-
acciones con los proveedores de una cadena de tienda.
Se ha perdido el listado original de proveedores y se
desea reconstruirlo a partir del archivo de transacciones.
Se sabe que cada línea del archivo comienza con el
nombre del proveedor. Se pide escribir un programa que
lea el archivo de transacciones, obtenga el nombre del
proveedor con los caracteres hasta el primer espacio en
blanco y muestre una lista con todos los proveedores
diferentes con los que se trabaja en las tiendas.

15.4. Una vez obtenida del ejercicio anterior la lista de pro-
veedores desde el archivo de transacciones, se desea
saber con qué proveedores se ha trabajado más. Para
ello se sabe que en archivo de texto se apuntaba en cada
línea la cantidad pagada en cada operación.
Evidentemente como hay varias transacciones con un
mismo proveedor es necesario acumularlas todas para
saber el monto total de las transacciones por proveedor.
Una vez que se tiene esta cantidad hay que escribirla en
un archivo de proveedores ordenados descendentemen-
te por la cantidad total pagada.

15.5. El sistema informático de una gran superficie comer-
cial va guardando en un archivo binario la información
de las operaciones de cada una de las cajas. La infor-
mación de cada operación es de tamaño variable y con-
siste en el número de caja, la cantidad total pagada, el
modo de pago (contado o tarjeta) una lista con cada uno
de los artículos comprados y su cantidad. Como cada
operación tiene una lista de artículos comprados de
tamaño diferente, el primer campo de cada registro
guardado indica el número de artículos de la lista del
registro que aparece a continuación. Escribir un pro-
grama que lea cada registro de forma adecuada y mues-
tre en pantalla toda la información de cada operación.
El tipo del registro de tamaño variable utilizado es el
siguiente:

struct oper
{

int numarticulos;
int caja;
float total;
struct articulo
{

char nombre[15];
float precio;

} *lista;
};

15.6. Modificar el programa del ejercicio anterior para que
produzca listados por agrupados caja o por nombre de
artículo.

ap.15 11/6/05 21:44 Página 266

Grandes cantidades de datos se almacenan normalmente en dispositivos de memoria externa. Este capítulo se dedica a la orga-
nización y gestión de datos estructurados sobre dispositivos de almacenamiento secundario, tales como discos magnéticos,
CDs... .Las técnicas requeridas para gestionar datos en archivos son diferentes de las técnicas que estructuran los datos en
memoria principal, aunque se construyen con ayuda de estructuras utilizadas en memoria principal.

Los algoritmos de ordenación presentados en el capitulo 10 no se pueden aplicar si la cantidad de datos a ordenar no cabe
en la memoria principal de la computadora y están en un dispositivo de almacenamiento externo. Es necesario aplicar nuevas
técnicas de ordenación que se complementen con las ya estudiadas. Entre las técnicas más importantes destaca la fusión o mez-
cla. Mezclar, significa combinar dos (o más) secuencias en una sola secuencia ordenada por medio de una selección repetida
entre los componentes accesibles en ese momento.

16.1 Registros
Un archivo o fichero es un conjunto de datos estructurados en una colección de registros, que son de igual tipo y constan a su
vez de diferentes entidades de nivel más bajo denominadas campos. Un registro es una colección de campos lógicamente rela-
cionados, que pueden ser tratados como una unidad por algún programa.

EJEMPLO 16.1 Definición de registro

El concepto de registro es similar al concepto de estructura (struct) de C. Una posible representación en C del regis-
tro libro es la siguiente:

struct libro
{
char titulo[46];
char autor [80];
char editorial[35];
struct fecha fechaEdicion;
int numPags;
long isbn;

};

267

CAPÍTULO 16

Organización de datos
en un archivo

ap.16 11/6/05 21:45 Página 267

Una clave es un campo de datos que identifica el registro y lo diferencia de otros registros. Normalmente los registros de
un archivo se organizan según un campo clave. Claves típicas son números de identificación, nombres; en general puede ser
una clave cualquier campo que admita relaciones de comparación. Por ejemplo, un archivo de libros puede estar organizado
por autor, o bien por editorial, etc.

16.2 Organización de archivos
La organización de un archivo define la forma en que los registros se disponen sobre el dispositivo de almacenamiento. La orga-
nización determina cómo estructurar los registros en un archivo. Se consideran tres organizaciones fundamentales:

• Organización secuencial.
• Organización directa.
• Organización secuencial indexada.

16.2.1 ORGANIZACIÓN SECUENCIAL
Un archivo con organización secuencial es una sucesión de registros almacenados consecutivamente, uno detrás de otro, de tal
modo que para acceder a un registro dado es necesario pasar por todos los registros que le preceden.

Un archivo con organización secuencial se puede procesar tanto en modo texto como en modo binario. En C para crear estos
archivos se abren (fopen()) especificando en el argumento modo: “w”, “a”, “wb” o “ab”; a continuación se escriben los
registros utilizando, normalmente, las funciones fwrite(), fprintf() y fputs().

EJEMPLO 16.2 Operaciones con archivos secuenciales

En el primer programa se leen una serie de registros de tipo Distrito para guardarlos en un archivo y en el segundo
programa se leen del fichero (archivo) para contabilizar los datos escritos.

typedef struct
{
char candidato1[41];
long vot1;
char candidato2[41];
long vot2;
char candidato3[41];
long vot3;

} Distrito;

char* archivo = “Petanca.dat”;
FILE *pf = NULL;

void main()
{
Distrito d;
int termina;

pf = fopen (archivo, “ab”);
if (pf == NULL)
{
puts (“No se puede crear el archivo.”);
exit (-1);

}

strcpy (d.candidato1,”Lis Alebuche”);
strcpy (d.candidato2,”Pasionis Cabitorihe”);

CAPÍTULO 16 Organización de datos en un archivo268

ap.16 11/6/05 21:45 Página 268

strcpy (d.candidato3,”Gulius Martaria”);

termina = 0;
puts (“Introducir los votos de cada candidato, termina con 0 0 0”);
do {
leeRegistro (&d);
if ((d.vot1 == 0) && (d.vot2 == 0) && (d.vot3 == 0))
{

termina = 1;
puts (“Fin del proceso. Se cierra el archivo”);

}
else

fwrite (&d, sizeof(Distrito), 1, pf);
} while (!termina);
fclose (pf);

}

void leeRegistro (Distrito* d)
{
printf (“Votos para %s : “, d -> candidato1);
scanf (“%ld”, &(d -> vot1));
printf (“Votos para %s : “, d -> candidato2);
scanf (“%ld”, &(d -> vot2));
printf (“Votos para %s : “, d -> candidato3);
scanf (“%ld”, &(d -> vot3));

}

/*
Código fuente del programa, cntavoto.c, que lee secuencialmente
los registros del archivo Petanca.dat y cuenta los votos.

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include “petanca.h”

void main()
{
Distrito d;
int votos[3] = {0,0,0};

pf = fopen (archivo, “rb”);
if (pf == NULL)
{
puts (“No se puede leer el archivo.”);
exit (-1);

}

fread (&d, sizeof(Distrito),1, pf);
while (!feof (pf))
{

votos[0] += d.vot1;
votos[1] += d.vot2;
votos[2] += d.vot3;

CAPÍTULO 16 Organización de datos en un archivo 269

ap.16 11/6/05 21:45 Página 269

fread(&d, sizeof(Distrito),1, pf);
}
fclose (pf);

puts(“\n\tVOTOS DE CADA CANDIDATO\n”);
printf (“ %s %ld: \n”, d.candidato1, votos[0]);
printf (“ %s %ld: \n”, d.candidato2, votos[1]);
printf (“ %s %ld: \n”, d.candidato3, votos[2]);

}

16.2.2 ORGANIZACIÓN DIRECTA
Un archivo con organización directa (aleatoria), o sencillamente archivo directo, se caracteriza por que el acceso a cualquier
registro es directo mediante la especificación de un índice, que da la posición ocupada por el registro respecto al origen del
archivo.

EJEMPLO 16.3 Tratamiento de un archivo directo

En la sección siguiente de un programa de gestión de habitaciones en un hotel, se leen los registros utilizando una función que
devuelve la situación del comienzo de cada registro en el archivo directo a partir del número de habitación:

#define desplazamiento(n) ((n - 1) * sizeof(Habitacion))

void entrada(void)
{
Habitacion h;
int encontrado, nh;

/* Búsqueda secuencial de primera habitación libre */
encontrado = 0;
nh = 0;

if (fb == NULL) fb = fopen (fich, “rb+”);
fseek (fb, 0L, SEEK_SET);

while ((nh < numhab) && !encontrado)
{

fread (&h, sizeof(h), 1, fb);
nh++;
if (strcmp (h.nif , “*”) == 0 /* Habitación libre */
{

encontrado = 1;
leerRes (&h);

fseek (fb, desplazamiento(h.num), SEEK_SET);
fwrite (&h, sizeof(h), 1, fb);
puts (“Datos grabados”);

}
}
if (!encontrado) puts (“Hotel completo “);
fflush (fb);

}

CAPÍTULO 16 Organización de datos en un archivo270

ap.16 11/6/05 21:45 Página 270

16.3 Archivos con direccionamiento hash
La organización directa tiene el inconveniente de que no haya un campo del registro que permita obtener posiciones consecu-
tivas, y, como consecuencia, surgen muchos huecos libres entre registros. Entonces la organización directa necesita programar
una relación entre un campo clave del registro y la posición que ocupa.

Una función hash, o de dispersión, convierte un campo clave (un entero o una cadena), en un valor entero dentro del rango
de posiciones que puede ocupar un registro de un archivo.

EJEMPLO 16.4 Funciones hash

La clave puede ser el número de serie de un artículo (hasta 6 dígitos) y si están previstos un máximo de tamIndex regis-
tros, la función de direccionamiento tiene que ser capaz de transformar valores pertenecientes al rango 0 .. 999999, en
un conjunto de rango 0 .. tamIndex-1. La clave también puede ser una cadena de caracteres, en ese caso se hace una
transformación previa a valor entero.

La función hash mas utilizada por su sencillez se denomina aritmética modular. Genera valores dispersos calcu-
lando el resto de la división entera entre la clave x y el número máximo de registros previstos.

x % tamIndex = genera un número entero de 0 a tamIndex-1

La función hash o función de transformación debe reducir al máximo las colisiones. Se produce una colisión cuan-
do dos registros de claves distintas, c1 y c2, producen la misma dirección, h(c1) = h(c2). Nunca existirá una garan-
tía plena de que no haya colisiones, y más sin conocer de antemano las claves y las direcciones. La experiencia enseña
que siempre habrá que preparar la resolución de colisiones para cuando se produzca alguna.

EJEMPLO 16.5 Obtención de la función "hash" más adecuada

Considerar una aplicación en la que se debe almacenar n = 900 registros. El campo clave elegido para dispersar los
registros en el archivo es el número de identificación. Elegir el tamaño de la tabla de dispersión y calcular la posición
que ocupa los registros cuyo número de identificación es: 245643, 245981 y 257135

Una buena elección, en este supuesto, de tamIndex es 997 al ser un número primo mayor que el número de registros
que se van a grabar, 900. Se aplica la función hash de aritmética modular y se obtienen estas direcciones:

h(245643)= 245643 % 997 = 381
h(245981)= 245981 % 997 = 719
h(257135)= 257135 % 997 = 906

Para el diseño del archivo se deben considerar dos áreas de memoria externa. El área principal y el área de sinónimos
o colisiones. Aproximadamente el archivo se crea con un 25 por 100 más que el número de registros necesarios. Un
archivo hash se caracteriza por:

• Se accede a las posiciones del archivo a través del valor que devuelve una función hash.
• La función hash aplica un algoritmo para transformar uno de los campos llamado campo clave en una posición del

archivo.
• El campo elegido para la función debe ser único (no repetirse) y conocido fácilmente por el usuario, porque a través

de ese campo el usuario va a acceder al programa.
• Todas las funciones hash provocan colisiones o sinónimos. Para solucionar estas repeticiones se definen dos zonas:

• Zona de datos o principal en la que el acceso es directo al aplicarle la función hash.
• Zona de colisiones o sinónimos en la que el acceso es secuencial. En esta zona se guardan las estructuras o regis-

tros en los que su campo clave ha producido una posición repetida. Y se van colocando secuencialmente, es decir,
en la siguiente posición que esté libre.

EJEMPLO 16.6 Manejo de un archivo directo con acceso por función "hash"

Los libros de una pequeña librería van a guardarse en un archivo para poder realizar accesos tan rápido como sea
posible. Cada registro (libro) tiene los campos código (cadena de 6 caracteres), autor y titulo. El archivo debe estar

CAPÍTULO 16 Organización de datos en un archivo 271

ap.16 11/6/05 21:45 Página 271

organizado como de acceso directo con transformación de claves (archivo hash), la posición de un registro se obten-
drá aplicando aritmética modular al campo clave: código. La librería tiene capacidad para 190 libros.

Para el diseño del archivo se crearán 240 registros que se distribuirán de la siguiente forma:

1. Posiciones 0 - 198 constituyen el área principal del archivo.
2. Posiciones 199 - 239 constituyen el área de desbordamiento o de colisiones.

El campo clave es una cadena de 6 caracteres, que se transforma considerando que es una secuencia de valores numé-
ricos (ordinal ASCII de cada carácter) en base 27. Por ejemplo, el código 2R545 se transforma en:

‘2’*274 + ‘R’*273 + ‘5’*272 + ‘4’*271 + ‘5’*270

• En C, un carácter se representa como un valor entero que es, precisamente, su ordinal. La transformación da lugar a
valores que sobrepasan el máximo entero (incluso con enteros largos), generando números negativos. No es proble-
ma, simplemente se cambia de signo.

• La creación del archivo escribe 240 registros, con el campo código == ‘*’, para indicar que están disponibles (de baja).
• Para dar de alta un registro, primero se obtiene la posición (función hash); si se encuentra dicha posición ocupada, el

nuevo registro deberá ir al área de colisiones (sinónimos).
• El proceso de consulta de un registro debe comenzar con la entrada del código, la transformación de la clave permite

obtener la posición del registro. A continuación se lee el registro, la comparación del código de entrada con el código
del registro determina si se ha encontrado. Si son distintos, se explora secuencialmente el área de colisiones.

• La baja de un registro también comienza con la entrada del código, se realiza la búsqueda, de igual forma que en la
consulta, y se escribe la marca ‘*’ en el campo código (se puede elegir otro campo) para indicar que ese hueco (regis-
tro) está libre.

• La función hash devuelve un número entero n de 0 a (199-1); por esa razón el desplazamiento desde el origen del
archivo se obtiene multiplicando n por el tamaño de un registro.

16.4 Archivos secuenciales indexados
La guía de teléfonos es un ejemplo típico de archivo secuencial indexado con dos niveles de índices, el nivel superior para las
letras iniciales y el nivel menor para las cabeceras de página. Por consiguiente, cada archivo secuencial indexado consta de un
archivo de índices y un archivo de datos.

Para que un archivo pueda organizarse en forma secuencial indexada el tipo de los registros contendrá un campo clave iden-
tificador. La clave se asocia con la dirección (posición) del registro de datos en el archivo principal.

Un archivo con organización secuencial indexada consta de las siguientes partes:

• Área de datos. Contiene los registros de datos en forma secuencial, sin dejar huecos intercalados.
• Área de índices. Es una tabla que contiene la clave identificativa y la dirección de almacenamiento. Puede haber índices

enlazados.

El área de índices normalmente está en memoria principal para aumentar la eficiencia en los tiempos de acceso. Ahora bien,
debe haber un archivo donde guardar los índices para posteriores explotaciones del archivo de datos. Entonces al diseñar un archi-
vo indexado hay que pensar que se manejarán dos tipos de archivos, el de datos y el de índices, con sus respectivos registros.

EJEMPLO 16.7 Proceso de un archivo secuencial indexado

Por ejemplo, si se quiere grabar los atletas federados en un archivo secuencial indexado, el campo índice que se puede
elegir es el nombre del atleta (también se puede elegir el número de carnet de federado). Habría que declarar dos tipos
de registros:

typedef struct
{
int edad;

CAPÍTULO 16 Organización de datos en un archivo272

ap.16 11/6/05 21:45 Página 272

char carnet[15];
char club[29];
char nombre[41];
char sexo;
char categoria[21];
char direccion[71];

} Atleta;

typedef struct
{
char nombre[41];
long posicion;

} Indice;

Al diseñar un archivo secuencial indexado, lo primero a decidir es cuál va a ser el campo clave. Los registros han
de ser grabados en orden secuencial, y simultáneamente a la grabación de los registros, el sistema crea los índices en
orden secuencial ascendente del contenido del campo clave.

A continuación se desarrollan las operaciones (altas, bajas, consultas ...) para un archivo con esta organización.
También es necesario considerar el inicio y la salida de la aplicación que procesa un archivo indexado, para cargar y
descargar, respectivamente, la tabla de índices.

Los registros tratados se corresponden con artículos de un supermercado. Los campos de cada registro: nombre del
artículo, identificador, precio, unidades. Un campo clave adecuado para este tipo de registro es el nombre del artículo.
Para añadir registros el archivo de datos este se abre (puede que previamente se haya abierto) en modo lectura/escritu-
ra, se realizarán operaciones de lectura para comprobar datos . El proceso sigue estos pasos:

1. Leer el campo clave y el resto de campos del artículo.
2. Comprobar si existe, o no, en la tabla de índices. Se hace una búsqueda binaria de la clave en la tabla.
3. Si existe en la tabla: se lee el registro del archivo de datos según la dirección que se obtiene de la tabla. Puede ocu-

rrir que el artículo, previamente, se hubiera dado de baja, o bien que se quiera re-escribir; en cualquier caso se deja
elegir al usuario la acción que desee.

4. Si no existe: se graba en el siguiente registro vacío del archivo de datos. A continuación, se inserta ordenadamente
en la tabla de índices el nuevo campo clave junto a su dirección en el archivo de datos.

Para dar de baja un registro (en el ejemplo, un artículo) del archivo de datos, simplemente, se marca el campo esta-
do a cero que indica borrado, y se elimina la entrada de la tabla de índices. El archivo de datos estará abierto en modo
lectura/escritura. El proceso sigue estos pasos:

1. Leer el campo clave del registro a dar de baja.
2. Comprobar si existe, o no, en la tabla de índices (búsqueda binaria).
3. Si existe en la tabla: se lee el registro del archivo de datos según la dirección que se obtiene de la tabla para confir-

mar la acción.
4. Si el usuario confirma la acción, se escribe el registro en el archivo con la marca estado a cero. Además, en la tabla

de índices se elimina la entrada del campo clave.

La consulta de un registro (un artículo) sigue los pasos:

1. Leer el campo clave (en el desarrollo, el nombre del artículo) del registro que se desea consultar.
2. Buscar en la tabla de índices si existe, o no (búsqueda binaria).
3. Si existe: se lee el registro del archivo de datos según la dirección que se obtiene de la tabla para mostrar el registro

en pantalla.

La operación modificar, típica de archivo, sigue los mismos pasos que los expuestos anteriormente. Se debe añadir
el paso de escribir el registro, que se ha leído, con el campo modificado.

La primera vez que se ejecuta la aplicación se crea el archivo de datos y el de índices, cada vez que se produce un
alta se graba un registro y a la vez se inserta una entrada en la tabla. Cuando se de por terminada la ejecución se gra-

CAPÍTULO 16 Organización de datos en un archivo 273

ap.16 11/6/05 21:45 Página 273

bará la tabla en el archivo de índices llamando a grabaIndice(). Nuevas ejecuciones han de leer el archivo de índi-
ces y escribir estos en la tabla (memoria principal). El primer registro del archivo contiene el número de entradas, el
resto del archivo son los índices. Como se grabaron en orden del campo clave, también se leen en orden y entonces la
tabla de índices queda ordenada.

16.5 Ordenación de archivos: ordenación externa
Los algoritmos de ordenación estudiados hasta ahora utilizan arrays para contener los elementos a ordenar, por lo que es nece-
sario que la memoria interna tenga capacidad suficiente. Para ordenar secuencias grandes de elementos que se encuentran en
soporte externo (posiblemente no pueden almacenarse en memoria interna), se aplican los algoritmos de ordenación externa.

El tratamiento de archivos secuenciales exige que estos se encuentren ordenados respecto a un campo del registro, deno-
minado campo clave K. Los distintos algoritmos de ordenación externa utilizan el esquema general de separación y fusión o
mezcla. Por separación se entiende la distribución de secuencias de registros ordenados en varios archivos; por fusión la mez-
cla de dos o más secuencias ordenadas en una única secuencia ordenada. Variaciones de este esquema general dan lugar a dife-
rentes algoritmos de ordenación externa.

FUSIÓN DE ARCHIVOS

La fusión o mezcla de archivos consiste en reunir en un archivo los registros de dos o mas archivos ordenados por un campo
clave T. El archivo resultante también está ordenado por la clave T.

EJEMPLO 16.8 Fusión de archivos

Suponer que se dispone de dos archivos ordenados F1 y F2, se desea mezclar o fundir en un sólo archivo ordenado,
F3. Las claves son

F1 12 24 36 37 40 52
F2 3 8 9 20

Para realizar la fusión es preciso acceder a los archivos F1 y F2, en cada operación sólo se lee un elemento del archivo
dado. Es necesario una variable de trabajo por cada archivo (actual1, actual2) para representar el elemento actual
de éste el archivo.

Se comparan las claves actual. y actua2 y se sitúa la mas pequeña 3 (actual2) en el archivo de salida (F3). A con-
tinuación, se avanza un elemento el archivo F2 y se realiza una nueva comparación de los elementos situados en las
variables actual.

actual1
F1

F2

actual2

F3

La nueva comparación sitúa la clave mas pequeña 8 (actual2) enF3. Se avanza un elemento (20) el archivo F2 y se
realiza una nueva comparación. Ahora la clave mas pequeña es 12 (actual1) que se sitúa en F3. A continuación, se
avanza un elemento el archivo F1 y se vuelve a comparar las claves actual.

actual1
F1

F2

actual2

F3 3 8 12

3 8 20

12 24 36 40 52

3

3 8 20

12 24 36 40 52

CAPÍTULO 16 Organización de datos en un archivo274

ap.16 11/6/05 21:45 Página 274

Cuando uno u otro archivo de entrada se ha terminado, se copia el resto del archivo sobre el archivo de salida. El resul-
tado final será:

F3

La codificación correspondiente de fusión de archivos (se supone que el campo clave es de tipo int) es:

void fusion (FILE* f1, FILE* f2, FILE* f3)
{
Registro actual1, actual2, d;

f3 = fopen (“fileDestino”, “wt”);
f1 = fopen (“fileOrigen1”, “rt”);
f2 = fopen (“fileOrigen2”, “rt”);

if (f1 == NULL || f2 == NULL || f3 == NULL)
{

puts (“Error en los archivos.”);
exit (-1);

}

fread (&actual1, sizeof(Registro), 1, f1);
fread (&actual2, sizeof(Registro), 1, f2);

while (!feof (f1) && !feof (f2))
{

if (actual1.clave < actual2.clave)
{

d = actual1;
fread (&actual1, sizeof(Registro), 1, f1);

}
else
{

d = actual2;
fread (&actual2, sizeof(Registro), 1, f2);

}
fwrite (&d, sizeof(Registro), 1, f3);

}
/* Lectura terminada de f1 o f2. Se escriben los registros no procesados */

while (!feof (f1))
{

fwrite (&actual1, sizeof(Registro), 1, f3);
fread (&actual1, sizeof(Registro), 1, f1);

}
while (!feof (f2))
{

fwrite (&actual2, sizeof(Registro), 1, f3);
fread (&actual2, sizeof(Registro), 1, f1);

}

fclose (f);
fclose (f1);
fclose (f2);

}

3 8 12 24 36 40 52

CAPÍTULO 16 Organización de datos en un archivo 275

ap.16 11/6/05 21:45 Página 275

CLASIFICACIÓN POR MEZCLA DIRECTA

El método más fácil de comprender es el denominado mezcla directa. Utiliza el esquema iterativo de separación y mezcla. Se
manejan tres archivos, el archivo original y dos archivos auxiliares.

El proceso consiste en:

1. Separar registros individuales del archivo original O en dos archivos F1 y F2.
2. Mezclar los archivos F1 y F2 combinando registros individuales (según sus claves) y formando pares ordenados que son

escritos en el archivo O.
3. Separar pares de registros del archivo original O en dos archivos F1 y F2.
4. Mezclar F1 y F2 combinando pares de registros y formando cuádruplos ordenados que son escritos en el archivo O.

Cada separación (partición) y mezcla duplica la longitud de las secuencias ordenadas. La primera pasada (separación +
mezcla) se hace con secuencias de longitud 1 y la mezcla produce secuencias de longitud 2; la segunda pasada produce secuen-
cias de longitud 4. Cada pasada duplica la longitud de las secuencias; en la pasa n la longitud será 2n. El algoritmo termina
cuando la longitud de la secuencia supere el número de registros del archivo a ordenar.

EJEMPLO 16.9 Mezcla directa

Un archivo está formado por registros que tienen un campo clave de tipo entero. Suponiendo que las claves del archi-
vo son:

34 23 12 59 73 44 8 19 28 51

Se van a realizar los pasos que sigue el algoritmo de mezcla directa para ordenar el archivo. Se considera el archivo O
como el original, F1 y F2 archivos auxiliares.

Pasada 1

Separación :
F1: 34 12 73 8 28
F2: 23 59 44 19 51

Mezcla formando duplos ordenados:
O: 23 34 12 59 44 73 8 19 28 51

Pasada 2

Separación:
F1: 23 34 44 73 28 51
F2: 12 59 8 19

Mezcla formando cuádruplos ordenados:
O: 12 23 34 59 8 19 44 73 28 51

Pasada 3

Separación:
F1: 12 23 34 59 28 51
F2: 8 19 44 73

Mezcla formando octuplos ordenados:
O: 8 12 19 23 34 44 59 73 28 51

CAPÍTULO 16 Organización de datos en un archivo276

ap.16 11/6/05 21:45 Página 276

Pasada 4

Separación:
F1: 8 12 19 23 34 44 59 73
F2: 28 51

Mezcla con la que ya se obtiene el archivo ordenado:
O: 8 12 19 23 28 34 44 51 59 73

CAPÍTULO 16 Organización de datos en un archivo 277

PROBLEMAS RESUELTOS
16.1 Codifique del algoritmo mezcla directa

Análisis del problema

La implementación del método se basa, fundamentalmente, en dos rutinas: distribuir() y mezclar(). La primera sepa-
ra secuencias de registros del archivo original en los dos archivos auxiliares. La segunda mezcla secuencias de los dos archi-
vos auxiliares y la escribe en el archivo original. Las pasadas que da el algoritmo son iteraciones de un bucle mientras
longitud_secuencia menor numero_registros; cada iteración consiste en llamar a distribuir() y mezclar(). El
número de registros del archivo se determina dividiendo posición_fin_archivo por tamaño_registro:

Codificación

int numeroReg (FILE* pf)
{
if (pf != NULL)
{
fpos_t fin;
fseek (pf, 0L, SEEK_END);
fgetpos (pf, &fin);
return fin / sizeof (Registro);

}
else
return 0;

}
La implementación que se escribe a continuación supone que los registros se ordenan respecto de un campo clave de tipo
int:

typedef int TipoClave;

typedef struct
{
TipoClave clave;

} Registro;

void mezclaDirecta(FILE *f)
{
int longSec;

ap.16 11/6/05 21:45 Página 277

int numReg;
FILE *f1 = NULL, *f2 = NULL;

f = fopen(“fileorg”,”rb”);

numReg = numeroReg(f);
longSec = 1;

while (longSec < numReg)
{
distribuir(f, f1, f2, longSec, numReg);
mezclar(f1, f2, f, &longSec, numReg);

}
}

void distribuir(FILE* f, FILE* f1, FILE* f2, int lonSec, int numReg)
{
int numSec, resto, i;

numSec = numReg/(2*lonSec);
resto = numReg%(2*lonSec);

f = fopen(“fileorg”,”rb”);
f1 = fopen(“fileAux1”,”wb”);
f2 = fopen(“fileAux2”,”wb”);

for (i = 1; i <= numSec; i++)
{
subSecuencia(f, f1, lonSec);
subSecuencia(f, f2, lonSec);

}
/*
Se procesa el resto de registros del archivo
*/
if (resto > lonSec)
resto -= lonSec;

else
{
lonSec = resto;
resto = 0;

}
subSecuencia(f, f1, lonSec);
subSecuencia(f, f2, resto);

fclose(f1); fclose(f2);fclose(f);

}

void subSecuencia(FILE* f, FILE* t, int longSec)
{
Registro r;
int j;
for (j = 1; j <= longSec; j++)

CAPÍTULO 16 Organización de datos en un archivo278

ap.16 11/6/05 21:45 Página 278

{
fread(&r, sizeof(Registro), 1, f);
fwrite(&r, sizeof(Registro), 1, t);

}
}

void mezclar(FILE* f1, FILE* f2, FILE* f, int* lonSec, int numReg)
{
int numSec, resto, s, i, j, k, n1, n2;
Registro r1, r2;

numSec = numReg/(2*(*lonSec)); /* número de subsecuencias */
resto = numReg%(2*(*lonSec));

f = fopen(“fileorg”,”wb”);
f1 = fopen(“fileAux1”,”rb”);
f2 = fopen(“fileAux2”,”rb”);

fread(&r1, sizeof(Registro), 1, f1);
fread(&r2, sizeof(Registro), 1, f2);

for (s = 1; s <= numSec+1; s++)
{
n1 = n2 = (*lonSec);
if (s == numSec+1)
{ /* proceso de los registros de la subsecuencia incompleta */
if (resto > (*lonSec))
n2 = resto - (*lonSec);

else
{
n1 = resto;
n2 = 0;

}
}

i = j = 1;
while (i <= n1 && j <= n2)
{
Registro d;
if (r1.clave < r2.clave)
{
d = r1;
fread(&r1, sizeof(Registro), 1, f1);
i++;

}
else
{
d = r2;
fread(&r2, sizeof(Registro), 1, f2);
j++;

}
fwrite(&d, sizeof(Registro), 1, f);

}

CAPÍTULO 16 Organización de datos en un archivo 279

ap.16 11/6/05 21:45 Página 279

/*
Los registros no procesados se escriben directamente

*/
for (k = i; k <= n1; k++)
{
fwrite(&r1, sizeof(Registro), 1, f);
fread(&r1, sizeof(Registro), 1, f1);

}

for (k = j; k <= n2; k++)
{
fwrite(&r2, sizeof(Registro), 1, f);
fread(&r2, sizeof(Registro), 1, f2);

}
}

(*lonSec) *= 2;
fclose (f);fclose(f1);fclose(f2);

}

16.2 Las reservas de un hotel de n habitaciones se van a gestionar con un archivo directo. Cada reserva tiene los campos nom-
bre del cliente, NIF y número de habitación asignada. Los números de habitación son consecutivos, desde 1 hasta el núme-
ro de habitaciones. Entonces, se utiliza como índice de registro el número de habitación. Las operaciones que se podrán
realizar son: inauguración, entrada de una reserva, finalización de estancia, consulta de habitaciones.

Análisis del problema

Cada registro del archivo se va a corresponder con una reserva y a la vez con el estado de una habitación. Si la habitación
n está ocupada el registro de índice n contendrá el nombre del cliente y su nif. Si está vacía, libre, el campo nif va a tener
un asterisco (‘*’). Por consiguiente, se utiliza como indicador de habitación libre que nif == *.
La operación inauguración inicializa el archivo, escribe tantos registros como habitaciones; cada registro con el campo nif
igual a la clave, *, para indicar habitación libre y su número de habitación.
La operación entrada busca en el archivo la primera habitación libre y en su registro escribe uno nuevo con los datos de la
reserva.
La finalización de una reserva consiste en asignar al campo nif la clave (*) que indica habitación libre.
También se añade la operación ocupadas para listar todas las habitaciones ocupadas en ese momento.

Codificación

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#define numhab 55
FILE *fb = NULL;
const char fich[] = “fichero.dat”;

typedef struct
{
int num;
char nif[13];
char nombre[45];

} Habitacion;

CAPÍTULO 16 Organización de datos en un archivo280

ap.16 11/6/05 21:45 Página 280

#define desplazamiento(n) ((n - 1) * sizeof(Habitacion))

void inaguracion (void);
void entrada (void);
void salida (void);
void ocupadas (void);
void leerRes (Habitacion * ph);
void escribirRes (Habitacion h);

void main()
{
char opcion;

do
{
puts (“1. Inaguracion”);
puts (“2. Entrada “);
puts (“3. Salida “);
puts (“4. Ocupadas “);
puts (“5. Salir “);
do {
printf(“Elige una opción “);

scanf(“%c%*c”, &opcion);
} while (opcion < ‘1’ || opcion > ‘5’);

switch (opcion)
{
case ‘1’:
inaguracion();
break;

case ‘2’:
entrada();
break;

case ‘3’:
salida();
break;

case ‘4’:
ocupadas();
system(“pause”);

break;
}
}
while (opcion != ‘5’);
if (fb != NULL) fclose (fb);

}

void inaguracion (void)
{
Habitacion h;
int i;
char opcion;

if (fb != NULL)

CAPÍTULO 16 Organización de datos en un archivo 281

ap.16 11/6/05 21:45 Página 281

{
printf (“Archivo ya creado, ¿ desea continuar(S/N) ?: “);
scanf (“%c%*c”, &opcion);
if (toupper (opcion) != ‘N’) return;

}

fb = fopen (fich, “wb+”);
for (i = 1; i <= numhab; i++)
{
h.num = i;
strcpy (h.nif, “*”);
fwrite (&h, sizeof(h), 1, fb);

}
flux (fb);

}

void entrada(void)
{
Habitacion h;
int encontrado, nh;

/* Búsqueda secuencial de primera habitación libre */
encontrado = 0;
nh = 0;

if (fb == NULL)
fb = fopen (fich, “rb+”);
fseek (fb, 0L, SEEK_SET);

while ((nh < numhab) && !encontrado)
{
fread (&h, sizeof(h), 1, fb);
nh++;
if (strcmp (h.nif ,”*”) == 0) /* Habitación libre */
{
encontrado = 1;
leerRes (&h);
fseek (fb, desplazamiento(h.num), SEEK_SET);
fwrite (&h, sizeof(h), 1, fb);
puts (“Datos grabados”);

}
}
if (!encontrado) puts (“Hotel completo “);
fflush (fb);

}
void salida (void)
{
Habitacion h;
int n;
char r;

if (fb == NULL)
fb = fopen (fich, “rb+”);

CAPÍTULO 16 Organización de datos en un archivo282

ap.16 11/6/05 21:45 Página 282

printf (“Numero de habitacion: “);
scanf (“%d%*c”, &n);

fseek (fb, desplazamiento(n), SEEK_SET);
fread (&h, sizeof(h), 1, fb);

if (strcmp (h.nif,”*”) != 0)
{
escribirRes (h);
printf (“¿Son correctos los datos?(S/N) “);
scanf (“%c%*c”,&r);
if (toupper (r) == ‘S’)
{
strcpy (h.nif, “*”);
fseek (fb, - sizeof(h), SEEK_CUR);

/* se posiciona de nuevo */
fwrite (&h, sizeof(h), 1, fb);

}
}
else
puts (“La habitacion figura como libre”);

fflush (fb);
}

void ocupadas (void)
{
Habitacion h;
int n;

if (fb == NULL)
fb = fopen(fich, “rb+”);

fseek (fb, 0L, SEEK_SET);
puts (“ Numero \t NIF \t\t Nombre”);
puts (“ habitacion “);
for (n = 1 ; n <= numhab; n++)
{
fread (&h, sizeof(h), 1, fb);
if (strcmp (h.nif ,”*”) != 0)
escribirRes (h);

}
}

void leerRes (Habitacion *ph)
{
printf (“Nif: “);
gets (ph -> nif);
printf (“Nombre “);
gets (ph -> nombre);

}

void escribirRes (Habitacion h)
{

CAPÍTULO 16 Organización de datos en un archivo 283

ap.16 11/6/05 21:45 Página 283

printf (“\t %d”, h.num);
printf (“\t%s\t”, h.nif);
printf “\t%s\n”, h.nombre);

}

16.3. Un archivo secuencial contiene registros con un campo clave de tipo entero en el rango de 0 a 777. Escribir la función vol-
cado(), que genere un archivo directo de tal forma que el número de registro coincida con el campo clave.

Análisis del problema

Se va a suponer que en los registros no se repite ninguna clave. La entrada de la función es el nombre del nuevo fichero
directo y el puntero al fichero secuencial. La función lee cada registro del fichero secuencial, obtiene la clave y utiliza ese
valor para colocar el registro en una posición de valor igual a la clave.

Codificación

Volcado (char *nuevonombre, FILE *fps)
{
FILE *pfd;
struct reg registro;
int nreg;

if ((pfd = fopen (nuevonombre, “wb”))==NULL)
{
puts (“NO se puede crear el fichero”);
return;

}

while (¡feof (fps))
{
fread (®istro, sizeof(registro), 1, fps);
nreg = registro.clave;
fseek (pfd, nreg*sizeof(registro), SEEK_SET);
fwrite (®istro, sizeof(registro), 1, pfd);

}
fclose(pfd);
}

16.4. Escribir la función principal para gestionar el archivo secuencial indexado de artículos de un supermercado. Los campos
que describen cada artículo son: nombre del artículo, identificador, precio, unidades.

Análisis del problema

Únicamente se escribe la codificación de la función main() con un sencillo menú para que el usuario elija la operación que
quiere realizar. El archivo articulo.h contiene la declaración de las estructuras Articulo e Indice, la macro desplaza-
miento y la declaración de los punteros a FILE, fix y findices. Los prototipos de las funciones desarrolladas en el ante-
rior apartado se encuentran en el archivo indexado.h; la implementación de las funciones está en el archivo indexado.c

Codificación (Consultar la página web del libro)

16.5 Los registros de un archivo secuencial indexado tienen un campo, estado, para conocer si el registro está dado de baja.
Escribir una función para compactar el archivo de datos, de tal forma que se eliminen físicamente los registros dados de
baja.

CAPÍTULO 16 Organización de datos en un archivo284

ap.16 11/6/05 21:45 Página 284

Análisis del problema

La mejor manera de realizar la operación consiste en ir leyendo la información del fichero original copiando en un nuevo
fichero solo aquellos registros con información válida. Como el fichero original está indexado habrá que asegurarse que el
fichero destino también lo esté. La forma que se realiza esto es construyendo un nuevo archivo de índices tras la generación
del nuevo fichero compactado.

Codificación

typedef struct
{
char clave[40];
long posicion;
} Indice;

#define MXAR 200
compactar()
Indice tabla[MXAR];
FILE *origen, *temp;
FILE *findices;
long pos = 0;

origen = fopen (“datos.dat”, “rb+”);
temp = fopen (“temp.dat”,”wb”);
findices = fopen (“indices.idx”,”wb”);

if ((¡origen || ¡temp || ¡findices)
{
puts (“NO se puede crear el fichero”);
return;
}

while (¡feof (origen))
{
fread (®istro, sizeof(registro), 1, origen);
if (estado == ACTIVO)
{
fwrite (®istro, sizeof(registro), 1, temp);
strcpy (tabla[i].clave, registro.clave);
tabla[i++].posicion = pos;
pos += sizeof(registro);
}

}
for (j=0; j<i; j++)

fwrite(&tabla[j], sizeof (Indice), findices);
fclose(origen);
fclose(temp);
fclose(findices);
remove(“datos.dat”);
rename(“temp.dat”, “datos.dat”);

}

CAPÍTULO 16 Organización de datos en un archivo 285

ap.16 11/6/05 21:45 Página 285

16.6 Realizar los cambios necesarios en la función fusión() que mezcla dos archivos secuenciales ordenados, ascendentemente
respecto al campo fecha de nacimiento. La fecha de nacimiento está formada por los campos de tipo int: mes, día y año.

Análisis del problema

La única diferencia respecto a una función de fusión que compare claves enteras es que la comparación entre claves de regis-
tro debe hacerse por medio de una función.

Codificación (Consultar la página web del libro)

16.7 Escribir una función que distribuya los registros de un archivo no ordenado, F, en otros dos F1 y F2, con la siguiente estra-
tegia: leer M (por ejemplo, 16) registros a la vez del archivo, ordenarlos utilizando un método de ordenación interna y a
continuación escribirlos, alternativamente, en F1 y F2.

Análisis del problema

Se trata de sustituir la función de distribución por otra que cumpla la especificación del enunciado.

Codificación

typedef int TipoClave;

typedef struct
{
TipoClave clave;

} Registro;

void distribuirM (FILE* f, FILE* f1, FILE* f2, int M, int numReg)
{
int numSec, resto, i;

numSec = numReg / (2*M);
resto = numReg % (2*M);

f = fopen (“fileorg”,”rb”);
f1 = fopen (“fileAux1”,”wb”);
f2 = fopen (“fileAux2”,”wb”);

for (i = 1; i <= numSec; i++)
{
subSecuenciaM (f, f1, M);
subSecuenciaM (f, f2, M);

}
/*
Se procesa el resto de registros del archivo

*/
if (resto > M)
{
resto -= M;
subSecuenciaM (f, f1, M);
subSecuenciaM (f, f2, resto);

}

CAPÍTULO 16 Organización de datos en un archivo286

ap.16 11/6/05 21:45 Página 286

else
subSecuenciaM (f, f1, resto);

fclose(f1);
fclose(f2);
fclose(f);

}

void subSecuenciaM (FILE* f, FILE* t, int m)
{
Registro r, tabla[m];
int j;

for (j = 1; j <= m; j++)
{
fread (&tabla[i], sizeof(Registro), 1, f);

}
ordenar (tabla, m);
for (j = 1; j <= m; j++)
{
fwrite (&tabla[i], sizeof(Registro), 1, t);

}
}

16.8 Modificar la implementación de la mezcla directa de tal forma que inicialmente se distribuya el fichero origen en secuen-
cias de M registros ordenados, según se explica en ejercicio 16.5. Y a partir de esa distribución se repitan los pasos del algo-
ritmo mezcla directa: fusión de M-uplas para dar lugar a 2M registros ordenados, separación ...

Codificación

void mezclaDirecta(FILE *f)
{

int longSec;
int numReg;
FILE *f1 = NULL, *f2 = NULL;

f = fopen (“fileorg”,”rb”);

numReg = numeroReg (f);
longSec = 16;

distribuirM (f, f1, f2, longsec, numReg);
mezclar (f1, f2, f, &longsec, numReg);

while (longSec < numReg)
{

distribuir (f, f1, f2, longSec, numReg);
mezclar (f1, f2, f, &longSec, numReg);

}
}

CAPÍTULO 16 Organización de datos en un archivo 287

ap.16 11/6/05 21:45 Página 287

16.9. Un archivo está ordenado alfabéticamente respecto un campo clave que es una cadena de caracteres. Diseñar un algorit-
mo e implementar para que la ordenación sea en sentido inverso.

Análisis del problema

Solamente es necesario copiarlo al revés en un fichero auxiliar y renombrarlo después.

Codificación

OrdenacionInversa (char *fichero)
{
struct registro reg;
int numregs;
FILE *pf, *pftemp, *aux;
fpos_t fin;

if ((pf = fopen (fichero, “rb”)) == NULL)
{
puts (“NO se puede crear el fichero”);
return;
}

if ((pftemp = fopen (“temp”, “rb”)) == NULL)
{
puts (“NO se puede crear el fichero”);
return;
}

fseek (pf, 0L, SEEK_END);
fgetpos (pf, &fin);
nregs = fin / sizeof(Registro);
while (nregs—)
{
fseek (pf, -sizeof (registro), SEEK_SET);
fread (®, sizeof (registro), 1, pf);
fwrite (®, sizeof (registro), 1, pftemp);
fseek(pf, -sizeof (registro), SEEK_SET);
}

fclose (pftemp);
fclose (pf);
remove (fichero);
rename (“temp”, fichero);
}

16.10. Un archivo secuencial no ordenado se quiere distribuir en dos ficheros F1 y F2 siguiendo estos pasos:
Leer N registros del archivo origen y ponerlos en una lista secuencial. Marcar cada registro de la lista con un estatus,

por ejemplo activo = 1.
Obtener el registro t con clave más pequeña de los que tienen el estatus activo y escribirlo en el archivo destino F1.
Sustituir el registro t por el siguiente registro del archivo origen. Si el nuevo registro es menor que t, se marca como

inactivo, es decir activo = 0; en caso contrario se marca activo. Si hay registros en la lista activos volver al paso 2.
Cambiar el archivo destino, si el anterior es F1 ahora será F2 y viceversa. Activar todos los registros de la lista y volver

al paso 2.

CAPÍTULO 16 Organización de datos en un archivo288

ap.16 11/6/05 21:45 Página 288

Codificación

distribucion()
{
FILE fp, fp1, fp2;
Registro reg, tabla[N];
int activo [N], min, hayactivos, menor;

pf = fopen (“origen”, “rb”);
pf1 = fopen (“destino1”, “wb”);
pf2 = fopen (“destino2”, “wb”);
if (pf || !pf1 || !pf2)
{
printf (“Error al abrir los ficheros\n”);
exit (1);
}

for (i = 0; i < N; i++)
{
fread (&tabla[i], sizeof (Registro), 1, fp);
activo[i] = 1;
}

while (!feof (fp))
{
do {

/* encontrar el menor de los activos y comprobar que
todavía hay registros activos en la lista */

min = 0;
menor = -1;
hayactivos = 0;
for (i = 0; i < N; i++)
if (tabla([i].clave < min) &&

hayactivos = activo[i]))
{
min = tabla[i].clave;
menor = i;
}
if (menor ¡= -1)
fwrite (&tabla[menor], sizeof (Registro), 1, fp1);

if (tabla[menor].clave < min)
activo[menor] = 0;

} while (hayactivos);
aux = fp1;
fp1 = fp2;
fp2 = aux;
for (i=0; i<N; i++) activo [i] = 1;
}

16.11. Los registros que representan los objetos de una perfumería se van a guardar en un archivo hash, se prevé como máximo
1024 registros. El campo clave es una cadena de caracteres, cuya máxima longitud es 10. Con este supuesto codificar la
función de dispersión y mostrar 10 direcciones dispersas.

CAPÍTULO 16 Organización de datos en un archivo 289

ap.16 11/6/05 21:45 Página 289

Análisis del problema

Según lo comentado en el comienzo del capítulo una función sencilla que utilice aritmética modular podría ser la siguiente.

Codificación

int hash (Registro reg)
{
for (i = 0; i <= strlen(reg.clave); i++)
sumacar += reg.clave[i];

return sumacar% 1024;
}

16.12. Diseñar un algoritmo e implementar un programa que permita crear un archivo secuencial PERFUMES cuyos registros
constan de los siguientes campos:
Nombre
Descripción
Precio
Código
Creador

typedef struct
{
char nombre[40];
char descripción[100];
float precio;
char codigo[10];
char creador[40];

} Registro;

main()
{
FILE *pf;
Registro reg;

if ((pf = fopen(“perfumes”, “wb+”))==NULL)
{
printf(“ERROR en la creación del fichero”);
exit(1);
}

while (1)
{
printf (“Introduzca los siguientes datos:\n”);
printf (“Nombre:”);
scanf(“%s”, reg.nombre);
printf (“Descripcion:”);
scanf(“%s”, reg.descripcion);
printf (“Precio:”);
scanf(“%f”, ®.precio);
printf (“Codigo:”);
scanf(“%s”, reg.codigo);
printf (“Creador:”);

CAPÍTULO 16 Organización de datos en un archivo290

ap.16 11/6/05 21:45 Página 290

scanf(“%s”, reg.creador);
fseek (pf, 0L, SEEK_END);
fwrite (®, sizeof (reg), 1, pf);

printf (“Desea continuar (s/n):”);
scanf (“%c”, &r);
if (r == ‘s’) break;
}

fclose (pf);
}

16.13. Realizar un programa que copie el archivo secuencial PERFUMES del ejercicio anterior en un archivo hash PERME_DIR;
el campo clave es el código del perfume que tiene como máximo 10 caracteres alfanuméricos.

Codificación (Consultar la página web del libro)

16.14. Diseñar un algoritmo e implementar un programa para crear un archivo secuencial indexado denominado DIRECTORIO,
que contiene los datos de los habitantes de una población que actualmente está formada por 5590 personas. El campo clave
es el número de DNI.

Codificación (Consultar la página web del libro)

16.15. Escribir un programa que liste todas las personas del archivo indexado DIRECTORIO que pueden votar.

Codificación

void ListadoVotantes(Indice* tabla, int nreg)
{

hab reg;
long DNI;
int p;
FILE * fp;

fp = fopen (“directorio.dat”, “wb+”);
if (fp == NULL)
{

printf (“Error al abrir el archivo”);
exit(2);

}

while (¡feof (fp))
{
fread (®, sizeof(reg), 1, fp);
if (reg.edad >= 18)
{
printf (“ Nombre: %s\n”, reg.nombre);
printf (“ DNI: %ld\n”, reg.DNI);
printf (“ Edad: %d\n”, reg.edad);
printf (“ Direccion: %s\n”, reg.direccion);
printf (“ Sexo: %c”, reg.sexo);

}
}

CAPÍTULO 16 Organización de datos en un archivo 291

ap.16 11/6/05 21:45 Página 291

fclose (fp);
}

16.16. Realizar un programa que copie los registros de personas con edad ente 18 y 30 años, del archivo DIRECTORIO del ejer-
cicio 16.5, en un archivo secuencial JOVENES.

Codificación

void ListadoJovenes(Indice* tabla, int nreg)
{
hab reg;
long DNI;
int p;
FILE * fp;

fp = fopen(“directorio.dat”, “wb+”);
fp2 = fopen(“jovenes.dat”, “wb+”);

if (fp == NULL || fp2 == NULL)
{
printf (“Error al abrir el archivo”);
exit(2);
}

while (¡feof(fp))
{
fread (®, sizeof(reg), 1, fp);
if (reg.edad >= 18 && reg.edad <= 30)
fwrite (®, sizeof(reg), 1, fp2);

}

fclose (fp);
fclose (fp2);

}

CAPÍTULO 16 Organización de datos en un archivo292

ap.16 11/6/05 21:45 Página 292

CAPÍTULO 16 Organización de datos en un archivo 293

PROBLEMAS PROPUESTOS
16.1. El archivo secuencial F, almacena registros con un

campo clave de tipo entero. Supóngase que la secuencia
de claves que se encuentra en el archivo es la siguiente:

14 27 33 5 8 11 23 44 22 31 46 7 8 11 1 99 23
40 6 11 14 17

Aplicando el algoritmo de mezcla directa realizar la
ordenación del archivo y determinar el número de pasa-
das necesarias.

16.2. Un archivo secuencial F contiene registros y requiere ser
ordenado utilizando 4 archivos auxiliares. Suponiendo
que la ordenación se desea hacer respecto a un campo de
tipo entero, con estos valores:

22 11 3 4 11 55 2 98 11 21 4 3 8 12 41 21 42
58 26 19 11 59 37 28 61 72 47

Aplicar el esquema seguido en el algoritmo de mezcla
directa (tener en cuenta que se utilizan 4 archivos en vez
de 2) y obtener el número de pasadas necesarias para su
ordenación.

16.3. El archivo JOVENES (ejercicio 16.15) se desea orde-
narlo alfabéticamente. Aplicar el método mezcla directa.

16.4. Dado un archivo hash, diseñar un algoritmo e imple-
mentar el código para compactar el archivo después de
dar de baja un registro. Es decir, un registro del área de
sinónimos se mueve al área principal si el registro del
área principal, con el que colisionó el registro del área de
sinónimos, fue dado de baja.

16.5. Se necesita construir un catálogo para organizar los
datos de una colección de CDs de música. El sistema de
gestión de datos guardará la información de cada CD
(autor, título, año) y de cada tema (autor, título del tema,
título del CD). La información se almacenará en dos
ficheros secuenciales indexados. Escribir un programa
que además de permitir la entrada y eliminación de los

datos en ambos ficheros, proporcione las opciones de
consultar por temas y por CDs.

16.6. Añadir al programa anterior una función que liste el con-
tenido del fichero de CDs y para cada uno de ellos liste
los temas que contiene según la información del fichero
de temas.

16.7. Utilizar el algoritmo de mezcla directa para ordenar los
ficheros de los dos ejercicios anteriores. Escribir una
función que utilice el algoritmo de búsqueda binaria para
encontrar un registro determinado en los ficheros inde-
xados descritos.

16.8. Un sistema de gestión de información de un almacén debe
mantener tres ficheros relacionados. El primer fichero
tiene información de cada proveedor indexado por el nom-
bre del mismo. Un segundo fichero mantiene las caracte-
rísticas de cada producto, incluyendo el nombre del
proveedor, y está indexado por un código alfanumérico. El
tercer fichero lleva la información de las existencias de
cada producto y su localización en el almacén.

Escribir un programa que liste los productos de los que
existan menos de 10 unidades en el almacén. Al lado de
cada producto en el listado deben aparecer los datos del
proveedor.

16.9. En el escenario del ejercicio anterior se puede suponer
que cada vez que se adquieren nuevos productos en el
almacén se añaden registros con la cantidad incorporada
en cada producto. También cuando se venden productos
se añaden registros por cada producto en los que se espe-
cifica una cantidad negativa. Implementar un programa
que al final del día reagrupe la información de entradas
y salidas dejando un registro por producto con las exis-
tencias reales.

16.10. Completar el programa del ejercicio 16.8. con una función
que ordene los registros de producto del segundo fichero
agrupando todos los registros del mismo proveedor.

ap.16 11/6/05 21:45 Página 293

ap.16 11/6/05 21:45 Página 294

En este capítulo se examinan los conceptos de modularidad, abstracción de datos y objetos. La modularidad es la posibilidad
de dividir una aplicación en piezas más pequeñas llamadas módulos. Abstracción de datos es la técnica de inventar nuevos tipos
de datos que sean más adecuados a una aplicación y, por consiguiente, facilitar la escritura del programa. La técnica de abs-
tracción de datos es una técnica potente de propósito general que cuando se utiliza adecuadamente, puede producir programas
más cortos, más legibles y flexibles. Los objetos combinan en una sola unidad datos y funciones que operan sobre esos datos.

Los lenguajes de programación soportan en sus compiladores tipos de datos fundamentales o básicos (predefinidos), tales
como int, char y float en C. Casi todos los lenguajes de programación tienen características que permiten ampliar el len-
guaje añadiendo sus propios tipos de datos.

Un tipo de dato definido por el programador se denomina tipo abstracto de dato, TAD, (abstract data type, ADT). El término
abstracto se refiere al medio en que un programador abstrae algunos conceptos de programación creando un nuevo tipo de dato.

La modularización de un programa utiliza la noción de tipo abstracto de dato (TAD) siempre que sea posible. Si el lenguaje
de programación soporta los tipos que desea el usuario y el conjunto de operaciones sobre cada tipo, se obtiene un nuevo tipo
de dato denominado TAD.

17.1 Tipos de datos
Todos los lenguajes de programación soportan algún tipo de datos. Por ejemplo, el lenguaje de programación convencional C
soporta tipos base tales como enteros, reales y caracteres; así como tipos compuestos tales como arrays (vectores y matrices)
y estructuras(registros).

295

CAPÍTULO 17

Tipos abstractos de datos
TAD/objetos

A tener en cuenta

Un tipo de dato es un conjunto de valores, y un conjunto de operaciones definidas sobre esos valores.

Un valor depende de su representación y de la interpretación de la representación, por lo que una definición informal de un
tipo de dato es: Representación + Operaciones.

Un tipo de dato describe un conjunto de objetos con la misma representación. Existen un número de operaciones asociadas
con cada tipo. Es posible realizar aritmética sobre tipos de datos enteros y reales, concatenar cadenas o recuperar o modificar
el valor de un elemento.

ap.17 11/6/05 21:45 Página 295

La mayoría de los lenguajes tratan las variables y constantes de un programa como instancias de un tipo de dato. Un tipo
de dato proporciona una descripción de sus instancias que indica al compilador cosas como cuánta memoria se debe asignar
para una instancia, cómo interpretar los datos en memoria y qué operaciones son permisibles sobre esos datos. Por ejemplo,
cuando se escribe una declaración tal como float z en C ó C++, se está declarando una instancia denominada z del tipo de
dato float. El tipo de datos float indica al compilador que reserve, por ejemplo, 32 bits de memoria, y qué operaciones tales
como “sumar” y “multiplicar” están permitidas, mientras que operaciones tales como el “el resto” (módulo) y “desplaza-
miento de bits” no lo están. Sin embargo, no se necesita escribir la declaración del tipo float -el autor de compilador lo
hizo ya y se construyen en el compilador-. Los tipos de datos que se construyen en un compilador de este modo, se conocen
como tipos de datos fundamentales (predefinidos), y por ejemplo en C y C++ son entre otros: int, char, float y double.

Cada lenguaje de programación incorpora una colección de tipos de datos fundamentales, que incluyen normalmente ente-
ros, reales, carácter, etc. Los lenguajes de programación soportan también un número de constructores de tipos incorporados
que permiten generar tipos más complejos. Por ejemplo, C soporta registros (estructuras) y arrays.

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos296

A tener en cuenta

El programador no tiene que preocuparse de saber cómo el compilador del lenguaje implementa los tipos de datos
predefinidos, simplemente usa los tipos de datos en el programa.

17.2 Tipos abstractos de datos
Algunos lenguajes de programación tienen características que permiten ampliar el lenguaje añadiendo sus propios tipos de
datos. Un tipo de dato definido por el programador se denomina tipo abstracto de datos (TAD), se implementa considerando
los valores que se almacenan en las variables y las operaciones disponibles para manipular esas variables. Por ejemplo, en C
el tipo Punto, que representa a las coordenadas x e y de un sistema de coordenadas rectangulares, no existe; el programador
puede definir el tipo abstracto de datos Punto que represente las coordenadas rectangulares, y las operaciones que se pueden
realizar (distancia, módulo ...). En esencia un tipo abstracto de datos es un tipo de datos que consta de datos (estructuras de
datos propias) y operaciones que se pueden realizar sobre esos datos. Un TAD se compone de estructuras de datos y los pro-
cedimientos o funciones que manipulan esas estructuras de datos.

Para recordar

Un tipo abstracto de datos puede definirse mediante la ecuación:
TAD = Representación (datos) + Operaciones (funciones y procedimientos)

Desde un punto de vista global, un tipo abstracto de datos se compone de la interfaz y de la implementación (Figura 17.1).
Las estructuras de datos reales elegidas para almacenar la representación de un tipo abstracto de datos son invisibles a los usua-
rios o clientes. Los algoritmos utilizados para implementar cada una de las operaciones de los TAD están encapsuladas dentro
de los propios TAD. La característica de ocultamiento de la información del TAD significa que disponen de interfaces públi-
cas, sin embargo, las representaciones e implementaciones de esas interfaces son privadas.

VENTAJAS DE LOS TIPOS ABSTRACTOS DE DATOS
Un tipo abstracto de datos es un modelo (estructura) con un número de operaciones que afectan a ese modelo. Los tipos abs-
tractos de datos proporcionan numerosos beneficios al programador, que se pueden resumir en los siguientes:

1. Permite una mejor conceptualización y modelización del mundo real. Mejora la representación y la comprensibilidad.
Clarifica los objetos basados en estructuras y comportamientos comunes.

2. Mejora la robustez del sistema. Los tipos abstractos de datos permiten la comprobación de tipos para evitar errores de tipo
en tiempo de ejecución.

ap.17 11/6/05 21:45 Página 296

3. Mejora el rendimiento (prestaciones). Para sistemas tipificados, el conocimiento de los objetos permite la optimización de
tiempo de compilación.

4. Separa la implementación de la especificación. Permite la modificación y mejora de la implementación sin afectar a la inter-
faz pública del tipo abstracto de dato.

5. Permite la extensibilidad del sistema. Los componentes de software reutilizables son más fáciles de crear y mantener.
6. Recoge mejor la semántica del tipo. Los tipos abstractos de datos agrupan o localizan las operaciones y la representación

de atributos.

Un programa que maneja un TAD lo hace teniendo en cuenta las operaciones o funcionalidad que tiene, sin interesarse por
la representación física de los datos. Es decir, los usuarios de un TAD se comunican con este a partir de la interfaz que ofrece
el TAD mediante funciones de acceso. Podría cambiarse la implementación de tipo de datos sin afectar al programa que usa el
TAD ya que para el programa está oculta la implementación.

IMPLEMENTACIÓN DE LOS TAD

Los lenguajes convencionales, tales como C, permiten la definición de nuevos tipos y la declaración de funciones para reali-
zar operaciones sobre objetos de los tipos. Sin embargo, tales lenguajes no permiten que los datos y las operaciones asociadas
sean declaradas juntos como una unidad y con un solo nombre. En los lenguajes en el que los módulos (TAD) se pueden imple-
mentar como una unidad, éstos reciben nombres distintos:

Turbo Pascal unidad, objeto
Modula-2 módulo
Ada paquete
C++ clase
Java clase

En estos lenguajes se definen la especificación del TAD, que declara las operaciones y los datos ocultos al exterior, y la
implementación, que muestra el código fuente de las operaciones y que permanece oculto al exterior del módulo.

En C no existe como tal una construcción del lenguaje para especificar un TAD. Sin embargo se puede agrupar la interfaz
y la representación de los datos en un archivo de inclusión: archivo.h. La implementación de la interfaz, de las funciones se
realiza en el correspondiente archivo.c . Los detalles de la codificación de las funciones quedan ocultos en el archivo.c

Las ventajas de los TAD se pueden manifestar en toda su potencia, debido a que las dos partes de los módulos (especificación
e implementación) se pueden compilar por separado mediante la técnica de compilación separada (“separate compilation”).

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos 297

Figura 17.1 Estructura de un tipo abstracto de datos (TAD)

Método 1 Método 1
Método 3 Método 3
...

Interfaz público

Representación
estructura de datos
(variables de instancia)

Implementación de métodos:
Código del método 1
Código del método 2

Implementación privada

ap.17 11/6/05 21:45 Página 297

17.3 Especificación de los TAD
Un tipo abstracto de datos es un tipo de datos definido por el usuario que tiene un conjunto de datos y unas operaciones.
La especificación de un TAD consta de dos partes, la descripción matemática del conjunto de datos, y las operaciones defi-
nidas en ciertos elementos de ese conjunto de datos. El objetivo de la especificación es describir el comportamiento del
TAD.

La especificación del TAD puede tener un enfoque informal, en el que se describen los datos y las operaciones relaciona-
das en lenguaje natural. Otro enfoque mas riguroso, especificación formal, supone suministrar un conjunto de axiomas que
describen las operaciones en su aspecto sintáctico y semántico.

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos298

PROBLEMAS RESUELTOS
17.1. Realizar una especificación informal del TAD Conjunto con las operaciones: ConjuntoVacio, Esvacio, Añadir un elemento

al conjunto, Pertenece un elemento al conjunto, Retirar un elemento del conjunto, Union de dos conjuntos, Intersección de
dos conjuntos e Inclusión de conjuntos.

Análisis del problema

La especificación informal consiste en dos partes:
• detallar en los datos del tipo, los valores que pueden tomar.
• describir las operaciones, relacionándolas con los datos.

El formato que especificación emplea, primero especifica el nombre del TAD y los datos:
TAD nombre del tipo (valores y su descripción)

A continuación cada una de las operaciones con sus argumentos, y una descripción funcional en lenguaje natural.
Operación(argumentos). Descripción funcional

Como ejemplo se va a especificar el tipo abstracto de datos Conjunto:

TAD Conjunto (Especificación de elementos sin duplicidades pueden estar en cualquier
orden, se usa para representar los conjuntos matemáticos con sus operaciones).

Operaciones, existen numerosas operaciones matemáticas sobre conjuntos, algunas de ellas:

Conjuntovacio.
Crea un conjunto sin elementos

Añadir(Conjunto, elemento).
Comprueba si el elemento forma parte del conjunto, en caso negativo es añadido. La función modifica al conjunto.

Retirar(Conjunto, elemento).
En el caso de que el elemento pertenezca al conjunto es eliminado de este. La función modifica al conjunto.

Pertenece(Conjunto, elemento).
Verifica si el elemento forma parte del conjunto, en cuyo caso devuelve cierto.

Esvacio(Conjunto)
Verifica si el conjunto no tiene elementos, en cuyo caso devuelve cierto.

Cardinal(Conjunto)
Devuelve el número de elementos del conjunto

Union (Conjunto, Conjunto).
Realiza la operación matemática de la unión de dos conjuntos. La operación devuelve un conjunto con los elementos

comunes y no comunes a los dos argumentos.

ap.17 11/6/05 21:45 Página 298

Intersección (Conjunto, Conjunto).
Realiza la inclusión matemática de la intersección de dos conjuntos. La operación devuelve un conjunto con los elemen-

tos comunes a los dos argumentos.
Inclusión (Conjunto, Conjunto).

Verifica si el primer conjunto está incluido en el conjunto especificado en el segundo argumento, en cuyo caso devuelve
cierto.

17.2. Realizar la especificación formal del TAD Conjunto con las operaciones indicadas en el ejercicio 17.1. Considerar a las
operaciones ConjuntoVacio y Añadir como constructores.

Análisis del problema

La especificación formal proporciona un conjunto de axiomas que describen el comportamiento de todas las operaciones. La
descripción ha de incluir un parte de sintaxis, en cuanto a los tipos de los argumentos y el tipo del resultado, y una parte de
semántica, donde se detalla para unos valores particulares de los argumentos la expresión del resultado que se obtiene. La
especificación formal ha de ser lo bastante potente para que cumpla el objetivo de verificar la corrección de la implementa-
ción del TAD.

El esquema que se sigue para especificar formalmente un TAD consta de una cabecera con el nombre del TAD y los datos:
TAD nombre del tipo (valores que toma los datos del tipo)

Le sigue la sintaxis de las operaciones (se listan las operaciones indicando los tipos de los argumentos y el tipo del resultado):

Sintaxis
Operación(Tipo argumento, ...)-> Tipo resultado

y a continuación, la semántica de las operaciones. Esta se construye dando unos valores particulares a los argumentos de las
operaciones, a partir de los cuales se obtiene una expresión resultado que puede tener referencias a tipos ya definidos, valo-
res de tipo lógico o referencias a otras operaciones del propio TAD.

Semántica
Operación(valores particulares argumentos) ⇒ expresión resultado

Al hacer una especificación formal siempre hay operaciones definidas por sí mismas, se consideran constructores del TAD.
Se puede decir que mediante estos constructores se generan todos los posibles valores del TAD. Normalmente, se elige como
constructor la operación que inicializa (por ejemplo, Conjuntovacío en el TAD Conjunto), y la operación que añade un dato
o elemento(esta operación es común a la mayoría de los tipos abstractos de datos). Se acostumbra a marcar con un asteris-
co a las operaciones que son constructores.
A continuación se hace la especificación formal del TAD Conjunto, para formar la expresión resultado se hace uso, si es
necesario, de la sentencia alternativa si–entonces-sino.

TAD Conjunto(colección de elementos sin duplicidades, pueden estar en cualquier orden, se usa
para representar los conjuntos matemáticos con sus operaciones).

Sintaxis
*Conjuntovacio -> Conjunto
*Añadir(Conjunto, Elemento) -> Conjunto
Retirar(Conjunto, Elemento) -> Conjunto
Pertenece(Conjunto, Elemento) -> Conjunto
Esvacio(Conjunto) -> boolean
Cardinal(Conjunto) -> entero
Union(Conjunto, Conjunto) -> Conjunto
Interseccion(Conjunto, Conjunto) -> Conjunto
Incluido(Conjunto, Conjunto) -> boolean

Semántica ∀ e1,e2 ∈ Elemento y ∀ C,D ∈ Conjunto

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos 299

ap.17 11/6/05 21:45 Página 299

Añadir(Añadir(C, e1), e1) ⇒ Añadir(C, e1)
Añadir(Añadir(C, e1), e2) ⇒ Añadir(Añadir(C, e2), e1)
Retirar(Conjuntovacio, e1) ⇒ Conjuntovacio
Retirar(Añadir(C, e1), e2) ⇒ si e1 = e2 entonces Retirar(C,e2)

sino Añadir(Retirar(C,e2),e1)
Pertenece(Conjuntovacio, e1) ⇒ falso
Pertenece(Añadir(C, e2), e1) ⇒ si e1 = e2 entonces cierto

sino Pertenece(C, e1)
Esvacio(Conjuntovacio) ⇒ cierto
Esvacio(Añadir(C, e1)) ⇒ falso
Cardinal(Conjuntovacio) ⇒ Cero
Cardinal(Añadir(C, e1)) ⇒ si Pertenece(C,e1) entonces

Cardinal(C)
sino 1 + Cardinal(C)

Union(Conjuntovacio,
Conjuntovacio) ⇒ Conjuntovacio
Union(Conjuntovacio,
Añadir(C, e1)) ⇒ Añadir(C, e1)
Union(Añadir(C, e1), D) ⇒ Añadir(Union(C, D), e1)
Interseccion(Conjuntovacio,
Conjuntovacio) ⇒ Conjuntovacio
Intereseccion(Añadir(C, e1),Añadir(D, e1) ⇒ Añadir(Intereseccion (C,D), e1)
Incluido(Conjuntovacio, Conjuntovacio) ⇒ cierto
Incluido(Añadir(C, e1), Añadir(D, e1)) ⇒ cierto si Incluido (C, D)

17.3. Crear un TAD que represente un dato tipo cadena (string) y sus diversas operaciones: CadenaVacia, Asignar, Longitud,
Buscar posición de un carácter dado, Concatenar cadenas, Extraer una subcadena.
Realizar la especificación informal y formal considerando como constructores las operaciones CadenaVacia y Asignar.

ESPECIFICACIÓN INFORMAL

TAD Cadena (Secuencia de caracteres ASCII terminada por un byte nulo).

Operaciones

Cadenavacía.
Crea una cadena vacía

Asignar (Cadena, Cadena1).
Elimina el contenido de la primera cadena si lo hubiere y lo sustituye por la segunda.

Longitud (Cadena).
Devuelve el número de caracteres de la cadena sin contar el byte final.

Buscar (Cadena, Carácter)
Devuelve la posición de la primera ocurrencia del carácter por la izquierda.

Concatenar (Cadena1, Cadena2).
Añade el contenido de Cadena2 a la cadena del primer argumento.

Extraer (Cadena, Posición, NumCaracteres).
Devuelve la subcadena del primer argumento que comienza en la posición del segundo argumento y tiene tantos caracte-

res como indica el tercero.

ESPECIFICACIÓN FORMAL

TAD Cadena (Secuencia de caracteres ASCII terminada por un byte nulo).

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos300

ap.17 11/6/05 21:45 Página 300

Sintaxis
*Cadenavacía -> Cadena
*Asignar (Cadena, Cadena) -> Cadena
Longitud (Cadena) -> entero
Buscar (Cadena, Carácter) -> entero
Concatenar (Cadena1, Cadena2) -> Cadena
Extraer (Cadena, Posición, NumCaracteres) -> Cadena

17.4. Diseñar el TAD Bolsa como una colección de elementos no ordenados y que pueden estar repetidos. Las operaciones del
tipo abstracto: CrearBolsa, Añadir un elemento, BolsaVacia (verifica si tiene elementos), Dentro (verifica si un elemento
pertenece a la bolsa), Cuantos (determina el número de veces que se encuentra un elemento), Union y Total. Realizar la
especificación informal y formal considerando como constructores las operaciones CrearBolsa y Añadir.

ESPECIFICACIÓN INFORMAL

TAD Bolsa (Colección de elementos no ordenados que pueden estar repetidos).

Operaciones

CrearBolsa
Crea una bolsa vacía.

Añadir (Bolsa, elemento)
Añade un elemento a la bolsa.

BolsaVacia (Bolsa).
Verifica que la bolsa no tiene elementos.

Dentro (elemento, Bolsa).
Verifica si un elemento pertenece a la bolsa

Cuantos (elemento, Bolsa).
Determina el número de veces que se encuentra un elemento en una bolsa

Union (Bolsa1, Bolsa2).
Devuelve una bolsa con los elementos de los dos argumentos.

Total (Bolsa).
Devuelve el número de elementos de una bolsa.

ESPECIFICACIÓN FORMAL

TAD Cadena (Secuencia de caracteres ASCII terminada por un byte nulo).

Sintaxis

*CrearBolsa -> Bolsa
*Añadir (Bolsa, elemento) -> Bolsa
BolsaVacia (Bolsa) -> boolean
Dentro (elemento, Bolsa) -> boolean
Cuantos (elemento, Bolsa) -> entero
Union (Bolsa1, Bolsa2) -> Bolsa
Total (Bolsa) -> Bolsa

17.5. Diseñar el TAD Complejo para representar a los números complejos. Las operaciones que se deben definir: AsignaReal (asig-
na un valor a la parte real), AsignaImaginaria (asigna un valor a la parte imaginaria), ParteReal(devuelve la parte real de un
complejo), ParteImaginaria (devuelve la parte imaginaria de un complejo), Modulo de un complejo y Suma de dos números com-
plejos. Realizar la especificación informal y formal considerando como constructores las operaciones que desee.

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos 301

ap.17 11/6/05 21:45 Página 301

ESPECIFICACIÓN INFORMAL

TAD Complejo (Par de números reales que representan la parte real e imaginaria de un número com-
plejo según el concepto matemático).

Operaciones

AsignaReal (Complejo, real).
Asigna un valor a la parte real de un número complejo.

AsignaImaginaria (Complejo, real).
Asigna un valor a la parte imaginaria de un número complejo.

ParteReal (Complejo).
Devuelve la parte real de un número complejo.

ParteImaginaria (Complejo).
Devuelve la parte imaginaria de un número complejo.

Modulo (Complejo).
Devuelve el módulo de un número complejo.

Suma (Complejo1, Complejo2).
Devuelve la suma de dos números complejos

ESPECIFICACIÓN FORMAL

TAD Complejo (Par de números reales que representan la parte real e imaginaria de un número com-
plejo según el concepto matemático).

Sintaxis
*AsignaReal (Complejo, real) -> Complejo
*AsignaImaginaria (Complejo, real) -> Complejo
ParteReal (Complejo) -> real
ParteImaginaria (Complejo) -> real
Modulo (Complejo) -> real
Suma (Complejo1, Complejo2) -> Complejo

17.6. Diseñar el tipo abstracto de datos Vector con la finalidad de representar una secuencia de n elementos del mismo tipo. Las ope-
raciones a definir: CrearVector (crea un vector n posiciones vacías), Asignar (asigna un elemento en la posición j),
ObtenerElemento(devuelve el elemento que se encuentra en la posición j), SubVector(devuelve el vector comprendido entre las
posiciones i, j). Realizar la especificación informal y formal considerando como constructores las operaciones que desee.

ESPECIFICACIÓN INFORMAL

TAD Vector (secuencia de n elementos del mismo tipo).

Operaciones

CrearVector (entero).
Crea un vector n posiciones vacías.

Asignar (Vector, posición, elemento).
Asigna un elemento en la posición indicada en el segundo parámetro.

ObtenerElemento (Vector, posición).
Devuelve el elemento que se encuentra en la posición indicada en el segundo parámetro.

SubVector (Vector, inicial, final).
Devuelve el vector comprendido entre las posiciones indicadas en los parámetros finales.

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos302

ap.17 11/6/05 21:45 Página 302

ESPECIFICACIÓN FORMAL

TAD Vector (secuencia de n elementos del mismo tipo).

Sintaxis

*CrearVector (entero) -> Vector.
*Asignar (Vector, entero, elemento) -> Vector.
ObtenerElemento (Vector, entero) -> elemento.
SubVector (Vector, entero, entero) -> Vector.

17.7. Diseñar el tipo abstracto de datos Matriz con la finalidad de representar matrices matemáticas. Las operaciones a definir:
CrearMatriz (crea una matriz, sin elementos, de m filas por n columnas), Asignar (asigna un elemento en la fila i columna
j), ObtenerElemento(obtiene el elemento de la fila i y columna j), Sumar (realiza la suma de dos matrices cuando tienen las
mismas dimensiones), ProductoEscalar(obtiene la matriz resultante de multiplicar cada elemento de la matriz por un valor).
Realizar la especificación informal y formal considerando como constructores las operaciones que desee.

ESPECIFICACIÓN INFORMAL

TAD Matriz (Secuencia de elementos organizados en filas y columnas).

Operaciones

CrearMatriz (filas, columnas).
Crea una matriz, sin elementos, de las dimensiones que indican los argumentos.

Asignar (Matriz, fila, columna, elemento).
Asigna un elemento en la posición que indican los argumentos finales.

ObtenerElemento (Matriz, fila, columna).
Obtiene el elemento de la posición que indican los argumentos finales.

Sumar (Matriz1, Matriz2).
Realiza la suma de dos matrices cuando tienen las mismas dimensiones

ProductoEscalar (Matriz, valor).
Obtiene la matriz resultante de multiplicar cada elemento de la matriz por un valor.

ESPECIFICACIÓN FORMAL

TAD Matriz (Secuencia de elementos organizados en filas y columnas).

Sintaxis

*CrearMatriz (entero, entero) -> Matriz.
Asignar (Matriz, entero, entero, elemento) -> Matriz.
ObtenerElemento (Matriz, entero, entero) -> Matriz.
Sumar (Matriz, Matriz) -> Matriz.
ProductoEscalar (Matriz, valor) -> Matriz.

17.8. Implementar el TAD Conjunto con las operaciones especificadas en los ejercicios 17.1 y 17.2.

Análisis del problema

La implementación del tipo abstracto de datos debe incluir dos partes diferenciadas:
• representación de los datos.
• implementación de las operaciones descritas en la especificación.

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos 303

ap.17 11/6/05 21:45 Página 303

Los archivos de inclusión o de cabecera se utilizan para agrupar en ellos variables externas, declaraciones de datos comu-
nes y prototipos de funciones. Estos archivos de cabecera se incluyen en los archivos que contienen la codificación de las
funciones, archivos fuente, y también en los archivos de código que hagan referencia a algún elemento del archivo de inclu-
sión, con la directiva del preprocesador #include. Al implementar un TAD en C, se agrupa, en cierto modo se encierra, en
estos archivos la representación de los datos y el interfaz del TAD, a su vez, representado por los prototipos de las funcio-
nes. De esta forma en los archivos de código fuente que utilicen el TAD hay que escribir la directiva

#include “tipodedato.h”

Para hacer la implementación lo más flexible posible, no se establece que el conjunto pueda tener un máximo de elemen-
tos. Esta característica exige el uso de asignación dinámica de memoria.

En el archivo de cabecera, conjunto.h, se realiza la declaración de la estructura que va a representar a los datos. El tipo
de los datos puede ser cualquiera, entonces es necesario que TipoDato esté especificado antes de incluir conjunto.h . La
constante M, que arbitrariamente toma el valor de 10, es el número de “huecos” o posiciones de memoria, que se reservan
cada vez que hay que ampliar el tamaño de la estructura.

Archivo conjunto.h

#define M 10
typedef struct
{
TipoDato* cto;
int cardinal;
int capacidad;

} Conjunto;

void conjuntoVacio (Conjunto* c);
int esVacio (Conjunto c);
void añadir (Conjunto* c, TipoDato elemento);
void retirar (Conjunto* c, TipoDato elemento);
int pertenece (Conjunto c, TipoDato elemento);
int cardinal (Conjunto c);
Conjunto unionC (Conjunto c1, Conjunto c2);
Conjunto interseccionC (Conjunto c1, Conjunto c2);
int incluido (Conjunto c1, Conjunto c2);

Este archivo de cabecera, conjunto.h, hay que incluirlo en todos los archivos con código C que vaya a utilizar el tipo
Conjunto. Es importante recordar que antes de escribir la sentencia include hay que asociar un tipo predefinido a TipoDato.
Por ejemplo, si los elementos del conjunto son las coordenadas de un punto en el plano:

typedef struct
{
float x;
float y;

} Punto;

typedef Punto TipoDato;
#include “conjunto.h”

Las funciones cuyos prototipos han sido ya escritos, se codifican y se guardan en el archivo conjunto.c . La compilación
de conjunto.c da lugar al archivo con el código objeto que se ensamblará con el código objeto de otros archivos fuente
que hacen uso del TAD Conjunto.

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos304

ap.17 11/6/05 21:45 Página 304

Codificación

Archivo conjunto.c

typedef struct {var(s)} Tipo;

typedef Tipo TipoDato;
#include “conjunto.h”

/* iguales() devuelve 1(cierto) si todos los campos lo son.
La implementación depende del tipo concreto de los dato
del conjunto.

*/
int iguales (TipoDato e1, TipoDato e2)
{
return (e1.v1 == e2.v1) && (e1.v2 == e2.v2) ... ;

}

void conjuntoVacio(Conjunto* c)
{
c -> cardinal = 0;
c -> capacidad = M;
c -> cto = (TipoDato*)malloc (M*sizeof(TipoDato));

}

int esVacio(Conjunto c)
{
return (c.cardinal == 0);

}

void añadir (Conjunto* c, TipoDato elemento)
{

if (!pertenece(*c, elemento))
{
/* verifica si hay posiciones libres,
en caso contrario amplia el conjunto */

if (c -> cardinal == c -> capacidad)
{
Conjunto nuevo;
int k, capacidad;
capacidad = (c -> capacidad + M)*sizeof(TipoDato)
nuevo.cto = (TipoDato*) malloc(capacidad);

for (k = 0; k < c -> capacidad; k++)
nuevo.cto[k] = c -> cto[k];

free(c -> cto);
c -> cto = nuevo.cto;

}
c -> cto[c -> cardinal++] = elemento;

}
}

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos 305

ap.17 11/6/05 21:45 Página 305

void retirar (Conjunto* c, TipoDato elemento)
{
int k;

if (pertenece (*c, elemento))
{
k = 0;
while (!iguales (c -> cto[k], elemento)) k++;

/* desde el elemento k hasta la última posición
mueve los elementos una posición a la izquierda */

for (; k < c -> cardinal ; k++)
c -> cto[k] = c -> cto[k+1];

c -> cardinal—;
}

}

int pertenece (Conjunto c, TipoDato elemento)
{
int k, encontrado;
k = encontrado = 0;

while (k < c.cardinal && !encontrado)
{
encontrado = iguales (c.cto[k], elemento);
k++;

}
return encontrado;

}

int cardinal(Conjunto c)
{
return c.cardinal;

}

Conjunto unionC(Conjunto c1, Conjunto c2)
{
Conjunto u;
int k;
u.cardinal = 0;
u.capacidad = c1.capacidad;
u.cto = (TipoDato*)malloc (u.capacidad*sizeof(TipoDato));

for (k = 0; k < c1.capacidad; k++)
u.cto[k] = c1.cto[k];
u.cardinal = c1.cardinal;

for (k = 0; k < c2.capacidad; k++)
añadir (&u, c2.cto[k]);

return u;
}

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos306

ap.17 11/6/05 21:45 Página 306

Conjunto interseccionC (Conjunto c1, Conjunto c2)
{
Conjunto ic;
int k, l;

ic.cardinal = 0;
ic.capacidad = c1.capacidad;
ic.cto = (TipoDato*)malloc (u.capacidad*sizeof(TipoDato));

for (k = 0; k < c1.capacidad; k++)
for (l = 0; l < c1.capacidad; l++)
if (iguales (c1.cto[k], c2.cto[l]))
{

annadir (&ic, c1.cto[k]);
ic.cardinal++;

}
return ic;
}

int incluido (Conjunto c1, Conjunto c2)
{
int k;

if (c1.cardinal==0) return 1;
for (k = 0; k < c1.capacidad; k++)
if (!pertenece (c2, c1.cto[k]))
return 0;

return 1;
}

17.9. Implementar el TAD Bolsa descrito en el ejercicio 17.4. Probar la implementación con un programa que invoque a las ope-
raciones del tipo abstracto Bolsa.

Codificación (Consultar la página web del libro)

17.10. Implementar el TAD Cadena descrito en el ejercicio 17.3. Probar la implementación con un programa que realice diversas
operaciones con cadenas.

Análisis del problema

En primer lugar es conveniente definir el contenido de un fichero de cabecera para definir los prototipos de las funciones
que se implementarán y el tipo de datos “cadena”.

Codificación

cadena.h

#define N 100
typedef char cadena [N];

cadena cadenavacia ();

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos 307

ap.17 11/6/05 21:45 Página 307

cadena asignar (cadena cad1, cadena cad2);
int longitud (cadena cad);
int buscar (cadena cad, char c);
cadena concatenar (cadena cad1, cadena cad2);
cadena extraer (cadena cad, int pos, int NumCar);

Las funciones cuyos prototipos han sido ya escritos, se codifican en el archivo cadena.c.

#include cadena.h

cadena cadenavacia ()
{
char *vacia = (char*) malloc(80);
return vacia;

}

cadena asignar (cadena cad1, cadena cad2)
{
return strcat (cad1, cad2);

}

int longitud (cadena cad)
{
return (strlen (cad));

}

int buscar (cadena cad, char c)
{
return (strchr (cad, c));

}

cadena concatenar (cadena cad1, cadena cad2)
{
return (strcat(cad1,cad2));

}

cadena extraer (cadena cad, int pos, int NumCar);
{
char *aux = (char*) malloc (numcar + 1);
int i,j = 0;

for (i = pos; i < pos+numcar; i`++)
aux[j] = cad[i];

return aux;
}

Un programa que pruebe las funciones anteriores podría ser el siguiente:

main()
{
cadena cad1;
cadena cad2, cad3;

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos308

ap.17 11/6/05 21:45 Página 308

cad1 = cadenavacia ();
cad2 = cadenavacia ();
cad2 = cadenavacia ();

printf (“Introduzca una cadena de caracteres: “);
scanf (“%s”, cad1);
printf (“\nSu cadena tiene %d caracteres.\n”, longitud(cad1));

printf (“Esta es la cadena con las dos mitades intercambiadas\n”);

mitad = (int)(longitud(cad1)/2);
cad2 = extraer (cad1, 0, mitad);
cad3 = extraer (cad1, mitad+1, mitad);
cad3 = concatenar (cad3, cad2);

puts (cad3);
}

Deberá ser compilado junto con el fichero cadena.c que contiene las implementaciones de las funciones.

17.11. Implementar el TAD Matriz especificado en el ejercicio 17.7 con una estructura dinámica. Escribir un programa que hacien-
do uso del TAD Matriz se realicen operaciones diversas y escriba las matrices generadas.

Codificación (Consultar la página web del libro)

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos 309

PROBLEMAS PROPUESTOS
17.1. Implementar el TAD Complejo especificado en el ejerci-

cio 17.5. Escribir un programa en el que se realicen
diversas operaciones con números complejos.

17.2. Implementar el TAD Vector especificado en el ejercicio
17.6 con una estructura dinámica

17.3. Diseñar el TAD Grafo como un conjunto de nodos y de
aristas. Las operaciones del tipo abstracto serán:
CrearGrafo, AñadirNodo, AñadirArista, GrafoVacio
(verifica si tiene nodos o aristas), Recorrido en
Profundidad, RecorridoenAnchura, Cuantos (determina
el número de nodos y el número de aristas), Union de
dos grafos y Conectados (Verifica si existe un camino
entre dos nodos). Realizar la especificación informal y
formal considerando como constructores las operaciones
CrearGrafo, AñadirNodo y AñadirArista.

17.4. Implementar el TAD Grafo especificado en el ejercicio
anterior con una estructura dinámica. Escribir un pro

grama que haciendo uso del TAD. Grafo se realicen ope-
raciones diversas.

17.5. Diseñar el TAD Árbol Binario ordenado. Las operacio-
nes del tipo abstracto serán: CrearArbol, AñadirNodo,
ArbolVacio (verifica si tiene nodos), Recorridoen
Profundidad, RecorridoenAnchura, Cuantos (determina
el número de nodos), Union de dos árboles y Equilibrar
el árbol. Realizar la especificación informal y formal
considerando como constructores las operaciones
CrearArbol y AñadirNodo.

17.6. Implementar el TAD Árbol Binario ordenado especifica-
do en el ejercicio anterior con una estructura dinámica.
Escribir un programa que haciendo uso del TAD Árbol
Binario ordenado se realicen operaciones diversas.

17.7. Diseñar el TAD Buzón de Mensajes. Las operaciones del
tipo abstracto serán: CrearBuzon, AbrirBuzon,
BuzonVacio, RecibirMensaje (recibir el último mensaje),

ap.17 11/6/05 21:45 Página 309

EnviarMensaje, VaciarBuzon, DestruirBuzon. Realizar
la especificación informal y formal considerando como
constructor la operación CrearBuzon.

17.8. Implementar el TAD Buzón de Mensajes especificado en
el ejercicio anterior con una estructura dinámica.
Escribir un programa que haciendo uso del TAD Buzón
de Mensajes se realicen operaciones diversas.

17.9. Diseñar el TAD Semáforo. Las operaciones del tipo abs-
tracto serán: CrearSemaforo (Crear un semáforo y

ponerlo en un estado determinado), DestruirSemaforo,
AbrirSemaforo, CerrarSemaforo, EsperarSemaforo
(Esperar a que se abrir el semáforo y cerrarlo). Realizar
la especificación informal y formal.

17.10. Implementar el TAD Semáforo especificado en el ejerci-
cio anterior. Escribir un programa que haciendo uso del
TAD Semáforo se realicen operaciones diversas.

CAPÍTULO 17 Tipos abstractos de datos TAD/objetos310

ap.17 11/6/05 21:45 Página 310

En este capítulo se comienza el estudio de las estructuras de datos dinámicas. Al contrario que las estructuras de datos estáti-
cas (arrays - listas, vectores y tablas - y estructuras) en las que su tamaño en memoria se establece durante la compilación y
permanece inalterable durante la ejecución del programa, las estructuras de datos dinámicas crecen y se contraen a medida que
se ejecuta el programa.

La estructura de datos que se estudiará en este capítulo es la lista enlazada (ligada o encadenada, “linked list”) que es una
colección de elementos (denominados nodos) dispuestos uno a continuación de otro, cada uno de ellos conectado al siguiente
elemento por un “enlace” o “puntero”. Las listas enlazadas son estructuras muy flexibles y con numerosas aplicaciones en el
mundo de la programación

18.1 Fundamentos teóricos
Gracias a la asignación dinámica de variables, se pueden implementar listas de modo que la memoria física utilizada se corres-
ponda con el número de elementos de la tabla. Para ello se recurre a los punteros (apuntadores). Una lista enlazada es una
secuencia de elementos dispuestos uno detrás de otro, en la que cada elemento se conecta al siguiente elemento por un “enla-
ce” o “puntero”. La idea consiste en construir una lista cuyos elementos llamados nodos se componen de dos partes o campos:
la primera parte o campo contiene la información y es, por consiguiente, un valor de un tipo genérico (denominado Dato,
TipoElemento, Info, etc.) y la segunda parte o campo es un puntero (denominado enlace o sgt, sig, etc.) que apunta al siguien-
te elemento de la lista. La representación gráfica es la siguiente.

311

CAPÍTULO 18

Listas enlazadas

. . . .

18.2 Clasificación de las listas enlazadas
Las listas se pueden dividir en cuatro categorías:
• Listas simplemente enlazadas. Cada nodo (elemento) contiene un único enlace que conecta ese nodo al nodo siguiente o nodo

sucesor.

e1 e2 e3 en

e1, e2, ...en son valores del tipo TipoElemento.

Figura 18.1 Lista enlazada.

ap.18 11/6/05 21:46 Página 311

• Listas doblemente enlazadas. Cada nodo contiene dos enlaces, uno a su nodo predecesor y el otro a su nodo sucesor.
• Lista circular simplemente enlazada. Una lista enlazada simplemente en la que el último elemento se enlaza al primer ele-

mento.
• Lista circular doblemente enlazada. Una lista doblemente enlazada en la que el último elemento se enlaza al primer elemen-

to y viceversa.

CAPÍTULO 18 Listas enlazadas312

18.3 Operaciones en listas enlazadas
Las operaciones sobre listas enlazadas mas usuales son: Declaración de los tipos nodo y puntero a nodo; inicialización o cre-
ación; insertar elementos en una lista; eliminar elementos de una lista; buscar elementos de una lista; recorrer una lista enla-
zada; comprobar si la lista está vacía.

EJEMPLO 18.1 Declaración de un Nodo

En C, se puede declarar un nuevo tipo de dato por un nodo mediante las palabras reservadas
Struct de la siguiente forma

struct Nodo typedef struct Nodo typedef double Elemento;
{ { Struct nodo
int info; int info; {
struct Nodo* sig: struct Nodo *sig; Elemento info;

}; }NODO; struct nodo *sig;
};

Puntero de cabecera y cola.Un puntero al primer nodo se llama puntero cabeza. En ocasiones, se mantiene también
un puntero al último nodo de una lista enlazada. El último nodo es la cola de la lista, y un puntero al último nodo es el
puntero cola. Cada puntero a un nodo debe ser declarado como una variable puntero.
Puntero nulo. La palabra NULL representa el puntero nulo NULL, que es una constante de la biblioteca estándar
stdlib.h de C. Este puntero se usa: en el campo sig del nodo final de una lista enlazada; en una lista vacía.
Operador -> de selección de un miembro. Si p es un puntero a una estructura y m es un miembro de la estructura,
entonces p -> m accede al miembro m de la estructura apuntada por P. El símbolo “->” es un operador simple. Se
denomina operador de selección de componente.

P -> m significa lo mismo que (*p).m

EJEMPLO 18.2 Construcción de una lista.

Un algoritmo para la creación de una lista enlazada añadiendo dado por el principio de la lista es el siguiente:
Declarar el tipo de dato y el puntero ant y nl

inicio
ant ← NULL
nl ← NULL
mientras queden datos por añadir a la lista hacer

Leer dato
Asignar memoria para un elemento (nuevopuntero) utilizando a (malloc(), calloc(), realloc()
nuevopuntero->info ← dato;
nuevopuntero ->sig ← NULL
si ant = NULL entonces
ant ← nuevopuntero

Por cada uno de estos cuatro tipos de estructuras de listas, se puede elegir una implementación basada en arrays
o una implementación basada en punteros.

ap.18 11/6/05 21:46 Página 312

nl ← ant
sino
ant -> sig ← nuevopuntero
nl ← nuevopountero
fin si

fin mientras
fin

18.3.1 INSERCIÓN DE UN ELEMENTO EN UNA LISTA
El algoritmo empleado para añadir o insertar un elemento en una lista enlazada varía dependiendo de la posición en que se
desea insertar el elemento. La posición de inserción puede ser:

INSERCIÓN DE UN NUEVO ELEMENTO EN LA CABEZA DE UNA LISTA

El proceso de inserción se puede resumir en este algoritmo:

• Asignar un nuevo nodo a un puntero ptrnodo que apunte al nuevo nodo nuevonodo que se va a insertar en la lista.
• Situar el nuevo elemento en el campo dato (el) del nuevo nodo nuevonodo.
• Hacer que el campo enlace sig del nuevo nodo nuevonodo apunte a la cabeza (primer nodo) de la lista original.
• Hacer que cabeza (puntero primero) apunte al nuevo nodo que se ha creado.

EJEMPLO 18.3 Inserción en la cabeza de la lista

Nodo * ptrnodo;
ptrnodo = & nuevonodo;
nuevonodo.dato = el;
nuevonodo.sig = cabeza;
cabeza = ptrnodo;

INSERCIÓN DE UN NUEVO NODO QUE NO ESTÁ EN LA CABEZA DE LISTA

Se puede insertar en el centro o al final de la lista. El algoritmo de la nueva operación insertar requiere los pasos siguientes:
• Asignar memoria al nuevo nodo apuntado por el puntero nuevo.
• Situar el nuevo elemento en el campo dato (el) del nuevo nodo.
• Hacer que el campo enlace sig del nuevo nodo nuevo apunte al nodo que va después de la posición del nuevo nodo nuevo.
• En la variable puntero ant hay que tener la dirección del nodo que está antes de la posición deseada (siempre existe) para el

nuevo nodo. Hacer que ant -> sig apunte al nuevo nodo que se acaba de crear.

INSERCIÓN AL FINAL DE LA LISTA

La inserción al final de la lista es un caso particular de la anterior. La única diferencia es que el enlace sig de nuevo nodo siem-
pre apunta a NULL

EJEMPLO 18.4 Inserción en otro lugar de la lista

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;
nuevo->sig = ptrnodo->sig;
ant->sig = nuevo;

18.3.2 ELIMINACIÓN DE UN NODO EN UNA LISTA
El algoritmo para eliminar un nodo que contiene un dato se puede expresar en estos pasos:
• Buscar el nodo que contiene el dato. Hay que tener la dirección del nodo a eliminar y la del nodo inmediatamente anterior.

CAPÍTULO 18 Listas enlazadas 313

ap.18 11/6/05 21:46 Página 313

• El puntero sig del nodo anterior ha de apuntar al sig del nodo a eliminar.
• Si el nodo a eliminar es el Primero, se modifica Primero para que tenga la dirección del nodo sig del nodo a eliminar
• Se libera la memoria ocupada por el nodo.

EJEMPLO 18.5 Eliminación de un nodo

ant->sig = ptrnodo->sig;
if (Primero == ptrnodo) Primero = ptrnodo->sig;
free (ptrnodo);

18.4 Lista doblemente enlazada
En una lista doblemente enlazada, cada elemento contiene dos punteros, aparte del valor almacenado en el elemento; un pun-
tero apunta al siguiente elemento de la lista (sig) y el otro puntero apunta al elemento anterior de la lista (ant). Existe una
operación de insertar y eliminar (borrar) en cada dirección.

CAPÍTULO 18 Listas enlazadas314

I D

Figura 18.2 Eliminación de un nodo en una lista doblemente enlazada.

EJEMPLO 18.6 Declaración de una lista doblemente enlazada

Una lista doblemente enlazada con valores de tipo int necesita para ser declarada dos punteros (sig, ant) y el valor del
campo elemento (el):

typedef int Item;
struct Unnodo
{
Item el;
struct Unnodo *sig;
struct Unnodo *ant;

};
typedef struct Unnodo Nodo;

18.4.1 INSERCIÓN DE UN ELEMENTO EN UNA LISTA DOBLEMENTE ENLAZADA
El algoritmo empleado para añadir o insertar un elemento en una lista doble varía dependiendo de la posición en que se desea
insertar el elemento. La posición de inserción puede ser: en la cabeza (elemento primero) de la lista; en el final de la lista (ele-
mento último); antes de un elemento especificado, o bien después de un elemento especificado.

Figura 18.2 Inserción de un nodo en una lista doblemente enlazada.

ap.18 11/6/05 21:46 Página 314

INSERCIÓN DE UN NUEVO ELEMENTO EN LA CABEZA DE UNA LISTA DOBLE

El proceso de inserción se puede resumir en este algoritmo:

• Asignar memoria a un nuevo nodo apuntado por nuevo que es una variable puntero local que apunta al nuevo nodo que se va
a insertar en la lista doble.

• Situar el nodo nuevo el elemento que se va a insertar en el campo dato (el) del nuevo nodo nuevo.
• Hacer que el campo enlace sig del nuevo nodo nuevo apunte a la cabeza (primer nodo) de la lista original, y que el campo

enlace ant del nodo cabeza apunte al nuevo nodo nuevo si es que existe. En caso de que no exista no hacer nada.
• Hacer que cabeza (puntero de la lista) apunte al nuevo nodo que se ha creado.

EJEMPLO 18.7 Inserción en cabeza de lista doble

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;
nuevo->sig = cabeza;
cabeza->ant = nuevo;
cabeza = nuevo;

INSERCIÓN DE UN NUEVO NODO QUE NO ESTÁ EN LA CABEZA DE LISTA

La inserción de un nuevo nodo en una lista doblemente enlazada se puede realizar en un nodo intermedio o final de ella. El
algoritmo de la nueva operación insertar requiere las siguientes etapas:

• Asignar memoria al nuevo nodo apuntado por el puntero nuevo.
• Situar el nuevo elemento en el campo dato (el) del nuevo nodo nuevo.
• Hacer que el campo enlace sig del nuevo nodo nuevo apunte al nodo que va después de la posición del nuevo nodo ptrno-
do (o bien a NULL en caso de que no haya ningún nodo después de la nueva posición). El campo ant del nodo siguiente
ptrnodo al que ocupa la posición del nuevo nodo nuevo tiene que apuntar a nuevo si es que existe. En caso de que no exis-
ta no hacer nada.

• Tomar la dirección del nodo que está antes de la posición deseada para el nuevo nodo nuevo. Si esta dirección es la varia-
ble puntero ant y hacer que ant->sig apunte al nuevo nodo nuevo. El enlace ant del nuevo nodo nuevo ponerlo apuntan-
do a ant.

EJEMPLO 18.8 Inserción de un nodo en el centro de una lista doble

En este caso siempre existe el nodo anterior ant y el nodo siguiente ptrnodo, con lo que la inserción supuesto que ya
se han colocado los dos punteros es :

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;
nuevo->sig = ptrnodo->sig;
ptrnodo->ant = nuevo;
ant->sig = nuevo;

18.4.2 ELIMINACIÓN DE UN ELEMENTO EN UNA LISTA DOBLEMENTE ENLAZADA
El algoritmo para eliminar un nodo que contiene un dato es similar al algoritmo de borrado para una lista simple. Ahora la direc-
ción del nodo anterior se encuentra en el puntero ant del nodo a borrar. Los pasos a seguir son:

• Búsqueda del nodo que contiene el dato. Se ha de tener la dirección del nodo a eliminar y la dirección del anterior (ant).
• El puntero sig del nodo anterior (ant) tiene que apuntar al puntero sig del nodo a eliminar, ptrnodo esto en el caso de no

ser el nodo primero de la lista. En caso de que sea el primero de la lista el puntero de la lista debe apuntar al puntero sig del
nodo a eliminar ptrnodo .

• El puntero ant del nodo siguiente a borrar tiene que apuntar al puntero ant del nodo a eliminar, esto en el caso de no ser el
nodo ultimo. En el caso de que el puntero a eliminar sea el último no hacer nada.

CAPÍTULO 18 Listas enlazadas 315

ap.18 11/6/05 21:46 Página 315

• Por último se libera la memoria ocupada por el nodo a eliminarptrnodo.

EJEMPLO 18.9 Eliminación en una lista doble

ant->sig = ptrnodo->sig;
ptrnodo->sig->ant = ptrnodo->ant;
free (ptrnodo);

18.5 Listas circulares
En las listas lineales simples o en las dobles siempre hay un primer nodo y un último nodo que tiene el campo de enlace a nulo.
Una lista circular, por propia naturaleza no tiene ni principio ni fin. Sin embargo, resulta útil establecer un nodo a partir del
cual se acceda a la lista y así poder acceder a sus nodos insertar, borrar etc.

CAPÍTULO 18 Listas enlazadas316

Figura 13.4 Lista circular.

INSERCIÓN DE UN ELEMENTO EN UNA LISTA CIRCULAR

El algoritmo empleado para añadir o insertar un elemento en una lista circular varía dependiendo de la posición en que se desea
insertar el elemento que inserta el nodo en la lista circular. En todo caso hay que seguir los siguientes pasos:

• Asignar memoria al nuevo nodo nuevo y almacenar el dato.
• Si la lista está vacía, enlazar el campo sig del nuevo nodo nuevo con el propio nuevo nodo, nuevo y poner el puntero de la

lista circular en el nuevo nodo nuevo.
• Si la lista no está vacía se debe decidir el lugar donde colocar el nuevo nodo nuevo, quedándose con la dirección del nodo

inmediatamente anterior ant. Enlazar el campo sig de nuevo nodo nuevo con el campo sig del nodo anterior ant. Enlazar
el campo sig del nodo anterior ant con el nuevo nodo nuevo. Si se pretende que el nuevo nodo nuevo ya insertado sea el
primero de la lista circular, mover el puntero de la lista circular al nuevo nodo nuevo. En otro caso no hacer nada.

EJEMPLO 18.10 Inserción en lista circular

nuevo = (Nodo*) malloc (sizeof(Nodo));
nuevo->dato = el;
if (primero==NULL)

{
nuevo->sig = nuevo;
primero = nuevo;

}
else {

nuevo->sig = antanterior->sig;
anterior->sig = nuevo;
}

ELIMINACIÓN DE UN ELEMENTO EN UNA LISTA CIRCULAR

El algoritmo para eliminar un nodo de una lista circular es el siguiente:

• Buscar el nodo que contiene el dato quedándose con el nodo anterior ant.
• Se enlaza el campo sig el nodo anterior ant con el campo siguiente sig del nodo a borrar. Si la lista contenía un solo nodo

se pone a NULL la lista.

–4. 5.0 7.5 1.5

Lc

ap.18 11/6/05 21:46 Página 316

• En caso de que el nodo a eliminar sea el referenciado por el puntero de acceso a la lista, Lc, y contenga más de un nodo se
modifica Lc para que tenga la dirección del nodo anterior ant o bien el campo sig de Lc. (si la lista se quedara vacía hacer
que Lc tome el valor NULL).

• Por último, se libera la memoria ocupada por el nodo.

EJEMPLO 18.11 Eliminación en lista circular

ant->sig = ptrnodo->sig;
if (Lc == Lc->sig)
Lc=NULL;
else if (ptrnodo == Lc)

Lc = ant->sig;

CAPÍTULO 18 Listas enlazadas 317

PROBLEMAS RESUELTOS
18.1.Escriba una función que devuelva cierto si la lista está vacía y falso en otro caso, y otra que cree una lista vacía.

Codificación

Si se supone siguiente declaración:

typedef int Item;
typedef struct Registro
{

Item el;
struct Registro* sig;

}Nodo;

La codificación de la función Esvacia será:

Int Esvacia(Nodo * Primero)
{

return(Primero == NULL);
}

La codificación de la función VaciaL será:

Void VaciaL(Nodo ** Primero)
{

*Primero == NULL;
}

18.2. Escriba una función entera que devuelva el número de nodos de una lista enlazada.

Codificación

Si se supone la declaración del problema anterior se tiene:

int NumerNodos(Nodo *Primero)
{

int k = 0;
Nodo *p;

ap.18 11/6/05 21:46 Página 317

CAPÍTULO 18 Listas enlazadas318

p = Primero;
while (p != NULL)
{

k++;
p = p->sig;
}
return(k);

}

18.3. Escriba una función que elimine el nodo que ocupa la posición i de una lista enlazada ordenada.

Análisis del problema

Para resolver el problema se necesita recorrer la lista contando el número de elementos que van pasando, y cortar el reco-
rrido, cuando la lista esté vacía, o cuando se haya llegado a la posición que se busca. Una vez terminado el primer bucle de
búsqueda en el caso de que haya que eliminar el elemento, se borra teniendo en cuenta si es o no el primer elemento de
acuerdo con lo indicado en la teoría.

Codificación

Si se supone la declaración realizada en el problema 13,1 se tiene:.

void EliminaPosicion (Nodo** Primero, int i)
{

int k = 0;
Nodo *ptr, *ant;

ptr = *Primero;
ant = NULL;
while ((k < i) && (ptr != NULL))
{

k++;
ant = ptr;
ptr = ptr->sig;

}
if(k == i)
{
if(ant == NULL)
*Primero = ptr->sig;

else
ant->sig = ptr->sig;
free(ptr);

}
}

18.4. Escriba una función que reciba como parámetro una lista enlazada apuntada por Primero, un dato cualquiera e inserte en la
lista enlazada un nuevo nodo con la información almacenada en dato y de tal forma que sea el primer elemento de la lista.

Análisis del problema

Los pasos que se seguirán son: asignar memoria a un nuevo puntero nuevo; situar el nuevo dato en el campo el; mover el
campo sig de nuevo puntero nuevo al puntero Primero y hacer que Primero apunte a nuevo. Esta función trabaja correc-
tamente, aún cuando la lista esté vacía, siempre que previamente se haya inicializado a NULL.

ap.18 11/6/05 21:46 Página 318

Codificación

Si se supone la siguiente declaración:

typedef int Item;
typedef struct Registro
{

Item el;
struct Registro * sig;

}Nodo;

La codificación de la función será:

void InsertarprimeroLista(Nodo** Primero, Item dato)
{

Nodo *nuevo ;
nuevo = (Nodo*)malloc(sizeof(Nodo));
nuevo -> el = dato;
nuevo -> sig = *Primero;
*Primero= nuevo;

}

18.5. Escriba una función que reciba como parámetro un puntero ant que apunte a un nodo de una lista enlazada e inserte el
valor recibido en el parámetro dato como un nuevo nodo que esté inmediatamente después de ant (Inserción en el centro
y final de una lista).

Análisis del problema

Se crea un nuevo nodo apuntado por nuevo, donde se almacena el dato, para posteriormente poner como siguiente del nuevo
nodo nuevo el siguiente de ant, para por último enlazar el siguiente de ant con nuevo.

Codificación

Si se supone la siguiente declaración:

typedef int Item;
typedef struct Registro
{

Item el;
struct Registro* sig;

}Nodo;

La codificación de la función será:

void InsertarLista(Nodo* ant, Item dato)
{

Nodo *nuevo;

nuevo = (Nodo*)malloc(sizeof(Nodo));
nuevo -> el = dato;
nuevo -> sig = ant -> sig;
ant -> sig = nuevo;

}

CAPÍTULO 18 Listas enlazadas 319

ap.18 11/6/05 21:46 Página 319

18.6. Escriba una función que reciba como datos un puntero al primer nodo de una lista enlazada y un dato a buscar y devuel-
va NULL si el dato no está en la lista y un puntero a la primera aparición del dato en otro caso.

Análisis del problema

Mediante un bucle for controlado por la condición de fin de lista, se recorre la lista. En caso de encontrarlo se devuelve el
puntero pt, en otro caso se devuelve NULL. Los parámetros son Primero que es puntero de cabeza de una lista enlazada,
y dato que es el valor que se busca en la lista.

Codificación

Si se supone la siguiente declaración:

typedef int Item;
typedef struct Registro
{

Item el;
struct Registro* sig;

}Nodo;

La codificación de la función será:

Nodo* BuscarLista (Nodo* Primero, Item dato)
{

Nodo *ptr;

for (ptr = Primero; ptr != NULL; ptr = ptr ->sig)
if (ptr->el == dato)

return ptr;
return NULL;

}

18.7. Escriba un programa que genere una lista enlazada de números aleatorios de tal manera que se almacenen en la lista en el
orden en el que han sido generados. Posteriormente se presentará en pantalla toda la lista para después mostrar todos aque-
llos datos que ocupen una posición par en la lista.

Análisis del problema

La solución se ha estructurado de la siguiente forma:
• Una función InsertaListaDespues que tiene como parámetros por referencia los punteros Primero y ant, que repre-

sentan un puntero al primer elemento de la lista y otro al nodo inmediatamente anterior al último elemento de la lista, y
como parámetro por valor entrada que representa el dato a insertar. Esta función inserta en la lista apuntada por Primero
y después del puntero ant un nuevo nodo con la información dada en entrada, cambiando el puntero ant, y si es nece-
sario el puntero Primero.

• Una función NuevoNodo que da un puntero a un nodo cuya información se le ha pasado en el parámetro x.
• Una función EscribeLista que recibe como parámetro un puntero a una lista enlazada y la presenta en pantalla.
• Una función EscribeListapares que recibe como parámetro un puntero a una lista enlazada y presenta en pantalla todos

los elementos de la lista que ocupan una posición par.
• El programa principal se encarga de rellenar aleatoriamente la lista y realizar las llamadas correspondientes.

Codificación (Consultar la página web del libro)

CAPÍTULO 18 Listas enlazadas320

ap.18 11/6/05 21:46 Página 320

18.8. Escriba un programa que genere una lista aleatoria de números enteros, los inserte en una lista enlazada. Posteriormente
nos presente la lista enlazada completa, y los elementos de la lista enlazada que son pares.

Análisis del problema

Se declara una constante MX que será el máximo número entero aleatorio que se generará. El programa se ha estructurado de
la siguiente forma:
• Una función InsertaPrimero insertará el dato que se ponga como entrada en una lista apuntada por el puntero Primero.
• Una función NuevoNodo dará un puntero a un nuevo registro en el que se ha almacenado la información que se le pase

como dato.
• El programa principal, mediante un bucle for generará números aleatorios y los insertará en la lista hasta que se genere

el número aleatorio cero. Mediante un bucle for se escriben todos los elementos de la lista enlazada, y mediante otro
bucle for se escribe sólo aquellos elementos de la lista que sean pares.

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MX 99
typedef int Item;
typedef struct Registro
{

Item el;
struct Registro* sig;

}Nodo;

void InsertaPrimero(Nodo** Primero, Item entrada);
Nodo* NuevoNodo(Item x);

void main()
{

Item d;
Nodo *Primero, *ptr;
int k;

Primero = NULL;
randomize();
for (d = random(MX); d;) // Termina cuado se genera el numero 0
{

InsertaPrimero(&Primero, d);
d = random(MX);

}
printf(“\n\n”);
printf(“ se escriben todos los datos de la lista lista \n”);
for (k = 0, ptr = Primero; ptr;)
{

printf(“%d “,ptr->el);
k++;
printf(“%c”,(k % 10?’ ‘:’\n’)); /*cada 10 datos salta de línea */
ptr = ptr->sig;

}
printf(“\n\n”);

CAPÍTULO 18 Listas enlazadas 321

ap.18 11/6/05 21:46 Página 321

printf(“ se escriben los datos pares de la lista \n”);
for (k = 0,ptr = Primero; ptr;)
{

if (ptr->el%2 == 0)
{

printf(“%d “,ptr->el);
k++;
printf(“%c”,(k%10?’ ‘:’\n’)); /*10 datos salta de línea */

}
ptr = ptr->sig;

}
}

void InsertaPrimero(Nodo** Primero, Item dato)
{

Nodo *nuevo ;
nuevo = NuevoNodo(dato);
nuevo -> sig = *Primero;
*Primero = nuevo;

}

Nodo* NuevoNodo(Item x)
{

Nodo *a ;
a = (Nodo*)malloc(sizeof(Nodo));
a -> el = x;
a -> sig = NULL;
return a;

}

18.9. Escriba una función que reciba como parámetro una lista enlazada, y un dato, y borre de la lista enlazada la primera apa-
rición del dato.

Análisis del problema

Mediante un bucle mientras se encuentra si existe, el puntero ptr apunta al primer nodo que contiene el dato y en ant se queda
con el puntero anterior. En caso de que no esté el dato en la lista (ptr == NULL) no se hace nada. En caso de que esté en la
lista, se distinguen el caso de no ser el primero de la lista y el que lo sea, para por último liberar la memoria ocupada.

Codificación

void Suprime (Nodo** Primero, Item dato)
{

Nodo* ptr, *ant;
int enc = 0;

ptr = *Primero;
ant = ptr;
while ((!enc) && (ptr != NULL))
{

enc = (ptr->el == dato);
if (!enc)
{

CAPÍTULO 18 Listas enlazadas322

ap.18 11/6/05 21:46 Página 322

ant = ptr;
ptr = ptr -> sig;

}
}
if (ptr != NULL)
{

if (ptr == *Primero)
*Primero = ptr->sig;

else
ant -> sig = ptr->sig;

free(ptr);
}

}

18.10. Escriba un programa que lea del teclado una lista de números enteros los inserte en una lista enlazada ordenada crecien-
temente, presente la lista enlazada ordenada, y pida una sucesión de datos del teclado que serán borrados de la lista orde-
nada.

Análisis del problema

La solución se ha planteado de la siguiente forma:

• Un programa principal se encarga de hacer las declaraciones y llamar a las distintas funciones en bucles do while. El
fin de la entrada de datos viene dado por el centinela –1.

• La función NuevoNodo se encarga de crear un nodo donde almacenar el dato que recibe como parámetro, y coloca el
campo siguiente a NULL.

• La función Escribir se encarga de presentar en pantalla la lista enlazada ordenada.
• La función InsertarEnOrden recibe como parámetro una lista enlazada ordenada y un dato y lo inserta dejándola de

nuevo ordenada. Para realizarlo, primeramente crea el nodo donde almacenará el dato, si es el primero de la lista lo
inserta, y en otro caso mediante un bucle while recorre la lista hasta encontrar donde colocar el dato. Una vez encon-
trado el sitio se realiza la inserción de acuerdo con el algoritmo correspondiente.

• La función borrarEnOrden se encarga de buscar la primera aparición de dato en una lista enlazada ordenada y borrar-
lo. Para ello realiza la búsqueda de la posición donde se encuentra la primera aparición del dato quedándose con el pun-
tero ptr y con el puntero ant (anterior). Posteriormente realiza el borrado teniendo en cuenta que sea el primero de la
lista o que no lo sea.

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MX 100
typedef int Item;
typedef struct Registro
{

Item el;
struct Registro* sig;

}Nodo;

void InsertarEnOrden(Nodo** Primero, Item Dato);
Nodo* NuevoNodo(Item x);
void Escribir(Nodo* Primero);
void BorrarEnOrden(Nodo** Primero, Item Dato);

CAPÍTULO 18 Listas enlazadas 323

ap.18 11/6/05 21:46 Página 323

void main()
{

Item d;
Nodo* Primero;
Primero = NULL;
randomize();
do
{

printf(“ dato -1 = fin\n”);
scanf(“%d”, &d);
if (d != -1)
InsertarEnOrden(&Primero, d);

}
while (d != -1);
Escribir(Primero);
do
{

printf(“ dato a borrar -1 = fin\n”);
scanf(“%d”, &d);
if (d != -1)

BorrarEnOrden(&Primero, d);
Escribir(Primero);

}
while (d != -1);

}

void InsertarEnOrden(Nodo** Primero, Item Dato)
{

Nodo *nuevo, *ant, *p;

nuevo = NuevoNodo(Dato);
if (*Primero == NULL)

*Primero = nuevo;
else

if (Dato <= (*Primero)->el)
{

nuevo -> sig = *Primero;
*Primero = nuevo;

}
else
{

ant = p = *Primero; // no es el primero
while ((Dato > p->el) && (p->sig != NULL))
{

ant = p;
p = p->sig;

}
if (Dato > p->el) // falta por comprobar el ultimo

ant = p;
nuevo -> sig = ant -> sig;
ant -> sig = nuevo;
}

}

CAPÍTULO 18 Listas enlazadas324

ap.18 11/6/05 21:46 Página 324

void BorrarEnOrden(Nodo** Primero, Item Dato)
{

Nodo *ant, *ptr;
int enc = 0;

ant = NULL;
ptr = *Primero;
while ((! enc) && (ptr != NULL))
{

enc = (Dato <= ptr->el));
if (! enc)
{

ant = ptr;
ptr = ptr->sig;

}
}
if (enc)

enc = ((ptr->el) == ato);
if (enc)
{

if (ant == NULL)
*Primero = ptr->sig;

else
ant->sig = ptr->sig;

free(ptr);
}

}

Nodo* NuevoNodo(Item x)
{

Nodo *n ;

n = (Nodo*)malloc(sizeof(Nodo));
n -> sig = NULL;
n -> el = x;
return n;

}

void Escribir(Nodo* Primero)
{

int k;

printf(“\n\t\t Lista Ordenada \n”);
for (k = 0; Primero; Primero = Primero->sig)
{
k++;
printf(“%d “,Primero->el);
printf(“%c”,(k%10 ?’ ‘:’\n’));

}
printf(“\n\n”);

}

CAPÍTULO 18 Listas enlazadas 325

ap.18 11/6/05 21:46 Página 325

18.11. Escriba una función que reciba como dato una lista enlazada y un dato y elimine todos los nodos de la lista que cumplan
la condición de que su información sea estrictamente mayor que el valor dado en dato.

Análisis del problema

La función usa tres punteros: ptr que es el puntero con el que se recorre la lista, ant que es el puntero inmediatamente ante-
rior a ptr, y p que es el puntero usado para liberar memoria. La codificación se ha realizado de tal forma que el puntero
ptr recorre la lista mediante un bucle while, cuando un nodo cumple la condición de ser eliminado, se borra de la lista,
teniendo siempre en cuenta si es el primer elemento de la lista o no lo es. Si el nodo no cumple la condición de borrado sim-
plemente se avanza en la lista.

Codificación

void EliminaMayores(Nodo **Primero, Item Dato)
{

Nodo *ptr, *ant, *p;
Ant = NULL;
Ptr = *Primero;
while (ptr != NULL)

if (ptr->el>Dato)
if (ant == NULL)
{

p = *Primero;
*Primero = ptr->sig;
ptr = *Primero;
free(p);

}
else

{
ant->sig = ptr->sig;
p = ptr;
ptr = ptr->sig;
free(p);

}
else

{
ant = ptr;
ptr = ptr->sig;

}
}

}

18.12. Un conjunto es una secuencia de elementos todos del mismo tipo, sin duplicados. Escriba un programa para representar
un conjunto de enteros mediante una lista enlazada. El programa debe contemplar las operaciones:EscribeConjunto;
AnadeConjunto; PerteneceConjunto; BorraConjunto; CardinalConjunto; VaciaConjunto; EsVacioConjunto;
RellenaConjunto.

Análisis del problema

El programa que se codifica representa los conjuntos como listas simplemente enlazadas sin ordenar. La implementación
puede mejorarse en cuanto a eficiencia si se implementan como listas enlazadas ordenadas crecientemente, o bien como
árboles binarios de búsqueda AVL. La solución se divide en los siguientes módulos:

CAPÍTULO 18 Listas enlazadas326

ap.18 11/6/05 21:46 Página 326

• Un programa principal que se encarga de llamar a los distintos módulos de programa.
• La función VaciaConjunto que crea el conjunto vacío creando una lista vacía.
• La función EsVacíoConjunto que decide si un conjunto es vacío.
• La función RellenaConjunto que añade aleatoriamente elementos a un conjunto.
• La función CardinalConjunto que nos dice cuantos elementos hay almacenados en el conjunto.
• La función BorraConjunto que se encarga de borrar un elemento del conjunto.
• La función PerteneceConjunto que decide si un elemento se encuentra en el conjunto.
• La función AnadeConjunto que se encarga de añadir un elemento al conjunto como primer elemento.
• La función EscribeConjunto que se encarga de escribir los elementos que se encuentran en el conjunto.

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MX 99
typedef int Item;
typedef struct Registro
{

Item el;
struct Registro* sig;

}Nodo;

Nodo* NuevoNodo(Item x);
void EscribeConjunto(Nodo * Primero);
void AnadeConjunto(Nodo** Primero, Item dato);
int PerteneceConjunto (Nodo* Primero, Item dato);
void BorraConjunto (Nodo** Primero, Item dato);
int CardinalConjunto(Nodo *Primero);
void VaciaConjunto(Nodo **Primero);
int EsVacioConjunto(Nodo *Primero);
void RellenaConjunto(Nodo **Primero);

void main()
{

Nodo *Primero;
RellenaConjunto(&Primero);
EscribeConjunto(Primero);
....
....
....

}

void RellenaConjunto(Nodo **Primero)
{

Item d;
*Primero = NULL;
randomize();
for (d = random(MX); d;)
{

if (!PerteneceConjunto(*Primero, d))
AnadeConjunto(Primero,d);
d = random(MX);

CAPÍTULO 18 Listas enlazadas 327

ap.18 11/6/05 21:46 Página 327

}
}

int EsVacioConjunto(Nodo *Primero)
{

return (Primero == NULL);
}

void VaciaConjunto(Nodo **Primero)
{

(*Primero)= NULL;
}

int CardinalConjunto(Nodo *Primero)
{

Nodo *ptr;
int k = 0;
ptr = Primero;
while (ptr)
{

k++;
ptr = ptr->sig;

}
return k;

}

Nodo* NuevoNodo(Item x)
{

Nodo *a ;

a = (Nodo*)malloc(sizeof(Nodo));
a -> el = x;
a -> sig = NULL;
return a;

}

void EscribeConjunto(Nodo * Primero)
{

int k; Nodo *ptr;

printf(“\n\n”);
printf(“ se escriben todos los elementos del conjunto \n”);
for (k = 0, ptr = Primero; ptr ;)
{

printf(“%d “, ptr->el);
k++;
if (k % 10)
printf(“%c”,’ ‘);

else
printf(“%c”,’\n’);

ptr = ptr->sig;
}

}
void AnadeConjunto(Nodo** Primero, Item dato)

CAPÍTULO 18 Listas enlazadas328

ap.18 11/6/05 21:46 Página 328

{
Nodo *nuevo;
if(¡PerteneceConjunto(*Primero, dato))
{

nuevo = (Nodo*)malloc(sizeof(Nodo));
nuevo -> el = dato;
nuevo -> sig = *Primero;
*Primero = nuevo;

}
}

int PerteneceConjunto (Nodo* Primero, Item dato)
{

Nodo *ptr;
for (ptr = Primero; ptr != NULL; ptr = ptr ->sig)

if (ptr-> el == dato)
return 1;

return 0;
}

void BorraConjunto (Nodo** Primero, Item dato)
{

Nodo* ptr, *ant;
int enc = 0;
ptr = *Primero; ant = ptr;
while ((! enc) && (ptr != NULL))
{
enc = (ptr->el == dato);
if (! enc)

{
ant = ptr;
ptr = ptr -> sig;

}
}

if (ptr != NULL)
{

if (ptr == *Primero)
*Primero = ptr->sig;
else

ant -> sig = ptr->sig;
free(ptr);

}
}

18.13. Con la representación de Conjuntos realizada en el ejercicio anterior, añada las operaciones básicas: Unión, Intersección,
Diferencia, Inclusión.

Análisis del problema

Se codifican a continuación las siguientes funciones

• UnionDeConjuntos que realiza la unión del conjunto C1 con el C2 en el Conjunto C3. Para realizarlo lo único que se
hace es añadir todos los elementos del conjunto C1 y C2 al conjunto C3, previamente inicializado a NULL.

CAPÍTULO 18 Listas enlazadas 329

ap.18 11/6/05 21:46 Página 329

• DiferenciaDeConjunto que realiza la diferencia del conjunto C1 con el C2 dejando el resultado en C3. Por lo tanto C3
contendrá todos los elementos de C1 que no estén en C2.

• InclusionDeConjuntos que decide si el conjunto C1 está incluido en el C2. Para que esto ocurra deben estar todos los
elementos de C1 en C2.

• InterseccionDeConjuntos que pone en C3 la intersección de los conjuntos C1 y C2. Por lo tanto C3 contendrá todos los
elementos de C1 que estén a su vez en C2.

Codificación (Consultar la página web del libro)

18.14. Escriba una función que reciba como parámetro dos listas enlazadas ordenas crecientemente y de como resultado otra lista
enlazada ordenada que sea mezcla de las dos.

Análisis del problema

Para mezclar dos listas enlazadas, se usa un nodo ficticio apuntado por el puntero p, para asegurar que todos los elementos
se insertarán al final de la lista que será la mezcla. Para ello se lleva un puntero u que apuntará siempre al último elemen-
to de la lista que debido al nodo ficticio siempre existirá. Al final de la mezcla se elimina el elemento ficticio. La mezcla de
las dos listas se realiza avanzando con dos punteros p1 y p2 por las listas L1 y L2. Un primer bucle while avanzará o bien
por L1 o bien por L2 insertando en la lista mezcla, dependiendo de que el dato más pequeño esté en L1 o en L2, hasta que
una de las dos listas se termine. Los dos bucles while posteriores se encargan de terminar de añadir a la lista mezcla los
elementos que queden o bien de L1 o bien de L2.

Se usa la función NuevoNodo y las declaraciones de los problemas vistos anteriormente.

Codificación

void MezclarListasOrdenadas(Nodo *L1, Nodo *L2, Nodo **L3)
{

Nodo *p1, *p2, *p, *u, *nn;

nn = NuevoNodo(-32767);
p = nn;
u = nn;
p1 = L1;
p2 = L2;
while (p1 && p2)

if (p1->el < p2->el)
{
nn = NuevoNodo(p1->el);
u->sig = nn;
u = nn;
p1 = p1->sig;

}
else

{
nn = NuevoNodo(p2->el);
u->sig = nn;
u = nn;
p2 = p2->sig;

}
while (p1)
{

nn = NuevoNodo(p1->el);
u->sig = nn;
u = nn;

CAPÍTULO 18 Listas enlazadas330

ap.18 11/6/05 21:46 Página 330

p1 = p1->sig;
}
while (p2)
{
nn = NuevoNodo(p2->el);
u->sig =nn;
u = nn;
p2 = p2->sig;
}
*L3 = p->sig;
free(p);

}

18.15. Implementar un programa C que tenga las siguientes opciones de una Lista Doblemente Enlazada. InsertaPrincipioLD;
VaciaLD; EsVaciaLD; generaPorElFinalLD; generaPorElPrincipioLD; InsertaAntLD; EscribeLista; InsertaListaDespuesLD

Análisis del problema

El programa que se codifica declara una lista doblemente enlazada, y un programa principal se encarga de llamar a las dis-
tintas funciones que a continuación se especifica.

• InsertaPrincipioLD. Recibe como parámetro un puntero a una lista doble, un dato y realiza la inserción de un nuevo
nodo en la lista como primer elemento cuya información es el valor recibido en dato.

• VaciaLd. Es una función que recibe como parámetro una lista doble y la pone a vacía.
• EsvaciaLD. Es una función que recibe como parámetro una lista doble y decide si está vacía.
• GeneraPorElPrincipioLD. Es una función que usando la función que usando la función InsertaPrincipioLD, genera

números aleatorios y los inserta en una lista doble por el principio.
• InsertaListaDespuesLD. Es una función que recibe como parámetro un puntero Primero a una Lista enlazada Doble

y un puntero ant que apunta al último nodo de la Lista Doble, e inserta un nuevo nodo como último elemento de la Lista
Doble cuya información está dada por el valor de d. Además de realizar la inserción mueve adecuadamente los punteros
Primero y ant.

• GeneraPorElFinal Es una función que usando la función InsertaListaDespuesLD, genera números aleatorios y los inser-
ta en una lista doble por el final.

• EscribeLista. Escribe los elementos de la lista doblemente en lazada.
• InsertaAntLD. Inserta después del nodo apuntado por ant que siempre existe un nuevo nodo cuya información es la

recibida por dato.

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MX 100
typedef int Item;
typedef struct unnodo
{

Item el;
struct unnodo* sig, *ant;

}Nodo;

void InsertaPrincipioLD(Nodo ** Primero, Item dato);
void VaciaLD(Nodo ** Primero);
int EsVaciaLD(Nodo *Primero);

CAPÍTULO 18 Listas enlazadas 331

ap.18 11/6/05 21:46 Página 331

void GeneraPorElFinalLD(Nodo **Primero);
void GeneraPorElPrincipioLD(Nodo **Primero);
void InsertaAntLD(Nodo* ant, Item dato);
void EscribeLista(Nodo * Primero);
void InsertaListaDespuesLD(Nodo **Primero,Nodo **ant, Item d);

void main(void)
{

Nodo *Primero;
GeneraPorElPrincipioLD(&Primero);
EscribeLista(Primero);

}

void VaciaLD(Nodo ** Primero)
{

*Primero = NULL;
}

int EsVaciaLD(Nodo *Primero)
{
return (Primero == NULL);
}

void InsertaAntLD(Nodo* ant, Item dato)
{

Nodo *ptr, *sig;

ptr = (Nodo*)malloc(sizeof(Nodo));
ptr-> el = dato ;
ptr-> ant = ant;
ptr->sig = ant->sig;
sig=ptr->sig;
if (sig != NULL)

sig->ant = ptr;
ptr->sig = ptr;

}

void InsertaPrincipioLD(Nodo ** Primero, Item dato)
{

Nodo* nn;

nn = (Nodo*)malloc(sizeof(Nodo));
nn-> el = dato ;
nn-> sig = *Primero;
nn-> ant = NULL;
if (*Primero == NULL)

*Primero = nn;
else

(*Primero) ->ant = nn;
*Primero = nn;

}

void EscribeLista(Nodo * Primero)

CAPÍTULO 18 Listas enlazadas332

ap.18 11/6/05 21:46 Página 332

{
int k;
Nodo *ptr;
printf(“\n\n”);
printf(“ se escriben todos los datos de la lista lista \n”);
for (k =0, ptr = Primero; ptr;)
{

printf(“%d “,ptr->el);
k++;
if (k %1 0)
printf(“%c”,’ ‘);
else
printf(“%c”,’\n’);
ptr = ptr->sig;

}
}
void InsertaListaDespuesLD(Nodo **Primero,Nodo **ant, Item d)
{

Nodo *nuevo ;

nuevo = (Nodo*)malloc(sizeof(Nodo));
nuevo->el = d;
nuevo -> sig = NULL;
if(*ant == NULL)
{

*ant = nuevo;
*Primero = ant;
nuevo-> ant = NULL ;

}
else
{

(*ant)->sig = nuevo;
nuevo -> ant =*ant;
*ant = nuevo;

}
}

void GeneraPorElFinalLD(Nodo **Primero)
{

Item d;
Nodo *p,*ptr;

p = NULL;
ptr = NULL;
randomize();
for (d = random(MX); d;)
{

InsertaListaDespuesLD(&p, &ptr, d);
d = random(MX);

}
*Primero =p;

}

CAPÍTULO 18 Listas enlazadas 333

ap.18 11/6/05 21:46 Página 333

void GeneraPorElPrincipioLD(Nodo **Primero)
{

Item d;
Nodo *p;

p = NULL;
randomize();
for (d=random(MX); d;)
{

InsertaPrincipioLD(&p, d);
d = random(MX);

}
*Primero=p;

}

18.16. Escriba una función que reciba como parámetro un puntero a una Lista Doblemente Enlazada además de un valor alma-
cenado en dato, y elimine la primera aparición de ese dato en la lista Doble.

Análisis del problema

En primer lugar se procede a buscar la primera aparición del elemento en la Lista Doblemente Enlazada. Una vez que se
haya encontrado, se resuelve el problema del borrado al comienzo de la lista moviendo el puntero *Primero y si es necesa-
rio el puntero ptr->sig. Posteriormente se resuelve el problema de borrado en el centro de la lista, para lo cual hay que
mover los punteros ptr->ant->sig y ptr->sig->ant. Por último se resuelve el problema del borrado al final de la lista
moviendo el puntero ptr->sig. Una vez que se han realizado los enlaces, se libera la memoria.

Codificación

void EliminaLD(Nodo **Primero, Item dato)
{

Nodo* ptr;
int enc = 0;

ptr = *Primero;final de linea //busqueda
while ((ptr!=NULL) && (!enc))

{
enc = (ptr->el == dato);
if (!enc)
ptr = ptr -> sig;

}
if (ptr != NULL)
{
if (ptr == *Primero) // comienzo
{
*Primero = ptr->sig;
if (ptr->sig != NULL)
ptr->sig->ant = NULL;

}
else

if (ptr->sig != NULL) // centro
{
ptr -> ant ->sig = ptr -> sig;

ptr -> sig -> ant = ptr -> ant;

CAPÍTULO 18 Listas enlazadas334

ap.18 11/6/05 21:46 Página 334

}
else
{
ptr -> ant -> sig = NULL; // final

}
free(ptr);
}

}

18.17. Escriba una función que elimine la primera aparición de un dato en una Lista Doblemente Enlazada ordenada crecientemente.

Análisis del problema

Mediante un bucle while controlado por el puntero ptr y la variable lógica enc, se busca la posición donde se debe encon-
trar la primera aparición del dato. Después de haber encontrado la posición se comprueba que realmente se encuentra el dato.
Los casos a considerar para el borrado son: a) primero y último; b) primero y no último c) último y no primero; d) no pri-
mero y no último.

Después de haber movido los punteros correspondientes, se libera la memoria.

Codificación

void BorrarEnOrdenLD(Nodo** Primero, Item Dato)
{

Nodo *ant, *ptr;
int enc=0;

ant = NULL;
ptr= *Primero;
while ((! enc) && (ptr != NULL))
{

enc = (Dato <= (ptr->el));
if (! enc)
{

ant = ptr;
ptr = ptr->sig;

}
}
if (enc)

enc = ((ptr->el) == Dato);
if (enc)
{

if (ant == NULL) // primero
if (ptr->sig == NULL) // primero y ultimo

*Primero = NULL;
else // primero y no ultimo
{

ptr->sig->ant = NULL;
*Primero = ptr->sig;

}
else // no primero

if (ptr->sig == NULL) // no primero y ultimo
ant->sig = NULL;

else // no primero y no ultimo

CAPÍTULO 18 Listas enlazadas 335

ap.18 11/6/05 21:46 Página 335

{
ant->sig = ptr->sig;
ptr->sig->ant = ant;

}
free(ptr);

}
}

18.18. Escriba una función que inserte un número entero en una lista Doblemente enlazada y ordenada crecientemente.

Análisis del problema

En primer lugar se llama a la función NuevoNodoLD que reservará la memoria donde almacenará el Dato y se inicializarán
los campos ant y sig a NULL del puntero nuevo donde se ha almacenado el dato. Mediante un bucle while controlado por
la variable lógica enc y el puntero p, que inicialmente se ponen a falso y a la propia lista, se busca la posición donde se debe
insertar el nuevo dato. Además hay que quedarse en el puntero ant con la posición del nodo anterior. Una vez encontrada la
posición, la inserción se puede producir en; a) principio y final b) caso principio y no final c) caso final y no principio d)
caso no principio y no final. Se codifica también la función NuevoNodoLD y la función GegeraOrdenadoLD, que se encar-
ga de generar aleatoriamente la lista doblemente enlazada ordenada.

Codificación

#define MX 100
typedef int Item;
typedef struct unnodo
{

Item el;
struct unnodo* sig, *ant;

}Nodo;
.....
.....

Nodo* NuevoNodoLD(Item x)
{

Nodo *n;

n = (Nodo*)malloc(sizeof(Nodo));
n -> sig = NULL;
n->ant = NULL;
n -> el = x;
return n;

}

void InsertarEnOrdenLD(Nodo** Primero, Item Dato)
{

Nodo *nuevo, *ant, *p;
int enc;
nuevo = NuevoNodoLD(Dato);
p = *Primero;
ant = NULL;
enc = 0;
while ((! Enc) && (p != NULL))
{

CAPÍTULO 18 Listas enlazadas336

ap.18 11/6/05 21:46 Página 336

enc = (Dato <= p->el);
if (!enc)
{

ant = p;
p = p->sig;

}
}
if (*Primero == NULL) // primero y ultimo

*Primero = nuevo;
else
if (ant == NULL) // primero no ultimo
{

nuevo->sig = p;
p->ant = nuevo;
*Primero = nuevo;

}
else

if(p == NULL) // ultimo no primero
{

nuevo->ant = ant;
ant->sig = nuevo;

}
else // no ultimo no primero
{

nuevo->sig = p;
nuevo->ant = ant;
ant->sig = nuevo;
p->ant = nuevo;

}
}

void GeneraOrdenadaD(Nodo **Primero)
{

Item d;
Nodo *p;

p = NULL;
randomize();
for (d = random(MX); d;)
{

InsertarEnOrdenLD(&p, d);
d = random(MX);

}
*Primero = p;

}

18.19. Se tiene una lista simplemente enlazada de números reales. Escriba una función para obtener una lista doblemente enlaza-
da ordenada respecto del campo el, con los valores de la lista simple.

Análisis del problema

Para resolver el problema planteado simplemente hay que cambiar la función GeneraOrdenadaLD hecha en el ejercicio
18.18, de tal manera que reciba además la lista simplemente enlazada como parámetro, y en lugar del bucle for recorrer la
lista simple mediante un bucle while por ejemplo realizando la misma llamada.

CAPÍTULO 18 Listas enlazadas 337

ap.18 11/6/05 21:46 Página 337

Codificación

typedef int Item;
typedef struct unnodo
{

Item el;
struct unnodo* sig, *ant;

}Nodo;

typedef struct unnodols
{

Item el;
struct unnodols* sig;

}Nodols;
.....
......
void GeneraOrdenadaLDaPartirSimple(Nodo**Primero,Ndols*Primerols)
{

Nodo *pld;
Nodols *pls

pld = NULL;
pls =Primerols;
while (pls)
{

InsertarEnOrdenLD(&pld, pls->el);
pls = pls->sig;

}
*Primero = p;

}

18.20. Escriba una función que tenga como parámetro el puntero Primerols al primer nodo de una lista simplemente enlazada y
retorne un puntero a una lista doble con los mismos campos que la lista enlazada simple pero en orden inverso.

Análisis del problema

Para resolver el problema sólo que recorrer la lista enlazada simple e ir insertando en una lista doble por el final.

Codificación

typedef int Item;
typedef struct unnodo
{

Item el;
struct unnodo* sig, *ant;

}Nodo;

typedef struct unnodols
{

Item el;
struct unnodols* sig;

}Nodols;

CAPÍTULO 18 Listas enlazadas338

ap.18 11/6/05 21:46 Página 338

....

....

....
void InsertaListaDespuesLD(Nodo **Primero,Nodo **ant, Item d)
{

Nodo *nuevo ;

nuevo = (Nodo*)malloc(sizeof(Nodo));
nuevo->el = d;
nuevo -> sig = NULL;
if(*ant == NULL)
{

*ant = nuevo;
*Primero = *ant;
nuevo-> ant = NULL;

}
else
{

(*ant)->sig = nuevo;
nuevo -> ant = *ant;
*ant=nuevo;

}
}

nodo * GeneraPorElFinalLD(Nodols *Primero)
{

Item d;
Nodo *p,*ptr;
Nodols ls;

p = NULL;
ptr = NULL;
ls = Primero;
while(ls != NULL)
{

InsertaListaDespuesLD(&p, &ptr, ls->el);
ls = ls->sig;

}
return(p);

}

18.21. Escriba las declaraciones y funciones necesarias para trabajar con una lista circular.

Análisis del problema

El programa que se presenta se estructura de la siguiente forma:

• En primer lugar se realizan las declaraciones necesarias para tratar la Lista Circular.
• El Programa principal se encarga de realizar las llamadas correspondientes.
• VaciaLc. Es una función que nos crea una Lista Circular vacía.
• EsVacíaLc. Es una función que da verdadero cuando la Lista Circular está vacía.
• NuevoNodoLc. Es una función que devuelve un puntero a un nuevo nodo en el que se ha almacenado el dato x.
• InsertaListaCircular. Realiza la inserción en una lista circular del valor dato. Lo hace teniendo en cuenta que

Primero es un puntero que apunta al último elemento que se añadió a la lista, y a continuación inserta un nuevo nodo en

CAPÍTULO 18 Listas enlazadas 339

ap.18 11/6/05 21:46 Página 339

la Lista Circular como último elemento, para lo cual aparte de realizar los correspondientes enlaces, debe mover el pun-
tero Primero para que apunte siempre al último elemento que se añadió. De esta forma el primer elemento de la lista
siempre estará en el nodo Primero->sig.

• GeneraPorElFinalLc. Crea una lista circular de números enteros aleatorios, realizando las inserciones con la función
InsertaListaCircular.

• EscribeListaLc. Se encarga de escribir la lista circular. Si la Lista Circular está vacía no hace nada. En otro caso lo que
hace es mediante un puntero ptr, se toma el primer elemento que estará siempre en el sig del puntero que apunte a la
lista circular, y mediante un bucle escribe el dato, y avanza ptr hasta que haya dado una vuelta completa.

• EliminaPrimeroLc .Se encarga de eliminar el primer nodo de la lista circular que estará siempre en Primero->sig. Sólo
hay que tener en cuenta que si la lista está vacía no se puede borrar. Si tiene un sólo dato la lista se quedará vacía y habrá
que liberar memoria. Si tiene más de un dato habrá que mover el puntero Primero->sig a Primero->sig-> sig y libe-
rar la memoria del nodo que se ha puenteado.

• EliminarLc .Se encarga de buscar la primera aparición de dato y borrarla de la lista circular. Lo hace de la siguiente
forma. Si la lista esta vacía no hay nada que hacer. En otro caso con una variable lógica enc y con un puntero ptr reali-
za la búsqueda del dato, controlando no realizar un bule infinito. Una vez encontrado el elemento se realiza el borrado
teniendo en cuenta: Si la lista contiene un solo valor se quedará vacía. Si el nodo a borrar es el apuntado por Primero,
habrá que mover este puntero, en otro caso no habrá que moverlo. Siempre que se borre un nodo habrá que puentearlo.

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MX 100
typedef int Item;
typedef struct NuevoNodo
{

Item el;
struct NuevoNodo* sig;

}NodoLc;

void VaciaLc(NodoLc ** Primero);
int EsVaciaLc(NodoLc *Primero);
NodoLc* NuevoNodoLc(Item x);
void InsertaListaCircular(NodoLc ** Primero,Item dato);
void GeneraPorElFinalLc(NodoLc **Primero);
void EscribeListaLc(NodoLc * Primero);
void EliminarLc (NodoLc** Primero, Item dato);
void EliminaPrimeroLc(NodoLc **Primero);

void main(void)
{

NodoLc *Primero;

GeneraPorElFinalLc(&Primero);
EscribeListaLc(Primero);

}

void VaciaLc(NodoLc ** Primero)
{

*Primero = NULL;
}

CAPÍTULO 18 Listas enlazadas340

ap.18 11/6/05 21:46 Página 340

int EsVaciaLc(NodoLc *Primero)
{

return (Primero == NULL);
}

NodoLc* NuevoNodoLc(Item x)
{

NodoLc *nn ;

nn = (NodoLc*)malloc(sizeof(NodoLc));
nn -> el = x;
nn -> sig = nn;
return nn;

}

void InsertaListaCircular(NodoLc ** Primero,Item dato)
{

NodoLc* nn;

nn = NuevoNodoLc(dato);
if (*Primero != NULL)
{

nn -> sig = (*Lc) -> sig;
(*Primero) -> sig = nn;

}
*Primero = nn;

}

void GeneraPorElFinalLc(NodoLc **Primero)
{

Item d;
NodoLc *p;

p = NULL;
randomize();
for (d=random(MX); d;)
{

InsertaListaCircular(&p,d);
d = random(MX);

}
*Primero=p;

}

void EscribeListaLc(NodoLc * Primero)
{

NodoLc *ptr;
int k = 0;

ptr = Primero;
if (ptr != NULL)
{

ptr = ptr->sig;
do

CAPÍTULO 18 Listas enlazadas 341

ap.18 11/6/05 21:46 Página 341

{
k++;
if(k%10==0)

{
printf(“\n”);
printf(“%d”, ptr->el);

}
else
{
printf(“ “);
printf(“%d”, ptr->el);

}
ptr = ptr->sig;

}
while (ptr != Primero->sig);

}
}

void EliminaPrimeroLc(NodoLc **Primero)
{

NodoLc *ptr, *p;
ptr = *Primero;

if (ptr!=NULL)
{

p=ptr->sig; // p hay que borrarlo
if (p == ptr)

*Primero = NULL;
else
ptr->sig = p->sig;

free(p);
}

}

void EliminarLc (NodoLc** Primero, Item dato)
{

NodoLc* ptr,*p;
int enc = 0;
ptr = *Primero;
if (ptr == NULL)
return;
// búsqueda mientras no encontrado y no de la vuelta
while ((ptr->sig != *Primero) && (!enc))
{

enc = (ptr->sig->el == dato);
if (!enc)

ptr = ptr -> sig;
}
enc = (ptr->sig->el == dato); // aquí se debe encontrar el dato
if (enc)
{

p = ptr->sig;
if (*Primero == (*Primero)->sig) // solo hay un dato

CAPÍTULO 18 Listas enlazadas342

ap.18 11/6/05 21:46 Página 342

*Primero = NULL;
else
{

if (p == *Primero)
*Primero = ptr;

ptr->sig = p->sig;
}

free(p);
}

}

18.22. Se tiene una Lista Circular de palabras. Escribir una función que cuente el número de veces que una palabra dada está en
la lista.

Análisis del problema

Para resolver el problema basta con declarar item de tipo cadena y recorrer la lista circular contando el número de apari-
ciones que tiene. Para realizar las comparaciones se usa la función strcmp() que recibe como parámetro dos cadenas de
caracteres y devuelve el valor 0 si son iguales. Si la lista está vacía devolverá el valor cero. En otro caso, mediante un bucle
while controlado por “dar la vuelta a la lista”, se va comprobando y contando las igualdades entre cadenas con la función
strcmp().

Codificación

#include <stdio.h>
#include <string.h>

typedef char *Item;
typedef struct NuevoNodo
{

Item el;
struct NuevoNodo* sig;

}NodoLc;

int AparicoponesEnLc(NodoLc *Primero, char *cad)
{

int cont = 0;
NodoLc *ptr;

ptr = Primero;
if(ptr == NULL)

return (cont);
else
{

if (strcmp(ptr->el,cad) == 0)
cont++;

// mentras no de la vuelta
while (ptr->sig != Primero)
{

ptr = ptr->sig;
if(strcmp(ptr->el,cad) == 0)

cont++;

CAPÍTULO 18 Listas enlazadas 343

ap.18 11/6/05 21:46 Página 343

}
return(cont);

}
}

18.23. Escriba una función que tenga como argumento una lista circular de números enteros. La función debe devolver el dato del
nodo con mayor valor.

Análisis del problema

Para resolver el problema basta con recorrer la lista circular almacenando el valor máximo. Si la lista está vacía se devuel-
ve un valor muy negativo equivalente a menos infinito. En otro caso, el mayor es ptr->el, (previamente ptr toma el valor
de Primero) y mediante un bucle while controlado por “dar la vuelta a la lista”, se calcula el nuevo mayor por el algorit-
mo voraz clásico.
Codificación

Item MayorLc(NodoLc *Primero)
{

Item Mayor;
NodoLc *ptr;
ptr=Primero;
if(ptr == NULL)

return (-32767);
else
{

Mayor = ptr->el;
// mentras no de la vuelta

while (ptr->sig != Primero)
{

ptr = ptr->sig;
if(Mayor <(ptr->el))
Mayor = ptr->el;

}
return(Mayor);

}
}

CAPÍTULO 18 Listas enlazadas344

PROBLEMAS PROPUESTOS
18.1. En una lista enlazada de números enteros se desea aña-

dir un nodo entre dos nodos consecutivos con campos
dato de distinto signo; el valor del campo dato del nuevo
nodo que sea la diferencia en valor absoluto.

18.2. Escribir una función para crear una lista doblemente
enlazada de palabras introducidas por teclado. La fun-
ción debe tener un argumento puntero Ld en el que se
devuelva la dirección del nodo que está en la posición
intermedia.

18.3. Se tiene una lista de simple enlace, el campo dato es un
registro(estructura) con los datos de un alumno: nom-
bre, edad, sexo. Escribir una función para transformar
la lista de tal forma que si el primer nodo es de un
alumno de sexo masculino el siguiente sea de sexo
femenino.

18.4. Una lista circular de cadenas está ordenada alfabética-
mente. El puntero Lc tiene la dirección del nodo alfabé-
ticamente mayor, apunta al nodo alfabéticamente menor.

ap.18 11/6/05 21:46 Página 344

CAPÍTULO 18 Listas enlazadas 345

Escribir una función para añadir una nueva palabra, en el
orden que le corresponda, a la lista.

18.5. Dada la lista del ejercicio anterior escribir una función
que elimine una palabra dada.

18.6. Se tiene un archivo de texto de palabras separadas por un
blanco o el carácter de fin de línea. Escribir un programa
para formar una lista enlazada con las palabras del archi-
vo. Una vez formada la lista se pueden añadir nuevas
palabras o borrar alguna de ellas. Al finalizar el progra-
ma escribir las palabras de la lista en el archivo.

18.7. Un polinomio se puede representar como una lista enlaza-
da. El primer nodo de la lista representa el primer término
del polinomio, el segundo nodo al segundo término del
polinomio y así sucesivamente. Cada nodo tiene como
campo dato el coeficiente del término y el exponente.

Escribir un programa que permita dar entrada a polino-
mios en x, representándolos con una lista enlazada sim-
ple. A continuación obtener una tabla de valores del
polinomio para valores de x = 0.0, 0.5, 1.0, 1.5, … , 5.0

18.8. Teniendo en cuenta la representación de un polinomio
propuesta en el problema anterior hacer los cambios
necesarios para que la lista enlazada sea circular. El pun-
tero de acceso debe de tener la dirección del último tér-
mino del polinomio, el cuál apuntará al primer término.

18.9. Según la representación de un polinomio propuesta en el
problema 18.7, escribir un programa para realizar las
siguientes operaciones:

Obtener la lista circular suma de dos polinomios.
Obtener el polinomio derivada.
Obtener una lista circular que sea el producto de dos
polinomios.

18.19. Escribir un programa para obtener una lista doblemente
enlazada con los caracteres de una cadena leída desde el
teclado. Cada nodo de la lista tendrá un carácter. Una
vez que se tiene la lista ordenarla alfabéticamente y
escribirla por pantalla.

18.11. Escribir un programa en el que dados dos archivos F1,
F2 formados por palabras separadas por un blanco o fin
de línea, se creen dos conjuntos con las palabras de F1 y
F2 respectivamente. Posteriormente encontrar las pala-
bras comunes y mostarlas por pantalla.

18.12. Utilizar una lista doblemente enlazada para controlar
una lista de pasajeros de una línea aérea. El programa
principal debe ser controlado por menú y permitir al
usuario visualizar los datos de un pasajero determinado,
insertar un nodo (siempre por el final), eliminar un pasa-
jero de la lista. A la lista se accede por un puntero al pri-
mer nodo y otro al último nodo.

18.13. Para representar un entero largo, de más de 30 dígitos,
utilizar una lista circular teniendo el campo dato de cada
nodo un dígito del entero largo. Escribir un programa en
el que se introduzcan dos enteros largos y se obtenga su
suma.

18.14. Un vector disperso es aquel que tiene muchos elementos
que son cero. Escribir un programa que permita repre-
sentar mediante listas enlazadas un vector disperso. Los
nodos de la lista son los elementos de la lista distintos de
cero; en cada nodo se representa el valor del elemento y
el índice(posición del vector). El programa ha de reali-
zar las operaciones: sumar dos vectores de igual dimen-
sión y hallar el producto escalar.

18.15. Escriba una función que tenga como argumento una lista
circular de números enteros. La función debe devolver el
dato del nodo con mayor valor.

ap.18 11/6/05 21:46 Página 345

ap.18 11/6/05 21:46 Página 346

En este capítulo se estudian en detalle las estructuras de datos pila y cola que son probablemente las más frecuentemente utilizadas
en los programas ordinarios. Son estructuras de datos que almacenan y recuperan sus elementos atendiendo a un estricto orden. Las
pilas se conocen también como estructuras LIFO (Last-in, first-out, último en entrar- primero en salir) y las colas como estructuras
FIFO (First-in, First-out, primero en entrar- primero en salir). Entre las numerosas aplicaciones de las pilas destaca la evaluación
de expresiones algebraicas, así como la organización de la memoria. Las colas tienen numerosas aplicaciones en el mundo de la
computación: colas de mensajes, colas de tareas a realizar por una impresora, colas de prioridades.

19.1 Concepto de pila
Una pila (stack) es una estructura de datos que cumple la condición: “los elementos se añaden o quitan (borran) de la misma sólo
por su parte superior (cima) de la pila”. Debido a su propiedad específica “último en entrar, primero en salir” se le conoce a las
pilas como estructura de datos LIFO (last-in, first-out). Las operaciones usuales en la pila son Insertar y Quitar. La operación
Insertar (push) añade un elemento en la cima de la pila y la operación Quitar (pop) elimina o saca un elemento de la pila.

347

CAPÍTULO 19

Pilas y colas

Figura 19.1 Operaciones básicas de una pila.

Insertar Quitar

Cima

Fondo

ap.19 11/6/05 21:46 Página 347

La pila se puede implementar mediante arrays en cuyo caso su dimensión o longitud es fija, y mediante punteros o listas
enlazadas en cuyo caso se utiliza memoria dinámica y no existe limitación en su tamaño. Una pila puede estar vacía (no tiene
elementos) o llena (en el caso de tener tamaño fijo, si no caben más elementos en la pila).

ESPECIFICACIÓN DE UNA PILA

Las operaciones que sirven para definir una pila y poder manipular su contenido son las siguientes:

Tipo de dato Dato que se almacena en la pila.
AnadeP (push) Insertar un dato en la pila.
BorrarP (pop) Sacar (quitar) un dato de la pila.
EsVaciaP Comprobar si la pila no tiene elementos.
EstallenaP Comprobar si la pila está llena de elementos.
PrimeroP Extrae el primer elemento de la pila sin borrarlo.

EL TIPO PILA IMPLEMENTADO CON ARRAYS

En C para definir una pila con arrays se utiliza una estructura. Los miembros de la estructura pila incluyen una lista (array) y
un índice o puntero a la cima de la pila; además una constante con el máximo número de elementos limita la longitud de la pila.
El método usual de introducir elementos en una pila es definir el fondo de la pila en la posición 0 del array, es decir, definir una
pila vacía cuando su cima vale –1 (el puntero de la pila almacena el índice del array que se está utilizando como cima de la
pila). La cima de la pila se va incrementando en uno cada vez que se añade un nuevo elemento, y se va decrementando en uno
cada vez que se borra un elemento. Los algoritmos de introducir “insertar” (push) y quitar “sacar” (pop) datos de la pila utili-
zan el índice del array como puntero de la pila son:

Insertar (push). Verificar si la pila no está llena. Incrementar en uno el puntero de la pila. Almacenar el elemento en la posi-
ción del puntero de la pila.

Quitar (pop). Verificar si la pila no está vacía. Leer el elemento de la posición del puntero de la pila. Decrementar en uno
el puntero de la pila.

En el caso de que el array que define la pila tenga TamanioPila elementos, el índice o puntero de la pila, estarán com-
prendidas en el rango 0 a TamanioPila-1 elementos, de modo que en una pila llena el puntero de la pila apunta a
TamanioPila-1 y en una pila vacía el puntero de la pila apunta a -1, ya que 0, teóricamente, será el índice del primer elemento.

EL TIPO PILA IMPLEMENTADO CON PUNTEROS

Para implementar una pila con punteros basta con usar una lista simplemente enlazada, con ello la pila estará vacía si la lista
apunta a NULL. La pila teóricamente nunca estará llena. Los algoritmos de introducir “insertar” (push) y quitar “sacar” (pop)
datos de la pila son:

Insertar (push). Basta con añadir un nuevo nodo con el dato que se quiera insertar como primer elemento de la lista (pila).
Quitar (pop). Verificar si la lista (pila) no está vacía. Extraer el valor del primer nodo de la lista (pila). Borrar el primer nodo

de la lista (pila).

19.2 Concepto de cola
Los elementos se eliminan (se quitan) de la cola en el mismo orden en que se almacenan, y por consiguiente, una cola es una
estructura de tipo FIFO (first-in/firs-out, primero en entrar/primero en salir o bien primero en llegar/primero en ser servido).

Las acciones que están permitidas en una cola son: Creación de una cola vacía; Verificación de que una cola está vacía;
Añadir un dato al final de una cola; Eliminación de un dato de la cabeza de la cola.

CAPÍTULO 19 Pilas y colas348

1.º 2.º 3.º 4.º Último

Frente Final

ap.19 11/6/05 21:46 Página 348

EL TIPO COLA IMPLEMENTAD0 CON ARRAYS

La definición de una Cola ha de contener un array para almacenar los elementos de la cola, y dos marcadores o punteros (varia-
bles) que mantienen las posiciones frente y final de la cola. Cuando un elemento se añade a la cola, se verifica si el mar-
cador final apunta a una posición válida, entonces se añade el elemento a la cola y se incrementa el marcador final en 1.
Cuando un elemento se elimina de la cola, se hace una prueba para ver si la cola está vacía y, si no es así, se recupera el ele-
mento de la posición apuntada por el marcador (puntero) frente y éste se incrementa en 1.Este procedimiento funciona bien
hasta la primera vez que el puntero de frente alcanza el extremo del array quedando o bien vacío o bien lleno.

DEFINICIÓN DE LA ESPECIFICACIÓN DE UNA COLA

Se define en primer lugar el tipo genérico TipoDato. El TDA Cola contiene una lista cuyo máximo tamaño se determina por
la constante MaxTamC. Se definen dos tipos de variables puntero o marcadores, frente y final. Estos son los punteros de
cabecera y cola o final respectivamente.

AnadeC Añade un elemento a la cola.
BorrarC Borra el primer elemento de la cola.
VaciaC Deja la cola sin ningún elemento
EsvaciaC Decide si una cola está vacía.
EstallenaC Decide si una cola está llena.
PrimeroC Extrae el primer elemento de la cola.

Cuando un elemento se añade a la cola, se hace una prueba para comprobar si el marcador final apunta a una posición
válida, a continuación se añade el elemento a la cola y el marcador final se incrementa en uno. Cuando se elimina un ele-
mento de la cola, se realiza una prueba para comprobar si la cola está vacía, y si no es así, se recupera el elemento que se
encuentra en la posición apuntada por el marcador de frente y el marcador de frente se incrementa en uno. Este procedi-
miento funciona bien hasta que el marcador final alcanza el tamaño máximo del array. Si durante este tiempo se han pro-
ducido eliminaciones, habrá espacio vacío al principio del array. Sin embargo, puesto que el marcador final apunta al extremo
del array, implicará que la cola está llena y ningún dato más se añadirá.

Existen diversas soluciones a este problema:

Retroceso Consiste en mantener fijo a uno el valor de frente, realizando un desplazamiento de una
posición para todas las componentes ocupadas cada vez que se efectúa una supresión.

Reestructuración Cuando final llega al máximo de elementos se desplazan las componentes ocupadas hacia
atrás las posiciones necesarias para que el principio coincida con el primera posición del
array.

Mediante un array circular Un array circular es aquel en el cual se considera que la primera posición sigue a la última.

CAPÍTULO 19 Pilas y colas 349

n-1

n-1

...

.

.

.

...

0

1

2

0

Cabeza

Final

Cola circular Cola circular vacía

1

La variable frente es siempre la posición del elemento que precede al primero de la cola y se avanza en el sentido de las agu-
jas del reloj. La variable final es la posición en donde se hizo la última inserción. Después que se ha producido una inserción,
final se mueve circularmente a la derecha. La implementación del movimiento circular “calcular siguiente” se realiza utili-
zando la teoría de los restos:

ap.19 11/6/05 21:46 Página 349

Mover Final adelante = (Final+1)%MaxTamC Siguiente de Final
Mover Frente adelante = (Frente+1) % MaxTamC Siguiente de Frente

Para implementar los algoritmos que formalizan la gestión de colas en un array circular hay que tener en cuenta que Frente
apunta siempre a una posición anterior donde se encuentra el primer elemento de la cola y Final apunta siempre a la posición
donde se encuentra el último de la cola. Por lo tanto la parte esencial de las tareas de gestión de una cola son:

• Creación de una cola vacía: hacer Frente = Final = 0.
• Comprobar si una cola está vacía: ¿es Frente == Final?.
• Comprobar si una cola está llena: ¿es(Final+1)% MaxTamC == Frente ?. No se confunda con cola vacía.
• Añadir un elemento a la cola: si la cola no está llena, añadir un elemento en la posición siguiente a Final y se establece:
Final = (Final+1)%MaxTamC.

• Eliminación de un elemento de una cola: si la cola no está vacía, eliminarlo de la posición siguiente a Frente y estable-
cer Frente = (Frente+1) % MaxTamC.

REALIZACIÓN DE UNA COLA CON UNA LISTA ENLAZADA

La implementación de una cola con una lista enlazada utiliza dos punteros para acceder a la lista. El puntero Frente y el pun-
tero Final. El puntero Frente referencia al primer elemento de la cola. El puntero Final referencia al último elemento en
ser añadido, el último que será retirado. Con esta representación no tiene sentido la operación que prueba si la cola está llena

CAPÍTULO 19 Pilas y colas350

Cola con lista enlazada

. . . .

e1, e2, ...en son valores del tipo TipoDato

PROBLEMAS RESUELTOS
19.1 Escriba las primitivas de gestión de una pila implementada con un array.

Análisis del problema

Se define en primer lugar una constante MaxTamaPila de valor 100 valor máximo de los elementos que podrá contener la
pila. Se define la pila como una estructura cuyos campos (miembros) serán el puntero cima que apuntará siempre al último
elemento añadido a la pila y un array A cuyos índices variarán entre 0 y MaxTamaPila-1. Posteriormente se implementan
las las primitivas
• VaciaP. Crea la pila vacía poniendo la cima en el valor –1.
• EsvaciaP. Decide si la pila está vacía. En este caso ocurrirá cuando su cima valga –1.
• EstallenaP. Si bien no es una primitiva básica de gestión de una pila; la implementación se realiza con un array convie-

ne disponer de ella para prevenir posibles errores. En este caso la pila estará llena cuando la cima apunte al valor
MaxTamaPila-1.

• AnadeP . Añade un elemento a la pila. Para hacerlo comprueba en primer lugar que la pila no esté llena, y en caso afirma-
tivo, incrementa la cima en una unidad, para posteriormente poner en el array A en la posición cima el elemento.

• PrimeroP. Comprueba que la pila no esté vacía, y en caso de que así sea, dará el elemento del array A almacenado en la
posición apuntada por la cima.

• BorrarP. Se encarga de eliminar el último elemento que entró en la pila. En primer lugar comprueba que la pila no esté
vacía en cuyo caso, disminuye la cima en una unidad.

• Pop. Esta operación extrae el primer elemento de la pila y lo borra. Puede ser implementada directamente, o bien llaman-
do a las primitivas PrimeroP y posteriormente a BorrarP.

• Push. Esta primitiva coincide con AnadeP.

Frente Final

e1 e2 e3 en

ap.19 11/6/05 21:46 Página 350

Codificación

typedef int TipoDato;

/* archivo pilaarray.h */

#include <stdio.h>
#include <stdlib.h>
#define MaxTamaPila 100

typedef struct
{

TipoDato A[MaxTamaPila];
int cima;

}Pila;

void VaciaP(Pila* P);
void AnadeP(Pila* P,TipoDato elemento);
void BorrarP(Pila* P);
TipoDato PrimeroP(Pila P);
int EsVaciaP(Pila P);
int EstallenaP(Pila P);
void Pop(Pila* P, TipoDato elemento);
TipoDato Push(Pila *P);

void VaciaP(Pila* P)
{

P -> cima = -1;
}

void AnadeP(Pila* P,TipoDato elemento)
{

if (EstallenaP(*P))
{

puts(“Desbordamiento pila”);
exit (1);

}
P->cima++;
P->A[P->cima] = elemento;

}

void Pop(Pila* P,TipoDato elemento)
{

AnadeP(P, elemento);
}

TipoDato Push(Pila *P)
{

TipoDato Aux;
if (EsVaciaP(*P))
{

puts(“Se intenta sacar un elemento en pila vacía”);
exit (1);

CAPÍTULO 19 Pilas y colas 351

ap.19 11/6/05 21:46 Página 351

}
Aux = P->A[P->cima];
P->cima—;
return Aux;

}

TipoDato PrimeroP(Pila P)
{

TipoDato Aux;
if (EsVaciaP(P))
{

puts(“Se intenta sacar un elemento en pila vacía”);
exit (1);

}
Aux = P.A[P.cima];
return Aux;

}

void BorrarP(Pila* P)
{

if (EsVaciaP(*P))
{

puts(“Se intenta sacar un elemento en pila vacía”);
exit (1);

}
P->cima --;

}

int EsVaciaP(Pila P)
{

return P.cima == -1;
}

int EstallenaP(Pila P)
{

return P.cima == MaxTamaPila-1;
}

19.2. Escribir un programa que usando las primitivas de gestión de una pila, lea datos de la entrada (-1 fin de datos) los alma-
cene en una pila y posteriormente visualice dicha la pila.

Análisis del problema

Si se supone que el archivo pilaarray.cpp contiene todas las primitivas de gestión de una pila, para resolver el problema
bastará con declarar TipoDato como un entero incluir el archivo pilaarray.cpp anterior, y mediante un programa principal
en un primer bucle while se leen los datos y se almacenan en una pila, para posteriormente en otro bucle extraer datos de
la pila y presentarlos en pantalla.

Codificación

Typedef char TipoDato
#include <pilaarray.cpp>
void main()

CAPÍTULO 19 Pilas y colas352

ap.19 11/6/05 21:46 Página 352

{
Pila P;
int x;

VaciaP(&P);
do
{

printf(“dame dato -1=fin \n”);
scanf(“%d”,&x);
if (x != -1)

AnadeP(&P, x);
while (x != -1);
}
printf(“escritura de la pila\n”);
while(!EsVaciaP(P))
{

printf(“%d \n”,PrimeroP(P));
BorrarP(&P);

}
}

19.3. Escriba las primitivas de gestión de una pila implementada con una lista simplemente enlazada.

Análisis del problema

Se define la pila como una lista simplemente enlazada. Posteriormente se implementan las primitivas:
• VaciaP. Crea la pila vacía poniendo la pila P a NULL.
• EsvaciaP. Decide si pila vacía. Esto ocurrirá cuando P valga NULL.
• AnadeP. Añade un elemento a la pila. Para hacerlo, lo único que se debe hacer, es añadir un nuevo nodo que contenga

como información el elemento que se quiera añadir y ponerlo como primero de la lista enlazada.
• PrimeroP. En primer lugar se comprobará que la pila (lista) no esté vacía, y en caso de que así sea dará el campo el alma-

cenado en el primer nodo de la lista enlazada.
• BorrarP. Se encarga de eliminar el último elemento que entró en la pila. En primer lugar se comprueba que la pila no esté

vacía en cuyo caso, se borra el primer nodo de la pila (lista enlazada).
• Pop.Esta operación extrae el primer elemento de la pila y lo borra. Puede ser implementada directamente, o bien llaman-

do a las primitivas PrimeroP y posteriormete a BorrarP.
• Push. Esta primitiva coincide con AnadeP.
• NuevoNodo. Es una función auxiliar de la implementación que se encarga de reservar memoria para la operación AnadeP.
• EstallenaP. En esta implementación no tiene ningún sentido, ya que se supone que la memoria dinámica es en princi-

pio inagotable.

Codificación

#include <stdio.h>
#include <stdlib.h>

typedef int TipoDato;
typedef struct unnodo
{

TipoDato el;
struct unnodo *sig;

}Nodo;

CAPÍTULO 19 Pilas y colas 353

ap.19 11/6/05 21:46 Página 353

typedef Nodo Pila;

Nodo* NuevoNodo(TipoDato elemento);

void VaciaP(Pila** P);
void AnadeP(Pila** P,TipoDato elemento);
void BorrarP(Pila** P);
TipoDato PrimeroP(Pila *P);
int EsVaciaP(Pila *P);
void Pop(Pila** P,TipoDato elemento);
TipoDato Push(Pila **P);

Nodo* NuevoNodo(TipoDato elemento)
{

Nodo *a ;
a = (Nodo*)malloc(sizeof(Nodo));
a -> el = elemento;
a -> sig = NULL;
return a;

}

void VaciaP(Pila** P)
{

*P = NULL;
}

void AnadeP(Pila** P, TipoDato elemento)
{

Nodo * nn;
nn = NuevoNodo(elemento);
nn->sig = (*P);
*P = nn;

}

void Pop(Pila** P,TipoDato elemento)
{

AnadeP(P, elemento);
}

TipoDato Push(Pila **P)
{

TipoDato Aux;
Pila *nn;

if (EsVaciaP(*P))
{

puts(“Se intenta sacar un elemento en pila vacía”);
exit (1);

}
Aux = (*P)->el;
nn = *P;
*P = nn->sig;
free(nn);

CAPÍTULO 19 Pilas y colas354

ap.19 11/6/05 21:46 Página 354

return Aux;
}

TipoDato PrimeroP(Pila *P)
{

TipoDato Aux;

if (EsVaciaP(P))
{

puts(“Se intenta sacar un elemento en pila vacía”);
exit (1);

}
Aux = P->el;
return Aux;

}

void BorrarP(Pila** P)
{

Pila *nn;

if (EsVaciaP(*P))
{

puts(“Se intenta sacar un elemento en pila vacía”);
exit (1);

}
nn =(*P);
(*P)= nn->sig;
free(nn);

}

int EsVaciaP(Pila *P)
{

return P == NULL;
}

19.4. Usando las primitivas de gestión de una pila de enteros escriba las siguientes funciones: EscribePila que recibe como pará-
metro una pila y la escribe, CopiaPila que copia una pila en otra. DaVueltaPila que da la vuelta a una pila.

Análisis del problema

Usando el archivo pilalista.cpp en el que se tiene ya la implementación de las primitivas de una pila, lo único que se
debe hacer es implementar las siguientes funciones:
• EscribePila que recibe como parámetro por valor una pila y mediante un bucle while, se van extrayendo, borrando, y

escribiendo los elementos de la pila.
• CopiaPila que recibe como parámetro por valor una pila p y devuelve en Pcop una copia exacta de la pila P. Para ello

basta con volcar la pila P en una pila Paux auxiliar, para posteriormente volcar la pila Paux en la pila Pcop.
• DaVueltaPila que recibe como parámetro por valor la pila P y vuelca su contenido en la pila Pcop.

Codificación

void CopiaPila (Pila *P, Pila**Pcop)
{

Pila *Paux;

CAPÍTULO 19 Pilas y colas 355

ap.19 11/6/05 21:46 Página 355

TipoDato e;

VaciaP(&Paux);
while (! EsVaciaP(P))
{

e = PrimeroP(P);
BorrarP(&P);
AnadeP(&Paux,e);

}
VaciaP(Pcop);
while (! EsVaciaP(Paux))
{

e = PrimeroP(Paux);
BorrarP(&Paux);
AnadeP(Pcop,e);

}
}

void DaVueltaPila (Pila *P, Pila**Pcop)
{

TipoDato e;

VaciaP(Pcop);
while (!EsVaciaP(P))
{

e = PrimeroP(P);
BorrarP(&P);
AnadeP(Pcop,e);

}
}

void EscribePila(Pila *P)
{

TipoDato e;

while (! EsVaciaP(P))
{

e = PrimeroP(P);
BorrarP(&P);
printf(“%d\n”, e);

}
}

19.5. Escriba las funciones MayorPila, MenorPila, MediaPila que calculan el elemento mayor menor y la media de una pila de
enteros.

Análisis del problema

Al igual que en el ejercicio anterior se usa el archivo pilalista.cpp en el que se tiene ya la implementación de las primitivas
de una pila, lo único que resta es implementar las siguientes funciones:
• MayorPila, calcula el elemento mayor, inicializando la variable Mayor a un número muy pequeño, y mediante un bucle

voraz controlado por ser vacía la pila se extraen los elementos de la pila reteniendo el mayor de todos.
• MenorPila, calcula el elemento menor. Se realiza de manera análoga a la función MayorPila.

CAPÍTULO 19 Pilas y colas356

ap.19 11/6/05 21:46 Página 356

• MediaPila que calcula la media de una pila, para lo cual basta acumular los datos que contiene la pila en un acumula-
dor Total y con contador k contar los elementos que hay, para devolver el cociente real.

Codificación (Se encuentra en la página web del libro)

19.6. Escriba las funciones LiberarPila y SonIgualesPilas que respectivamente libera todos los nodos de una pila implementada
con listas y decide si dos pilas son iguales.

Análisis del problema

Al igual que en el ejercicio anterior se usa el archivo pilalista.cpp en el que se tiene ya la implementación de las primiti-
vas de una pila, lo único que resta por hacer es implementar las siguientes funciones:
• LiberarPila que mediante un bucle mientras se encarga de ir extrayendo los elementos de la pila y mediante la fun-

ción BorrarP irlos eliminado.
• SonIgualesPilas. Dos pilas son iguales si tienen el mismo número de elementos y además coinciden en el orden de

colocación. Por lo tanto basta con un bucle mientras, controlado por haber datos en las dos pilas y haber sido todos los
elementos extraídos anteriormente iguales, extraer un elemento de cada una de las pilas y seguir decidiendo sobre su
igualdad. Al final del bucle debe ocurrir que las dos pilas estén vacías y además que la variable lógica que controla el
bucle sea verdadera.

Codificación

void LiberarPila(Pila**P)
{

while (!EsVaciaP(*P))
BorrarP(P);

}

int SonIgualesPilas(Pila *P, Pila* P1)
{

int sw = 1;
TipoDato e,e1;

while (! EsVaciaP(P) && !EsVaciaP(P1) && sw)
{

e = PrimeroP(P);
BorrarP(&P);
e1 = PrimeroP(P1);
BorrarP(&P1);
sw = (e == e1);

}
return (sw && EsVaciaP(P)&& EsVaciaP(P1));

}

19.7. Escriba un programa que lea una frase y decida si es palíndroma. Una frase es palíndroma si se puede leer igual de izquier-
da a derecha y de derecha a izquierda. Ejemplo para no es palíndroma, pero alila si que lo es.

Análisis del problema

Para resolver el problema usaremos una función que nos lea una frase carácter a carácter poniéndola en una pila, cuando se
haya terminado se da la vuelta la pila en otra pila Pcop. La frase será palíndroma si las dos pilas son iguales. En la codifi-
cación que se presenta se implementan además las funciones DaVueltaPila y SonIgualesPilas.

CAPÍTULO 19 Pilas y colas 357

ap.19 11/6/05 21:46 Página 357

Codificación

void DaVueltaPila (Pila *P,Pila**Pcop)
{

TipoDato e;
VaciaP(Pcop);
while (! EsVaciaP(P))
{

e = PrimeroP(P);
BorrarP(&P);
AnadeP(Pcop, e);

}
}

int SonIgualesPilas(Pila *P, Pila* P1)
{

int sw = 1;

TipoDato e, e1;
while (! EsVaciaP(P) && !EsVaciaP(P1) && sw)
{
e = PrimeroP(P);
BorrarP(&P);
e1 = PrimeroP(P1);
BorrarP(&P1);
sw=(e == e1);

}
return (sw && EsVaciaP(P)&& EsVaciaP(P1));

}

int palindroma()
{

Pila *P, *Pcop;
char ch;
puts(“ frase a comprobar que es palindroma”);
VaciaP(&P);
for(;(ch = getchar()) != ‘\n’;)

AnadeP(&P, ch);
DaVueltaPila(P, &Pcop);
return (SonIgualesPilas(P,Pcop));

}

19.8. ¿Cuál es la salida de este segmento de código, teniendo en cuenta que el tipo de dato de la pila es int:?.

Pila *P;
int x=4, y;
VaciaP(&P);
AnadeP(&P,x);
printf(“\n%d “,PrimeroP(P));
BorrarP(&P);
AnadeP(&P,32);
y=PrimeroP(P);
BorrarP(P);

CAPÍTULO 19 Pilas y colas358

ap.19 11/6/05 21:46 Página 358

AnadeP(&P,y));

do

{
printf(“\n%d”,PrimeroP(P));

BorrarP(P);
}

while (¡EsVaciaP(P));

Solución

Se vacía la pila y posteriormente se añade el dato 4. Se escribe el primero de la pila que es 4. Se borra el primer elemento
de la pila con lo que se vuelve a quedar vacía. Se añade el número 32 a la pila, para después borrarlo, y luego añadirlo. El
último bucle extrae el número 32 de la pila, lo escribe y después de borrarlo la pila se queda vacía con lo que se sale del
bucle. Es decir la solución es:

4
32

19.9. Escribir una función para determinar si una secuencia de caracteres de entrada es de la forma: X&Y.Donde X es una cade-
na de caracteres e Y es la cadena inversa. El carácter & es el separador y siempre se supone que existe.

Análisis del problema

Se usan tres pilas. En la primera se introducen todos los caracteres que estén antes que el carácter &. En la segunda se intro-
ducen todos los caracteres que estén después de &. Seguidamente se da la vuelta a la primera pila para dejar los caracteres
en el mismo orden en el que se leyeron. Por último se devuelve el valor “son iguales las dos pilas”. Las funciones
DaVueltaPila y SonIgualespilas son las mismas del problema 19.7.

Codificación

int extrana()
{

Pila *P, *P1,*Pcop;
char ch;

puts(“ frase a comprobar que es extraña”);
VaciaP(&P);
for(;(ch = getchar()) != ‘&’;)

AnadeP(&P, ch);
VaciaP(&P1);
for(;(ch = getchar()) != ‘\n’;)

AnadeP(&P1, ch);
DaVueltaPila(P, &Pcop);
return (SonIgualesPilas(P1, Pcop));

}

19.10. Escribir una función que haciendo uso del tipo Pila de caracteres, procese cada uno de los caracteres de una expresión que
viene dada en una línea de caracteres. La finalidad es verificar el equilibrio de paréntesis, llaves y corchetes. Por ejemplo,
la siguiente expresión tiene un número de paréntesis equilibrado:

((a+b)*5) - 7
a esta otra expresión le falta un corchete:

2*[(a+b)/2.5 + x - 7*y

CAPÍTULO 19 Pilas y colas 359

ap.19 11/6/05 21:46 Página 359

Análisis del problema

Para comprobar el equilibrio de paréntesis y corchetes, es preciso comprobar que tienen el mismo número de abiertos que
cerrados y que además aparecen en el orden correspondiente. Se usa una pila por la que pasarán sólo los paréntesis abier-
tos y los corchetes abiertos en el orden en que aparecen. Cada vez que aparezca un paréntesis cerrado o un corchete cerra-
do, se extrae un elemento de la pila, comprobando su igualdad con el último que se ha leído, almacenado en una variable
lógica sw el valor verdadero o falso dependiendo de que se satisfaga la igualdad. Por lo tanto si con un bucle for contro-
lado por el fin de línea y por el valor verdadero de una variable sw de tipo lógico (previamente inicializada a verdadero),
se leen los caracteres y realiza lo indicado cuando termine el bucle puede ser que sw sea falso, en cuyo caso la expresión
no es correcta, o que se sea verdadero, en cuyo caso la expresión será correcta si la pila está vacía.

Codificación

int equilibrio()
{

Pila *P;
char ch,e,sw=1 ;

puts(“ frase a comprobar equilibrio de parentesis”);
VaciaP(&P);
for(;(ch = getchar()) != ‘\n’ && sw;)

if ((ch == ‘(‘) || (ch == ‘[‘))
AnadeP(&P, ch);

else
if ((ch == ‘)’) || (ch == ‘]’))

if(! EsVaciaP(P))
{

e = PrimeroP(P);
BorrarP(&P);
sw = e==ch;

}
else
sw = 0;

if (sw)
sw = EsVaciaP(P);

return (sw);
}

19.11. Escribir las declaraciones necesarias y las primitivas para gestionar una cola mediante un array circular.

Análisis del problema

Las declaraciones necesarias son una estructura que contiene dos punteros frente y final y un array que puede almacenar
MaxTamC datos. MasTamC es una constante previamente definida. Final apuntará siempre al último elemento que se añadió
la cola, y Frente siempre a una posición antes de donde se encuentra el primer elemento, entendiendo que la posición ante-
rior a la 0 es MaxTamC-1, y para el resto una menos. Análogamente la posición siguiente de MaxTamC –1 es la 0, y para
el resto es una unidad más. De esta manera la cola estará vacía cuando Frente y Final apuntan a la misma posición, y la
cola estará llena cuando al calcular el siguiente valor de Final se tiene el Frente, ya que si se permitiera avanzar a Final
se confundiría cola vacía con cola llena. Para calcular el siguiente valor tanto de Frente como de Final basta con hacer
Frente = (Frente+1)%MaxTamC; igual método con Final. Las primitivas de gestión de la cola son:

• VaciaC. Crea una cola vacía, para lo cual basta con poner el Frente y el Final en la posición 0.
• EsVacíaC. Decide si una cola está vacía. Es decir, si Frente == Final.

CAPÍTULO 19 Pilas y colas360

ap.19 11/6/05 21:46 Página 360

• EstallenaC. Decide si la cola está llena. Es decir, si (Final+1)%MaxTamC == Frente.
• PrimeroC. Extrae el primer elemento de la cola que se encuentra en (Frente+1)MaxTamC. Previamente a esta operación

ha de comprobarse que la cola no esté vacía.
• AnadeC. Añade un elemento a la cola. Este elemento se añade a la posición del array (Fina+1)%MaxTamC. Final también

debe ponerse en esa posición. Previamente a esta operación ha de comprobarse si la cola está llena.
• BorrarC. Elimina el primer elemento de la cola. Para ello basta con hacer Frente =(Frente+1)%MaxTamC. Previamente

a esta operación ha de comprobarse que la cola no está vacía.

Codificación

#include <stdio.h>
#include <stdlib.h>
#define MaxTamC 100
typedef int TipoDato;
typedef struct
{

int frente, final;
TipoDato A[MaxTamC];

}Cola;

void VaciaC(Cola* C);
void AnadeC(Cola* C,TipoDato e);
void BorrarC(Cola* C);
TipoDato PrimeroC(Cola C);
int EsVaciaC(Cola C);
int EstallenaC(Cola C);

void VaciaC(Cola* C)
{

C->frente = 0;
C->final = 0;

}

void AnadeC(Cola* C, TipoDato e)
{

if (EstallenaC(*C))
{

puts(“desbordamiento cola”);
exit (1);

}
C->final = (C->final + 1) % MaxTamC;
C->A[C->final] = e;

}

TipoDato PrimeroC(Cola C)
{

if (EsVaciaC(C))
{

puts(“Elemento frente de una cola vacía”);
exit (1);

}
return (C.A[(C.frente+1) % MaxTamC]);

}

CAPÍTULO 19 Pilas y colas 361

ap.19 11/6/05 21:46 Página 361

int EsVaciaC(Cola C)
{

return (C.frente == C.final);
}
int EstallenaC(Cola C)
{

return (C.frente == (C.final+1) % MaxTamC);
}

void BorrarC(Cola* C)
{

if (EsVaciaC(*C))
{

puts(“Eliminación de una cola vacía”);
exit (1);

}
C->frente = (C->frente + 1) % MaxTamC;

}

19.12. Usando las primitivas de gestión de colas escriba funciones para generar aleatoriamente una cola, escribir una cola, cal-
cular el número de elementos de una cola, y eliminar de una cola todos los elementos mayores que un elemento que se pasa
como parámetro.

Análiis del problema

Las funciones que se codifican son las siguientes:
GeneraColaAleatoriamente. Recibe como parámetro una cola. Declara una constante Max y añade a la cola números ale-
atorios comprendidos entre 0 y Max-1. El final de la entrada de datos viene dado por haber generado el número aleatorio 0.
EscribeCola. Recibe como parámetro una cola y la presenta en pantalla. Para ello mediante un bucle while extrae ele-
mentos de la cola y los escribe.
NumeroDeElementosCola. Informa de elementos tiene una cola. Para resolver el problema, usa un contador que se inicia-
liza a cero, y se incremente en una unidad, cada vez que un bucle while extrae un elemento de la cola.
EliminaMayores. Recibe como parámetro una cola y un elemento e. Mediante un bucle while pone en una cola C1 todos
los elementos de la cola que se recibe como parámetro que cumplen la condición de ser menores o iguales que el elemento
e que se recibe como parámetro.

Codificación (Se encuentra en la página web del libro)

19.13. Escriba las declaraciones necesarias y las primitivas de gestión de una cola implementada con listas enlazadas.

Análisis del problema

Se declaran en primer lugar todos los tipos de datos necesarios para una lista enlazada. Una cola será una estructura con dos
punteros a la lista frente que apuntará al primer elemento de la cola y final que apuntará al último elemento.

• VaciaC . Crea una cola vacía, para lo cual basta con poner el Frente y el Final a NULL.
• EsVacíaC. Decide si una cola está vacía. Es decir si Frente y Final valen NULL.
• EstallenaC. Esta función no es ahora necesaria ya que teóricamente no hay límites.
• PrimeroC. Extrae el primer elemento de la cola que se encuentra en el nodo Frente. Previamente a esta operación ha de

comprobarse que la cola no esté vacía.
• AnadeC. Añade un elemento a la cola. Este elemento se añade en un nuevo nodo que será el siguiente de Final en el caso

de que la cola no esté vacía. Si la cola está vacía el Frente debe apuntar a este nuevo nodo. En todo caso el final
siempre debe moverse al nuevo nodo.

CAPÍTULO 19 Pilas y colas362

ap.19 11/6/05 21:46 Página 362

• BorrarC. Elimina el primer elemento de la cola. Para hacer esta operación la cola no debe estar vacía. El borrado se rea-
liza avanzando Frente al nodo siguiente, y liberando la memoria correspondiente.

• EliminarC. Esta primitiva libera toda la memoria que tenga una cola ya creada. Se realiza mediante un bucle controlado
por el Final de lista, liberando la memoria ocupada por cada nodo en cada una de las iteraciones del bucle.

#include <stdio.h>
#include <stdlib.h>
typedef int TipoDato;
struct Nodo
{

TipoDato el;
struct Nodo* sig;

};

typedef struct
{

Nodo * Frente;
Nodo * Final;

}Cola;

void VaciaC(Cola* C);
void AnadeC(Cola* C,TipoDato el);
void EliminarC(Cola* C);
void BorrarC(Cola* C);
TipoDato PrimeroC(Cola C);
int EsVaciaC(Cola C);
Nodo* crearnodo(TipoDato el);

void VaciaC(Cola* C)
{

C->Frente =NULL;
C->Final = NULL;

}

Nodo* crearnodo(TipoDato el)
{

Nodo* nn;

nn = (Nodo*)malloc(sizeof(Nodo));
nn->el = el;
nn->sig = NULL;
return nn;

}

int EsVaciaC(Cola C)
{

return (C.Frente == NULL);
}

void AnadeC(Cola* C,TipoDato el)
{

Nodo* a;
a = crearnodo(el);

CAPÍTULO 19 Pilas y colas 363

ap.19 11/6/05 21:46 Página 363

if (EsVaciaC(*C))
C->Frente = a;

else
C->Final->sig = a;

C->Final = a;
}

void BorrarC(Cola* C)
{

Nodo *a;

if (!EsVaciaC(*C))
{

a = C->Frente;
C->Frente = C->Frente->sig;
if(C->Frente == NULL)
C->Final == NULL;
free(a);

}
else
{

puts(“Error eliminación de una cola vacía”);
exit(-1);

}
}

TipoDato PrimeroC(Cola C)
{

if (EsVaciaC(C))
{

puts(“Error: cola vacía”);
exit(-1);

}
return (C.Frente->el);

}

void EliminaC(Cola* C)
{

for (; C->Frente;)
{

Nodo* n;

n = C->Frente;
C->Frente = C->Frente->sig;
free(n);

}
}

19.14. Escribir una función que tenga como argumentos dos colas del mismo tipo. Devuelva cierto si las dos colas son idénticas

Análisis del problema

Se usan para resolver el problema las primitivas de gestión de colas implementando una función SonIgualesColas que dará
el valor verdadero cuando las dos colas tengan igual número de elementos y además estén colocadas en el mismo orden.

CAPÍTULO 19 Pilas y colas364

ap.19 11/6/05 21:46 Página 364

Codificación

int SonIgualescolas(Cola *C, Cola* C1)
{

int sw=1;
TipoDato e,e1;

while (!EsVaciaC(C)&& !EsVaciaC(C1)&& sw)
{

e = PrimeroC(C);
BorrarC(&C);
e1 = PrimeroC(C1);
BorrarP(&C1);
sw =(e == e1);

}
return (sw && EsVaciaC(C)&& EsVaciaC(C1));

}

19.15. Considerar una cola de nombres representada por una array circular con 6 posiciones, el campo frente con el valor: Frente
= 2, y los elementos de la Cola: Mar, Sella, Centurión. Escribir los elementos de la cola y los campos siguiente de Frente
y Final según se realizan estas operaciones:
• Añadir Gloria y Generosa a la cola.
• Eliminar de la cola.
• Añadir Positivo.
• Añadir Horche a la cola.
• Eliminar todos los elementos de la cola.

Solución

• Tras la primera operación se escribirá Mar y Generosa, quedando la cola con Mar, Sella, Centurión Gloria, Generosa.
• Después de realizar la segunda operación se escribirá Sella y Generosa, quedando la cola con Sella, Centurión Gloria,

Generosa.
• Después de añadir Positivo se escribirá Sella y Positivo y la cola contendrá los siguientes elementos Sella, Centurión

Gloria, Generosa, Positivo.
• Al añadir Horche a la cola se producirá un error ya que la cola está llena interrumpiéndose la ejecución del programa.

19.16. Escriba una función que reciba como parámetro una cola de números enteros y nos devuelva el mayor y el menor de la cola.

Análisis del problema

Se usan las primitivas de gestión de colas implementadas con listas, lo único que hay que hacer es inicializar Mayor y menor
al primer elemento de la cola, y mediante un bucle voraz controlado por si se vacía la cola, ir actualizando las variables
mayor y menor.

Codificación

void Mayormenor(Cola *C, TipoDato * Mayor, TipoDato *menor)
{

TipoDato M,m,e;

M = -32767;
m = 32367;
while(!EsVaciaC(*C))

CAPÍTULO 19 Pilas y colas 365

ap.19 11/6/05 21:46 Página 365

{
e=PrimeroC(*C);
BorrarC(C);
if(M<e)

M=e;
if(m>e)

m=e;
}
*Mayor=M;

*menor=m;
}

CAPÍTULO 19 Pilas y colas366

PROBLEMAS PROPUESTOS
19.1. Obtener una secuencia de 10 elementos reales, guardar-

los en un array y ponerlos en una pila. Imprimir la
secuencia original y, a continuación, imprimir la pila
extrayendo los elementos.

19.2. Una bicola es una estructura de datos lineal en la que la
inserción y borrado se pueden hacer tanto por el extremo
frente como por el extremo final. Suponer que se ha
elegido una representación dinámica, con punteros, y
que los extremos de la lista se denominan frente y
final. Escribir la implementación de las operaciones:

InsertarFrente(), InsertarFinal(),
EliminarFrente() y EliminarFinal().

19.3. Considere una bicola de caracteres, representada en un
array circular. El array consta de 9 posiciones. Los extre-
mos actuales y los elementos de la bicola:

frente = 5 final = 7 Bicola: A,C,E

Escribir los extremos y los elementos de la bicola según
se realizan estas operaciones:

• Añadir los elementos F y K por el final de la bicola.
• Añadir los elementos R, W y V por el frente de la

bicola.
• Añadir el elemento M por el final de la bicola.
• Eliminar dos caracteres por el frente.
• Añadir los elementos K y L por el final de la bicola.
• Añadir el elemento S por el frente de la bicola.

19.4. Se tiene una pila de enteros positivos. Con las operacio-
nes básicas de pilas y colas escribir un fragmento de

código para poner todos los elementos que son par de la
pila en la cola.

19.5. Con un archivo de texto se quieren realizar las siguientes
acciones: formara una lista de colas, de tal forma que cada
nodo de la lista esté la dirección de una cola que tiene todas
las palabras del archivo que empiezan por una misma letra.
Visualizar las palabras del archivo, empezando por la cola
que contiene las palabras que comienzan por a, a conti-
nuación las de la letra b, a sí sucesivamente.

19.6. Escribir un programa en el que se generen 100 números ale-
atorios en el rango –25 .. +25 y se guarden en una pila
implementada mediante un array considerado circular. Una
vez creada la cola, el usuario puede pedir que se forme otra
cola con los números negativos que tiene la cola original.

19.7. Escribir un programa en el que se manejen un total de
n=5 pilas: P1, P2, P3, P4 y P5. La entrada de datos será
pares de enteros (i,j) tal que 1 ≤ abs(i) ≤ n. De
tal forma que el criterio de selección de pila:

• Si i es positivo, debe de insertarse el elemento j en la
pila Pi.

• Si i es negativo, debe de eliminarse el elemento j de la
pila Pi.

• Si i es cero, fin del proceso de entrada.

Los datos de entrada se introducen por teclado. Cuando
termina el proceso el programa debe de escribir el con-
tenido de la n Pilas en pantalla.

19.8. Modificar el programa 19.7 para que la entrada sean tri-
plas de números enteros (i,j,k), donde i, j tienen el

ap.19 11/6/05 21:46 Página 366

CAPÍTULO 19 Pilas y colas 367

mismo significado que en 19.8, y k es un número entero
que puede tomar los valores –1, 0 con este significado:

• -1, hay que borrar todos los elementos de la pila.
• 0, el proceso es el indicado en 19.8 con i y j.

19.9. Un pequeño supermercado dispone en la salida de tres
cajas de pago. En el local hay 25 carritos de compra.
Escribir un programa que simule el funcionamiento,
siguiendo las siguientes reglas:

• Si cuando llega un cliente no hay ningún carrito dispo-
nible, espera a que lo haya.

• Ningún cliente se impacienta y abandona el supermer-
cado sin pasar por alguna de las colas de las cajas.

• Cuando un cliente finaliza su compra, se coloca en la cola
de la caja que hay menos gente, y no se cambia de cola.

• En el momento en que un cliente paga en la caja, el
carro de la compra que tiene queda disponible.

Representar la lista de carritos de la compra y las cajas
de salida mediante colas.

19.10. Se trata de crear una cola de mensajes que sirva como
buzón para que los usuarios puedan depositar y recoger
mensajes. Los mensajes pueden tener cualquier formato,
pero deben contener el nombre de la persona a la que
van dirigidos y el tamaño que ocupa el mensaje. Los
usuarios pueden dejar sus mensajes en la cola y al reco-
gerlos especificar su nombre por el que recibirán el pri-
mer mensaje que está a su nombre o una indicación de
que no tienen ningún mensaje para ellos. Realizar el pro-
grama de forma que muestre una interfaz con las opcio-
nes indicadas y que antes de cerrarse guarde los
mensajes de la cola en un fichero binario del que pueda
recogerlos en la siguiente ejecución.

ap.19 11/6/05 21:46 Página 367

ap.19 11/6/05 21:46 Página 368

El árbol es una estructura de datos muy importante en informática y en ciencias de la computación. Los árboles son estructu-
ras no lineales al contrario que los arrays y las listas enlazadas que constituyen estructuras lineales.

Los árboles son muy utilizados en informática para representar fórmulas algebraicas como un método eficiente para bús-
quedas grandes y complejas, aplicaciones diversas tales como inteligencia artificial o algoritmos de cifrado. Casi todos los sis-
temas operativos almacenan sus archivos en árboles o estructuras similares a árboles. Además de las aplicaciones citadas, los
árboles se utilizan en diseño de compiladores, procesadores de texto y algoritmos de búsqueda.

En el capítulo se estudiará el concepto de árbol general y los tipos de árboles más usuales, binario y binario de búsqueda.
Asimismo se estudiarán algunas aplicaciones típicas del diseño y construcción de árboles

20.1 Árboles generales
Un árbol es un tipo estructurado de datos que representa una estructura jerárquica entre sus elementos. La definición de un
árbol viene dada recursivamente de la siguiente forma: un árbol o es vacío o se considera formado por un nodo raíz y un con-
junto disjunto de árboles llamados subárboles del raíz. Es posible representar gráficamente un árbol de diversas formas:

369

CAPÍTULO 20

Árboles

B

C

D

E

F

G

A

A((B)(C((E)(F)))(D (G)))

B D

E GF

A

C

Figura 20.1 Representación de árboles.

ap.20 11/6/05 21:47 Página 369

TERMINOLOGÍA

Las siguientes definiciones forman parte de la terminología específica:

• Nodos son los elementos o vértices del árbol.
• Cada nodo excepto la raíz tiene un único antecesor o ascendiente denominado padre.
• Hijo es un nodo descendiente inmediato de otro nodo de un árbol.
• Se llama grado de un nodo al número de sus hijos.
• Nodo hoja es un nodo de grado 0.
• Hermanos son los nodos hijos del mismo padre.
• Cada nodo de un árbol tiene asociado un número entero nivel que se determina por el número de antecesores que tiene

desde la raíz, teniendo en cuenta que el nivel de la raíz es cero.
• Profundidad o altura de un árbol es el máximo de los niveles de todos los nodos del árbol.
• Un Bosque es una colección de dos o más árboles.
• Grado de un árbol es el máximo de los grados de sus nodos.

EJEMPLO 20.1 En el siguiente árbol indique el nivel de cada nodo, el grado de algunos nodos, el grado del árbol,
así como su profundidad.

CAPÍTULO 20 Árboles370

Tiene profundidad 5. El grado del nodo B es 2. El grado del árbol es 3 ya que el grado máximo de todos sus nodos lo
da el nodo F que tiene grado 3.

20.2 Árboles binarios
Un árbol binario es aquél en el cual cada nodo tiene como máximo grado dos.
• Un árbol binario es equilibrado cuando la diferencia de altura entre los subárboles de cualquier nodo es como máximo una

unidad.
• Un árbol binario está perfectamente equilibrado, si los subárboles de todos los nodos tienen todos la misma altura.
• Un árbol binario se dice que es completo si todos los nodos interiores, es decir aquellos con descendientes, tienen dos hijos.
• Un árbol binario se dice lleno si todas sus hojas están al mismo nivel y todo sus nodos interiores tienen cada uno dos hijos.

Si un árbol binario es lleno entonces es completo.

Nivel 0

Nivel 1

Nivel 2

A

B E F

C D G H I

Rama AF

Rama FI

padres: A, B, E, F hojas: C, D, E, G, H, I
hijos: B, E, F, C, D, G, H, G, I
hermanos: {B, E, F}, {C, D}, {G, H, I}

ap.20 11/6/05 21:47 Página 370

EJEMPLO 20.2 Dibuje tres árboles, uno completo, otro degenerado y otro lleno.

CAPÍTULO 20 Árboles 371

20.3 Estructura y representación de un árbol binario
La estructura de un árbol binario es aquella en la cual en cada nodo se almacena un dato y su hijo izquierdo e hijo derecho. En
C puede representarse de la siguientes forma.

typedef int TipoElemento; /* Puede ser cualquier tipo */
struct NodoA
{
TipoElemento el;
struct NodoA *hi, *hd;

};
typedef struct NodoA EArbolBin;
typedef EArbolBin *ArbolBinario;

20.4 Árboles de expresión
Una expresión es una secuencia de operadores y operandos debidamente relacionados que forman una fórmula. Un árbol de
expresión es un árbol binario con las siguientes propiedades:

• Cada hoja es operando.
• Los nodos raíz e internos son operadores.
• Los subárboles son subexpresiones en las que el nodo raíz es un operador.

H I J K

D E

B C

A

F G

A

B

C

D

E

D E F G

B C

A

a) completo

b) degenerado

c) lleno

ap.20 11/6/05 21:47 Página 371

CONSTRUCCIÓN DE ÁRBOLES DE EXPRESIÓN

Para la construcción de un árbol de expresión a partir de la notación infija se utilizan, como estructuras de datos, una pila de
operadores y otra pila de operadores de punteros árbol. Un algoritmo de paso de la notación infija a postfija es el siguiente:

• Si se lee un operando se crea un árbol de un solo nodo y se mete en la pila de árboles.
• Si se lee un operador se pone en la pila de operadores, de acuerdo con la siguiente regla: el operador se pone en esta pila si

tienen prioridad mayor que el que está en la cumbre de la pila o bien la pila está vacía. Si tiene prioridad menor o igual prio-
ridad que el de la cima, se sacan los que hubiera en la pila de mayor o igual prioridad (hasta que quede uno de prioridad mayor
o bien la pila esté vacía)y se coloca en ella éste último. El paréntesis abierto se considera como operador de prioridad máxi-
ma para obligar a que entre en la pila cuando se lee, y sólo puede salir de la pila cuando aparece un paréntesis derecho.

• Cuando se acaba la entrada de datos hay que sacar todos los operadores que hubiera en la pila.
• Al sacar un operador de la pila de operadores hay que extraer, de la de la pila de árboles, los dos últimos árboles (se consi-

dera sólo operadores binarios). Con éstos tres elementos, se forma un nuevo árbol cuya raíz almacena el operador y los pun-
teros hi, hd apuntan a los dos últimos árboles extraídos de la pila de árboles. Posteriormente se coloca el nuevo árbol en la
pila de árboles.

• El proceso termina cuando se acaba la entrada y la pila de operadores queda vacía. El árbol de expresiones que se está bus-
cando se encuentra en la cima de la pila de árboles.

20.5 Recorridos de un árbol
Se denomina recorrido al proceso que permite acceder una sola vez a cada uno de los nodos del árbol. Existen diversas formas
de efectuar el recorrido de un árbol binario:

Recorrido en anchura:
• Consiste en recorrer los distintos niveles (del inferior al superior), y dentro de cada nivel, los diferentes nodos de izquier-

da a derecha (o bien de derecha a izquierda).
Recorrido en profundidad:
Preorden RID. Visitar la raíz, recorrer en preorden el subárbol izquierdo, recorrer en preorden el subárbol derecho.
Inorde IDR. Recorrer inorden el subárbol izquierdo, visitar la raíz, recorrer inorden el subárbol derecho.
Postorden IDR. Recorrer en postorden el subárbol izquierdo, recorrer en postorden el subárbol derecho, visitar la

raíz.
Existen otros tres recorridos más en profundidad pero apenas se usan: RDI, DRI, DIR.

EJEMPLO 20.3 Exprese los recorridos Preorden, Enorden y Postorden del siguiente árbol:

CAPÍTULO 20 Árboles372

D E F G

B C

A

1 3 5 7

6

4

2

RID– A,B,D,E,C,F, G

IRD– D,B,E,A,F,C, G

DRI– G,C,F,A,E,B,D

20.6 Árbol binario de busqueda
Un árbol binario de búsqueda es aquel en el cual, dado un nodo cualquiera del árbol, todos los datos almacenados en el subár-
bol izquierdo son menores que el dato almacenado en este nodo, mientras que todos los datos almacenados en el subárbol dere-
cho son mayores que el dato almacenado en este nodo. En caso de igualdad de claves deben almacenarse en una estructura de
datos auxiliar que salga de cada nodo.

ap.20 11/6/05 21:47 Página 372

EJEMPLO 20.4 El siguiente árbol binario es de búsqueda.

CAPÍTULO 20 Árboles 373

12

8

7

16

14

20.7 Operaciones en árboles binarios de búsqueda
Las operaciones mas usuales sobre árboles binarios de búsqueda son: búsqueda de un nodo; inserción de un nodo; borrado de
un nodo.

BÚSQUEDA

La búsqueda de un nodo comienza en el nodo raíz y sigue estos pasos:

• Si el árbol está vacío la búsqueda termina con fallo.
• La clave buscada se compara con la clave del nodo raíz.
• Si las claves son iguales, la búsqueda se detiene con éxito.
• Si la clave buscada es mayor que la clave raíz, la búsqueda se reanuda en el subárbol derecho. Si la clave buscada es menor

que la clave raíz, la búsqueda se reanuda con el subárbol izquierdo.

INSERCIÓN

La operación de inserción de un nodo es una extensión de la operación de búsqueda. El algoritmo es:

• Asignar memoria para una nueva estructura nodo.
• Buscar en el árbol para encontrar la posición de inserción del nuevo nodo, que se colocará siempre como un nuevo nodo

hoja.
• Enlazar el nuevo nodo al árbol. Para ello en el proceso de búsqueda hay que quedarse con el puntero que apunta a su padre

y enlazar el nuevo nodo a su padre convenientemente. En caso de que no tenga padre(árbol vacío), se pone el árbol apun-
tando al nuevo nodo.

BORRADO

La operación de borrado de un nodo es una extensión de la operación de búsqueda. Después de haber buscado el nodo a borrar
hay que tener en cuenta:

• Si el nodo es hoja, se suprime, asignando nulo al puntero de su antecesor.
• Si el nodo tiene único hijo. El nodo anterior se enlaza con el hijo del que se quiere borrar.
• Si tiene dos hijos. Se sustituye el valor almacenado en el nodo por el valor, inmediato superior (o inmediato inferior). Que

se encuentra en un avance a la derecha (izquierda) del nodo a borrar y todo a la izquierda (derecha), hasta que se encuen-
tre NULL. Posteriormente se borra el nodo que almacena el valor inmediato superior (o inmediato inferior) que tiene como
máximo un hijo.

• Por último hay que liberar el espacio en memoria ocupado el nodo.

ap.20 11/6/05 21:47 Página 373

PROBLEMAS RESUELTOS
20.1. Explicar por qué cada una de las siguientes estructuras no es un árbol binario.

Solución

La primera no es un árbol binario ya que el nodo cuyo contenido es B tiene tres hijos y le máximo número de hijos de un
árbol binario es dos. La segunda porque hay dos caminos distintos para ir al nodo F y por tanto no se expresa la jerarquía de
la definición de árbol. La tercera por la misma razón que la segunda.

20.2. Considérese el árbol siguiente:
a) ¿Cuál es su altura?.
b) ¿Está el árbol equilibrado?. ¿Porqué?.
c) Listar todos los nodos hoja.
d) ¿Cuál es el predecesor inmediato (padre) del nodo U?.
e) Listar los hijos del nodo R.
f) Listar los sucesores del nodo R.

Solución

a) Su altura es cuatro.
b) El árbol está equilibrado ya que la diferencia de las alturas de los

subárboles izquierdo y derecho es como máximo uno.
c) Los nodos hoja son: W, T, X, V.
d) El predecesor inmediato (padre) del nodo U es el nodo que contiene R.
e) Los hijos del nodo R son U y V.
f) Los sucesores del nodo R son U, V, X.

20.3. Para el árbol del ejercicio anterior realizar los siguientes recorridos: RDI, DRI, DIR

Solución

Recorrido RDI : P, R, V, U, X, Q, T, S, W.
Recorrido DRI : V, R, X, U, P, T, Q, S, W.
Recorrido DIR : V, X, U, R, T, W, S, Q, P.

20.4. Escriba las declaraciones necesarias para trabajar con árboles binarios de números enteros y las funciones CrearNodo,
Construir, Hijo Izquierdo e Hijo Derecho.

CAPÍTULO 20 Árboles374

ED

A

CB

F

FD

A

CB

E

CB

A

D

VU

P

RQ

X

TS

W

ap.20 11/6/05 21:47 Página 374

Análisis del problema

• Para hacer la declaración basta con declarar el tipo elemento como un entero, y definir una estructura que almacene ele-
mentos de ese tipo y dos punteros a la propia estructura.

• La función CrearNodo es una función que se encarga de recibir un dato como parámetro, y devuelve un nodo de tipo árbol
con su hijo izquierdo e hijo derecho apuntando a NULL.

• La función Construir recibe como parámetro un dato así como dos árboles, y retorna un árbol cuya raíz es un nodo que
contiene el dato y cuyos hijos izquierdo y derecho son los punteros árboles que recibe como parámetro.

• La función Hi (Hijo Izquierdo), recibe como parámetro un árbol y devuelve su Hijo Izquierdo si es que lo tiene.
• La función Hd(Hijo Derecho), recibe como parámetro un árbol y devuelve su Hijo Derecho si es que lo tiene.

Codificación

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef int TipoElemento;
struct nodo
{

TipoElemento el;
truct nodo *hi, *hd;

};
typedef struct nodo Nodo;

Nodo* CrearNodo(TipoElemento el);
Nodo* Construir(TipoElemento el, Nodo * hi, Nodo * hd);
Nodo* Hi(Nodo * a);
Nodo* Hd(Nodo * a);

Nodo* CrearNodo(TipoElemento el)
{

Nodo* t;

t = (Nodo*) malloc(sizeof(Nodo));
t -> el = el;
t ->hi = t -> hd = NULL;
return t;

}

Nodo* Construir(TipoElemento el, Nodo * hi, Nodo * hd)
{

Nodo *nn;
nn = CrearNodo(el);
nn->hi = hi;
nn->hd = hd;
return(nn);
}

Nodo* Hi(Nodo * a)
{

if(a)
return(a->hi);

CAPÍTULO 20 Árboles 375

ap.20 11/6/05 21:47 Página 375

else
{
printf(“ error en Hi \n”);
return(NULL);

}
}

Nodo* Hd(Nodo * a)
{

if(a)
return(a->hd);
else
{

printf(“ error en Hd \n”);
return(NULL);

}
}

void main ()
{
....
....
}

20.4. Escribir las sentencias necesarias para construir un árbol cuya raíz sea el número 9, cuyo hijo izquierdo sea el 6 y cuyo
hijo derecho sea el 12.

Codificación

Nodo * hi,*hd, *a;
....
....
hi=Construir(6, NULL, NULL);
hd=Construir(12, NULL, NULL);
a=Constgruir(9,hi,hd);
....
....

20.5. Escribir funciones para construir un árbol vacío, decidir si un árbol es vacío, y decidir si un árbol es una hoja.

Análisis del problema

Usando una declaración de árbol se tiene las siguientes funciones:
VaciaA : crea el árbol vacío (NULL).
EsVacioA: proporciona el valor verdadero si el árbol que recibe como parámetro está vacío y falso en otro caso.
EsHoja: decide si un árbol es una hoja; es decir, si su hijo izquierdo e hijo derecho son vacíos.

Codificación

int EsVacioA(Nodo *a)
{

return(a == NULL);
}

CAPÍTULO 20 Árboles376

ap.20 11/6/05 21:47 Página 376

void VaciaA(Nodo **a)
{

(*a) = NULL;
}

int Eshoja(Nodo *a)
{

if (a)
return((a->hi == NULL)&& a->hd == NULL);

else
return (0);

}

20.6. Escribir funciones que digan el numero de hojas de un árbol, el número de nodos de un árbol, el número de nodos que no
son hojas, la altura de un árbol, y los nodos que hay en un cierto nivel.

Análisis del problema

Las funciones solicitadas se codifican recursivamente:
• Altura. La función se calcula de la siguiente forma: un árbol está vacío su altura es cero, y si no está vacío su altura es

uno mas que el máximo de las alturas de cada uno de sus hijos.
• NdeHojas. Para calcular el número de hojas de un árbol, basta con observar, que si un árbol es vacío su número de horas

es cero. Si no está vacío, hay dos posibilidades, que el árbol sea una hoja en cuyo caso vale 1, o que no lo sea con lo que
para calcularlas basta con sumar las hojas que tenga el hijo izquierdo y el hijo derecho.

• NdeNodos. Si un árbol es vacío el número de nodos que tiene es cero, y si no está vacío el número de nodos es uno más
que la suma del número de lo nodos que tenga su hijo izquierdo y su hijo derecho.

• NdeNodosInternos. Se calcula restando los valores de las funciones NdeNodos y NdeHojas.
• NodosNivel. Si el árbol está vacío los nodos que hay en ese nivel es cero. En otro caso, hay que contar o escribir el nodo

si está en el nivel 1, y en caso de que no lo esté hay que calcular los nodos existentes en el nivel inmediatamente siguien-
te (restar uno al nivel que buscamos) de su hijo izquierdo e hijo derecho.

Codificación

int Altura(Nodo *a)
{

if (!a)
return(0);

else
{

int ai,ad;

ai = Altura(a->hi);
ad = Altura(a->hd);
if (ai < ad)

return (1 + ad);
else

return (1 + ai);
}

}

int NdeHojas(Nodo *a)
{

if (!a)

CAPÍTULO 20 Árboles 377

ap.20 11/6/05 21:47 Página 377

return(0);
else
return (NdeHojas(a->hi) + NdeHojas(a->hd));

}

int NdeNodos(Nodo *a)
{

if(!a)
return(0);

else
return(1+ NdeNodos(a->hi) + NdeNodos(a->hd));

}

int NdeNodosInternos(Nodo *a)
{

return (NdeNodos(a)-NdeHojas(a));
}
void NodosNivel(Nodo *a, int n)
{

if (a)
if (n == 1)

printf(“%d\n”, a->el);
else
{

NodosNivel(a->hi,n - 1);
NodosNivel(a->hd,n - 1);

}
}

20.7. Escriba funciones que copien un árbol en otro, y que den la imagen especular.

Análisis del problema

• Copia. Es una función que recibe como parámetro un árbol a y da una copia exacta de él. Para resolver el problema se
hace lo siguiente: si el árbol es vacío una copia de él es el propio árbol vacío. En otro caso hay que copiar en un nuevo
nodo el dato almacenado en la raíz y después copiar el hijo izquierdo e hijo derecho.

• Espejo. El espejo de un árbol vacío es el propio árbol vacío. El espejo de un árbol no vacío (imagen especular) se obtie-
ne cambiando entre sí el hijo izquierdo y el hijo derecho. Por lo tanto la función es análoga a la de Copia, excepto que se
cambian los parámetros de llamada (el hijo izquierdo pasa a ser hijo derecho y recíprocamente).

Codificación

void Copiar (Nodo *a, Nodo **Acop)
{

if (a)
{

(*Acop) = CrearNodo(a->el);
Copiar(a->hi,&(*Acop)->hi);
Copiar(a->hd,&(*Acop)->hd);

}
}

void Espejo (Nodo *a, Nodo **Aesp)
{

CAPÍTULO 20 Árboles378

ap.20 11/6/05 21:47 Página 378

if (a)
{

(*Aesp) = CrearNodo(a->el);
Espejo(a->hi, & (*Aesp)->hd);
Espejo(a->hd, & (*Aesp)->hi);

}
}

20.8. Escriba funciones para hacer los recorridos recursivos en profundidad Inorden, Preorden, Postorden.

Análisis de problema

De los seis posibles recorridos en profundidad IDR, IRD, DIR, DRI, RID, RDI se pide IDR, IRD RID.
• Inorden. Se recorre el hijo izquierdo, se visita la raíz y se recorre el hijo derecho. Por lo tanto la función debe codificar-

se de la siguiente forma: Si el árbol es vacío no se hace nada. En otro caso, se recorre recursivamente el hijo izquierdo, se
escribe la raíz, y posteriormente se recorre recursivamente el hijo derecho.

• Preorden. Se visita la raíz. Se recorre el hijo izquierdo, y después se recorre el hijo derecho. Por lo tanto la codificación
es análoga a la de Inorden, pero cambiando el orden de llamadas.

• Postorden. Se recorre el hijo izquierdo, se recorre e hijo derecho, y posteriormente se visita la raíz.

Codificación

void Inorden(Nodo *a)
{

if (a)
{

Inorden(a->hi);
printf(“%d “, a->el);
Inorden(a->hd);

}
}

void Preorden(Nodo *a)
{

if (a)
{

printf(“%d “, a->el);
Preorden(a->hi);
Preorden(a->hd);

}
}

void Postorden(Nodo *a)
{

if (a)
{
Postorden(a->hi);
Postorden(a->hd);
printf(“%d “, a->el);

}
}

CAPÍTULO 20 Árboles 379

ap.20 11/6/05 21:47 Página 379

20.9. Se dispone de un árbol binario de elementos de tipo entero. Escriba funciones que calculen:
a) La suma de sus elementos.
b) La suma de sus elementos que son múltiplos de 3.

Análisis del problema

Para resolver el problema basta con implementar las dos funciones efectuando al hacer un recorrido del árbol las corres-
pondientes operaciones.

Codificación

int Suma (Nodo*a)
{

if(a)
return(a->el + Suma(a->hi) + Suma(a->hd));

else
return(0);

}

int SumaMultimpos (Nodo*a)
{

if(a)
if (a->el%3)

return(a->el + SumaMultiplos(a->hi)+SumaMultiplos(a->hd));
else

return(SumaMultimplos(a->hi) + SumaMultiplos(a->hd));
else

return(0);
}

20.10. Escribir una función booleana Identicos que permita decir si dos árboles binarios son iguales.

Análisis del problema

Dos árboles son idénticos si tiene la misma estructura y contienen la misma información en cada uno de sus distintos nodos.

Codificación

int Idénticos (Nodo *a, Nodo * a1)
{

if (a)
if (a1)

return((a->el == a1->el) && Identicos(a->hi,a1->hi && Identicos(a->hda1->hd));
else // a ≠≠ NULL y a1 es NULL
return(0);
else

if (a1) // a es NULL y a1 no
return(0);

else
return(1);

}

CAPÍTULO 20 Árboles380

ap.20 11/6/05 21:47 Página 380

20.11. Construir una función recursiva para escribir todos los nodos de un árbol binario de búsqueda cuyo campo clave sea mayor
que un valor dado (el campo clave es de tipo entero).

Análisis del problema

Basta con hacer un recorrido del árbol y escribir los que cumplan la condición dada.

Codificación

void RecorreMayores(Nodo *a, TipoElemento el)
{

if (a)
{

if(a->el > el)
printf(“%d “, a->el);
RecorreMayores(a->hi, el);
RecorreMayores(a->hd, el);

}
}

20.12. Dado un árbol binario de búsqueda diseñe una función que liste los nodos del árbol ordenados descendentemente.

Análisis del problema

Basta con hacer el recorrido DRI del árbol.

Solución

void Escribe(Nodo *a)
{

if (a)
{

Escribe(a->hd);
printf(“&d “, a->el);

Escribe(a->hi);
}

}

20.13. Escribir un programa que cree un árbol binario con números generados aleatoriamente y muestre por pantalla:
• La altura de cada nodo del árbol.
• La diferencia de altura entre rama izquierda y derecha de cada nodo.

Análisis del problema

El programa que se presenta tiene las siguientes funciones:
• Altura. Calcula la altura del árbol que se le pasa como parámetro.
• GeneraAleatoriamente. Genera aleatoriamente un árbol binario de búsqueda usando la función AnadeA (Codificada en

un ejercicio posterior 20.17) que añade número enteros a un árbol binario de búsqueda.
• EscribeA. Escribe el árbol de acuerdo con el recorrido DIR.
• MuestraP. Muestra en pantalla para cada nodo las condiciones pedidas usando un recorrido IRD.

Codificación (Se encuentra en la página web del libro)

CAPÍTULO 20 Árboles 381

ap.20 11/6/05 21:47 Página 381

20.14. Escriba una función que realice el recorrido en anchura de un árbol binario.

Análisis del problema

Para hacer el recorrido en anchura se usa el esquema de arriba abajo y de izquierda a derecha. También se codifica el esque-
ma de arriba abajo y de derecha a izquierda, mediante las funciones AnchuraID y AnchuraDI. Para ambas funciones se usa
una cola de árboles por la que pasarán todos los árboles que apunten a los nodos del árbol.
• AnchuraID. Se crea en primer lugar la cola vacía. Si el árbol original es vacío no se hace nada y en otro caso se añade

el propio árbol a la cola. Ahora mediante un bucle mientras controlado por la condición es vacía la cola, se extrae el árbol
que está como primer elemento, se borra de la cola, se escribe la información almacenada en el nodo raíz, y posterior-
mente se añade el árbol hijo izquierdo del nodo raíz a la cola si está no vacío y posteriormente el árbol hijo derecho del
nodo raíz a la cola si está no vacío.

• AnchuraDI. Es análoga a la anterior, pero la final se cambia el orden de añadir a la cola el árbol hijo izquierdo y el árbol
hijo derecho.

En la codificación que se presenta, se incluye la declaración de árbol la de cola, y se omiten las primitivas de gestión de una
cola.

Codificación

typedef int TipoElemento;
struct nodo
{

TipoElemento el;
struct nodo *hi, *hd;

};
typedef struct nodo Nodo;

// gestion de Cola
struct NodoC
{

Nodo *el;
struct NodoC* sig;

};

typedef struct
{

NodoC * Frente;
NodoC * Final;

}Cola;

// Las primitivas de gestión d e una cola son omitidas

void AnchuraID(Nodo *a)
{

Cola C;
Nodo *a1;
VaciaC(&C);
if (a)
{

AnadeC(&C,a);
while (!EsVaciaC(C))
{
a1 = PrimeroC(C);

CAPÍTULO 20 Árboles382

ap.20 11/6/05 21:47 Página 382

BorrarC(&C);
printf(“%d \n”, a1->el);
if (a1->hi != NULL)

AnadeC(&C, a1->hi);
if (a1->hd != NULL)

AnadeC(&C, a1->hd);
}

}
}

void Anchura DI(Nodo *a)
{

Cola C; Nodo *a1;

VaciaC(&C);
if (a)
{
AnadeC(&C,a);
while (!EsVaciaC(C))
{

a1 = PrimeroC(C);
BorrarC(&C);
printf(“%d \n”, a1->el);
if (a1->hd != NULL)

AnadeC(&C, a1->hd);
if(a1->hi != NULL)

AnadeC(&C, a1->hi);
}

}
}

20.15. Escriba las funciones para recorrer un árbol en inorden y preorden iterativamente.

Análisis del problema

Una manera de resolver el problema es usar la técnica general de eliminación de la recursividad. En este caso se usa una pila
de árboles, por la que pasarán punteros a todos los nodos del árbol de la siguiente forma.
• InordenNoRecursivo. Usa una pila de árboles no escritos. Inicialmente se pone la pila a vacío y después mediante un bucle

repetir que termina cuando la pila está vacía y cuando el último hijo derecho del nodo del que se ha escrito su raíz (y por tanto
también su hijo izquierdo) está vacío. Hay que estar seguros de que cuando se escriba un nodo ya se ha escrito su hijo izquier-
do. Para ello el primer bucle while se desplaza (baja) por los hijos izquierdos añadiendo los punteros correspondientes a la
pila hasta asegurar que el primer árbol almacenado en la cumbre e la pila ya se ha escrito su hijo izquierdo, y falta por escri-
bir su raíz y su hijo derecho. Por tanto, a cada vuelta del bucle do while y después de haberse ejecutado el bucle while (pos-
terior) hay en la cumbre de la pila de árboles no escritos un puntero a un árbol del que se ha escrito su hijo izquierdo y falta
por escribir su raíz y el hijo derecho. Por lo tanto después del bucle while hay que extraer un dato de la pila, escribir su raíz
para posteriormente tratar su hijo derecho, añadiéndolo a la pila repitiendo el proceso general.

• PreordenNoRecursivo. Usa una pila de árboles escritos. Inicialmente se pone la pila a vacío y después se usa un
bucle repetir que termina cuando la pila está vacía y cuando el último hijo derecho del nodo del que se ha escrito su
hijo derecho y su raíz está vacío. Hay que asegurar que cuando se escriba un hijo izquierdo ya se ha escrito su raíz.
Para ello el primer bucle while se desplaza (baja) por los hijos izquierdos escribiendo la información de la raíz y aña-
diendo los punteros correspondientes a la pila hasta asegurar que el primer árbol almacenado en la cumbre de la pila
ya se ha escrito su hijo izquierdo y su raíz, y falta por escribir su hijo derecho. Por tanto a cada vuelta del bucle do
while y después de haberse ejecutado el bucle while (posterior) hay en la cumbre de la pila de árboles escritos, un

CAPÍTULO 20 Árboles 383

ap.20 11/6/05 21:47 Página 383

puntero a un árbol del que se ha escrito su raíz y su hijo izquierdo y falta por escribir el hijo derecho. Al terminar el
bucle while hay que extraer un dato de la pila, para posteriormente tratar su hijo derecho, añadiéndolo a la pila repi-
tiendo el proceso general.

Se presentan a continuación las declaraciones necesarias y las dos funciones pedidas. Se usa una pila de árboles que no está
incluida.

Codificación (Se encuentra en la página web del libro)

20.16. Escriba una función recursiva y otra iterativa que se encargue de buscar la información dada en un elemento en un árbol
binario de búsqueda.

Análisis del problema

Se usa una definición de árboles como la usada los ejercicios anteriores, y se implementa la función BuscarA y
BuscarAIterativo que busca el nodo que contenga el elemento.
• BuscarA. Realiza la búsqueda recursiva de la siguiente forma: si el árbol está vacío la búsqueda termina con fallo. Si no

está vacío, la búsqueda termina con éxito si la información almacenada en la raíz coincide con la que se está buscando,
en otro caso habrá que continuar la búsqueda o por el hijo izquierdo o bien por el hijo derecho dependiendo de la com-
paración entre el elemento que se busca y la información almacenada en el nodo.

• BuscarAIterativo. Realiza la búsqueda devolviendo un puntero al nodo anterior además del puntero al nodo que se
busca. Para ello se usa un interruptor enc que se inicializa a falso, y mediante un bucle mientras no enc y no se haya
terminado el árbol hacer: si coinciden los contenidos poner enc a verdadero, en otro caso se desplaza a la izquierda o la
derecha quedándose con su anterior dependiendo del contenido de la raíz y del elemento que se esté buscando.

Codificación

Nodo* BuscarA (Nodo* p, TipoElemento el)
{

if (!p)
return 0;

else if (el == p -> el)
return p;

else if (el < p -> el)
return BuscarA (p -> hi, el);

else
return BuscarA (p -> hd, el);

}

Nodo*BuscarAIterativo(Nodo * a, Nodo** ant, TipoElemento el)
{

int enc;
Nodo *anterior;

enc = 0;
anterior = NULL;
while (!enc && (a!=NULL))
{

if (a->el == el)
enc = 1;

else
{

anterior = a ;

CAPÍTULO 20 Árboles384

ap.20 11/6/05 21:47 Página 384

if (el < a->el)
a = a->hi;

else
a = a->hd;

}
}
*ant = anterior;
return a;

}

20.17. Escriba una función recursiva y otra iterativa que se encargue de insertar la información dada en un elemento en un árbol
binario de búsqueda.

Análisis del problema

Se usa una definición de árboles como la de los ejercicios anteriores, y se implementa la función AnadeA y
AnadeAIterativo que insertan el nodo que contenga el elemento.
• AnadeA. Realiza la inserción recursiva de la siguiente forma: si el árbol está vacío se inserta el nuevo nodo como una hoja

de un árbol llamando a la función CrerarNodo. Si no está vacío si la información almacenada en la raíz coincide con la
que está buscando habría que tratar las claves repetidas almacenándolas en una estructura de datos auxiliar (no se hace),
en otro caso habrá que continuar la inserción o por el hijo izquierdo o bien por el hijo derecho dependiendo de la com-
paración entre el elemento que vamos a insertar y la información almacenada en el nodo.

• AnadeAIterativo. Se llama a la función BuscarAIterativo programada en el ejercicio anterior 20.16 y después se
inserta el nodo si la búsqueda terminó en fallo teniendo en cuenta que puede ser el raíz total o bien un hijo izquierdo o
bien un hijo.

• CreaNodo. Es una función auxiliar que recibe como parámetro un elemento y devuelve un puntero a un árbol que es una
hoja y que contiene la información del elemento.

Codificación

Nodo* CrearNodo(TipoElemento el)
{

Nodo* t;

t = (Nodo*) malloc(sizeof(Nodo));
t -> el = el;
t ->hi = t -> hd = NULL;
return t;

}

void AnadeA (Nodo** a, TipoElemento el)
{

if (!(*a))
*a = CrearNodo(el);

else
if (el == (*a)->el)

printf(“ valor %d repetido no se inserta\n”,el);
else

if (el < (*a) -> el)
AnadeA (&((*a) -> hi), el);

else
AnadeA (&((*a) -> hd), el);

}

CAPÍTULO 20 Árboles 385

ap.20 11/6/05 21:47 Página 385

void AnadeAIterativo(Nodo** a, TipoElemento el)
{

Nodo *nn, *a1, *ant;

a1 = BuscarAIterativo(*a, &ant, el);
if (a1==NULL)
{

nn = CrearNodo(el);
if (ant == NULL)

*a = nn;
else

if(el < ant->el)
ant->hi = nn;

else
ant->hd = nn;

}
else
printf(“ nodo duplicado no se inserta \n”);

}

20.18. Escriba funciones iterativas y recursivas para borrar un elemento de un árbol binario de búsqueda.

Análisis del problema

El borrado que se implementa es el explicado en la teoría, usando la técnica del predecesor inmediato que se encuentra uno
a la izquierda y todo a su derecha. Las funciones que lo codifican son:
• BorrarARecursivo. Realiza la búsqueda del nodo a borrar recursivamente, y una vez encontrado el nodo considera los

tres casos. No tiene hijo izquierdo, en cuyo caso se enlaza el puntero con su hijo derecho. No tiene hijo derecho, en cuyo
caso se enlaza el nodo con su hijo izquierdo. Tiene dos hijos, en cuyo caso se llama a una función recorred que se encar-
ga de buscar el sucesor inmediato, copia la información en el nodo que se quiere borrar y cambia el nodo a borrar que es
el que es ahora el predecesor inmediato. Por último se libera memoria.

• Recorred. Es una función recursiva que hace lo indicado anteriormente y realiza el enlace con el hijo izquierdo del pre-
decesor inmediato.

• BorrarAIterativo. Realiza a búsqueda del nodo a borrar iterativamente. En el caso de éxito en la búsqueda considera
los tres casos considerados en el BorrarARecursivo, pero ahora, al realizar los dos primeros casos (no tiene hijo izquier-
do, o no tiene hijo derecho) ha de tener en cuenta si el nodo a borrar es el raíz del árbol (ant==NULL) a la hora de reali-
zar los enlaces. Para el caso del borrado del nodo con dos hijos, la búsqueda del predecesor inmediato se realiza
iterativamente mediante la condición no tiene hijo derecho. Una vez encontrado, se intercambian la información y se pro-
cede al borrado del nodo predecesor inmediato.

• BorrarA. Realiza la búsqueda recursivamente de acuerdo con la función BorrarARecursivo, pero en lugar de llamar a
la función recorred, realiza el borrado iterativamente tal y como lo hace la función BorrarAIterativo.

Codificación

void BorrarARecursivo (Nodo** a, TipoElemento el)
{

if (!(*a))
printf(“!! Registro con clave %d no se encuentra !!. \n”,el);

else
if (el < (*a)->el)

BorrarA(&(*a)->hi, el);
else

if (el > (*a)->el)

CAPÍTULO 20 Árboles386

ap.20 11/6/05 21:47 Página 386

BorrarA(&(*a)->hd,el);
else

{
Nodo* ab; /* Nodo a borrar */
ab = (*a);
if (ab->hi == NULL)

(*a) = ab->hd;
else

if (ab->hd == NULL)
(*a) = ab->hi;

else
/* mayor de los menores */

recorred(a, &(*a)->hi,&ab);
free(ab);

}
}

void recorred(Nodo **a, Nodo **por, Nodo**ab)
{

if((*por)->hd)
recorred(a,&(*por)->hd,ab);

else
{
(*a)->el = (*por)->el; // copia
*ab = *por; // nuevo nodo a borrar
*por = (*por)->hi; // enlace
}

}

void BorrarAIterativo(Nodo** a, TipoElemento el)
{

Nodo *a1,*ant,*ab ;

int enc = 0;
ant = NULL;
a1 = *a;
while (! enc &&(a1 != NULL))
{

if (el == a1->el)
enc = 1;

else
{

ant = a1;
if(el < a1->el)

a1 = a1->hi;
else

a1 = a1->hd;
}

}
if(a1)
{

ab = a1;
if (ab->hi == NULL)

CAPÍTULO 20 Árboles 387

ap.20 11/6/05 21:47 Página 387

if (ant == NULL)
(*a) = ab->hd;

else
if (el < ant->el)

ant->hi = ab->hd;
else
ant->hd = ab->hd;

else
if(ab->hd == NULL)
if (ant == NULL)

(*a) = ab->hi;
else
if (el < ant->el)

ant->hi = ab->hi;
else ant->hd = ab->hi;

else // tiene dos hijos
{

Nodo* a1, *p;
p = ab;
a1 = ab->hi;
while (a1->hd)
{

p = a1;
a1 = a1->hd;

}
ab->el = a1->el; // Se copia dato
if (p == ab)

ab->hi = a1->hi; //p->hi no enlaza bien por ser una copia
else

p->hd = a1->hi;
ab = a1;

}
free(ab);

}
else
printf (“Elemento no enconatrado\n”);

}

void BorrarA (Nodo** r, TipoElemento el)
{

if (!(*r))
printf(“!! Registro con clave %d no se encuentra !!. \n”,el);

else
if (el < (*r)->el)
BorrarA(&(*r)->hi, el);

else
if (el > (*r)->el)

BorrarA(&(*r)->hd,el);
else
{
Nodo* ab; /* Nodo a borrar */
ab = (*r);
if (ab->hi == NULL)

CAPÍTULO 20 Árboles388

ap.20 11/6/05 21:47 Página 388

(*r) = ab->hd;
else

if (ab->hd == NULL)
(*r) = ab->hi;

else /* mayor de los menores */
{

Nodo* a, *p;
p = ab;
a = ab->hi;
while (a->hd)
{

p = a;
a = a->hd;

}
ab->el = a->el;
if (p == ab)
ab->hi = a->hi;

//p->hi no enlaza bien por ser una copia
else
p->hd = a->hi;

ab = a;
}

free(ab);
}

}

CAPÍTULO 20 Árboles 389

PROBLEMAS PROPUESTOS
20.1. Para cada una de las siguientes listas de letras

a) Dibujar el árbol binario de búsqueda que se construye
cuando las letras se insertan en el orden dado.

b) Realizar recorridos en inorden, preorden y postorden
del árbol y mostrar la secuencia de letras que resultan
en cada caso.

(i) M, Y, T, E, R
(ii) R, E, M, Y, T
(iii) T, Y, M, E, R
(iv) C, O, R, N, F,

L, A, K, E, S

20.2. Dibujar los árboles binarios que representan las siguien-
tes expresiones:

a) (A+B)/(C-D)
b) A+B+C/D
c) A-(B-(C-D)/(E+F))
d) (A+B)*((C+D)/(E+F))
e) (A-B)/((C*D)-(E/F))

20.3. El recorrido preorden de un cierto árbol binario produce
ADFGHKLPQRWZ y el recorrido en inorden produce
GFHKDLAWRQPZ.Dibujar el árbol binario.

20.4. Escribir un programa que procese un árbol binario cuyos
nodos contengan caracteres y a partir del siguiente menú
de opciones:

I (seguido de un carácter) : Insertar un carácter
B (seguido de un carácter) : Buscar un carácter
RE : Recorrido en orden
RP : Recorrido en preorden
RT : Recorrido postorden
SA : Salir

20.5. Escribir una función booleana a la que se le pase un pun-
tero a un árbol binario y devuelva verdadero (true) si el
árbol es completo y falso en caso contrario.

20.6. Crear un archivo de datos en el que cada línea contenga
la siguiente información

ap.20 11/6/05 21:47 Página 389

CAPÍTULO 20 Árboles390

Columnas 1-20 Nombre
21-31 Número de la Seguridad Social
32-78 Dirección

Escribir un programa que lea cada registro de datos de
un árbol, de modo que cuando el árbol se recorra utili-
zando recorrido en orden, los números de la seguridad
social se ordenen en orden ascendente. Imprimir una
cabecera “DATOS DE EMPLEADOS ORDENADOS
POR NUMERO SEGURIDAD SOCIAL”. A continua-
ción se han de imprimir los tres datos utilizando el
siguiente formato de salida.

Columnas:1-11 Número de la Seguridad Social 25-44
Nombre; 58-104 Dirección.

20.7. Escribir un programa que lea un texto de longitud inde-
terminada y que produzca como resultado la lista de
todas las palabras diferentes contenidas en el texto, así
como su frecuencia de aparición. Hacer uso de la estruc-
tura árbol binario de búsqueda, cada nodo del árbol que
tenga una palabra y su frecuencia.

20.8. Crear un archivo de datos en el que cada línea contenga
la siguiente información: Nombre 30 caracteres;
Número de la Seguridad Social 10 caracteres; Dirección
24 caracteres. Escribir un programa que lea cada regis-
tro de datos en un árbol, de modo que cuando el árbol se
recorra en orden los números de la Seguridad Social se
almacenen en orden ascendente. Imprimir una cabecera
“DATOS DE EMPLEADOS ORDENADOS POR

NUMERO DE LA SEGURIDAD SOCIAL” y a conti-
nuación imprimir los datos del árbol con el formato
Columnas: 1-10 Número de la Seguridad Social; 20-50

Nombre; 55-79 Dirección

20.9. Diseñar un programa interactivo que permita dar altas,
bajas, listar, etc. en un árbol binario de búsqueda.

20.10. Dados dos árboles binarios de búsqueda indicar median-
te un programa si los árboles tienen o no elementos
comunes.

20.11. Un árbol binario de búsqueda puede implementarse
con un array. La representación no enlazada corres-
pondiente consiste en que para cualquier nodo del
árbol almacenado en la posición I del array, su hijo
izquierdo se encuentra en la posición 2*I y su hijo
derecho en la posición 2*I + 1. Diseñar a partir de esta
representación las correspondientes funciones para
gestionar interactivamente un árbol de números ente-
ros. (Comente el inconveniente de esta representación
de cara al máximo y mínimo número de nodos que
pueden almacenarse).

20.12. Una matriz de N elementos almacena cadenas de carac-
teres. Utilizando un árbol binario de búsqueda como
estructura auxiliar ordene ascendentemente la cadena de
caracteres.

20.13. Escriba un programa C que lea una expresión correcta en
forma infija y la presente en notación postfija.

ap.20 11/6/05 21:47 Página 390

La forma de compilar programas C en el entorno UNIX varía considerablemente entre las diferentes plataformas UNIX. Las
versiones de Linux y FreeBSD 3.4 de UNIX usan el potente compilador GNU. Para conocer la versión disponible se ejecuta la
orden:

$ gcc —version
2.7.2.3
$

La orden cc es la más usada en las plataformas de UNIX para compilar programas C, como se muestra en la siguiente
sesión de una versión de BSD:

$ type cc
cc is a tracked alias for /usr/bin/cc
$ ls -li /usr/bin/cc
7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/cc

$ type gcc
gcc is a tracked alias for /usr/bin/gcc
$ ls -li /usr/bin/gcc
7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/gcc
$

Otras plataformas UNIX proporcionan sus propios compiladores de C y C++, los cuales difieren substancialmente en las
opciones que permiten del compilador de GNU, así como en los mensajes que se producen y su capacidad de optimización. A
continuación se verán algunas de las diferencias.

A.1 Orden (comando) de compilación cc
La mayoría de las plataformas UNIX invocan sus compiladores de C con el nombre cc. Las plataformas Linux y FreeBSD
tienen el nombre de comando gcc, además del nombre cc. Algunas veces el compilador de GNU es instalado como gcc en
plataformas comerciales para distinguirlo del estándar. Por ejemplo, HP incluye un compilador no ANSI con su sistema ope-

391

APÉNDICE A

Compilación de programas C
en UNIX y LINUX

pendice A 11/6/05 21:47 Página 391

rativo HPUX, que es denominado el compilador “envuelto” (este compilador es suficiente para reconstruir un nuevo kernel para
HPUX). El compilador ANSI debe ser adquirido por separado y, cuando se instala, reemplaza al comando cc.

Sin embargo, dentro de la misma plataforma, hay también hay otras opciones. HPUX 10.2 soporta el compilador cc y el
compilador conforme con POSIX (estándar) c89. La plataforma IBM AIX 4.3 soporta un compilador “extendido” de C, cc,
y un compilador de ANSI C, xlc o c89. La diferencia entre los compiladores xlc y c89 en AIX son las opciones por defec-
to configuradas. Las opciones, relativamente estandarizadas, son:

OPCIÓN -C
Esta opción es probablemente la más estandarizada universalmente. La opción -c indica que el compilador debería producir
un archivo (fichero) objeto (fichero.o) pero sin intentar enlazar para obtener un ejecutable. Esta opción se usa cuando se com-
pilan varios módulos fuentes separados que serán enlazados juntos en una etapa posterior por medio del enlazador. Por ejem-
plo, se ha editado el archivo fuente ecuacion.c, la compilación con el comando cc y la opción -c:

$ cc -c ecuacion.c

El resultado de la compilación es un listado con los errores sintácticos del programa. O bien, de no haber errores, el archi-
vo con el código objeto ecuacion.o. Una vez generado el código objeto, se enlaza y se genera el archivo ejecutable:

$ cc ecuacion.o

El siguiente ejemplo muestra como se compila y enlaza en un solo paso:

$ cc hello.c

Esta orden, de paso único, traduce el archivo fuente escrito en C hello.c; el resultado de la compilación, si no hay
errores, es el archivo ejecutable a.out. El nombre de fichero a.out es el nombre por defecto de un ejecutable que se
genera como salida del compilador y del enlazador (link). Esta práctica se remonta al menos a 1970 cuando UNIX esta-
ba escrito en lenguaje ensamblador sobre el PDP-11. El nombre de los archivos de salida por defecto del enlazador de
Digital Equipment (DEC) también es a.out.

El programa C se puede escribir en varios módulos y cada uno estar guardado en un archivo. La compilación puede hacer-
se archivo tras archivo y después enlazarse para formar el archivo ejecutable. Por ejemplo, la aplicación de cálculo de nómi-
nas se escribe en los archivos independientes: nomina1.c, nomina2.c y nomina3.c. La compilación de cada archivo fuente:

$ cc -c nomina1.c
$ cc -c nomina2.c
$ cc -c nomina3.c

A continuación se enlazan los tres archivos objetos generados (una vez que no hay errores sintácticos) como sigue:

$ cc nomina1.o nomina2.o nomina3.o

el resultado es el archivo ejecutable a.out. La orden cc con la opción –c, ejecutado para cada archivo fuente, produce, res-
pectivamente, los archivos nomina1.o, nomina2.o y nomina3.o. Después, la orden cc acepta cada archivo objeto como entra-
da y produce el archivo ejecutable final con el nombre a.out. A continuación, se puede ejecutar el programa generado.

OPCIÓN -O
Esta opción es también bastante estándar. La opción -o permite al usuario especificar el nombre del archivo de salida. Por
ejemplo, para el archivo ecuacion.c podría hacerse:

$ cc -c ecuacion.c -o mat_ecuacion.o

La opción -c indica que se va a producir un archivo objeto y la opción -o nombrará el archivo objeto de salida como
mat_ecuacion.o.

APÉNDICE A Compilación de programas C en UNIX y LINUX392

pendice A 11/6/05 21:47 Página 392

La opción -o puede usarse también para nombrar el archivo ejecutable. Por ejemplo, el archivo ejecutable que se genera,
a continuación, se nombra prog_ecuacion:

$ cc mat_ecuacion.o -o prog_ecuacion

OPCIÓN -G (DEPURACIÓN)
Esta opción estándar indica al compilador que debe generarse información de depuración en la salida de la compilación. Esta
información de depuración hace que sea posible que el depurador haga referencia al código fuente y a los nombres de las varia-
bles, así como el análisis de un archivo core tras abortar un programa. Incluya esta opción cuando se necesite depurar un pro-
grama interactivamente o realizar un análisis post-mortem de un archivo core. Hay que asegurarse de usar esta opción con
todos los módulos objetos que vayan a ser inspeccionados por el depurador.

OPCIÓN -D (DEFINE)
Esta opción estándar del compilador de C permite definir un símbolo de macro desde la línea de comandos del compilador.
Frecuentemente es utilizada sobre todo desde el archivo makefile pero no está limitada a esta práctica. Por ejemplo:

$ cc -c -D POSIX_C_SOURCE=199309L hello.c

define la macro constante en C _POSIX_C_SOURCE con el valor 199309L. Esta definición de macro tiene el efecto de elegir
un estándar particular POSIX de entre los ficheros incluidos en la compilación. Se pueden definir macros adicionales en la
misma línea de órdenes

$ cc -c -D_POSIX_C_SOURCE=199309L -DNDEBUG hello.c

En este ejemplo se han definido dos macros para el archivo hello.c, la primera _POSIX_C_SOURCE, y a continuación la
macro NDEBUG (sin valor), con el fin de deshabilitar la generación de código en las innovaciones a la macro assert(3) den-
tro del programa.

OPCIÓN -I (INCLUSIÓN)
La opción estándar -I permite especificar directorios adicionales para buscar archivos de inclusión include. Por ejemplo, si
se tienen archivos adicionales include localizados en un directorio inusual tal como /usr/local/include, se podría añadir
la opción -I como sigue:

$ cc -c -I/usr/local/include hello.c

Pueden añadirse más de una opción -I en la línea de comandos, y los directorios serán recorridos en el orden dado. Por
ejemplo, si se ejecuta el comando:

$ cc -c -I/usr/local/include -I/opt/include gestion.c

Si el programa fuente (gestion.c) contiene la directiva #include “file.h”, entonces muchos compiladores (no-GNU)
de UNIX procesarán la directiva buscando, primero, en el directorio actual, después en todos los directorios dados por la opción
–I y finalmente en el directorio /usr/include. Los mismos compiladores (no-GNU) de UNIX procesarán la directiva de C
#include <file.h> de la misma forma, excepto que no buscan en el directorio actual. Sin embargo, el compilador de GNU
extiende algo la opción -I como sigue:

• -I-, los directorios que preceden a una opción -I- son recorridos solamente para las directivas de la forma #inclu-
de “file.h”.

• Los directorios proporcionados con las opciones -I que siguen a una opción -I- se recorren para las dos formas
#include “file.h” y #include <file.h>.

• Si no aparece ninguna opción -I- en la línea de comandos, entonces el comportamiento es el mismo que para los com-
piladores no GNU de C.

APÉNDICE A Compilación de programas C en UNIX y LINUX 393

pendice A 11/6/05 21:47 Página 393

Un ejemplo de todo esto es el comando de compilación siguiente:

$ gcc -c -I/usr/tipodato/include -I- -I/opt/oracle/include convo.c

La ejecución del comando del ejemplo permite a la directiva del preprocesador de C #include “pila.h” incluir el archi-
vo /usr/tipodato/include/pila.h. Esta otra directiva #include <sqlca.h>, recorre los directorios que siguen a la
opción -I-, entonces incluiría al fichero /opt/oracle/include/sqlca.h. Esto ocurre porque la forma <file.h> no es
buscada en los directorios que preceden a la opcion –I-

OPCIÓN -E (EXPANDIR)
Esta opción es relativamente estándar entre los compiladores de C de UNIX. Permite modificar la línea de comandos para hacer
que el compilador envíe el código preprocesado en C a la salida estándar sin llegar a compilar el código. Esto es útil para con-
trolar las directivas de preprocesamiento y las macros de C. La salida de lo que será compilado puede ser redirigida a otro archi-
vo para que después se examine con un editor.

$ cc -c -E hello.c > cpp.out

En el ejemplo anterior, la opción -E hace que los archivos include y el programa sean preprocesados y redirigidos
hacia el archivo cpp.out. Después, se puede examinar el archivo cpp.out con un editor para determinar como será el
código final en C. Esto es útil especialmente cuando se trata de depurar el efecto de macros en C que en ocasiones provo-
can errores de compilación difíciles de diagnosticar.

OPCIÓN -O (OPTIMIZAR)
Esta opción no es estándar entre los compiladores. Algunos compiladores requieren que un argumento siga a la -O, otros no y
otros aceptarán opcionalmente un argumento. FreeBSD acepta lo siguiente:

-O y -O1 especifican optimización de nivel 1.
-O2 especifica optimización de nivel 2 (optimización mayor).
-O3 especifica optimización de nivel 3 (más que -O2).
-O0 especifica sin optimización.

Para el compilador de GNU, estas opciones pueden estar repetidas, y la última es la que establece el nivel final de optimi-
zación. Por ejemplo:

$ gcc -c -O3 -O0 elipse.c

compila sin optimizar porque al final aparece -O0.
En contraste con el compilador GNU, el compilador de HP soporta las siguientes opciones de para niveles crecientes de

optimización:

Optimización por defecto +O0
Nivel 1 de optimización +O1
Nivel 2 de optimización +O2 (equivale a -O, sin argumentos, de FREEBSD)
Nivel 3 de optimización +O3
Nivel 4 de optimización +O4

El compilador de IBM AIX 4.3 soporta las opciones -O, -O2 y -O3 para niveles crecientes de optimización. Todo ello
acentúa la necesidad de revisar para cada sistema las opciones del compilador en la página de cc del manual correspondiente.

La optimización analiza el código compilado, código objeto, para aumentar la eficiencia en la ejecución de las instruccio-
nes. Cuanto mayor es el nivel de optimización mejor es el código ejecutable producido, por contra, mayor es el tiempo de com-
pilación.

APÉNDICE A Compilación de programas C en UNIX y LINUX394

pendice A 11/6/05 21:47 Página 394

Existen diversos entornos de compilación de programas C para Windows. Uno muy popular, gratuito y de gran fiabilidad, diseña-
do en la University of Virginia es lcc-win32. Es un entorno de programación completo que permite editar, compilar y ejecutar pro-
gramas escritos en lenguaje C. El compilador se adapta a las especificaciones ANSI C Y se puede descargar gratuitamente de
Internet en la dirección Web:

http://www.cs.virginia.edu/~lcc-win32

o bien en

http://www.q-software-solutions.com

La instalación de lcc-win32 crea el icono de acceso:

Acceso a lcc-win32

Seleccionando el icono Wedit se accede al entorno integrado de desarrollo, típico de sistemas Windows

395

APÉNDICE B

Compilación de programas C
en WINDOWS

pendice B 11/6/05 21:48 Página 395

http://www.cs.virginia.edu/~lcc-win32
http://www.q-software-solutions.com

B.1 Editar un programa
Este entorno de programación permite editar sin necesidad de utilizar otra aplicación. La forma más sencilla y rápida de editar
un programa es la siguiente: pulse File en la parte superior del menú principal; a continuación New y en el menú que se des-
pliega File. Escriba el nombre del programa y acepte con el botón Ok:

APÉNDICE B Compilación de programas C en Windows396

Ahora comience a teclear las sentencias del programa fuente; una vez terminado guarde el programa fuente mediante
Ctrl+S.

B.2 Compilación
Seleccione el menú Compiler y la opción Compile. El entorno lcc le sugiere unas acciones relativas al proyecto en el cual se
va a agrupar el programa; elija New Project . El compilador se pone en marcha y en la pantalla inferior se muestran los erro-
res de compilación. En el programa se corrigen los errores; se vuelve a guardar (Ctrl+S) y de nuevo se compila. El proceso de
depuración se repite hasta que no haya más errores.

B.3 Ejecución
Seleccione el menú Compiler y la opción Execute. La ejecución abre una nueva ventana en la que se muestran los resultados
de la ejecución del programa.

B.4 Crear un proyecto
Las aplicaciones escritas en C se componen de un número determinado de funciones y de una función principal (

main()). Normalmente, estas funciones se agrupan en dos o más archivos. Cada archivo (archivo fuente) se compila y depu-
ra de forma individual, o sea se realiza una compilación independiente.

Para gestionar la compilación independiente se crea un proyecto. En el proyecto se agrupan los distintos archivos que for-
man la aplicación; cada archivo se compila y depura independientemente. Una vez compilado cada archivo, se enlazan para
formar el archivo ejecutable.

Los pasos a seguir para crear un proyecto y ejecutar el programa:

1. Seleccione Project en el menú principal y a continuación elija Create.

2. Teclee el nombre del proyecto y el camino (path) donde se ubicará.
Proyecto Saludos, situado en C:\MisProgramas:
Pulse la opción Create.

3. A continuación, pulse No, o bien Next en las nuevas pantallas que le presenta la aplicación lcc. Llegará a un pantalla
en la cual pulsará End; es la última por la que navegará para crear el esqueleto del proyecto.

4. Edite cada archivo: para ello pulse en File, y opción New File. Una vez creado el archivo se debe añadir al proyecto,
para ello pulse Proyect y después Add/Delete files .

pendice B 11/6/05 21:48 Página 396

APÉNDICE B Compilación de programas C en Windows 397

Archivo entrada.c:

#include <stdio.h>
void entradaNombre(char nom[])
{
printf(“ Tu nombre: ?”);
gets(nom);

}

5. Compile el archivo. Pulse Proyect, elija Check syntax Si hay errores de compilación, se realizan las correcciones en el
archivo: se guarda (Ctrl+S) y se vuelve a realizar la compilación con Check syntax.

6. Edite cada archivo fuente, repitiendo los pasos 4 y 5.

Archivo progSuerte.c:

#include <stdio.h>
void entradaNombre(char nom[]);

void main()
{
char nombre[41];
entradaNombre(nombre);
printf(“\n Hola %s, felices vacaciones \n”, nombre);

}

7. En el menú principal pulse Proyect, elija Make para enlazar los archivos que forman el proyecto y crear el archivo eje-
cutable. Por último, Execute ejecutará el programa.

pendice B 11/6/05 21:48 Página 397

pendice B 11/6/05 21:48 Página 398

LIBROS
Existen numerosos libros de C para cualquier nivel de aprendizaje. Recogemos en este apartado aquellos que consideramos más
sobresalientes para su formación y posterior vida profesional de programador en C.

American National Standards Institute (ANSI) . Programming Language C, ANSI X3.159- 1989. Manual de especifi-
caciones del lenguaje ANSI C, conocido como C89

International Organization for Standardization (ISO). ISO/IEC 9899:1990… (C89) y ISO/IEC 9899;1999 (C99)
Deitel, P. J. y Deitel, H. M. C: How to Program. Prentice-Hall, 1994. Excelente libro cuyos autores son muy reconocidos

en el mundo editorial tanto anglosajón como español , donde se han traducido muchas de sus obras.
Fischer, Alice E., Eggert, David W., Ross, Stephen M. Applied C: An Introduction and More. Boston (USA): McGraw-

Hill, 2001. Libro excelente que proporciona una perspectiva teórico-práctica sobresaliente.
Feuer, Alan R. The C Puzzle Book. Addison-Wesley, 1998.
Es una excelente elección para todos los programadores que desean ampliar su conocimiento básico del lenguaje de pro-

gramación C y totalmente compatible con la versión estándar ANSI C. Construido sobre reglas y experiencias prácticas es una
obra muy completa para la comprensión de la sintaxis y semántica de C.

Harbison, Samuel P., Tartan Laboratories. C: A Reference Manual, 4/e. Prentice Hall, 1995. Este libro contiene en deta-
lle todo el lenguaje de programación en C. La claridad, los útiles ejemplos y discusiones de compatibilidad con C++ lo dife-
rencia, esencialmente, de otras referencias. Existen numerosos compiladores de C en los diferentes sistemas operativos más
utilizados: Windows, Unix y Linux. Para los lectores estudiantes una buena opción es el empleo de Linux, un sistema operati-
vo gratuito de gran potencia y con facilidad de “descarga” del sistema y del compilador de la Red.

Horton, Ivor. Beginning C. Third edition. New York: Aprress, 2004. Magnífico libro para el aprendizaje del lenguaje C
dirigido a principiantes y con un enfoque práctico Jones, Bradley y Aitken, Peter. C in 21 Days.Sixth Edition. Indianápolis,
USA: Sams, 2003. Magnífico y voluminoso libro práctico de programación en C

Joyanes, Luis, Castillo, Andres, Sánchez, Lucas y Zahonero Martínez, Ignacio. Programación en C. Libro de proble-
mas. Madrid: McGraw-Hill, 2002. Libro complementario de esta obra, con un fundamento eminentemente teórico-práctico y
con gran cantidad de ejemplos, ejercicios y problemas resueltos.

Joyanes Aguilar, Luis, y Zahonero Martínez, Ignacio. Programación en C. 2ª edición. McGraw-Hill, 2005. Libro emi-
nentemente didáctico pensado para cursos profesionales o universitarios de programación en C. Complementario en el aspec-
to teórico de este libro.

399

APÉNDICE C

Recursos Web
de programación

pendice C 11/6/05 21:48 Página 399

Kernighan, Brian y Ritchie, Dennis M. The C programming Language. 2/e. Prentice Hall, 1988.
Este libro es la referencia definitiva de los autores del lenguaje. Imprescindible para el conocimiento con profundidad del

lenguaje C. Traducido al castellano como El Lenguaje de Programación C, segunda edición (ANSI-C), Prentice-Hall, 1991.
Kernighan, Brian W. y Pike, Rob. The Unix Programming Environment. Prentice-Hall, 1984, traducido al español como

El entorno de programación Unix (Prentice-hall, 1987). Describe y explica el sistema operativo Unix a nivel de usuario y de
programador de aplicaciones no distribuidas (un poco anticuado para las versiones actuales, pero excelente).

Kelley, Al.. A Book on C. Addison-Wesley, 1997. Libro sencillo para el aprendizaje de C
Koenig, Andrew. C Traps and Pitfalls. Addison-Wesley, 1988. Es un magnífico libro para aprender a programar a nivel

avanzado en C y C++ tanto para profesionales como para estudiantes.
Oualline, Steve. Practical C Programming. O´Reilly & Associates, 1997. Libro muy interesante con una gran cantidad de

reglas prácticas y consejos eficientes para progresar adecuadamente en el mundo de la programación.
Plauger, P. J. C The Standard Library. Prentice-Hall, 1992
Un excelente manual de referencia de sintaxis del lenguaje _ANSI C. Referencia obligada como elemento de consulta para

el programador en su trabajo diario.
Sedgewick, Robert. Algoritms in C. Addison-Wesley, 3/e, 1997.
Excelente libro para el conocimiento y aprendizaje del diseño y construcción de algoritmos. Es una obra clásica que el

autor ha realizado para otros lenguajes como C++.
Summit, Steve y Lafferty, Deborah. C Programming Faqs: Frequently Asked Questions. Addison-Wesley, 1995.
Contiene más de 400 preguntas y dudas frecuentes sobre C junto con las respuestas correspondientes. Aunque este recur-

so contiene mucha información útil, el libro es más un almacen de preguntas y respuestas que una referencia completa.
Tondo, Clovis L., Gimpel, Scott E., C Programming Kernighan, Brian W. The C Answer Boock: Solutions to the

Exercices in the C Programming Language, Second Edition., Prentice-Hall, 1993. Contiene las explicaciones
completas de todos los ejercicios de la segunda edición del libro de Kernighan y Ritchie. Es ideal para utilizar en cualquier
curso de C. Un estudio cuidadoso de este libro le ayudará a comprender ANSI C y mejorará sus destrezas de programa-
ción.

Van Der Linden, Peter. Expert C Programming, 1994. En esta obra se recogen todo tipo de reglas y consejos de progra-
mación para sacar el mayor rendimiento posible a la programación en C.

SITIOS DE INTERNET

REVISTAS
C/C++ Users Journal www.cuj.com
Dr. Dobb´s Journal www.ddj.com
MSDN Magazine msdn.microsoft.com/msdnmag
Sys Admin www.samag.com
Software Development Magazine www.sdmagazine.com
UNIX Review www.review.com
Windows Developper´s Journal www.wdj.com
C++ Report www.creport.com
Journal Object Orientd Programming www.joopmag.com

PÁGINAS WEB IMPORTANTES DE C/C++
ccp.servidores.net/cgi-lib/buscador
www.msj.com/msjquery.html
Revista Microsoft Systems Journal

www.shareware.com
Software shareware

msdn.microsoft.com/developer
Página oficial de Microsoft sobre Visual C++

APÉNDICE C Recursos Web de programación400

pendice C 11/6/05 21:48 Página 400

www.borland.com
Página oficial del fabricante Inprise/Borland

www.lysator.liu.se/c/
The Development of the C Language

//en.wikibooks.org/wiki/Programming:C
Programaming C en Wikibooks

Historia de C en la enciclopedia Wikipedia (10 páginas excelentes)
//en.wikipedia.org/wiki/C_programming_language

Página web de Bjarne Stroustrup
http://www.research.att.com/~bs/C++.html

Página de Dennis M. Ritchie
www.cs.bell-labs.com/who/dmr/index.html

Preguntas y respuestas frecuentes sobre C (FAQ)
www.faqs.org/faqs/C-faq/faq
www.faqs.org/faqs/C-faq/faq/index.html (de Steve Summit)

TUTORIALES
www.help.com/cat/2/259/hc/index-9.html
www.lysator.liu.se/c
www.anubis.dkung.dk/JTC1/SC22/WG14
www.uib.es/c-calculo/manuals/altrese/cursc.htm
www.help.com/cat/259/hc/index-9.html

PREGUNTAS Y RESPUESTAS FRECUENTES SOBRE C (FAQ)
www.eskimo.com|/~scs/C-faq/top.html
www.faqs.org/faqs/C-faq/faq
www.help.com/cat/2/259/hc/index-9.html
www.lysator.liu.se/c
www.anubis.dkung.dk/JTC1/SC22/WG14
www.uib.es/c-calculo/manuals/altrese/cursc.htm
www.help.com/cat/259/hc/index-9.html
http://www.parashift.com/c++-faq-lite/
cplusplus.com
http://www.cplusplus.com/

C99
www.comeaucomputing.com/techtalk/c99

REVISTAS DE INFORMÁTICA / COMPUTACIÓN DE PROPÓSITO GENERAL Y/O C
EN SECCIONES ESPECIALIZADAS DE PROGRAMACIÓN Y EN PARTICULAR DE C/C++

PC Magazine www.ppcmag.com
Linux Magazine www.linux-mag.com
PC World www.pcworld.com
Java Report www.javareport.com

APÉNDICE C Recursos Web de programación 401

pendice C 11/6/05 21:48 Página 401

Sigs www.sigs.com
Java Pro www.java-pro.com
PC Actual www.pc-actual.com
PC World España www.idg.es/pcworld
Dr.Dobb´s (en español) www.mkm-pi.com
Visual C++ Developer Journal. www.vcdj.com/

COMPILADORES
Thefreecountrycom
www.thefreecountry.com/compilers/cpp.shtml

Compilador GCC de GNU/Linux (Free Software Foundation)
//gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/

CompiladoresWin32 C/C++ de Willus.com
www.willus.com/ccomp.shtml

Compiladores e interpretes C/C++
www.latindevelopers.com/res/C++/compilers

Compilador Lxx-Win32 C de Jacob Navia
www.cs.virginia.edu/~lcc-win32/

El Rincón del C
www.elrincondec.com/compile

Visual Studio Beta 2005
//msdn2.microsoft.com/library/default.aspx

ORGANIZACIONES INFORMÁTICAS ESPECIALIZADAS EN C/C++
ACCU (Association of C and C++ Users).
www.accu.org/
.

ANSI(American National Standards Institute).
www.ansi.org
.

Comité ISO/IEC JTC1/SC22/WG14-C.
anubis.dkuug.dk/JTC1/SC22/WG14/
Comité encargado de la estandarización y seguimiento del C.

Comité ISO/IEC JTC1/SC22/WG21-C++.
anubis.dkuug.dk/jtc1/sc22/wg21/
Comité encargado de la estandarización y seguimiento del C++.

ISO (International Organization for Standardization).
www.iso.ch/
Organización de aprobación de estándares de ámbito internacional (entre ellos de C/C++)

ISO/IEC JTC1/SC22/WG14-C
Grupo de trabajo de estandarización internacional de la versión C99

APÉNDICE C Recursos Web de programación402

pendice C 11/6/05 21:48 Página 402

ESTANDARES DE C
K&R (The C Programming Language, 1978)
ANSI C (Comité ANSI X3.159-1989, 1989)
ANSI C (adoptado por ISO como ISO/IEC 9899 :1990, 1990)
C99 (ISO 9899:1999)

MANUALES DE C ESTÁNDAR Y LIBRERIAS DE C
www.dinkunware.com/ (biblioteca de C)
www.open-std.org/jtc1/sc22/wg14/www/c99Rationalev5.10.pdf (Revisión 5.10 de Abril de 2003, manual de más
de 200 páginas)
www.sics.se/~pd/ISO-C-FDIS.1999-04.pdf, (manual de más de 500 páginas)

APÉNDICE C Recursos Web de programación 403

pendice C 11/6/05 21:48 Página 403

pendice C 11/6/05 21:48 Página 404

A
Acceso aleatorio, 295-297

fseek(), 246
ftell(), 246
SEEK_SET, 246
SEEK_CUR, 246
SEEK_END, 246

almacén libre, 212
algoritmo, 13

análisis, 14
características, 13
definición, 13
de ordenación, 161
de búsqueda, 161
diseño, 14

ámbito, 98
de programa, 98
de una función, 98
del archivo fuente, 98

apuntadores (punteros), 191
árbol, 369

binario, 370
borrado, 373
de búsqueda, 372, 373
de expresión, 371
general, 369
inserción, 373
recorrido, 372
terminología, 400

archivos binarios, 246
fwrite(), 244

fread(), 244

fopen(), 244

fclose(), 244

fputc(), 244

ordenación, 274
mezcla directa, 276
fusión, 274
organización, 274
directos (aleatorios), 270
registro,s 267

archivo de cabecera 25
archivo indexado,s 272

función hash, 271
colisiones, 271

archivo secuencial, 268
argc, 248
argv, 248

arrays, 137
almacenamiento, 138
arrays de punteros, 193
asignación de memoria, 212
cadenas de texto, 138
como parámetros, 140
de caracteres, 138
declaración, 137
inicialización, 138
inicializa,r 138
multidimensionales, 139
subíndices, 137
tamaño, 138

arrays y punteros, 193
arreglos (véase arrays)
ASCII, 225
aserción, 17
asignación, 37

de cadena,s 226
asignación dinámica de memoria 211-213
asociatividad 43

B

Biblioteca de ejecución, 10
Bits, 3
Bucle, 17, 71

bandera, 72
condición, 72
controlado por centinela, 72
controlado por indicador, 72
infinito, 72
invariante 17,

buffer de entrada / salida, 243
búsqueda, 161

secuencial, 163
binaria, 163

C

C, Lenguaje de programación, 10
C++, 11, 296
cadenas de caracteres, 225

inicialización, 226
funciones de cadena, 228
conversión de cadenas, 229

punteros a cadenas, 226
Calidad del software, 17

Integridad, 17, 297
Robustez, 17, 297

callo(), 213
campos de bit, 179
carácter nulo, 225
CD-ROM, 3
char, 225
cintas, 5
clase, 297
código fuente, 8
código objeto, 9
cola, 348-350

concepto, 348
especificación, 349
implementación, 349

compilación, 9
computadora, 1

multimedia, 6
const puntero, 195
constantes, 29

carácter, 29
de cadena, 29
declaradas, 30
definidas, 29
enumeradas, 29
literales, 29
reales, 20
simbólicas, 29

comentario, 27
compatibilidad, 17
corrección, 17
conversión de cadenas a números

atof (), 229
atoi(), 229
atol (), 229

cortafuego, 6

D

datos tipos TAD, 295
depuración, 15
diagrama de flujo, 14
directivas del preprocesador, 25
diseño del algoritmo, 14
divide y vencerás, 14

405

Índice

ndice 11/6/05 21:49 Página 405

doble cola, 366
documentación, 15
DVD,5

E

Editor, 9
ejecución de un programa, 9-10, 14
enlazador, 9
ensamblador, 8
entrada y salida por archivos, 243

flujos, 243
entrada estándar, 243
salida estándar, 243
apertura de un archivo, 244
fopen(), 244
binario, 246
texto, 244
FILE, 243
modo de apertura, 244
fclose(), 244
EOF, 244
funciones de lectura y escritura, 244
acceso aleatorio, 246

enum, 176
enumeraciones 29, 176
EOF, 244
Errores

De compilación, 9
De tiempo de ejecución, 9

Especificación de tipo, 298
expresión condicional ¿:, 41
estructuras

de control, 55, 47
selectivas, 55
repetitivas, 71

estructura (struct), 173-175
miembro, 173
nombre, 173
inicialización, 174
operador punto (.), 174
operador flecha (->), 174
asignación, 174
estructuras anidadas, 174
arrays, 157

evaluación en cortocircuito, 40
expresiones, 37
extensibilidad, 17

F

FIFO, 348
flujos de entrada / salida, 243
apertura, 244
flux(), 246
free(), 213
funciones, 95

aritméticas, 38

concepto, 26, 95
declaración, 96
definidas por el usuario, 26
estructura, 95
parámetros, 97
puntero a función
prototipos, 96
en línea, 98

funciones de cadena
memcpy(), 228
strcat(), 228
strchr(), 228
strcmp(), 228
stricmp(), 228
strcpy(), 228
strncpy(), 228
strcspn(), 228
strlen(), 228
strncat(), 228
strncmp(), 228
strnset(), 228
strpbrk(), 228
strrchr(), 228
strspn(), 228
strrevt(), 228
strstr(), 229
strtok(), 229

de entrada salida
printf(), 245
scanf(), 245

funciones de lectura escritura
de ficheros
fputc(), 244
putc(), 244
getc(), 245
fgetc(), 244
fputs(), 244
gets(), 226
fprintf(), 245
fscanf(), 245
feof(), 245
rewind(), 245

H

Hardware, 1, 2, 4
Heap, 211
HTML, 6

I

identificador, 27
integridad, 17
interfaz, 3
Internet, 6
intérprete, 9
invariante, 17
IMP,6

L
lectura de cadenas

getch(), 226
getche(), 226
gets(), 226
putchar(), 226
puts(), 226
scanf, 226

lectura de ficheros
fread(), 246

lenguaje
de alto nivel, 7
de bajo nivel, 7
interpretado, 9
máquina, 7
traductores, 8

LIFO, 347
lista

circular, 316
enlazada, 311
doblemente enlazada, 314

lista circular, 316
eliminación, 316
inserción, 316

lista doblemente enlazada, 314
declaración, 314
eliminación, 315
inserción, 315

lista enlazada, 312
cabecera, 312
clasificación, 312
eliminación, 313
inserción, 313
operaciones, 312

Literal de cadena, 225

M

macros, 393
main(), 348
mallo(), 212
manual

de mantenimiento, 15
de usuario, 15

modelo de memoria, 212
montículo (heap), 212

N

NULL, 225

O

operador, 37
(), 42
->, 41
., 41

ÍNDICE406

ndice 11/6/05 21:49 Página 406

[], 42
&, 41
*, 41
aritmético, 38
asignación, 37, 41
asociatividad, 43
condicional, 41
conversión de tipos, 40
coma, 42
de bits, 40
de desplazamiento de bits, 41
de dirección, 41
de incremento, 39
de decremento, 39
especiales, 40
lógicos, 40
prioridad, 43
relacionales, 39
sizeof, 42

ordenación, 161
por burbuja, 161
por inserción, 163
por shell, 163
por selección, 162
rápida (QuickSort), 163

P

P2P, 6
PDA,6
palabras

reservadas, 27
reservadas ANSI C,

parámetros, 87
paso por referencia, 195
paso por valor, 195
periférico, 3
pila

cima, 347
concepto, 347
especificaciones, 348
implementación, 348

POP, 6
postcondición, 16
precondición, 16
preprocesador, 25
prioridad, 43
procedimientos, 95
programa, 14

codificación, 14
compilación, 14
depuración, 14
documentación, 42
ejecución, 14
elementos, 27
mantenimiento, 14
verificación, 15

programación, 16

estructurada, 16
teorema, 16

pseudocódigo, 5
puntero a archivo, 244
punteros (apuntadores)

aritmética de punteros, 194
arrays, 193
arrays de punteros concepto, 191
declaración, 191
inicialización estática, 192
indirección, 192
nulos NULL, 6, 192
operador &, 192
operador*, 192
puntero a estructura, 193
puntero a función, 196
puntero constante, 195
puntero doble, 192
punteros de cadenas, 227
paso por referencia, 195
void, 192
y arrays, 195

R

realloc(), 213
redes, 5

WAN, 5, 6
LAN, 5

reutilización, 17
robustez, 16
recursividad, 123

funciones, 123
infinita, 123
versus iteración, 124

S

segmento de código, 212
segmento de datos, 212
sentencias, 55

break, 57
continue,
do while, 74
for, 73
if anidadas, 56
if con dos alternativas, 56
if con una alternativo, 55
nula, 55
return, 95
switch, 57
while, 57

sistema operative, 6
sizeof, 42
SMTP, 6
software, 1, 2, 6
stack (pila), 347

static, 100
stderr, 243
stdin, 243
stdio.h, 243
stdout, 243
stream, 243
string.h, 227
struct, 173, 174

miembro, 174
nombre, 174
inicialización, 174
operador punto (.), 174
operador flecha (->), 174
asignación, 174
arrays, 174

T

tabla, 137
tipos

abstractos TAD, 295
enumerados, 176

definidos por usuario, 177
void, 27

transportabilidad, 16
typedef, 177

U

UAL, 2, 4
UCP, 2, 4
UC, 2, 4
unión (union), 176

definición, 176
miembros, 176
memoria, 177
acceso 177

V

variable, 30
automáticas, 99
declaración, 30
definición dinámicas estáticas, 100
extemas, 99
globales, 99
nombres, 30
puntero, 191
registro, 100

verificación, 15
void, 27

W

WWW, 6

ÍNDICE 407

ndice 11/6/05 21:49 Página 407

ndice 11/6/05 21:49 Página 408

	C. ALGORITMOS, PROGRAMACIÓN Y ESTRUCTURAS DE DATOS
	PÁGINA LEGAL
	CONTENIDO
	PRÓLOGO
	1 INTRODUCCIÓN A LAS COMPUTADORAS Y A LOS (...)
	1.1 Organizacion física de una computadora
	1.2 Redes
	1.3 El software (los programas)
	1.4 Lenguajes de programación
	1.5 El lenguaje C: historia y características
	Referencias bibliográficas y lecturas suplementarias
	Ejercicios de repaso

	2 FUNDAMENTOS DE PROGRAMACIÓN
	2.1 Fases en la resolución de problemas
	2.1.1. Análisis del problema
	2.1.2 Diseño del algoritmo
	2.1.3 Codificación de un programa
	2.1.4 Compilación y ejecución de un programa
	2.1.5 Verificación y depuración
	2.1.6 Documentación y mantenimiento

	2.2 Programación estructurada
	2.2.1. Recursos abstractos
	2.2.2. Diseño descentente (top down)
	2.2.3 Estructuras de control
	2.2.4 . Teorema de la programación estructurada

	2.3 Métodos formales de verificación de programas
	2.4 Factores de calidad del software
	Problemas resueltos
	Problemas propuestos

	3 EL LENGUAJE C: ELEMENTOS BÁSICOS
	3.1 Estructura general de un programa en C
	3.1.1 Directivas del preprocesador
	3.1.2 Declaraciones globales
	3.1.3 Función Main
	3.1.4 Funciones definidas por el usuario

	3.2 Los elementos de un programa C
	3.3 Tipos de datos en C
	3.3.1 Enteros (INT)
	3.3.2 Tipos de coma flotante
	3.3.3. CARACTERES

	3.4 El tipo de dato lógico
	3.5 Constantes
	3.6 Variables
	3.7 Entradas y salidas
	Problemas resueltos
	Problemas propuestos

	4 OPERADORES Y EXPRESIONES
	4.1 Operadores y expresiones
	4.2 El operador de asignación
	4.3 Operadores aritméticos
	4.4 Operadores de incrementación y decrementación
	4.5 Operadores relacionales
	4.6 Operadores lógicos
	4.7 Operadores de manipulación de bits
	4.7.1 Operadores de asignación adicionales
	4.7.2 Operadores de desplazamiento de bits
	4.7.3 Operadores direcciones

	4.8 Operador condicional
	4.9 Operador coma
	4.10 Operadores especiales
	4.11 El operador
	4.12 Conversiones de tipos
	4.13 Prioridad y asociatividad
	Problemas resueltos
	Problemas propuestos

	5 ESTRUCTURAS DE SELECCIÓN: SENTENCIAS IF Y SWITCH
	5.1 Estructuras de control
	5.2 La sentencia if con una alternativa
	5.3 Sentencia if de dos alternativas: if-else
	5.4 Sentencia de control switch
	5.5 Expresiones condicionales: el operador ?:
	5.6 Evaluación en cortocircuito de expresiones lógicas
	Problemas resueltos
	Problemas propuestos

	6 ESTRUCTURAS DE CONTROLÑ: BUCLES
	6.1 La sentencia while
	6.1.1 Miscelánea de control de bucles while

	6.2 Repetición: el bucle for
	6.3 Repetición: el bucle do...while
	6.4 Comparación de bucles while, for y do-while
	Problemas resueltos
	Problemas propuestos

	7 FUNCIONES
	7.1 Concepto de función
	7.2 Estructura de una función
	7.3 Prototipos de las funciones
	7.4 Parámetros de una función
	7.5 Funciones en línea, macros con argumentos
	7.6 Ámbito (alcance)
	7.7 Clases de almacenamiento
	7.8 Concepto y uso de funciones de biblioteca
	7.9 Miscelánea de funciones
	Problemas resueltos
	Problemas propuestos

	8 RECURSIVIDAD
	8.1 La naturaleza de la recursividad
	8.2 Funciones recursivas
	8.3 Recursión versus iteración
	8.4 Recursión infinita
	8.5 Algoritmos divide y vencerás
	Problemas resueltos
	Problemas propuestos

	9 ARRAYS (LISTAS Y TABLAS)
	9.1 Arrays
	9.2 Inicialización de un array
	9.3 Arrays de caracteres y cadenas de texto
	9.4 Arrays multidimensionales
	9.5 Utilización de arrays como parámetros
	Problemas propuestos
	Problemas propuestos

	10 ALGORITMOS DE ORDENACIÓN Y BÚSQUEDA
	10.1 Ordenación
	10.2 Ordenación por burbuja
	10.3 Ordenación por selección
	10.4 Ordenación por inserción
	10.5 Ordenación Shell
	10.6 Ordenación rapida (QuickSort)
	10.7 Búsqueda en listas: búsqueda secuencial y binaria
	Problemas resueltos
	Problemas propuestos

	11 ESTRUCTURAS Y UNIONES
	11.1 Estructuras
	11.2 Uniones
	11.3 Enumeraciones
	11.4 Sinonimo de un tipo de datos: Typedef
	11.5 Campos de bit
	Problemas resueltos
	Problemas propuestos
	Problemas de programación de gestión

	12 PUNTEROS (APUNTADORES)
	12.1 Concepto de puntero (apuntador)
	12.2 Punteros NULL y VOID
	12.3 Punteros y arrays
	12.4 Aritmética de punteros
	12.5 Punteros como argumentos de funciones
	12.6 Punteros a funciones
	Problemas resueltos
	Problemas propuestos
	Problemas de programación de gestión

	13 ASIGNACIÓN DINÁMICA DE MEMORIA
	13.1 Gestión dinámica de la memoria
	13.2 Función malloc()
	13.3 Liberación de memoria, función free()
	13.4 Funciones calloc() y realloc()
	Problemas resueltos
	Problemas propuestos

	14 CADENAS
	14.1 Concepto de cadena
	14.2 Inicialización de variables de cadena
	14.3 Lectura de cadenas
	14.4 Las funciones de STRING.H
	14.5 Conversión de cadenas a números
	Problemas propuestos
	Problemas propuestos

	15 ENTRADA Y SALIDA POR ARCHIVOS
	15.1 Flujos
	15.2 Apertura de un archivo
	15.3 Funciones de lectura y escritura
	15.4 Archivos binarios de C
	15.5 Datos externos al programa con argumentos de main()
	Problemas resueltos
	Problemas propuestos
	Problemas propuestos de progración de gestión

	16 ORGANIZACIÓN DE DATOS EN UN ARCHIVO
	16.1 Registros
	16.2 Organización de archivos
	16.2.1 Organización secuencial
	16.2.2 Organización directa

	16.3 Archivos con direccionamiento hash
	16.4 Archivos secuenciales indexados
	16.5 Ordenación de archivos: ordenación externa
	Problemas resuelttos
	Problemas propuestos

	17 TIPOS ABSTRACTOS DE DATOS TAD/OBJETOS
	17.1 Tipos de datos
	17.2 Tipos abstractos de datos
	17.3 Especificación de los TAD
	Problemas resueltos
	Problemas propuestos

	18 LISTAS ENLAZADAS
	18.1 Fundamentos teóricos
	18.2 Clasificación de las listas enlazadas
	18.3 Operaciones en listas enlazadas
	18.3.1 Inserción de un welemento en una lista
	18.3.2 Elimimnación de un nodo en una lista

	18.4 Lista doblemente enlazada
	18.4.1 Inserción de un elemento en una lista doblemente enlazada
	18.4.2 Eliminación de un elemento en una lista doblemente enlazada

	18.5 Listas circulares
	Problemas resueltos
	Problemas propuestos

	19 PILAS Y COLAS
	19.1 Concepto de pila
	19.2 Concepto de cola
	Problemas resueltos
	Problemas propuestos

	20 ÁRBOLES
	20.1 Árboles generales
	20.2 Árboles binarios
	20.3 Estructura y representación de un árbol binario
	20.4 Árboles de expresión
	20.5 Recorridos de un árbol
	20.6 Árbol binario de busqueda
	20.7 Operaciones en árboles binarios de búsqueda
	Problemas resueltos
	Problemas propuestos

	APÉNDICE A: COMPILACIÓN DE PROGRAMAS C EN UNIX Y LUNUX
	APÉNDICE B: COMPILACIÓN DE PROGRAMAS C: EN WINDOWS
	APÉNDICE C: RECURSOS WEB DE PROGRAMACIÓN
	ÍNDICE

