

Designing Interfaces

Designing Interfaces
Second Edition

Jenifer Tidwell

Beijing  ·  Cambridge  ·  Farnham  ·  Köln  ·  Sebastopol  ·  Tokyo

Designing Interfaces, Second Edition
by Jenifer Tidwell

Copyright © 2011 Jenifer Tidwell. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corpo-
rate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Rachel Monaghan
Copyeditor: Audrey Doyle
Proofreader: Emily Quill

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: Ron Bilodeau
Illustrator: Robert Romano

Printing History:

November 2005: First Edition.

December 2010: Second Edition.

Revision History:

2010-12-06	 First release
2011-07-08	 Second release
2012-02-24	 Third release
2013-03-15	 Fourth release

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Designing Interfaces, the image of a Mandarin duck, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-37970-4
[TI]

Contents

Introduction to the Second Edition.. xi

Preface. xv

1.	 What Users Do. 1
A Means to an End	 2
The Basics of User Research	 4
Users’ Motivation to Learn	 6
The Patterns	 8

Safe Exploration	 9
Instant Gratification	 10
Satisficing	 11
Changes in Midstream	 12
Deferred Choices	 12
Incremental Construction	 14
Habituation	 14
Microbreaks	 16
Spatial Memory	 17
Prospective Memory	 18
Streamlined Repetition	 19
Keyboard Only	 20
Other People’s Advice	 21
Personal Recommendations	 22

vi  Contents

2.	 Organizing the Content:
Information Architecture and Application Structure. 25
The Big Picture	 26
The Patterns	 29

Feature, Search, and Browse 	 30
News Stream 	 34
Picture Manager 	 40
Dashboard 	 45
Canvas Plus Palette 	 50
Wizard 	 54
Settings Editor 	 59
Alternative Views 	 64
Many Workspaces 	 68
Multi-Level Help	 71

3.	 Getting Around: Navigation, Signposts, and Wayfinding 77
Staying Found	 77
The Cost of Navigation	 78
Navigational Models	 80
Design Conventions for Websites	 85
The Patterns	 86

Clear Entry Points 	 87
Menu Page 	 90
Pyramid 	 94
Modal Panel 	 97
Deep-linked State 	 100
Escape Hatch	 104
Fat Menus 	 106
Sitemap Footer 	 110
Sign-in Tools 	 115
Sequence Map 	 118
Breadcrumbs 	 121
Annotated Scrollbar 	 124
Animated Transition 	 127

Contents  vii 

4.	 Organizing the Page: Layout of Page Elements.. 131
The Basics of Page Layout	 132
The Patterns	 140

Visual Framework	 141
Center Stage	 145
Grid of Equals	 149
Titled Sections	 152
Module Tabs	 155
Accordion	 159
Collapsible Panels	 163
Movable Panels	 168
Right/Left Alignment	 173
Diagonal Balance	 176
Responsive Disclosure	 179
Responsive Enabling	 182
Liquid Layout	 186

5.	 Lists of Things . 191
Use Cases for Lists	 192
Back to Information Architecture	 192
Some Solutions	 194
The Patterns	 197

Two-Panel Selector 	 198
One-Window Drilldown 	 202
List Inlay 	 206
Thumbnail Grid 	 210
Carousel	 215
Row Striping	 220
Pagination 	 224
Jump to Item	 228
Alphabet Scroller 	 230
Cascading Lists	 232
Tree Table 	 234
New-Item Row	 236

viii  Contents

6.	 Doing Things: Actions and Commands.. 239
Pushing the Boundaries	 242
The Patterns	 245

Button Groups 	 246
Hover Tools 	 249
Action Panel 	 252
Prominent “Done” Button 	 257
Smart Menu Items 	 261
Preview 	 263
Progress Indicator 	 266
Cancelability 	 269
Multi-Level Undo 	 271
Command History 	 275
Macros 	 278

7.	 Showing Complex Data:
Trees, Charts, and Other Information Graphics.. 281
The Basics of Information Graphics	 281
The Patterns	 294

Overview Plus Detail	 296
Datatips	 299
Data Spotlight	 303
Dynamic Queries	 308
Data Brushing	 312
Local Zooming	 316
Sortable Table	 320
Radial Table	 323
Multi-Y Graph	 328
Small Multiples	 331
Treemap	 336

Contents  ix 

8.	 Getting Input from Users: Forms and Controls.. 341
The Basics of Form Design	 341
Control Choice	 344
The Patterns	 356

Forgiving Format	 357
Structured Format	 360
Fill-in-the-Blanks	 362
Input Hints	 364
Input Prompt	 369
Password Strength Meter	 371
Autocompletion	 375
Dropdown Chooser	 380
List Builder	 383
Good Defaults	 385
Same-Page Error Messages	 388

9.	 Using Social Media.. 393
What This Chapter Does Not Cover	 394
The Basics of Social Media	 394
The Patterns	 398

Editorial Mix 	 398
Personal Voices	 402
Repost and Comment 	 406
Conversation Starters	 410
Inverted Nano-pyramid	 413
Timing Strategy	 416
Specialized Streams	 419
Social Links	 423
Sharing Widget 	 426
News Box 	 430
Content Leaderboard	 434
Recent Chatter	 438

x  Contents

10.	 Going Mobile. 441
The Challenges of Mobile Design	 442
The Patterns	 448

Vertical Stack 	 449
Filmstrip	 452
Touch Tools 	 454
Bottom Navigation 	 456
Thumbnail-and-Text List 	 459
Infinite List	 462
Generous Borders 	 464
Text Clear Button 	 467
Loading Indicators 	 468
Richly Connected Apps	 470
Streamlined Branding 	 473

11.	 Making It Look Good: Visual Style and Aesthetics.. 477
Same Content, Different Styles	 479
The Basics of Visual Design	 488
What This Means for Desktop Applications	 496
The Patterns	 498

Deep Background	 499
Few Hues, Many Values	 503
Corner Treatments	 507
Borders That Echo Fonts	 509
Hairlines	 513
Contrasting Font Weights	 516
Skins and Themes	 519

References. 523

Index.. 527

Introduction to the Second Edition

In the five years since the first edition of Designing Interfaces was published, many things
have changed.

Most user interface designers—who might now play the roles of user experience (UX) de-
signers, or interaction designers, or information architects, or any of several other titles—
now do their work on the Web. Countless websites, web services, web-delivered software,
blogs, and online stores need good design, and it’s becoming easier and easier to deliver
these finished products in ridiculously short turnaround times. Many of these are highly
interactive, but even traditional websites—static and straightforward in the past—now
contain components that are dynamic and interactive, such as video players and social
network content. There’s a lot of designing going on!

Compared to a few years ago, not as much of that designing is being done for desktop
applications. Of course, all of us technology users depend upon the complex software
installed on our laptops and desktops. Our email clients, browsers, document editors,
domain-specific software, and operating systems are still important parts of our online
lives. But many aspects of their interface designs have stabilized. As a result, since the
early 2000s, the audience for design books has shifted away from desktop design toward
web-based design.

Here’s another change: mobile design, which was still immature in 2005, has flourished.
With iPhones and other complex mobile devices now spreading everywhere, putting the
whole Web in our pockets, many designers have been forced to face the special problems
inherent to mobile design. How should mobile concerns change interface design, espe-
cially for websites? That’s a question we’re still collectively trying to answer, but the design
community has learned some approaches and techniques that work.

Also, designers cannot ignore the influence of online social networks. When I’m in the
early phase of a design project, I need to think about its connections to blogs, Twitter,
Facebook, comment areas, forums, and all the other ways that people talk to one another
online. I would be remiss not to do so. Users spend a lot of their online time “doing” social

xii  Introduction to the Second Edition

interaction, and sophisticated users expect social-network support as a matter of course.
It’s unusual now to find any website that doesn’t somehow connect to or from a social
service (and usually several).

But wait, there’s more! Since this book was first published, the UX design world has dis-
covered the value of patterns, and other UX-related pattern collections have appeared on
the scene. Many of them are quite good. Some took patterns originally set forth here and
elaborated upon them, changed them, renamed them according to emergent conventions,
or presented new information about them. Others created new patterns in areas that this
book didn’t cover well—especially social, mobile, gestural, search, and RIA-style inter-
faces. (I list the best of these other pattern collections in the preface, in the References
section, and in the patterns themselves.)

So is the material written in 2005 still relevant?

To a large extent, yes. The human mind hasn’t changed—visual hierarchies still work,
progressive disclosure still works, and moving things still attract the attention of our rep-
tilian brains. Good patterns based on fundamental design principles are just as valid now
as they were 5, 10, or 20 years ago. But other patterns weren’t as well grounded or have
fallen out of favor. This second edition gave me the privilege of hindsight: I was granted
the time to figure out how well these patterns have endured, and then report on them.
And, indeed, a few have been removed from this book.

But most of them remain, because they still work. They’ve been updated with fresh ex-
amples, and in some cases with fresh research into their effectiveness. In addition, I’ve
written (or borrowed) new patterns to reflect the changes of the last five years. The next
section describes these changes in some detail.

Changes in the Second Edition
Here’s what you’re getting in this book:

A chapter about social media
Chapter 9, Using Social Media, lays out some tactics and patterns for integrating so-
cial media into a site or application. The chapter does not cover all aspects of social
interfaces; it’s meant to be complementary to existing works on the subject, especially
Designing Social Interfaces (O’Reilly, http://oreilly.com/catalog/9780596154936/).

A chapter about mobile design
Chapter 10, Going Mobile, contains some patterns that are specific to mobile devices.
In particular, the patterns are aimed at the platforms most designers are likely to target:
touch-screen devices with full connectivity, such as iPhones. Both apps and websites
are covered. Again, this is not intended to cover all aspects of mobile design—simply
the patterns and ideas that can help you create a graceful mobile interface even if you’re
not a mobile UI specialist.

http://oreilly.com/catalog/9780596154936/

Introduction to the Second Edition  xiii 

The existence of this chapter brings up an interesting point. A “good” pattern should
be invariant across different platforms, perhaps including mobile ones. However,
mobile design introduces so many new constraints on screen size, interactive ges-
tures, social expectations, and latency that some patterns simply don’t work well for
it. Conversely, most of the patterns written specifically for mobile contexts don’t work
well (or aren’t particularly salient design solutions) for larger screens; those patterns
have a home in Chapter 10.

Reorganized chapters and rewritten introductions
Because there were so many old and new patterns about how to present lists of items,
I chose to “refactor” three chapters to account for that. Chapter 5 is now simply
about lists. It pulled patterns from the first edition’s Chapter 2 (Two-Panel Selector,
One-Window Drilldown) and Chapter 7 (Row Striping and Cascading Lists). I also added
several new ones, such as List Inlay and Alphabetic Scroller.
Furthermore, the introductions to the chapters on information architecture (Chapter
2), navigation (Chapter 3), and page layout (Chapter 4) have been rewritten to reflect
recent design thinking and a new emphasis on web-based or web-like designs.

New patterns that capture popular new interactions
Some techniques have really caught on in the last five years, and the ones that seem to
be “pattern-like”—they are abstractable and cross-genre, they’re common enough to
be easy to find, and they can noticeably improve the user experience—are represent-
ed here. Examples include Fat Menus, Sitemap Footer, Hover Tools, Password Strength
Meter, Data Spotlight, and Radial Table.

New patterns that aren’t really “new,” but that were not included in the first edition
These ideas have been kicking around for a while, but either I didn’t recognize them
as being important back in 2005, or they weren’t especially salient back then. They
are now. This list of patterns includes Dashboard, News Stream, Carousel, Grid of Equals,
Microbreaks, Picture Manager, and Feature, Search, and Browse.

Renamed patterns, and patterns whose scope has changed
For instance, Card Stack was renamed to Module Tabs, and Closable Panels to Collapsible
Panels; I made these changes to conform to current terminology and other pattern
libraries. Similarly, Accordion was factored out from Collapsible Panels and made into
its own pattern, since other designers, design writers, and pattern collections have
converged on the term “accordion” for this particular technique. Meanwhile, One-
Window Drilldown and Two-Panel Selector—both from the original book’s chapter on
information architecture—have been narrowed down to deal specifically with lists of
items.

New examples, new research, and new connections to other pattern libraries
Almost every pattern has at least one new pictorial example, and many of them have
an “In other libraries” section that directs the reader to the same pattern (or patterns
that closely resemble it) in other collections. These might provide you with new in-
sights or examples. Also, some patterns in this book have been slightly rewritten to

xiv  Introduction to the Second Edition

account for new thinking or research on the issue. Row Striping is one of these; some
experiments were run to find out the value of the technique, and the pattern refers
you to those results.

Some individual patterns have been removed
Many of these have passed into the realm of “blindingly obvious to everyone,” and
while they’re still useful as design tools, their value as part of this book is dimin-
ished. This list includes Extras on Demand, Intriguing Branches, Global Navigation, and
Illustrated Choices. Others are no longer used much in contemporary designs, such as
Color-Coded Sections.

The “Builders and Editors” chapter is gone
Designers still work on these types of applications, of course, but I honestly couldn’t
find much to change in that set of patterns in terms of new work and updated exam-
ples. I also discovered in a survey that readers found this to be one of the least valu-
able chapters. Because I wanted to keep the book size down to something reasonable,
I chose to remove that chapter to make room for the new material.

Finally, I want to talk briefly about what you won’t find in this new edition. The following
areas are so well covered by other published (or forthcoming) pattern collections that I
saw little need to put them into this edition:

•	 Search

•	 General social interfaces

•	 Gestural interfaces

•	 More depth in mobile design

•	 Types of animated transitions

•	 Help techniques

I hope that in the next few years, we’ll see new sets of patterns for other areas of design:
online games, geographic systems, online communities, and more. I see a rich and reward-
ing area of inquiry here, and that’s terrific. I encourage other design thinkers to jump in and
write other patterns—or challenge us pattern writers to make the existing collections better!

Preface

Once upon a time, interface designers worked with a woefully small toolbox.

We had a handful of simple controls: text fields, buttons, menus, tiny icons, and modal
dialogs. We carefully put them together according to the Windows Style Guide or the
Macintosh Human Interface Guidelines, and we hoped that users would understand the
resulting interface—and too often, they didn’t. We designed for small screens, few colors,
slow CPUs, and slow networks (if the user was connected at all). We made them gray.

Things have changed. If you design interfaces today, you work with a much bigger palette
of components and ideas. You have a choice of many more user interface toolkits than be-
fore, such as the Java toolkits, HTML/CSS, JavaScript, Flash, and numerous open source
options. Apple’s and Microsoft’s native UI toolkits are richer and nicer-looking than they
used to be. Display technology is better. Web applications often look as professionally
designed as the websites they’re embedded in, and some of those web sensibilities have
migrated back into desktop applications in the form of blue underlined links, Back/Next
buttons, beautiful fonts and background images, and non-gray color schemes.

But it’s still not easy to design good interfaces. Let’s say you’re not a trained or self-taught
interface designer. If you just use the UI toolkits the way they should be used, and if you
follow the various style guides or imitate existing applications, you can probably create a
mediocre but passable interface.

Alas, that may not be enough anymore. Users’ expectations are higher than they used to
be—if your interface isn’t easy to use “out of the box,” users will not think well of it. Even if
the interface obeys all the standards, you may have misunderstood users’ preferred work-
flow, used the wrong vocabulary, or made it too hard to figure out what the software even
does. Impatient users often won’t give you the benefit of the doubt. Worse, if you’ve built
an unusable website or web application, frustrated users can give up and switch to your
competitor with just the click of a button. So the cost of building a mediocre interface is
higher than it used to be, too.

xvi  Preface

Devices like phones, TVs, and car dashboards once were the exclusive domain of indus-
trial designers. But now those devices have become smart. Increasingly powerful comput-
ers drive them, and software-based features and applications are multiplying in response
to market demands. They’re here to stay, whether or not they are easy to use. At this rate,
good interface and interaction design may be the only hope for our collective sanity in
10 years.

Small Interface Pieces, Loosely Joined
As an interface designer trying to make sense of all the technology changes in the last
few years, I see two big effects on the craft of interface design. One is the proliferation of
interface idioms: recognizable types or styles of interfaces, each with its own vocabulary of
objects, actions, and visuals. You probably recognize all the ones shown in Figure P-1, and
more are being invented all the time.

Forms Text editors Graphic editors

Spreadsheets Browsers Calendars

Media players Information graphics Immersive games

Web pages Social spaces E-commerce sites

Figure P-1. A sampler of interface idioms

Preface  xvii 

The second effect is a loosening of the rules for putting together interfaces from these
idioms. It no longer surprises anyone to see several of these idioms mixed up in one
interface, for instance, or to see parts of some controls mixed up with parts of other con-
trols. Online help pages, which long have been formatted in hypertext anyway, might now
include interactive applets, animations, or links to a web-based bulletin board. Interfaces
themselves might have help texts on them, interleaved with forms or editors; this situation
used to be rare. Combo boxes’ drop-down menus might have funky layouts, like color
grids or sliders, instead of the standard column of text items. You might see web applica-
tions that look like document-centered paint programs, but have no menu bars, and save
the finished work only to a database somewhere.

The freeform-ness of web pages seems to have taught users to relax their expectations
with respect to graphics and interactivity. It’s OK now to break the old Windows style-
guide strictures, as long as users can figure out what you’re doing.

And that’s the hard part. Some applications, devices, and web applications are easy to use.
Many aren’t. Following style guides never guaranteed usability anyhow, but now designers
have even more choices than before (which, paradoxically, can make design a lot harder).
What characterizes interfaces that are easy to use?

One could say, “The applications that are easy to use are designed to be intuitive.” Well,
yes. That’s almost a tautology.

Except that the word “intuitive” is a little bit deceptive. Jef Raskin once pointed out that
when we say “intuitive” in the context of software, we really mean “familiar.” Computer
mice aren’t intuitive to someone who’s never seen one (though a growling grizzly bear
would be). There’s nothing innate or instinctive in the human brain to account for it. But
once you’ve taken ten seconds to learn to use a mouse, it’s familiar, and you’ll never forget
it. Same for blue underlined text, play/pause buttons, and so on.

Rephrased: “The applications that are easy to use are designed to be familiar.”

Now we’re getting somewhere. “Familiar” doesn’t necessarily mean that everything about
a given application is identical to some genre-defining product (e.g., Word, Photoshop,
Mac OS, or a Walkman). People are smarter than that. As long as the parts are recogniz-
able enough and the relationships among the parts are clear, then people can apply their
previous knowledge to a novel interface and figure it out.

That’s where patterns come in. This book catalogs many of those familiar parts, in ways
you can reuse in many different contexts. Patterns capture a common structure—often a
very local one, such as a list layout—without being too concrete on the details, which gives
you the flexibility to be creative.

If you know what users expect of your application, and if you choose carefully from your
toolbox of idioms and frameworks (large-scale), individual elements (small-scale), and
patterns (covering the range), then you can put together something that “feels familiar”
while remaining original.

And that gets you the best of both worlds.

xviii  Preface

About Patterns in General
In essence, patterns are structural and behavioral features that improve the “habitabil-
ity” of something—a user interface, a website, an object-oriented program, or a building.
They make things easier to understand or more beautiful; they make tools more useful
and usable.

As such, patterns can be a description of best practices within a given design domain.
They capture common solutions to design tensions (usually called “forces” in pattern lit-
erature) and thus, by definition, are not novel. They aren’t off-the-shelf components; each
implementation of a pattern differs a little from every other. They aren’t simple rules or
heuristics either. And they won’t walk you through an entire set of design decisions—if
you’re looking for a complete step-by-step description of how to design an interface, a
pattern catalog isn’t the place to find it!

Patterns are:

Concrete, not general
All designers depend upon good design principles, like “Prevent errors,” “Create a
strong visual hierarchy,” and “Don’t make the user think.” It’s rather hard, however,
to design an actual working interface starting from fundamental principles! Patterns
are concrete enough to help fill the space between high-level general principles and
the low-level “grammar” of user interface design (widgets, text, graphic elements,
alignment grids, and so on).

Valid across different platforms and systems
Patterns may be more concrete than principles or heuristics, but they do define ab-
stractions—the best patterns aren’t specific to a single platform or idiom. Some even
work in both print and interactive systems. Ideally, each pattern captures some minor
truth about how people work best with a created artifact, and it remains true even
while the underlying technologies and media change.

Products, not processes
Unlike heuristics or user-centered design techniques, which usually advise on how to
go about finding a solution to an engineering or design problem, patterns are possible
solutions.

Suggestions, not requirements
You should almost always follow good design principles and heuristics, of course.
And organizations need designers to follow style guides so that their products stay
self-consistent. But patterns are intended to be only suggestions; you can follow them
or reject them, depending on your design context and user needs.

Preface  xix 

Relationships among elements, not single elements
A text field is not a pattern. The spatial relationships between a text field and a piece
of help text near it, however, might be a pattern. Likewise, changes in a set of elements
over time—as a user interacts with the software—may constitute a pattern, though
some patterns capture only static relationships.

Customized to each design context
When a pattern is instantiated in a design, the designer should adjust the pattern as
needed to fit the situation. You could use some of the pattern examples verbatim, but
as long as you understand why the pattern works, why not be creative? Fit the pattern
to your particular users and requirements.

Some very complete sets of patterns make up a “pattern language.” These patterns resem-
ble visual languages in that they cover the entire vocabulary of elements used in a design
(though pattern languages are more abstract and behavioral; visual languages talk about
shapes, icons, colors, fonts, etc.). The set in this book isn’t nearly as complete, and it con-
tains techniques that don’t qualify as traditional patterns. But at least it’s concise enough
to be manageable and useful.

Other Pattern Collections
The text that started it all dealt with physical buildings, not software. Christopher Alexander’s
A Pattern Language and its companion book The Timeless Way of Building established the
concept of patterns and described a 250-pattern multilayered pattern language. It is often
considered the gold standard for a pattern language because of its completeness, its rich
interconnectedness, and its grounding in the human response to our built world.

In the mid-1990s, the publication of Design Patterns by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides profoundly changed the practice of commercial soft-
ware architecture. This book is a collection of patterns describing object-oriented “micro-
architectures.” If you have a background in software engineering, this is the book that
probably introduced you to the idea of patterns. Many other authors have written books
about software patterns since this book. Software patterns such as these do make software
more habitable—for those who write the software, not those who use it!

The first substantial set of user-interface patterns was “Common Ground,” the pre
decessor to the book you’re reading now. Many other collections and languages followed,
notably Martijn van Welie’s Interaction Design Patterns; van Duyne, Landay, and Hong’s
The Design of Sites; the Little Springs mobile patterns, now known as Design4Mobile; the
Yahoo! Design Pattern Library, which morphed into Designing Web Interfaces; and the
rest of the O’Reilly design pattern library, including Designing Social Interfaces, Designing
Gestural Interfaces, and the first edition of this book.

xx  Preface

About the Patterns in This Book
So there’s nothing really new in here. If you’ve done any web or UI design, or even thought
much about it, you should say, “Oh, right, I know what that is” to most of these patterns.
But a few of them might be new to you, and some of the familiar ones may not be part of
your usual design repertoire.

These patterns work for both desktop applications and highly interactive websites. Many
patterns also apply to mobile devices or TV-based interfaces (like digital recorders).

Though this book won’t exhaustively describe all the interface idioms mentioned ear-
lier, these idioms help to organize the book. Some chapters focus on the more common
idioms: forms, information graphics, mobile interfaces, and interactions with social net-
works. Other chapters address subjects that are useful across many idioms, such as orga-
nization, navigation, actions, and visual style. (The book does not address idioms such as
online games or communities, simply due to lack of space.)

This book is intended to be read by people who have some knowledge of such inter-
face design concepts and terminology as dialog boxes, selection, combo boxes, naviga-
tion bars, and whitespace. It does not identify many widely accepted techniques, such as
copy-and-paste, since you already know what they are. But, at the risk of belaboring the
obvious, this book describes some common techniques to encourage their use in other
contexts or to discuss them alongside alternative solutions.

This book does not present a complete process for constructing an interface design. When
doing design, a sound process is critical. You need to have certain elements in a design process:

•	 Field research, to find out what the intended users are like and what they already do

•	 Goal and task analysis, to describe and clarify what users will do with what you’re
building

•	 Design models, such as personas (models of users), scenarios (models of common
tasks and situations), and prototypes (models of the interface itself)

•	 Empirical testing of the design at various points during development, like usability
testing and in situ observations of the design used by real users

•	 Enough time to iterate over several versions of the design, because you won’t get it
right the first time

These topics transcend the scope of this book, but there are plenty of other excellent re-
sources and workshops out there that cover them in depth.

But there’s a deeper reason why this book won’t give you a recipe for designing an interface.
Good design can’t be reduced to a recipe. It’s a creative process, and one that changes under
you as you work—in any given project, for instance, you won’t understand some design is-
sues until you’ve designed your way into a dead end. I’ve personally done that many times.

And design isn’t linear. Most chapters in this book are arranged more or less by scale,
and therefore by their approximate order in the design progression: large decisions about

Preface  xxi 

content and scope are made first, followed by navigation, page design, and eventually
the details of interactions with forms and toolbars and such. But you’ll often find your-
self moving back and forth through this progression. Maybe you’ll know very early in
a project how a certain screen should look, and that’s a “fixed point;” you may have to
work backward from there to figure out the right navigational structure. (It’s not ideal, but
things like this do happen in real life.)

Here are some ways you can use these patterns:

Learning
If you don’t have much design experience, a set of patterns can serve as a learning tool.
You may want to read over it to get ideas, or refer back to specific patterns as the need
arises. Just as expanding your vocabulary helps you express ideas in language, expand-
ing your interface design “vocabulary” helps you create more expressive designs.

Examples
Each pattern in this book has at least one example. Some have many; they might be
useful to you as a sourcebook. You may find wisdom in the examples that is missing
in the text of the pattern. If you’re a designer who knows the patterns already, the
examples may be the most useful aspect of the book for you.

Terminology
If you talk to users, engineers, or managers about interface design, or if you write
specifications, then you could use the pattern names as a way of communicating and
discussing ideas. This is another well-known benefit of pattern languages. (The terms
“singleton” and “factory,” for instance, were originally pattern names, but they’re now
in common use among software engineers.)

Comparison of design alternatives
If you initially decided to use Module Tabs to organize material on a page and it’s not
working quite as well as you hoped, you might use these patterns to come up with al-
ternatives, such as Titled Sections or an Accordion. Other sets of “either/or” patterns are
presented in this book, often with reasons to choose one pattern or another. Skilled
designers know that presenting alternative designs to clients frequently leads to a
better choice in the end.

Inspiration
Each pattern description tries to capture the reasons why the pattern works to make
an interface easier or more fun. If you get it, but want to do something a little different
from the examples, you can be creative with your “eyes open.” You could also use the
book to jumpstart your creative process by flipping through it for ideas.

One more word of caution: a catalog of patterns is not a checklist. You cannot measure the
quality of a thing by counting the patterns in it. Each design project has a unique context,
and even if you need to solve a common design problem (such as how to fit too much
content onto a page), a given pattern might be a poor solution within that context. No
reference can substitute for good design judgment. Nor can it substitute for a good design
process, which helps you find and recover from design mistakes.

xxii  Preface

Ultimately, you should be able to leave a reference like this behind. As you become an ex-
perienced designer, you will internalize these ideas to the point that you don’t even notice
you’re using them anymore; the patterns become second nature and a permanent part of
your toolbox.

Audience
If you design user interfaces in any capacity, you might find this book useful. It’s intended
for people who work on:

•	 Desktop applications

•	 Websites

•	 Web applications or “rich internet applications” (RIAs)

•	 Software for mobile devices or other consumer electronics

•	 Turnkey systems like kiosks

•	 Operating systems

Of course, profound differences exist among these different design platforms. However,
I believe they have more in common than we generally think. You’ll see examples from
many different platforms in these patterns, and that’s deliberate—they often use the same
patterns to achieve the same ends.

From what readers said about the previous edition, this book has been more valuable to
less experienced designers than to those who have been designing sites or interfaces for a
while—they know this material already. However, even if you’re just starting out with de-
sign, you should already know the basic “grammar” of UI design, such as available toolkits
and control sets, concepts like drag-and-drop and focus, and the importance of usability
testing and user feedback. If you don’t, some excellent books listed in the References sec-
tion can get you started with the essentials.

Specifically, this book targets the following audiences:

•	 Software developers who need to design the UIs that they build.

•	 Web page designers who are now asked to design web apps or sites with more
interactivity.

•	 New interface designers and usability specialists.

•	 More experienced designers who want to see how other designs solve certain prob-
lems; the examples can serve as a sourcebook for ideas.

•	 Professionals in adjacent fields, such as technical writing, product design, and infor-
mation architecture.

Preface  xxiii 

•	 Managers who want to understand what’s involved in good interface design.

•	 Open source developers and enthusiasts. This isn’t quite “open source design,” but the
idea is to open up interface design best practices for everyone’s benefit.

How This Book Is Organized
The patterns in this book are grouped into thematic chapters, and each chapter has an in-
troduction that briefly covers the concepts those patterns are built upon. I want to empha-
size briefly. Some of these concepts could have entire books written about them. But the
introductions will give you some context; if you already know this stuff, they’ll be review
material, and if not, they’ll tell you what topics you might want to learn more about. The first
set of chapters is applicable to almost any interface you might design, whether it’s a desktop
application, web application, website, hardware device, or whatever you can think of:

•	 Chapter 1, What Users Do, talks about common behavior and usage patterns sup-
ported by good interfaces.

•	 Chapter 2, Organizing the Content, discusses information architecture as it applies to
highly interactive interfaces. It deals with different organizational patterns, recogniz-
able interface types, and “guilds” of patterns (groups of smaller-scale patterns that
work well together to support a certain type of interface).

•	 Chapter 3, Getting Around, discusses navigation. It describes patterns for mov-
ing around an interface—between pages, among windows, and within large virtual
spaces.

•	 Chapter 4, Organizing the Page, describes patterns for the layout and placement of
page elements. It talks about how to communicate meaning simply by putting things
in the right places.

•	 Chapter 5, Lists, enumerates a set of patterns for displaying lists of items, along with
criteria for choosing among them.

•	 Chapter 6, Doing Things, talks about how to present actions and commands; use these
patterns to handle the “verbs” of an interface.

Next comes a set of chapters that deal with specific idioms. It’s fine to read them all, but
real-life projects probably won’t use all of them. Chapters 7 and 8 are the most broadly
applicable, since most modern interfaces use trees, tables, or forms in some fashion.

•	 Chapter 7, Showing Complex Data, contains patterns for trees, tables, charts, and in-
formation graphics in general. It discusses the cognitive aspects of data presentation
and how to use them to communicate knowledge and meaning.

•	 Chapter 8, Getting Input from Users, deals with forms and controls. Along with the
patterns, this chapter has a table that maps data types to various controls that can
represent them.

xxiv  Preface

•	 Chapter 9, Using Social Media, discusses the ways that one might integrate contem-
porary social media into a website or application design. Although designers don’t
always make these choices for a site, they sometimes do, and social media may influ-
ence your design in any case.

•	 Chapter 10, Going Mobile, presents techniques and concepts that designers ought
to know in order to help their designs translate well to a mobile device. Patterns
throughout the book may contain examples from mobile devices, but the patterns in
this chapter are mobile-specific.

Finally, the last chapter comes at the end of the design progression, but it too applies to
almost anything you design.

•	 Chapter 11, Making It Look Good, deals with aesthetics and fit-and-finish. It uses
graphic design principles and patterns to show how (and why) to polish the look-
and-feel of an interface once its behavior is established.

I chose this book’s examples based on many factors. The most important is how well an ex-
ample demonstrates a given pattern or concept, of course, but other considerations include
general design fitness, printability, variety—desktop applications, websites, devices, etc.—and
how well known and accessible these applications might be to readers. As such, the examples
are weighted heavily toward Microsoft and Apple software, certain big-name websites such as
Google and Yahoo! properties, and easy-to-find consumer software and devices. This is not
to say that they always are paragons of good design—they’re not, and I do not mean to slight
the excellent work done by countless designers on lesser-known applications. If you know of
examples that might meet most of these criteria, please suggest them to me.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional in-
formation. You can access this page at:

http://oreilly.com/catalog/9781449379704/
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com
For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our website at:

http://www.oreilly.com

mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface  xxv 

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference books
and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are avail-
able for print, and get exclusive access to manuscripts in development and post feedback
for the authors. Copy and paste code samples, organize your favorites, download chapters,
bookmark key sections, create notes, print out pages, and benefit from tons of other time-
saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other publishers,
sign up for free at http://my.safaribooksonline.com.

Acknowledgments
First of all, I am indebted to my editor, Mary Treseler, who got this project rolling at just
the right time. You knew a second edition was needed, and with the patience of a saint,
you made sure I followed through with it. Thanks also to the rest of the O’Reilly produc-
tion team: Rachel Monaghan, Audrey Doyle, Robert Romano, Ron Bilodeau, and anyone
else I may have inadvertently missed. You all rocked.

The technical reviewers for this edition gave me fantastic feedback. Barbara Ballard, Erin
Malone, Dan Saffer—thanks to you all!

The ideas in this second edition have been cooking for a long time. Both direct and indirect
conversations with other UI designers and pattern writers have helped shape my thinking:
Bill Scott, Luke Wroblewski, Martijn van Welie, Erin Malone, Christian Crumlish, Dan
Saffer, James Reffell, Scott Jenson, and my UX colleagues at Google. I learned a ridiculous
amount from all of you. I’m also grateful to the people who gave me feedback at the vari-
ous and sundry presentations I’ve done for conferences and mini-conferences over the
last few years.

To all who bought or read the first edition: thanks to you too! Without you, there would
have been no second edition.

Finally, I am enormously grateful to Rich, who supported me wholeheartedly throughout
this second-edition project; and to Matthew, who right now is too young to understand
how helpful his sweet hugs actually were. I love you both!

Chapter 1

What Users Do

This book is almost entirely about the look and behavior of applications, web apps, and
interactive devices. But this first chapter is the exception to the rule. No screenshots here;
no layouts, no navigation, no diagrams, no visuals at all.

Why not? After all, that’s probably why you picked up the book in the first place.

It’s because good interface design doesn’t start with pictures. It starts with an understand-
ing of people: what they’re like, why they use a given piece of software, and how they
might interact with it. The more you know about them, and the more you empathize with
them, the more effectively you can design for them. Software, after all, is merely a means
to an end for the people who use it. The better you satisfy those ends, the happier those
users will be.

Each time someone uses an application, or any digital product, he carries on a conver-
sation with the machine. It may be literal, as with a command line or phone menu, or
tacit, like the “conversation” an artist has with her paints and canvas—the give and take
between the craftsperson and the thing being built. With social software, it may even be a
conversation by proxy. Whatever the case, the user interface mediates that conversation,
helping users achieve whatever ends they had in mind.

As the user interface designer, then, you get to script that conversation, or at least define
its terms. And if you’re going to script a conversation, you should understand the human’s
side as well as possible. What are the user’s motives and intentions? What “vocabulary” of
words, icons, and gestures does the user expect to employ? How can the application set
expectations appropriately for the user? How do the user and the machine finally end up
communicating meaning to each other?

There’s a maxim in the field of interface design: “Know thy users, for they are not you!”

So, this chapter will talk about people. It covers a few fundamental ideas briefly in this
introduction, and then discusses some patterns that differ from those in the rest of the
book. They describe human behaviors—as opposed to system behaviors—that the soft-
ware you design may need to support. Software that supports these human behaviors
better helps users achieve their goals.

2  Chapter 1:  What Users Do

A Means to an End
Everyone who uses a tool—software or otherwise—has a reason for using it. For instance:

•	 Finding some fact or object

•	 Learning something

•	 Performing a transaction

•	 Controlling or monitoring something

•	 Creating something

•	 Conversing with other people

•	 Being entertained

Well-known idioms, user behaviors, and design patterns can support each of these ab-
stract goals. User experience designers have learned, for example, how to help people
search through vast amounts of online information for specific facts. They’ve learned how
to present tasks so that it’s easy to walk through them. They’re learning ways to support
the building of documents, illustrations, and code.

The first step in designing an interface is to figure out what its users are really trying to
accomplish. Filling out a form, for example, is almost never a goal in and of itself—people
only do it because they’re trying to buy something online, renew their driver’s license, or
install software. They’re performing some kind of transaction.

Asking the right questions can help you connect user goals to the design process. Users
and clients typically speak to you in terms of desired features and solutions, not of needs
and problems. When a user or client tells you he wants a certain feature, ask why he wants
it—determine his immediate goal. Then to the answer of this question, ask “why” again.
And again. Keep asking until you move well beyond the boundaries of the immediate
design problem.*

Why should you ask these questions if you have clear requirements? Because if you love
designing things, it’s easy to get caught up in an interesting interface design problem.
Maybe you’re good at building forms that ask for just the right information, with the
right controls, all laid out nicely. But the real art of interface design lies in solving the right
problem.

So, don’t get too fond of designing that form. If there’s any way to finish the transaction
without making the user go through that form at all, get rid of it altogether. That gets the
user closer to his goal, with less time and effort spent on his part (and maybe yours, too).

Let’s use the “why” approach to dig a little deeper into some typical design scenarios.

*	 This is the same principle that underlies a well-known technique called root-cause analysis. But root-cause
analysis is a tool for fixing organizational failures; here, we use its “five whys” (more or less) to understand
everyday user behaviors and feature requests.

A Means to an End  3 

•	 Why does a mid-level manager use an email client? Yes, of course—“to read email.”
Why does she read and send email in the first place? To converse with other people.
Of course, other means might achieve the same ends: the phone, a hallway conversa-
tion, a formal document. But apparently, email fills some needs that the other meth-
ods don’t. What are they, and why are they important to her? Privacy? The ability to
archive a conversation? Social convention? What else?

•	 A father goes to an online travel agent, types in the city where his family will be taking
a summer vacation, and tries to find plane ticket prices on various dates. He’s learn-
ing from what he finds, but his goal isn’t just to browse and explore different options.
Ask why. His goal is actually a transaction: to buy plane tickets. Again, he could have
done that at many different websites, or over the phone with a live travel agent. How
is this site better than those other options? Is it faster? Friendlier? More likely to find
a better deal?

•	 A mobile phone user wants a way to search through his contacts list more quickly.
You, as the designer, can come up with some clever ideas to save keystrokes while
searching. But why does he want it? It turns out that he makes a lot of calls while driv-
ing, and he doesn’t want to take his eyes off the road more than he has to—he wants to
make calls while staying safe (to the extent that that’s possible). The ideal case is that
he doesn’t have to look at the phone at all! A better solution is voice dialing: all he has
to do is speak the name, and the phone makes the call for him.

•	 Sometimes goal analysis really isn’t straightforward at all. A snowboarding site might
provide information (for learning), an online store (for transactions), and a set of
Flash movies (for entertainment). Let’s say someone visits the site for a purchase, but
she gets sidetracked into the information on snowboarding tricks—she has switched
goals from accomplishing a transaction to browsing and learning. Maybe she’ll go
back to purchasing something, maybe not. And does the entertainment part of the
site successfully entertain both the 12-year-old and the 35-year-old? Will the 35-year-
old go elsewhere to buy his new board if he doesn’t feel at home there, or does he not
care?

It’s deceptively easy to model users as a single faceless entity—“The User”—walking
through a set of simple use cases, with one task-oriented goal in mind. But that won’t
necessarily reflect your users’ reality.

To do design well, you need to take many “softer” factors into account: gut reactions,
preferences, social context, beliefs, and values. All of these factors could affect the design
of an application or site. Among these softer factors, you may find the critical feature or
design factor that makes your application more appealing and successful.

So, be curious. Specialize in finding out what your users are really like, and what they
really think and feel.

4  Chapter 1:  What Users Do

The Basics of User Research
Empirical discovery is the only really good way to obtain this information. To get a design
started, you’ll need to characterize the kinds of people who will be using your design
(including the softer factors just mentioned), and the best way to do that is to go out and
meet them.

Each user group is unique, of course. The target audience for, say, a new mobile phone app
will differ dramatically from the target audience for a piece of scientific software. Even if
the same person uses both, his expectations for each are different—a researcher using sci-
entific software might tolerate a less-polished interface in exchange for high functionality,
whereas that same person may stop using the mobile app if he finds its UI to be too hard
to use after a few days.

Each user is unique, too. What one person finds difficult, the next one won’t. The trick is
to figure out what’s generally true about your users, which means learning about enough
individual users to separate the quirks from the common behavior patterns.

Specifically, you’ll want to learn:

•	 Their goals in using the software or site

•	 The specific tasks they undertake in pursuit of those goals

•	 The language and words they use to describe what they’re doing

•	 Their skill at using software similar to what you’re designing

•	 Their attitudes toward the kind of thing you’re designing, and how different designs
might affect those attitudes

I can’t tell you what your particular target audience is like. You need to find out what they
might do with the software or site, and how it fits into the broader context of their lives.
Difficult though it may be, try to describe your potential audience in terms of how and
why they might use your software. You might get several distinct answers, representing
distinct user groups; that’s OK. You might be tempted to throw up your hands and say, “I
don’t know who the users are” or “Everyone is a potential user.” But that doesn’t help you
focus your design at all—without a concrete and honest description of those people, your
design will proceed with no grounding in reality.

Unfortunately, this user-discovery phase will consume serious time early in the design
cycle. It’s expensive. But it’s worth it, because you stand a better chance at solving the right
problem—you’ll build the right thing in the first place.

Fortunately, lots of books, courses, and methodologies now exist to help you. Although
this book does not address user research, here are some methods and topics to consider:

The Basics of User Research  5 

Direct observation
Interviews and onsite user visits put you directly into the user’s world. You can ask
users about what their goals are and what tasks they typically do. Usually done “on lo-
cation,” where users would actually use the software (e.g., in a workplace or at home),
interviews can be structured—with a predefined set of questions—or unstructured,
where you probe whatever subject comes up. Interviews give you a lot of flexibility;
you can do many or a few, long or short, formal or informal, on the phone or in person.
These are great opportunities to learn what you don’t know. Ask why. Ask it again.

Case studies
Case studies give you deep, detailed views into a few representative users or groups of
users. You can sometimes use them to explore “extreme” users that push the bound-
aries of what the software can do, especially when the goal is a redesign of existing
software. You can also use them as longitudinal studies—exploring the context of use
over months or even years. Finally, if you’re designing custom software for a single
user or site, you’ll want to learn as much as possible about the actual context of use.

Surveys
Written surveys can collect information from many users. You can actually get statisti-
cally significant numbers of respondents with these. Since there’s no direct human con-
tact, you will miss a lot of extra information—whatever you don’t ask about, you won’t
learn about—but you can get a very clear picture of certain aspects of your target audi-
ence. Careful survey design is essential. If you want reliable numbers instead of a qualita-
tive “feel” for the target audience, you absolutely must write the questions correctly, pick
the survey recipients correctly, and analyze the answers correctly—and that’s a science.

Personas
Personas aren’t a data-gathering method, but they do help you figure out what to do
with your data once you’ve got it. This is a design technique that “models” the target
audiences. For each major user group, you create a fictional person that captures the
most important aspects of the users in that group: what tasks they’re trying to accom-
plish, their ultimate goals, and their experience levels in the subject domain and with
computers in general. Personas can help you stay focused. As your design proceeds,
you can ask yourself questions such as “Would this fictional person really do X? What
would she do instead?”

You might notice that some of these methods and topics, such as interviews and surveys,
sound suspiciously like marketing activities. That’s exactly what they are. Focus groups
can be useful, too (though not so much as the others), and the concept of market seg-
mentation resembles the definition of target audiences used here. In both cases, the whole
point is to understand the audience as best you can.

The difference is that as a designer, you’re trying to understand the people who use the
software. A marketing professional tries to understand those who buy it.

6  Chapter 1:  What Users Do

It’s not easy to understand the real issues that underlie users’ interactions with a system.
Users don’t always have the language or introspective skill to explain what they really need
to accomplish their goals, and it takes a lot of work on your part to ferret out useful design
concepts from what they can tell you—self-reported observations are usually biased in
subtle ways.

Some of these techniques are very formal, and some aren’t. Formal and quantitative meth-
ods are valuable because they’re good science. When applied correctly, they help you see
the world as it actually is, not how you think it is. If you do user research haphazardly,
without accounting for biases such as the self-selection of users, you may end up with
data that doesn’t reflect your actual target audience—and that can only hurt your design
in the long run.

But even if you don’t have time for formal methods, it’s better to just meet a few users
informally than to not do any discovery at all. Talking with users is good for the soul. If
you’re able to empathize with users and imagine those individuals actually using your
design, you’ll produce something much better.

Users’ Motivation to Learn
Before you start the design process, consider your overall approach. Think about how you
might design the interface’s overall interaction style—its personality, if you will.

When you carry on a conversation with someone about a given subject, you adjust what
you say according to your understanding of the other person. You might consider how
much he cares about the subject, how much he already knows about it, how receptive he is
to learning from you, and whether he’s even interested in the conversation in the first place.
If you get any of that wrong, bad things happen—he might feel patronized, uninterested,
impatient, or utterly baffled.

This analogy leads to some obvious design advice. The subject-specific vocabulary you
use in your interface, for instance, should match your users’ level of knowledge; if some
users won’t know that vocabulary, give them a way to learn the unfamiliar terms. If they
don’t know computers very well, don’t make them use sophisticated widgetry or uncommon
interface-design conventions. If their level of interest might be low, respect that, and don’t
ask for too much effort for too little reward.

Some of these concerns permeate the whole interface design in subtle ways. For example,
do your users expect a short, tightly focused exchange about something very specific, or
do they prefer a conversation that’s more of a free-ranging exploration? In other words,
how much openness is there in the interface? Too little, and your users feel trapped and
unsatisfied; too much, and they stand there paralyzed, not knowing what to do next, un-
prepared for that level of interaction.

Users’ Motivation to Learn  7 

Therefore, you need to choose how much freedom your users have to act arbitrarily. At
one end of the scale might be a software installation wizard: the user is carried through
it with no opportunity to use anything other than Next, Previous, or Cancel. It’s tightly
focused and specific, but quite efficient—and satisfying, to the extent that it works and is
quick. At the other end might be an application such as Excel, an “open floorplan” interface
that exposes a huge number of features in one place. At any given time, the user has about
872 things that he can do next, but that’s considered good, because self-directed, skilled
users can do a lot with that interface. Again, it’s satisfying, but for entirely different reasons.

Here’s an even more fundamental question: how much effort are your users willing to
spend to learn your interface?

It’s easy to overestimate. Maybe they’ll use it every day on the job—clearly they’d be moti-
vated to learn it well in that case, but that’s rare. Maybe they’ll use it sometimes, and learn
it only well enough to get by (Satisficing). Maybe they’ll only see it once, for 30 seconds. Be
honest: can you expect most users to become intermediates or experts, or will most users
remain perpetual beginners?

Software designed for intermediate-to-expert users includes:

•	 Photoshop

•	 Dreamweaver

•	 Excel

•	 Code development environments

•	 System-administration tools for web servers

In contrast, here are some things designed for occasional users:

•	 Kiosks in tourist centers or museums

•	 Windows or Mac OS controls for setting desktop backgrounds

•	 Purchase pages for online stores

•	 Installation wizards

•	 Automated teller machines

The differences between the two groups are dramatic. Assumptions about users’ tool
knowledge permeate these interfaces, showing up in their screen-space usage, labeling,
and widget sophistication, and in the places where help is (or isn’t) offered.

The applications in the first group have lots of complex functionality, but they don’t gen-
erally walk the user through tasks step by step. They assume users already know what to
do, and they optimize for efficient operation, not learnability; they tend to be document-
centered or list-driven (with a few being command-line applications). They often have
entire books and courses written about them. Their learning curves are steep.

8  Chapter 1:  What Users Do

The applications in the second group are the opposite: restrained in functionality but
helpful about explaining it along the way. They present simplified interfaces, assuming no
prior knowledge of document- or list-centered application styles (e.g., menu bars, mul-
tiple selection, etc.). Wizards frequently show up, removing attention-focusing responsi-
bility from the user. The key is that users aren’t motivated to work hard at learning these
applications—it’s usually just not worth it!

Now that you’ve seen the extremes, look at the applications in the middle of the continuum:

•	 Microsoft PowerPoint

•	 Email clients

•	 Facebook

•	 Blog-writing tools

The truth is that most applications fall into this middle ground. They need to serve peo-
ple on both ends adequately—to help new users learn the tool (and satisfy their need
for instant gratification), while enabling frequent-user intermediates to get things done
smoothly. Their designers probably knew that people wouldn’t take a three-day course to
learn an email client. Yet the interfaces hold up under repeated usage. People quickly learn
the basics, reach a proficiency level that satisfies them, and don’t bother learning more
until they are motivated to do so for specific purposes.

You may someday find yourself in tension between the two ends of this spectrum.
Naturally you want people to be able to use your design “out of the box,” but you might
also want to support frequent or expert users as much as possible. Find a balance that
works for your situation. Organizational patterns in Chapter 2, such as Multi-Level Help,
can help you serve both constituencies.

The Patterns
Even though individuals are unique, people behave predictably. Designers have been
doing site visits and user observations for years; cognitive scientists and other researchers
have spent many hundreds of hours watching how people do things and how they think
about what they do.

So, when you observe people using your software, or doing whatever activity you want to
support with new software, you can expect them to do certain things. The behavioral pat-
terns that follow are often seen in user observations. Odds are good that you’ll see them
too, especially if you look for them.

(A note for pattern enthusiasts: these patterns aren’t like the others in this book. They
describe human behaviors—not interface design elements—and they’re not prescriptive,
like the patterns in other chapters. Instead of being structured like the other patterns,
these are presented as small essays.)

The Patterns  9 

Again, an interface that supports these patterns well will help users achieve their goals
far more effectively than interfaces that don’t support them. And the patterns are not just
about the interface, either. Sometimes the entire package—interface, underlying architec-
ture, feature choice, documentation, everything—needs to be considered in light of these
behaviors. But as the interface designer or interaction designer, you should think about
these as much as anyone on your team. You might be in a better place than anyone to
advocate for the users.

1.	 Safe Exploration

2.	 Instant Gratification

3.	 Satisficing

4.	 Changes in Midstream

5.	 Deferred Choices

6.	 Incremental Construction

7.	 Habituation

8.	 Microbreaks

9.	 Spatial Memory

10.	 Prospective Memory

11.	 Streamlined Repetition

12.	 Keyboard Only

13.	 Other People’s Advice

14.	 Personal Recommendations

Safe Exploration
“Let me explore without getting lost or getting into trouble.”

When someone feels like she can explore an interface and not suffer dire consequences,
she’s likely to learn more—and feel more positive about it—than someone who doesn’t ex-
plore. Good software allows people to try something unfamiliar, back out, and try some-
thing else, all without stress.

Those “dire consequences” don’t even have to be very bad. Mere annoyance can be enough
to deter someone from trying things out voluntarily. Clicking away pop-up windows, re-
entering data that was mistakenly erased, suddenly muting the volume on one’s laptop
when a website unexpectedly plays loud music—all can be discouraging. When you de-
sign almost any kind of software interface, make many avenues of exploration available
for users to experiment with, without costing the user anything.

10  Chapter 1:  What Users Do

Here are some examples:

•	 A photographer tries out a few image filters in an image-processing application. He
then decides he doesn’t like the results, and clicks Undo a few times to get back to
where he was. Then he tries another filter, and another, each time being able to back
out of what he did. (The pattern named Multi-Level Undo, in Chapter 6, describes how
this works.)

•	 A new visitor to a company’s home page clicks various links just to see what’s there,
trusting that the Back button will always get her back to the main page. No extra
windows or pop ups open, and the Back button keeps working predictably. You can
imagine that if a web app does something different in response to the Back button—
or if an application offers a button that seems like a Back button, but doesn’t behave
quite like it—confusion might ensue. The user can get disoriented while navigating,
and may abandon the app altogether.

Instant Gratification
“I want to accomplish something now, not later.”

People like to see immediate results from the actions they take—it’s human nature. If
someone starts using an application and gets a “success experience” within the first few
seconds, that’s gratifying! He’ll be more likely to keep using it, even if it gets harder later.
He will feel more confident in the application, and more confident in himself, than if it
had taken a while to figure things out.

The need to support instant gratification has many design ramifications. For instance, if
you can predict the first thing a new user is likely to do, you should design the UI to make
that first thing stunningly easy. If the user’s goal is to create something, for instance, then
create a new canvas, put a call to action on it, and place a palette next to it. If the user’s goal
is to accomplish some task, point the way toward a typical starting point.

This also means you shouldn’t hide introductory functionality behind anything that
needs to be read or waited for, such as registrations, long sets of instructions, slow-to-load
screens, advertisements, and so on. These are discouraging because they block users from
finishing that first task quickly.

The Patterns  11 

Satisficing
“This is good enough.

I don’t want to spend more time learning to do it better.”

When people look at a new interface, they don’t read every piece of it methodically and
then decide, “Hmmm, I think this button has the best chance of getting me what I want.”
Instead, a user will rapidly scan the interface, pick whatever he sees first that might get
him what he wants, and try it—even if it might be wrong.

The term satisficing is a combination of satisfying and sufficing. It was coined in 1957 by
the social scientist Herbert Simon, who used it to describe the behavior of people in all
kinds of economic and social situations. People are willing to accept “good enough” in-
stead of “best” if learning all the alternatives might cost time or effort.

Satisficing is actually a very rational behavior, once you appreciate the mental work neces-
sary to “parse” a complicated interface. As Steve Krug points out in his book Don’t Make
Me Think (New Riders), people don’t like to think any more than they have to—it’s work!
But if the interface presents an obvious option or two that the user sees immediately, he’ll
try it. Chances are good that it will be the right choice, and if not, there’s little cost in back-
ing out and trying something else (assuming that the interface supports Safe Exploration).

This means several things for designers:

•	 Use “calls to action” in the interface. Give directions on what to do first: type here,
drag an image here, tap here to begin, and so forth.

•	 Make labels short, plainly worded, and quick to read. (This includes menu items,
buttons, links, and anything else identified by text.) They’ll be scanned and guessed
about; write them so that a user’s first guess about meaning is correct. If he guesses
wrong several times, he’ll be frustrated, and you’ll both be off to a bad start.

•	 Use the layout of the interface to communicate meaning. Chapter 4 explains how to
do so in detail. Users “parse” color and form on sight, and they follow these cues more
efficiently than labels that must be read.

•	 Make it easy to move around the interface, especially for going back to where a wrong
choice might have been made hastily. Provide “escape hatches” (see Chapter 3). On
typical websites, using the Back button is easy, so designing easy forward/backward
navigation is especially important for web apps, installed applications, and mobile
devices.

•	 Keep in mind that a complicated interface imposes a large cognitive cost on new
users. Visual complexity will often tempt nonexperts to satisfice: they look for the
first thing that may work.

12  Chapter 1:  What Users Do

Satisficing is why many users end up with odd habits after they’ve been using a system
for a while. Long ago, a user may have learned Path A to do something, and even though
a later version of the system offers Path B as a better alternative (or maybe it was there
all along), he sees no benefit in learning it—that takes effort, after all—and keeps using the
less-efficient Path A. It’s not necessarily an irrational choice. Breaking old habits and learning
something new takes energy, and a small improvement may not be worth the cost to the user.

Changes in Midstream
“I changed my mind about what I was doing.”

Occasionally, people change what they’re doing while in the middle of doing it. Someone
may walk into a room with the intent of finding a key she had left there, but while she’s there,
she finds a newspaper and starts reading it. Or she may visit Amazon.com to read product
reviews, but ends up buying a book instead. Maybe she’s just sidetracked; maybe the change
is deliberate. Either way, the user’s goal changes while she’s using the interface you designed.

This means designers should provide opportunities for people to do that. Make choices
available. Don’t lock users into a choice-poor environment with no connections to other
pages or functionality unless there’s a good reason to do so. Those reasons do exist. See
the patterns called Wizard (Chapter 2) and Modal Panel (Chapter 3) for examples.

You can also make it easy for someone to start a process, stop in the middle, and come
back to it later to pick up where he left off—a property often called reentrance. For in-
stance, a lawyer may start entering information into a form on an iPad. Then, when a cli-
ent comes into the room, the lawyer turns off the device, with the intent of coming back
to finish the form later. The entered information shouldn’t be lost.

To support reentrance, you can make dialogs and web forms remember values typed pre-
viously, and they don’t usually need to be modal; if they’re not modal, they can be dragged
aside on the screen for later use. Builder-style applications—text editors, code develop-
ment environments, and paint programs—can let a user work on multiple projects at one
time, thus letting her put any number of projects aside while she works on another one.
See the Many Workspaces pattern in Chapter 2 for more information.

Deferred Choices
“I don’t want to answer that now; just let me finish!”

This follows from people’s desire for instant gratification. If you ask a task-focused user
unnecessary questions in the process, he may prefer to skip the questions and come back
to them later.

The Patterns  13 

For example, some web-based bulletin boards have long and complicated procedures
for registering users. Screen names, email addresses, privacy preferences, avatars, self-
descriptions…the list goes on and on. “But I just wanted to post one little thing,” says the
user plaintively. Why not allow him to skip most of the questions, answer the bare mini-
mum, and come back later (if ever) to fill in the rest? Otherwise, he might be there for half
an hour answering essay questions and finding the perfect avatar image.

Another example is creating a new project in a website editor. There are some things you
do have to decide up front, such as the name of the project, but other choices—where on
the server are you going to put this when you’re done? I don’t know yet!—can easily be
deferred.

Sometimes it’s just a matter of not wanting to answer the questions. At other times, the
user may not have enough information to answer yet. What if a music-writing software
package asked you up front for the title, key, and tempo of a new song, before you’ve even
started writing it? (See Apple’s GarageBand for this bit of “good” design.)

The implications for interface design are simple to understand, though not always easy
to implement:

•	 Don’t accost the user with too many upfront choices in the first place.

•	 On the forms that he does have to use, clearly mark the required fields, and don’t
make too many of them required. Let him move on without answering the optional
ones.

•	 Sometimes you can separate the few important questions or options from others that
are less important. Present the short list; hide the long list.

•	 Use Good Defaults (Chapter 8) wherever possible, to give users some reasonable de-
fault answers to start with. But keep in mind that prefilled answers still require the
user to look at them, just in case they need to be changed. They have a small cost, too.

•	 Make it possible for users to return to the deferred fields later, and make them acces-
sible in obvious places. Some dialog boxes show the user a short statement, such as
“You can always change this later by clicking the Edit Project button.” Some websites
store a user’s half-finished form entries or other persistent data, such as shopping
carts with unpurchased items.

•	 If registration is required at a website that provides useful services, users may be far
more likely to register if they’re first allowed to experience the website—drawn in
and engaged—and then asked later about who they are. Some sites let you complete
an entire purchase without registering, then ask you at the end if you want to create a
no-hassle login with the personal information provided in the purchase step.

14  Chapter 1:  What Users Do

Incremental Construction
“Let me change this. That doesn’t look right; let me change it again.

That’s better.”

When people create things, they don’t usually do it all in a precise order. Even an expert
doesn’t start at the beginning, work through the creation process methodically, and come
out with something perfect and finished at the end.

Quite the opposite. Instead, she starts with some small piece of it, works on it, steps back
and looks at it, tests it (if it’s code or some other “runnable” thing), fixes what’s wrong, and
starts to build other parts of it. Or maybe she starts over, if she really doesn’t like it. The
creative process goes in fits and starts. It moves backward as much as forward sometimes,
and it’s often incremental, done in a series of small changes instead of a few big ones.
Sometimes it’s top-down; sometimes it’s bottom-up.

Builder-style interfaces need to support that style of work. Make it easy for users to build
small pieces. Keep the interface responsive to quick changes and saves. Feedback is criti-
cal: constantly show the user what the whole thing looks and behaves like, while the user
works. If the user builds code, simulations, or other executable things, make the “compile”
part of the cycle as short as possible, so the operational feedback feels immediate—leave
little or no delay between the user making changes and seeing the results.

When creative activities are well supported by good tools, they can induce a state of flow
in the user. This is a state of full absorption in the activity, during which time distorts,
other distractions fall away, and the person can remain engaged for hours—the enjoyment
of the activity is its own reward. Artists, athletes, and programmers all know this state.

But bad tools will keep users distracted, guaranteed. If the user has to wait even half a
minute to see the results of the incremental change she just made, her concentration is
broken; flow is disrupted.

If you want to read more about flow, read the books by Mihaly Csikszentmihalyi, who
studied it for years.

Habituation
“That gesture works everywhere else; why doesn’t it work here, too?”

When one uses an interface repeatedly, some frequent physical actions become reflexive:
pressing Ctrl-S to save a document, clicking the Back button to leave a web page, press-
ing Return to close a modal dialog box, using gestures to show and hide windows—even
pressing a car’s brake pedal. The user no longer needs to think consciously about these
actions. They’ve become habitual.

The Patterns  15 

This tendency helps people become expert users of a tool (and helps create a sense of flow,
too). Habituation also measurably improves efficiency, as you can imagine. But it can also
lay traps for the user. If a gesture becomes a habit, and the user tries to use it in a situation
when it doesn’t work—or, worse, does something destructive—the user is caught short.
He suddenly has to think about the tool again (What did I just do? How do I do what I
intended?), and he might have to undo any damage done by the gesture.

For instance, Ctrl-X→Ctrl-S is the “save this file” key sequence used by the Emacs text
editor. Ctrl-A moves the text-entry cursor to the beginning of a line. These keystrokes
become habitual for Emacs users. When a user presses Ctrl-A→Ctrl-X→Ctrl-S in Emacs,
it performs a fairly innocuous pair of operations: move the cursor, save the file.

Now what happens when he types that same habituated sequence in Microsoft Word?

1.	 Ctrl-A: Select all

2.	 Ctrl-X: Cut the selection (the whole document, in this case)

3.	 Ctrl-S: Save the document (whoops)

This is why consistency across applications is important! (And also why a robust “undo”
is useful.)

Just as important, though, is consistency within an application. Some applications are evil
because they establish an expectation that some gesture will do Action X, except in one
special mode where it suddenly does Action Y. Don’t do that. It’s a sure bet that users will
make mistakes, and the more experienced they are—that is, the more habituated they
are—the more likely they are to make that mistake.

Consider this carefully if you’re developing gesture-based interfaces for mobile devices.
Once someone learns how to use his device and gets used to it, he will depend on the
standard gestures working consistently on all applications. Check that gestures in your
design all do the expected things.

This is also why confirmation dialog boxes often don’t work to protect a user against acci-
dental changes. When modal dialog boxes pop up, the user can easily get rid of them just
by clicking OK or pressing Return (if the OK button is the default button). If the dialogs
pop up all the time when the user makes intended changes, such as deleting files, clicking
OK becomes a habituated response. Then, when it actually matters, the dialog box doesn’t
have any effect, because it slips right under the user’s consciousness.

(I’ve seen at least one application that sets up the confirmation dialog box’s buttons ran-
domly from one invocation to another. One actually has to read the buttons to figure out
what to click! This isn’t necessarily the best way to do a confirmation dialog box—in fact,
it’s better to not have them at all under most circumstances—but at least this design side-
steps habituation creatively.)

16  Chapter 1:  What Users Do

Microbreaks
“I’m waiting for the train. Let me do something useful for two minutes.”

People often find themselves with a few minutes of down time. They might need a mental
break while working; they might be in line at a store or sitting in a traffic jam. They might
be bored or impatient. They want to do something constructive or entertaining to pass the
time, knowing they won’t have enough time to get deep into an online activity.

This pattern is especially applicable to mobile devices, because people can easily pull them
out at times such as these.

Here are some typical activities during microbreaks:

•	 Checking email

•	 Reading a News Stream (in Chapter 2) such as Facebook or Twitter

•	 Visiting a news site to find out what’s going on in the world

•	 Watching a short video

•	 Doing a quick web search

•	 Reading an online book

•	 Playing a short game

The key to supporting microbreaks is to make an activity easy and fast to reach—as easy
as turning on the device and selecting an application (or website). Don’t require compli-
cated setup. Don’t take forever to load. And if the user needs to sign in to a service, try to
retain the previous authentication so that she doesn’t have to sign in every time.

For News Stream services, load the freshest content as quickly as possible and show it in
the first screen the user sees. Other activities, such as games, videos, or online books,
should remember where the user left them last time and restore the app or site to its previ-
ous state, without asking (thus supporting reentrance).

If you’re designing an email application, or anything else for which the user needs to do
“housekeeping” to maintain order, give her a way to triage items efficiently. This means
showing enough data per item so that she can identify, for instance, a message’s contents
and sender. You can also give her a chance to “star” or otherwise annotate items of inter-
est, delete items easily, and write short responses and updates.

Long load times deserve another mention. Taking too long to load content is a sure way
to make users give up on your app—especially during microbreaks! Make sure the page is
engineered so that readable, useful content loads first, and with very little delay.

The Patterns  17 

Spatial Memory
“I swear that button was here a minute ago. Where did it go?”

When people manipulate objects and documents, they often find them again later by
remembering where they are, not what they’re named.

Take the Windows, Mac, or Linux desktop. Many people use the desktop background as a
place to put documents, frequently used applications, and other such things. It turns out
that people tend to use spatial memory to find things on the desktop, and it’s very effec-
tive. People devise their own groupings, for instance, or recall that “this document was
at the top right over by such-and-such.” (Naturally, there are real-world equivalents, too.
Many people’s desks are “organized chaos,” an apparent mess in which the office owner
can find anything instantly. But heaven forbid that someone should clean it up for him.)

Many applications put their dialog buttons—OK, Cancel, and so on—in predictable plac-
es, partly because spatial memory for them is so strong. In complex applications, people
may also find things by remembering where they are relative to other things: tools on
toolbars, objects in hierarchies, and so forth. Therefore, you should use patterns such as
Responsive Disclosure (Chapter 4) carefully. Adding items to blank spaces in an interface
doesn’t cause problems, but rearranging existing controls can disrupt spatial memory and
make things harder to find. It depends. Try it out on your users if you’re not sure.

Along with habituation, which is closely related, spatial memory is another reason why
consistency across and within a platform’s applications is good. People may expect to
find similar functionality in similar places. See the Sign-in Tools pattern (Chapter 3) for
an example.

Spatial memory explains why it’s good to provide user-arranged areas for storing docu-
ments and objects, such as the aforementioned desktop. Such things aren’t always practi-
cal, especially with large numbers of objects, but it works quite well with small numbers.
When people arrange things themselves, they’re likely to remember where they put them.
(Just don’t rearrange it for them unless they ask!) The Movable Panels pattern in Chapter 4
describes one particular way to do this.

Also, this is why changing menus dynamically can sometimes backfire. People get used to
seeing certain items on the tops and bottoms of menus. Rearranging or compacting menu
items “helpfully” can work against habituation and lead to user errors. So can changing
navigation menus on web pages. Try to keep menu items in the same place, and in the
same order, on all subpages in a site.

Incidentally, the tops and bottoms of lists and menus are special locations, cognitively
speaking. People notice and remember them more than items in the middle of a list. The
first and last items are perhaps the worst ones to change out from under the user.

18  Chapter 1:  What Users Do

Prospective Memory
“I’m putting this here to remind myself to deal with it later.”

Prospective memory is a well-known phenomenon in psychology that doesn’t seem to
have gained much traction yet in interface design. But I think it should.

We engage in prospective memory when we plan to do something in the future, and we
arrange some way of reminding ourselves to do it. For example, if you need to bring a
book to work the next day, you might put it on a table beside the front door the night
before. If you need to respond to someone’s email later (just not right now!), you might
leave that email on your screen as a physical reminder. Or if you tend to miss meetings,
you might arrange for Outlook or your mobile device to ring an alarm tone five minutes
before each meeting.

Basically, this is something almost everyone does. It’s a part of how we cope with our
complicated, highly scheduled, multitasked lives: we use knowledge “in the world” to aid
our own imperfect memories. We need to be able to do it well.

Some software does support prospective remembering. Outlook and most mobile plat-
forms, as mentioned earlier, implement it directly and actively; they have calendars, and
they sound alarms. But what else can you use for prospective memory?

•	 Notes to oneself, like virtual “sticky notes”

•	 Windows left on-screen

•	 Annotations put directly into documents (such as “Finish me!”)

•	 Browser bookmarks, for websites to be viewed later

•	 Documents stored on the desktop, rather than in the usual places in the filesystem

•	 Email kept in an inbox (and maybe flagged) instead of filed away

People use all kinds of artifacts to support passive prospective remembering. But notice
that almost none of the techniques in the preceding list were designed with that in mind!
What they were designed for is flexibility—and a laissez-faire attitude toward how users
organize their stuff. A good email client lets you create folders with any names you want,
and it doesn’t care what you do with messages in your inbox. Text editors don’t care what
you type, or what giant bold magenta text means to you; code editors don’t care that you
have a “Finish this” comment in a method header. Browsers don’t care why you keep
certain bookmarks around.

In many cases, that kind of hands-off flexibility is all you really need. Give people the tools
to create their own reminder systems. Just don’t try to design a system that’s too smart for
its own good. For instance, don’t assume that just because a window’s been idle for a while,
that no one’s using it and it should be closed. In general, don’t “helpfully” clean up files or

The Patterns  19 

objects that the system may think are useless; someone may be leaving them around for
a reason. Also, don’t organize or sort things automatically unless the user asks the system
to do so.

As a designer, is there anything positive you can do for prospective memory? If someone
leaves a form half-finished and closes it temporarily, you could retain the data in it for
the next time—it will help remind the user where she left off. (See the Deferred Choices
pattern.) Similarly, many applications recall the last few objects or documents they ed-
ited. You could offer bookmark-like lists of “objects of interest”—both past and future—
and make those lists easily available for reading and editing. You can implement Many
Workspaces, which lets users leave unfinished pages open while they work on something
else.

Here’s a bigger challenge: if the user starts tasks and leaves them without finishing them,
think about how to leave some artifacts around, other than open windows, that identify
the unfinished tasks. Another idea: how might a user gather reminders from different
sources (email, documents, calendars, etc.) into one place? Be creative!

Streamlined Repetition
“I have to repeat this how many times?”

In many kinds of applications, users sometimes find themselves having to perform the
same operation over and over again. The easier it is for them, the better. If you can help
reduce that operation down to one keystroke or click per repetition—or, better, just a few
keystrokes or clicks for all repetitions—you will spare users much tedium.

Find and Replace dialog boxes, often found in text editors (Word, email composers, etc.),
are one good adaptation to this behavior. In these dialog boxes, the user types the old
phrase and the new phrase. Then it takes only one Replace button click per occurrence in
the whole document. And that’s only if the user wants to see or veto each replacement—if
she’s confident that she really should replace all occurrences, she can click the Replace All
button; one gesture does the whole job.

Here’s a more general example. Photoshop lets you record “actions” when you want to
perform some arbitrary sequence of actions with a single click. If you want to resize, crop,
brighten, and save 20 images, you can record those four steps as they’re done to the first
image, and then click that action’s Play button for each of the remaining 19. See the Macros
pattern in Chapter 6 for more information.

Scripting environments are even more general. Unix and its variants allow you to script
anything you can type into a shell. You can recall and execute single commands, even
long ones, with a Ctrl-P and Return. You can take any set of commands you issue to the
command line, put them in a for loop, and execute them by pressing the Return key once.

20  Chapter 1:  What Users Do

Or you can put them in a shell script (or in a for loop in a shell script) and execute them as
a single command. Scripting is very powerful, and when complex, it becomes full-fledged
programming.

Other variants include copy-and-paste capability (preventing the need to retype the same
thing in a million places), user-defined “shortcuts” to applications on operating-system
desktops (preventing the need to find those applications’ directories in the filesystem),
browser bookmarks (so users don’t have to type URLs), and even keyboard shortcuts.

Direct observation of users can help you figure out just what kinds of repetitive tasks you
need to support. Users won’t always tell you outright. They may not even be aware that
they’re doing repetitive things that could be streamlined with the right tools—they may
have been doing it so long that they don’t even notice anymore. By watching them work,
you may see what they don’t see.

In any case, the idea is to offer users ways to streamline the repetitive tasks that could
otherwise be time-consuming, tedious, and error-prone.

Keyboard Only
“Please don’t make me use the mouse.”

Some people have real physical trouble using a mouse. Others prefer not to keep switch-
ing between the mouse and keyboard because that takes time and effort—they’d rather
keep their hands on the keyboard at all times. Still others can’t see the screen, and their
assistive technologies often interact with the software using just the keyboard API.

For the sakes of these users, some applications are designed to be “driven” entirely via the
keyboard. They’re usually mouse-driven too, but there is no operation that must be done
with only the mouse—keyboard-only users aren’t shut out of any functionality.

Several standard techniques exist for keyboard-only usage:

•	 You can define keyboard shortcuts, accelerators, and mnemonics for operations
reachable via application menu bars, such as Ctrl-S for Save. See your platform style
guide for the standard ones.

•	 Selection from lists, even multiple selection, is usually possible using arrow keys in
combination with modifiers (such as the Shift key), though this depends on which
component set you use.

•	 The Tab key typically moves the keyboard focus—the control that gets keyboard en-
tries at the moment—from one control to the next, and Shift-Tab moves backward.
This is sometimes called tab traversal. Many users expect it to work on form-style
interfaces.

The Patterns  21 

•	 Most standard controls, even radio buttons and combo boxes, let users change their
values from the keyboard by using arrow keys, the Return key, or the space bar.

•	 Dialog boxes and web pages often have a “default button”—a button representing
an action that says “I’m done with this task now.” On web pages, it’s often Submit or
Done; on dialog boxes, OK or Cancel. When users press the Return key on this page
or dialog box, that’s the operation that occurs. Then it moves the user to the next page
or returns him to the previous window.

There are more techniques. Forms, control panels, and standard web pages are fairly easy
to drive from the keyboard. Graphic editors, and anything else that’s mostly spatial, are
much harder, though not impossible.

Keyboard-only usage is particularly important for data-entry applications. In these,
speed of data entry is critical, and users can’t afford to move their hands off the keyboard
to the mouse every time they want to move from one field to another or even one page
to another. (In fact, many of these forms don’t even require users to press the Tab key to
traverse between controls; it’s done automatically.)

Other People’s Advice
“What did everyone else say about this?”

People are social. As strong as our opinions may sometimes be, we tend to be influenced
by what our peers think.

Witness the spectacular growth of online “user comments”: Amazon for books (and every-
thing else), IMDb for movies, Flickr for photographs, and countless retailers who offer
space for user-submitted product reviews. Auction sites such as eBay formalize user opin-
ions into actual prices. Blogs offer unlimited soapbox space for people to opine about and
discuss anything they want, from products to programming to politics.

The advice of peers, whether direct or indirect, influences people’s choices when they de-
cide any number of things. Finding things online, performing transactions (Should I buy
this product?), playing games (What have other players done here?), and even building
things—people can be more effective when aided by others. If not, they might at least be
happier with the outcome.

Here’s a subtler example. Programmers use the MATLAB application to do scientific and
mathematical tasks. Every few months, the company that makes MATLAB holds a public
programming contest; for a few days, every contestant writes the best MATLAB code he
can to solve a difficult science problem. The fastest, most accurate code wins. The catch is
that every player can see everyone else’s code—and copying is encouraged! The “advice”
in this case is indirect, taking the form of shared code, but it’s quite influential. In the end,

22  Chapter 1:  What Users Do

the winning program is never truly original, but it’s undoubtedly better code than any solo
effort would have been. (In many respects, this is a microcosm of open source software
development, which is driven by a powerful set of social dynamics.)

Not all applications and software systems can accommodate a social component, and not
all should try. But consider whether it might enhance the user experience to do so. And
you could get more creative than just tacking a web-based bulletin board onto an ordinary
site—how can you persuade users to take part constructively? How can you integrate it
into the typical user’s workflow?

If the task is creative, maybe you can encourage people to post their creations for the pub-
lic to view. If the goal is to find some fact or object, perhaps you can make it easy for users
to see what other people found in similar searches.

Of the patterns in this book, Multi-Level Help (Chapter 2) most directly addresses this
idea; an online support community is a valuable part of a complete help system for some
applications.

Personal Recommendations
“My friend told me to read this, so it must be pretty good.”

This pattern operates on the same principle as the previous one—we are strongly influ-
enced by our peers. So much so, in fact, that we are much more likely to view the articles
and videos that someone refers us to than those we find in some other way. The personal
touch makes a big difference when we decide what to read online.

Therefore, support person-to-person sharing of content. Let people send a URL (or
the content itself) to friends and family, either via email or via a social network such as
Facebook or Buzz.

This implies a host of mechanisms that need to be used or designed in. First, what exactly
are users sharing? If the content doesn’t already have a URL, see if one can be constructed
for it. (The Deep-linked State pattern in Chapter 3 talks about this.) This URL should di-
rect the recipient to a page with the same content that the sender was seeing, to avoid
confusion.

Second, whom will they share it with? Let users connect to a social network, or give them
a way to send email.

Third, what implications does this reference have? If a user sends email to a few “close ties,”
along with a personal message—one the user typed, not an automatic “personal message!—
that can potentially carry a very high recommendation. After all, someone cared enough
to think about you and take time to write a note. The specialness declines as the sender
CCs more and more email addresses, though.

The Patterns  23 

When a user posts a link to her Facebook or Twitter stream, that carries other implica-
tions: “I thought this was cool, and it represents something about who I am.” Followers
are still likely to read these links, especially if they trust that the poster has good taste.
Furthermore, followers may repost or retweet it themselves, as will their followers, ad
infinitum. This is how memes start, content goes viral, and the social web rolls on.

Chapter 2

Organizing the Content: Information
Architecture and Application Structure

At this point, you know what your users want out of your application or site. You’re target-
ing a chosen platform: the Web, the desktop, a mobile device, or some combination. You
know which idiom or interface type to use—a form, an e-commerce site, an image viewer,
or something else—or you may realize that you need to combine several of them. If you’re
really on the ball, you’ve written down some typical scenarios that describe how people
might use high-level elements of the application to accomplish their goals. You have a
clear idea of what value this application adds to people’s lives.

Now what?

You could start making sketches of the interface. Many visual thinkers do that at this stage.
If you’re the kind of person who likes to think visually and needs to play with sketches
while working out the broad strokes of the design, go for it.

But if you’re not a visual thinker by nature (and sometimes even if you are), hold off on
the interface sketches. They might lock your thinking into the first visual designs you put
on paper. You need to stay flexible and creative for a little while, until you work out the
overall organization of the application.

It can be helpful to think about an application in terms of its underlying data and tasks.
What objects are being shown to the users? How are they categorized and ordered? What
do users need to do with them? And now that you’re thinking abstractly about them, how
many ways can you design a presentation of those things and tasks?

These lines of inquiry may help you think more creatively about the interface you’re
designing.

Information architecture (IA) is the art of organizing an information space. It encompasses
many things: presenting, searching, browsing, labeling, categorizing, sorting, manipulat-
ing, and strategically hiding information. Especially if you’re working with a new product,
this is where you should start.

26  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

The Big Picture
Let’s look at the very highest level of your application first. From the designer’s perspec-
tive, your site or application probably serves several functions: a software service—maybe
several services—sharing information, selling a product, branding, social communica-
tion, or any number of other goals. Your home page or opening screen may need to con-
vey all of these. Via text and imagery, users should be directed to the part of your site or
app that accomplishes their purposes.

At this level, you’ll make decisions about the whole package. What interaction model will
it use? The desktop metaphor? The simpler model of a traditional website? Or a richly in-
teractive site that splits the difference? Is it a self-contained device such as a mobile phone
or digital video recorder, for which you must design the interactions from scratch? The
interaction model establishes consistency throughout the artifact, and it determines how
users move through and among the different pieces of functionality. I won’t go into more
detail at this level, because almost all of the patterns in this book apply at smaller scales.

Now let’s look at a smaller unit within an application or site: pages that serve single im-
portant functions. In an application, this might be a main screen or a major interactive
tool; in a richly interactive website, it might be a single page, such as Gmail’s main screen;
in a more static website, it might be a group of pages devoted to one process or function.

Any such page will primarily do one of these things:

1.	 Show one single thing, such as a map, book, video, or game

2.	 Show a list or set of things

3.	 Provide tools to create a thing

4.	 Facilitate a task

Most apps and sites do some combination of these things, of course. A website might
show a feature article (1), a list of additional articles (2), with a wiki area for members to
create pages (3), and a registration form for new members (4). That’s fine. Each of these
parts of the site should be designed using patterns and tools to fit that particular organiz-
ing principle.

This list mirrors some of the work done by Theresa Neil with application structures in the
context of rich Internet applications (RIAs). She defines three types of structures based on
the user’s primary goal: information, process, and creation.*

This list gives us a framework within which to fit the idioms and patterns we’ll talk about
in this and other chapters.

*	 “Rich Internet Screen Design,” in UX Magazine: http://www.uxmag.com/design/rich-internet-application-
screen-design.

http://www.uxmag.com/design/rich-internet-application-screen-design
http://www.uxmag.com/design/rich-internet-application-screen-design

The Big Picture  27 

Show One Single Thing
Is this really what your page does? The whole point of the page’s design is to show or play a
single piece of content, with no list of other pieces that users could also see, no comments,
and no table of contents or anything like that?

Lucky you!

All you really need, then, is to manage the user’s interaction with this one thing. The
IA is probably straightforward. There might be small-scale tools clustered around the
content—scrollers and sliders, sign-in box, global navigation, headers and footers, and
so forth—but they are minor and easily designed. Your design might take one of these
shapes:

•	 A long, vertically scrolled page of flowed text (articles, books, and similar long-form
content).

•	 A zoomable interface for very large, fine-grained artifacts, such as maps, images,
or information graphics. Map sites such as Google Maps provide some well-known
examples.

•	 The “media player” idiom, including video and audio players.

As you design this interface, consider the following patterns and techniques to support
the design:

•	 Alternative Views, to show the content in more than one way.

•	 Many Workspaces, in case people want to see more than one place, state, or document
at one time.

•	 Deep-linked State, in Chapter 3. With this, a user can save a certain place or state
within the content so that he can come back to it later or send someone else a URL.

•	 Sharing Widget and other social patterns, in Chapter 9.

•	 Some of the mobile patterns described in Chapter 10, if one of your design goals is to
deliver the content on mobile devices.

Show a List of Things
This is what most of the world’s digital artifacts seem to do. Lists are everywhere! The
digital world has converged on many common idioms for showing lists, most of which
are familiar to you—simple text lists, menus, grids of images, search results, lists of email
messages or other communications, tables, trees. There are more, of course.

Lists present rich challenges in information architecture. How long is the list? Is it flat or
hierarchical, and if it is a hierarchy, what kind? How is it ordered, and can the user change
that ordering dynamically? Should it be filtered or searched? What information or opera-
tions are associated with each list item, and when and how should they be shown?

28  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Because lists are so common, a solid grasp of the different ways to present them can
benefit any designer. It’s the same theme again—by learning and formalizing these tech-
niques, you can expand your own thinking about how to present content in different and
interesting ways.

A few patterns for designing an interface around a list are described in this chapter (others
are in Chapter 5). You can build either an entire app or site, or a small piece of a larger arti-
fact, around one of these patterns. They set up a structure that other display techniques—
text lists, thumbnail lists, and so on—can fit into. Other top-level organizations not listed
here might include calendars, full-page menus, and search results.

•	 Feature, Search, and Browse is the pattern followed by countless websites that show
products and written content. Searching and browsing provide two ways for users to
find items of interest, while the front page features one item to attract interest.

•	 Blogs, news sites, email readers, and social sites such as Twitter all use the News Stream
pattern to list their content, with the most recent updates at the top.

•	 Picture Manager is a well-defined interface type for handling photos and other picto-
rial documents. It can accommodate hierarchies and flat lists, tools to arrange and
reorder documents, tools to operate directly on pictures, and so on.

Once you’ve chosen an overall design for the interface, you might look at other patterns
and techniques for displaying lists. These fit into the patterns mentioned earlier; for
instance, a Picture Manager might use a Thumbnail Grid, a Pagination, or both to show a
list of photos—all within a Two-Panel Selector framework. See Chapter 5 for a thorough
discussion.

Provide Tools to Create a Thing
Builders and editors are the great dynastic families of the software world. Microsoft
Word, Excel, PowerPoint, and other Office applications, in addition to Adobe Photoshop,
Illustrator, In Design, Dreamweaver, and other tools that support designers are all in this
category. So are the tools that support software engineers, such as the various code editors
and integrated development environments. These have long histories, large user bases,
and very well established interaction styles, honed over many years.

Most people are familiar with the idioms used by these tools: text editors, code editors,
image editors, editors that create vector graphics, and spreadsheets.

Chapter 8 of the previous edition of this book discusses how to design different aspects of
these tools. But at the level of application structure or IA, the following patterns are often
found:

•	 Canvas Plus Palette describes most of these applications. This highly recognizable,
well-established pattern for visual editors sets user expectations very strongly.

•	 Almost all applications of this type provide Many Workspaces—usually windows con-
taining different documents, which enable users to work on them in parallel.

The Patterns  29 

•	 Alternative Views let users see one document or workspace through different lenses, to
view various aspects of the thing they’re creating.

•	 “Blank Slate Invitation” is named and written about in Designing Web Interfaces
(http://oreilly.com/catalog/9780596516253/) by Bill Scott and Theresa Neil (O’Reilly),
and is a profoundly useful pattern for builders and editors. It is closely related to the
Input Hints pattern in Chapter 8.

Facilitate a Single Task
Maybe your interface’s job isn’t to show a list of anything or create anything, but simply to
get a job done. Signing in, registering, posting, printing, uploading, purchasing, changing
a setting—all such tasks fall into this category.

Forms do a lot of work here. Chapter 8 talks about forms at length and lists many controls
and patterns to support effective forms. Chapter 6 defines another useful set of patterns
that concentrate more on “verbs” than “nouns.”

Not much IA needs to be done if the user can do the necessary work in a small, contained
area, such as a sign-in box. But when the task gets more complicated than that—if it’s long,
or branched, or has too many possibilities—part of your job is to work out how the task
is structured.

•	 Much of the time, you’ll want to break the task down into smaller steps or groups of
steps. For these, a Wizard might work well for users who need to be walked through
the task.

•	 A Settings Editor is a very common type of interface that gives users a way to change
the settings or preferences of something—an application, a document, a product, and
so on. This isn’t a step-by-step task at all. Here, your job is to give users open access
to a wide variety of choices and switches and let them change only what they need,
when they need it, knowing that they will skip around.

The Patterns
Several of the patterns in this chapter are large-scale, defining the interactions for large
sections of applications or sites (or sometimes the entire thing). Some of these, including
Picture Manager, Canvas Plus Palette, and Feature, Search, and Browse, are really clusters of
other patterns that support each other in well-defined ways—they are “guilds” of smaller-
scale patterns.

1.	 Feature, Search, and Browse

2.	 News Stream

3.	 Picture Manager

4.	 Dashboard

http://oreilly.com/catalog/9780596516253/

30  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

5.	 Canvas Plus Palette

6.	 Wizard

7.	 Settings Editor

The last three patterns are more “meta,” in the sense that they can apply to the other
patterns in the preceding list. For instance, almost any content, document, or list can be
shown in more than one way, and the ability to switch among those Alternative Views can
empower users.

8.	 Alternative Views

Likewise, a user may want to instantiate the interface more than once, to maintain several
trains of thought simultaneously—consider the tabs in a browser window, all showing dif-
ferent and unrelated websites. Offer the Many Workspaces pattern to these users.

9.	 Many Workspaces

Many patterns, here and elsewhere in the book, contribute in varying degrees to the learn-
ability of an interface. Multi-Level Help sets out ways to integrate help into the application,
thus supporting learnability for a broad number of users and situations.

10.	 Multi-Level Help

Feature, Search, and Browse

SearchFeature

Browse

Figure 2-1. EMS

