
Roger S. Pressman

S e x f a ed ic ión

£ N C r<
r « i

y

/

D © F T W A R
Un enfoque práctico

Me
Graw
u U

I /

• 3í£%&$•>

TM

PDF Editor

C O N T E N I D O BREVE

CAPITULO 1 Software e ingeniería del software 1

PARTE UNO El proceso del software 21

PARTE DOS

CAPÍTULO 2 El proceso: una visión general 2 2

CAPÍTULO 3 Modelos prescriptivos de proceso 4 8

CAPITULO 4 Desarrollo ágil 7 7

Práctica de la ingeniería del software 103

CAPÍTULO 5 La práctica: una visión genérica 104

CAPÍTULO 6 Ingeniería de sistemas 1 3 3

CAPÍTULO 7 Ingeniería de requisitos 155

CAPÍTULO 8 Modelado del análisis 191

CAPÍTULO 9 Ingeniería del diseño 2 4 5

CAPITULO 10 Diseño arquitectónico 2 7 5

CAPÍTULO 11 Diseño al nivel de componentes 3 1 5

CAPÍTULO 12 Diseño de la interfaz de usuario 3 5 0

CAPÍTULO 13 Estrategias de prueba del software 3 8 2

CAPÍTULO 14 Técnicas de prueba del software 4 1 8

CAPITULO 15 Métricas del producto para el software 4 6 2

PASTE TRES Aplicación de la ingeniería Web 501

CAPÍTULO 16 Ingeniería W e b 5 0 2

CAPÍTULO 17 Formulación y planeación para ingeniería W e b 5 1 7

CAPÍTULO 18 Modelado de análisis para aplicaciones W e b 5 4 4

CAPITULO 19 Modelado de diseño para aplicaciones W e b 5 6 6

CAPÍTULO 20 Cómo probar aplicaciones W e b 6 0 4

PARTE CUATRO Gestión de proyectos de software 639

CAPÍTULO 21 Conceptos de gestión de proyectos 6 4 0

CAPÍTULO 22 Métricas de proceso y proyecto 6 6 3

CAPITULO 23 Estimación para proyectos de software 6 9 0

CAPÍTULO 24 Calendarización de proyectos d e software 7 2 4

CAPÍTULO 2 5 Gestión del riesgo 7 4 7

CAPITULO 26 Gestión de la calidad 7 6 7

CAPÍTULO 27 Gestión del cambio 7 9 6

vii

TM

PDF Editor

viii CONTENIDO BREVE

PARTE CINCO Temas avanzados en ingeniería del software 829

CAPÍTULO 28 Métodos formales 8 3 0

CAPÍTULO 29 Ingeniería del software de sala limpia 8 5 8

CAPITULO 30 Ingeniería del software basada en componentes 8 7 9

CAPITULO 31 Reingeniería 9 0 2

CAPITULO 32 El camino por recorrer 9 2 7

TM

PDF Editor

C O N T E N I D O

Prefacio xxviii

Recorrido xxxi

CAPÍTULO 1 SOFTWARE E INGENIERIA DEL SOFTWARE 1

1.1 El papel evolutivo del software 2

1.2 Software 5

1.3 La naturaleza cambiante del software 8

1.4 Software heredado 1 1

1.4.1 Calidad del software heredado

1.4.2 Evolución del software 12

1 .5 Mitos del software 14

1.6 Cómo inicia todo 17

1.7 Resumen 18

Referencias 18

Problemas y puntos a considerar 19

Otras lecturas y fuentes de información 2 0

PARTE UNO: EL PROCESO DEL SOFTWARE 21

CAPITULO 2 EL PROCESO: UNA VISION GENERAL 22

2.1 Ingeniería del software: una tecnología estratificada 23

2.2 Marco de trabajo para el proceso 24

2.3 Integración del modelo de capacidad de madurez (IMCM| 29

2.4 Patrones del proceso 34

2.5 Evaluación del proceso 36

2 .6 Modelos de proceso personales y en equipo 38

2.6.1 Proceso de software personal (PSP) 39

2.6.2 Procesos de software en equipo (PSE) 4 0

2 .7 Tecnología del proceso 4 2

2.8 Producto y proceso 4 3

2 .9 Resumen 4 4

Referencias 45

Problemas y puntos a considerar 4 6

Otras lecturas y fuentes de información 4 7

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 48

3.1 Modelos prescriptivos 4 9

3.2 El modelo en cascada 5 0

3.3 Modelos de proceso incrementóles 51

3.3.1 El modelo incremental 5 2

3.3.2 El modelo DRA 53

ix

TM

PDF Editor

CONTENIDO

3.4 Modelos de proceso evolutivos 5 4

3.4.1 Construcción de prototipos 5 5

3.4.2 El modelo en espiral 58

3 .4 .3 El modelo de desarrollo concurrente 6 0

3.4.4 Un comentario final sobre los procesos evolutivos 61

3 .5 Modelos especializados de proceso 6 3

3.5.1 Desarrollo basado en componentes 6 3

3 .5 .2 El modelo de métodos formales 64

3 .5 .3 Desarrollo del software orientado a aspectos 6 5

3.6 El proceso unificado 6 7

3.6.1 Una breve historia 6 7

3 .6 .2 Fases del proceso unificado 6 8

3 .6 .3 Productos de trabajo del proceso unificado 71

3 .7 Resumen 7 2

Referencias 7 3

Problemas y puntos o considerar 7 4

Otras lecturas y fuentes de información 7 5

CAPÍTULO 4 DESARROLLO ÁGIL 77

4.1 ¿Qué es la agilidad? 7 9

4.2 ¿Qué es un proceso ágil? 81

4.2.1 Las políticas del desarrollo ágil 81

4 .2 .2 Factores humanos 82

4 .3 Modelos ágiles de proceso 84

4.3.1 Programación extrema |PE) 84
4 .3 .2 Desarrollo adaptativo de software (DAS) 8 9

4 .3 .3 Método de desarrollo de sistemas dinámicos (MDSD) 91

4 .3 .4 Melé 9 2

4 .3 .5 Cristal 9 5

4 .3 .6 Desarrollo conducido por características |DCC| 9 5

4 .3 .7 Modelado ágil |MA) 9 7

4.4 Resumen 9 9

Referencias 100

Problemas y puntos a considerar 101

Otras lecturas y fuentes de información 102

PARTE DOS: PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE 103

CAPÍTULO 5 LA PRACTICA: UNA VISIÓN GENÉRICA 104

5.1 La práctica de la ingeniería del software 105
5.1.1 La esencia de la práctica 106

5 .1 .2 Principios esenciales 107

5 .2 Prácticas de comunicación 109

5 . 3 Prácticas de la planeación 1 1 3

5 .4 Práctica del modelado 116

TM

PDF Editor

CONTENIDO x i

5.4.1 Principios del modelado del análisis 117

5 .4 .2 Principios de modelado del diseño 119
5 .5 Práctica de la construcción 122

5.5.1 Principios y conceptos de codificación 123

5 .5 .2 Principios de las pruebas 124
5 .6 Despliegue 126

5.7 Resumen 128

Referencias 129

Problemas y puntos o considerar 130

Otras lecturas y fuentes de información 1 31

CAPÍTULO 6 INGENIERÍA DE SISTEMAS 133

6.1 Sistemas basados en computadora 134

6.2 La jerarquía de la ingeniería de sistemas 1 36

6.2.1 Modelado del sistema 137

6 .2 .2 Simulación del sistema 139

6 . 3 Ingeniería de procesos de negocios: una visión general 140

6 .4 Ingeniería de producto: una visión general 142

6 .5 Modelado del sistema 144

6.5.1 Modelado Hatley-Pirbhai 144

6 .5 .2 Modelado del sistema con UML 147
6 .6 Resumen 151

Referencias 152

Problemas y puntos a considerar 152

Otras lecturas y fuentes de información 153

CAPÍTULO 7 INGENIERÍA DE REQUISITOS 155

7.1 Un puente hacia el diseño y la construcción 156
7.2 Tareas de la ingeniería de requisitos 157

7.2.1 Inicio 158

7 .2 .2 Obtención 158

7 .2 .3 Elaboración 159

7 .2 .4 Negociación 160

7 .2 .5 Especificación 160

7 .2 .6 Validación 161

7 .2 .7 Gestión de requisitos 161

7 .3 Inicio del proceso de la ingeniería de requisitos 163

7.3.1 Identificación de los interesados 164

7 .3 .2 Reconocimiento de múltiples puntos de vista 164

7 .3 .3 Trabajo con respecto a la colaboración 164

7 .3 .4 Formulación de las primeras preguntas 165
7 .4 Obtención de requisitos 166

7.4.1 Recopilación conjunta de requisitos 167

7 .4 .2 Despliegue de la función de calidad 171

7 .4 .3 Escenarios del usuario 172

TM

PDF Editor

CONTENIDO

7 .4 .4 Productos de trabajo de la obtención 173

7 .5 Desarrollo de casos de uso 173

7 .6 Construcción del modelo de análisis 179

7.6.1 Elementos del modeb de análisis 179

7.6.2 Patrones de análisis I 8 3

7 .7 Negociación de requisitos 1 84

7.8 Validación de requisitos 186

7 .9 Resumen 186

Referencias 187

Problemas y puntos a considerar 1 88

Otras lecturas y fuentes de información 189

CAPÍTULO 8 MODELADO DEL ANÁLISIS X91

8.1 Análisis de requisitos 192
8.1.1 Filosofía y objetivos generales 193

8 .1 .2 Reglas prácticas de análisis 194

8 .1 .3 Análisis del dominio 194

8.2 Enfoques de modelado del análisis 196

8 .3 Conceptos del modelado de dalos 197

8.3.1 Objetos de datos 197

8.3.2 Atributos 198

8 .3 .3 Relaciones 199

8.3.4 Cardinalidad y modalidad 199

8 .4 Análisis orientado a objetos 201

8 .5 Modelado basado en escenarios 202

8.5.1 Escritura de casos de uso 202

8.5.2 Desarrollo de un diagrama de actividad 208

8 .5 .3 Diagramas de carril 2 0 9

8 .6 Modelado orientado al flujo 211
8.6.1 Creación de un modelo de flujo de datos 21 1

8.6.2 Creación de un modelo de control del flujo 2 1 4

8 .6 .3 Especificación de control 215

8 .6 .4 Especificación de proceso 2 1 7

8.7 Modelado basado en clases 2 1 9

8.7.1 Identificación de clases de análisis 219

8.7.2 Especificación de atributos 222

8 .7 .3 Definición de operaciones 2 2 3

8 .7 .4 Modelado de Clase-ResponsabilidadColaborador (CRC) 225

8 .7 .5 Asociaciones y dependencias 232

8 .7 .6 Paquetes de análisis 233

8.8 Creación de un modelo de comportamiento 234

8.8.1 Identificación de eventos con el caso de uso 235

8.8.2 Representaciones de estado 2 3 6

8 .9 Resumen 2 3 9

TM

PDF Editor

CONTENIDO

Referencias 241

Problemas y punios o considerar 241

Oirás lecturas y fuentes de información 2 4 3

CAPÍTULO 9 INGENIERÍA DEL DISEÑO 245

9.1 Diseño dentro del contexto de la ingeniería del software 2 4 7

9 .2 Proceso y calidad del diseño 2 4 9

9 .3 Conceptos del diseño 2 5 2
9.3.1 Abstracción 252
9 .3 .2 Arquitectura 2 5 3

9 .3 .3 Patrones 2 5 4
9 .3 .4 Modularidad 254
9 .3 .5 Ocultación de información 256

9 .3 .6 Independencia funcional 256

9 .3 .7 Refinamiento 257

9 .3 .8 Refabricación 258

9 .3 .9 Clases de diseño 2 5 9

9 .4 El modelo de diseño 262

9.4.1 Elementos del diseño de dolos 2 6 3

9 .4 .2 Elementos del diseño arquitectónico 264

9 .4 .3 Elementos de diseño de interfaz 264

9 .4 .4 Elementos de diseño ol nivel de componentes 2 6 6

9 .4 .5 Elementos de diseño al nivel del despliegue 2 6 7

9 .5 Diseño de software basado en patrones 2 6 9

9.5.1 Descripción de un patrón de diseño 269

9 .5 .2 Utilización de potrones en el diseño 2 7 0

9 .5 .3 Marcos de trabajo 2 7 0
9 . 6 Resumen 271

Referencias 2 7 2

Problemas y puntos a considerar 2 7 3

Otros lecturas y fuentes de información 2 7 3

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 275

10.1 Arquitectura del software 2 7 6

10.1.1 ¿Qué es lo arquitectura? 2 7 6

10.1.2 ¿Por qué es importante la arquitectura? 277

10.2 Diseño de datos 278

10.2.1 Diseño de datos ol nivel arquitectónico 278

10.2.2 Diseño de datos al nivel de componentes 279
10.3 Estilos y patrones arquitectónicos 280

10.3.1 Una breve taxonomía de estilos arquitectónicos 281

10.3.2 Patrones arquitectónicos 284

10.3.3 Organización y refinamiento 2 8 7
10.4 Diseño arquitectónico 2 8 7

10.4.1 Representación del sistemo en el contexto 288

TM

PDF Editor

r iv CONTENIDO

10.4.2 Definición de arquetipos 2 8 9

10.4.3 Refinamiento de la arquitectura en componentes 2 9 0

10.4.4 Descripción de la creación de instancias del sistema 2 9 2

10.5 Evaluación de diseños arquitectónicos alternos 294

10.5.1 Un método de análisis de compensación para la arquitectura 2 9 4

10.5.2 Complejidad arquitectónica 2 9 6

10.5.3 Lenguajes de descripción arquitectónica 2 9 6

10.6 Correlación del flujo de datos en una arquitectura del software 2 9 7

10.6.1 Flujo de transformación 2 9 7

10.6.2 Flujo de transacción 298

10.6.3 Correlación de transformaciones 299

10.6.4 Correlación de transacciones 3 0 6

10.6.5 Refinamiento del diseño arquitectónico 3 1 0

10.7 Resumen 311

Referencias 3 1 2
Problemas y puntos a considerar 312

Otras lecturas y fuentes de información 31 3

CAPÍTULO 11 DISEÑO AL NIVEL DE COMPONENTES 315

11.1 ¿Qué es un componente? 316

11.1.1 Concepto orientado a objetos 3 1 7

11.1.2 El concepto convencional 318

11.1.3 Un concepto relacionado con el proceso 321
11.2 Diseño de componentes basados en clases 322

11.2.1 Principios básicos de diseño 3 2 2

11.2.2 Líneas generales de diseño al nivel de componentes 325

11.2.3 Cohesión 3 2 7

11.2.4 Acoplamiento 3 2 9

11.3 Conducción del diseño al nivel de componentes 331

11.4 Lenguaje de restricción de objetos 3 3 7

1 1.5 Diseño de componentes convencionales 3 4 0

1 1.5.1 Notación gráfica del diseño 3 4 0

11.5.2 Notación tabular del diseño 342

11.5.3 Lenguaje de diseño de programas 3 4 3

11.5.4 Comparación entre notaciones de diseño 345

11.6 Resumen 3 4 6
Referencias 3 4 7

Problemas y puntos a considerar 347

Otras lecturas y fuentes de información 348

CAPÍTULO 12 DISEÑO DE LA INTERFAZ DE USUARIO 350

12.1 Las reglas de oro 351
12.1.1 Dar el control al usuario 351

12.1.2 Reducir la carga en la memoria del usuario 3 5 3

12.1.3 Lograr que la interfaz sea consistente 354

TM

PDF Editor

CONTENIDO x v

12.2 Análisis y diseño de la interfaz de usuario 356

12.2.1 Modelos del análisis y diseño de la interfaz 3 5 6

12.2.2 El proceso 358
12.3 Análisis de la interfaz 359

12.3.1 Análisis del usuario 3 6 0

12.3.2 Análisis y modelado de tareas 361

12.3.3 Análisis del contenido de la pantalla 3 6 7

12.3.4 Análisis del entorno de trabajo 3 6 7

12.4 Pasos del diseño de la interfaz 368

12.4.1 Aplicación de los pasos del diseño de lo interfaz 369

12.4.2 Patrones de diseño de la interfaz de usuario 371
12.4.3 Temas de diseño 372

12.5 Evaluación del diseño 3 7 7

12.6 Resumen 378

Referencias 3 7 9

Problemas y puntos a considerar 3 8 0

Otras lecturas'y fuentes de información 380

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 382

13.1 Un enfoque estratégico para la prueba del software 3 8 3
13.1.1 Verificación y validación 384

13.1.2 Organización para las pruebas del software 385

13.1.3 Estrategia de prueba para arquitecturas convencionales del software 3 8 6

13.1.4 Estrategia de prueba del software paro arquitecturas orientadas a objetos 388
1 3.1.5 Criterios para completar la prueba 3 8 9

13.2 Aspectos estratégicos 3 9 0

13.3 Estrategias de prueba para el software convencional 391

13.3.1 Prueba de unidad 392

13.3.2 Prueba de integración 3 9 4

13.4 Estrategias de prueba para software orientado a objetos 402

13.4.1 Prueba de unidad en el contexto orientado a objetos 4 0 2

13.4.2 Prueba de integración en el contexto orientado a objetos 4 0 3
13.5 Pruebas de validación 4 0 4

13.5.1 Criterios de la prueba de validación 4 0 4

1 3.5.2 Revisión de la configuración 4 0 5

13.5.3 Pruebas alfa y beta 4 0 5

13.6 Prueba del sistema 4 0 6

13.6.1 Prueba de recuperación 4 0 7

1 3 .6 .2 Prueba de seguridad 4 0 7

13.6.3 Prueba de resistencia 4 0 8

13.6.4 Prueba de desempeño 4 0 8

13.7 El arte de la depuración 4 0 9

13.7.1 El proceso de depuración 4 1 0

13.7.2 Consideraciones psicológicas 411

TM

PDF Editor

xvl CONTENIDO

13.7.3 Estrategias de depuración 4 1 2

13.7.4 Corrección del error 4 1 4

13.8 Resumen 415

Referencias 41 ó
Problemas y puntos a considerar 41Ó

Otras lecturas y fuentes de información 4 1 7

CAPÍTULO 14 TÉCNICAS DE PRUEBA DEL SOFTWARE 418

14.1 Fundamentos de las pruebas del software 4 1 9

14.2 Pruebas de caja negra y caja blanca 4 2 2

14.3 Pruebas de caja blanca 4 2 3

14.4 Prueba de la ruta básica 4 2 3
14.4.1 Notación de gráfica de flujo 4 2 3

14.4.2 Rutos independientes del programa 4 2 5

14.4.3 Derivación de casos de prueba 4 2 7

14.4.4 Matrices de gráficas 4 3 0

14.5 Pruebas de la estructura de control 4 3 0

14.5.1 Prueba de condición 431
14.5.2 Prueba del flujo de datos 431

14.5.3 Prueba de bucles 4 3 2

14.6 Pruebo de caja negra 41 3

14.6.1 Métodos gráficos de prueba 4 3 4

14.6.2 Partición equivalente 4 3 6

14.6.3 Análisis de valores límite 4 3 7

14.6.4 Prueba de tabla ortogonal 4 3 8

14.7 Métodos de pruebas orientadas a objetos 441
14.7.1 Implicaciones del concepto orientado a objetos en el diseño de casos de prueba 4 4 2

14.7.2 Aplicabilidad de métodos convencionales de diseño de casos de prueba 4 4 2

14.7.3 Prueba basada en fallas 4 4 3

14.7.4 Casos de prueba y jerarquía de clase 4 4 4

14.7.5 Prueba basada en escenarios 4 4 4

14.7.6 Estructuras de superficie y de fondo en pruebas 4 4 6

14.8 Métodos de pruebo aplicables al nivel de clase 4 4 7

14.8.1 Prueba aleatoria para clases orientadas a objetos 4 4 7

14.8.2 Prueba de partición al nivel de clase 448

14.9 Diseño de caso de prueba de interclase 4 4 9

14.9.1 Prueba de clases múltiples 4 4 9
14.9.2 Pruebas derivadas de modelos de comportamiento 451

14.10 Prueba de entornos especializados: arquitecturas y aplicaciones 4 5 2

14.10.1 Pruebas de interfaces gráficas de usuario 4 5 2

14.10.2 Prueba de arquitecturas diente/servidor 452
14.10.3 Prueba de la documentación y las funciones de ayuda 4 5 4

14.10.4 Prueba de sistemas de tiempo real 4 5 5

14.11 Patrones de prueba 4 5 6

TM

PDF Editor

CONTENIDO xvll

14.12 Resumen 4 5 7

Referencias 4 5 9

Problemas y puntos a considerar 4 5 9

Otras lecturas y fuentes de información 4 6 0

CAPÍTULO 15 MÉTRICAS DEL PRODUCTO PARA EL SOFTWARE 462

15.1 Calidad general 4 6 3

15.1.1 Factores de calidad de McCall 4 6 4

15.1.2 Factores de calidad del estándar ISO 9 1 2 6 4 6 5

15.1.3 La transición a un concepto cuantitativo 4 6 6

15.2 Un marco conceptual para las métricas del producto 4 6 7

15.2.1 Medidas, métricas e indicadores 4 6 7

15.2.2 El reto de las métricas del producto 468
15.2.3 Principios de medición 4 6 9

15.2.4 Medición del software orientado a objetivos 4 7 0

15.2.5 Los atributos de las métricas efectivas del software 471

15.2.6 Panorama de las métricas del producto 4 7 2

15.3 Métricas para el modelo de análisis 4 7 4

15.3.1 Métricas basadas en la función 4 7 4

15.3.2 Métricas para la calidad de la especificación 4 7 7

15.4 Métricas para el modelo de diseño 4 7 9

15.4.1 Métricas del diseño arquitectónico 4 7 9

15.4.2 Métricas para el diseño orientado a objetos 481

15.4.3 Métricas orientadas a clases: la colección de métricas de CK 4 8 3

15.4.4 Métricas orientadas a objetos: la colección de métricas para el diseño orientado
a objetos 4 8 6

15.4.5 Métricas orientadas a objetos propuestos por Lorenz y Kidd 4 8 7

15.4.6 Métricas de diseño al nivel de componentes 4 8 7

15.4.7 Métricas orientadas a la operación 491

15.4.8 Métricas de diseño de la interfaz de usuario 4 9 2
15.5 Métricas para el código fuente 493
15.6 Métricas para pruebas 4 9 4

15.6.1 Métricas de Halslead aplicadas a las pruebas 4 9 4

15.6.2 Métricas para pruebas orientadas a objetos 4 9 5

15.7 Métricas para el mantenimiento 4 9 6

15.8 Resumen 4 9 7

Referencias 4 9 7

Problemas y puntos a considerar 4 9 9

Otras lecturas y fuentes de información 5 0 0

PARTE TRES: APLICACIÓN DE LA INGENIERÍA WEB SOI

CAPÍTULO 16 INGENIERÍA WEB 502

16.1 Atributos de los sistemas y aplicaciones basados en W e b 5 0 4

16.2 Estratos de la Ingeniería de WebApp 5 0 7

TM

PDF Editor

xvlll CONTENIDO

16.2.1 Proceso 5 0 7

16.2.2 Métodos 5 0 7

16.2.3 Herramientas y tecnología 5 0 8

16.3 El proceso de ingeniería Web 5 0 8

16.3.1 Definición del marco de trabajo 5 0 9

16.3.2 Refinamiento del marco de trabajo 5 1 2

16.4 Mejores prácticas en ingeniería Web 5 1 2

16.5 Resumen 5 1 4
Referencias 5 1 5

Problemas y puntos a considerar 5 1 5

Otras lecturas y fuentes de información 5 1 6

CAPÍTULO 17 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 517

17.1 Formulación de sistemas basados en Web 5 1 8

17.1.1 Preguntas de formulación 5 1 9

17.1.2 Recopilación de requisitos para WebApps 5 2 0

17.1.3 El puente hacia el modelado de análisis 5 2 5
17.2 Planeación de proyectos de ingeniería Web 5 2 5

17.3 El equipo de ingeniería Web 5 2 6

17.3.1 Los actores 5 2 6

17.3.2 Construcción del equipo 5 2 8

17.4 Conflictos de gestión de proyecto para ingeniería Web 5 2 8

17.4.1 Planeación de WebApp: subcontratación 5 3 0

17.4.2 Planeación de WebApp: ingeniería Web en casa 5 3 3

17.5 Medición para ingeniería Web y WebApps 5 3 6

17.5.1 Mediciones para esfuerzo de ingeniería Web 5 3 7

17.5.2 Medición del valor de negocios 538

17.6 Las "peores prácticas" para proyectos WebApp 5 3 9
17.7 Resumen 5 4 0

Referencias 541

Problemas y puntos a considerar 542

Otras lecturas y fuentes de información 5 4 2

CAPÍTULO 18 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 544

18.1 Requisitos para el análisis de las WebApps 5 4 5

18.1.1 La jerarquía de usuario 5 4 6

18.1.2 Desarrollo de casos de uso 5 4 7

18.1.3 Afinación del modelo de caso de uso 5 4 9

18.2 El modelado de análisis para WebApps 5 5 0
18.3 El modelo de contenido 551

18.3.1 Definición de objetos de contenido 551

18.3.2 Relaciones y jerarquía de contenido 5 5 2

18.3.3 Clases de análisis para WebApps 5 5 3

18.4 El modelo de interacción 5 5 4

18.5 El modelo funcional 5 5 7

TM

PDF Editor

CONTENIDO x lx

18.6 El modelo de configuración 559

18.7 Análisis relación-navegación 5 5 9

18.7.1 Análisis de relaciones: preguntas clave 5 6 0

18.7.2 Análisis de navegación 561
18.8 Resumen 5 6 3

Referencias 5 6 3

Problemas y puntos a considerar 5 6 4

Otras lecturas y fuentes de información 564

CAPÍTULO 19 MODELADO DE DISEÑO PARA APLICACIONES WEB 566

19.1 Temas de diseño para ingeniería Web 5 6 7

19.1.1 Diseño y calidad de una WebApp 5 6 7

19.1.2 Metas de diseño 571

19.2 Pirámide del diseño IWeb 5 7 2

19.3 Diseño de la interfaz de la WebApp 5 7 3

19.3.1 Principios y directrices del diseño de la interfaz 5 7 4

19.3.2 Mecanismos de control de la interfaz 5 7 9

19.3.3 Flujo de trabajo en el diseño de la interfaz 5 8 0

19.4 Diseño estético 582

19.4.1 Cuestiones de la plantilla 5 8 2

19.4.2 Cuestiones de diseño gráfico 5 8 3
19.5 Diseño del contenido 5 8 4

19.5.1 Objetos de contenido 5 8 4

19.5.2 Cuestiones del diseño de contenido 585
19.6 Diseño arquitectónico 585

19.6.1 Arquitectura de contenido 5 8 6

19.6.2 Arquitectura de WebApp 588

19.7 Diseño de navegación 5 9 0

19.7.1 Semántica de navegación 591

19.7.2 Sintaxis de navegación 5 9 2

19.8 Diseño al nivel de componentes 5 9 3

19.9 Patrones de diseño hipermedia 5 9 4

19.10 Método de diseño hipermedia orientado a objetos (MDHOO] 5 9 5

19.10.1 Diseño conceptual para el MDHOO 595

19.10.2 Diseño de navegación mediante el MDHOO 5 9 6

19.10.3 Diseño abstracto de la interfaz e implementación 5 9 7

19.11 Métricas de diseño para WebApps 598

19.12 Resumen 5 9 9

Referencias 6 0 0

Problemas y puntos a considerar 6 0 2

Otras lectura y fuentes de información 6 0 3

CAPÍTULO 20 CÓMO PROBAR APLICACIONES WEB 6 0 4

20.1 Prueba de conceptos para WebApps 6 0 5

20.1.1 Dimensiones de calidad 6 0 5

TM

PDF Editor

CONTENIDO

20.1 .2 Errores dentro de un ambiente WebApp 6 0 6

20 .1 .3 Estrategias de pruebas 6 0 7

20 .1 .4 Planeación de los pruebas 608

20.2 El proceso de pruebo: un panorama 6 0 9

20 .3 Prueba del contenido 6 1 2

20.3.1 Objetivos de la prueba de contenido 6 1 2

20 .3 .2 Prueba de las bases de datos 6 1 3

20 .4 Prueba de la interfaz del usuario 6 1 6

20.4.1 Estrategia de pruebas de la interfaz 6 1 6

20 .4 .2 Prueba de mecanismos de la interfaz 6 1 7

20.4 .3 Prueba de la semántica de la interfaz 6 1 9

20 .4 .4 Prueba de la facilidad de uso 6 2 0

20 .4 .5 Pruebas de compatibilidad 622

20 .5 Prueba al nivel de componentes 6 2 3
20 .6 Pruebas de navegación 6 2 5

20.6.1 Prueba de la sintaxis de navegación 6 2 5

20 .6 .2 Prueba de la semántica de navegación 6 2 6

20 .7 Prueba de la configuración 628

20.7.1 Conflictos en el lado del servidor 6 2 8

20 .7 .2 Conflictos en el lado del cliente 6 2 9

20.8 Pruebas de seguridad 6 3 0

20.9 Pruebas del desempeño 631

20.9.1 Objetivos de las pruebas del desempeño 6 3 2

20 .9 .2 Pruebas de carga 6 3 3

20 .9 .3 Pruebas de tensión 6 3 3

2 0 . 1 0 Resumen 6 3 5

Referencias 6 3 6

Problemas y puntos a considerar 6 3 7

Otras lecturas y fuentes de información 6 3 8

PARTE CUATRO: GESTIÓN DE PROYECTOS DE SOFTWARE 639

CAPÍTULO 21 CONCEPTOS DE GESTIÓN DE PROYECTOS 640

21.1 El espectro de la gestión 641

21.1.1 El personal 641

21.1.2 El producto 6 4 2

21 .1 .3 El proceso 6 4 2

21.1.4 El proyecto 6 4 3

21.2 Personal

21.2.1 Los participantes 6 4 4

21 .2 .2 Líderes de equipo 6 4 4

21 .2 .3 El equipo de software 645

21 .2 .4 Equipos ágiles 6 4 9

21 .2 .5 Conflictos de coordinación y comunicación 6 5 0

21 .3 El producto 651

TM

PDF Editor

CONTENIDO xxi

21.3.1 Ámbito del software 651

21.3.2 Descomposición del problema 6 5 2

21 .4 El proceso

21.4.1 Combinación del producto y el proceso 6 5 3

21 .4 .2 Descomposición del proceso 6 5 4

21 .5 El proyecto 6 5 6

21 .6 El principio W5HH 6 5 7

2 1 . 7 Prácticas críticas 6 5 8

21.8 Resumen 6 5 9

Referencias 6 6 0

Problemas y puntos a considerar 6 6 0

Otras lecturas y fuentes de información 661

CAPÍTULO 22 MÉTRICAS DE PROCESO Y PROYECTO 663

22.1 Métricas en los dominios del proceso y el proyecto 6 6 4

22.1.1 Métricas del proceso y mejora del proceso de software 6 6 4

22 .1 .2 Métricas del proyecto 6 6 7

22.2 Medición del software 6 6 8

22.2.1 Métricas orientadas al tamaño 6 6 9

22.2.2 Métricas orientadas a la función 6 7 0

22.2 .3 Reconciliación de las métricas LDC y PF 671

22 .2 .4 Métricas orientadas a objetos 6 7 3

22 .2 .5 Métricas orientadas a casos de uso 6 7 4

22 .2 .6 Métricas de proyectos de ingeniería W e b 6 7 4

22 .3 Métricas para calidad del software 6 7 6

22.3.1 Medición de la calidad 6 7 7

22 .3 .2 Eficacia en la eliminación de defectos 678

22 .4 Integración de las métricas dentro del proceso de software 6 8 0

22.4.1 Argumentos para las métricas del software 6 8 0

22 .4 .2 Establecimiento de una línea base 681

22 .4 .3 Recopilación, cálculo y evaluación de métricas 6 8 2

22 .5 Métricas para organizaciones pequeñas 6 8 2

22 .6 Establecimiento de un programa de métricas de software 6 8 4

22 .7 Resumen 6 8 6

Referencias 6 8 7

Problemas y puntos a considerar 6 8 7

Otras lecturas y fuentes de información 6 8 8

CAPÍTULO 23 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 690

23.1 Observaciones acerca de la estimación 691

23 .2 El proceso de planificación del proceso 6 9 2

23 .3 Ámbito del software y factibilidad 6 9 3

23 .4 Recursos 6 9 4

23.4.1 Recursos humanos 6 9 5

23 .4 .2 Recursos de software reutilizables 6 9 5

TM

PDF Editor

xxii CONTENIDO

23 .4 .3 Recursos del entorno 6 9 6

23 .5 Estimación de proyectos de software 6 9 6

23 .6 Técnicas de descomposición 6 9 8

23.6.1 Tamaño del software 6 9 8

23 .6 .2 Estimación basada en el problema 6 9 9

23.6 .3 Un ejemplo de estimación basada en LDC 7 0 0

23.6.4 Un ejemplo de estimación basada en PF 7 0 2

23 .6 .5 Estimación basada en el proceso 704

23 .6 .6 Un ejemplo de estimación basada en el proceso 705

23 .6 .7 Estimación con casos de uso 7 0 5

23.6 .8 Un ejemplo de estimación basada en casos de uso 7 0 7

23 .6 .9 Reconciliación de estimaciones 708

23 .7 Modelos empíricos de estimación 7 0 9

23.7.1 La estructura de los modelos de estimación 7 1 0

23 .7 .2 El modelo C O C O M O II 7 1 0

23 .7 .3 La ecuación del software 7 1 2

23.8 Estimoción para proyectos orientados a objetos 7 1 3

23 .9 Técnicas de estimación especializadas 7 1 4

23.9.1 Estimación para desarrollo ágil 7 1 4

23 .9 .2 Estimación para proyectos de ingeniería Web 715

23 .10 La decisión desarrollar-comprar 2 1 7

23.10.1 Creación de un árbol de decisión 7 1 7

23 .10 .2 Subcontratación 718

23.11 Resumen 7 2 0

Referencias 721

Problemas y puntos a considerar 721

Otras lecturas y fuentes de información 7 2 2

CAPÍTULO 24 CALENDARIZACIÓN DE PROYECTOS DE SOFTWARE 724

24.1 Conceptos básicos 7 2 5

24.2 Calendarización de proyecto 7 2 7

24.2.1 Principios básicos 7 2 8

24.2.2 Relación entre el personal y el esfuerzo 7 2 9

24.2 .3 Distribución del esfuerzo 7 3 2

24 .3 Definición de un conjunto de tareas para el proyecto de software 7 3 2

24.3.1 Ejemplo de conjunto de tareas 7 3 3

24 .3 .2 Refinamiento de las tareas principales 7 3 4

24.4 Definición de uno red de tareas 7 3 5

24 .5 Calendarización 7 3 6

24.5.1 Cronogramas 7 3 8

24 .5 .2 Seguimiento de la calendarización 7 3 9

24 .5 .3 Seguimiento del progreso en un proyecto O O 741
24.6 Análisis del valor ganado 742

24 .7 Resumen 744

TM

PDF Editor

CONTENIDO xxlll

Referencias 7 4 4

Problemas y puntos a considerar 7 4 4

Otras lecturas y fuentes de información 7 4 6

CAPÍTULO 2 5 GESTIÓN DEL RIESGO 747

25.1 Estrategias de riesgo reactivas y proactivas 748

25 .2 Riesgos del software 7 4 9

2 5 . 3 Identificación de riesgos 7 5 0

25.3.1 Evaluación del riesgo global del proyecto 7 5 2

25 .3 .2 Componentes y controladores del riesgo 7 5 3

25 .4 Proyección del riesgo 7 5 4

25.4.1 Desarrollo de una tabla de riesgos 755

25 .4 .2 Evaluación del impacto del riesgo 7 5 7

25 .5 Refinamiento del riesgo 7 5 9

25 .6 Reducción, supervisión y gestión del riesgo 7 5 9

25 .7 El plan RSGR 7 6 3

25.8 Resumen 7 6 4

Referencias 7 6 4

Problemas y puntos a considerar 7 6 5

Otras lecturas y fuentes de información 765

CAPÍTULO 26 GESTIÓN DE LA CALIDAD 767

26.1 Conceptos de calidad 7 6 8

26.1.1 Calidad 7 6 9

26 .1 .2 Control de calidad 7 7 0

26.1 .3 Garantía de la calidad 7 7 0

26 .1 .4 Costo de la calidad 7 7 0

26 .2 Garantía de la calidad del software (SQA) 771

26.2.1 Algunos antecedentes 7 7 2

26 .2 .2 Actividades de SQA 7 7 3

2 6 . 3 Revisiones del software 7 7 4

26.3.1 Impacto de los defectos de software en el costo 7 7 5

26 .3 .2 Amplificación y eliminación del defecto 7 7 6

26 .4 Revisiones técnicas formales 778
26.4.1 La ¡unta de revisión 7 7 8

26 .4 .2 Informe de la revisión y conservación de registros 7 7 9

26 .4 .3 Directrices de la revisión 7 8 0

26 .4 .4 Revisiones basadas en muestras 781

26 .5 Enfoque formales acerca del SQA 7 8 3

26 .6 Garantía de la calidad estadística del software 7 8 3

26.6.1 Un ejemplo genérico 7 8 4

26 .6 .2 Seis sigma para ingeniería del software 7 8 5

26 .7 Fiabilidad del software 7 8 6

26.7 .1 Medidas de fiabilidad y disponibilidad 7 8 7

TM

PDF Editor

xx lv CONTENIDO

26.7.2 Seguridad del software 7 8 8

26.8 Los estándares de calidad ISO 9 0 0 0 7 8 9
26 .9 El plan de SQA 79]

26 .10 Resumen 792

Referencias 7 9 2

Problemas y puntos a considerar 7 9 3

Otras lecturas y fuentes de información 7 9 4

CAPÍTULO 27 GESTIÓN DEL CAMBIO 796

27.1 Gestión de la configuración del software 7 9 7

27.1.1 Un escenario de GCS 7 9 8

27 .1 .2 Elementos de un sistema de gestión de la configuración 7 9 9

27.1 .3 Líneas base 8 0 0

27 .1 .4 Elementos de configuración del software 801

27.2 El depósito de ECS 8 0 3

27.2.1 El papel de depósito 8 0 3

27.2.2 Características y contenidos generales 804

27.2 .3 Características de la GCS 805

27 .3 El proceso de GCS 8 0 6

27.3.1 Identificación de objetos en la configuración del software 8 0 7

27.3.2 Control de la versión 808

27.3 .3 Control del cambio 810

27.3 .4 Auditoría de la configuración 813

27.3 .5 Informe de estado 8 1 4

27 .4 Gestión de la configuración para ingeniería W e b 815

27.4.1 Problemas en la gestión de la configuración para WebApps 815

27.4.2 Objetos de configuración WebApp 8 1 7

27.4 .3 Gestión del contenido 817

27 .4 .4 Gestión del cambio 820

27.4 .5 Control de la versión 822

27 .4 .6 Auditoría y elaboración de informes 8 2 3

27 .5 Resumen 824

Referencias 825

Problemas y puntos a considerar 8 2 6

Otras lecturas y fuentes de información 827

PARTE CINCO: TEMAS AVANZADOS EN INGENIERIA DEL SOFTWARE 829

CAPÍTULO 28 MÉTODOS FORMALES 830

28.1 Conceptos básicos 831

28.1.1 Deficiencias de los enfoques menos formales 832

28 .1 .2 Matemáticas en el desarrollo de software 8 3 3

28.1 .3 Conceptos de métodos formales 8 3 3
28.2 Preliminares matemáticos 837

28.2.1 Conjuntos y especificación constructiva 8 3 7

TM

PDF Editor

CONTENIDO x x v

28.2 .2 Operaciones de conjuntos 838

28.2 .3 Operadores lógicos 8 4 0

28 .2 .4 Sucesiones 841

28 .3 Aplicación de la notación matemática para la especificación formal 842
28 .4 Lenguajes formales de especificación 844

28 .5 Lenguaje restringido a objetos (OCL) 845

28.5.1 Un breve panorama de la sintaxis y la semántica del OCL 845

28.5.2 Ejemplo de uso del OCL 8 4 7

28 .6 El lenguaje de especificación Z 8 4 9

28.6.1 Breve panorama de la sintaxis y semántica Z 8 4 9

28.6.2 Un ejemplo que utiliza Z 849

28 .7 Los diez mandamientos de los métodos formales 852

28.8 Métodos formales: el camino por recorrer 8 5 3

28 .9 Resumen 854

Referencias 855

Problemas y puntos a considerar 855

Otras lecturas y fuentes de información 8 5 6

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE DE SALA LIMPIA 858

29.1 El enfoque de sala limpia 8 5 9

29.1.1 La estrategia de sala limpia 8 6 0

29 .1 .2 ¿Qué hace diferente a la sala limpia? 862
29 .2 Especificación funcional 8 6 3

29.2.1 Especificación de caja negra 8 6 5

29 .2 .2 Especificación de caja de estado 8 6 6 •

29 .2 .3 Especificación de caja transparente 866

29 .3 Diseño de sala limpia 867

29.3.1 Refinamiento y verificación del diseño 8 6 7

29 .3 .2 Ventajas de la verificación del diseño 871

29 .4 Pruebas de sala limpia 872

29.4.1 Pruebas estadísticas de uso 8 7 3

29.4.2 Certificación 874

29 .5 Resumen 875

Referencias 876

Problemas y puntos a considerar 8 7 6

Otras lecturas y fuentes de información 8 7 7

CAPÍTULO 30 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 879

30.1 Ingeniería de sistemas basada en componentes 8 8 0

30.2 El proceso de ISBC 882

30 .3 Ingeniería del dominio 8 8 3

30.3.1 El proceso de análisis del dominio 8 8 3

30 .3 .2 Funciones de caracterización 884

30.3 .3 Modelado estructural y puntos de estructura 885

30.4 Desarrollo basado en componentes 886

TM

PDF Editor

xxvl CONTENIDO

30.4.1 Calificación, adaptación y composición de componentes 8 8 7

30 .4 .2 Ingeniería de componentes 8 9 0

30 .4 .3 Análisis y diseño para la reutilización 891

30 .5 Clasificación y recuperación de componentes 8 9 2

30.5.1 Descripción de los componentes reutilizables 892

30 .5 .2 El entorno de reutilización 8 9 4
30 .6 Economía de la ISBC 8 9 5

30.6.1 Impacto sobre la calidad, la productividad y el costo 8 9 6

30 .6 .2 Análisis de costo empleando puntos de estructura 8 9 7
30 .7 Resumen 898
Referencias 8 9 9

Problemas y puntos a considerar 9 0 0

Otras lecturas y fuentes de información 901

CAPÍTULO 31 RHNGENIERÍA 902

31.1 Reingeniería de procesos de negocio 9 0 3

31.1.1 Procesos de negocios 9 0 4

31 .1 .2 Un modelo de RPN 9 0 4

31.2 Reingeniería del software 9 0 6

31.2.1 Mantenimiento del software 9 0 7

31 .2 .2 Un modelo de procesos de reingeniería del software 9 0 8
31.3 Ingeniería inversa 9 1 2

31.3.1 Ingeniería inversa para comprender los datos 91 3

31 .3 .2 Ingeniería inversa para comprender el procesamiento 9 1 4

31.3 .3 Ingeniería inversa de interfaces de usuario 9 1 5
31.4 Reestructuración 9 1 6

31.4.1 Reestructuración del código 9 1 7

31 .4 .2 Reestructuración de los datos 9 1 7

31 .5 Ingeniería directa 9 1 8

31.5.1 Ingeniería directa para arquitecturas cliente/servidor 9 2 0

31 .5 .2 Ingeniería directa para arquitecturas orientadas a objetos 921

31 .5 .3 Ingeniería directa de interfaces de usuario 9 2 2

31 .6 La economía de la reingeniería 9 2 3
31 .7 Resumen 9 2 3

Referencias 9 2 4

Problemas y puntos a considerar 9 2 5

Otras lecturas y fuentes de información 9 2 6

CAPÍTULO 32 EL CAMINO POR RECORRER 927

32.1 La importancia del software. Segunda parte 928

32 .2 El ámbito del cambio 9 2 9

32 .3 Las personas y la forma en la que construyen sistemas 9 3 0

32.4 El "nuevo" proceso de ingeniería del software 931

32 .5 Nuevos modos de representar la información 9 3 3

32 .6 La tecnología como impulsor 9 3 5

TM

PDF Editor

CONTENIDO xxvií

32 .7 La responsabilidad de la ingeniería del soflware 9 3 6
32.8 Un comentario final 9 3 8

Referencias 9 3 9

Problemas y puntos a considerar 9 3 9
Otras lecturas y fuentes de información 9 4 0

índice analítico 943
Siglas más comunes en ingeniería del software 953

TM

PDF Editor

C A P Í T U L O

CONCEPTOS

CLAVE

o r o c t e r í s t i c a s

s o f t w a r e S

é i q & a c i ó n 8

mr*B$ d e f a l l a . . . 6

definición . " ¡ ¡ / ¿ ' r .

ie s o f t w a r e . 5

de te r io ro . . 6

evolución 1 2

historia 3

wi tos 1 4

r e t o s 1 1

s o f t w a r e

he r edado I I

S O F T W A R E E INGENIERÍA

DEL SOFTWARE

Es común darse cuenta que la invención de una tecnología puede tener
efectos profundos e inesperados en ot ras tecnologías con las que en apa-
riencia no tiene ninguna relación, como en empresas comerciales, en per-

sonas y aun en la cultura en su conjunto. Este f enómeno a menudo se denomina
"la ley de las consecuencias imprevistas".

En la actualidad, el software de computadora es la tecnología individual más im-
portante en el ámbito mundial. También es uno de los ejemplos principales de la
ley de las consecuencias imprevistas. Nadie en la década de 1950 podría haber pre-
dicho que el software se convertiría en una tecnología indispensable en los nego-
cios, la ciencia y la ingeniería; tampoco que el software permitiría la creación de
tecnologías nuevas (por ejemplo, la ingeniería genética), la expansión de tecnolo-
gías existentes (como las telecomunicaciones), el fin de tecnologías antiguas (co-
mo la industria de la impresión); que el software sería la fuerza conductora detrás
de la revolución de las computadoras personales; que los productos empaquetados
de software se podrían comprar en los centros comerciales; que una compañía de
software se volvería muy grande y más influyente que la mayoría de las compañías
de la era industrial; que una gran red construida con software llamada Internet cu-
briría y cambiaría todo, desde la investigación bibliográfica hasta las compras de
los consumidores y los hábitos diarios de los jóvenes (y no tan jóvenes).

Nadie podría haber previsto que el sof tware estaría relacionado con s is temas
de todo tipo: de transporte, médicos, de telecomunicaciones, militares, industria-
les, de en t r e t en imien to , m á q u i n a s pa ra oficina (la lista pa rece no t ene r fin).

¿ Q u é e s ? El software de computa-
dora es el producto que los ingenieros
de software construyen y después
mantienen en el largo plazo. Incluye
los programas que se ejecutan dentro

de una computadora de cualquier tamaño y arqui-
tectura, el contenido que se presenta conforme los
programas se ejecutan y los documentos, tanto fí-
sicos como virtuales, que engloban todas las for-
mas de medios electrónicos.

¿Quién lo h a c e ? Los ingenieros de software lo
construyen y lo mantienen, y casi todos en el mun-
do industrializado lo usan de manera directa o in-
directa.

¿Por q u é e s importante? Porque afecta de for-
ma muy cercana todos los aspectos de nuestras vi-
das y se ha vuelto omnipresente en el comercio, la
cultura y las actividades cotidianas.

¿Cuáles son los p a s o s ? El software de compu-
tadora se construye de la misma forma que cual-
quier producto de éxito: mediante la aplicación de
un proceso que conduzca a un resultado de alta
calidad que satisfaga las necesidades de la gente
que usará el producto. Se aplica un enfoque de in-
geniería del software.

¿Cuál e s el producto obten ido? Desde el pun-
to de vista del ingeniero de software, el producto
obtenido Jo forman los programas, el contenido
(datos) y los documentos que constituyen el softwa-
re. Pero desde el enfoque del usuario, el producto
obtenido es la información resultante que de algu-
na manera mejora el mundo del usuario.

¿Cómo pirado es tar s e g u r o d e q u e lo h e
hecho correctamente? Una manera es leer el
resto de este texto, seleccionar las ideas aplicables
a un software específico y aplicarlas.

1

TM

PDF Editor

2 CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

Y si se toma en cuenta la ley de las consecuencias imprevistas, hay muchos efectos
que todavía es imposible predecir en el t rabajo diario.

Por último, nadie podría haber predicho que millones de programas de compu-
tadora tendrían que corregirse, adaptarse y mejorarse conforme pasara el t iempo y
que la labor de desarrollar es tas actividades de "mantenimiento" absorbería m á s
gente y recursos que todo el t rabajo aplicado para la creación del sof tware nuevo.

y los descubrimientos tecnológicos son los elementos conductores del cri

A medida que la importancia del sof tware ha crecido, la comunidad del sof tware
ha intentado de manera continua desarrollar tecnologías que hagan más fácil, más
rápida y m e n o s cara la construcción y el manten imien to de p rogramas de compu-
tadora de alta calidad. Algunas de es tas tecnologías se limitan al dominio de una
aplicación específica (por ejemplo, al d iseño y la implementación de sitios Web);
otras se enfocan al dominio de una tecnología (como la programación orientada a
objetos y la programación orientada a aspectos); y existen ot ras con base general
(por ejemplo, s is temas operativos c o m o LINUX). Sin embargo, aún no se desarrolla
una tecnología de sof tware que lo haga todo, y la probabilidad de que ésta surja en
el futuro e s pequeña. Aun así, las personas dejan sus trabajos, su seguridad y hasta
sus vidas en manos del software de computadoras . Más vale que és te sea bueno.

Este texto presenta un marco para quienes construyen sof tware de computadora:
las personas que deben hacer buen software. El marco, que incluye un proceso, un
conjunto de métodos y una serie de herramientas se llama ingeniería del software.

— r - r ~ - — .J ingen ie r í a 05 r . - r - - — < • —

(eriales d e la vida humana , pa ra que así la vida sea más fácil, segura y placentera
Richard Fairley y M o r * !

CLAVE
El software es tanto un
producto como el vehícu-
lo para su entrega.

En la actualidad, el so f tware t iene un papel dual. Es, a la vez, un p roduc to y un
vehículo mediante el cual se entrega un producto. Como producto, ofrece la poten-
cia de cómputo presentada como hardware de una computadora o, de manera más
amplia, por una red de computadoras accesible mediante hardware local. Sin impor-
tar el lugar en que resida el software, ya sea en un celular o dentro de una compu-
tadora central, éste es un t ransformador de información; realiza la producción, el
manejo, la adquisición, la modificación, el despliegue o la transmisión de la informa-
ción que puede ser tan simple como un solo bit o tan compleja como una presenta-
ción multimedia. En su papel de vehículo para la entrega de un producto, el softwa-
re actúa como la base para el control de la computadora (sistemas operativos), la co-
municación de información (redes), y la creación y el control de otros programas
(utilerías de sof tware y ambientes).

TM

PDF Editor

CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE 3

(e o N S U f l ^

S se teñe tiempo, te-
am uno o más de es-
te iros clásicos.
Hágase atención en
ts indicciones erró-
mas que estos exper-
to hicieron en lo
oferente o eventos y
«nologias. Consérve-
se la humildad: nadie
sabe en realidad el fo-
to) de los sistemas
f í e s e construyen.

El sof tware entrega el producto m á s importante de nuestro tiempo: información.
Transforma los datos personales (por ejemplo, las t ransacciones financieras de un
individuo) de forma que los datos sean m á s útiles en un contexto local; maneja in-
formación de negocios para mejorar la c o m p e t i v i d a d ; proporciona una vía para las
redes de información alrededor del mundo (Internet) y proporciona los medios para
adquirir información en todas sus formas.

El papel del sof tware de computadora ha exper imentado un cambio significativo
en un periodo un poco mayor a 50 años. Las mejorías sustanciales en el desempeño
del hardware, los cambios profundos en las arquitecturas de cómputo, los enormes
incrementos en las capacidades de memoria y a lmacenamiento , y la amplia varie-
dad de opciones de salida y de entrada han propiciado el surgimiento de s is temas
más elaborados y complejos basados en computadoras .

Los libros populares publicados durante las décadas de 1970 y 1980 ofrecen una
amplia visión histórica de la cambiante percepción de las computadoras y del softwa-
re y su impacto en la cultura. Osborne [OSB79] describió una "nueva Revolución In-
dustrial". Toffler [TOFSO] llamó al surgimiento de la microelectrónica parte de "la ter-
cera ola del cambio" en la historia de la humanidad, y Naisbitt [NAI182] predijo la
transformación de una sociedad industrial en una "sociedad de la información". Fei-
genbaum y McCorduck [FEI83] sugirieron que la información y el conocimiento (con-
trolados por computadoras) serían el punto de enfoque para el poder en el siglo xxi, y
Stoll [STO89] argumentó que la "comunidad electrónica" creada por redes y software
era la clave del intercambio de conocimiento alrededor del mundo. Todos estos escri-
tores tenían razón.

Al comienzo de la década de 1990, Toffler [TOF90] describió un "cambio de po-
der" en el que todas las viejas estructuras (gubernamentales, educativas, industria-
les, económicas y militares) se desintegrarían a medida que las computadoras y el
sof tware condujeran a una "democratización del conocimiento". Yourdon [YOU92]
se preocupaba de que las compañías es tadounidenses pudieran perder su margen
competitivo en negocios relacionados con el software y predijo "la declinación y caí-
da del programador estadounidense". Hammer y Champy [HAM93] argumentaban que
las tecnologías de información representarían un papel primordial en la "reingenie-
ría de la corporación". A mediados de la década de 1990 la penetración de las compu-
tadoras y del sof tware provocó el surgimiento de una serie de libros de "neoluditas"
(como Resisting the Virtual Life, editado por James Brook y Iain Boal, y The Future Does
Not Compute, de Stephen Talbot). Estos autores sa tanizaban a la computadora al en-
fatizar inquietudes legítimas, pero ignorando los grandes beneficios que ya se habían
obtenido [LEV95],

" l o s computadoras facilitan la realización de muchas cosas, pero la mayoría de las cosas que fnatr ton no necesitan ho-

ftwfy Rooney

TM

PDF Editor

4 CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

(258339
Poto feeruncomwlo-
rio sobre as amplio
rengo de tópicos reb-
cionadoscor el soítwo-
•6 V»|ese

A finales de la década de 1990, Yourdon [YOU96] evaluó de nuevo a los candida-
tos a profesionales del sof tware y sugirió el "surgimiento y resurrección" del progra-
mador estadounidense. A medida que Internet cobraba mayor importancia, el giro
que había dado Yourdon parecía ser el correcto. Al finalizar el siglo xx, el enfoque
cambió nuevamente , esta vez con el impacto del Y2K, "bomba de t iempo" (por e jem-
plo [YOU98a], [KAR99]). Aunque las fatales predicciones de aquellos que vislumbra-
ban u n a catástrofe respecto al Y2K fueron falsas, sus populares escritos acarrearon
la permanencia del sof tware en la vida de los seres humanos .

Ya iniciado el nuevo siglo, Johnson [JOHOl] explicó el poder del "surgimiento" co-
mo un f enómeno que explica lo que sucede cuando interconexiones presen tes en
ent idades relativamente simples resultan en un s is tema que "se autoorganiza para
formar un comportamiento más adaptable e inteligente". Yourdon [YOUR02] re tomó
los trágicos sucesos ocurridos el 11 de septiembre de 2001 en Nueva York para ex-
plicar el impacto continuo del terrorismo global en la comunidad informática. Wol-
fram [WOL02] presentó un tratado sobre "un nuevo tipo de ciencia" en donde expone
una teoría unificadora basada sobre todo en elaboradas simulaciones de software. Da-
conta y sus colegas [DAC03] explicaron la evolución de la "red semántica", y cómo es-
to cambiará el modo en que la gente interactúa a través de las redes globales.

'Me introduje en et futuro, más alia de lo que el ojo humano puede ver. Tuve una visión del mundo y de todo lo
viiloso que podría ser."

En la actualidad una eno rme industria del sof tware se ha convertido en un factor
dominante en la economía del mundo industrializado. El programador solitario de la
era inicial ha sido sustituido por equipos de especialistas en software, en los que ca-
da uno se enfoca en u n a parte de la tecnología requerida para desarrollar u n a apli-
cación compleja. Hasta ahora, las preguntas formuladas al programador solitario
son las mismas que se hacen cuando se construyen los s is temas basados en compu-
tadoras modernas:1

• ¿Por qué tarda tanto la obtención del sof tware terminado?

• ¿Por qué son tan altos los costos de desarrollo del software?

• ¿Por qué e s imposible encontrar todos los errores en el sof tware an tes de en -
tregarlo a los clientes?

I En uri excelente libro de ensayos sobre el negocio del software, Tom DeMarco [DEM95] expone la
idea contraria. Explica: "En vez de cuestionarse por qué cuesta tanto el software, uno debe pregun-
tarse qué se ha hecho para hacer que hoy el software cueste tan poco. La respuesta a esa pregunta
ayudará a continuar con el extraordinario nivel de logros que siempre ha distinguido a la industria
del software".

TM

PDF Editor

CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE 5

• ¿Por qué se gastan tanto t iempo y esfuerzo en el mantenimiento de los pro-
g ramas existentes?

• ¿Por qué e s difícil medir el progreso al desarrollar y darle mantenimiento al
software?

Éstas y muchas otras preguntas demuest ran la preocupación de la industria por el
sof tware y por la manera en que éste se desarrolla; una preocupación que ha con-
ducido a la adopción de la práctica de la ingeniería del software.

A ¿Cómo debe
V d e f M r s e
el so f tware?

El software se
desarrolla, no
se manufactura.

\ CLAVE
B software no se
iesgosta, pero
se deteriora.

En 1970, menos del uno por ciento de las personas podrían haber definido lo que sig-
nificaba "software de computadora". En la actualidad, la mayoría de los profesionales
y muchos miembros del público creen que ent ienden el software. Pero, ¿en realidad
lo hacen?

Una definición de sof tware en un libro de texto puede tener la siguiente forma: el
software se forma con 1) las instrucciones (programas de computadora) que al ejecutar-
se proporcionan las características, funciones y el grado de desempeño deseados; 2) las
estructuras de datos que permiten que los programas manipulen información de mane-
ra adecuada; y 3) los documentos que describen la operación y el uso de los programas.
No existe duda de que se pueden encontrar definiciones m á s completas. Pero se re-
quiere m á s que una definición formal.

Para entender el sof tware (y la ingeniería del software), es importante examinar
las características que lo hacen diferente de otras cosas que construye el ser huma-
no. El sof tware es un e lemento lógico, en lugar de físico, de un sistema. Por lo tan-
to, el sof tware tiene características muy diferentes a las del hardware:

1. El software se desarrolla o construye; no se manufactura en el sentido clásico.

A pesar de que existen similitudes entre el desarrollo del sof tware y la m a n u -
factura del hardware, las dos actividades son diferentes en lo fundamental . En
ambas , la alta calidad se a lcanza por medio del buen diseño, pero la fase de
manufactura del hardware puede incluir problemas de calidad inexistentes (o
que son fáciles de corregir) en el software. Ambas actividades dependen de
las personas, pero la relación entre la gente utilizada y el t rabajo realizado es
diferente por completo (véase el capítulo 24). Ambas actividades requieren la
construcción de un "producto", pero los enfoques son diferentes. Los costos
del software se concentran en la ingeniería. Esto significa que los proyectos
de sof tware no se pueden mane ja r como si fueran proyectos de manufactura .

2. El software no se "desgasta".

En la figura 1.1 se muestra, para el hardware, la tasa de fallas como una fun-
ción del tiempo. La relación, l lamada a menudo "curva de la bañera", indica

TM

PDF Editor

Tiempo

^ C O N S E J O ^

Si se desea reduá el
deterioro del software,
es necesario realizar
un mejor diseño ((opí-
lalos 9-12).

CLAVE
Los métodos de la
ingeniería del software
pretenden reducir lo
magnitud de los picos
y lo pendiente de lo
curva real que se
muestra en la
figuro 1 .2 .

que el hardware t iene un número considerablemente alto de fallas al inicio de
su vida (a menudo és tas se atribuyen a defectos de diseño o manufactura) .
Después, los defectos se corrigen y la tasa de fallas baja hasta un nivel estable
(se desea que éste sea muy bajo) por algún periodo. Sin embargo, conforme
pasa el tiempo, la tasa de fallas se eleva de nuevo conforme los componentes
del hardware sufren los efectos acumulat ivos del polvo, la vibración, el abuso,
las tempera turas ext remas y muchos otros males ambientales. Expresado en
forma m á s simple, el hardware comienza a desgastarse.

El sof tware es inmune a los males ambientales que desgastan el hardware.
Por lo tanto, la curva de la tasa de fallas para el software debería tener la for-
ma de la "curva idealizada" que se muestra en la figura 1.2. Los defectos sin
descubrir causan tasas de falla al tas en las pr imeras e tapas de vida de un pro-
grama. Sin embargo, los errores se corrigen (en el mejor de los casos sin
agregar otros errores) y la curva se aplana como se muestra en la figura 1.2.
La curva idealizada e s una simplificación burda del modelo de fallas real para
el sof tware (para m á s información véase el capítulo 26). Sin embargo, la im-
plicación e s clara: el sof tware no se desgasta, pero sí se deteriora.

Esta contradicción aparente s e puede explicar de mejor manera si se consi-
dera la "curva real" de la figura 1.2. Durante su vida,2 el software experimenta
cambios. Conforme éstos ocurren se presenta la posibilidad de introducir
errores, lo que ocasiona que la curva de fallas tenga un pico, como se mues-
tra en la figura 1.2. Antes de que la curva pueda regresar a su estado original
con una tasa de fallas estable, se requiere otro cambio, lo que ocasiona que la

2 De hecho, desde el momento en que comienza el desarrollo, y mucho antes de que se entregue la
primera versión, el cliente puede solicitar cambios.

TM

PDF Editor

CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE 7

Curvas de
tedia para
el software.

Tiempo

Curva idealizada

Corva real

curva tenga otro pico. De esta manera , el nivel de fallas mínimo se comienza
a elevar; el sof tware se deteriora debido a los cambios.

Otro aspecto del desgaste ilustra la diferencia entre el hardware y el soft-

Ln or arte del W 3 r e ' C u a n d o u n c o r n P o n e n t e d e l hardware se desgasta se sustituye con un
sofíwore <rón se cons- repuesto. Pero en el sof tware no existen repuestos. Cualquier falla del sof twa-
troye a lo medida del r e implica un error en el diseño o el proceso mediante el cual se pasó del disé-
c e n t e . ño al código máquina ejecutable. Por lo tanto, el mantenimiento del sof tware

implica de manera considerable una complejidad mayor que el del hardware.

3 . A pesar de que la industria tiene una tendencia hacia la construcción por compo-
nentes, la mayoría del software aún se construye a la medida.

Considérese la forma en que se diseña y construye un hardware de control
para un producto de cómputo. El ingeniero de diseño dibuja un esquema sim-
ple del sistema de circuitos digital, realiza algunos análisis fundamenta les pa-
ra asegurarse de que el diseño realizará las funciones apropiadas y después
busca en los catálogos de componen tes digitales cada circuito integrado de
acuerdo con un número de parte, una función definida y validada, una interfaz
bien definida y un conjunto estandarizado de directrices de integración. Una
vez seleccionado cada componente , puede solicitársele para después ensam-

blarlo.
Cuando una disciplina de ingeniería evoluciona se crea una colección de

diseños es tándar de componentes . Los tomillos y los circuitos integrados son
sólo dos ejemplos de los miles de componentes es tándar que utilizan los in-
genieros mecánicos y eléctricos al diseñar s is temas nuevos. Los componen tes
reutilizables se han creado para que el ingeniero se pueda concentrar en los

TM

PDF Editor

8 CAPITULO 1 S O F T W A R E E INGENIERÍA DEL S O F T W A R E

elementos que en realidad son innovadores en el diseño; e s decir, en las par-
tes que representan algo nuevo. En el mundo del hardware, la reutilización de
componen tes e s u n a par te natural del proceso de ingeniería. En el ámbi to del
software, dicha actividad apenas se ha comenzado a extender.

" l o s ideas son los bloques d e construcción d e los ideas."
, H Jason Zebehazy

Un componen te de sof tware se debe diseñar e implementar de forma que
pueda utilizarse en muchos programas diferentes. Los componen tes reutiliza-
bles modernos encapsulan tanto los datos como el proceso que se aplica a és-
tos, lo que permite al ingeniero de sof tware crear aplicaciones nuevas a partir
de par tes reutilizables.3 Por ejemplo, las interfaces actuales con el usuario se
construyen con componen tes reutilizables que permiten la creación de venta-
nas gráficas, m e n ú s desplegables y una amplia variedad de mecanismos de
interacción. Las estructuras de datos y los detalles de procesamiento requeri-
dos para construir la interfaz están contenidos en u n a librería de componen-
tes reutilizables para la construcción de la interfaz.

1 . 3 L a n a t u r a l e z a c a m b i a n t e d e l s o f t w a r e

En la actualidad existen siete grandes categorías del sof tware de computadora que
presentan retos cont inuos para los ingenieros de software.

S o f t w a r e d e s i s t e m a s . El sof tware de s is temas e s u n a colección de programas
escritos para servir a otros programas. Algunos programas de s is temas (como los
compiladores, editores y utilerías para la administración de archivos) procesan es-
tructuras de información complejas pero determinadas.4 Otras aplicaciones de siste-
m a s (por ejemplo, componen tes del sistema operativo, controladores, sof tware de
red, procesadores para telecomunicaciones) procesan datos indeterminados. En ca-
da caso, el área de sof twáre de s is temas se caracteriza por u n a interacción muy in-
tensa con el hardware de la computadora; utilización por múltiples usuarios; opera-
ción concurrente que requiere la gestión de itinerarios, de compartición de recursos,
y de procesos sofisticados; estructuras de datos complejas y múltiples interfaces ex-
temas .

Sof tware d e apl icac ión. El sof tware de aplicación consiste en programas inde-
pendientes que resuelven una necesidad de negocios específica. Las aplicaciones en

3 La ingeniería del software basado en componentes se presenta en el capítulo 30.
4 El software es determinado si el orden y el ritmo de las entradas, el procesamiento y las salidas son

predecibles. El software es indeterminado si el orden y el ritmo de las entradas, el procesamiento y
las salidas no se pueden predecir.

TM

PDF Editor

CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE 9

esta área procesan datos empresariales o técnicos de forma que facilitan las opera-
ciones de negocios o la toma de decisiones técnicas o de gestión. Además del pro-
cesamiento de datos convencional, el software de aplicación se utiliza para controlar
las funciones de negocios en tiempo real (por ejemplo, el procesamiento de transac-
ciones en los puntos de venta y el control de procesos de manufactura en tiempo
real.)

Software científ ico y d e ingeniería. El software científico y de ingeniería, que se
caracterizaba por algoritmos "devoradores de números", abarca desde la astronomía
hasta la vulcanología, desde el análisis de la tensión automotriz hasta la dinámica
orbital de los transbordadores espaciales, y desde la biología molecular hasta la ma-
nufactura automatizada. Sin embargo, las aplicaciones modernas dentro del área
científica y de ingeniería se alejan en la actualidad de los algoritmos numéricos con-
vencionales. El diseño asistido por computadora, la simulación de sistemas y otras
aplicaciones interactivas han comenzado a tomar características de software en
tiempo real e incluso de software de sistemas.

Software emportado. El software emportado reside dentro de la memoria de sólo
lectura del sistema y con él se implementan y controlan características y funciones
para el usuario final y el sistema mismo. El software incrustado puede desempeñar
funciones limitadas y curiosas (como el control del teclado de un horno de microon-
das) o proporcionar capacidades de control y funcionamiento significativas (por
ejemplo, las funciones digitales de un automóvil, como el control de combustible, el
despliegue de datos en el tablero, los sistemas de frenado, etcétera).

Software d e línea de productos. El software de línea de productos, diseñado pa-
ra proporcionar una capacidad específica y la utilización de muchos clientes diferen-
tes, se puede enfocar en un nicho de mercado limitado (como en los productos para
el control de inventarios) o dirigirse hacia los mercados masivos (por ejemplo, apli-
caciones de procesadores de palabras, hojas de cálculo, gráficas por computadora,
multimedia, entretenimiento, manejo de bases de datos, administración de personal
y finanzas en los negocios).

Aplicaciones basadas e n Web. Las "WebApps" engloban un espectro amplio de
aplicaciones. En su forma más simple, las WebApps son apenas un poco más que un
conjunto de archivos de hipertexto ligados que presenta información mediante texto
y algunas gráficas. Sin embargo, a medida que el comercio electrónico y las aplica-
ciones B2B adquieren mayor importancia, las WebApps evolucionan hacia ambientes
computacionales sofisticados que no sólo proporcionan características, funciones de
cómputo y contenidos independientes al usuario final, sino que están integradas con
bases de datos corporativas y aplicaciones de negocios.

Software de inteligencia artificial. Este software utiliza algoritmos no numéri-
cos en la resolución de problemas complejos que es imposible abordar por medio de
un análisis directo. Las aplicaciones dentro de esta área incluyen la robótica, los sis-

TM

PDF Editor

10 CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

t emas expertos, el reconocimiento de patrones (imagen y voz), las redes neuronales
artificiales, la comprobación de teoremas y los juegos en computadora .

"No existe una computadora que tenga sentido común."
Marvin Minsky

Existen millones de ingenieros de software que trabajan duro en una o más de estas ca-
tegorías. En algunos casos se construyen sistemas nuevos, pero en otros las aplicacio-
nes existentes se corrigen, adaptan y mejoran. Es común ver a un joven ingeniero de
software que trabaja en programas más viejos que él mismo. Las generaciones pasadas
de creadores de sof tware han dejado un legado en cada una de las categorías que se
han definido párrafos atrás. Se espera que el legado de la generación actual facilite
la tarea de los ingenieros de software del futuro. No obstante, en el horizonte han
aparecido retos nuevos:

C o m p u t a c i ó n u b i c u a . El crecimiento rápido de las redes inalámbricas podría
conducir pronto a la verdadera computación distribuida. El reto para los ingenieros
de software será desarrollar software de sistema y de aplicación que permita que dis-
positivos pequeños, computadoras personales y s is temas de empresa se comuni-
quen a través de grandes redes.

A l i m e n t a c i ó n d e la r e d . La World Wide Web se convierte con rapidez en un dis-
positivo computacional , así como en un proveedor de contenido. El reto para los in-
genieros de software es crear aplicaciones simples (por ejemplo, planeación de las
finanzas personales) y complejas que beneficien a mercados de usuarios finales es-
pecíficos alrededor del mundo.

"No siempre es posible predecir, pero siempre es posible prepararse."
Anónimo

: , .I... i;v..;;ivrf;vKMî W

F u e n t e a b i e r t a . Existe una tendencia creciente que impulsa la distribución del có-
digo fuente para aplicaciones de sistemas (como sistemas operativos, bases de datos
y ambientes de desarrollo) de forma que los clientes hagan modificaciones locales.
El reto para los ingenieros de software es construir un código fuente que sea descrip-
tivo en sí mismo, pero, aún más importante, desarrollar técnicas que permitan tan-
to a los clientes como a los diseñadores conocer los cambios realizados y la forma
en que se manifiestan dentro del software.

La " n u e v a e c o n o m í a " . La locura del punto-com que se af ianzó en los mercados
financieros hacia finales de la década de 1990 y la subsiguiente ruptura en los pri-
meros años del siglo xxi ha llevado a mucha gente de negocios a creer que la nueva
economía está muerta. La nueva economía está viva y saludable, pero evolucionará
con lentitud; la caracterizará la comunicación y la distribución masiva. Andy Lipp-
m a n [L1P02J puntualiza esta situación cuando escribe:

TM

PDF Editor

CAPÍTULO 1 SOFTWARE E INGENIERÍA D a SOFTWARE 11

Estamos entrando en una era caracterizada por las comunicaciones entre las máquinas dis-
tribuidas y la gente dispersa, en lugar de la que define una conexión entre dos individuos o
entre un individuo y una máquina. El antiguo enfoque de la telefonía se refiere a "conexio-
nes con"; la siguiente ola se refiere a "conexiones entre". Por mencionar algunos ejemplos,
se tiene Napster, la mensajería instantánea, los sistemas de mensaje cortos y las BlackBe-
rries.

El reto para los ingenieros de software e s construir aplicaciones que faciliten la comu-
nicación y la distribución de productos en masa mediante productos apenas en forma-
ción.

Cada uno de estos "nuevos retos" obedecerá sin duda la ley de las consecuencias
imprevistas y tendrán efectos (para la gente de negocios, los ingenieros de sof tware
y los usuarios finales) que no pueden predecirse en la actualidad. Sin embargo, los
ingenieros de sof tware se pueden preparar al iniciar un proceso que tenga la sufi-
ciente agilidad y adaptabilidad c o m o para acoplarse a los cambios drásticos en la
tecnología y las reglas de negocios que con seguridad se presentarán en la década
siguiente.

t í a] computadora por sí misma hará una transición histórica de algo que se usa pora tareas anal í t icas . . . o algo que
puede provocar emociones."

David Vaskevitch

M 4 SOFTWARE H S R E P A P P

Existen cientos de miles de programas de computadora y todos pertenecen a uno de
los siete grandes dominios de aplicación —software de sistemas, sof tware de aplica-

•
¿Qué es el c ¡ón, sof tware científico y de ingeniería, sof tware empotrado, sof tware de producto,
software WebApps y aplicaciones IA— que se expusieron en la sección 1.3. Algunos de estos

heredado? p rogramas son de vanguardia —sólo divulgados entre ciertas personas, industrias y
gobiernos—, pero otros son más viejos, y en algunos casos mucho más viejos.

Estos programas viejos —con frecuencia referidos como software heredado— han
sido el foco de atención y preocupación continua desde la década de 1960. Dayani-
Fard y sus colegas [DAY99] describen el sof tware heredado de la siguiente forma:

Los sistemas de software heredado... fueron desarrollados hace décadas y han sido mo-
dificados en forma continua para cumplir los requerimientos de los cambios en los nego-
cios y en las plataformas de cómputo. La proliferación de dichos sistemas ha causado
dolores de cabeza a las grandes organizaciones, las cuales los perciben como costosos en
su mantenimiento y riesgosos en su evolución.

Liu y sus colegas (LIU98) extendieron esta descripción al escribir que "muchos siste-
mas heredados persisten como el soporte de las funciones centrales de negocios y
son indispensables para las empresas" . Por lo tanto, al sof tware heredado lo carac-
terizan. su longevidad y el ser crítico para los negocios.

TM

PDF Editor

12 CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

1.4.1 Calidad del software heredado
¿Qué se de-

* be hacer si
se tiene un
software hereda-
do con poca cali-
dad?

f ¿Cuáles son
• los tipos de

cambios que se
realizan sobre
el software
heredado?

^ O N S E J O ^

Cualquier ingeniero de
software debe recono-
ce! que el cambio es
natural. No debe in-
tentar combatirlo.

Por desgracia, existe una característica adicional que tal vez esté presente en el soft-
ware heredado: poca calidad.5 Algunas veces, los sistemas heredados tienen diseños
imposibles de extender, código complicado, documentación escasa o inexistente, ca-
sos de prueba y resultados que nunca fueron archivados, un historial de cambio ma-
nejado con pobreza, etcétera; la lista podría seguir hasta tener una longitud consi-
derable. No obstante, estos sistemas son el soporte de "las funciones centrales de
negocios y son indispensables para las empresas" [LIU98]. ¿Qué se puede hacer?

La única respuesta razonable podría ser no hacer nada, al menos hasta que el sis-
tema heredado experimente algún cambio significativo. Pero si satisface las necesi-
dades de sus usuarios y funciona de manera confiable, el sistema no está roto y no
requiere arreglos. Sin embargo, conforme pasa el tiempo, los sistemas heredados
evolucionan por una o más de las razones siguientes:

• El software debe adaptarse para satisfacer las necesidades de los nuevos am-
bientes o las nuevas tecnologías de cómputo.

• El software debe mejorarse para implementar los nuevos requerimientos de
los negocios.

• El software debe extenderse para hacerlo operable con sistemas y bases de
datos más modernos.

• El software debe rediseñarse para hacerlo viable dentro de un ambiente de red.

Cuando suceden estas formas de evolución en un software heredado, éste debe so-
meterse a una reingeniería (capítulo 31) de modo que conserve su viabilidad en el
futuro. La meta de la ingeniería de software moderna es "imaginar metodologías que
se basen en la noción de la evolución"; esto es, la noción de que "los sistemas de
software cambian de manera continua, los nuevos sistemas de software se constru-
yen a partir de los viejos, y... todos deben interactuar y cooperar con los demás"
[DAY99].

1.4.2 Evolución del software

El software de computadora evoluciona a través del tiempo, sin importar su dominio
de aplicación, tamaño o complejidad. El cambio (que con frecuencia es llamado
mantenimiento del software) conduce este proceso, y se presenta cuando se corrigen
errores, cuando el software se adapta a un nuevo ambiente, cuando el cliente soli-
cita características o funciones nuevas, y cuando la aplicación experimenta una rein-
geniería para proporcionar beneficios en un contexto moderno. Sam Williams
[WIL02] refiere esta situación cuando escribe:

5 En este caso, la calidad se juzga con base en el pensamiento moderno de la ingeniería del softwa-
re, que en cierto modo es un criterio injusto, puesto que algunos conceptos y principios modernos
de la ingeniería del software aún no habían sido bien entendidos cuando se desarrolló el software
heredado.

TM

PDF Editor

CAPITULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE 13

Debido a que los programas a gran escala como Windows y Solaris se expanden bien en
el intervalo de 30 a 50 millones de líneas de código, los administradores de proyecto exi-
tosos han aprendido a dedicar tanto t iempo a combinar los enredos de nuestro código he-
redado como a agregar código nuevo. Para decirlo de manera más simple, en una década
en la que el desempeño promedio del microchip de PC se incrementó cien veces, la inca-
pacidad de escalar el sof tware incluso a tasas lineales ha pasado de un pequeño secreto
a una enorme alteración en toda la industria.

En los últimos 30 años, Manny Lehman [LEH97a] y sus colegas han analizado en
forma detallada la industria del software y los sistemas en un esfuerzo dirigido a de-
sarrollar una teoría unificada para la evolución del software. Los detalles de dicho tra-
bajo superan el enfoque del presente texto,6 pero las leyes subyacentes derivadas de
su estudio son dignas de destacarse [LEH97b]:

La ley de l c a m b i o c o n t i n u o (1974) . Los sistemas de tipo electrónico7 deben
adaptarse en forma continua, de lo contrario se volverán menos satisfactorios a tra-
vés del tiempo.

La ley d e la c o m p l e j i d a d c r e c i e n t e (1974) . Cuando un sistema de tipo elec-
trónico está en evolución, su complejidad se incrementa a menos que se realice el
trabajo necesario para mantenerla o reducirla.

La ley d e la a u t o r r e g u l a c i ó n (1974) . El proceso de evolución de un sistema de
tipo electrónico se autorregula con la distribución del producto y las mediciones del
proceso cercanas a la normal.

La ley d e la c o n s e r v a c i ó n d e la e s t ab i l i dad o rgan izac iona l (1980) . La tasa
de actividad global efectiva promedio en un sistema de tipo electrónico en evolución
no varía a lo largo del periodo de vida del producto.

La ley d e la c o n s e r v a c i ó n d e la fami l ia r idad (1980) . Cuando un sistema de
tipo electrónico está en evolución y se quiere tener un desarrollo satisfactorio, todos
los involucrados con el sistema, como los desarrolladores, el personal de ventas y los
usuarios, deben mantener el dominio sobre su contenido y comportamiento. El cre-
cimiento excesivo disminuye ese dominio. Por tanto, el crecimiento promedio per-
manece sin cambio durante la evolución del sistema.

La ley de l c r e c i m i e n t o c o n t i n u o (1980) . El contenido funcional de los siste-
mas de tipo electrónico debe incrementarse en forma continua para mantener la sa-
tisfacción del usuario a lo largo del periodo de vida del sistema.

La ley d e la ca l idad d e c r e c i e n t e (1996) . La calidad de los sistemas de tipo
electrónico parecerá declinar a menos que éstos se mantengan y adapten en forma
rigurosa de acuerdo con los cambios en su ambiente operacional.

6 Para una clara explicación de la evolución del software, el lector interesado puede revisar [LEH97a],
7 Los sistemas de tipo electrónico son programas de software que han sido implementados en un con-

texto computacional del mundo real y que, por tanto, evolucionarán a través del tiempo.

TM

PDF Editor

14 CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

La ley del s i s t e m a de retroal imentac ión (1 9 9 6) . Los procesos de evolución de
los sistemas de tipo electrónico constituyen sistemas de retroalimentación con niveles,
ciclos y agentes múltiples, y deben tratarse de forma que se obtengan mejorías signifi-

cativas sobre cualquier base razonable.

Las leyes que Lehman y sus colegas han definido son una par te inherente de la
realidad de un ingeniero de software. En lo sucesivo, en este texto se discutirán mo-
delos para el proceso del software, métodos de ingeniería de sof tware y técnicas de
gestión que pretenden mantener la calidad del sof tware mientras éste se encuentra

en evolución.

1 . 5 M I T O S DKL S O F T W A R E

Los mitos del software —creencias acerca del sof tware y de los procesos empleados
para construirlo— se pueden rastrear hasta los primeros días de la computación. Los
mitos t ienen ciertos atributos que los convierten en insidiosos. Por ejemplo, los mi-
tos parecen una relación de hechos razonables (algunas veces contienen e lementos
verdaderos), se observan de manera intuitiva, y con frecuencia los promulgan prac-
t icantes experimentados, quienes "conocen el terreno".

"En ausencia de normas significativas, una industria nueva como el software suele c epender d e los costumbres."
Tom D e M a r c o

R e f e r e n c i a W e b

Lo red de administrado-
res de proyectos de
soflwore puede ayudor
a leiminar con éstos y
otros mitos. Dicho red
se puede encontrar en
w w w . s p m n . c o n i .

En la actualidad, la mayoría de los profesionales reconocidos en la ingeniería del
sof tware identifican los mitos en su real dimensión: actitudes equivocadas que han
causado problemas serios a los administradores y al personal técnico por igual. Sin
embargo, las ant iguas actitudes y viejos hábitos son difíciles de modificar, por lo que

aún subsisten creencias falsas sobre el software.

Mi to s d e la a d m i n i s t r a c i ó n . Los administradores con responsabilidades sobre el
software, al igual que sus pares en la mayoría de las disciplinas, a menudo están ba-
jo presión por mantener los presupuestos, evitar que los itinerarios se extiendan y
mejorar la calidad. De la misma forma que una persona a pun to de ahogarse se afe-
rra a un tronco, con frecuencia el administrador del software se aferra a un mito si
siente que esta creencia reducirá la presión (aun en forma temporal).

Mito: Ya se tiene un libro lleno de estándares y procedimientos para la cons
trucción de software. ¿Esto proporcionará a mi gente todo el conocimien-
to necesario?

R e a l i d a d : Tal vez sea verdad que el libro de es tándares existe, pero ¿se usa? ¿Los
encargados de la construcción del software saben de su existencia?
¿El libro refleja la práctica moderna de la ingeniería del software? ¿Es-
tá completo? ¿Es adaptable? ¿Está dirigido al mejoramiento del tiem-

TM

PDF Editor

http://www.spmn.coni

CAPÍTULO 1 SOFTWARE E INGENIERIA DEL SOFTWARE 15

£ c o n s c j o £ .

i- resano trabajar
É w para entender
m se debe hacer an-
e s de comenzar. In
xtsunes no es posí
xúesarrollar todos
o detalles, pero en-
r; tws se sepa, me-
xr es el riesgo que se

po de entrega sin dejar de enfocarse en la calidad? En muchos casos
la respuesta a todas estas preguntas es no.

Mito: Si se está atrasado en el itinerario es posible contratar más programado-
res para así terminar a tiempo (algunas veces llamado el concepto de la
horda mongola).

Realidad: El desarrollo de software no es un proceso mecánico como la manu-
factura. En palabras de Brooks [BR075]: "Agregar gente a un proyec-
to de software atrasado lo atrasa más". De inicio, este enunciado po-
dría parecer contrario a la intuición. Sin embargo, cuando se agregan
nuevos integrantes a un equipo la gente que ya estaba trabajando de-
be invertir tiempo en la enseñanza a los recién llegados, lo cual redu-
ce el tiempo dedicado al esfuerzo para el desarrollo productivo. Se
puede agregar gente, pero sólo de una manera planeada y bien coor-
dinada.

Mito: Si decido subcontratar el proyecto de software a un tercero, puedo rela-
jarme y dejar que esa compañía lo construya.

Realidad: Si una organización no entiende cómo administrar y controlar inter-
namente los proyectos de software, de manera invariable entrará en
conflicto al subcontratar este tipo de proyectos.

Mitos del cliente. El cliente que solicita un software de computadora puede ser la
persona del escritorio de al lado, un grupo técnico en el piso de abajo, el departa-
mento de ventas o de mercadotecnia, o una compañía externa que ha solicitado el
software bajo contrato. En muchos casos, el cliente cree en mitos acerca del softwa-
re porque los profesionales y administradores del software hacen muy poco para co-
rregir la desinformación. Los mitos conducen a expectativas falsas (del cliente) y en
definitiva a insatisfacción con el desarrollador.

Mito: Un enunciado general de los objetivos es suficiente para comenzar a es-
cribir programas; los detalles se pueden afinar después.

Realidad: A pesar de que no siempre es factible que el enunciado de los reque-
rimientos sea comprensible y estable, un enunciado ambiguo de los
objetivos es la receta perfecta para el desastre. Los requerimientos
precisos (los cuales se derivan usualmente en forma iterativa) se de-
sarrollan sólo mediante la comunicación continua y efectiva entre el
cliente y el desarrollador.

Mito: Los requerimientos del proyecto cambian de manera continua, pero el
cambio puede ajustarse con facilidad porque el software es flexible.

Realidad: Es verdad que los requerimientos del software cambian, pero el im-
pacto del cambio varía de acuerdo con el momento en que éste se in-
troduce. Cuando los cambios en los requerimientos se solicitan en

TM

PDF Editor

16 C A P Í T U L O 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

^ C O N S E J O ^

Siempre que se pien-
se que no hay tiempo
paro lo ingeniería del
software, se debe
considerar si habrá
tiempo pora hacerlo
todo de nuevo.

etapas tempranas (antes de iniciar con el diseño o el código), el im-
pacto en el costo e s relativamente pequeño. 8 Sin embargo, conforme
pasa el tiempo, el impacto en el costo crece con rapidez —se han dis-
tribuido los recursos, se ha establecido un marco general para el dise-
ño— y el cambio puede provocar una convulsión que requiera recur-
sos adicionales y una modificación significativa en el diseño.

Mi to s d e l desarrol lado!" . Los mitos que aún subsisten entre los desabol ladores
del sof tware han permanecido a través de 50 años de cultura de programación. Du-
rante los primeros años del software, la programación era vista como una forma de
arte; por ello, las viejas formas y actitudes son difíciles de eliminar.

Mito: Una vez que el programa ha sido escrito y puesto a funcionar, el trabajo
está terminado.

Rea l idad : Alguien dijo alguna vez que entre m á s rápido se comience a escribir
código, más tiempo pasará para que el programa esté terminado. Los
datos de la industria indican que entre 60 y 80 por ciento de todo el
esfuerzo aplicado en el software se realizará después de que el siste-
ma haya sido entregado al cliente por primera vez.

Mito: Mientras el programa no se esté ejecutando, no existe forma de evaluar
su calidad.

R e a l i d a d : Uno de los mecan i smos m á s efectivos para el aseguramiento de la ca-
lidad del software se puede aplicar desde el inicio de un proyecto: la
revisión técnica formal. Las revisiones al software (descritas en el capí-
tulo 26) son un "filtro de calidad" que han probado ser más efectivas
que las pruebas para encontrar ciertas clases de errores en el software.

Mito: El único producto del trabajo que puede entregarse para tener un proyec-
to exitoso es el programa en funcionamiento.

Rea l idad : Un programa en funcionamiento es sólo una parte de la configuración
del sof tware que incluye muchos elementos. La documentación pro-
porciona un fundamento para la ingeniería exitosa y, aún más impor-
tante, representa una guía para el mantenimiento del software.

Mi to : La ingeniería del software obligará a emprender la creación de una docu-
mentación voluminosa e innecesaria y de manera invariable tornará más
lento el proceso.

Rea l idad : La ingeniería del sof tware no se refiere a la elaboración de documen-
tos. Está relacionada con la creación de calidad. Una mejor calidad

8 Muchos ingenieros de software han adoptado un enfoque "ágil" que adapta los cambios en forma
incremental, con lo que se controla su impacto y costo. Los métodos ágiles se exponen en el capí-
tulo 4.

TM

PDF Editor

CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE 17

conduce a la reducción de los trabajos redundantes. Y una menor can-
tidad de trabajos redundantes resulta en menores tiempos de entrega.

Muchos profesionales de los sistemas reconocen la falacia de los mitos del soft-
ware. Por el contrario, las actitudes y los métodos habituales conducen a adoptar
malas prácticas administrativas y técnicas, a pesar de que la realidad exige un me-
jor enfoque. El reconocimiento de las realidades del software es el primer paso ha-
cia la formulación de soluciones prácticas para la ingeniería del software.

Cualquier proyecto de software se inicia por alguna necesidad de negocios: la nece-
sidad de corregir un defecto en una aplicación existente; el imperativo de adaptar un
sistema heredado a un ambiente de negocios cambiante; el requerimiento de exten-
der las funciones y características de una aplicación existente; o la necesidad de
crear un producto, servicio o sistema nuevos.

Con frecuencia, en el inicio de un proyecto de ingeniería del software la necesi-
dad de negocios se expresa de manera informal durante una simple conversación.
En el recuadro que está abajo se presenta una conversación típica.

Con excepción de una referencia pasajera, el software no se mencionó durante la
conversación. Aun así, el software hará la diferencia en el futuro de la línea de pro-
ductos HogarSeguro. El mercado aceptará el producto sólo si el software incrustado
en él satisface de manera apropiada las necesidades del cliente (que aún no ha sido
definido). En los capítulos subsecuentes se dará seguimiento a la ingeniería del soft-
ware en HogarSeguro.

HOGARSEGURO9

Cómo se inicia un proyecto
1

La escena: Sala de ¡untas en CPI
, una compañía (ficticia! que fabrica productos de

«erjumo para uso comercial y doméstico.

Los actores: Mal Golden, gerente general, desarrollo de pro-
3 . re ; lisa Pérez, gerente de mercadotecnia; tee Warren, geren-
* de ingeniería; Joe Camalleri, vicepresidente ejecutivo, desarrollo
-e negocios. j

La conversación:

Joe: Dime Lee, ¿de qué se trata ese asunto que escuché? ¿Tu equi-
po está desarrollando un qué? ¿Una caja inalámbrica genérica
universal? * -

Lee: Es genial, como del tamaño de una caja de cerillos, se pue-
de conectar a sensores de todos los tipos, una cámara digital, CO-
SÍ a cualquier cosa. Usando el protocolo 802.1 Ib inalámbrico.

9 El proyecto HogarSeguro se usará a lo largo de este texto para ilustrar los trabajos internos de un
equipo de proyecto, mientras éste construye un producto de software. La compañía, el proyecto y
las personas son ficticios, pero las situaciones y los problemas son reales.

TM

PDF Editor

18 CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

Nos permite tener acceso a lo salida del dispositivo sin usar ca-
bles. Pensamos que nos llevará a una nueva generación de pro-
ductos, , • ' ' ¡ 'y ' ,, , f l i • .

Joe: ¿Estás de acuerdo, Mal?

Mol; Sí. De hecho, por las ventas tan irregulares que ha habido
este año, necesitamos algo nuevo. Lisa y yo hemos estado hacien-
do una pequeña investigación de mercado, y pensamos que te-
nemos una línea de productos que podría llegar a ser grande.

Joe: ¿Qué tan grande? ¿Como para ser una línea básica?

Atol (evitando un compromiso directa): Dile de nuestra
idea, Lisa.

Lisa: Es toda una nueva generación de lo que llamamos "pro-
ductos para la administración doméstica". Los llamamos HogarSe-
gtiro. Utilizan la nueva interfase inalámbrica, proporcionan a los
usuarios domésticos o dueños de negocios pequeños un sistema
que se controla con su PC: seguridad en el hogar, vigilancia de la

casa, control de aparatos e instrumentos. Tú sabes, apagar el aire
acondicionado de tu casa mientras estas manejando, y ese tipo de
cosos • f ' ^

Lee (interrumpiendo): Ingeniería hizo un estudio de factibi-
lidad de esta idea, Joe. Se puede realizar a un bajo costo de ma-
nufactura. La mayor parte del hardware lo tenemos en existencia.
El software es un asunto por resolver, pero nada que no podamos
hacer.

Joe : Interesante. Ahora, pregunté sobre la línea básica.

Mal: Las PC han penetrado el 60 por ciento de los hogares en
Estados Unidos. Si logramos ponerle el precio adecuado a esta
cosa, podría ser una aplicación demoledora. Nadie más tiene
nuestra caja inalámbrica; nos pertenece. Tendremos una ventajo
dedos años sobre la competencia. ¿Ganancias? Podrían ser en-
tre 30 y 40 millones de dólares en el segundo año.

Joe (sonriendo): Vamos a llevar esto al siguiente nivel. Estoy
interesado.

1 . 7 R E S U M E N

El software se ha convertido en el elemento clave de la evolución de los sistemas y
productos basados en computadoras, así como en una de las tecnologías más impor-
tantes en el ámbito mundial. En los pasados 50 años, el software ha evolucionado des-
de ser una herramienta para la solución de problemas especializados y el análisis de
información, hasta convertirse en una industria por sí mismo. Todavía se tienen pro-
blemas al desarrollar software de alta calidad a tiempo y dentro del presupuesto. El
software —programas, datos y documentos— se dirige a un amplio espectro de tecno-
logías y áreas de aplicación. En la actualidad el software evoluciona de acuerdo con
un conjunto de leyes que han permanecido inalteradas a lo largo de 30 años. La in-
tención de la ingeniería del software es proporcionar un marco general para cons-
truir software con una calidad mucho mayor.

R E F E R E N C I A S
[BR0751 Brooks, F., The Mythical Man~Month, Addison-Wesley, 1995.
|DAC03] Daconta, M„ L. Obrst y K. Smith, The Semantic Web, Wiley, 2003.
IDAY99] Dayani-Fard, H. el al., "Legacy Software Systems: Issues, Progress, and Challenges",

IBM Technical Report: TR-74. 165-k, abril de 1999, disponible en h t tp : / /www.cas . ibm.com/
toronto/publicat ions/TR-74.165/k/legacy.html.

IDEM951 DeMarco, T„ Why Does Software Cosí So Much?, Dorset House, 1995.
|FEI83|Feigenbaum, E. A. y P. McCorduck, The Fifth Generation, Addison-Wesley, 1983.
IHAM93] Hammer, M. y J. Champy, Recingineering the Corporation, HarperCollins Publishers,

1993.

TM

PDF Editor

http://www.cas.ibm.com/

CAPÍTULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE 19

[JOHO1] Johnson, S., Emergence: The Connected Uves ofAnts, Brains, Cities and Software, Scrib-
ner, 2 0 0 1 .

[KAR99] Karlson, E. y J. Kolber, A Basic Introduction to Y2K. How theyear 2000 Computer Crisis
Affects YOU, Next Era Publications, Inc, 1999.

[LEH97a] Lehman, M y L. Belady, Program Evolution: Processes of Software Change, Academic
Press, 1997.

[LEH97b] Lehman, M. eí al., "Metrics and Laws of Sof tware Evolution—The Nineties View", en
Proceedings of the 4th International Software Metrics Symposium (METRICS '97), IEEE, 1997,
puede descargarse de h t tp : / /www.ece .u texas .edu /~per iy /work /papers / feas t l .pdf .

[LEV95] Levy, S., "The Luddites Are Back", en Newsweek, 12 de julio de 1995, p. 55.
[LIP02] Lippman, A., "Round 2.0", en Context Magazine, agos to de 2002, h t tp : / /www.con tex t -

mag .com/ .
[LIU98] Liu, K. eí al., "Report on the First SEBPC Workshop on Legacy Systems", Durham Uni-

versity, febrero de 1998, disponible en h t t p : / /www.du r . a c . uk /CSM/SABA/ l egacy -wksp l /
report.html.

[OSB79) Osborne, A., Running Wild—The Next Industrial Revolution, Osborne/McGraw-Hil l ,
1979.

[NAI821 Naisbitt,)., Megatrends, Warner Books, 1982.
[STO891 Stoll, C., The Cuckoo's Egg, Doubleday, 1989.
|TOF80|Tof(ler, A., The Third Wave, Morrow Publishers, 1980.
[TOF90] Toffler, A. Powershift, Bantam Publishers, 1990.
[WIL02] Williams, S., "A Unified Theory of Software Evolution", en salon.com, 2002. h t tp : / /www.

sa lón .com/ tech / fea tu re /2002 /04 /08 / l ehman/ index .h tml .
[WOL02] Wolfram, S., A New Kind of Science, Wolfram Media, Inc., 2002.
[YOU92] Yourdon, E., The Decline and Fall of the American Programmer, Yourdon Press, 1992.
IYOU96] Yourdon, E., The Rise and Resurrection of the American Programmer, Yourdon Press,

1996.
|YOU98a] Yourdon, E. y J. Yourdon, Time Bomb 2000, Prentice-Hall, 1998.
[YOU98b] Yourdon, E., Death March Projects, Prentice-Hall, 1999.
[YQU02] Yourdon, E., Byte Wars, Prentice-Hall, 2002.

1 .1 . Encontrar al m e n o s cinco e jemplos adicionales de la mane ra en que la ley de las conse-
cuencias imprevistas se aplica al software de computadora.

1 .2 . Encontrar a lgunos ejemplos (positivos y negativos) que indiquen el impacto del sof tware
en la sociedad actual. Revisar una de las referencias anteriores a 1990 en la sección 1.1, e indi-
car las predicciones del au tor que resul taron correctas , asi como las que fueron er róneas .

1.3. Desarrollar sus propias respuestas a las preguntas formuladas en la sección 1.1. Debátan-
se con los compañeros de clase.

1.4. ¿La definición de software que se presenta en la sección 1.2 se aplica a los sitios Web? Si la
respuesta es afirmativa, indicar la sutil diferencia entre un sitio Web y el sof tware convencional.

1 .5 . Muchas aplicaciones modernas cambian f recuentemente (antes de presentar las al usua-
rio final y después de que se empieza a utilizar la primera versión). Sugiéranse a lgunas formas
de construir sof tware para detener el deterioro debido al cambio.

1.6 . Cons idérense las s ie te categor ías p r e sen t adas en la sección 1.3. ¿Es posible aplicar el
mismo enfoque de la ingeniería del so f tware a cada una de ellas? Explicar la respuesta .

1 .7 . Seleccionar a lguno de los nuevos re tos menc ionados en la sección 1.3 (o algún desaf ío
aún más nuevo que pudiera haber surgido desde la impresión de es te texto) y escribir un docu-
mento de una cuartilla que describa la tecnología y los retos que representa para los ingenieros
de software.

TM

PDF Editor

http://www.ece.utexas.edu/~periy/work/papers/feastl.pdf
http://www.dur.ac.uk/CSM/SABA/legacy-wkspl/
http://www

20 CAPITULO 1 SOFTWARE E INGENIERÍA DEL SOFTWARE

1 .8 . Describir con pa labras p rop ias la ley de la conservación de la estabilidad organizacional
(sección 1.4.2).

1 .9 . Describir con pa labras propias la ley de la conservación de la familiaridad (sección 1.4.2.).

1.10. Describir con palabras propias la ley de la calidad decreciente (sección 1.4.2,).

1 . 1 1 . A medida que la presencia del so f tware se vuelve m á s general izada, los riesgos al públi-
co (debido a las fallas e n los programas) representan una preocupación significativa y crecien-
te. Desarrol lar un escenar io ca tas t róf ico realista en el que la falla de un p rog rama de compu-
tadora podría producir un gran daño (ya s ea económico o humano) .

1 . 1 2 . Examinar con a tenc ión al g rupo de not icias de Internet comp.r isk y p repa ra r un resu-
men de los riesgos al público que se han discutido rec ientemente . Fuente alternativa: Software
Engineering Note publicada por la ACM.

O T R A S L E C T U R A S Y F U E N T E S DE I N F O R M A C I Ó N 1 0

Existen miles de libros que tratan sobre el sof tware de computadora . La inmensa mayoría dis-
cute los lenguajes de programación o las aplicaciones del software, pero muy pocos tratan del
sof tware en sí mismo. Pressman y Herrón (Software Shock, Dorset House, 1991) presentan uno
de los primeros debates (dirigidos al público en general) del sof tware y de la forma en que los
profesionales lo construyen. El libro m á s vendido de Negroponte (Being Digital, Alfred A. Knopf,
Inc., 1995) ofrece u n a visión de la computación y su impacto global e n el siglo xxi. DeMarco
[DEM95] ha escrito una colección de ensayos divertidos y profundos acerca del sof tware y del
proceso a través del cual éste se desarrolla. Los libros de Norman (The Invisible Computer, MIT
Press, 1998) y Bergman (Information Appliances and Beyond, Academic Press/Morgan Kauf-
mann , 2000) sugieren que el impacto extendido de las PC disminuirá conforme los ins t rumen-
tos de información y la computación omnipresente conecten a todos en el mundo industrializado
y casi cualquier "aparato" que se posea esté conectado a una nueva infraestructura de Internet.

Minasi (The Software Conspiracy: Why Software Companies Put Out Faulty Products, How They
Can Hurt You, and What You Can Do, McGraw-Hill, 2000) a rgumentaba que la "plaga moderna"
de las impurezas del sof tware se puede eliminar y sugiere formas de lograrlo. Compaine (Digi-
tal Divide: Facing a Crisis or Creating a Myth, MIT Press, 2001) escribe que la "brecha" entre aque-
llos que tienen acceso a los recursos de información (como la Web) y los que no lo t ienen se es-
tá reduciendo conforme avanza la primera década del presente siglo.

En Internet existe u n a amplia variedad de fuentes de información sobre tópicos relacionados
con el sof tware y su administración. Asimismo, en nues t ro sitio web se puede encontrar una lis-
ta actualizada de recursos en la red que son relevantes para el estudio del software:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

10 La sección Otras lecturas yfuentes de información que se presenta al final de cada capítulo ofrece un
breve panorama de las fuentes impresas que pueden ayudarle a aumentar su comprensión de los
temas principales presentados en este capítulo. Hemos creado un sitio de internet muy extenso para
apoyar Ingeniería del sojbvare: un enfoque práctico en http:/ /www.mhhe.com/pressman. Entre los
muchos tópicos incluidos se encuentran referencias capítulo por capítulo sobre ingeniería del soft-
ware existentes en la red que complementan del material presentado en cada capitulo. Con estas
referencias se proporciona un enlace con Amazon.com para localizar los libros que se mencionan
en cada sección.

TM

PDF Editor

http://www.mhhe.com/pressman

P A R T E

Uno
EL PROCESO

DEL SOFTWARE

En esta parte de Ingeniería del software• un enfoque práctico se
estudiará el proceso que proporciona un marco de trabajo
para la práctica de la ingeniería del software. En los capítu-

los siguientes se responden estas preguntas:

• ¿Qué es un proceso de software?

• ¿Cuáles son las actividades del marco general presentes en
todos los procesos del software?

• ¿Cómo se modelan los procesos y cuáles son los patrones del
proceso?

• ¿Cuáles son los modelos de proceso prescriptivo y cuáles son
sus fortalezas y debilidades?

• ¿Cuáles son las características de los modelos incrementales
que los hacen idóneos para los proyectos modernos de soft-
ware?

• ¿Qué es el proceso unificado?

• ¿Por qué la "agilidad" es un lema en el trabajo de la ingeniería
moderna del software? í v

• ¿Qué es el desarrollo ágil del software y cómo difiere de los
modelos de proceso más tradicionales?

Cuando se respondan estas preguntas se estará mejor prepara-
do para entender el contexto en el cual se aplica la práctica de la
ingeniería del software.

21

TM

PDF Editor

C A P I T U L O

EL P R O C E S O :
UNA VISIÓN GENERAL

C O N C E P T O S

C L A V E

actividades
sombrilla 2 8

conjunto
d e t a r e a s 2 7

evaluación
del proceso 3 6

IMCM 2 9

ISO 9 0 0 1 : 2 0 0 0 . 3 8

marco de t rabajo
del proceso 2 4

pa t rones
del procesa 3 4

PSE . 4 0

PSP 3 9

tecnología
del proceso 4 2

E |n un fasc inante libro que of rece la visión de un economis ta sobre el s o ñ
w a r e y la ingeniería del sof tware , Howard Baetjer, Jr. [BAE981 c o m e n t a s o
bre el proceso del sof tware :

Debido a q u e el so f tware , c o m o cualquier capital, e s conoc imien to mater ia l izado , y

d a d o q u e el conoc imien to en u n inicio e s disperso, tácito, la ten te y e n g r an med ida

incompleto , el desarrol lo del s o f t w a r e e s u n p r o c e s o de ap rend i za j e social. El p r o c e s o

e s u n diálogo e n el cual el conoc imien to q u e el s o f t w a r e debe convert ir s e con jun ta y

se mater ia l iza e n e s t e úl t imo. El p roceso proporc iona interacción en t re los u s u a r i o s

y l a s h e r r a m i e n t a s e n e v o l u c i ó n , y e n t r e l o s d i s e ñ a d o r e s y s u s h e r r a m i e n t a s

[tecnología]. Es un proceso i terat ivo e n el que la he r r amien t a en evolución sirve c o m o

u n m e d i o pa ra la comunicac ión , en el cual c a d a nueva e t a p a del d iá logo logra ob te -

n e r m á s conoc imien to útil de las p e r s o n a s implicadas.

De hecho , la const rucción del so f tware de compu tado ra es un p roceso itera
tivo de aprendiza je , y el resultado, a lgo que Baetjer l lamaría "el capital del soft
ware", e s u n a mater ia l ización del conoc imien to recolectado, depu rado y orga
n izado c o n f o r m e el p roceso es tuvo e n ejecución.

¿ Q u é e s ? Cuando se trabaja para
construir un producto o sistema es im-
portante seguir una serie de pasos pre-
decibtes: una especie de mapa de ca-
rreteras que ayude a crear un resultado

de alta calidad y a tiempo. El mapa de carreteras
que debe seguirse se llama proceso de software.

¿ Q u i é n l o h a c e ? Los ingenieros de software
y sus jefes adaptan el proceso a sus necesidades y
después lo siguen. Además, la gente que ha so-
licitado el software tiene una función qué de-
sempeñar en el proceso de definirlo, construirlo
y probarlo. sí

¿Por q u é e s i m p o r t a n t e ? Porque ofrece esta
bilidad, control y organización a una actividad
que puede volverse caótica si no se controla. Sin
e m b a r g a un enfoque de ingeniería del software
moderno debe ser "ágil". Debe requerir sólo
aquellas actividades, controles y documentacio-
nes apropiados para el equipo del proyecto y el
producto que ha de producirse.

¿Cuáles son los p a s o s ? En detalle, el proceso que
se adopte depende del software que se está cons-
truyendo. Un proceso puede ser apropiado para
crear un software para un sistema de aeronáutica,
mientras que un proceso distinto por completo sería
el indicado para la creación de un sitio Web.

¿Cuál e s el producto obtenido? Desde el
punto de vista del ingeniero de software, los
productos obtenidos son los programas, docu-
mentos y datos que se producen como conse-
cuencia de las actividades y tareas definidas

• por el proceso.
¿Cómo puedo estar seguro de que lo he

h e c h o correc tamente? Existen muchos meca-
nismos de evaluación del proceso de software que
permiten a las organizaciones determinar la "ma-
durez" del proceso de software. No obstante, la
calidad, el tiempo requerido, la viabilidad a largo
plazo del producto que se construye son los mejo-
res indicadores de la eficacia del proceso que se
utiliza. |

22

TM

PDF Editor

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 23

Pero, ¿qué e s con exact i tud un p r o c e s o d e s o f t w a r e d e s d e un p u n t o d e vista téc-

nico? Dent ro del con tex to d e e s t e libro, un proceso de software s e de f ine c o m o un
m a r c o d e t r aba jo p a r a las t a r ea s q u e s e requ ie ren en la cons t rucc ión de s o f t w a r e de
alta calidad. ¿El p r o c e s o e s un s i n ó n i m o d e ingenier ía del so f tware? La r e spues t a e s
sí y no . Un p r o c e s o d e s o f t w a r e de f ine el e n f o q u e q u e se a d o p t a m i e n t r a s el s o f t w a -
re es tá en desarrol lo . Pero la ingenier ía del s o f t w a r e t a m b i é n a b a r c a las t ecno log ías
que requiere el p r o c e s o (mé todos t écn icos y h e r r a m i e n t a s a u t o m a t i z a d a s) .

Aún m á s impor t an te e s q u e la ingenier ía del s o f t w a r e la rea l izan p e r s o n a s
c rea t ivas y con c o n o c i m i e n t o q u e d e b e n t r aba ja r en un p roceso d e s o f t w a r e m a d u -
ro que sea a p r o p i a d o p a r a el p roduc to que cons t ruyen y p a r a las d e m a n d a s de s u s
m e r c a d o s .

2 . 1 I N G E N I E R Í A DEL S O F T W A R E : U N A T E C N O L O G Í A E S T R A T I F I C A D A

A p e s a r de q u e c i en tos de a u t o r e s h a n def in ido en fo rma individual la ingeniería del
software, la def inición q u e p r o p u s o Fritz Bauer [NAU69] e n u n a confe renc ia f u n d a -

m e n t a l sob re la mate r i a aún s e p u e d e utilizar c o m o b a s e p a r a el deba te :

[La ingeniería del so f tware es] el es tablecimiento y uso de principios sólidos de la ingenie-

ría pa ra obtener e c o n ó m i c a m e n t e un sof tware confiable y que funcione de m o d o eficien-
te en máqu inas reales.

Casi cualquier lector s e sentirá t en tado a s u m a r o t ras ideas a es ta definición. Dice po-

co sobre los aspec tos técnicos de la calidad del sof tware; no s e refiere de m a n e r a di-
recta a la neces idad d e sat isfacer al cl iente o al t i empo d e en t rega d e un producto; omi-
te menc ionar la importancia de la medición y la métrica; n o es tablece la importancia
de un p roceso efectivo. No obstante , la definición d e Bauer o f rece una idea básica.
¿Cuáles son "los principios sólidos de la ingeniería" que p u e d e n aplicarse en el desa-
rrollo del so f tware d e compu tadora? ¿De q u é m a n e r a s e const ruye "económicamente"

un so f tware "confiable"? ¿Qué se requiere para crear p r o g r a m a s de c o m p u t a d o r a que
funcionen "de m a n e r a eficiente" n o sólo en una , s ino en varias "máqu inas reales" dife-
rentes? Estas in te r rogantes cont inúan s i endo un reto para los ingenieros d e sof tware .

"Más q u e u n a disciplina o un cuerpo de conocimiento, la ingenier ía e s un verbo, una p a l a b r a d e acción, u n a m a n e r a
de a b o r d a r un p r o b l e m a . "

Scott Whí t ra i re

El IEEE [IEE93] ha e l a b o r a d o u n a definición m á s comprens ib l e al es tab lecer :

Ingeniería del software: I) La aplicación de un enfoque sistemático, disciplinado y cuanti-
ficable al desarrollo, operación y mantenimiento del software; es decir, la aplicación de la
ingeniería al software. 2) El estudio de enfoques como en 1).

Y aun así, lo q u e e s "sistemático, disciplinado" y "cuantificable" p a r a un equipo de soft-
ware , p u e d e se r g r a v o s o p a r a otro. Se requ ie re de disciplina, pe ro t ambién d e a d a p -
tabilidad y agil idad.

A ¿ C ó m o s e
* d e f í n e l a

w software?

TM

PDF Editor

24 PAKTE UNO EL PROCESO DEL SOFTWARE

E s t r a t o s d e l a
i n g e n i e r í a d e
s o f t w a r e .

CLAVE
La ingeniería del
software abarca un
proteso, métodos y
herramientas.

C r o s s M e s u n o

w w w . s t s c
hiH.af.mil.

La ingenier ía del s o f t w a r e e s una tecnología es t ra t i f icada . C o m o se m u e s t r a en la
figura 2.1, cua lqu ie r e n f o q u e d e la ingenier ía (incluido el de la ingenier ía del s o f t w a -
re) d e b e es ta r s u s t e n t a d o en un c o m p r o m i s o con la cal idad. La Gest ión d e la Calidad

Total, S igma Seis y e n f o q u e s s imi lares f o m e n t a n u n a cul tura d e me jo ra c o n t i n u a del
p roceso , y e s e s t a cul tura la q u e al final c o n d u c e al desar ro l lo d e e n f o q u e s m u y e f e c -
t ivos para la ingenier ía del so f tware . La b a s e q u e sopor ta la ingenier ia del s o f t w a r e

e s un enfoque en la calidad.
La b a s e de la ingenier ía del s o f t w a r e e s el e s t r a t o del proceso. El p r o c e s o d e la in-

genier ía del s o f t w a r e e s el e l e m e n t o q u e m a n t i e n e j un to s los e s t r a t o s d e la t ecno lo-
gía y q u e pe rmi t e el desar ro l lo rac iona l y a t i e m p o del s o f t w a r e d e c o m p u t a d o r a . El
p r o c e s o def ine un m a r c o d e t r aba jo [PAU93] q u e d e b e e s t ab l ece r se p a r a la en t r ega
efect iva d e la tecnología d e la ingenier ía del so f tware . El p r o c e s o del s o f t w a r e fo rma

la b a s e para el cont ro l d e la ges t ión de los p royec tos d e s o f t w a r e y es tab lece el con -
tex to en el cual s e apl ican los m é t o d o s técnicos , s e g e n e r a n los p roduc to s del t r aba-
jo (modelos , d o c u m e n t o s , da tos , repor tes , fo rmatos , e tcé tera) , s e e s t ab l ecen los fun-

d a m e n t o s , s e a s e g u r a la ca l idad, y el c a m b i o s e m a n e j a d e m a n e r a ap rop iada .
Los métodos d e la ingenier ía del s o f t w a r e p roporc ionan los "cómo" técn icos para

construir so f tware . Los m é t o d o s aba rcan un ampl io espec t ro de t a r ea s q u e incluyen la
comunicac ión , el anál is is d e requisi tos, el m o d e l a d o del diseño, la cons t rucción del
p rograma , la real ización d e p r u e b a s y el soporte . Los m é t o d o s d e la ingeniería del sof t -
w a r e s e b a s a n en un con jun to d e principios bás i cos q u e gob ie rnan c a d a á r e a d e la tec-

nología e incluye ac t iv idades de m o d e l a d o y o t r a s t écn icas descriptivas.
Las herramientas d e la ingenier ía del s o f t w a r e p roporc ionan el sopor t e au toma t i -

z a d o o s e m i a u t o m a t i z a d o p a r a el p r o c e s o y los m é t o d o s . C u a n d o las h e r r a m i e n t a s
s e in tegran d e fo rma q u e la in fo rmac ión q u e c ree u n a de e l las p u e d a usar la o t ra , s e
d ice q u e s e h a es tab lec ido un s i s t ema p a r a el s o p o r t e de l desar ro l lo de l s o f t w a r e , q u e
con f recuenc ia s e d e n o m i n a ingenier ía del software asistida por computadora.

2 . 2 M A R C O DE T R A B A J O P A R A EL P R O C E S O

Un marco de trabajo e s t ab lece la b a s e p a r a un p r o c e s o d e s o f t w a r e c o m p l e t o al iden-
tificar un n ú m e r o p e q u e ñ o d e actividades del marco de trabajo ap l icab les a t odos los
p royec tos d e so f tware , sin impor ta r su t a m a ñ o o comple j idad . Además , el m a r c o d e

: raba jo del p r o c e s o aba rca un c o n j u n t o d e actividades sombrilla ap l icables a lo la rgo

¿e! p r o c e s o del so f tware .

TM

PDF Editor

http://www.stsc

CAPÍTULO 2 EL PROCESO: U N A VISIÓN GENERAL 25

Un m a r c o d e
t r a b a j o d e l
p r o c e s o
d e s o f t w a r e .

Proceso del so f tware

M a r c o d e t r a b a j o del p roceso

Act iv idades sombrilla

Actividad del m a r c o d e t r a b a j o #1
acción d e la ingeniería d e software #1 .1

Conjunto
de tareas

toreos del t r a b a j o
producios de l t r a b a j o
punios d e a s e g u r a m i e n t o
d e la c a l i d a d
f u n d a m e n t o s del p royec to

acción d e la ingeniería d e software #1 .k

Conjunto
de tareas

t o reas de l f r a b o j o
productos del t r a b a j o
puntos d e a s e g u r a m i e n t o
d e lo c a l i d a d
fundamen tos del p royec to

Actividad del m a r c o d e t r a b a j o #n

acción de la ingeniería del software #n.l

Conjunto
de tareas

t a r e a s del t r a b a j o
p roduc tos de l t r a b a j o
pun tos d e a s e g u r a m i e n t o
d e la c a l i d a d
f u n d a m e n t o s de l p royec to

acción de lo ingeniería d e software #n.m

Conjunto
de tareas

t o reas del t r a b o j o
p roduc tos del t r a b a j o
pun tos d e a s e g u r a m i e n t o
d e lo ca l i dad
f u n d a m e n t o s del p royec to

C o m o se m u e s t r a en la figura 2.2, c a d a act ividad d e n t r o del m a r c o con t i ene un
c o n j u n t o de acciones de ingeniería del software-, es decir, una ser ie d e t a r ea s re lac io-
n a d a s que p r o d u c e u n p roduc to del t r a b a j o en la ingeniería del software (por e jemplo ,
el d i seño e s u n a acc ión d e la ingenier ía del sof tware) . Cada acción la f o r m a n tareas

de trabajo ind iv iduales q u e c o m p l e t a n a lguna pa r t e del t r aba jo impl icado por la ac -
ción.

"Un proceso d e f i n e quién está hac iendo qué , cuándo y cómo lograr cierta m e t a . "
I va r J a c obson , G r a d y Booch y J a m e s R u m b a u g h

TM

PDF Editor

26 PARTE UNO EL PROCESO DEL SOFTWARE

El s igu ien te marco de trabajo genérico del proceso (ut i l izado c o m o b a s e p a r a la
descr ipc ión d e los m o d e l o s d e p r o c e s o e n los capí tu los s u b s e c u e n t e s) s e p u e d e apli-
ca r en la i n m e n s a mayor ía d e los p royec tos d e s o f t w a r e :

C o m u n i c a c i ó n . Esta act ividad del m a r c o d e t r a b a j o implica u n a in tensa co labo-
ración y c o m u n i c a c i ó n con los clientes;1 a d e m á s , a b a r c a la invest igación de requis i-

tos y o t r a s ac t iv idades re lac ionadas .

P l a n e a c i ó n . Esta act ividad e s t ab l ece un p lan p a r a el t r aba jo d e la ingenier ía del
s o f t w a r e . Descr ibe las t a r ea s t écn icas q u e d e b e n real izarse , los r iesgos probables ,
los r ecu r sos q u e s e r á n requer idos , los p roduc to s del t r aba jo q u e h a n d e p roduc i r se y
un p r o g r a m a d e t rabajo .

M o d e l a d o . Esta act ividad a b a r c a la c reac ión d e m o d e l o s q u e permi ten al de sa -
rrol lador y al c l iente e n t e n d e r mejor los requis i tos del s o f t w a r e y el d i s e ñ o que logra-

rá sa t is facer los .

C o n s t r u c c i ó n . Esta act ividad c o m b i n a la gene rac ión del código (ya s ea m a n u a l
o a u t o m a t i z a d o) y la rea l izac ión de p r u e b a s n e c e s a r i a s p a r a descubr i r e r ro res en el

código.

D e s p l i e g u e . El s o f t w a r e (como una en t idad c o m p l e t a o un i n c r e m e n t o comple -

t a d o de m a n e r a parcial) s e en t r ega al cl iente, quien eva lúa el p roduc to recibido y
p roporc iona in fo rmac ión b a s a d a en su eva luac ión .

Es tas c inco ac t iv idades gené r i ca s del m a r c o d e t r aba jo son úti les d u r a n t e el de sa r ro -
llo d e p r o g r a m a s p e q u e ñ o s , la c reac ión d e g r a n d e s ap l i cac iones en la red, y e n la in-
genier ía d e s i s t e m a s b a s a d o s e n c o m p u t a d o r a s g r a n d e s y comple j a s . Los de ta l les del

p r o c e s o del s o f t w a r e se rán muy d i f e ren te s en c a d a caso , p e r o las ac t iv idades d e n t r o
del m a r c o p e r m a n e c e r á n iguales.

"Eínstein a r g u m e n t a b a q u e debía existir una explicación simplificada de la n a t u r a l e z a porque Oíos n o e s capr ichoso ni
a rb i t rar io . Tol f e n o confor ta al ingeniero del so f tware . Mucha de la complej idad que d e b e m a n i o b r a r es de carácter
a rb i t ra r io . "

Fred Brooks

Si s e u s a un e j e m p l o de r ivado del m a r c o de t r a b a j o genér ico del p roceso , la ac t i -
vidad d e elaboración del modelo la c o m p o n e n d o s a c c i o n e s d e la ingenier ía del sof t -
wa re : análisis y diseño. El anál is is 2 a b a r c a un c o n j u n t o d e t a r ea s d e t r aba jo (por e j e m -
plo, la invest igación, e laborac ión , negoc iac ión , especi f icac ión y val idación d e requi -

sitos) q u e c o n d u c e n a la c reac ión del m o d e l o de aná l i s i s (o a la especi f icac ión de re-

1. Un cliente es cualquier persona que tiene un interés en el éxito del resultado del proyecto: gerentes
de negocios, usuarios finales, gente de apoyo, etcétera. Rob Thomset bromea diciendo que "un
cliente (en inglés stakeholder) es una persona que sostiene una estaca (stakc) grande y afilada... si
no cuidas a tus clientes, ya sabes dónde terminará la estaca".

2. El análisis se explicará con mayor detenimiento en los capítulos 7 y 8.

9 ¿Cuá le s
* son las cinco

a c t i v i d a d e s del
marco d e t r a b a j o
del p roceso
g e n e r a l ?

TM

PDF Editor

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 27

CLAVE
l e n a s proyectos

i diferentes
s de toreas.

E a q ñ p o de software
í « é conjunto de
u e c s con base en
s j o b l e m a y en las
nrectefísticos del

quisitos) El d i seño a b a r c a t a r ea s d e t r aba jo (diseño d e da tos , d i s e ñ o arqui tec tóni -
co, d i s e ñ o d e in terfaz y d i seño al nivel d e c o m p o n e n t e s) q u e c r e a n un m o d e l o d e di-
s e ñ o (una especi f icac ión d e d iseño) . 3

C o m o t a m b i é n s e aprec ia en la figura 2.2, c a d a acción d e la ingenier ía del s o f t w a -
re la r ep re sen t a un gran n ú m e r o de d i f e ren te s conjuntos de tareas: u n a serie d e ta-
r e a s d e t raba jo , p r o d u c t o s re lac ionados , p u n t o s p a r a el a s e g u r a m i e n t o d e la ca l idad
y f u n d a m e n t o s de p royec to d e n t r o d e la ingenier ía del so f tware . El c o n j u n t o d e ta -
r eas que mejor se a jus te a las neces idades del p royec to y a las caracter ís t icas del equi-
p o e s el q u e s e e s c o g e al final. Es to implica q u e u n a acc ión d e la ingenier ía del so f t -
w a r e (como el d iseño) s e p u e d e a d a p t a r a las n e c e s i d a d e s espec í f icas del p royec to
d e s o f t w a r e y a las carac ter í s t icas del equ ipo d e proyecto .

INFORMACIÓN

Conjunto de tareas
Un conjunto de tareas define el t rabajo real

que debe realizarse para cumplir los objetivos de
j n a occión de ingeniería del software. Por ejemplo, la
-ecopilación de requisitos" es una acción importante de la
-geniería del software que ocurre durante la actividad de

comunicación. La meta de la reunión de requisitos es
entender qué desean los distintos clientes del software que
se va a construir.

Para un proyecto pequeño, al parecer simple, el
conjunto de tareas para la recopilación de requisitos
nuede ser como se enumera a continuación:

1. Hacer una lista de los clientes pa ra el proyecto.

2 Invitar a todos los clientes a una reunión informal.

3. Pedir a c a d a cliente que haga una lista de
características y funciones requeridas.

4. Establecer un debate sobre los requisitos y elaborar
una lista final.

5 Priorizar los requisitos.

6. Advertir las á reas de incertidumbre.

: a r a un proyecto de software mayor y más complejo, se
-equeriría un conjunto diferente de tareas. Este puede
-ckiir la siguiente lista:

1 Hacer una lista de los clientes pa ra el proyecto.

2- Entrevistar a cada uno de los clientes, por separado,
para determinar de manera general sus deseos y
necesidades.

3. Elaborar una lista preliminar de las funciones y
características basadas en la información que
ofrezcan los clientes.

4. Hacer un programa de reuniones para recopilar los
requisitos.

5. Conducir las reuniones.

ó. Producir escenarios informales de los usuarios como
parte de cada reunión.

7. Refinar escenarios d e los usuarios con base en el
intercambio de información con los clientes.

8. Elaborar una lista revisada de los requisitos de los
clientes.

9. Utilizar técnicas de despliegue de funciones de
calidad para jerarquizar los requisitos.

10. Empaquetar los requisitos pa ra que puedan
entregarse de manera incremental.

11. Observar las restricciones que serán puestas en el
sistema.

12. Debatir métodos pa ra validar el sistema.

Ambos conjuntos de tareas consiguen la recopilación
de requisitos, pero son muy diferentes en cuanto a
profundidad y formalidad. El equipo de software elige el
conjunto de tareas que permitirá a lcanzar la meta de c a d a
actividad del proceso y acción de ingeniería del software
que mantenga la calidad y agilidad.

3 Cabe aclarar que "la elaboración del modelo" debe interpretarse de un modo diferente cuando se rea-
liza el mantenimiento de un software existente. En algunos casos ocurre el modelado del diseño y el
análisis, pero en otras situaciones de mantenimiento se le utiliza para ayudar a entender el software
heredado, al igual que para representar adiciones o modificaciones en éste.

TM

PDF Editor

28 PARTE UNO EL PROCESO DEL SOFTWARE

\ CLAVE
Las a c t i v i d a d e s
sombr i l l a o c u r r e n a l o
l a r g o de l p r o c e s o d e
s o f t w a r e y s e e n f o c a n
d e m o d o pr incipal e n
la g e s t i ó n , el r a s t r e o y
el con t ro l de l p r o y e c t o .

\
CLAVE

l a a d a p t a c i ó n de l
p r o c e s o d e s o f t w a r e e s
e s e n c i a l p o r a e l é x i t o
de l p r o y e c t o .

i ¿De qué
m a n e r a

d i f ie ren los
mode los del
p roceso e n t r e s i ?

El m a r c o d e t r aba jo descr i to en la visión genera l d e la ingenier ía d e s o f t w a r e lo
c o m p l e t a una ser ie d e actividades sombrilla. Las ac t iv idades t ípicas e n e s t a ca tegor ía
incluyen:

S e g u i m i e n t o y c o n t r o l de l p r o y e c t o d e s o f t w a r e : pe rmi t e q u e el e q u i p o de
s o f t w a r e eva lúe el p r o g r e s o c o m p a r á n d o l o con el p lan del p royec to y así t o m a r las
a c c i o n e s n e c e s a r i a s p a r a m a n t e n e r el p r o g r a m a .

G e s t i ó n d e l r i e s g o : eva lúa los r iesgos que pud ie ran a fec ta r los r e su l t ados del
proyecto o la cal idad del p roduc to .

A s e g u r a m i e n t o d e la c a l i d a d d e l s o f t w a r e : def ine y c o n d u c e las ac t iv idades
r eque r idas p a r a a segu ra r la cal idad del s o f t w a r e .

R e v i s i o n e s t é c n i c a s f o r m a l e s : eva lúa los p roduc to s del t r aba jo d e la ingenie-
ría del s o f t w a r e en un e s f u e r z o e n c a m i n a d o a descubr i r y e l iminar los e r ro res a n t e s
d e q u e é s t o s s e p r o p a g u e n hac ia la s iguiente acc ión o act ividad.

M e d i c i ó n : def ine y recolecta m e d i c i o n e s del p roceso , el p royec to y el p r o d u c t o

p a r a ayuda r al equ ipo a en t r ega r s o f t w a r e que sa t i s f aga las n e c e s i d a d e s del cl iente;
s e p u e d e u sa r en c o n j u n t o con t o d a s las o t r a s ac t iv idades del m a r c o d e t r a b a j o o ac -
t iv idades sombri l la .

G e s t i ó n d e la c o n f i g u r a c i ó n de l s o f t w a r e : m a n e j a los e fec tos del c a m b i o a
t r avés del p r o c e s o del so f tware .

G e s t i ó n d e la reu t i l i zac ión : def ine los cri ter ios p a r a la reut i l ización de p roduc -
t o s del t r aba jo (se incluyen c o m p o n e n t e s del sof tware) y e s tab lece m e c a n i s m o s p a -
ra la c reac ión d e c o m p o n e n t e s reut i l izables .

P r e p a r a c i ó n y p r o d u c c i ó n de l p r o d u c t o d e trabajo: a b a r c a las ac t iv idades
r eque r idas p a r a c rea r p roduc to s del t r aba jo c o m o mode los , d o c u m e n t o s , regis tros ,
f o rma tos y listas.

Las ac t iv idades sombri l la s e apl ican d u r a n t e el p r o c e s o del s o f t w a r e y s e t ra tan con
de ta l le en capí tu los pos t e r io re s de es te texto.

Todos los m o d e l o s d e p r o c e s o s e ca rac te r i zan d e n t r o del m a r c o del p r o c e s o m o s -
t r ado en la f igura 2.2. La apl icación in te l igente d e cualquier m o d e l o d e p r o c e s o del

s o f t w a r e d e b e r e c o n o c e r q u e la adap t ac ión (al p rob lema , proyecto , e q u i p o y a la cul -
tura organizac iona l) e s esenc ia l p a r a el éxi to d e es ta act ividad. Pero los m o d e l o s d e
p r o c e s o dif ieren de m a n e r a f u n d a m e n t a l en :

• El flujo global de ac t iv idades y t a reas , y las i n t e r d e p e n d e n c i a s en t r e las ac -
t iv idades y las ta reas .

• El g r a do e n el cual las t a r ea s de t r aba jo es tán de f in idas d e n t r o d e c a d a ac -
tividad del m a r c o d e t rabajo .

• El g r a d o e n el cual s e ident i f ican y s e solicitan los p roduc to s de t rabajo .

• La fo rma en la q u e s e apl ican las act ividades d e a s e g u r a m i e n t o d e la calidad.

• La m a n e r a en la q u e s e apl ican las ac t iv idades d e s egu imien to y control .

TM

PDF Editor

CAPÍTULO 2 EL PROCESO. UNA V E I Ó N GENERAL 29

• El g r a do genera l d e detal le y el rigor con el q u e se desc r ibe el p roceso .
• El g r a d o en el q u e los c l ientes e s t á n c o m p r o m e t i d o s con el proyecto .

• El g r a do d e a u t o n o m í a o t o r g a d o al equ ipo d e p royec to d e so f tware .

• El g r a do en el cual e s t á n def in idos la o rgan izac ión y las r e sponsab i l i dades
e n el equ ipo .

"Siento que u n a rec eto es sólo un l e m a con el que un cocinero inteligente p u e de jugar cada vez de una m a n e r a distinta."
M a d a m a Benoi t

r

Los m o d e l o s d e p r o c e s o q u e e n f a t i z a n la def inición, la ident if icación y la apl icación
deta l lada d e las ac t iv idades del p r o c e s o h a n s ido ap l i cados d e n t r o d e la c o m u n i d a d
d e la ingenier ía del s o f t w a r e en los ú l t imos 30 años . La apl icación d e e s to s modelos
prescríptivos in tenta me jo ra r la cal idad del s i s tema, h a c e r q u e los p royec tos s e a n m á s
m a n e j a b l e s , q u e las f e c h a s de en t r ega y los c o s t o s s e a n m á s predecib les , y guiar a
los e q u i p o s de ingen ie ros d e s o f t w a r e mien t r a s rea l izan el t r aba jo q u e requiere cons -
truir un s i s t ema . Por desgrac ia , ha h a b i d o o c a s i o n e s en q u e e s to s objet ivos n o s e h a n
a l c a n z a d o . Si los m o d e l o s prescr ipt ivos s e apl ican en fo rma dogmá t i ca y sin n ingu-

n a adap tac ión , é s t o s p u e d e n i n c r e m e n t a r el g r ado d e burocrac ia a soc iada con la

cons t rucc ión d e s i s t emas b a s a d o s en c o m p u t a d o r a s , y d e m a n e r a inadver t ida c rea r
d i f icul tades p a r a los desa r ro l l ado res y los cl ientes.

En a ñ o s rec ien tes s e h a n p r o p u e s t o m o d e l o s d e p r o c e s o q u e s u b r a y a n la agilidad

del p royec to y s iguen un c o n j u n t o d e principios,4 los c u a l e s c o n d u c e n a un e n f o q u e

carac te r iza m ^ s in formal p a r a el p r o c e s o del s o f t w a r e (dicho e n f o q u e n o e s m e n o s efect ivo, se -
oceso gún a r g u m e n t a n q u i e n e s lo propus ie ron) . Es tos modelos ágiles del proceso r e sa l t an la
"? mane jab i l idad y adaptab i l idad . S o n a p r o p i a d o s p a r a m u c h o s t ipos d e p royec tos y son

úti les de m a n e r a par t icu lar c u a n d o se desar ro l lan ap l icac iones en la red.

¿Cuál de los e n f o q u e s para el p r o c e s o del s o f t w a r e e s el me jo r? Esta p r e g u n t a ha
o c a s i o n a d o un d e b a t e emoc iona l en t r e los ingen ie ros de s o f t w a r e y s e a b o r d a r á en
el capí tu lo 4. Por aho ra , e s i m p o r t a n t e da r se c u e n t a d e q u e e s t o s dos e n f o q u e s de
p r o c e s o t ienen u n a m e t a c o m ú n : c rea r s o f t w a r e d e al ta ca l idad q u e sa t i s faga las ne -
ce s idades del cliente, p e r o t i enen perspec t ivas d i fe ren tes .

El Inst i tu to d e Ingenier ía del S o f t w a r e (SEI, por s u s s ig las en inglés) ha desa r ro l l ado
u n m o d e l o comple to de un ampl io p r o c e s o b a s a d o en un c o n j u n t o de c a p a c i d a d e s
d e s o f t w a r e y d e s i s t e m a s que deben e s t a r p r e s e n t e s c o n f o r m e las o r g a n i z a c i o n e s
a l c a n z a n d i fe ren tes g r a d o s d e capac idad y m a d u r e z del p roceso . El SEI sos t i ene q u e
para lograr e s t a s c a p a c i d a d e s una o rgan izac ión d e b e c r e a r un m o d e l o d e p r o c e s o (fi-
gura 2.2) que s e a jus te a las d i rect r ices e s t ab l ec idas por la integración del modelo de
capacidad de madurez (IMCM) [CMM02].

• " ff ' WnBBBmSBRtM
' • • l í c í l K e r . í w W c i ') l O w i i j j i l

4 Los modelos ágiles y los principios que los guían se explican en el capítulo 4

TM

PDF Editor

30 PARTE UNO E L P R O C E S O D E L S O F T W A R E

Perf i l d e c a p a -
c i d a d d e l á r e a
d e l p r o c e s o d e
l a I M C M
[PHI02].

R e f e r e n c i a W e b

U n o "mfoimadón

IMCM p u e d e
obleneise en
h t t p : / / w w w . s e L
cmu.ed. i i /anmi/ .

1
s

- 8

I
Z

pp P l a n e a c i ó n d e l p r o y e c t o

GR G e s t i ó n d e requ i s i tos

M A M e d i c i ó n y aná l i s i s

G C G e s t i ó n d e l a c o n f i g u r a c i ó n

A C P P A s e g u r a m i e n t o d e l a c a l i d a d
d e l p r o d u c t o y el p r o c e s o

G R M A G C A C P P

Á r e a d e l p r o c e s o

La IMCM rep re sen t a un m o d e l o c o m p l e t o d e p r o c e s o en d o s f o r m a s d i ferentes : 1)
c o m o un m o d e l o c o n t i n u o y 2) c o m o u n m o d e l o discre to . El m o d e l o con t inuo IMCM
descr ibe un p r o c e s o en d o s d imens iones , c o m o se ilustra en la figura 2.3. Cada á r e a
del p r o c e s o (por e jemplo , la p l a n e a c i ó n del p royec to o la ges t ión d e los requisitos)
se eva lúa d e m a n e r a formal con t r a las m e t a s y p rác t i cas e spec í f i cas y s e clasifica d e

a c u e r d o con los s igu ien tes niveles d e capac idad :

Nivel O: I n c o m p l e t o . El á r e a del p r o c e s o (por e jemplo , la ges t ión d e requisi tos)
a ú n n o s e real iza o todavía n o a l c a n z a t odas las m e t a s y obje t ivos def in idos p a r a el

nivel 1 d e capac idad .

Nivel 1: R e a l i z a d o . Todas las m e t a s espec í f icas del á r e a del p r o c e s o (como las
def in ió la IMCM) h a n s ido sa t i s fechas . Las t a r ea s d e t r aba jo r eque r idas p a r a p rodu-

cir el p r o d u c t o espec í f ico h a n s ido rea l izadas .

Nivel 2 : A d m i n i s t r a d o . Todos los cri ter ios del nivel 1 h a n s ido sa t i s fechos . Ade-

m á s , t o d o el t r aba jo a s o c i a d o con el á r e a de p r o c e s o s e a ju s t a a u n a política organi -
zac iona l definida; toda la g e n t e q u e e jecu ta el t r aba jo t iene a c c e s o a r ecu r sos ade -
c u a d o s p a r a rea l izar su labor; los c l i en tes e s t á n impl icados de m a n e r a ac t iva e n el
á r e a d e p roceso , c u a n d o e s t o s e requiere ; t o d a s las t a r ea s d e t r aba jo y p roduc to s es -
tán "mon i to r eados , c o n t r o l a d o s y rev isados ; y son e v a l u a d o s e n a p e g o a la descr ip-

ción del p roceso" [CMM02].

Nive l 3 : D e f i n i d o . Todos los cr i ter ios del nivel 2 s e h a n cumpl ido. Además , el
p r o c e s o e s t á " a d a p t a d o al c o n j u n t o de p r o c e s o s e s t á n d a r d e la o rgan izac ión , de

a c u e r d o con las polí t icas de adap t ac ión d e es ta m i s m a , y con t r ibuye a la in formación
d e los p roduc to s del t raba jo , m e d i c i o n e s y o t r a s me jo r í a s del p r o c e s o p a r a los act i -

vos del p r o c e s o o rgan izac iona l" [CMM02],

Nivel 4 : A d m i n i s t r a d o e n f o r m a c u a n t i t a t i v a . Todos los cri ter ios del nivel 3

h a n s ido cumpl idos . Además , el á r e a del p r o c e s o s e cont ro la y me jo ra m e d i a n t e me-
d ic iones y eva luac ión cuant i ta t iva . "Los obje t ivos cuan t i t a t ivos p a r a la cal idad y el

TM

PDF Editor

http://www.seL

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 31

d e s e m p e ñ o del p r o c e s o e s t á n es t ab lec idos y s e ut i l izan c o m o un criterio p a r a a d m i -
nis t rar el p roceso" [CMM02],

Nive l 5: M e j o r a d o . Todos los cri ter ios del nivel 4 h a n s ido sa t i s fechos . A d e m á s ,
el á r e a del p r o c e s o "se a d a p t a y m e j o r a m e d i a n t e el u s o d e m e d i o s cuan t i t a t ivos (es-
tadíst icos) p a r a c o n o c e r las n e c e s i d a d e s c a m b i a n t e s del c l iente y me jo ra r de m a n e -
ra con t inua la ef icacia del á r e a del p r o c e s o q u e s e e s t á c o n s i d e r a n d o " [CMM02],

"Gran p a r t e de ia crisis del s o f t w a r e es autoinf l igida, como c u a n d o CIO dice: "Pref ie ro que es té m a l a q u e es té t a rde .
S iempre podemos r e p a r a r l o de spués . "

M a r k Pau lk

(C O N S E J O ^ -

ax orgomzotión

¡alo IMCM.
Se ¡nbargo, la

3Bc aspecto del
-axto puede sei
£Gsw en algunas

La IMCM def ine c a d a á r e a del p r o c e s o en func ión de "me ta s especí f icas" y de las
"práct icas especí f icas" r eque r idas p a r a a l c a n z a r d ichas m e t a s . Las metas específicas
es t ab l ecen las ca rac te r í s t i cas q u e d e b e n existir p a r a que las ac t iv idades impl icadas
po r un á rea d e p r o c e s o s e a n efect ivas . Las prácticas específicas convier ten una m e t a

e n un c o n j u n t o d e ac t iv idades r e l ac ionadas con el p roceso .
Por e jemplo , la p l a n e a c i ó n d e l p r o y e c t o e s u n a d e las o c h o á r e a s del p r o c e s o

def in idas po r la IMCM para la ca tegor ía d e "gest ión del proyecto".5 Las m e t a s e s p e -
cíf icas (ME) y las p rác t i cas espec í f icas a s o c i a d a s (PE) q u e s e h a n def in ido p a r a la p la-
n e a c i ó n del p royec to son [CMM02]:

ME 1 E s t a b l e c e r e s t i m a c i o n e s

PE 1.1-1 Es t imar el a l cance del proyecto .

PE 1.2-1 Establecer e s t i m a c i o n e s para los a t r ibu tos del p roduc to y las t a r ea s
del t r aba jo .

PE 1.3-1 Definir el ciclo de vida del proyecto .

PE 1.4-1 De te rmina r e s t i m a c i o n e s de e s f u e r z o y cos to .

ME 2 D e s a r r o l l a r u n p lan d e p r o y e c t o

PE 2.1-1 Establecer el p r e s u p u e s t o y el p r o g r a m a .

PE 2.2-1 Identificar los r iesgos del proyecto .

PE 2.3-1 P lanear la ges t ión d e los da tos .

PE 2.4-1 P lanear los r ecu r sos del proyecto .

PE 2.5-1 P l anea r los c o n o c i m i e n t o s y hab i l idades q u e s e requ ie ren .

PE 2.6-1 P lanear la par t ic ipación del cl iente.

PE 2.7-1 Establecer el plan de proyecto .

5 Otras áreas del proceso definidas como "gestión del proyecto" incluyen: monitoreo y control del pro-
yecto, gestión de acuerdos con proveedores, gestión integrada del proyecto para IPPD, gestión del
riesgo, integración del equipo, gestión de integración del proveedor y gestión cuantitativa del pro-
yecto.

TM

PDF Editor

32 PARTE UNO EL PROCESO DEL SOFTWARE

R e f e r e n c i a W e b

Una información
c o m p l e t o , a s i c o m o

obtenerse en
w w w . s e i . t n u .

e d u / t m m i / .

ME 3 C o m p r o m e t e r s e c o n la p l a n e a c i ó n

PE 3.1-1 Revisar los p l a n e s q u e a f ec t an el p royec to .

PE 3.2-1 Concil iar el t r aba jo y los niveles d e recursos .

PE 3.3-1 C o m p r o m e t e r s e con la p l aneac ión

A d e m á s d e las m e t a s y p rác t i cas específ icas , la IMCM t a m b i é n de f ine una ser ie d e
c inco m e t a s g e n é r i c a s y p rác t i cas r e l ac ionadas con c a d a á r e a del p roceso . Cada u n a
d e las m e t a s gené r i ca s c o r r e s p o n d e a u n o d e los c inco n ive les d e capac idad . Por lo
tan to , p a r a lograr un nivel d e capac idad par t icular s e d e b e a l c a n z a r la m e t a genér i -
ca p a r a e s e nivel y las prác t icas gené r i ca s q u e c o r r e s p o n d e n a e sa meta . Para ilus-
trar lo anter ior , a con t inuac ión s e e n u m e r a n las m e t a s g e n é r i c a s (MG) y las prác t i -
c a s gené r i ca s (PG) para el á r e a del p r o c e s o d e p l aneac ión del p royec to [CMM02J:

MG 1 A l c a n z a r l a s m e t a s e s p e c i f i c a s

PG 1.1 Realizar prác t icas ba se .

MG 2 I n s t i t u c i o n a l i z a r u n p r o c e s o d e g e s t i ó n

PG 2.1 Es tab lecer u n a política o rgan izac iona l .

PG 2.2 P l anea r el p roceso .

PG 2.3 Proporc ionar recursos .

PG 2.4 Asignar responsab i l idades .

PG 2.5 Capaci tar gen te .

PG 2.6 Mane ja r conf igurac iones .

PG 2.7 Identificar y h a c e r par t ic ipar a c l ientes .

PG 2.8 Moni torear y con t ro la r el p roceso .

PG 2.9 Evaluar la adhe renc i a de un m o d o objet ivo.

PG 2.10 Revisar el e s t a t u s con un a l to g r ado d e gest ión.

MG 3 I n s t i t u c i o n a l i z a r u n p r o c e s o d e f i n i d o

PG 3.1 Establecer un p r o c e s o def inido.

PG 3.2 Recolectar in fo rmac ión d e la mejor ía .

MG 4 I n s t i t u c i o n a l i z a r u n p r o c e s o m a n e j a d o e n f o r m a c u a n t i t a t i v a

PG 4.1 Es tab lecer ob je t ivos cuan t i t a t ivos p a r a el p roceso .

PG 4.2 Estabilizar el d e s e m p e ñ o del subp roceso .

MG 5 I n s t i t u c i o n a l i z a r u n p r o c e s o d e m e j o r a m i e n t o .

PG 5.1 Asegurar la m e j o r a con t inua del p roceso .

PG 5.2 Corregir las c a u s a s d e los p r o b l e m a s d e s d e la raíz

El m o d e l o d i sc re to d e la IMCM def ine las m i s m a s á r ea s , m e t a s y p rác t i cas del pro-
c e s o q u e el m o d e l o con t inuo . La principal d i fe renc ia e s q u e el m o d e l o d iscre to e s t a -

b lece c inco niveles d e m a d u r e z , en vez d e c inco n ive les d e capac idad . Para lograr un
nivel de m a d u r e z s e d e b e n c o n s e g u i r m e t a s y p rác t i cas espec í f icas r e l ac ionadas con
un c o n j u n t o d e á r e a s del p roceso . La re lación en t r e los niveles d e m a d u r e z y las

á r e a s del p r o c e s o s e m u e s t r a n en la figura 2.4.

TM

PDF Editor

http://www.sei.tnu

CAPITULO 2 EL PROCESO: UNA VISIÓN GENERAL 33

INFORMACIÓN
La IMCM: ¿se debe o no hacer?
La IMCM es un modelo total del proceso. Defi-
ne (en alrededor de 7 0 0 páginas) las caracte-

- cas del proceso que deben existir si una organización
establecer un proceso de software completo. La pre-
que se ha debatido durante una década es ¿la IMCM

a excesiva? Como la mayor parte de las cosas en la vida (y
an el software) la respuesta no es un simple sí o no.

Siempre debe adoptarse el espíritu de la IMCM. Frente
3 esgo de la simplificación excesiva, se argumenta que el
re-arrollo del software debe tomarse con seriedad: debe
cxanearse; debe controlarse de manera uniforme; debe
— ;~earse con precisión; debe conducirse de manera pro-
• s o n a l . Debe centrarse en las necesidades de los clientes
o s proyecto, las habilidades de los ingenieros de software
• la calidad del producto terminado. Nadie debe poner en
duda estas ¡deas.

-os requisitos detallados de la IMCM deben tomarse en
: _enta con seriedad si una organización construye siste-

mas grandes y complejos que impliquen docenas o cientos
de personas por varios meses o años. Es posible que la
IMCM sea correcta en ciertas situaciones, si la cultura orga-
nizacional es flexible frente a modelos de procesos estánda-
res y se realiza una gestión para lograr que sea un éxito.

No obstante, en otras situaciones 3S posible que la
IMCM sea demasiado para que una organización la asi-
mile de manera exitosa. ¿Esto significa que la IMCM es
mala o demasiado burocrática o que está pasada de mo-
da? No. Tan sólo significa que lo correcto para la cultura
de una compañía puede no serlo pa ra otra.

La IMCM es un logro significativo para la ingeniería del
software. Proporciona una exposición integral de las activi-
dades y acciones que deben estar presentes cuando una
organización construye un software de computadora. Aun
si una organización d e software elige no adoptar sus deta-
lles, todo equipo de software debe retomar su espíritu y
aprender de su exposición del proceso y la práctica de la
ingeniería del software.

Á r e a s d e l

r e q u e r i d a s
p e a a l c a n z a r
i c n ive l d e
s c x t u i e z .

Nivel Enfoque Áreas del p r o c e s o

De optimización
Mejora

continua del
proteso

Innovación organizac iona l y d e s p l i e g u e
Análisis causa l y resolución

G e s t i o n a d o de
m o d o cuantitat ivo

Gestión
cuantitativa

Ejecución del proceso organizac iona l
Gestión cuantitativa del proyecto

Definido Estandarización
del proceso

Desarrollo de requisitos
Solución técnica
Integración del producto
Verificación
Validación
Enfoque de l proceso organizac ional
Definición del proceso organizac ional
Capacitación organizac ional
Gestión integrada del proyecto
Gestión integrada del p r o v e e d o r
Gestión del r iesgo
Análisis y resolución d e la decis ión
Ambiente organizac ional para la integración
Equipo in tegrado

G e s t i o n a d o
Gestión

básica del
proyecto

Gestión d e requisitos
Planeación del proyecto
Monitoreo y control del proyecto
Gestión d e a c u e r d o s del p r o v e e d o r
Medición y anál is i s
Aseguramiento d e la ca l idad del

producto y del proceso
Gestión d e la conf iguración

Ejecutado

TM

PDF Editor

34 PASTE UNO EL PROCESO D A SOFTWARE

P A T R O N E S D E L P P O C E S O

•
¿ Q u é es un
pa t rón

del p r o c e s o ?

El p r o c e s o d e s o f t w a r e p u e d e def in i rse c o m o u n a colecc ión d e p a t r o n e s q u e d e f i n e n
un c o n j u n t o d e ac t iv idades , acc iones , t a r ea s d e t r a b a j o o c o m p o r t a m i e n t o s re lac io-
n a d o s [AMB98] que requ ie re el desarro l lo d e un s o f t w a r e d e c o m p u t a d o r a . Dicho en
t é r m i n o s genera les , un patrón de proceso o f r ece u n a plantilla: un m é t o d o c o n s i s t e n -
t e p a r a describir u n a carac ter í s t ica i m p o r t a n t e del p r o c e s o de so f tware . Median te la
c o m b i n a c i ó n d e pa t rones , un e q u i p o d e s o f t w a r e p u e d e cons t ru i r un p r o c e s o q u e s a -
t isfaga lo m e j o r pos ib le las n e c e s i d a d e s de un proyecto .

"Lo repetición de po t rones es muy distinto o la repetición de pa r tes . Además , l a s por tes d i f e r en t e s s e r á n únicas p o r q u e
los pa t rones s o n únicos."

C h r i s t o p h e r A l e x a n d e r

CÚVVE
U n o plant i l lo de l p o t r ó n
o f r e c e u n m e d i o
c o n s i s t e n t e p o r a
descr ib i r u n p o t r ó n .

Los p a t r o n e s p u e d e n def in i rse e n cualquier g r ado d e abs t racc ión . 6 En a l g u n o s ca -
s o s s e p u e d e utilizar u n pa t rón p a r a describir un p r o c e s o comple to (por e j emplo , un
protot ipo) . En o t r a s s i t uac iones se ut i l izan los p a t r o n e s p a r a describir una act ividad
del m a r c o d e t r a b a j o i m p o r t a n t e (como la p laneac ión) o una t a rea d e n t r o d e u n a ac -
tividad del m a r c o d e t r a b a j o (por e j emplo , la e s t imac ión d e un proyecto) .

Ambler [AMB98] p r o p u s o la s iguiente plantilla p a r a describir un pa t rón d e p roceso :

N o m b r e de l p a t r ó n . Al pa t rón s e le a s igna un n o m b r e significativo q u e descr iba su
func ión d e n t r o del s o f t w a r e (como c o m u n i c a c i ó n c o n e l c l i ente) .

P r o p ó s i t o . Se desc r ibe con b revedad el ob je t ivo del pa t rón . Por e jemplo , el objet i -
vo d e la c o m u n i c a c i ó n c o n e l c l i e n t e e s "es tab lecer u n a re lación d e co laborac ión
con el c l ien te en un e s f u e r z o e n c a m i n a d o a definir el a l cance del proyecto , los requi-
si tos del n e g o c i o y o t r a s cond ic iones del proyecto". El p ropós i t o p u e d e expand i r se
con t ex to s expl ica tor ios ad ic iona les y d i a g r a m a s aprop iados , si s e requieren .

Tipo. Se especi f ica el t ipo d e pa t rón . Ambler [AMB98] sugiere t r e s tipos:

• Los patrones de tarea de f inen una acc ión d e la ingenier ía del s o f t w a r e o
u n a t a rea d e t r a b a j o q u e e s pa r t e del p r o c e s o y re levan te p a r a u n a práct i -
ca exi tosa d e la ingenier ía del s o f t w a r e (por e jemplo , la r e c o p i l a c i ó n d e
r e q u i s i t o s e s un pa t rón d e ta rea) .

• Los patrones de escenario de f inen u n a act ividad del m a r c o d e t r aba jo p a r a
el p roceso . Deb ido a que u n a act ividad del m a r c o d e t r aba jo r eúne múlt i -
p le s t a r ea s d e t rabajo , un pa t rón de e s c e n a r i o incorpora múl t ip les pa t ro -

n e s d e t a rea r e l e v a n t e s p a r a el e s c e n a r i o (actividad del m a r c o de t rabajo) .
Un e j e m p l o del pa t rón d e e scena r io e s la c o m u n i c a c i ó n . Es te p a t r ó n in-
corporar ía el pa t rón d e t a r e a r e u n i ó n d e r e q u i s i t o s y o t ros .

6 Los patrones se aplican a muchas actividades de ingeniería del software. El análisis, el diseño y los
patrones de prueba se explican en los capítulos 7, 9, 10,12y 14. Los patrones y "antipatrones" para
las actividades de gestión de proyectos se explican en la parte 4 de este libro.

TM

PDF Editor

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 35

• Los patrones de fase d e f i n e n la s e c u e n c i a d e ac t iv idades del m a r c o d e t ra-
b a j o q u e ocur re j un to con el p roceso , a u n c u a n d o el f lujo genera l d e act i -
v idades e s i terativo por na tura leza . Un e j emplo d e un pa t rón de fase p u e d e
se r un m o d e l o e n e s p i r a l o d e c o n s t r u c c i ó n d e p r o t o t i p o s . 7

C o n t e x t o in ic ia l . Se desc r iben las cond ic iones e n las cua les s e aplica el p a t r ó n .
Antes d e iniciar é s te s e d e b e cues t iona r 1) q u é ac t iv idades o rgan i zac iona l e s o rela-
t ivas al equ ipo h a n ocurr ido, 2) cuá l e s el e s t a d o d e e n t r a d a p a r a el p roceso , y 3)
q u é in fo rmac ión de ingenier ía del s o f t w a r e o in fo rmac ión del p royec to ya existe.

Por e jemplo , el pa t rón d e p l a n e a c i ó n (un p a t r ó n discreto) r equ ie re q u e 1) los
c l ientes y los ingen ie ros d e s o f t w a r e h a y a n es tab lec ido una co laborac ión e n c u a n t o
a comun icac ión ; 2) s e h a y a c o m p l e t a d o con éxi to un gran n ú m e r o d e p a t r o n e s d e
t a r e a (especif icados) p a r a el pa t rón d e c o m u n i c a c i ó n c o n e l c l i e n t e ; y 3) s e co-
n o z c a n los a l c a n c e s del proyecto , los requis i tos b á s i c o s del negoc io y las restr ic-

c i o n e s del p royec to .

P r o b l e m a . Se descr ibe el p rob lema q u e debe resolver el pa t rón . Por e jemplo, el pro-
b lema q u e debe resolver la c o m u n i c a c i ó n c o n e l c l i e n t e p u e d e describirse d e la

s iguiente m a n e r a : La comunicación entre el desarrolladory el cliente muchas veces es
inadecuada porque no se establece un formato efectivo para obtener información, no se
crea un mecanismo útil para registrarla, y no se realiza una revisión significativa.

S o l u c i ó n . Se desc r ibe la i m p l e m e n t a c i ó n del pa t rón . En es ta secc ión s e d iscute có-

m o el e s t a d o inicial del p r o c e s o (exis tente a n t e s d e q u e se haya i m p l e m e n t a d o el
pat rón) s e modif ica c o m o consecuenc ia del inicio del pa t rón . También s e descr ibe

c ó m o la i n fo rmac ión d e la ingenier ía del s o f t w a r e o la i n fo rmac ión del proyecto ,
d isponible a n t e s d e iniciado el pa t rón , s e t r a n s f o r m a c o m o c o n s e c u e n c i a d e la e j e -

cuc ión exi tosa del pa t rón .

C o n t e x t o r e s u l t a n t e . Se desc r iben las cond ic iones q u e h a b r á una v e z q u e el p a -
trón h a y a s ido i m p l e m e n t a d o con éxito. Para c o m p l e t a r el pa t rón d e b e n rea l izarse
las s igu ien tes p r egun t a s : 1) ¿qué ac t iv idades o r g a n i z a c i o n a l e s o r e l a c i o n a d a s con

el equ ipo deb ie ron h a b e r ocurr ido?, 2) ¿cuál e s el e s t a d o d e sal ida p a r a el p r o c e -
so?, y 3) ¿qué in fo rmac ión d e la ingenier ía del s o f t w a r e o i n fo rmac ión del p royec to
ha s ido desa r ro l l ada?

P a t r o n e s r e l a c i o n a d o s . S e p roporc iona una lista de t o d o s los p a t r o n e s d e p r o c e -

s o d i r e c t a m e n t e r e l a c i o n a d o s con és te , en fo rma je rárquica o d e a l g u n a otra fo rma .
Por e j emplo , el pa t rón e s t ac iona r io d e c o m u n i c a c i ó n a b a r c a los p a t r o n e s d e t a rea
r e u n i ó n d e l e q u i p o para e l p r o y e c t o , d e f i n i c i ó n d e u n a l í n e a d e c o l a b o r a -
c i ó n , a i s l a m i e n t o d e a l c a n c e s , r e u n i ó n d e r e q u i s i t o s , d e s c r i p c i ó n d e r e s -
t r i c c i o n e s y u n a c r e a c i ó n d e u n m o d e l o m i n i - s p e c .

7 Estos patrones de fase se exponen en el capitulo 3.

TM

PDF Editor

36 PARTE UNO EL PROCESO DEL SOFTWARE

R e f e r e n c i a W e b

w w w . o m b y s o f t .
(o m / p r o t e s s
Pat te rnsPoge.h tml .

U s o s c o n o c i d o s / E j e m p l o s . Se indican ios e j e m p l o s espec í f icos e n los c u a l e s el
pa t rón e s aplicable. Por e j emplo , la c o m u n i c a c i ó n e s obl igator ia al pr incipio d e
c a d a p royec to d e so f tware ; s e r e c o m i e n d a por m e d i o del p r o c e s o d e so f tware , y e s
obligatoria u n a vez q u e la act ividad de d e s p l i e g u e e s t é rea l izada .

Los p a t r o n e s d e p r o c e s o p r o p o r c i o n a n un m e c a n i s m o efec t ivo p a r a describir
cua lqu ie r p r o c e s o d e so f tware . Los p a t r o n e s pe rmi t en una o rgan izac ión de ingenie-
ría del s o f t w a r e p a r a desar ro l la r un descr ipción del p r o c e s o je rá rqu ico q u e c o m i e n -

ce en un alto g r a do d e abs t racc ión (un pa t rón de fase). La descripción s e refina has ta
un c o n j u n t o d e p a t r o n e s e s t ac iona r io s q u e desc r iben ac t iv idades del m a r c o d e t ra-

ba jo , y m á s ta rde s e refina d e un m o d o je rá rqu ico e n p a t r o n e s de t a r e a s m á s de t a -
llados para cada patrón estacionar io . Después d e que s e h a n desar ro l lado los pa t rones
de p roceso , p u e d e n reut i l izarse p a r a la def inición de va r i an t e s de proceso ; e s decir,
un equ ipo d e s o f t w a r e p u e d e definir un m o d e l o d e p r o c e s o p e r s o n a l i z a d o u s a n d o
p a t r o n e s c o m o b loques de cons t rucc ión p a r a el m o d e l o d e p roceso .

INFORMACIÓN

Ejemplo de un patrón del proceso
El siguiente patrón d e proceso abreviado des-
cribe un enfoque apl icable cuando los clientes

tienen una idea general d e lo que debe hacerse, pero no
están seguros d e los requisitos específicos del software.
Nombre del patrón. Prototipo.
P r o p ó s i t o . El objetivo del patrón es construir un modelo

(un prototipo) que los clientes evalúen d e modo iterativo
en un esfuerzo encaminado a identificar los requisitos
del software.

Tipo . Patrón d e fase.
C o n t e x t o in ic ia l . Deben cumplirse las siguientes condi-

ciones antes d e iniciar este patrón: 1) los clientes han
sido identificados; 2) se ha establecido un modo de co-
municación entre los clientes y el equ ipo d e t rabajo ; 3)
los clientes han identificado el problema que ha d e re-
solverse; 4) se ha desarrol lado un entendimiento inicial
del alcance del proyecto, los requisitos básicos del ne-
gocio y las restricciones del proyecto.

P r o b l e m a . Los requisitos son vagos o no existen. N o
obstante, se reconoce con claridad la existencia d e un
problema, y éste d e b e ir a c o m p a ñ a d o d e una solución

d e software. Los clientes no están seguros d e lo que de-
sean; es decir, no pueden describir ningún detalle d e
los requisitos del software.

S o l u c i ó n . Aquí se presenta una descripción del proceso
d e prototipo. Para más detalles, véase el capítulo 3.

C o n t e x t o r e s u l t a n t e . Los clientes ap rueban un prototi-
p o d e software que identifica requisitos básicos (por
ejemplo, modelos d e interacción, rasgos computaciona-
les, funciones d e procesamiento). Después 1) el prototi-
po puede evolucionar recorriendo una serie d e
incrementos p a r a convertirse en el software d e produc-
ción, o 2) el prototipo se descarta y el software d e pro-
ducción se construye con otros patrones d e proceso.

P a t r o n e s r e l a c i o n a d o s . Los siguientes pat rones están
re lacionados con este pa t rón: c o m u n i c a c i ó n c o n
el cliente; d iseño iterativo; desarrollo itera-
tivo; evaluación del cliente; extracción de
requisitos.

U s o s c o n o c i d o s / e j e m p l o s . El prototipo se recomien-
da cuando los requisitos son inseguros.

2 . 5 E V A L U A C I Ó N P E Í , P R O C E S O

La exis tencia d e un p r o c e s o d e s o f t w a r e n o e s ga ran t í a d e q u e é s t e s e r á e n t r e g a d o

a t iempo, de q u e sa t i s fa rá las n e c e s i d a d e s del cl iente, o d e q u e m o s t r a r á las c a r a c -
ter ís t icas t écn icas q u e conduc i r án a ca rac te r í s t i cas d e cal idad a la rgo p l azo (capítu-
lo 26). Los p a t r o n e s d e p r o c e s o d e b e n ir a c o m p a ñ a d o s d e u n a práct ica sólida de la

TM

PDF Editor

http://www.ombysoft

CAPÍTULO 2 EL PROCESO: U N A VISIÓN GENERAL 37

Mejoramiento del
proceso de so f tware

Determinación
de la capacidad

Motiva

CLÁVE
i " c e v a l u a c i ó n s e
T & n á e c o m p r e n d e r
3 e s t a d o o c t u o l d e l
TXSSO d e s o f t w a r e y

•¿ n t e n t o m e j o r a r l o .

^ ¿ D e q u e
• técnicas

• : < » o l e s s e
á s p o n e p a r a
n d i u r el p roceso
fc s o f t w a r e ?

ingenier ía del s o f t w a r e (parte 2 d e es te libro). Además , el p r o c e s o m i s m o d e b e eva-
luarse para a s e g u r a r s e de q u e cumpla una ser ie d e cri ter ios bás i cos del p r o c e s o q u e
h a n d e m o s t r a d o se r e s e n c i a l e s p a r a una ingenier ía d e s o f t w a r e exi tosa . 8 La re lación

en t r e el p r o c e s o de s o f t w a r e y los m é t o d o s ap l i cados para la eva luac ión y el m e j o -

r a m i e n t o s e m u e s t r a en la figura 2.5. Se h a n p r o p u e s t o va r ios e n f o q u e s para la eva-
luación del proceso de software en las d é c a d a s p a s a d a s :

El m é t o d o d e e v a l u a c i ó n d e la IMCM e s t á n d a r p a r a e l m e j o r a m i e n t o de l

p r o c e s o (MEIEMP)ofrece un m o d e l o d e c inco p a s o s p a r a la eva luac ión del p roce -
s o q u e incluye la iniciación, el d iagnóst ico , el e s tab lec imien to , la acc ión y el a p r e n -
dizaje . El m é t o d o MElEMP utiliza el SE1 IMCM (sección 2.3) c o m o b a s e p a r a la eva-
luación [SEIOO],

La a p r e c i a c i ó n b a s a d a e n e l CMM p a r a e l m e j o r a m i e n t o de l p r o c e s o in-
t e r n o (ABC MPI) o f r ece una t écn ica d e d iagnós t i co p a r a eva luar la m a d u r e z rela-

tiva de u n a o rgan izac ión d e s o f t w a r e m e d i a n t e la ABC MPI (un p recu r so r de la IMCM,
el cual s e expl icó en la secc ión 2.3) c o m o b a s e p a r a la eva luac ión [DUNOi].

El e s t á n d a r S P I C E (1 S O / I E C 1 5 5 0 4) d e f i n e u n c o n j u n t o d e r e q u i s i t o s p a r a la

eva luac ión del p r o c e s o de so f twa re ; lo que p r e t e n d e e s ayuda r a las o r g a n i z a c i o n e s
en el desar ro l lo de una eva luac ión objet iva d e la ef icacia de cua lqu ie r p r o c e s o d e
s o f t w a r e def inido [SPI99].

El I S O 9 0 0 1 : 2 0 0 0 p a r a s o f t w a r e e s u n e s t á n d a r g e n é r i c o q u e s e a p l i c a a c u a l -

q u i e r o r g a n i z a c i ó n q u e d e s e e m e j o r a r la c a l i d a d g e n e r a l d e l o s p r o d u c t o s , s i s t e m a s

8 La IMCM del SEI [CMM02] describe, en detalle y con amplitud, las características de un proceso de
software y los criterios para un proceso exitoso.

TM

PDF Editor

38 PARTE UNO EL PROCESO DEL SOFTWARE

o servicios que provee . Por lo tanto, el e s t á n d a r s e apl ica de m o d o d i rec to a c o m p a -
ñ ías y o r g a n i z a c i o n e s d e so f tware .

Debido a q u e el ISO 9001:2000 s e u sa d e m a n e r a amplia e n el á m b i t o in te rnac iona l ,
s e e x a m i n a r á con b revedad en los p á r r a f o s q u e s iguen .

"Los organ izac iones de s o f t w a r e han m o s t r a d o deficiencias significativas en su habi l idad pa r a capital izar las exper i en -
cias g a n a d a s en proyectos completos ."

NASA

La Organ izac ión In ternac ional de Es tandar izac ión (ISO, por s u s siglas en inglés)

ha es tab lec ido el e s t á n d a r ISO 9001:2000 [ISOOO] p a r a definir los requis i tos d e un
s i s t ema d e ges t ión de cal idad (capítulo 26) q u e sirva para e labora r p roduc to s d e m á s
al ta cal idad y así me jo ra r la sa t i s facc ión del cl iente.9

La es t ra teg ia f u n d a m e n t a l q u e sugiere el ISO 9001:2000 s e desc r ibe d e la s iguien-
te m a n e r a :

El ISO 9001:2000 s u b r a y a la impor tanc ia q u e t iene pa ra u n a o r g a n i z a c i ó n identif icar, im-

p l e m e n t a r , ges t iona r y me jo ra r de m a n e r a con t inua la efec t iv idad de los p r o c e s o s n e c e s a -

rios pa ra el s i s t e m a de admin is t rac ión de la cal idad, y g e s t i o n a r las i n t e racc iones de e s t o s

p r o c e s o s pa ra consegu i r los ob je t ivos de la o rgan izac ión . . .

El ISO 9001:2000 ha a d o p t a d o un ciclo d e "p lanea r -hace r - rev i sa r -ac tua r" q u e se apli-
ca a los e l e m e n t o s d e ges t ión d e ca l idad de un p royec to d e so f tware . Den t ro d e un
con tex to d e so f tware , "p lanear" e s tab lece los objet ivos, las ac t iv idades y t a r ea s del
p r o c e s o n e c e s a r i o s p a r a consegu i r un s o f t w a r e d e al ta cal idad y u n a sa t i s facción
del cliente; "hacer" i m p l e m e n t a el p roceso d e s o f t w a r e (incluidas las ac t iv idades del
m a r c o d e t r aba jo y las ac t iv idades sombril la); "revisar" mon i to rea y mide el p r o c e s o

p a r a a s e g u r a r s e d e q u e t odos los requis i tos e s t ab lec idos p a r a la ges t ión de ca l idad
h a y a n s ido cumpl idos ; "ac tuar" inicia las ac t iv idades d e m e j o r a m i e n t o del p r o c e s o d e
so f tware , el cual t iene u n a con t inu idad d e t r aba jo p a r a m e j o r a r el p roceso .

Para un t r a t a m i e n t o m á s de ta l lado del ISO 9001:2000 los lec tores i n t e r e s a d o s en
el t e m a d e b e n consu l t a r los e s t á n d a r e s ISO o [CIA01], [KET01] o [MONOIJ.

2 . 6 M O D E L O S DE P R O C E S O P E R S O N A L E S Y E N E Q U I P O

El mejor p roceso d e s o f t w a r e e s el q u e e s t á cerca d e la gen t e que real izará el t rabajo.
Si un m o d e l o de p r o c e s o de s o f t w a r e ha s ido desa r ro l l ado en un á m b i t o co rpora t ivo
u o rgan izac iona l , p u e d e se r e fec t ivo só lo si e s en gran med ida adap t ab l e para sa t is -
facer las n e c e s i d a d e s del equ ipo del proyecto , q u e e s el q u e en real idad lleva a c a b o
el t r aba jo d e ingenier ía del so f tware . En un e scena r io ideal, c a d a ingen ie ro d e sof t -
w a r e crear ía un p r o c e s o q u e llene lo m e j o r pos ib le s u s propias neces idades , y al mis-

9 El aseguramiento de la calidad del sof tware (ACS), un e lemento importante de la gestión de calidad,
ha sido definido como una actividad sombrilla que se aplica a través de todo el marco de trabajo del
proceso. Se expone en detalle en el capitulo 26.

R e f e r e n c i a W e b

Un e x c e l e n t e r e s u m e n
del ISO 9 0 0 1 : 2 0 0 0
puede encon t r a se e n
h t t p : / / p r o x l o m .
c o m / i s o -
9 0 0 1 .h tm.

TM

PDF Editor

http://proxlom

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 39

m o t i empo sa t i s faga las ampl i a s n e c e s i d a d e s del equ ipo y la o rgan izac ión . De m o d o

al ternat ivo, el e q u i p o m i s m o crear ía su p rop io p roceso , y al m i s m o t i e m p o cubriría
las n e c e s i d a d e s m á s r educ ida s d e los individuos y las n e c e s i d a d e s ampl i a s d e la o r -
gan izac ión . Wat t s Humphrey ([HUM97] y [HUMOO]) a r g u m e n t a q u e e s posible c rea r
un "p roceso d e s o f t w a r e p e r s o n a l " o un "p roceso d e s o f t w a r e en equipo". A m b o s re-
qu ie ren de un a r d u o t rabajo , capac i t ac ión y coord inac ión , p e r o a m b o s s e p u e d e n
consegui r . 1 0

"Unn p e r s o n a que t i ene éxi to sólo se h o f o r m a d o el hábi to de hace r las cosos que lo g ente sin éx i to no h a c e . "
D e x t e r Yager

A ¿Oté K t i v i -
V U H M
• • r a 4* t r a b a j o
* « S z a n duran-
fcdPSP?

2.6.1 Proceso de software personal (PSP)
Cada desa r ro l l ador utiliza a lgún p r o c e s o p a r a cons t ru i r un s o f t w a r e d e c o m p u t a d o -
ra. El p r o c e s o p u e d e se r for tui to o ad hoc, p u e d e camb ia r a diario, p u e d e n o se r efi-
ciente , e fec t ivo o h a s t a exi toso, p e r o existe un p roceso . Watts Humphrey [HUM97]
sug ie re que para camb ia r un p r o c e s o persona l inefectivo, un individuo d e b e p a s a r

po r c u a t r o fases , en las c u a l e s se requ ie re capac i t ac ión e i n s t rumen tac ión cu idado-

sa. El proceso de software personal (PSP) resal ta la med ida pe r sona l del p roduc to d e
t r aba jo q u e se p roduce y la ca l idad resu l tan te del p roduc to d e t rabajo . A d e m á s , el
PSP responsabi l iza al p ro fes iona l e n c a r g a d o d e la p l aneac ión del p royec to (por e j e m -
plo, la e s t imac ión y la planif icación) y le conf ie re el p o d e r d e cont ro la r la ca l idad d e

t odos los p roduc to s d e t r aba jo del s o f t w a r e q u e s e desar ro l lan .
El m o d e l o PSP def ine c inco ac t iv idades del m a r c o d e t rabajo: p laneac ión , d i seño

de a l to nivel, revisión del d i s e ñ o d e a l to nivel, desar ro l lo y anál is is de resu l t ados .

P l a n e a c i ó n . Esta act ividad se lecc iona requis i tos y, con b a s e en és tos , desar ro l la

el t a m a ñ o y la e s t imac ión d e los recursos . Además , s e e s t i m a n los de fec to s (el nú-
m e r o d e de fec to s p royec tado en el t rabajo) . Todas las m e d i c i o n e s s e regis t ran en ho-

jas d e t r a b a j o o en planti l las. Al final, s e ident if ican las t a r ea s de desarro l lo y s e c rea
un p r o g r a m a del p royec to .

D i s e ñ o d e a l t o n ive l . S e e l aboran las e spec i f i cac iones e x t e r n a s para q u e cada
c o m p o n e n t e s ea cons t ru ido y s e c rea un d i seño del c o m p o n e n t e . Se cons t ruyen pro-
to t ipos c u a n d o existe incer t idumbre . Todos los e l e m e n t o s s e regis t ran y r a s t r ean .

R e v i s i ó n d e l d i s e ñ o d e a l t o n ive l . Los m é t o d o s fo rma le s de verif icación (capí-
tulo 26) s e apl ican a e r ro res de scub ie r to s en el d i seño . Las m e d i c i o n e s s e m a n t i e n e n
para t odas las t a r ea s i m p o r t a n t e s y los r e su l t ados d e t rabajo .

D e s a r r o l l o . El d i s e ñ o al nivel de c o m p o n e n t e s e ref ina y revisa. Se g e n e r a , re-
visa, compi la y p rueba el código. Las m e d i c i o n e s s e m a n t i e n e n p a r a t odas las t a r ea s
i m p o r t a n t e s y los r e su l t ados d e t r aba jo .

10 Vale la pena mencionar que los proponentes del desarrollo ágil del software (capitulo 4) también ar-
gumentan que el proceso debe permanecer cerca del equipo. Ellos proponen un método alternativo
para lograrlo.

TM

PDF Editor

40 PARTE UNO a PROCESO DEL SOFTWARE

CLAVE
El P S P d e s t o c o l o
n e c e s i d a d d e r e g i s t r a r
y a n a l i z a r l o s t i p o s d e
e r r o r e s q u e s e
c o m e t e n p o r a
d e s a r r o l l a r e s t r a t e g i a s
e n c a m i n o d o s o

e l i m i n a r l o s .

tóós información sobre
lo construcción de
equipos d e alto
desempeflo empleando
el PSE y el PSP puede
obtenerse en
www.se l . cmu.

eAi/tsp/.

A n á l i s i s d e r e s u l t a d o s . Mediante las med ic iones y m e d i d a s r eco l ec t adas (una
cant idad sus tanc ia l de d a t o s d e b e ana l i z a r s e d e m a n e r a estadíst ica) s e de t e rmina la
efect ividad del p roceso . Las med ic iones y m e d i d a s d e b e n o f rece r u n a guía p a r a m o -

dificar el p r o c e s o y así m e j o r a r su efect iv idad.

El PSP des t aca la neces idad q u e t iene c a d a ingeniero de s o f t w a r e de identif icar los
eiTores d e s d e el pr incipio y la impor tanc ia d e e n t e n d e r los t ipos d e e r r o r e s q u e s u e -

le come te r . Esto se lleva a c a b o m e d i a n t e u n a ac t iv idad d e eva luac ión r igurosa apli-
c a d a en t odos los p roduc to s d e t r aba jo q u e g e n e r a el ingeniero d e so f tware .

El PSP r ep re sen t a un e n f o q u e discipl inado, b a s a d o en medic iones , d e la ingenie-

ría de s o f t w a r e q u e p u e d e conduci r a un c h o q u e d e cu l tu ras a m u c h o s p ro fe s iona -
les. Sin e m b a r g o , c u a n d o el PSP s e p r e s e n t a d e un m o d o a d e c u a d o a los ingen ie ros
de s o f t w a r e [HUM96], la mejor ía resu l tan te en la p roduc t iv idad d e la ingenier ía del
s o f t w a r e y la cal idad d e é s t e son s ignif icat ivas [FER97]. No obs tan te , la industr ia n o
ha a d o p t a d o con ampl i tud el PSP. Las r a z o n e s , t r i s t emente , t i enen m á s re lación con
la na tu ra l eza h u m a n a y la inercia o rgan izac iona l q u e con las f u e r z a s y debi l idades
del e n f o q u e del PSP. Este ú l t imo e s un r e t o intelectual y d e m a n d a un g r ado d e c o m -
p r o m i s o (por par te de los p ro f e s iona l e s y s u s jefes) que n o s i empre e s pos ib le ob t e -

ner. La capac i tac ión e s r e l a t ivamen te larga y s u s c o s t o s son a l tos . En lo cultural , el
g rado requer ido d e medición e s difícil p a r a m u c h a gente involucrada con el sof tware .

Una in te r rogan te e s si el PSP p u e d e u sa r s e c o m o u n p r o c e s o d e s o f t w a r e efec t ivo
a un nivel persona l . La r e s p u e s t a es , sin duda , sí. Pero a u n si el PSP n o e s a d o p t a d o
en su total idad, vale la p e n a es tud ia r m u c h o s d e los c o n c e p t o s d e m e j o r a del p roce -

s o q u e és te p resen ta .

2.6.2 Proceso de software en equipo (PSE)
Debido a que m u c h o s proyectos de so f tware en el á m b i t o industrial los dirige un equi-
p o d e profes ionales , Watts Humphrey extendió las lecciones a p r e n d i d a s p a r a la intro-

ducción del PSP y p ropuso un proceso de soJ\ware en equipo (PSE). La m e t a del PSE e s
construir un equipo de proyecto "autodirigido" q u e se organice p a r a producir un sof t -
w a r e d e alta calidad. Humphrey [HUM98] def ine los s iguientes objet ivos del PSE:

• Const ru i r equ ipos au todi r ig idos q u e p l a n e e n y t engan un s e g u i m i e n t o d e su
t raba jo , e s t ab l ezcan m e t a s y p o s e a n s u s p r o c e s o s y p lanes . Estos g r u p o s
p u e d e n ser e q u i p o s d e s o f t w a r e pu ros o equ ipos de p roduc to in teg rado
(EP1) d e 3 a 20 ingenieros .

• Most rar a los je fes c ó m o p r e p a r a r y mot iva r a s u s e q u i p o s y c ó m o ayuda r -

los a so s t ene r un a l to d e s e m p e ñ o .

• Acelerar el m e j o r a m i e n t o del p r o c e s o d e s o f t w a r e al real izar , con el c o m -
p o r t a m i e n t o n o r m a l y e s p e r a d o , el nivel 5 del MCM.

Ofrecer u n a gu ía d e m e j o r a m i e n t o a o r g a n i z a c i o n e s d e al ta m a d u r e z .

TM

PDF Editor

http://www.sel.cmu

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 41

^ O M S E J O ^ ^

CLAVE

• Facilitar la e n s e ñ a n z a univers i tar ia d e hab i l idades d e e q u i p o industrial de
cal idad.

Un e q u i p o autodi r ig ido e n t i e n d e en fo rma cons i s t en te s u s m e t a s y obje t ivos ge-
nera les . Define f u n c i o n e s y r e sponsab i l i dades p a r a c a d a u n o d e s u s miembros ; re-
gistra d a t o s cuan t i t a t ivos del p royec to (como product iv idad y calidad); identifica un
proceso de equipo apropiado para el proyecto y u n a estrategia para implementar el pro-
ceso; de f ine e s t á n d a r e s locales apl icables al t r a b a j o de ingenier ía de s o f t w a r e del
equipo , eva lúa e n c a d a m o m e n t o riesgos y reacc iones ; y registra, ges t iona y repor ta
el e s t a t u s del proyecto .

"Encontrar buenos j ugado re s es fácil. Hacer que jueguen en equipo es otra historia."
C a s e y S t a n g e l

El PSE de f ine las s iguientes act ividades del m a r c o d e t rabajo: l anzamien to , d iseño
d e a l to nivel, implementac ión , in tegración y p rueba , y análisis d e resul tados. Al igual
que sus con t rapa r t e s en el PSP (nótese q u e la terminología e s diferente), e s t a s activi-

d a d e s permi ten al equipo planear , d i señar y construir un so f tware de una m a n e r a dis-
ciplinada al m i s m o t i empo q u e miden de m o d o cuant i ta t ivo el p roceso y el producto .
Los anál is is d e resul tados m u e s t r a n el e scenar io para el me jo r amien to del proceso .

El PSE utiliza una amplia variedad de escritos, fo rmas y e s t á n d a r e s q u e sirven para
guiar a los m i e m b r o s del e q u i p o en su t rabajo . Los escritos de f inen ac t iv idades e spe -

cíf icas del p r o c e s o (por e jemplo , l anzamien to , d iseño, imp lemen tac ión , in tegrac ión
y p rueba , y anál is is d e r e su l t ados del proyecto) y o t r a s func iones m á s de ta l l adas del
t r aba jo (como p laneac ión del desarrol lo , desar ro l lo de requisi tos, ges t ión d e la con-

figuración d e s o f t w a r e y p rueba d e unidad) q u e son par te del p r o c e s o del equ ipo .
Con fines i lustrativos, e s útil t o m a r en c u e n t a la act ividad inicial del p roceso : el lan-
zamiento del proyecto.

Cada p royec to e s " l anzado" con una secuenc ia d e t a r ea s (definida c o m o un escri-
to) q u e pe rmi t e al e q u i p o es tab lecer u n a b a s e sólida p a r a iniciar el proyecto . Se re-
c o m i e n d a el s iguiente escrito de lanzamiento (sólo de m a n e r a general) [HUMOOj:

• Revisar los ob je t ivos del p royec to con la ges t ión y aco rda r y d o c u m e n t a r
las m e t a s del equ ipo .

• Establecer las func iones del equ ipo .

• Definir el p r o c e s o d e desarro l lo del equ ipo .

• Elaborar un p lan de cal idad y p lan tea r los obje t ivos d e cal idad.

• P repa ra r un plan p a r a las n e c e s i d a d e s de sopor t e necesa r ias .

• Producir u n a es t ra teg ia d e desarro l lo genera l .

• Elaborar u n p lan de desar ro l lo p a r a el p royec to en su total idad.

• Hacer p l a n e s de ta l l ados p a r a c a d a ingeniero en la s iguiente fase .

• Adap ta r los p l a n e s individuales a un p lan de equipo .

TM

PDF Editor

PARTE UNO EL PROCESO DEL SOFTWARE

• Hacer un b a l a n c e d e la can t idad d e t r aba jo del e q u i p o p a r a o b t e n e r un pro-
g r a m a m í n i m o e n t é rminos genera les .

• Valorar los riesgos del p royec to y a s igna r r esponsab i l idad d e r a s t r e o p a r a
c a d a riesgo clave.

Es i m p o r t a n t e s e ñ a l a r q u e la act ividad d e l a n z a m i e n t o p u e d e ap l i ca r se a n t e s d e c a -
da act ividad del m a r c o d e t r aba jo del PSE, el cual s e explicó p á r r a f o s a t rás . Es to s e
a j u s t a a la n a t u r a l e z a i terativa d e m u c h o s p royec to s y pe rmi t e q u e el e q u i p o s e a d a p -
te a las n e c e s i d a d e s c a m b i a n t e s del c l iente y a las l ecc iones a p r e n d i d a s d e act ivida-
d e s previas .

El PSE r e c o n o c e q u e los m e j o r e s e q u i p o s d e s o f t w a r e son autodir ig idos . Los
m i e m b r o s del e q u i p o p l a n t e a n los obje t ivos del proyecto , a d a p t a n el p r o c e s o p a r a
cubrir s u s neces idades , con t ro l an el p r o g r a m a y la medic ión y el anál is is d e las m e -

d idas r eco lec tadas ; a d e m á s , t r a b a j a n d e m a n e r a c o n t i n u a p a r a me jo ra r el e n f o q u e
del equ ipo r e spec to d e la ingenier ía del so f tware .

Al igual q u e el PSP, el PSE e s un e n f o q u e r iguroso p a r a la ingenier ía del s o f t w a r e
q u e o f r ece benef ic ios d is t in tos y cuan t i f i cab les en product iv idad y cal idad. El equ ipo
debe c o m p r o m e t e r s e con el p r o c e s o y d e b e recibir capac i t ac ión p a r a a s e g u r a r s e d e
q u e el e n f o q u e s e apl ique de m a n e r a ap rop iada .

Los m o d e l o s gené r i cos de p r o c e s o t r a t ados en las s ecc iones p r e c e d e n t e s d e b e n
a d a p t a r s e p a r a q u e los utilice un e q u i p o d e p royec to d e so f tware . Para lograr lo s e
h a n desa r ro l l ado herramientas de tecnología del proceso d e s t i n a d a s a a y u d a r a las o r -
g a n i z a c i o n e s d e s o f t w a r e a ana l i za r s u s p r o c e s o s ac tua les , o r g a n i z a r s u s t a reas ,
cont ro la r y mon i to rea r su p rogreso , y admin i s t r a r su cal idad técnica [NEG99].

Las h e r r a m i e n t a s d e tecnología del p r o c e s o pe rmi t en q u e u n a o rgan izac ión d e
s o f t w a r e cons t ruya un m o d e l o a u t o m a t i z a d o del m a r c o d e t r a b a j o c o m ú n del p r o c e -

so , d e los c o n j u n t o s de t a r e a s y las ac t iv idades sombri l la exp l i cadas e n la secc ión
2.2. El mode lo , q u e a m e n u d o s e r ep re sen t a c o m o una red, e n t o n c e s p u e d e ana l i za r -
s e p a r a d e t e r m i n a r el flujo d e t r a b a j o típico y e x a m i n a r las e s t r u c t u r a s d e p r o c e s o al-
t e rna t ivas q u e podr ían conduc i r a la r educc ión del t i e m p o o cos to del desarrol lo .

Una vez c r e a d o un p r o c e s o acep t ab l e e s posible uti l izar o t r a s h e r r a m i e n t a s de
tecnología del p r o c e s o p a r a localizar, m o n i t o r e a r e incluso con t ro la r t o d a s las t a r e a s
d e ingenier ía del s o f t w a r e def in idas c o m o u n a pa r t e del m o d e l o del p roceso . Cada

m i e m b r o del e q u i p o d e s o f t w a r e p u e d e e m p l e a r d ichas h e r r a m i e n t a s en la e l a b o r a -
ción de una lista d e verif icación d e las t a r e a s d e t r a b a j o que se d e b e n desarrol lar , los
p r o d u c t o s del t r a b a j o q u e e s impera t ivo producir , y las ac t iv idades p a r a el a s e g u r a -
m i e n t o d e la cal idad q u e d e b e n real izarse . La h e r r a m i e n t a d e tecnología del p roce -
s o t a m b i é n s e p u e d e a p r o v e c h a r p a r a coord ina r el u s o d e o t r a s h e r r a m i e n t a s d e la
ingenier ía del s o f t w a r e as is t ida por c o m p u t a d o r a q u e s e a n a p r o p i a d a s p a r a u n a ta -
rea d e t r a b a j o part icular .

TM

PDF Editor

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 4 3

HERRAMIENTAS DE SOFTWARE

Herramientas de modelado del
proceso
O b j e t i v o : Si una organización trabaja en el

-ejoramiento de un proceso de un negocio (o de un softwa-
-5). el primer objetivo es entenderlo. Las herramientas de
-xjdelado del proceso (también llamadas tecnología del
z -oceso o herramientas de gestión del proceso) se utilizan
oaro representar los elementos clave de un proceso para
- j e éste pueda entenderse con mayor claridad. Tales herra-

también ofrecen vínculos con descripciones del pro-
que ayudan a quienes se interesen en el proceso a

las acciones y las tareas de trabajo necesarias pa-
-3 desarrollado. Las herramientas de modelación del proce-
so proporcionan vínculos con otras herramientas que
: -ecen soporte a actividades definidas del proceso.

M e c á n i c a : Las herramientas de esta categoría permiten
; equipo definir los elementos de un modelo del proceso

único (acciones, tareas, productos de trabajo), ofrecen una
guía detallada del contenido o la descripción de cada ele-
mento del proceso, y después gestionan el proceso mien-
tras se conduce. En algunos casos las herramientas de
tecnología del proceso incorporan tareas de gestión del
proyecto estándar, como estimación, itinerario, rastreo y
control.

H e r r a m i e n t a s r e p r e s e n t a t i v a s : "
Igrafx Process Tools, distribuidas por Corel Corporation

(www.igrafx.com/producís/process), es una serie de
herramientas que permiten al equipo organizar, medir
y modelar el proceso de software.

Objexis Team Portal, desarrollado por Objexis Corporation
(www.objexis.com), proporciona la definición y el con-
trol completos del flujo de trabajo del proceso.

4*

Si e l p r o c e s o e s d é b i l , s i n d u d a e l p r o d u c t o final s u f r i r á l a s c o n s e c u e n c i a s . A s i m i s -

m o , u n a c o n f i a n z a e x c e s i v a e n e l p r o c e s o e s p e l i g r o s a . E n u n b r e v e e n s a y o M a r g a -

r e t D a v i s (DAV95] c o m e n t a s o b r e la d u a l i d a d d e l p r o d u c t o y e l p r o c e s o :

Al rededor de c a d a diez a ñ o s , a v e c e s c a d a cinco, la c o m u n i d a d del s o f t w a r e r ede f ine "el

p r o b l e m a " c a m b i a n d o su e n f o q u e d e los a s p e c t o s del p r o d u c t o a los a s u n t o s del p roceso .

E n t o n c e s s e h a n o b t e n i d o l e n g u a j e s d e p r o g r a m a c i ó n e s t r u c t u r a d o s (producto) s e g u i d o s

por m é t o d o s d e aná l i s i s e s t r u c t u r a d o (proceso) y e n c a p s u l a c i ó n de d a t o s (producto), así

c o m o el én fa s i s ac tua l e n el Mode lo de M a d u r e z d e Capac idad p a r a el Desarro l lo d e Soft-

w a r e del Inst i tuto d e Ingenier ía del S o f t w a r e (proceso) (seguidos por los m é t o d o s o r i en t a -

d o s a ob j e to s y el desa r ro l lo ágil de sof tware] .

Mien t ra s la t endenc i a na tu ra l de u n p é n d u l o e s l legar al r e p o s o en el p u n t o m e d i o en -

t re d o s e x t r e m o s , el obje t ivo de la c o m u n i d a d del s o f t w a r e c a m b i a e n fo rma c o n s t a n t e

p o r q u e c a d a vez q u e u n a osc i lac ión t e r m i n a se apl ica u n a n u e v a fue rza . Estas osci lacio-

n e s s o n noc ivas e n sí m i s m a s p o r q u e c o n f u n d e n al p rofes iona l p r o m e d i o del s o f t w a r e con

los c a m b i o s rad ica les e n el s igni f icado de h a c e r el t r aba jo o de ja r q u e é s t e s e desar ro l le

solo. Las osc i l ac iones t a m p o c o resue lven "el p rob lema" , p u e s t o q u e e s t án d e s t i n a d a s a fa-

llar m i e n t r a s el p r o d u c t o y el p r o c e s o s e a n t r a t ados c o m o si f o r m a r a n u n a d ico tomía e n

lugar d e u n a dual idad .

11 Las herramientas mencionadas aquí representan una muestra de esta categoría. En la mayoría de
los casos los nombres son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.igrafx.com/produc%c3%ads/process
http://www.objexis.com

44 PARTE UNO EL PROCESO DEL SOFTWARE

Existen precedentes en la comunidad científica hacia las nociones de dualidad, cuan-
do las contradicciones en las observaciones no se pueden explicar por completo con una
u otra teoría competidora. La naturaleza dual de la luz, la cual parece ser en forma simul-
tánea una partícula y una onda, ha sido aceptada desde la década de 1920, cuando Louis
de Broglie la propuso. Creo que las observaciones posibles sobre los artefactos del soft-
ware y su desarrollo demuestran una dualidad fundamenta l entre el producto y el proce-
so. No se puede llegar a entender el artefacto completo, su contexto, uso, significado y
valor si sólo se ve como un proceso o únicamente como un producto.. .

Todas las actividades humanas pueden verse como un proceso, pero cada ser huma-
no tiene un sentido de autovaloración de aquellas actividades que generan una represen-
tación que puede emplear o apreciar más de una persona, emplear una y otra vez, o
aprovechar en algún otro contexto. Es decir, el ser humano encuentra placer en reutilizar
sus productos y en que otros los reutilicen.

Por lo tanto, mientras la rápida asimilación de reutilizar metas en el desarrollo de soft-
ware aumen ta de manera potencial la satisfacción que experimentan los profesionales de
su trabajo, también aumenta la urgencia de aceptación de la dualidad del producto y el
proceso. Considerar un artefacto reutilizable como sólo un producto o sólo como un pro-

ceso oscurece el contexto y las maneras de utilizarlo, u oscurece el hecho de que cada uso
resulta en un producto que, a su tiempo, se aprovechará como entrada a alguna otra ac-

tividad de desarrollo de software. Poner un punto de vista sobre el otro reduce en forma
sustancial las oportunidades de reutilizar y, por lo tanto, pierde la oportunidad de incre-
mentar la satisfacción del trabajo.

"Sin d u d o , e l s i s t e m o idea l , si s e p u d i e r a o b t e n e r , se r ia un cód igo t a n f l e x i b l e y d i m i n u t o c o m o p o r o p r o v e e r p o r an t i -
c i p a d o e n c a d a s i tuac ión c o n c e b i b l e u n a r e g l a e x a c t a . P e r o la v i d a e s d e m a s i a d o c o m p l e j a p a r a o b t e n e r e s t o i d e a
incluso con t o d o el p o d e r h u m a n o . "

B e n j a m í n C a r d o z o

La g e n t e o b t i e n e t a n t a (o m á s) s a t i s f a c c i ó n de l p r o c e s o c r e a t i v o q u e del p r o d u c -

t o final. Un p i n t o r d i s f r u t a l o s t r a z o s de l p i n c e l t a n t o c o m o el r e s u l t a d o del c u a d r o .

Un e s c r i t o r d i s f r u t a la b ú s q u e d a d e u n a m e t á f o r a a p r o p i a d a t a n t o c o m o el l ibro t e r -

m i n a d o . Un p r o f e s i o n a l de l s o f t w a r e c r e a t i v o d e b e s e n t i r t a n t a s a t i s f a c c i ó n de l p r o -

c e s o c o m o de l p r o d u c t o t e r m i n a d o .

El t r a b a j o q u e r e a l i z a la g e n t e d e s o f t w a r e c a m b i a r á e n lo s a ñ o s q u e s i g u e n . La

d u a l i d a d del p r o d u c t o y el p r o c e s o e s u n e l e m e n t o i m p o r t a n t e p a r a m a n t e n e r a la

g e n t e c r e a t i v a c o m p r o m e t i d a m i e n t r a s finaliza la t r a n s i c i ó n d e s d e la p r o g r a m a c i ó n

h a s t a la i n g e n i e r í a de l s o f t w a r e .

2 , 9 R E S U M E N

La i n g e n i e r í a de l s o f t w a r e e s u n a d i s c ip l i na q u e i n t e g r a al p r o c e s o , l o s m é t o d o s y l a s

h e r r a m i e n t a s p a r a el d e s a r r o l l o de l s o f t w a r e d e c o m p u t a d o r a . S e h a p r o p u e s t o u n

g r a n n ú m e r o d e m o d e l o s d e p r o c e s o p a r a la i n g e n i e r í a del s o f t w a r e , p e r o t o d o s d e -

finen u n c o n j u n t o d e a c t i v i d a d e s del m a r c o d e t r a b a j o , u n a c o l e c c i ó n d e t a r e a s c o n -

TM

PDF Editor

CAPÍTULO 2 EL PROCESO: UNA VISIÓN GENERAL 45

d u c i d a s p a r a r e a l i z a r c a d a ac t i v idad , p r o d u c t o s d e t r a b a j o g e n e r a d o s c o m o c o n s e -

c u e n c i a d e l a s t a r e a s y u n c o n j u n t o d e a c t i v i d a d e s s o m b r i l l a q u e a c o m p a ñ a n el p r o -

c e s o e n t e r o . L o s p a t r o n e s d e p r o c e s o p u e d e n a p r o v e c h a r s e p a r a d e f i n i r l a s c a r a c t e -

r í s t i c a s del m i s m o .

La i n t e g r a c i ó n del m o d e l o d e c a p a c i d a d d e m a d u r e z (IMCM) e s u n m o d e l o to ta l

de l p r o c e s o , q u e d e s c r i b e l a s m e t a s , p r á c t i c a s y c a p a c i d a d e s e s p e c í f i c a s c o n q u e d e -

b e c o n t a r u n p r o c e s o d e s o f t w a r e m a d u r o . El SPICE y o t r o s e s t á n d a r e s d e f i n e n lo s

r e q u i s i t o s p a r a g u i a r u n a e v a l u a c i ó n de l p r o c e s o d e s o f t w a r e , y el e s t á n d a r ISO

9 0 0 1 : 2 0 0 0 e x a m i n a la g e s t i ó n d e la c a l i d a d d e n t r o d e u n p r o c e s o .

Se h a n p r o p u e s t o lo s m o d e l o s p e r s o n a l y e n e q u i p o p a r a el p r o c e s o d e s o f t w a r e .

A m b o s d e s t a c a n la m e d i c i ó n , la p l a n e a c i ó n y la a u t o d i r e c c i ó n c o m o i n g r e d i e n t e s

c l a v e p a r a u n p r o c e s o d e s o f t w a r e e x i t o s o .

Los p r i n c i p i o s , c o n c e p t o s y m é t o d o s q u e p e r m i t e n r e a l i z a r el p r o c e s o l l a m a d o in-

geniería del software s e r á n c o n s i d e r a d o s e n el r e s t o d e e s t e l ibro.

[AMB98] Ambler, S., Process Patterns: Buiiding Large-Scale Systems Using Object Technology,
Cambridge University Press/SIGS Books, 1998.

[BAE98] Baetjer, Jr., H., Software as Capital, IEEE Computer Society Press, 1998, p. 85.
[CIA01] Cianfrani, C. et ai, ISO 9001:2000 Explained, American Society of Quality, 2001.
[CMM02] Capability, Maturity Model Integration (CMMI), Versión 1.1, Software Engineering Institute,

marzo de 2002, disponible en ht tp : / /www.sei .cmu.edu/cmmi/ .
[DAV95] Davis, M„ "Process and Product: Dichotomy or Duality", en Software Engineering Notes,

ACM Press, vol. 20, núm. 2, abril de 1995, pp. 17-18.
[DUN01 IDunaway, D. y S. Masters, CMM-Based Appraisalfor Intemal Process Improvement (CBAIPI

Versión 1.2 Method Description, Sof tware Engineering institute, 2001, puede descargarse de
h t tpy /www.se i . cmu.edu /publ ica t ions /documents /01 .reports/01 tr033.html

[ELE98| El Emam, K., J. Drouin y W. Meló (eds.), SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination, IEEE Computer Society Press, 1998.

[FER97] Ferguson, P. et al., "Results of applying the personal so f tware process", en IEEE
Computer, vol. 30, núm. 5, mayo de 1997, pp. 24-31.

[HUM96] Humphrey, W., "Using a Defined and Measufed Personal Sof tware Process", en IEEE
Software, vol. 13, núm. 3, mayo-junio de 1996, pp. 77-88.

[HUM971 Humphrey, W„ Introduction to the Personal Software Process, Addison-Wesley, 1997.
[HUM98] Humphrey, W., "The Three Dimensions of Process Improvement , Part III: The Team

Process", en Crosstalk, abril de 1998. Disponible en h t tp : / /www.s t sc .h i l l . a f .mi l /c ross ta lk /
1998/apr/dimensions.asp.

[HUM001 Humphrey, W., Introduction to the Team Software Process, Addison-Wesley, 2000.
[IEE93] 1EE Standards Collection: Software Engineering, 1EE Standard 610.12-1990, IEEE, 1993.
[15000] ISO 9001:2000 Document Set, International Organizat ion for Standards , 2000, h t t p : / /

www.iso.ch/iso/en/iso9000-14000/ iso9000/ 9000isoindex.html.
[15001] "Guidance on the Process Approach to Quality Managemen t Systems", Document

ISO/TC 176/SC2/N544R, International Organizat ion for S tandards , mayo de 2001.
[KET01) Ketola, J. y K, Roberts, ISO 9001:2000 in a Nutshell, 2a. ed., Patón Press, 2001.
[MONOll Monnich, H., Jr. y H. Monnich, ISO 9001:2000 for Small-and Medium-Sized Businesses,

American Society of Quality, 2001.
[NAU69] Naur, P. y B. Randall (eds.). Software Engineering: A Report on a Conference Sponsored

by the NATO Science Cominee, NATO, 1969.
[NEG991 Negele, H., "Modeling of Integrated Product Development proceses", Proc. 9th Annual

Symposium ofINCOSE, Reino Unido, 1999.

TM

PDF Editor

http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/publications/documents/01
http://www.stsc.hill.af.mil/crosstalk/
http://www.iso.ch/iso/en/iso9000-14000/

PARTE UNO EL PROCESO DEL SOFTWARE

[PAU93] Paulk, M. eí al., Capabihty Maturity Model/or Software, Sof tware Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 1993.

[PHI02] Phillips, M„ "CMMI VI.1 TUtorial", abril de 2002, disponible en h t t p : / /www.se i . cmu .
e d u / c m m i / .

[SEI00] SCAMPl, VI.0 Standard CMMI ® Assessment Method for Process Improvement: Method
Description, Sof tware Engineering Institute, Technical Report CMU/SEI-2000-TR-009,
disponible en h t t p / /www.se i . cmu .edu /pub l i ca t i ons /documen t s /00 . r epo r t s / 00 t r009 .h tml

[SPI991 "SPICE: Software Process Assessment , Part 1: Concepts and lntroduction", Versión 1.0,
ISO/IEC JTCI, 1999.

2.1. En la introducción a es te capitulo, Baetjer puntual iza: "El proceso ofrece una interacción
ent re usuarios y diseñadores , entre usuarios y her ramientas en evolución, ent re d iseñadores y
her ramientas en evolución [tecnologia]". Háganse cinco preguntas respecto a a) lo que los di-
señadores deben preguntar a los usuarios; b) los usuar ios deben preguntar a los diseñadores ;
c) lo que los usuar ios deben preguntarse a sí m i smos sobre el p roduc to de so f tware que se
construirá; y d) lo que los d i señadores deben preguntarse a sí m i smos sobre el producto de
software que se construirá y el proceso que se utilizará para hacerlo.

2 .2 . En la figura 2.1 se colocan los tres estratos de ingeniería del software arriba de un estrato ti-
tulado "un enfoque en la calidad". Esto implica un programa de calidad de una organización am-
plia como gestión de la calidad total. Realizar una pequeña investigación y desarrollar una guía de
los principios clave de un programa de gestión de calidad total.

2 . 3 . ¿Existe la posibilidad de que las actividades genér icas del proceso de ingeniería del soft-
ware no se apliquen? Si es así, descríbase.

2 . 4 . Las actividades sombrilla ocurren a lo largo de todo el proceso del sof tware . ¿Se aplican
de modo uni forme a t ravés del p roceso o a lgunas es tán concen t r adas en una o m á s activida-
des del marco de trabajo?

2 . 5 . Descríbase un marco de t rabajo del proceso con palabras propias. Cuando se dice que las
actividades del marco de trabajo son aplicables a todos los proyectos, ¿esto significa que las mis-
mas tareas de t raba jo se aplican a todos los proyectos, sin importar el t a m a ñ o y complej idad?
Expliqúese la respuesta.

2.6. Intente establecer un conjunto de tareas para la actividad de comunicación.

2 . 7 . Investigar un poco m á s acerca de la IMCM y discutir las venta jas y desventa jas de los mo-
delos de la IMCM continuo y discreto.

2.8. Desplegar la documentación de la IMCM del sitio de la red del SEI y seleccionar un área del
proceso que no sea la planeación del proyecto. Hacer una lista de las metas específicas (ME) y de
las prácticas especificas (PE) asociadas que se definan mediante el área que se haya elegido.

2 . 9 . Considerar la actividad de comunicación dent ro del marco de trabajo. Desarrollar un pa-
trón completo del proceso (podría ser un pat rón discreto) ap rovechando los principios descri-
tos en la sección 2.4.

2 . 1 0 . ¿Cuál es el propósito de la evaluación del proceso? ¿Por qué el SPICE ha sido desarrolla-
do como un es tándar para la evaluación del proceso?

2.11. Investigar m á s sobre el PSP y prepara r una breve presentación que indique los benef i -
cios cuantitativos del proceso.

2.12. La utilización de "escritos" (un mecan ismo requerido en el PSE) no goza de gran acepta-
ción entre la comunidad del sof tware. Hacer una lista de las ventajas y desventajas mientras se
toman en cuenta los escritos y sugerir al menos dos situaciones en que serian útiles y o t ras dos
situaciones en donde no tendrían tantos beneficios.

TM

PDF Editor

http://www.sei.cmu
http://www.sei.cmu.edu/publications/documents/00.reports/00tr009.html

47

El estado actual de la ingeniería deL software y el proceso de software lo determinan bien
publicaciones mensuales como IEEE Software, Computer, y IEEE Transactions on Software Engi-
neering. Publicaciones periódicas como Application Development Trends y Cutter IT Journal a
menudo contienen artículos sobre t emas de ingeniería del software. La disciplina se "resume"
cada año en la Proceeding of the International Conference on Software Engineering, patrocinado
por el IEEE y ACM, y se discute a profundidad en publicaciones como ACM Transactions on
Software Engineering and Methodology, ACM Software Engineering Notes y Annals of Software
Engineering. Miles de páginas de la red están dedicadas a la ingeniería del sof tware y al
proceso de software.

En los a ñ o s recientes se han publicado muchos libros referentes al proceso de software y a
la ingeniería del software. Algunos presentan un panorama del proceso en su totalidad,
mientras otras centran su atención en unos cuantos t emas importantes y excluyen otros. Entre
las propuestas más populares se encuentran:

Abran, A. y) . Moore, SWEBOK: Guide to the Software Engineering Body of Knowledge, IEEE,
2002.

Ahern, D, etal., CMMI Distilled, Addison-Wesley, 2001.

Chrisis, B. ef al., CMMI: Cuidelines for Process Integration and Product Improvement, Addison-
Wesley, 2003.

Christensen, M. y R. Thayer, A Projecl Manager's Guide to Software Engineering Best Practices,
1EEE-CS Press (Wiley), 2002.

Glass, R., Fact and Fallacies of Software Engineering, Addison-Wesley, 2002.

Hunter, R. y R. Thayer (eds.), Software Process Improvement, 1EEE-CS Press (Wiley), 2001.

Persse,) . , Implementing the Capability Maturity Model, Wiley, 2001.

Pfleeger, S„ Software Engineering: Theoiy and Practice, 2a. ed„ Prentice-Hall, 2001.

Potter, N. y M. Sakry, Making Process Improvement Work, Addison-Wesley, 2002.

Sommerville, I., Software Engineering, 6a. ed„ Addison-Wesley, 2000

En lo que respecta a lecturas más ligeras, un libro de Robert Glass (Software Conftict,
Yourdon Press, 1991) presenta ensayos sorprendentes y controversiales sobre el sof tware y el
proceso de ingeniería del software. Yourdon (Death March Piojects, Prentice-Hall, 1997) expone
lo que sale mal cuando fallan grandes proyectos de software y cómo evitar esos errores.

Garmus (Measuring the Software Process, Prentice-Hall, 1995) y Florac y Carlton (Measuring
the Software Process, Addison-Wesley, 1999) explican cómo evaluar de modo estadístico la
eficacia de cualquier proceso de software.

Se ha publicado una gran variedad de procedimientos y es tándares de la ingeniería del
sof tware desde la década pasada. El IEEE Software Engineering Standards contiene muchos
es tándares diferentes que cubren casi cada uno de los aspectos importantes de la tecnología.
El conjunto de documentos ISO 9001:2000 proporciona una guía a las organizaciones de
software que deseen mejorar sus actividades de gestión de calidad. Otros es tándares de inge-
niería del sof tware se pueden obtener del Depar tamento de Defensa, la FAA y otras agencias
gubernamentales y no lucrativas de Estados Unidos de America. Fairclough (Software Enginee-
ring Guides, Prentice-Hall, 1996) ofrece una referencia detallada de es tándares de ingeniería del
sof tware producida por la Agencia Espacial Europea (ESA, por sus siglas en inglés).

En Internet está disponible una gran variedad de fuentes de información sobre ingeniería
del sof tware y el proceso de software. Una lista actualizada de referencias de la World wide
Web relevantes para el proceso de software puede encontrarse en el sitio:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

3 M O D E L O S PRESCRIPTIVOS
DE PROCESO

C O N C E P T O S

C L A V E

construcción d e
protot ipos55

desarrollo
concurrente60

métodos
(orinales .64

modelo DBC63

modelo DRA53

modelo DSOA . . .65

modelo en
cascada .50

modelo en
espiral .58

modelo
incremenlal52

modelo
prescriptivo . . .49

proceso
evolutivo 54

proceso
unificado 67

Lo s mode los prescriptivos de p roceso se propusieron or ig ina lmente para or-
d e n a r el caos del desarrol lo de sof tware . La historia ha indicado que e s to s
mode lo s convenc iona les h a n traído cons igo cierta cant idad de es t ruc turas

útiles para el t r aba jo en la ingenier ía del sof tware , y h a n proporc ionado un ca-
mino a seguir r a z o n a b l e m e n t e efect ivo para los equ ipos de sof tware . Sin em-
bargo, el t r aba jo de la ingeniería del sof tware y el p roduc to resul tante aún
p e r m a n e c e n "al bo rde del caos" [NOGOO],

En un d o c u m e n t o intr igante sobre la ex t r aña relación en t r e el orden y el caos
en el m u n d o del sof tware, Nogueira y sus colegas es tablecen:

El bo rde del c a o s s e def ine c o m o "un e s t a d o na tura l e n t r e el o rden y el caos , u n a

relación es t recha e n t r e la es t ruc tura y la sorpresa" [KAU95J. El bo rde del c a o s se p u e d e

visualizar c o m o un e s t ado inestable, e s t ruc tu rado en fo rma parcial . . . e s ines tab le

po rque e s a t ra ído de m a n e r a cons t an t e hacia el c a o s o hac ia el o r d e n absoluto .

Se t iende a p e n s a r q u e el o rden e s el e s t a d o ideal d e la n a t u r a l e z a . Esto podr ía ser

u n error . La invest igación. . . apoya la teor ía d e q u e la o p e r a c i ó n le jos del equil ibrio

g e n e r a creat ividad, p r o c e s o s o r g a n i z a d o s p o r sí m i s m o s y r e t roa l imen tac ión cre-

c i e n t e [R0096J . El o rden a b s o l u t o s ignif ica la a u s e n c i a d e var iabi l idad, lo cual ser ía

u n a ven t a j a e n a m b i e n t e s impredec ib les . El c a m b i o ocu r r e c u a n d o exis te a l g u n a es -

t ruc tura pa ra q u e p u e d a o rgan iza r se , dicha e s t ruc tu ra n o d e b e se r tan rigida c o m o

p a r a q u e evi te el c a m b i o . Por o t ro lado, d e m a s i a d o c a o s p u e d e imposibil i tar la coor -

d inac ión y la cohe renc i a . La falta d e e s t ruc tu ra no s i empre significa d e s o r d e n .

¿ Q u é e s ? Los modelos prescriptivos
de proceso definen un conjunto dis-
tinto de actividades, acciones, tareas,
fundamentos y productos de trabajo
que se requieren para desarrollar

software de alta calidad. Estos modelos de pro-
ceso no son perfectos, pero proporcionan una
guía útil para el trabajo de la ingeniería del soft-
ware.

¿ Q u i é n lo h a c e ? Los ingenieros de software y
sus gerentes adaptan un modelo prescriptivo de
proceso a sus necesidades y después lo siguen.
Además, la gente que ha solicitado el software
tiene un papel por desempeñar conforme se eje-
cuta el modelo de software.

¿ P o r q u é e s i m p o r t a n t e ? Porque proporciona
estabilidad, control y organización a una activi-

dad que si no se controla puede volverse caóti-
ca. Algunas veces los modelos de proceso pres-
criptivo se han referido como "modelos rigurosos
de proceso", ya que a menudo incluyen las capa-
cidades sugeridas por la IMCM (capítulo 2). Sin
embargo, iodos los modelos de proceso se pue-
den adaptar para usarlos de forma efectiva y en
un proyecto de software específico.

¿Cuáles s o n los p a s o s ? El proceso conduce a
un equipo de software a través de un conjunto
de actividades del marco de trabajo que se
organizan en un flujo de proceso, el cual puede
ser lineal, ¡ncremental o evolutivo. La terminolo-
gía y los detalles de cada modelo de proceso
difieren, pero las actividades genéricas del
marco de trabajo permanecen razonablemente
consistentes.

48

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 49

i Cuál es el producto obtenido? Desde el
ounto de vista de un ingeniero d e software, los
productos de trabajo son los programas, docu-
mentos y datos que se producen como conse-
cuencia de las actividades y tareas que define el
proceso.

¿Cómo puedo estar seguro de que lo he
h e c h o c o r r e c t a m e n t e ? Existe cierta canti-

dad de mecanismos para la evaluación del pro-
ceso d e software que permite a las organizacio-
nes determinar la "madurez" de sus respectivos
procesos. Sin embargo, los mejores indicadores
de la eficacia del proceso que se utiliza son la
calidad, el tiempo d e entrega y la viabilidad a
largo plazo del producto que se construye

Las impl icac iones f i losóf icas d e e s t e a r g u m e n t o son s ignif ica t ivas r e spec to d e la
ingenier ía del so f tware . Si los m o d e l o s prescr ipt ivos del p roceso 1 b u s c a n es t ruc tu ra

y o rden , ¿és tos resu l tan i nap rop i ados para un m u n d o del s o f t w a r e q u e se b a s a en el
c amb io? A d e m á s , si s e r e c h a z a n los m o d e l o s c o n v e n c i o n a l e s del p r o c e s o (y el o rden
q u e é s to s implican) y s e r e e m p l a z a n con a lgo m e n o s e s t ruc tu rado , ¿se imposibil i ta
a l c a n z a r la coord inac ión y la cohe renc i a en el t r aba jo del s o f t w a r e ?

No exis ten r e s p u e s t a s fáciles, p e r o exis ten opc iones d i spon ib les para los ingenie-
ros de so f tware . En e s t e capí tu lo s e e x a m i n a r á el e n f o q u e del p r o c e s o prescr ipt ivo,
en el cual el o rden y la cons i s tenc ia del p royec to son los a s p e c t o s d o m i n a n t e s . En el
capí tu lo 4 s e e x a m i n a r á el e n f o q u e del p r o c e s o ágil e n el cual la o rgan izac ión p ro -
pia, la co laborac ión , la c o m u n i c a c i ó n y la adaptabi l idad d o m i n a n la filosofía del p ro -
ceso .

3 . 1 M O D E L O S P R E S C P T P T I V O S

CLAVE
d e s c r i p t i v o

n o con
«Oreos
a c t o s

fcto

Cualquier o rgan izac ión d e ingenier ía del s o f t w a r e d e b e describir un c o n j u n t o ún ico

d e ac t iv idades d e n t r o del m a r c o de t r aba jo (capítulo 2) para el (los) proceso(s) de
s o f t w a r e q u e adop te . También d e b e l lenar c a d a act ividad del m a r c o d e t r a b a j o con
un c o n j u n t o d e a c c i o n e s d e ingenier ía del so f tware , y definir c a d a acción en c u a n t o
a un c o n j u n t o d e t a r e a s q u e ident i f ique el t r aba jo (y los p r o d u c t o s del t rabajo) q u e
d e b e n c o m p l e t a r s e p a r a a l c a n z a r las m e t a s de desarrol lo . Después , la o rgan izac ión

d e b e a d a p t a r el m o d e l o d e p r o c e s o resu l t an te y a jus ta r lo a la na tu ra l eza específ ica
d e c a d a proyecto , a las p e r s o n a s q u e lo rea l iza rán , y el a m b i e n t e en el q u e s e e jecu-
tará el t raba jo . Sin impor ta r el m o d e l o del p r o c e s o se lecc ionado , los i ngen ie ros d e
s o f t w a r e h a n e legido d e m a n e r a t radicional un m a r c o de t r a b a j o gené r i co p a r a el
p roceso , el cual incluye las s igu ien tes ac t iv idades d e n t r o del m a r c o : comunicac ión ,
p laneac ión , mode l ado , cons t rucc ión y desarrol lo .

"Existen muchos f o r m a s de ir bocio delante , pe ro sólo una de pe rmanece r . "
Franklin D. Roosewelt

1 Los modelos prescriptivos de proceso a menudo se denominan modelos "convencionales" de proceso

TM

PDF Editor

50 PARTE UNO EL PROCESO DEL SOFTWARE

En las s e c c i o n e s s igu ien tes s e e x a m i n a r á n va r ios d e los m o d e l o s prescr ip t ivos del
p r o c e s o d e so f tware . Se les l lama "prescript ivos" p o r q u e prescr iben un c o n j u n t o d e
e l e m e n t o s del p roceso : ac t iv idades del m a r c o d e t raba jo , a c c i o n e s d e ingenier ía del

so f tware , t a r ea s , p roduc to s del t raba jo , a s e g u r a m i e n t o d e la cal idad, y m e c a n i s m o s
d e cont ro l del c a m b i o p a r a c a d a proyecto . Cada m o d e l o d e p r o c e s o prescr ibe t a m -
bién un flujo de trabajo; e s t o es, la fo rma en la cual los e l e m e n t o s del p r o c e s o s e inte-

r re lac ionan e n t r e sí.
Todos los m o d e l o s d e p r o c e s o del s o f t w a r e s e a j u s t a n a las ac t iv idades gené r i ca s

del m a r c o d e t r aba jo desc r i t a s en el cap í tu lo 2, p e r o c a d a u n o aplica u n a impor tan -
cia d i fe ren te a e s t a s ac t iv idades y def ine un flujo d e t r aba jo q u e invoca c a d a activi-
dad del m a r c o d e t r a b a j o (así c o m o acc iones y t a r e a s d e la ingenier ía del so f tware)

de una m a n e r a d i ferente .

Existen oca s iones en q u e los requisi tos de un prob lema s e en t i enden de una m a n e r a
razonable: c u a n d o el t raba jo fluye desde la comunicac ión a t ravés del despliegue d e
una m a n e r a casi lineal. Esta si tuación s e encuen t ra a v e c e s c u a n d o e s necesar io h a c e r
adap tac iones o mejor ías bien def inidas a un s i s tema exis tente (por ejemplo, una a d a p -
tación a un sof tware contable debido a los cambios en las regulaciones del gobierno).
Esto p u e d e ocurrir t ambién en un n ú m e r o l imitado d e proyectos d e n u e v o s desarrollos,
pe ro sólo c u a n d o los requer imientos e s t án bien def inidos y son es tables en forma razo-
nable.

El modelo en cascada, a lgunas v e c e s l l amado el ciclo de vida clásico, sugiere un enfo-

que sis temático, secuencial 2 hacia el desarrol lo del sof tware , q u e se inicia con la e spe -
cificación de requer imientos del cl iente y que cont inúa con la p laneación, el modelado ,
la cons t rucción y el despl iegue para culminar en el sopor te del so f tware te rminado.

El m o d e l o en c a s c a d a e s el p a r a d i g m a m á s a n t i g u o para la ingenier ía del s o f t w a -
re. Sin e m b a r g o , en las d é c a d a s p a s a d a s , las crí t icas a e s te m o d e l o d e p r o c e s o h a n

El m o d e l o e n c a s c a d a .

^ O N S E J f l j ^

Aunque un proceso
sea prescriptivo, no se
debe asumir que éste
es estático. Los
modelos prescriptivos
se deben adaptar o
las personas, al
problema y al
proyecto.

2 A pesar de que el modelo en cascada original, que propuso Winston Royce [ROY70], prevé "ciclos
de retroalimentación", la inmensa mayoría de las organizaciones que aplica es te modelo de proceso
lo trata como si fuera estr ictamente lineal.

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 51

¿ ñ w q e é

M i e l

o c a s i o n a d o q u e aun sus m á s fe rv ien tes p rac t i can tes h a y a n c u e s t i o n a d o su ef icacia
[HAN95], Entre los p r o b l e m a s q u e a l g u n a s v e c e s s e e n c u e n t r a n al apl icar el m o d e l o
en c a s c a d a es tán :

1 . Es m u y ra ro q u e los p royec tos r ea l e s s igan el flujo secuenc ia l q u e p r o p o n e el
modelo . A p e s a r d e q u e el m o d e l o lineal incluye i teraciones, lo hace de m a n e r a
indirecta. C o m o resu l tado , los c a m b i o s c o n f u n d e n m i e n t r a s el equ ipo d e
p royec to ac túa .

2. Con f recuencia e s difícil para el cliente es tablecer t odos los requisitos de m a n e r a

explícita. El m o d e l o en c a s c a d a lo requ ie re y s e e n f r e n t a n di f icul tades al in-
co rpora r la ince r t idumbre na tura l p r e s e n t e en el inicio d e m u c h o s proyectos .

3 . El c l iente d e b e t ener pac iencia . Una vers ión q u e func ione d e los p r o g r a m a s
e s t a rá disponible c u a n d o el p royec to es té m u y a v a n z a d o . Un error g rave será
d e s a s t r o s o si n o s e de tec ta a n t e s d e la revisión del p r o g r a m a .

En un anál is is i n t e r e s a n t e d e p royec tos rea les , Bradac [BRA94] concluyó que la
n a t u r a l e z a lineal del m o d e l o en c a s c a d a c o n d u c e a "e s t ados d e b loqueo" en los cua -
les a l g u n o s m i e m b r o s del equ ipo del p royec to d e b e n e s p e r a r a o t ros para t e rmina r
t a r e a s d e p e n d i e n t e s . De hecho , el t i e m p o de e s p e r a p u e d e s u p e r a r el que s e aplica

en el t r aba jo product ivo . El e s t a d o d e b loqueo t iende a se r m á s c o m ú n al pr incipio y
al final del p r o c e s o secuenc ia l .

En la ac tua l idad , el t r a b a j o del s o f t w a r e e s t á a c e l e r a d o y s u j e t o a una c a d e n a infi-
n i ta d e c a m b i o s (de carac ter í s t icas , f u n c i o n e s y c o n t e n i d o d e la in formación) . Con
f recuenc ia , el m o d e l o e n c a s c a d a n o e s a p r o p i a d o p a r a d icho t raba jo . Sin e m b a r g o ,
p u e d e servir c o m o un m o d e l o d e p r o c e s o útil en s i t u a c i o n e s d o n d e los requer i -

m i e n t o s e s t á n fijos y d o n d e el t r a b a j o s e real iza, h a s t a su conc lus ión , d e una m a n e -
ra lineal.

msn
3 . 3 M O D E L O S D E P R O C E S O I N C R E M E N T A L E S

En m u c h a s s i t uac iones los requis i tos iniciales del s o f t w a r e es tán bien def in idos en
f o r m a r azonab l e , p e r o el e n f o q u e global del e s f u e r z o d e desar ro l lo excluye un pro-
ceso p u r a m e n t e lineal. Además , qu izá h a y a u n a n e c e s i d a d imper iosa de proporc io-
n a r de m a n e r a ráp ida un c o n j u n t o l imitado de func iona l idad p a r a el usuar io y des -
p u é s ref inar la y expandi r la en las e n t r e g a s pos t e r io re s del so f tware . En e s to s c a s o s

s e elige un m o d e l o d e p r o c e s o d i s e ñ a d o p a r a produci r el s o f t w a r e en fo rma incre-
men ta l .

"Con d e m a s i a d a f re tuenc io , el f r oba jo en el s o f t w a r e s igue lo p r imero ley del ciclismo: no importa hacia dónde vayas,
es m o n t a ñ a a r r iba y contra e l v ien to . "

Anónimo

TM

PDF Editor

52

CLAVE
El modelo incrementol
entrega uno serie de
lanzamientos,
llamados mementos,
que proporcionan en
forma progresiva m á s
funcionalidad para los
d ientes a medida que
se entrega cada uno
de los incrementos.

(C O N S E J Ó ^

Si el cliente demando
lo entrega en una
fecha imposible de
cumplh, sugiérase
entregar uno o más
incrementos para esa
fecho y el resto del
software lincrementos
adicionales) después.

PASTE UNO EL PROCESO DEL SOFTWARE

3 . 3 . 1 El m o d e l o i n c r e m e n t a l

El modelo incremental c o m b i n a e l e m e n t o s del m o d e l o e n c a s c a d a ap l i cado en fo rma
iterativa. C o m o se m u e s t r a en la figura 3.2, el m o d e l o inc rementa l aplica s e c u e n c i a s
l ineales d e m a n e r a e s c a l o n a d a c o n f o r m e a v a n z a el t i e m p o en el ca lendar io . Cada
secuenc ia lineal p r o d u c e " inc remen tos" del s o f t w a r e [MCD93]. Por e jemplo , el so f t -
w a r e p r o c e s a d o r de texto, de sa r ro l l ado con el p a r a d i g m a inc remen ta l e n su pr imer
i nc remen to , podría real izar func iones b á s i c a s d e admin i s t rac ión d e a rchivos , edición

y producción d e documen tos ; en el s e g u n d o incremento , edic iones m á s sofist icadas, y
tendr ía func iones m á s c o m p l e j a s d e p roducc ión d e d o c u m e n t o s ; e n el te rcer incre-
m e n t o , f u n c i o n e s d e cor recc ión or tográ f ica y g ramat ica l ; y e n el cua r to , c a p a c i d a d e s
a v a n z a d a s d e conf igurac ión d e pág ina . Se d e b e t ener en c u e n t a q u e el flujo del pro-
ceso d e cua lqu ie r i n c r e m e n t o p u e d e incorporar el p a r a d i g m a d e cons t rucc ión de
pro to t ipos q u e s e e x p o n e en la secc ión 3.4.1.

A m e n u d o , al utilizar un m o d e l o inc remen ta l el p r imer i n c r e m e n t o e s un produc-
to esencial. Es decir, s e incorporan los requis i tos bás icos , p e r o m u c h a s carac ter í s t i -
c a s s u p l e m e n t a r i a s (a lgunas conoc idas , o t r a s no) n o se incorporan . El p roduc to

esencia] q u e d a en m a n o s del c l iente (o s e s o m e t e a una eva luac ión detal lada) . C o m o
r e su l t ado d e la eva luac ión s e desar ro l la un p lan p a r a el i n c r e m e n t o s iguiente . El p lan
a f r o n t a la modif icac ión del p roduc to esenc ia l con el fin d e sa t i s facer de m e j o r m a n e -

ra las n e c e s i d a d e s del c l iente y la en t r ega de carac te r í s t i cas y func iona l idad adic io-
na les . Este p r o c e s o s e repite d e s p u é s d e la en t r ega de c a d a i n c r e m e n t o m i e n t r a s n o
s e haya e l a b o r a d o el p r o d u c t o comple to .

El m o d e l o d e p r o c e s o inc rementa l , al igual q u e la cons t rucc ión d e pro to t ipos y
o t ro s e n f o q u e s evolut ivos, e s i terat ivo por n a t u r a l e z a . Pero a d i ferencia d e la c o n s -
t rucción d e protot ipos , el m o d e l o inc rementa l s e e n f o c a en la e n t r e g a d e u n p r o d u c -
t o ope rac iona l con c a d a i nc remen to . Los p r imeros i n c r e m e n t o s son ve r s iones

El m o d e l o
i n c r e m e n t a l .

Tiempo del ca lendar io d e proyec to

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 53

" incomple tas" del p r o d u c t o final, p e r o p roporc ionan al u s u a r i o la func iona l idad q u e
neces i t a y u n a p l a t a fo rma p a r a eva luar lo . 3

El desar ro l lo inc rementa l e s útil s o b r e todo c u a n d o el pe r sona l nece sa r io p a r a una
i m p l e m e n t a c i ó n comple t a n o es tá disponible . Los p r imeros i n c r e m e n t o s s e p u e d e n

i m p l e m e n t a r con m e n o s gen te . Si el p roduc to esenc ia l e s bien recibido s e ag rega (si
se requiere) m á s pe r sona l p a r a i m p l e m e n t a r el i n c r e m e n t o s iguiente . Además , los
i n c r e m e n t o s s e p u e d e n p l a n e a r p a r a m a n e j a r los r iesgos técnicos . Por e jemplo , un
s i s t ema g r a n d e podr ía requer i r la disponibi l idad de un h a r d w a r e n u e v o q u e es tá en
desar ro l lo y cuya fecha de en t r ega e s incierta. Sería posible p l anea r los p r imeros
i n c r e m e n t o s d e fo rma q u e s e evi te el u s o d e es te ha rdware , lo q u e permitir ía la
en t r ega d e func iona l idad parcial a los u sua r io s finales sin r e t r a s o s d e s o r d e n a d o s .

3.3.2 El modelo DRA
El desarrollo rápido de aplicaciones (DRA) e s un m o d e l o de p r o c e s o d e s o f t w a r e incre-
m e n t a l q u e resal ta u n ciclo de desarro l lo corto. El m o d e l o DRA e s u n a adap t ac ión a
"alta ve loc idad" del m o d e l o e n c a s c a d a en el que s e logra el desar ro l lo rápido

m e d i a n t e u n e n f o q u e d e cons t rucc ión b a s a d o e n c o m p o n e n t e s . Si s e e n t i e n d e n b ien
los requis i tos y s e limita el á m b i t o del proyecto, 4 el p r o c e s o DRA pe rmi te q u e un
e q u i p o d e desarro l lo c ree u n "s i s tema c o m p l e t a m e n t e func iona l" d e n t r o de un per io-
d o m u y co r to (por e jemplo , d e 60 a 90 días) [MARSH].

C o m o o t ros m o d e l o s d e p roceso , el e n f o q u e DRA cumple con las ac t iv idades
gené r i ca s del m a r c o d e t r aba jo q u e ya se h a n p r e s e n t a d o . La comunicación t r aba ja
p a r a e n t e n d e r el p r o b l e m a de negoc ios y las carac ter í s t icas d e in fo rmac ión q u e d e b e
incluir el s o f t w a r e . La planeación e s e senc ia l p o r q u e var ios e q u i p o s de s o f t w a r e t ra-

ba j an e n pa ra l e lo s o b r e d i f e ren te s func iones del s i s t ema . El modelado incluye t r e s
g r a n d e s f a s e s — m o d e l a d o d e negoc ios , m o d e l a d o de da to s y m o d e l a d o del p roce -
so— y e s t ab l ece r e p r e s e n t a c i o n e s del d i s e ñ o q u e s i rven c o m o b a s e p a r a la act ividad

de cons t rucc ión del m o d e l o DRA. La construcción resa l ta el e m p l e o d e c o m p o n e n t e s
d e s o f t w a r e ex i s t en te y la apl icación de la gene rac ión au tomá t i ca d e código. Por últi-
mo, el despliegue e s t ab l ece u n a b a s e p a r a las i t e r ac iones s u b s e c u e n t e s , si é s t a s son
n e c e s a r i a s [KER94].

El mode lo d e proceso DRA se ilustra en la figura 3.3. Es obvio q u e las restr icciones
de t i empo i m p u e s t a s sob re un proyecto DRA exigen un "ámbito d e esca las" [KER94].

Si u n a apl icación de negoc ios se p u e d e modula r d e forma que c a d a gran función
p u e d a comple t a r se en m e n o s de t r e s m e s e s (median te la aplicación del e n f o q u e ya

3 Es importante observar que para todos los modelos de proceso ágiles que se tratan en el capítulo 4
también se utiliza una filosofía incremental.

4 Estas condiciones no se pueden garantizar por ningún medio. De hecho, muchos proyectos de soft-
ware tienen los requisitos muy pobremente definidos al principio. En tales casos los enfoques de
construcción de prototipos o evolutivos (sección 3.4) son mejores opciones de proceso. Véase
[REI951.

TM

PDF Editor

5 4 PARTE UNO EL PROCESO DEL SOFTWARE

El m o d e l o
DRA.

E q u i p o # n

C o m u n i c a c i ó n C o m u n i c a c i ó n

modelado del negocio
modelado d e tos datos
modelado del proceso

E q u i p o # 2

M o d e l a d o
modelado del negocio
modelado d e los da tos
modelado del proceso

reutilización de
componentes

generación
d e código
automático

^ t u e b a s ^ ^ ^

E q u i p o # !

modelado del negocio
modelado de los datos
modelado del proceso

Construcción
reutilizactón d e
componentes

generoción do
codigo automático
pruebas

Construcc ión
reutilización d e
componentes
generación automática

d e código
pruebas

/

6 0 - 9 0 d í a s

D e s p l i e g u e
integración
entrega
retroalimentoción

í j l ¿Cuáles
• son las

d e s v e n t a j a s del
modelo DRA?

descrito), ésta es una candidata para el DRA. Cada gran función se puede abordar
mediante un equipo de DRA por separado, para después integrarlas y formar un todo.

Como todos los modelos de proceso, el en foque DRA tiene inconvenientes
[BUT94]: 1) para proyectos grandes , pero escalables, el DRA necesita suficientes
recursos h u m a n o s para crear el n ú m e r o correcto de equipos DRA; 2) si los desarro-
lladores y clientes n o se comprometen con las act ividades rápidas necesar ias para
completar el s is tema en un marco de t iempo muy breve, los proyectos de DRA falla-
rán; 3) si un s is tema no se puede modular en forma apropiada, la construcción de
los c o m p o n e n t e s necesar ios para el DRA será problemática; 4) si el alto rendimien-
to es un aspec to importante, y se a lcanzará al convertir interfases en c o m p o n e n t e s
del s is tema, el enfoque DRA podría no funcionar; y 5) el DRA sería inapropiado cuan-
do los r iesgos técnicos son altos (por ejemplo, cuando una aplicación nueva aplica
m u c h a s nuevas tecnologías).

3 . 4 M O D E L O S P E P R O C E S O E V O L U T I V O S

El software, c o m o todos los s i s temas complejos , evoluciona con el t iempo [GIL88j.
Los requisi tos de los negocios y productos a m e n u d o cambian confo rme se realiza
el desarrollo; por lo tanto, la ruta lineal que conduce a un producto final no será real;
las estr ictas fechas tope del mercado imposibilitan la conclusión de un producto

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 55

C & V E

j a m é dente
m m r e necesidad
« m e . aeronosepa
wmm e s detalles,
a m r m t p o s o
wmraéeseun

comple to , po r lo q u e s e d e b e p r e s e n t a r una vers ión l imitada p a r a l iberar la pres ión
compet i t iva y d e negoc ios ; s e t iene c l a ro un c o n j u n t o d e requis i tos del p r o d u c t o o
s i s t ema esencia l , p e r o todavía s e d e b e n definir los de ta l les d e las e x t e n s i o n e s del
p roduc to o s i s t emas . En é s t a s y o t r a s s i t uac iones s imilares , los ingen ie ros d e sof t -
w a r e neces i t an un m o d e l o d e p r o c e s o q u e haya s ido d i s e ñ a d o d e m a n e r a explícita
p a r a incluir un p roduc to q u e evo luc ione con el t iempo.

Los modelos evolutivos s on iterativos; los caracteriza la forma en que permiten que
los ingenieros d e sof tware desarrollen versiones cada vez m á s comple tas del sof tware .

3.4.1 Construcción de prototipos
A m e n u d o un cliente def ine un c o n j u n t o d e obje t ivos gene ra l e s p a r a el s o f t w a r e ,
p e r o n o identifica los requis i tos de ta l l ados d e e n t r a d a , p r o c e s a m i e n t o o sal ida . En
o t ros ca sos , el r e s p o n s a b l e de l desarro l lo del s o f t w a r e e s t á inseguro d e la ef icacia d e
un a lgor i tmo, d e la adaptab i l idad d e un s i s t ema ope ra t i vo o d e la fo rma q u e deber ía
t o m a r la in teracción h u m a n o - m á q u i n a . En é s t a s , y e n m u c h a s o t r a s s i tuac iones , un
paradigma de construcción de prototipos p u e d e o f r e c e r el m e j o r e n f o q u e .

A p e s a r d e q u e la cons t rucc ión d e pro to t ipos s e p u e d e utilizar c o m o un m o d e l o
de p r o c e s o independ ien te , s e e m p l e a m á s c o m ú n m e n t e c o m o u n a técnica suscep t i -
ble d e i m p l e m e n t a r s e d e n t r o del con tex to de cua lqu ie ra d e los m o d e l o s d e p r o c e s o
e x p u e s t o s en es te capí tulo. Sin impor ta r la fo rma en q u e é s t e s e apl ique, el paradig-
m a de cons t rucc ión d e pro to t ipos a y u d a al i ngen ie ro d e s i s t e m a s y al c l iente a e n t e n -
der d e m e j o r m a n e r a cuál se rá el r e su l t ado d e la cons t rucc ión c u a n d o los requis i tos
e s t é n sa t i s fechos .

El p a r a d i g m a de cons t rucc ión d e pro to t ipos (figura 3.4) s e inicia con la c o m u n i -
cac ión . El ingeniero d e s o f t w a r e y el c l iente e n c u e n t r a n y de f inen los obje t ivos glo-

ae prototipos.

TM

PDF Editor

56 PARTE UNO EL PROCESO DEL SOFTWARE

bales p a r a el so f tware , ident if ican los requis i tos c o n o c i d o s y las á r e a s del e s q u e m a
e n d o n d e e s necesa r i a m á s def inición. En tonces s e p l an t ea con rap idez u n a i teración
de cons t rucc ión de p ro to t ipos y se p r e s e n t a el m o d e l a d o (en la f o r m a d e u n d i s e ñ o
rápido) . El d i s e ñ o ráp ido s e cen t r a en u n a r ep resen tac ión d e aque l los a s p e c t o s del
s o f t w a r e q u e s e r á n vis ibles p a r a el c l iente o el u sua r io final (por e jemplo , la conf i -
guración de la in ter faz con el u sua r io y el f o rma to d e los desp l i egues d e salida). El

d i s e ñ o ráp ido c o n d u c e a la cons t rucc ión d e un proto t ipo . Después , el p ro to t ipo lo
eva lúa el c l i e n t e / u s u a r i o y con la r e t roa l imentac ión s e r e f inan los requis i tos del sof t -
w a r e q u e s e desarrol lará . La i te rac ión ocur re c u a n d o el p ro to t ipo s e a ju s t a p a r a
sa t i s facer las n e c e s i d a d e s del cl iente. Es to pe rmi t e q u e al m i s m o t i e m p o el d e s a r r o -
llador e n t i e n d a m e j o r lo q u e s e d e b e hacer .

De m a n e r a ideal, el p ro to t ipo deber ía servir c o m o un m e c a n i s m o p a r a ident i f icar
los requis i tos del so f tware . Si se cons t ruye un pro to t ipo de t rabajo , el desa r ro l l ador
in ten ta e m p l e a r los f r a g m e n t o s del p r o g r a m a ya ex i s t en tes o aplica h e r r a m i e n t a s
(como g e n e r a d o r e s d e in fo rmes , admin i s t r ado re s d e v e n t a n a s , e tcétera) q u e pe rmi -

ten producir p r o g r a m a s d e t r aba jo con rapidez.
Pero ¿qué d e b e h a c e r s e con el p ro to t ipo u n a vez cumpl ido el p ropós i to descr i to?

Brooks [BR075] o f r ece u n a r e spues ta :

En la mayor ía de los p royec tos , el p r imer s i s t ema cons t ru ido a p e n a s s e uti l iza. Tal vez s e a

d e m a s i a d o lento, m u y g r a n d e o to rpe e n su uso , o r e ú n a las t res ca rac te r í s t i cas a la vez .

No existe otra opc ión q u e c o m e n z a r d e nuevo , a u n q u e s e a doloroso , e s lo mejor , y cons t ru i r

u n a revis ión r e d i s e ñ a d a e n la q u e s e r e sue lvan e s t o s p rob l emas . . . C u a n d o s e aplica un

c o n c e p t o n u e v o de s i s t ema o una tecnología nueva , s e t i ene q u e cons t ru i r u n s i s t ema in-

servible y q u e s e a necesa r io desechar , po rque incluso la mejor p laneación n o e s omnisc ien te

c o m o pa ra q u e el s i s t ema es t é pe r fec to d e s d e la p r i m e r a vez . Por lo t an to , la p r e g u n t a de

la admin i s t r ac ión n o e s si d e b e cons t ru i r se u n s i s t ema piloto y desecha r lo . Esto t e n d r á q u e

h a c e r s e . La ún ica p r e g u n t a e s si se p l a n e a la cons t rucc ión de un d e s e c h a b l e o s e p r o m e t e

en t r egá r se lo a los c l ientes .

El p ro to t ipo p u e d e servir c o m o "pr imer s i s tema" , el q u e Brooks r e c o m i e n d a de se -
char . Pero é s t a tal vez s ea u n a visión ideal izada . Es ve rdad q u e a los c l ientes y los
desa r ro l l adores les gusta el p a r a d i g m a d e cons t rucc ión d e protot ipos . A los u sua r io s

les gusta el s i s t ema real y a los desa r ro l l adores les gus ta cons t ru i r a lgo d e i nmed ia -
to. Sin e m b a r g o , la cons t rucc ión d e p ro to t ipos t a m b i é n s e to rna p rob lemát ica po r las
s igu ien tes r azones :

1 . El c l iente ve lo q u e p a r e c e una vers ión en f u n c i o n a m i e n t o del so f tware , sin

s a b e r q u e el p ro to t ipo e s t á un id o "con chicle y cable para emba la je" , q u e por
la prisa d e hace r lo func ionar n o s e ha c o n s i d e r a d o la cal idad del s o f t w a r e
global o la facilidad d e m a n t e n i m i e n t o a largo p lazo. C u a n d o s e in fo rma q u e
el p roduc to d e b e cons t ru i r se o t ra v e z p a r a m a n t e n e r los a l tos niveles d e cali-
dad , el c l iente n o lo e n t i e n d e y pide la apl icación d e "unos p e q u e ñ o s a jus tes"
para q u e s e pueda e laborar un p roduc to final a partir del protot ipo. Es m u y fre-
c u e n t e q u e la ges t ión del desar ro l lo d e s o f t w a r e s e a m u y lenta .

^ O N S E J O ^

Resístase o la presión
por convertir un
prototipo burdo en un
producto. Como
resultado, casi
siempre lo calidad se
reduce.

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 57

2 . A m e n u d o , el desa r ro l l ador e s t ab l ece c o m p r o m i s o s d e imp lemen tac ión p a r a
lograr q u e el p ro to t ipo f u n c i o n e con rapidez . Tal vez s e utilice un s i s t ema
opera t ivo o l engua j e d e p r o g r a m a c i ó n i n a d e c u a d o só lo p o r q u e e s t á d isponible
y e s conoc ido ; s e p u e d e i m p l e m e n t a r un a lgor i tmo inef ic iente só lo para
m o s t r a r capac idad . D e s p u é s de un t iempo, el desa r ro l l ador qu izá s e fami -

liarice con e s t a s se lecc iones y olvide las r a z o n e s po r las q u e son inapropiadas .
La selección m e n o s ideal a h o r a se convier te en una pa r t e integral del s is tema.

A p e s a r d e q u e tal vez sur jan p rob lemas , la cons t rucc ión d e pro to t ipos p u e d e se r
un p a r a d i g m a efect ivo p a r a la ingenier ía del so f tware . La clave e s definir las reglas
del j uego d e s d e el principio; e s decir, el c l iente y el desa r ro l l ador s e d e b e n p o n e r de
a c u e r d o en q u e el p ro to t ipo se cons t ruya y sirva c o m o un m e c a n i s m o para la defini-

ción d e requisi tos, en q u e s e descar te , al m e n o s en par te , y en q u e d e s p u é s s e d e s a -
rrolle el s o f t w a r e real con un e n f o q u e hacia la cal idad.

HOGARSEGURO

Selección de un modelo de proceso. Primera parte

El e s c e n a r i o : Sala de reuniones
g rupo de ingeniería del software en CPI

uno compañía (ficticia) que fabrica produc-
consumo pa ra uso doméstico y comercial.

l ee Warren, gerente de ingeniería; Doug
gerente de ingeniería del software; Jamie Lazar,

del equipo de software; Vinod Raman, miembro
>= equipo de software; y Ed Robbins, miembro del equi-

de software. ¿U,

conversación:
e : Entonces recapitulemos. He pasado algún tiempo

analizando la línea de productos HogarSeguro como la
•«nos en el momento. No hay duda, tenemos mucho tra-
bajo que hacer sólo pa ra definir esta cosa, pero me gus-

que comenzaron a pensar acerca de cómo enfoca-
la par te del software de este proyecto.

Parece que en el p a s a d o hemos estado muy
aesorganizados en nuestro enfoque hacia el software.

Ed: No lo sé, Doug. Siempre sacamos el producto.

Doug: Es cierto, pero con muchos sacrificios, y este pro-
yecto parece mayor y más complejo que cualquier cosa
que hayamos hecho antes.

- a m i e : N o parece ser tan duro, pero estoy de acuerdo. . .
•xss'ro enfoque ac¡ hoc en los proyectos pasados no fun-
: onará aquí, en particular si tenemos un tiempo de éntre-
l e nuy restringido.

Doug (s o n r i e n d o) : Quiero que nuestro enfoque sea
. - poco más profesional. Asistí a un curso corto la semo-

na pa sada y aprendí mucho acerca d e la ingeniería del
software.. . es una buena ¡dea. Necesitamos un proceso
aquí.

J a m i e (f r u n c i e n d o e l c e ñ o) : Mi trabajo es construir
programas de computadora, no andar moviendo papeles.

D o u g : Dale una oportunidad antes de decirme que no.
Me refiero a esto. [Doug describe el marco d e t raba jo del
proceso expuesto en el capítulo 2 y los modelos prescrip-
tivos del proceso q u e se han presentado hasta este
punto.]

D o u g : Entonces, me parece que un modelo lineal no es
para nosotros... supone que tenemos todos los requisitos
frente a nosotros y, conociendo este lugar, eso no es pro-
bable.

V i n o d : Sí, y ese modelo DRA suena muy orientado a la
IT... Tal vez sea bueno para construir un sistema d e con-
trol d e inventarios o a lgo así, pero no es correcto pa ra
HogarSeguro.

D o u g : Estoy de acuerdo.

Ed: Ese enfoque de construcción de prototipos me pare-
ce bueno. De cualquier manera se parece mucho a lo
que hacemos aquí.

V i n o d : Ése es el problema. Me preocupa que no nos
proporcione la suficiente estructura.

D o u g : No hay de qué preocuparse. Tenemos muchas
otras opciones, y quiero que seleccionen lo mejor pa ra el
equipo y el proyecto.

TM

PDF Editor

58

C K J E V V E
El m o d e l o e n e s p i r a l s e
p u e d e a d o p t a r y
a p l i c a r l o o t r a v é s d e l
c ic lo d e v i d a c o m p l e t o
d e u n o a p l i c a c i ó n ,

d e s d e e l d e s a r r o l l o d e l
c o n c e p t o h a s t a e l
m a n t e n i m i e n t o .

PARTE UNO EL PROCESO DEL SOFTWARE

3.4.2 El modelo en espiral
El modelo en espiral, que B o e h m [BOE88] p r o p u s o or ig ina lmente , e s u n m o d e l o de
p roceso d e s o f t w a r e evolut ivo q u e con juga la n a t u r a l e z a i terativa d e la cons t rucc ión

d e p ro to t ipos con los a s p e c t o s con t ro l ados y s i s t emát i cos del m o d e l o en ca scada .
Proporc iona el mate r ia l para el desar ro l lo rápido d e ve r s iones i nc r emen ta l e s del
so f tware . B o e h m [BOEOlj desc r ibe es te m o d e l o de la s iguiente m a n e r a :

El m o d e l o d e desa r ro l lo en espiral e s u n g e n e r a d o r del m o d e l o de p r o c e s o gu iado por el

r iesgo q u e s e e m p l e a pa ra conduci r s i s t e m a s in tens ivos de ingenier ía del s o f t w a r e c o n -

c u r r e n t e y con múl t ip les usuar ios . Tiene d o s ca rac te r í s t i cas d is t in t ivas pr incipales . Una d e

e l las e s u n e n f o q u e cíclico pa ra el c r ec imien to i nc r emen ta l del g r ado d e def inic ión e im-

p l emen tac ión de u n s i s t ema , m i e n t r a s d i sminuye su g r ado de r iesgo. La o t ra e s u n c o n -

j u n t o de p u n t o s d e fijación pa ra a s e g u r a r el c o m p r o m i s o del u s u a r i o con s o l u c i o n e s d e

s i s t ema q u e s e a n factibles y m u t u a m e n t e sa t i s fac tor ias .

C u a n d o s e apl ica el m o d e l o en espiral , el s o f t w a r e s e desar ro l la en u n a serie de
e n t r e g a s evolut ivas . Duran te las p r i m e r a s i teraciones, la en t r ega tal v e z s ea un docu-
m e n t o del m o d e l o o un protot ipo. Duran te las ú l t imas i t e rac iones se p r o d u c e n ver-
s iones c a d a v e z m á s c o m p l e t a s del s i s t ema desar ro l lado .

u n p r o c e s o en espiral s e divide e n un c o n j u n t o d e ac t iv idades del m a r c o d e tra-
ba jo q u e de f ine el equ ipo d e ingenier ía del so f tware . Para p ropós i tos i lustrat ivos s e
a p r o v e c h a n las ac t iv idades gené r i ca s del m a r c o d e t r aba jo e x p u e s t a s p á g i n a s a t rás . 5

Cada u n a de las ac t iv idades del m a r c o de t r aba jo r ep re sen t a un s e g m e n t o d e la ruta

en espiral q u e s e p r e s e n t a en la f igura 3.5. C u a n d o c o m i e n z a es te p r o c e s o evolut ivo
el equ ipo d e s o f t w a r e real iza ac t iv idades impl icadas e n un circuito a l r ededor d e la

Planeación
estimación
itinerario
análisis de riesgos

Un modelo
en espiral
t í p i c o .

Modelado
análisis
diseño

prueba

5 El modelo en espiral expuesto en esta sección e s una variación del modelo que propuso Boehm. Para
más información sobre el modelo en espiral original, véase [BOE88]. En |BOE98] se puede encon-
trar una exposición más reciente del modelo en espiral de Boehm.

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 59

espiral que tiene una dirección en el sentido del movimiento de las manecillas del
reloj, y que se inicia desde el centro. El riesgo (capítulo 25) es un factor considerado
en cada revolución. Los puntos de fijación —una combinación de productos de tra-
bajo y condiciones incluidas a lo largo de la ruta de la espiral— se consideran para
cada paso evolutivo.

El primer circuito alrededor de la espiral quizá genere el desarrollo de una espe-
cificación del producto; los pasos subsecuentes alrededor de la espiral se pueden
aprovechar para desarrollar un prototipo y después, en forma progresiva, versiones
más elaboradas del software. Cada paso a través de la región de planeación resulta
en ajustes al plan del proyecto. Los costos y el itinerario se ajustan con base en la
retroalimentación derivada de la relación con el cliente después de la entrega.
Además, el administrador del proyecto ajusta el número de iteraciones planeado que
se requiere para completar el software.

A diferencia de otros modelos de proceso que terminan cuando se entrega el soft-
ware, el modelo en espiral puede adaptarse y aplicarse a lo largo de la vida del softwa-
re de computadora. Por lo tanto, el primer circuito alrededor de la espiral podria
representar un "proyecto de desarrollo del concepto", el cual se inicia en el centro de
la espiral y continúa por múltiples iteraciones6 hasta que el desarrollo del concepto
esté completo. Si el concepto se desarrollará en un producto real, el proceso conti-
núa en la siguiente fase de la espiral y comienza un "proyecto de desarrollo de un
producto nuevo". El nuevo producto evolucionará a través de un número de itera-
ciones alrededor de la espiral. Después, un circuito alrededor de la espiral se podría
emplear para representar un "proyecto de mejoramiento del producto". En esencia,
la espiral, cuando se caracteriza de esta forma, permanece operativa hasta que el
software se retira. En ocasiones el proceso está inactivo, pero siempre que se inicie
un cambio el proceso comienza en el punto de entrada aprobado (por ejemplo,
mejoramiento del producto).

El modelo en espiral es un enfoque realista para el desarrollo de software y de sis-
temas a gran escala. Como el software evoluciona conforme avanza el proceso, el
desarrollador y el cliente entienden y reaccionan de mejor manera ante los riesgos
en cada etapa evolutiva. El modelo en espiral emplea la construcción de prototipos
como un mecanismo encaminado a reducir riesgos pero, en forma más importante,
permite al desarrollador la aplicación del enfoque de la construcción de prototipos
en cualquier etapa evolutiva del producto. Mantiene el enfoque sistemático de los
pasos que sugiere el ciclo de vida clásico, pero lo incorpora al marco de trabajo ite-
rativo que refleja de forma más verídica el mundo real. El modelo en espiral exige
una consideración directa de los riesgos técnicos en todas las etapas del proyecto y,

si se aplica en forma apropiada, debe reducir los riesgos antes de que se vuelvan
problemáticos.

6 Las flechas que apuntan hacia dentro a lo largo del eje que separa la región de despliegue de la de
:omunicación indican una posibilidad de iteración local a lo largo de la misma ruta de la espiral.

TM

PDF Editor

60 PARTE UNO EL PROCESO DEL SOFTWARE

(c O H S E J O ^ -

A menudo, el modelo
concurrente es más
apropiado para
proyectos de inge-
niería de sistemas
(capítulo 6), donde
están implicados dife-
rentes equipos de
ingeniería.

Así c o m o otros paradigmas, el modelo en espiral no e s una panacea . Es difícil
convencer a los clientes (en particular en si tuaciones ba jo contrato) de que el enfo-
que evolutivo es controlable, ya que se requiere una habilidad considerable para
evaluar el riesgo y se confia en dicha habilidad para obtener el éxito. Si un riesgo
importante no se descubre y administra, sin duda surgirán problemas.

3.4.3 El modelo de desarrollo concurrente
El modelo de desarrollo concurrente, l lamado a lgunas veces ingeniería concurrente, se
representa en forma esquemática c o m o una serie de actividades del marco de tra-
bajo, acciones y tareas de la ingeniería del sof tware y sus es tados asociados. Por
ejemplo, la actividad de modelado, definida para el modelo en espiral, se lleva a cabo
al invocar las acciones siguientes: construcción de prototipos o modelado y especi-
ficación del análisis y diseño.7

En la figura 3.6 se proporciona un esquema de una tarea de ingeniería de software
relacionada con la actividad de modelado para el modelo de proceso concurrente.
La actividad —modelado— puede estar en a lguno de los estados 8 des tacados men-
cionados antes en cualquier momento dado. De forma similar, otras actividades o
tareas (por ejemplo, la comunicación y la construcción) se representan de una mane-
ra análoga. Todas las actividades existen de forma concurrente, pero se encuentran
en diferentes estados. Por ejemplo, al principio del proyecto la actividad de comuni-
cación (no s e muestra en la figura) ha completado su primera iteración y existe en el
estado de e n e s p e r a d e cambios . La actividad de modelado que existió en el esta-
do n inguno mientras se realizaba la comunicación inicial, ahora realiza una transi-
ción al es tado e n desarrollo. Sin embargo, si el cliente indica cambios en los requi-
sitos, la actividad de modelado se mueve del es tado en desarrol lo al es tado de en
e spera d e c a m b i o s .

El modelo de proceso concurrente define una serie de eventos que dispararán
transiciones de es tado a es tado para cada una de las actividades, acciones o tareas
de la ingeniería del software. Por ejemplo, durante los primeros es tados del diseño
(una acción de la ingeniería del sof tware que ocurre en el curso de la actividad de
modelación) no se detecta una inconsistencia en el modelo del análisis. Esto gene-
ra el evento corrección del análisis del modelo, el cual disparará la creación del aná -
lisis desde el es tado rea l izado hasta el es tado de en e s p e r a d e cambios .

El modelo de proceso concurrente se aplica a todos los tipos de desarrollo de soft-
ware y proporciona una visión exacta del es tado actual de un proyecto. En lugar de
confinar las actividades, acciones y tareas de la ingeniería del sof tware a una
secuencia de eventos, define una red de actividades. Cada actividad, acción o tarea
en la red existe de manera simultánea con ot ras actividades, acciones o tareas. Los

7 Se debe notar que el análisis y el diseño son acciones complejas que requieren un debate sustan-
cial. La parte 2 de este libro considera estos tópicos en forma detallada.

8 Un estado es alguna forma de comportamiento observable desde el exterior.

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTiVOS DE PROCESO 61

linguno

R e p r e s e n t a el e s t a d o
d e u n a a c t i v i d a d o t o r e a d e l a
i n g e n i e r í a d e s o f t w a r e

Bajo
desarrol lo

en espera
d e c a m b i o s

En modificación

revisión

Actividad d e m o d e l a d o

eventos generados en un punto de la red del proceso disparan transiciones entre los
estados.

3.4.4 Un comentario íinal sobre los procesos evolutivos
Ya se ha detectado que al sof tware de computadoras moderno lo caracteriza el cam-
bio continuo, los t iempos de entrega muy reducidos, y una necesidad intensa de
satisfacer al c l iente/usuario. En muchos casos, el t iempo de llegada al mercado e s
el requisito de gestión más importante. Si se pierde una ventana del mercado, el
mismo proyecto de sof tware puede perder su significado.9

" l i ego basto aquí, y sólo el m a ñ a n a guía mi camino."
D a v e M a t t h e w s Band

Los modelos evolutivos de proceso se concibieron para abocarse a es tos aspec-
tos y, además , como modelos de proceso de clase general. Estos modelos también
t ienen debilidades, las cuales resumen Nogueira y sus colegas [NOGOO]:

9 Sin embargo, es importante notar que llegar en primer lugar a un mercado no garantiza el éxito. De
hecho, muchos productos de software muy exitosos han sido los segundos o hasta los terceros en lle-
gar al mercado (al aprender errores de los antecesores).

TM

PDF Editor

62 PARTE UNO EL PROCESO DEL SOFTWARE

A pesar de los incuestionables beneficios de los procesos evolutivos de software, se tienen
algunas dificultades con este tipo de procesos. La primera dificultad es que la construc-
ción de prototipos |y otros procesos evolutivos más elaborados] implican un problema
para la planeación del proyecto debido al número incierto de ciclos requeridos para construir
el producto. La mayoría de las técnicas de gestión y estimación de proyectos se basa en
configuraciones lineales de las actividades, por lo que éstas no s e ajustan por completo.

La segunda dificultad es que los procesos evolutivos de software no establecen la ve-
locidad máxima de la evolución. Si las evoluciones suceden demasiado rápido, sin un pe-
riodo de relajación, existe la certidumbre de que el proceso caerá en el caos. Por otro lado,
si la velocidad es demasiado lenta, se podría afectar la productividad.

Una tercera dificultad es que los procesos de software se deben enfocar en la flexibili-

dad y extensibilidad en vez de en la alta calidad. Esta afirmación suena atemorizante. Sin
embargo, se debe priorizar la velocidad del desarrollo sobre los cero defectos. Si el desarrollo

se extiende para alcanzar una alta calidad, se produciría un retraso en la entrega del pro-
ducto, la cual se haría cuando el nicho de oportunidad ya haya desaparecido. Este cambio
de paradigma lo impone la competencia en el borde del caos.

En efecto, un proceso de sof tware que se enfoca en la flexibilidad y la velocidad del
desarrollo por encima de la alta calidad suena atemorizante. Aun así, esta idea la ha
propuesto cierto número de respetados expertos en la ingeniería del sof tware (por
ejemplo, [YOU95], [BAC97]).

El propósito de los modelos evolutivos es desarrollar sof tware de alta calidad10 de
una manera iterativa o incremental. Sin embargo, e s posible aplicar un proceso evo-
lutivo para destacar la flexibilidad, extensibilidad y velocidad del desarrollo. El reto
para los equipos de sof tware y sus dirigentes es establecer un balance apropiado
entre estos parámetros críticos del proyecto y el producto, y el producto y la satis-
facción del cliente (el árbitro final de la calidad del software).

HOGARSEGURO

proceso. Segunda parte

Ed: Ahora veo algo que me gusta. Un enfoque
incremental tiene sentido y en realidad me gusta el flujo
de ese modelo en espiral. Eso lo hace realista.
V i n o d : Estoy de acuerdo. Entregamos un incremento,
aprendemos de la retroalimentación del cliente,
replaneamos, y después entregamos afro incremento.
También se ajusta a la naturaleza del producto. Podemos
tener algo en el mercado muy rápido y después agregar
funcionalidad con cada versión. Es decir, con cada
incremento.

Selección de un modelo de

El e s c e n a r i o : Sala de reuniones
para el grupo de ingeniería del software en CPI
Corporation, una compañía que fabrica productos de
consumo para uso doméstico y comercial.
Los a c t o r e s : Lee Warren, gerente de ingeniería; Doug
Miller, gerente de ingeniería del software; Ed y Vinod,
miembros del equipo de ingeniería del software.
La conversación:
(Doug describe las opciones de procesos
evolutivos)

10 En este contexto, la calidad del software se define con mucha amplitud para abarcar no sólo la sa-
tisfacción del cliente, sino también una variedad de criterios técnicos tratados en el capítulo 26.

TM

PDF Editor

C A P Í T U L O 3 MODELOS PRESCRIPTIVOS DE PROCESO 63

1*1 ir: ñuto, Doug, ¿dijeron que Ooug; lee, ese es un pensamiento de la vieja escuela,
d con con cada vuelta alrededor de la Como ¿Jijo Ed, debemos mantenerlo realista. Digo que es
o es muy bueno, necesitamos un plan, un mejor mover el plan a medida que aprendemos más y
efaemos apegamos a él. conforme solicitan los cambios.

• f i v M o n F l O S E S P E C I A L I Z A D O S T1B P R O C E S O

Los modelos especializados de proceso adoptan muchas de las características de
uno o más de los modelos convencionales presentados en las secciones anteriores.
Sin embargo, los modelos especializados tienden a aplicarse cuando se ha elegido
un enfoque de ingeniería del software definido de una manera muy estrecha."

3.5.1 Desarrollo basado en componentes
Los nuevos componentes de software comerciales (NCSC), desarrollados por vende-
dores que los ofrecen como productos, se pueden emplear cuando el software está
en proceso de construcción. Estos componentes proporcionan funcionalidad dirigi-
da con interfaces bien definidas que permiten que el componente se integre en el
software.

El modelo de desarrollo basado en componentes (DBC) (capítulo 30) incorpora muchas
de las características del modelo en espiral. Es evolutivo por naturaleza [NIE92] y exige
un enfoque iterativo para la creación del software. Sin embargo, el modelo configura
aplicaciones a partir de componentes de software empaquetados en forma previa.

Las actividades de modelado y construcción comienzan con la identificación de
los componentes candidatos. Estos componentes se pueden diseñar como módulos
de software convencionales o como clases o paquetes de clases orientados a obje-
tos.12 Sin importar la tecnología que se aplique en la creación de los componentes,
el modelo de desarrollo basado en componentes incorpora los siguientes pasos
(implementados mediante un enfoque evolutivo):

• Los productos basados en componentes disponibles se investigan y evalúan
para el dominio de aplicación en cuestión.

• Se consideran los aspectos de integración de componentes.

• Se diseña una arquitectura de software (capítulo 10) para adaptar los compo-
nentes.

11 En algunos casos estos modelos especializados de proceso se pueden describir de mejor manera
como una colección de técnicas o una metodología para alcanzar una meta especifica del desarro-
llo del software. Sin embargo, éstas implican un proceso.

12 La tecnología orientada a objetos se trata a lo largo de la parte 2 de este libro. En este contexto, una
cíase encapsu/a una sene de datos y ¡os procedimientos que procesan dichos datos. Un paquete de cla-
ses es una colección de clases relacionadas que trabajan juntas para alcanzar algún resultado final.

TM

PDF Editor

64 PARTE UNO EL PROCESO DEL SOFTWARE

• Los componen tes (capítulo 11) se integran en la arquitectura.

• Se realizan pruebas detalladas (capítulo 11) para asegurar una funcionalidad
apropiada.

El modelo de desarrollo basado en componen tes conduce a la reutilización del
software, la cual proporciona beneficios a los ingenieros de software. Con base en
estudios de reutilización, QSM Associates, Inc. informa que el ensamblaje de com-
ponentes conduce a una reducción de 70 por ciento del ciclo de desarrollo; 84 por
ciento del costo del proyecto y un índice de productividad de 26.2, comparado con
una norma de la industria de 16.9 [YOU94], A pesar de que es tos resultados están en
función de la robustez de la biblioteca de componentes , no hay duda de que el
modelo de desarrollo basado en componentes proporciona ventajas significativas
para los ingenieros de software.

3.5.2 El modelo de métodos formales
El modelo de métodos formales (capítulo 28) comprende un conjunto de actividades
que conducen a la especificación matemática del sof tware de computadora . Los
métodos formales permiten que un ingeniero de sof tware especifique, desarrolle y
verifique un sistema basado en computadora al aplicar una notación matemát ica
rigurosa. Algunas organizaciones de desarrollo del sof tware aplican en la actualidad
una variación de este enfoque, l lamado ingeniería del software de sala limpia [M1L87,
DYE92], Este modelo se explica en el capítulo 29.

"Es más fácil escribir un progromo incorrecto que entender uno correcto."
A lan P e r l i s

¿Si los méto-
* dos formales

pueden demostrar
la corrección del
software, por qué
no se utiliza en
forma extensa?

Cuando se utilizan métodos formales durante el desarrollo, és tos proporcionan
un mecanismo para eliminar muchos de los problemas difíciles de superar con otros
paradigmas de la ingeniería del software. La ambigüedad, el e s tado incompleto y la
inconsistencia se descubren y corrigen con mayor facilidad —no mediante una revi-
sión ad hoc, sino a través de la aplicación de un análisis matemático—. Cuando los
métodos formales se utilizan durante el diseño sirven c o m o base para la verificación
de programas y, por consiguiente, permiten que el ingeniero de sof tware descubra y
corrija errores que de otra manera podrían no haberse detectado.

A pesar de que aún no existe un enfoque establecido, los modelos de métodos for-
males ofrecen la promesa de un sof tware libre de defectos. Sin embargo, s e ha men-
cionado una gran preocupación acerca de su aplicabilidad en su entorno de gestión:

• En la actualidad, el desarrollo de modelos formales es muy caro y consume
mucho tiempo.

• Se requiere una capacitación detallada, debido a que pocos responsables del
desarrollo de software cuentan con los antecedentes necesarios para aplicar
métodos formales.

TM

PDF Editor

CAPITULO 3 MODELOS PEESCRIPnVCS DE PROCESO 65

CÚXVE

k s intereses
los cuales

n i d i a s

del

• Es difícil la utilización de es tos modelos como un mecanismo de comuni-
cación con clientes que no tienen muchos conocimientos técnicos.

No obstante, tal vez el enfoque a través de métodos formales haya ganado adeptos
entre los desarrolladores de software que deben construir sistemas de alta seguridad (por
ejemplo, en los campos de la aeronáutica y de los dispositivos médicos), y entre los desa-
rrolladores que padecen severas penurias económicas cuando aparecen errores en el
software.

3.5.3 Desarrollo del software orientado a aspectos
Sin importar el proceso de sof tware que se elija, los constructores de software com-
plejo implementan de manera invariable un conjunto específico de características,
funciones y contenido de información. Estas características específicas del software
se modelan como componentes (por ejemplo, clases orientadas a objetos) y después se
construyen dentro del contexto de una arquitectura de sistema. Conforme los siste-
mas basados en computadora se vuelven más elaborados (y complejos), ciertos
"intereses" —propiedades requeridas para el cliente o á reas de interés t é c n i c o -
abarcan toda la arquitectura. Algunos intereses son propiedades de alto nivel de un
sistema (por ejemplo, seguridad, falta de tolerancia). Otros intereses afectan las fun-
ciones (como la aplicación de reglas de negocios), mientras que otros son sistémi
eos (como la sincronización de tareas o la gestión de memoria).

Cuando los intereses se relacionan con múltiples funciones, características e
información del sistema, con frecuencia se denominan intereses generales. Los reque-
rimientos de aspectos definen es tos intereses generales que ejercen un impacto a tra-
vés de la arquitectura del software. El desarrollo de software orientado a aspectos
(DSOA), referido con frecuencia como programación orientada a aspectos (POA), es
un paradigma de la ingeniería del sof tware relativamente nuevo que proporciona un
proceso y enfoque metodológico para definir, especificar, diseñar y construir aspee-
tos —"mecanismos m á s allá de subrutinas y legados para localizar la expresión de
un interés general" [ELRO1].

Grundy [GRU02] explica con mayor profundidad los aspectos en el contexto de lo
que él l lama ingeniería de componentes orientada a aspectos [ICOA]:

La ICOA utiliza un concepto de capas horizontales a través de componentes de sof tware
descompues tos en forma vertical, l lamados "aspectos", para caracterizar propiedades
generales de los componentes , los cuales pueden ser funcionales y no funcionales. Por lo
general, los aspectos sistémicos incluyen interfases con el usuario, t rabajo en colabo-
ración, distribución, persistencia, gestión de la memoria , procesamiento de transiciones,
seguridad, integridad y otros. Los componentes pueden proporcionar o requerir uno o más
"detalles de aspecto" relacionados con un aspecto particular, como un mecanismo de
visión, acceso extensible y tipo de interfase (aspectos de la interfase con el usuario);
generación, transportación y recepción de eventos (aspectos de distribución); almace-
namiento/ recuperac ión e indización de datos (aspectos de persistencia); autentificación,
codificación y derechos de acceso (aspectos de seguridad); atomicidad de la transacción,

TM

PDF Editor

66 PARTE UNO EL PROCESO DEL SOFTWARE

control de concurrencia y control del transporte (aspectos de transacción), y así sucesiva-
mente . Cada detalle de aspecto tiene una serie de propiedades en relación con caracterís-

ticas personales y no funcionales del detalle.

Hasta ahora no se ha concretado un proceso orientado a aspectos diferente. Sin
embargo, es probable que tal proceso adopte características de los modelos de pro-
ceso en espiral y concurrente (secciones 3.4.2 y 3.4.3). La naturaleza evolutiva del
modelo en espiral e s apropiada cuando se identifican y construyen los aspectos. La
naturaleza paralela del desarrollo concurrente e s esencial porque los aspectos se
desarrollan de manera independiente de los componentes del software localizados
y, aun así, los aspectos tienen un impacto directo sobre estos componentes . Por lo
tanto, resulta esencial implementar una comunicación asincrónica entre las activi-
dades del proceso de software aplicadas al desarrollo y la construcción de aspectos
y componentes.

Si se desea conocer una exposición detallada del desarrollo del software orienta-
do a aspectos, se recomienda remitirse a libros dedicados a esta materia. El lector
interesado puede consultar [GRA03], [KIS02] o (ELRO1].

HERRAMIENTAS DE SOFTWARE

Gestión del proceso
Objetivo: Ayudar en la definición, ejecución
y gestión de los modelos prescriptivos del

proceso.

Mecánica: Las herramientas de gestión del proceso
permiten que una organización o equipo de software
defina un modelo completo de proceso del software
(actividades del marco de trabajo, tareas de
aseguramiento de la calidad, puntos de verificación,
fundamentos y productos de trabajo). Además, las
herramientas proporcionan una guía mientras los
ingenieros de software hacen el trabajo técnico y una
plantilla para los gerentes, que deben rastrear y controlar
el proceso de software.

Herramientas represen ta t ivas 1 3

La GDPA, una serie de herramientas para la definición del
proceso de investigación, desarrollada en la

Universidad de Bremen en Alemania
(www.lnformatlk.uni-bremen.de/uniform/gdpa/
home.htm),proporciona un amplio espectro de
funciones para el modelado y la gestión del proceso.

SpeeDev, desarrollado por Spee Dev Corporation
(www.speedev.com), Incluye una serie de herramientas
para la definición del proceso, gestión de los requisitos,
resolución de características, planeación del proyecto y
seguimiento del mismo.

Step Gate Process, desarrollado por Objexis
(www.objexis.com), incluye muchas herramientas que
ayudan en la automatización del flujo de trabajo.

En el sitio de Internet http://205.252.62.38/English/
D-ProcessNotation.htm es posible encontrar una valiosa
exposición sobre los métodos y la notación que se
puede usar para definir y describir un modelo completo
del proceso.

13 Las herramientas mencionadas aquí representan un muestreo de esta categoría. En la mayoría de
los casos los nombres son marcas registradas de sus respectivos desarrolladores..

TM

PDF Editor

http://www.lnformatlk.uni-bremen.de/uniform/gdpa/
http://www.speedev.com
http://www.objexis.com
http://205.252.62.38/English/

En su libro fundamental sobre el proceso unificado, Ivar Jacobson, Grady Booch y
James Rumbaugh [JAC99] exponen la necesidad de un proceso de software "guiado
por los casos de uso, de arquitectura céntrica, iterativo e incremental". Estos auto-
res establecen:

En la actualidad la tendencia e n el sof tware se encamina a s i s t emas mayores y comple-

jos. Eso se debe en par te al hecho de q u e las compu tadoras se volvían m á s poderosas cada

año , lo que a len taba q u e los usuar ios esperaran m á s de ellas. Esta tendencia también la

impulsó el u so expandido de Internet pa ra el in tercambio de todo tipo de información.

Nuestro apet i to por un sof tware cada vez m á s complejo c rece en la medida en la q u e

a p r e n d e m o s c ó m o puede mejorarse un producto desde q u e sale uno has ta que llega el

otro. Neces i tamos un sof tware q u e se adap t e mejor a nues t ras necesidades , pero que, a
su vez, haga el sof tware m á s complejo. En resumen, q u e r e m o s más.

De alguna manera, el proceso unificado (PU) es un intento encaminado a reunir los
mejores rasgos y características de modelos de procesos de software, pero los carac-
teriza de manera que implementa muchos de los mejores principios del desarrollo
ágil de software (capítulo 4). El proceso unificado reconoce la importancia de la
comunicación con el cliente y los métodos encaminados a describir el punto de vista
del cliente con respecto a un sistema (por ejemplo, el caso de uso'4). El PU enfatiza
el importante papel de la arquitectura de software, y "ayuda al arquitecto a enfocar-
se en las metas correctas, como el entendimiento, el ajuste a los cambios futuros y
la reutilización" [JAC99]. Sugiere un flujo de proceso iterativo e incremental y que
proporciona el sentido evolutivo esencial en el desarrollo del software moderno.

En esta sección se presenta una visión general de los elementos clave del proce-
so unificado. En la parte 2 de este texto se analizan los métodos que pueblan el pro-
ceso y las técnicas y notaciones complementarias del UML,'° las cuales se requieren
al aplicar el proceso unificado en el trabajo real de la ingeniería del software.

3.6.1 Una breve historia
Durante la década de 1980 y al principio de la década siguiente, los métodos y len-
guajes de programación orientados a objetos (OO)16 obtuvieron una amplia difusión
entre la comunidad de la ingeniería del software. Durante el mismo periodo se pro-

14 Un caso de uso (capítulos 7 y 8) es un contexto narrativo o plantilla que describe una característica
o función del sistema desde el punto de vista del usuario. El caso de uso lo escribe el usuario y sirve
como una base para la creación de un modelo de análisis más completo.

15 El UML (Jnified Modeling Language) se ha convertido en la notación más utilizada para el modelado del
análisis y el diseño. Representa una unión entre tres importantes notaciones orientadas a objetos.

16 Si el lector no se encuentra familiarizado con los métodos orientados a objetos, en los capítulos 8 y
9 se presenta una breve revisión general de ellos. Para una presentación más detallada véase
[REE02] (STIO1] o (FOW99].

TM

PDF Editor

68 PARTE UNO EL PROCESO DEL SOFTWARE

puso una amplia variedad de análisis y diseño orientados a objetos (AOO y DOO) y
se introdujo un modelo de proceso orientado a objetos de propósito general (similar
a los modelos evolutivos presentados en este capítulo). Al igual que la mayoría de
los paradigmas "nuevos" para la ingeniería del software, los seguidores de cada uno
de los métodos de AOO y DOO argumentaban acerca de cuál de ellos era el mejor,
pero ningún método o lenguaje dominó la escena de la ingeniería del software.

Al principio de la década de 1990, James Rumbaugh [RUM91], Grady Booch
[B0094] e Ivar Jacobson [JAC92] comenzaron a trabajar en un "método unificado"
que combinaría las mejores características de cada uno de sus métodos individuales
y adoptaría características adicionales que propusieran otros expertos (por ejemplo,
[WIR90]) en el campo OO. El resultado fue el lenguaje de modelado unificado (UML,
por sus siglas en inglés) —que contiene una notación robusta para el modelado y el
desarrollo de sistemas OO—. Para 1997, el UML se convirtió en un estándar de la
industria para el desarrollo de software orientado a objetos. Al mismo tiempo,
Rational Corporation y otras firmas desarrollaron herramientas automáticas para
apoyar los métodos del UML.

El UML proporciona la tecnología necesaria para apoyar la práctica de la ingenie-
ría del software orientada a objetos, pero no provee el marco de trabajo del proceso
que guíe a los equipos en la aplicación de la tecnología. En los años siguientes,
Jacobson, Rumbaugh y Booch desarrollaron el proceso unificado, un marco de traba-
jo para la ingeniería del software orientada a objetos, mediante la utilización del
UML. En la actualidad, el proceso unificado y el UML se emplean de forma amplia en
proyectos OO de todos los tipos. El modelo iterativo e incremental que propone el
PU puede y debe adaptarse para satisfacer necesidades de proyecto específicas.

Como consecuencia de la aplicación del UML se puede producir un arreglo de
productos de trabajo (por ejemplo, modelos y documentos). Sin embargo, éstos los
reducen los ingenieros de software para lograr que el desarrollo sea más ágil y reac-
tivo ante el cambio.

R e f e r e n c i a Web

En www.
rationol.com/
products/rup/
whitepapers.jsp s
pueden encontrar
documen tos útiles
sobre el PIJ.

3.6.2 Fases del proceso uniíicado17

Se han analizado cinco actividades genéricas del marco de trabajo y se ha explica-
do que éstas se pueden aplicar para describir cualquier modelo de proceso del soft-
ware. El proceso unificado no es la excepción. En la figura 3.7 se muestran las
"fases" del proceso unificado (PU) y se relacionan con las actividades genéricas que
se trataron en el capítulo 2.

La fase de i n i c i o del PU abarca la comunicación con el cliente y las actividades de
planeación. Al colaborar con los clientes y usuarios finales se identifican los requisi-
tos de negocios para el software, se propone una arquitectura aproximada para el

17 Algunas veces el proceso unificado se llama proceso unificado racional (PUR) después de que lo res-
paldara la Rational Corporation, un contribuyente importante en el desarrollo y refinamiento del
proceso y un constructor de ambientes completos (herramientas y tecnología).

TM

PDF Editor

CAPITULO 3 MODELOS PRESCR1PTIVOS DE PROCESO 69

sistema, y se desarrolla un plan para la naturaleza iterativa e incremental del siste-
ma subsiguiente. Los requisitos fundamentales de negocios se describen a través de
un conjunto preliminar de casos de uso que describen cuáles características y fun-
ciones son deseables para cada clase importante de usuarios. En general, un caso de
uso describe una secuencia de acciones que desarrolla un actor (por ejemplo, una
persona, una máquina, otro sistema) cuando éste interactúa con el software. Los
casos de uso ayudan a identificar el ámbito del proyecto y proporcionan una base
para la planeación de éste.

En este punto, la arquitectura no es más que un esquema tentativo de los subsis-
temas más importantes y de las funciones y características que los forman. Después,
la arquitectura se refinará y expandirá en un conjunto de modelos que representa-
rán visiones diferentes del sistema. La planeación identifica recursos, evalúa los ries-
gos importantes, define un itinerario y establece una base para las fases que se apli-
carán conforme se desarrolle el incremento del software.

La fase de elaboración abarca la comunicación con el cliente y las actividades de
modelado del modelo genérico del proceso (figura 3.7). La elaboración refina y
expande los casos de uso preliminares que se desarrollaron como una parte de la
fase de inicio; además, expande la representación arquitectónica para incluir cinco
visiones diferentes del software: el modelo de caso de uso, el modelo de análisis, el
modelo de diseño, el modelo de implementación y el modelo de despliegue. En algu-
nos casos, la elaboración crea una "línea de base arquitectónica ejecutable" [ARL02]
que representa un sistema ejecutable en su "primer corte".18 La línea de base arqui-
tectónica demuestra la viabilidad de la arquitectura, pero no proporciona todas las

\
Producción

18 Es importante destacar que la directriz arquitectónica no es un prototipo que se deseche (sección
3.4.1). En lugar de ello la directriz se aprovecha durante la siguiente fase del PU.

TM

PDF Editor

70 PARTE UNO EL PROCESO DEL SOFTWARE

características y funciones necesarias para utilizar el sistema. Además, el plan se
revisa de manera cuidadosa al término de la fase de elaboración para asegurar que
el ámbito, los riesgos y los datos entregados aún son razonables. Las modificacio-
nes al plan se deben hacer en este momento.

La fase de construcción del PU es idéntica a la actividad de construcción definida
para el proceso genérico del software. Si se utiliza el modelo arquitectónico como
entrada, la fase de construcción desarrolla o adquiere los componentes del softwa-
re que harán que cada caso de uso sea operativo para los usuarios finales. Lograr
esto requiere que los modelos de análisis y diseño iniciados durante la fase de ela-
boración se completen para reflejar la versión final del incremento del software.
Todas las características y funciones necesarias y requeridas del incremento del soft-
ware (por ejemplo, la entrega) se implementan en código fuente. Conforme los com-
ponentes están en proceso de implementación, se diseñan y ejecutan pruebas de
unidad para cada uno de ellos. Además, se realizan las actividades de integración
(ensamblaje de componentes y pruebas de integración). Los casos de uso se utilizan
para derivar un conjunto de pruebas de aceptación que se ejecutan antes del inicio
de la siguiente fase del PU.

La fase de transición del PU abarca las últimas etapas de la actividad genérica de
construcción y la primera parte de la actividad genérica de despliegue. El software
se entrega a los usuarios finales para realizar pruebas beta,19 y la retroalimentación
del usuario reporta tanto defectos como cambios necesarios. Además, el equipo de
software crea la información de soporte necesaria (por ejemplo, manuales del usua-
rio, guías de resolución de problemas, procedimientos de instalación) para el lanza-
miento. Al final de la fase de transición, el incremento de software se convierte en
un lanzamiento de software utilizable.

La fase de producción del PU coincide con la actividad de despliegue del proceso
En www. genérico. Durante esta fase se monitorea el uso subsiguiente del software, se pro-

P o r c i o n a e l soporte para el ambiente operativo (infraestructura), y se reciben y eva-
lúan los informes de defectos y los requerimientos de cambios.

R e f e r e n c i a Web

Es probable que mientras se realizan las fases de construcción, transición y pro-
« ducción ya se hayan iniciado los trabajos para el siguiente incremento del software.

Esto significa que las cinco fases del PU no suceden en una secuencia, sino en una
concurrencia por etapas.

A lo largo de las fases del PU se distribuye un flujo de trabajo de ingeniería del
software. En el contexto del PU, un flujo de trabajo es análogo a un conjunto de tareas
(definido en el capítulo 2). Esto es, un flujo de trabajo identifica las tareas necesarias
para completar una acción importante de ingeniería del software y los productos de

19 En la prueba beta, una acción de prueba controlada (capítulo 13), el software lo utilizan usuarios fina-
les reales, con la intención de descubrir defectos y deficiencias. Se establece un esquema de informe
de defectos y deficiencias de manera formal, y el equipo de software evalúa la retroalimentación.

TM

PDF Editor

CAPÍTULO 3 MODELOS PRESCRIPTIVOS DE PROCESO 71

trabajo que se producen como consecuencia de la realización exitosa de tareas. Se
debe destacar que no todas las tareas identificadas para un flujo de trabajo del PU se
realizan para cualquier proyecto de software. El equipo debe adaptar el proceso
(acciones, tareas, subtareas y productos de trabajo) para satisfacer sus necesidades.

3.6.3 Productos de trabajo del proceso unificado
En la figura 3.8 se ilustran los productos de trabajo clave que se produjeron como
consecuencia de las cuatro fases técnicas del PU. Durante la fase de inicio, el pro-
pósito es establecer una "visión" general para el proyecto, identificar un conjunto de
requisitos de negocios, formar un caso de negocios para el software y definir los ries-
gos del proyecto y del negocio que pudieran representar un obstáculo para el éxito.
Desde el punto de vista del ingeniero de software, el producto de trabajo más impor-
tante generado durante la etapa de inicio es el modelo de caso de uso: una colección
de casos de uso que describen la forma en que actores externos ("usuarios" huma-
nos y no humanos del software) interactúan con el sistema y obtienen valor a partir
de éste. En esencia, el modelo de casos de uso es una colección de escenarios de uso
con plantillas estandarizadas que implican características y funciones del software
mediante la descripción de una serie de condiciones previas, un flujo de eventos o
un escenario, y un conjunto de condiciones exteriores para la interacción represen-
tada. En un inicio, los casos de uso describen requisitos al nivel del dominio de nego-
cios (por ejemplo, el grado de abstracción es alto). Sin embargo, el modelo de casos
de uso se refina y elabora conforme cada fase del PU se ejecuta y sirve como una
entrada importante para la creación de productos de trabajo subsecuentes. Durante
la fase de inicio sólo se completa entre el 10 y 20 por ciento de los casos de uso.
Después de la elaboración, se ha creado entre un 80 y 90 por ciento del modelo.

La fase de elaboración produce un conjunto de productos de trabajo que elabora
requisitos (incluso requisitos no funcionales20), así como una descripción arquitec-
tónica y un diseño preliminar. Cuando el ingeniero de software inicia con el análisis
orientado a objetos, el objetivo primordial es definir un conjunto de clases de análi-
sis que describan en forma adecuada el comportamiento del sistema. El modelo de
análisis del PU es un producto de trabajo que se desarrolla como consecuencia de
esta actividad. Los paquetes de clases y análisis (colecciones de clases) definidos
como una parte del modelo de análisis se refinan después en un modelo de diseño,
el cual identifica clases de diseño, subsistemas y las interfases entre los subsistemas.
Los modelos de análisis y diseño expanden y refinan una representación evolutiva
de la arquitectura del software. Además, en la fase de elaboración se revisan los ries-
gos y el plan de proyecto para asegurar que cada uno de ellos conserve su validez.

La fase de construcción produce un modelo de implementación que traduce las
clases de diseño en componentes de software que se construirán para ejecutar el sis-

20 Requisitos que no se pueden deducir del modelo de caso de uso.

TM

PDF Editor

72 PARTE UNO a PROCESO DEL SOFTWARE

Principales
productos de
trabajo
producidos
para cada
fase del PU.

Fase d e inicio

Documento d e la visión
M o d e l o inicial d e c a s o

d e uso
Glosa r io inicial

del p royec to
C a s o inicial d e n e g o c i o
Evaluación inicial

de l r iesgo
Plan d e proyecto ,

fases e i teraciones
M o d e l o del n e g o c i o

si es n e c e s a r i o
Uno o m á s protot ipos

Fase d e e l aborac ión

M o d e l o d e cosos d e uso
Requisitos suplementarios,

s e incluyen los n o
funcionóles

M o d e l o d e anál is is
Descripción d e la
arquitectura del sof tware

Prototipo arqui tec tónico
e jecu tab le

M o d e l o d e d i s eno
preliminar

lisia r ev i sada d e r iesgos
Plon d e proyec to q u e

incluye
plan d e i teración
flujos d e t r aba jo adap tados
fundamen tos
p roduc tos técnicos
del t r a b a j o
M a n u a l preliminar
del usuario

Fase d e construcción

M o d e l o del d i s eño
Componen te s del

sof tware
Incremento in tegrado

del sof tware
Plan y procedimiento

d e p r u e b a s
C a s o s d e p r u e b a
Documentación

del sopor te
manuales del usuar io
manua le s d e instalación
descr ipción del
incremento actual

Fose d e t rans ic ión

Incremento d e so f tware
in teg rado ;

Retroalimentación gene ra l
del usuario

tema, y un modelo de despliegue convierte los componentes en el ambiente físico de
computación. Por último, un modelo de prueba describe las pruebas empleadas para
asegurar que los casos de uso se reflejen de manera apropiada en el sof tware que se
ha construido.

La fase de transición entrega el incremento del sof tware y evalúa los productos
de t rabajo elaborados durante la etapa en que los usuarios finales t rabajan con el
software. En esta etapa se produce la retroalimentación proveniente de las pruebas
beta y los requerimientos cualitativos de cambio.

3 . 7 R E S U M E N

Los modelos prescriptivos del proceso de sof tware se han aplicado durante muchos
años en un esfuerzo encaminado a ordenar y estructurar el desarrollo del software.
Cada uno de es tos modelos convencionales sugiere un flujo de proceso que de algu-
na forma es diferente, pero todos realizan el mismo conjunto de actividades genéri-
cas del marco de trabajo: comunicación, planeación, modelado, construcción y des-
pliegue.

El modelo en cascada sugiere una progresión lineal de actividades del marco de
trabajo que a menudo resulta inconsistente con la realidad moderna en el mundo del
sof tware (por ejemplo, con el cambio continuo, los s is temas en evolución, las fechas
de entrega restringidas). Sin embargo, es te modelo se puede aplicar en si tuaciones
en las cuales los requisitos están bien definidos y son estables.

TM

PDF Editor

C A P I T U L O 3 MODELOS PRESCiaPTIVOS DE PROCESO 73

Los modelos incrementales del proceso de software producen software como una
serie de entregas de incrementos. El modelo DRA está diseñado para proyectos gran-
des que se deben entregar en marcos de tiempo muy reducidos.

Los modelos de proceso evolutivos reconocen la naturaleza evolutiva de la mayo-
ría de los proyectos de ingeniería del software y están diseñados para ajustarse al
cambio. Los modelos evolutivos, como el de construcción de prototipos y el modelo
en espiral, generan productos de trabajo incrementales (o versiones del software en
funcionamiento) con rapidez. Estos modelos se pueden adaptar para aplicarlos a tra-
vés de todas las actividades de la ingeniería del software: desde el desarrollo de con-
ceptos hasta el mantenimiento del sistema a largo plazo.

El modelo basado en componentes destaca la reutilización y ensambladura de
componentes. Los modelos de métodos formales conducen a la utilización de un
enfoque basado en las matemáticas para el desarrollo y la verificación del software.
El modelo orientado a aspectos incluye los intereses generales que cubren la arqui-
tectura total del sistema.

El proceso unificado es un proceso de software "guiado por los casos de uso, de
arquitectura céntrica, iterativo e incremental" diseñado como un marco para los
métodos y herramientas del UML. El proceso unificado es un modelo incremental en
el que se definen cinco fases: 1) una fase de inicio que abarca la comunicación con el
cliente y las actividades de planeación, y destaca el desarrollo y el refinamiento de
casos de uso como un modelo primario; 2) una fase de elaboración que abarca la
comunicación con el cliente y las actividades de modelado con un enfoque en la crea-
ción de modelos de análisis y diseño, con énfasis en las definiciones de clase y repre-
sentaciones arquitectónicas; 3) una fase de construcción que refina y después traduce
el modelo de diseño en componentes de software implementados; 4) una fase de
transición que transfiere el software del desarrollador al usuario final para realizar
las pruebas beta y obtener la aceptación; y 5) una fase de producción en la cual se
realiza el monitoreo continuo y el soporte.

[AMB02] Ambler, S. y L. Constant ine , The Unified Process Inception Phase, CMP Books, 2002.
[ARL02] Arlow, J. e I. Neustandt , UML and the Unified Process, Addison-Wesley, 2002.
[BAC97] Bach,)., "Good Enough Quality: Beyond the Buzzword", en IEEE Computer, vol.30,

núm. 8, agosto de 1997, pp. 96-98.
[BOE88] Boehm, B., "A Spiral Model for Sof tware Development Enhancement" , en Computer,

vol. 21, núm. 5, mayo de 1988, pp. 61-72.
[BOE98] Boehm, B., "Using the WINWIN Spiral Model: A Case Study", en Computer, vol.3,

núm.7, julio de 1998, pp. 33-34.
[BOEOl] Bohem, B., "The Spiral Model a s a Tool for Evolutionary Software Acquisition", en

CrossTalk, mayo de 2001, disponible en h t tp : / /www.s t sc .h i l l . a f .mi l /c ross ta lk /2001/05 /
boehm.html.

(B0094) Booch, G., Object-Oriented Analysis and Design, 2a. ed., Benjamin Cummings , 1994.
[BRA94] Bradac, M., D. Peny y L. Votta, "Prototyping a Process Monitoring Experiment", en IEEE TTans

Software Engineering, vol. 20, núm. 10, octubre de 1994, pp. 774-784.
[BR075J Brooks, F., The Mythical Mar-Month, Addison-Wesley, 1975.

TM

PDF Editor

http://www.stsc.hill.af.mil/crosstalk/2001/05/

PARTE UNO a PROCESO DEL SOFTWARE

IBUT941 Butler,)., "Rapid Application Development in Action", en Managing System Development,
Applied Computer Research, vol. 14, núm.5, mayo d e 1994, pp. 6-8.

[DYE 92] Dyer, M., The Cleanroom Approach to Quality Software Development, Wiley, 1992.
[ELR01] Elrad, T., R. Filman y A. Bader (eds.), "Aspect-Oriented Programming", en Comm. ACM,

vol. 44, n ú m . 10, octubre de 2001, edición especial .
[FOW99] Fowler, M. y K. Scott, UML Distilled, 2a . ed. , Addison-Wesley, 1999.
[GIL88] Gilb, T„ Principies of Software Engineering Management, Addison-Wesley, 1998.
[GRA03] Gradecki , J. y N. Lesiecki, Mastering AspectJ: Aspect-Oriented Programming in Java,

Wiley, 2003.
[GRU02J Grundy, J., "Aspect-Oriented Componen t Engineering", 2002, h t t p : / / w w w . e s . auckland.

a c . n z / - j o h n - g / a s p e c t s . h t m l .
[HAN95] H a n n a , M., "Farewell to Waterfal ls", en Software Magazine, m a y o d e 1995, pp. 38-46.
[HES96] Hesse , W., "Theory and Pract ice of the S o f t w a r e Process—A Field Study a n d its

Implications for Project Managemen t" , Software Process Technology, 5th European Workshop,
EWSPT 96, Springer LNCS 1149, 1996, pp. 241 -256.

[HESOI] Hesse, w. , "Dinosaur Mee ts Archaeop te ryx? Seven T h e s e s on Rat ional ' s Unified
Process (RUP)", en Proc. 8th Intl. Workshop on Evaluation of Modeling Methods in System
Analysis and Design, Ch. Vil Interlaken, 2001.

[JAC92] Jacobson, 1., Object-Oriented Software Engineering, Addison-Wesley, 1992.
[)AC991 Jacobson , i„ Booch, G. y J. R u m b a u g h , The Unified Software Development Process,

Addison-Wesley, 1999.
[KAU95] Kauf fman , S., Al Home in the Universe, Oxford, 1995.
[KER94J K e r r J . y R . Hunter, Inside RAD, McGraw-Hill, 1991.
[MAR911 M a r t i n , R a p i d Application Development, Prentice-Hall, 1991.
[McDE93] McDermid J. y P. Rook, "Sof tware D e v e l o p m e n t P roces s Models" , en Software

Engineer's Reference Book, CRC Press, 1993, pp. 15 /26-15 /28 .
|M1L87] Mills, H.D., M. Dyer y R. Linger, "Cleanroom S o f t w a r e Engineer ing", en IEEE Software,

sep t i embre d e 1987, pp. 19-25.
[NIE92] Nierstrasz, O., S. G i b b s y D. Tsichritzis, "Component -Or ien ted So f tware Development" ,

en CACM, vol. 35, n ú m . 9, sep t i embre d e 1992, pp. 160-165.
[NOGOO] Nogueira , J., C. Jones y Luqi, "Surfing the Edge of Chaos: Applicat ions to So f tware

Engineering", C o m m a n d and Control Research Technology Symposium, Naval Post Gradúa te
School, Monterey CA, junio d e 2000, disponible en
h t tp / /www.dodccrp .org /2000CCRTS/cd/h tml /pdf_papers /Track_4/075.pdf .

IREE02] Reed, P., Developing Applications with java and UML, Addison-Wesley, 2002.
[REI95] Reilly, J. P , "Does RAD Uv e Up th t he Hype", en IEEE Software, s e p t i e m b r e d e 1995, pp.

24-26.
[R0096] Roos, l„ ' T h e Poised Organiza t ion: Navigating Effectively on Knowledge Landscapes" ,

1996, disponible en h t t p : / / w w w . i m d . c h / f a c / r o o s / p a p e r _ p o . h t m l .
[ROY70] Royce, W.W., "Manag ing the Deve lopmen t of Large S o f t w a r e Sys tems: Concep t s and

Techniques" en, Proc. WESCON, agos to d e 1970.
[RUM91] R u m b a u g h , J. et al., Object-Oriented Modeling and Design, Prentice-Hall , 1991.
[STI01] Stiller, E. y C. LeBlanc, Project-Based Software Engineering: An Object-Oriented Approach,

Addison-Wesley, 2001.
[WIR90] Wirfs-Brock, R„ B. Wilkerson y L. Weiner, Designing Object-Oriented Software, Prent ice-

Hall, 1990.
[YOU94J Yourdon, E„ "Sof tware Reuse", en Application Development Strategies, vol. 6, n ú m . 12,

diciembre d e 1994, pp. 1-16.
[YOU95] Yourdon, E., "When Goood Enough Is Best", en IEEE Software, vol. 12, n ú m . 3, m a y o

d e 1995, pp. 79-81.

3 . 1 . Leer [NOGOO] y escr ibi r un d o c u m e n t o d e d o s o t res p á g i n a s q u e t r a t e s o b r e el i m p a c t o
del "caos" en la ingeniería del sof tware .

TM

PDF Editor

http://www.es
http://www.dodccrp.org/2000CCRTS/cd/html/pdf_papers/Track_4/075.pdf
http://www.imd.ch/fac/roos/paper_po.html

CAPÍTULO 3 MODELOS PRESCRIFITVOS DE PROCESO 75

3-2 . Dar tres ejemplos de proyectos de sof tware que pudieran adaptarse al modelo en cascada.
Ser específico.

3 -3 . Proporcionar tres e jemplos de proyectos de sof tware que pudieran adap ta r se al modelo
de construcción de prototipos. Ser específico.

3 . 4 . ¿Cuáles adap tac iones se requieren en el p roceso si el protot ipo evolucionará hacia un
sistema o producto que puede entregarse?

3 . 5 . Para lograr un desarrollo rápido el modelo DRA asume la existencia de una cosa. ¿Cuál e s
y por qué dicha suposición no siempre es verdadera?

3 . 6 . Proporcionar t res e jemplos de proyectos de so f tware que pudieran adap ta r se al modelo
Incremental. Ser específico.

3 .7 . ¿Qué se p u e d e decir acerca del so f tware que es tá en desarrol lo o en man ten imien to
mientras se avanza hacia fuera del flujo de proceso en espiral?

3 . 8 . ¿Es posible combinar modelos de proceso? Si la respues ta e s afirmativa, menc iónese u n
ejemplo.

3 . 9 . El mode lo concur ren te del p roceso define u n con jun to de "estados". Describir con
pa lab ras propias lo que represen tan es tos es tados , y de spués indicar c ó m o en t ran en juego
dentro del modelo concurrente del proceso.

3 . 1 0 . ¿Cuáles son las venta jas y desventa jas de desarrollar sof tware para el cual la calidad es
"lo suf ic ien temente buena"? Esto es, ¿qué pasa c u a n d o se resal ta la velocidad del desarrol lo
sobre la calidad del proyecto?

3 . 1 1 . Proporcionar tres e jemplos de proyectos de sof tware que pudieran adaptarse al modelo
basado en componentes . Ser especifico.

3 . 1 2 . Es posible probar que un componente de sof tware o incluso un programa completo está
correcto. Entonces, ¿por qué no todos lo hacen?

3 . 1 3 . Exponer con a r g u m e n t o s propios el s ignificado de " intereses generales". I-a i terativa
sobre el ADP se expande con rapidez. Investigar y escribir un d o c u m e n t o breve sobre la
situación actual.

3 . 1 4 . ¿El proceso unificado y el UML son la misma cosa? Explicar la respuesta.

3 . 1 5 . ¿Cuál es la diferencia entre una fase del PU y un flujo de trabajo del PU?

Q T R A S L E C T V R A S Y F U E N T E S DE I N F O R M A C I Ó N

La mayor parte de los textos sobre ingeniería del sof tware consideran los modelos prescrip-
tivos de proceso con algún detalle. Los libros de Sommerville (Software Engineering, sexta
edición, Addison-Wesley, 2000), Pfleeger (Software Engineering: Theoiy and Practice, Prentice-
Hall, 2001), y Schach (Object-Oriented and Classical Software Engineering, McGraw-Hill, 2001)
consideran los paradigmas convencionales y analizan sus fortalezas y debilidades. A pesar de
que no se dedica en forma específica al proceso, Brooks (The Mythicai Man-Month, segunda
edición, Addison-Wesley, 1995) presenta la experiencia ganada en proyectos antiguos que
tienen una gran relación con el proceso. Firesmith y Henderson-Sellers (The OPEN Piocess
Framework: An Introduction, Addison-Wesley, 2001), presenta una plantilla general para crear
"procesos de software flexible, pero, aún así, indisciplinados" y analiza los atributos y objetivos
del proceso.

Sharpe y McDermott (Workjlow Modeiing: Too/s for Process Iniprovement and Application
Development, Artech House, 2001) presentan herramientas para el modelado de procesos de
software y negocios. Jacobson Criss y ¡onsson (Software Reuse, Addison-Wesley, 1997) y
McCIure (Software Reuse Techniques, Prentice-Hall, 1997) p resentan mucha información útil

TM

PDF Editor

PARTE UNO a PROCESO DEL SOFTWARE

sobre el desarrollo basado en componentes . Heineman y Council (Component-Based Software
Engineering, Addison-Wesley, 2001) describen el proceso requerido para implementar s is temas
basados en componentes . Kenett y Baker (Software Process Quality: Management and Control,
Marcel Dekker, 1999) consideran la forma en que la gestión de calidad y el diseño de proceso
están conectados en forma íntima entre si.

Ambriola (Software Process Technology, Springer-Verlag, 2001), Derniame y sus colegas
(Software Process: Principies, Methodology, and Technology, Springer-Verlag, 1999) presentan
conferencias editadas que incluyen muchos aspectos teóricos y de investigación y que son
relevantes para el proceso de software.

Jacobson, Booch y Rumbaugh han escrito el libro fundamental sobre el proceso unificado
[)AC99]. Sin embargo, los libros de Arlow y Neustadt [ARL02] y una serie de tres volúmenes de
Ambler y Constantine [AMB02] ofrecen una excelente información complementaria. Krutchen
(The Rational Unified Process, segunda edición, Addison-Wesley, 2000) ha escrito una valiosa
introducción al PU. La gestión de un proyecto dentro del contexto del PU está escrita en detalle
por Royce (Software Project Management: A Unified Framework, Addison-Wesley, 1998). La
descripción definitiva del PU la ha desarrollado la Rational Corporation y está disponible en
línea en www.rational.com.

En Internet existe una amplia variedad de fuentes de información sobre la ingeniería y el
proceso del software. En el sitio web de SEPA se puede encontrar una lista actualizada de refe-
rencias en la red mundial que son relevantes para el proceso de software:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.rational.com
http://www.mhhe

C A P I T U L O

DESARROLLO
ÁGIL

j »

B
J»

*5
. J7
..91
..n

..17

.M

41

J7

.84
XI

E n 2001, Kent Beck y otros 16 notables desarrolladores, escritores y consul-
tores [BEC01] (conocidos como la "Alianza Ágil") firmaron el "Manifiesto
para el desarrollo ágil de software", el cual establecía:

Hemos descubier to me jo res fo rmas de desarrollar sof tware al construirlo por nuestra

cuenta y ayudar a o t ros a hacerlo, Por medio de es te t rabajo h e m o s llegado a valorar:

A los individuos y sus interacciones sobre los procesos y las herramientas .

Al software en funcionamiento sobre la documentac ión extensa .

A la colaboración del cliente sobre la negociación del contrato.

A ia respuesta al cambio sobre el seguimiento de un plan.

Esto es, a u n q u e los té rminos a la derecha t ienen valor, nosot ros va lo ramos m á s

los a spec tos de la izquierda.

Un manifiesto se asocia por lo general con un movimiento político emergen-
te.- aquel que ataca a la vieja vanguardia y sugiere un cambio revolucionario (en
el mejor de los casos para mejorar). De alguna forma, esto es con exactitud de
lo que se trata el desarrollo ágil.

A pesar de que las ideas subyacentes que conducen al desarrollo ágil han es-
tado presentes por muchos años, no ha sido s ino hasta la década pasada que es-
tas ideas han cristalizado en un "movimiento". En esencia, los métodos ágiles1

se desarrollaron en un intento por superar las debilidades advertidas y reales en
la ingeniería del sof tware convencional. El desarrollo ágil proporciona beneficios
importantes, pero es imposible aplicarlo en todos los proyectos, productos, per-
sonas y situaciones.

¿ Q u é e s ? La ingeniería de softwa-
re ágil combina una filosofía y un
conjunto de directrices de desarrollo.
La filosofía busca la satisfacción del
cliente y la entrega temprana de soft-

•a-e ¡ncremental; equipos de proyecto peque-
mos y con alta motivación; métodos informales;
. - mínimo de productos de trabajo de la inge-
niería del software; y una simplicidad general
del desarrollo. Las directrices de desarrollo resal-
an la entrega sobre el análisis y el diseño (aun-

que estas actividades no se descartan), y la

comunicación activa y continua entre los desa-
rrolladores y ios clientes.

¿Quién l o h a c e ? Los ingenieros de software y
otros participantes del proyecto {gerentes, clien-
tes y usuarios finales) trabajan juntos en un equi-
po ágil: un equipo con organización propia y
que controla su propio destino. Un equipo ágil
fomenta la comunicación y la colaboración entre
todos los que trabajan en él.

¿Por q u é e s importante? El ambiente moder-
no de los negocios ocasiona que los sistemas
basados en computadoras y los productos de

1 A los métodos ágiles algunas veces se les llama métodos ligeros o livianos

77

TM

PDF Editor

78 PARTE UNO a PROCESO Da SOFTWARE

software estén acelerados y en cambio continuo.
La ingeniería del software ágil representa una
opción razonable a la ingeniería convencional
para ciertas clases de software y ciertos tipos de
proyectos de software. Ha demostrado su ufili-
dad al entregar sistemas exitosos con rapidez.

¿Cuáles s o n los p a s o s ? El desarrollo ágil
podría llamarse con mayor precisión "ingeniería
del software ligera". Las actividades básicas del

'*f- marco de trabajo -comunicación con el cliente,
planeación, modelado, construcción, entrega y

; evolución - se conservan, pero éstas se canfor -
;\í man como un conjunto mínimo de tareas que

empuja al equipo de proyecto hacia la construc-
ción y la entrega (habrá quienes argumenten
que esto se hace a costa del análisis del proble-

ma y del diseño de la solución).
¿Cuál e s el producto o b t e n i d o ? Los clientes e

ingenieros de software que han adoptado la filo-
sofía ágil tienen la misma visión: el único pro-
ducto de trabajo realmente importante es un
"incremento de software" en funcionamiento, el
cual se entrega al cliente en una fecha prometi-
da.

¿Cómo p u e d o e s tar s e g u r o d e q u e lo h e
h e c h o correctamente? Si el equipo de soft-
ware está de acuerdo en que el proceso funcio-
na y dicho equipo produce incrementos de soft-
ware entregables que satisfacen al cliente,
entonces el trabajo está bien hecho.

No es la antítesis de la práctica sólida de la ingeniería del sof tware y es posible
aplicarla como una filosofía predominante para cualquier trabajo de software.

En la economía moderna, a menudo resulta difícil o imposible predecir cómo evo-
lucionarán con el t iempo los s is temas basados en computadoras (por ejemplo, las
aplicaciones Web). Las condiciones del mercado cambian con rapidez, las necesida-
des de los usuarios finales evolucionan, y las nuevas a m e n a z a s competitivas emer-
gen sin previo aviso. En muchas situaciones ya es imposible definir por completo los
requisitos antes de que comience el proyecto. Los ingenieros de sof tware deben ser
tan ágiles como para responder a un ambiente de negocios fluido.

¿Lo anterior significa que el reconocimiento de es tas realidades modernas ocasio-
na que se descarten los valiosos principios, conceptos, métodos y herramientas de
la ingeniería del software? No, ¡en lo absoluto; Como todas las disciplinas de inge-
niería, la ingeniería del sof tware continúa en evolución. Se puede adaptar con faci-
lidad para enfrentar los retos que implica una exigencia de agilidad.

"Agilidad: 1 , todo lo demás: 0 . "
Tom DeMarco

En un libro que invita a la reflexión y trata sobre el desarrollo ágil de software,
Alistair Cockburn [COC02a] argumenta que los modelos prescriptivos de proceso
presentados en el capítulo 3 tienen una falla importante: olvidan las fragilidades de las
personas que construyen el software de computadora. Los ingenieros de sof tware no
son robots. Ellos muestran una gran variedad en los estilos de trabajo y diferencias
significativas en su grado de habilidad, creatividad, orden, consistencia y esponta-
neidad. Algunos se comunican muy bien en forma escrita, otros no. Cockburn argu-
menta que los modelos de proceso pueden "enfrentar las debilidades comunes de la
gente con disciplina o tolerancia [alguna de las dos]" [CQC02a], y que los modelos

TM

PDF Editor

CAPÍTULO 4 DESARROLLO ÁGIL 79

de proceso m á s prescriptivos eligen la disciplina. Él establece: "Como la consisten-
cia en la acción e s una debilidad humana , las metodologías que exigen un alto gra-
do de disciplina son frágiles" [CC)C02a].

Los modelos de proceso funcionarán si proporcionan un mecan i smo realista que
fomente la disciplina necesaria, o deben estar caracterizados de manera que mues-
tren "tolerancia" por la gente que realiza el trabajo de la ingeniería del software. De
manera invariable, la gente de software adopta y sostiene m á s fácilmente las prác-
ticas tolerantes, pero (como Cockburn lo admite) tal vez sea menos productiva. Co-
mo la mayoría de las cosas en la vida, se deben considerar los intercambios.

AA.
¿Qué es la agilidad en el contexto del t rabajo de la ingeniería del software? Ivar Ja-
cobson [JAC02] proporciona una definición útil:

Agilidad se ha convertido actualmente en la palabra de moda en cuanto se describe un
moderno proceso de software. Cualquiera es ágil. Un equipo ágil es un equipo rápido
que responde de manera apropiada a los cambios. Éstos son, en gran parte, la materia
del desarrollo de software. Cambios en el sof tware que se va a construir, cambios en-

tre los miembros del equipo, cambios debidos a las nuevas tecnologías, cambios de to-

do tipo que pueden incidir en el producto que se construye o en el proyecto que crea el
producto. En cualquier actividad de software se debe incluir un soporte para los cam-
bios, esto es algo que adoptamos porque es el alma y el corazón del software. Un equi-

po ágil reconoce que el sof tware lo desarrollan individuos que t rabajan en equipo y que
las aptitudes de esta gente, y su capacidad para colaborar, son esenciales para el éxi-
to del proyecto.

De acuerdo con la visión de Jacobson, la insistencia en el cambio e s el conductor
primordial hacia la agilidad. Los ingenieros de sof tware deben tener pies veloces si
quieren ajustarse a los cambios rápidos que describe Jacobson.

[CONSUO. *

"Ln agilidad es dinámica, ton contenido específico, ajustable al cambio d e mane ra dinámico y orientada ol
crecimiento."

Steven Goldman el al.

é e cometer el
supone/ que

proporciona
para

soluciones.
un

y lo disciplina

Pero la agilidad e s más que una respuesta efectiva al cambio. También incluye la
filosofía del manifiesto enunciado al principio de este capítulo. Estimula las estruc-
turas y actitudes de los equipos para que la comunicación (entre los miembros del
equipo, entre los técnicos y la gente de negocios, entre los ingenieros de sof tware y
sus gerentes) sea m á s fácil. Resalta la entrega rápida del sof tware operativo y le res-
ta importancia a los productos de trabajo intermedio (lo cual no siempre e s bueno);
adopta al cliente como una parte del equipo de desarrollo y trabaja para eliminar la
actitud del tipo "nosotros y ustedes" que aún perjudica a muchos proyectos de soft-
ware; reconoce que la planeación tiene sus límites en un mundo incierto y que el
plan de proyecto debe ser flexible.

TM

PDF Editor

PARTE UNO EL PROCESO DEL SOFTWARE

La Alianza Ágil [AGI03J define 12 principios para quienes quieren alcanzar la agi-
lidad:

1. Nuestra mayor prioridad es satisfacer al cliente mediante la entrega temprana
y continua de software valioso.

2 . Bienvenidos los requisitos cambiantes, incluso en fases tardías del desarrollo.
La estructura de los procesos ágiles cambia para la ventaja competitiva del
cliente.

3 . Entregar con frecuencia software en funcionamiento, desde un par de sema-
nas hasta un par de meses, con una preferencia por la escala de tiempo más
corta.

4 . La gente de negocios y los desarrolladores deben trabajar juntos a diario a lo
largo del proyecto.

5 . Construir proyectos alrededor de individuos motivados. Darles el ambiente y
el soporte que necesitan, y confiar en ellos para obtener el trabajo realizado.

6. El método más eficiente y efectivo de transmitir información hacia y dentro de
un equipo de desarrollo es la conversación cara a cara.

7. El software en funcionamiento es la medida primaria de progreso.

8. Los procesos ágiles promueven el desarrollo sustentable. Los patrocinadores,
desarrolladores y usuarios deben ser capaces de mantener un paso constante
de manera indefinida.

9 . La atención continua a la excelencia técnica y al buen diseño mejora la agili-
dad.

10. La simplicidad —el arte de maximizar la cantidad de trabajo no realizado— es
esencial.

11. Las mejores arquitecturas, los mejores requisitos y los mejores diseños emer-
gen de equipos autoorganizados.

12. A intervalos regulares el equipo refleja la forma en que se puede volver más
efectivo; entonces su comportamiento se ajusta y adecúa en concordancia.

La agilidad se puede aplicar en cualquier proceso de software. Sin embargo, pa-
ra lograrlo es esencial que el proceso sea diseñado en una forma que permita al
equipo del proyecto adaptar y coordinar las tareas, conducir la planeación en una
forma que entienda la fluidez de un enfoque de desarrollo ágil, eliminar todo pe-
ro no los productos de trabajo esenciales y mantener los controlados, y enfatizar
una estrategia de entrega incremental que proporcione software en funciona-
miento al cliente tan rápido como sea factible para el tipo de producto y el am-
biente operativo.

TM

PDF Editor

CAPITULO 4 DESARROLLO ÁGIL 81

4.2 ES tf« PPQCESO AgU-?

Cualquier proceso ágil de software s e caracteriza de una manera que refiere tres su-
posiciones clave [FOW02) acerca de la mayoría de los proyectos de software:

1. Resulta difícil predecir cuáles requisitos del software persistirán y cuáles cam-
biarán. De igual forma, e s difícil presagiar cómo cambiarán las prioridades del
cliente mientras se ejecuta un proyecto.

2 . Para muchos tipos de software, el diseño y la construcción están intercalados.
Esto es, ambas actividades se deben realizar de manera conjunta, de modo
que los modelos de diseño sean probados conforme se crean. Resulta difícil
predecir cuánto diseño se necesita an tes de que la construcción se utilice para
probar el diseño.

3 . El análisis, el diseño y la construcción no son predecibles (desde el punto de
vista de la planeación), lo que sería deseable.

Dados los puntos anteriores, surge una pregunta importante: ¿cómo se crea un
proceso susceptible de manipular en forma impredecible? La respuesta, como ya se
ha puntual izado antes, reside en la adaptabilidad del proceso (a un proyecto y a con-
diciones técnicas que cambian con rapidez). Por lo tanto, un proceso ágil debe ser
adaptable.

Pero u n a adaptación continua sin un progreso logra muy poco. Por lo tanto, un
proceso ágil de software debe adaptarse en forma incremental. Para llevar a cabo
una adaptación incremental, un equipo ágil requiere de la retroalimentación con el
cliente (para que sea factible realizar las adaptaciones apropiadas). Un catalizador
efectivo para la retroalimentación del cliente es un prototipo operacional o una por-
ción de un sistema operacional. Por lo tanto, debe instituirse una estrategia incremen-
tal de desarrollo. Los incrementos de software (prototipos ejecutables o una porción de
un sistema operacional) deben entregarse en cortos periodos para que la adaptación
mantenga un buen ritmo con el cambio (imprevisibilidad). Este enfoque iterativo le
permite al cliente evaluar el incremento del sof tware de manera regular, proporcio-
nar la retroalimentación necesaria al equipo de software, e influir sobre las adapta-
ciones del proceso que se realizan para adecuar la retroalimentación.

"No existe un sustituto para la retroalimentación rápida, ni en el proceso d e desarrollo ni en el producto mismo."
Martin Fowler

4.2.1 Las políticas del desarrollo ágil
Existe un debate considerable (a veces estridente) sobre los beneficios y la aplicabi-
lidad del desarrollo ágil del sof tware como alternativa a procesos de ingeniería del
software m á s convencionales. Jim Highsmith [HIG02a] (a manera de broma) analiza
los extremos cuando caracteriza el sentimiento del campo proagilidad ("agilitado-

TM

PDF Editor

82 PARTE UNO EL PROCESO DEL SOFTWARE

^ C O N S L I O ^

No es necesario elegir
entre agilidad e inge-
niería del softwore. En
lugar de ello, se
puede definir un
enfoque de ingeniería
de software que sea
ágil.

res"). "Los metodólogos tradicionales son un conjunto de tipos que se arrastran en
el lodo y que prefieren producir documentación que no fluye, en vez de un sistema
de t rabajo que cubra las necesidades del negocio." Como contraparte, establece la
posición del campo de la ingeniería del software (de nuevo, en forma de broma):
"Los metodólogos 'ligeros' y, eh, 'ágiles' son un conjunto de intrusos informáticos
que van a estar ahí para dar u n a maldita sorpresa cuando intenten elevar sus jugue-
tes al nivel de sof tware de la empresa".

Al igual que todos los a rgumentos sobre la tecnología del software, es te debate
sobre la metodología corre el riesgo de degenerar en una guerra religiosa. Si estalla
la guerra, desaparece el pensamiento racional, y las creencias, en vez de los hechos,
guían la toma de decisiones.

Nadie está en contra de la agilidad. La pregunta real es: ¿cuál es la mejor mane-
ra de lograrla? Igual de importante e s la pregunta: ¿cómo se construye un sof tware
que satisfaga hoy las necesidades de los clientes y muest re las características de ca-
lidad que le permitan extenderse y escalar para cubrir a largo plazo las necesidades
del cliente?

No existen respuestas absolutas para ninguna de es tas preguntas. Aun dentro de
la escuela ágil se han propuesto varios modelos de proceso (sección 4.3), cada uno
con un enfoque sutilmente diferente para el problema de la agilidad. Dentro de cada
modelo hay un conjunto de "ideas" (que los agilitadores suelen llamar "tareas de tra-
bajo") que representan una separación significativa de la ingeniería del sof tware
convencional. Y aun así, muchos conceptos de agilidad son tan sólo adaptaciones de
buenos conceptos de la ingeniería del software. Como punto final, hay mucho que
ganar si se considera lo mejor de ambas escuelas, y nada que ganar si se denigra al-
guno de los dos enfoques.

El lector interesado puede consultar [HIGO 1], [HIG02a] y [DEM02] para un anima-
do resumen de los aspectos técnicos y políticos importantes.

4.2.2 Factores humanos
Los defensores del desarrollo ágil del sof tware resaltan la importancia de los "facto-
res de las personas" en un desarrollo ágil exitoso. Como establecen Cockburn y
Highsmith [COCOl]: "El desarrollo ágil se centra en los talentos y las habilidades de
los individuos, puesto que el proceso se ajusta a personas y equipos específicos". El
punto clave en esta afirmación e s que el proceso se ajusta a las necesidades de las per-
sonas y del equipo, y no al revés.2

"Aquello apenas suficiente para un equipo es excesivo o insuficiente pora otro."
Alistair Cockburn

2 La mayoría de las organizaciones de software exitosas reconocen esta realidad sin importar el mo-
delo de proceso que elijan.

TM

PDF Editor

* wft-
i»

V E
G X

propia
r i j a j o que
3 equipo

propios
y define

CAPÍTULO 4 DESARROLLO ÁGIL 83

Si los miembros del equipo de software van a manejar las características del pro-
ceso que se aplica para construirlo, debe existir un gran número de rasgos clave en-
tre la gente de un equipo ágil y el equipo mismo.-

Competenc ia . En el contexto de un desarrollo ágil (al igual que en la ingeniería
del software convencional), la "competencia" abarca un talento innato, habilidades
específicas relacionadas con el software, y un conocimiento general del proceso
que el equipo haya elegido aplicar. La habilidad y el conocimiento del proceso pue-
den y deben enseña r se a toda la gente que funge c o m o miembro de un equipo
ágil.

Enfoque c o m ú n . Aunque los miembros del equipo ágil desempeñen tareas di-
ferentes y aporten distintas habilidades al proyecto, todos deben enfocarse en una
meta: entregar al cliente un incremento de trabajo de software dentro del t iempo
establecido. Alcanzar esta meta requiere que el equipo también se centre en adap-
taciones cont inuas (pequeñas y grandes) mediante las cuales el proceso satisfará
las necesidades del equipo.

Colaboración. La ingeniería del software (sin considerar el proceso) incluye
evaluar, analizar y usar información que se comunica al equipo de software; crear
información que ayudará al cliente y a otros a entender el t rabajo del equipo; y
construir información (software de computadora y bases de datos relevantes) que
ofrezca un valor comercial para el cliente. Estas tareas se cumplirán si los miem-
bros del equipo colaboran, entre ellos, con el cliente y con sus gerentes.

Habilidad para la t o m a d e d e c i s i o n e s . Todo buen equipo de sof tware (in-
cluidos los equipos ágiles) debe permitirse la libertad de controlar su propio desti-
no. Esto implica que al equipo se le dé autonomía, e s decir, autoridad para tomar
decisiones en cuanto a cuest iones técnicas y del proyecto.

Capacidad d e reso luc ión d e p r o b l e m a s c o n f u s o s . Los gestores de sof tware
deben reconocer que el equipo ágil enfrentará ambigüedades y sufrirá golpes de
manera continua debido al cambio. En algunos casos, el equipo debe aceptar que
el problema que está resolviendo hoy tal vez no sea el problema que debe resol-
verse mañana . Sin embargo, las lecciones aprendidas en cualquier actividad para
la resolución de problemas (incluidas aquellas que sirven para solucionar el pro-
blema erróneo) pueden beneficiar al equipo en fases posteriores del proyecto.

Confianza y r e s p e t o m u t u o . El equipo ágil se debe convertir en lo que De
Marco y Lister [DEM98] l laman un equipo "cuajado" (véase el capítulo 21). Un equi-
po cuajado muestra la confianza y el respeto necesarios para que "se unan con
tanta fuerza, que el todo sea mayor que la suma de las partes" [DEM98],

Organización propia. En el contexto del desarrollo ágil, la organización propia
implica tres factores: 1) el equipo ágil se organiza a sí mismo para el trabajo que
debe hacerse; 2) el equipo organiza el proceso que mejor se ajusta a su ambiente
local; 3) el equipo organiza el programa de trabajo con el que se alcance de mejor

TM

PDF Editor

84 PARTE UNO EL PROCESO DEL SOFTWARE

manera la entrega del incremento del software. La organización propia tiene varios
beneficios técnicos, pero lo más importante es que mejora la colaboración y eleva
la moral del equipo. En esencia, el equipo sirve c o m o su propia gestoría. Ken Sch-
waber [SCH02] puntualiza es tos aspectos cuando escribe: "El equipo selecciona la
cantidad de trabajo que cree que es capaz de hacer dentro de la iteración, y el
equipo se compromete con el trabajo. Nada desalienta m á s a un equipo que al-
guien más se comprometa por él. Nada motiva más a un equipo que aceptar la res-
ponsabilidad de cumplir los compromisos que él mismo hizo".

4 . 3 M O D E L O S Á G I L E S DE P R O C E S O

La historia de la ingeniería del sof tware está llena de decenas de descripciones y me-
todologías, métodos de modelado y notaciones, herramientas y tecnologías obsole-
tas. Cada e lemento surgió con notoriedad y después lo eclipsó algo nuevo y (supues-
tamente) mejor. Con la introducción de un amplio espectro de modelos ágiles de
proceso —cada uno en busca de su aceptación dentro de la comunidad del desarro-
llo de software— el movimiento ágil está en la misma ruta histórica.3

"Nuestro profesión vo tros ios metodologías como un adolescente va tras la ropa."
Stephen Hawrysh y Jim Ruprecht

R e f e r e n c i a Web

www.extremepra
groromiiig.org/

eiKontror uno

En las siguientes secciones se presenta u n a visión general de cierto número de di-
ferentes modelos ágiles de proceso. Existen muchas similitudes (en filosofía y prácti-
ca) entre es tos enfoques . La intención e s subrayar aquellas características de cada
método que lo hacen único. Es importante señalar que todos los modelos ágiles se
a jus tan (en mayor o menor grado) al Manifiesto para el desarrollo de software y a los
principios enunciados en la sección 4.1.

4.3.1 Programación extrema (PE)
A pesar de que los primeros trabajos sobre las ideas y los métodos asociados con la
programación extrema (PE) se realizaron a finales de la década de 1980, el trabajo
fundamental sobre la materia, escrito por Kent Beck [BEC99], se publicó en 1999. Los
libros subsiguientes de Jeffries et al. tJEFOl] sobre los detalles técnicos de la PE, y el
t rabajo adicional de Beck y Fowler [BECOlb] sobre la planeación de la PE expusieron
los detalles del método.

La PE utiliza un enfoque or ientado a objetos (parte 2 de este libro) c o m o su para-
digma de desarrollo preferido. La PE abarca un conjunto de reglas y prácticas que
ocurren en el contexto de cuatro actividades del marco de trabajo: planeación, dise-

3 Esto no es algo malo. Antes de que uno o más modelos o métodos sean aceptados como un están-
dar de facto, todos deben competir por los corazones y las mentes de los ingenieros de software.
Los "ganadores" evolucionan con la mejoría que proporciona la práctica, mientras que los "perde-
dores" desaparecen o se unen a los modelos "ganadores".

TM

PDF Editor

http://www.extremepra

CAPÍTULO 4 DESARROLLO ÁGIL 85

ki diseño simple
carias CRC

soluciones pico
prototipos

Lan

d e '

programación en pareja

ño, codificación y pruebas. En la figura 4.1 se ilustra el proceso de la PE y se obser-
van algunas de las ideas y tareas clave asociadas con cada actividad del marco de tra-
bajo. En los siguientes párrafos se resumen las actividades clave de la PE.

Planeac ión . La actividad de planeación comienza creando una serie de historias
(también l lamadas historias del usuario) que describen las características y la funcio-
ralidad requeridas para el soñware que se construirá. Cada historia (similar a los ca-

sos de uso descritos en los capítulos 7 y 8) la escribe el cliente y se coloca en una
carta índice. El cliente le asigna un valor (es decir, una prioridad) a la historia basán-
dose en los valores generales del negocio respecto de la característica o la función.4

Los miembros del equipo de la PE evalúan entonces cada historia y le asignan un
costo, el cual se mide en s e m a n a s de desarrollo. Si la historia requiere m á s de tres
s e m a n a s de desarrollo, se le pide al cliente que la divida en historias menores , y se
realiza de nuevo la asignación del valor y el costo. Es importante destacar que las
historias nuevas pueden escribirse en cualquier momento .

Los clientes y el equipo de PE trabajan juntos para decidir c ó m o agrupar las his-
torias hacia el próximo lanzamiento (el siguiente incremento de software) para que
el equipo de la PE las desarrolle. Una vez establecido el compromiso básico (el
acuerdo de las historias que se incluirán, la fecha de entrega y otras cuest iones del
proyecto) para un lanzamiento, el equipo de la PE ordena las historias que se desa-
rrollarán de una de las siguientes tres maneras : 1) todas las historias serán imple-

4 El valor de una historia puede depender también de la presencia de otra historia.

TM

PDF Editor

86 PARTE UNO EL PROCESO DEL SOFTWARE

Enelslio
c 2 . c o m / c g i / w i k i ?

plamiingGame se

puede encontrar u n
vellosa " juego de
p loneadói t " poro la PE.

mentadas de un modo inmediato (dentro de pocas semanas) ; 2) las historias con va-
lor más alto se moverán en el programa y se implementarán al principio; o 3) las
historias m á s r iesgosas se moverán dentro del programa y se implementarán al
principio.

Después de que se ha entregado el primer lanzamiento del proyecto (también lla-
mado incremento de software), el equipo de la PE calcula la velocidad del proyecto.
Dicho de un m o d o m á s simple, la velocidad del proyecto es el número de historias de
los clientes implementado durante el primer lanzamiento. Entonces, la velocidad del
proyecto puede utilizarse para I) ayudar a estimar fechas de entrega y el programa
para lanzamientos subsecuentes, y 2) determinar si se ha hecho un compromiso ex-
cesivo en algunas de las historias de todo el proyecto de desarrollo. Si se presenta
un compromiso excesivo, el contenido de los lanzamientos se modifica o se cambian
las fechas de las ent regas finales.

Conforme avanza el trabajo de desarrollo, el cliente puede agregar historias, cam-
biar el valor de la historia existente, dividir historias o eliminarlas. Entonces el equi-
po de la PE considera de nuevo los lanzamientos restantes y modifica sus planes de
acuerdo con ello.

"Lo programación extrema es uno disciplina de desarrollo de software que se basa en valores de simplicidad,
comunicación, retroalimentación y audacia."

Ron Jeffries

D i s eño . El diseño de la PE sigue de manera rigurosa el principio MS (mantenerlo
simple). Siempre se prefiere un diseño simple respecto de una presentación más
compleja. Además, el diseño ofrece una guía de implementación para una historia
como está escrita, ni más ni menos . Se desaprueba el diseño de funcionalidad extra
(porque el desarrollador supone que se requerirá más tarde).

La PE apoya el uso de tarjetas CRC (capitulo 8) como un mecanismo efectivo pa-
ra pensa r en el sof tware en un contexto orientado a objetos. Las tarjetas CRC (cola-
borador-responsabilidad-clase) identifican y organizan las clases orientadas al obje-
to6 que son relevantes para el incremento del software actual. El equipo PE condu-
ce el ejercicio del diseño por medio de un proceso similar al descrito en el capítulo
8 (sección 8.7.4.). Las tar jetas CRC son el único producto de trabajo realizado como
parte del proceso de la PE.

Si se encuentra un problema difícil de diseño como parte del diseño de la histo-
ria, la PE recomienda la creación inmediata de un prototipo operacional de esa por-
ción del diseño. El prototipo del diseño, l lamado la solución pico, se implementa y
evalúa. El propósito es reducir el riesgo cuando comience la verdadera implementa-

5 Estas directrices de diseño se deberían seguir en todos los métodos de ingeniería del software,
aunque a veces las notaciones y terminologías sofisticadas que se utilizan en el diseño pueden em-
plearse de una manera más simple.

6 En el capitulo 8, y a lo largo de la parte 2 del libro, se estudian las clases orientadas a objetos.

TM

PDF Editor

CAPÍTULO 4 DESARROLLO ÁGIL 87

ción y validar las est imaciones originales en la historia que contiene el problema del
diseño.

La PE apoya la refabricación, una técnica de construcción que también lo es de di-
seño. Fowler [FOWOO] describe la refabricación de la siguiente manera:

Refabricación es el proceso de cambiar un sistema de software de tal manera que no al-
tere el comportamiento externo del código y que mejore la estructura interna. Es una ma-
nera disciplinada de limpiar el código [y modificar/simplificar el diseño interno], lo que
minimiza las oportunidades de introducir errores. En esencia, al refabricar, se mejora el
diseño del código después de que se ha escrito.

Debido a que el diseño de la PE virtualmente no utiliza la notación y produce, si aca-
so, muy pocos productos de trabajo, distintos a las tarjetas de CRC y soluciones pi-
co, el diseño se considera como un artefacto que puede y debe modificarse de ma-
nera continua a medida que prosigue la construcción. El propósito de refabricar es
controlar es tas modificaciones al sugerir pequeños cambios del diseño que "pueden
mejorar de manera radical el diseño" [FOWOO], Sin embargo, debe notarse que el es-
fuerzo requerido para refabricar puede aumentar en forma drástica a medida que
crece el t amaño de la aplicación.

Una noción central en la PE e s que el d iseño ocurre tanto an tes como después
del comienzo de la codificación. Refabricar significa que el d iseño ocurre de m a n e -
ra cont inua a medida que se construye el s is tema. De hecho, la actividad de cons-
trucción misma le proporcionará al equipo de PE una guía sobre cómo mejorar el
diseño.

Codif icación. La PE recomienda que después de diseñar las historias y realizar el
trabajo de diseño preeliminar el equipo no debe moverse hacia la codificación, sino
que debe desarrollar una serie de pruebas de unidad que ejerciten cada una de las
historias que vayan a incluirse en el lanzamiento actual (incremento de software).7

Una vez creada la prueba de unidad, el desarrollador e s más capaz de centrarse en
lo que debe implementarse para pasar la prueba de unidad. No se agrega nada ex-
traño (MS). Una vez que el código está completo, la unidad puede probarse de inme-
diato, y así proporcionar una retroalimentación instantánea a los desarrolladores.

Un concepto clave durante la actividad de codificación (y uno de los aspectos de
la PE de los que m á s se ha hablado) es la programación en pareja. La PE recomienda
que dos personas trabajen juntas en una estación de trabajo de computadora para
crear el código de una historia. Esto proporciona un mecanismo para la resolución
de problemas en tiempo real (dos cabezas piensan mejor que una) y el aseguramien-
to de la calidad en las mismas condiciones. También alienta que los desarrolladores
se mantengan centrados en el problema que se tiene a la mano. En la práctica, ca-
da persona tiene un papel sutilmente diferente. Por ejemplo, una persona puede pen-

7 Este enfoque es análogo a conocer las preguntas del examen antes de comenzar a estudiar. Esto fa-
cilita mucho más el estudio al enfocar la atención sólo sobre las preguntas que serán formuladas.

TM

PDF Editor

P A R T E U N O EL PROCESO DEL SOFTWARE

\
CLAVE

las pruebas de
aceptación de la PE se
derivan de las historias
del usuario.

sar en los detalles de codificación de una porción particular del diseño, mientras que la
otra se asegura de que se sigan los estándares de codificación (una parte requerida de
la PE) y que el código que se genera "coincida" con el diseño más amplio de la historia.

Cuando los programadores completan su trabajo el código que desarrollaron se
integra con el trabajo de otros. En algunos casos es to lo lleva a cabo diariamente el
equipo de integración. En otros casos, la pareja de programadores e s la responsable
de la integración. Esta estrategia de "integración continua" ayuda a evitar problemas de
compatibilidad e interfaz y proporciona un ambiente de "prueba de humo" (capítulo
13) que ayuda a descubrir los errores desde el principio.

Pruebas . Ya se ha hecho notar que la creación de una prueba de unidad8 an tes de
comenzar la codificación es un e lemento clave para el enfoque de la PE. Las prue-
bas de unidad que se crean deben implementarse con un marco de trabajo que per-
mita automatizar las (por lo tanto, pueden ejecutarse de manera fácil y repetida). Es-
to apoya una estrategia de regresión de prueba (capítulo 13) cuando el código se mo-
difica (al cual a menudo se le confiere la filosofía de la PE de refabricar).

Cuando las unidades individuales de prueba se organizan en un "conjunto univer-
sal de pruebas" [WEL99], las pruebas de integración y validación del sistema pueden
realizarse a diario. Esto proporciona al equipo de PE una indicación continua del
progreso y también puede encender luces de emergencia previas si las cosas salen
mal. Wells [WEL99] establece: "Arreglar problemas pequeños cada pocas horas to-
ma menos t iempo que arreglar problemas enormes justo antes de la fecha límite".

Las pruebas de aceptación de la PE, también l lamadas pruebas del cliente, las espe-
cifica el cliente y se enfocan en las características generales y la funcionalidad del
sistema, e lementos visibles y revisables por el cliente. Las pruebas de aceptación se
derivan de las historias del usuario que se han implementado c o m o parte de un lan-
zamiento de software.

HOGARSEGURO

Tomar en cuenta el desarrollo de software ágil

El escenario:

Los a c t o r e s : Doug Miller, gerente de ingeniería de
software; Jamie lazar, miembro del equipo de software;
Vinod Raman, miembro del equipo de software.

La conversación:
(llaman a la puerta)

J a m i e : Doug, ¿tienes un minuto?

D o u g : Seguro Jamie, ¿qué pasa?

J a m i e : Hemos estado pensando en nuestra
conversación de ayer acerca del proceso... tú sabes, de
cuál sería el proceso que elegiríamos pora este nuevo
proyecto de HogarSeguro.

Doug: ¿Y?

8 Las pruebas de unidad, que se tratan con detalle en el capítulo 13, se enfocan sobre un componente
individual del software, al ejercitar la interfaz de los componentes, las estructuras de datos y la fun-
cionalidad en un esfuerzo por descubrir los errores locales en el componente.

TM

PDF Editor

CAPÍTULO 4 DESARROLLO ÁGIL 89

- c o b n d o con un amigo de otra
' r e comentó sobre la programación

i r -o^e í c de proceso ágil, ¿has oído algo

i buenas y malas.

c; -osotros nos suena muy bien. Te
e; software muy rápido, utiliza algo

«roción en pareja para hacer
i de rci'dad en tiempo real... pienso que es

— .c'-cs ideas realmente buenas. Por
eí concepto de la programación en

i 2e cue todos los participantes del
corte del equipo de desarrollo.

¿Eso significa que mercadotecnia
l el equipo con nosotros?

i): Ellos son participantes, ¿no?

Dios!... Van a estar pidiendo cambios

-^cesariamente. Mi amigo me dijo que hay
ir" los cambios durante el proyecto de

¿ustedes creen que debamos usar PE?

Esdgo que definitivamente deberíamos de

Doug: Estoy de acuerdo. Y aun si elegimos como
nuestro enfoque un modelo incremental, no existe
ninguna razón por la que no podamos incorporar mucho
de lo que la PE tiene que ofrecer.

Vinod: Doug, antes dijiste "escuché cosas buenas y
malas". ¿Cuáles fueron las "malos*2

Doug: Lo que no me gusta es Iq forma en que lá PE
menosprecia el análisis y el diseñó... es como decir que
la acción real sólo está en ia escritura del código.

(los miembros del equipo se miran entre sí y sonríen)

Doug: Entonces, ¿están de acuerdo con el enfoque de la
PE?

J a m i e (h a b l a n d o por a m b o s) : ¡Jefe, lo que
nosotros hacemos es escribir código!.

Doug (riendo): Es cierto, pero me gustaría verlos
dedicar un poco menos de tiempo a la codificación y a la
recodificación y un poco más de tiempo a analizar lo
que se tiene que hacer y a diseñar una solución que
funcione.

Vinod: Puede ser que adoptemos ambas formas,
agilidad con un poco de disciplina.

Doug: Vinod, creo que podemos hacerlo. De hecho,
estoy seguro de ello.

4.3.2 Desarrollo adaptativo de software (DAS)
El desarrollo adaptativo de software (DAS) lo propuso Jim Highsmith [HIGOO] como
una técnica para construir software y sistemas complejos. Los apoyos filosóficos del
DAS se enfocan en la colaboración humana y la organización propia del equipo.
Highsmith [HIG98] expone lo anterior cuando escribe:

La organización propia es una propiedad de los s is temas adaptativos complejos, similar a
un "ajá" colectivo; es en el momento de energía creativa cuando surge la solución a algún

problema persistente. La organización propia emerge cuando los individuos, los agentes
independientes (células en un cuerpo, especies en un ecosistema, desarrolladores en un
equipo de software) cooperan [colaboran] para crear salidas emergentes. Una salida
emergente es una propiedad m á s allá de la capacidad de cualquier agente individual. Por
ejemplo, las neuronas individuales del cerebro no poseen conciencia, pero en forma co-

lectiva generan la propiedad de la conciencia. Tendemos a ver este fenómeno del surgi-
miento colectivo como un accidente, o al menos como independiente y sin reglas. El
estudio de la organización propia demuestra que dicha visión es errónea.

TM

PDF Editor

90 PASTE UNO EL PROCESO DEL SOFTWARE

Desarrollo
adaptatívo de
software.

planeaáón del ciclo adaptativo
enunciado de la misión
restricciones del proyecto
requisitos básicos

plan de lanzamiento en el tiempo

Recopilación de requisitos
JAD
especificaciones mínimas

Lanzamiento
incremento de software

ajuste para ciclos subsecuentes componentes implementados/probados
grupos de enfoque para retroalimentación
revisiones técnicas formales

post mortem

R e f e r e n c i a Web

www.adaptivesd.
<om se pueden

m k ¿Cuáles son
w las caracte-
rísticas de los
ciclos adaptativos
del DAS?

^ O N S I J O ^

La colaboración
efectivo con el cliente
ocurrirá sólo si se
eliminan todas las
actitudes del tipo "yo
y ustedes".

Highsmith argumenta que un enfoque de desarrollo ágil y adaptativo basado en la
colaboración es "tanto como una fuente de orden en las complejas interacciones en-
tre disciplina e ingeniería". Él define un "ciclo de vida" del DAS (figura 4.2), el cual
incorpora tres fases: especulación, colaboración y aprendizaje.

Especulac ión . En esta fase se inicia el proyecto y se conduce el ciclo adaptatívo de
planeación. Este último utiliza información de inicio del proyecto —el enunciado de
la misión del cliente, restricciones de proyecto (por ejemplo, fechas de entrega o des-
cripciones del cliente) y los requisitos básicos— para definir el conjunto de ciclos de
lanzamiento (incrementos del software) que s e requerirán para el proyecto.9

Colaboración. La gente motivada trabaja junta de una forma que multiplica su ta-
lento y sus salidas creativas m á s allá de sus números absolutos. Este enfoque de co-
laboración es un tema recurrente en todos los métodos ágiles, pero la cooperación
no es fácil. No es sólo comunicación, aunque la comunicación e s parte de ella. No
es sólo un asunto de trabajo en equipo, aunque un equipo "cuajado" (capítulo 21) es
esencial para la presencia de la colaboración real. No es un rechazo al individualis-
mo, ya que la creatividad individual representa un papel importante en el pensa-
miento de colaboración. Esto es, por encima de todo, una cuestión de confianza. Las
personas que trabajan juntas deben confiar entre sí para 1) criticar sin animosidad;

9 Obsérvese que el plan del ciclo adaptativo puede adaptarse, y con probabilidad lo hará, al proyecto
cambiante y a las condiciones del negocio.

TM

PDF Editor

http://www.adaptivesd

CAPÍTULO 4 DESARROLLO ÁGIL 91

2) ayudar sin resentimientos; 3) trabajar tan duro o m á s duro de lo que ya lo hacen;
4i tener el conjunto de apti tudes para contribuir al trabajo en curso; y 5) comunicar
as problemas o preocupaciones en una forma que conduzca a la acción efectiva.

Me gusta escuchar. He aprendido mucho al escuchar a las personas, l a mayofía d e la gente nunca escucha."
Ernest Hemingway

Aprendizaje. Como miembros de un equipo de DAS se comienzan a desarrollar los
componen tes integrantes de un ciclo adaptativo, la importancia radica en el apren-
dizaje y en el progreso a través de un ciclo completo. De hecho, Highsmith [HIGGOO]
argumenta que los desarrolladores de sof tware a menudo sobreest iman su com-
prensión (de la tecnología, el proceso y el proyecto), y que el aprendizaje les podría
ayudar a mejorar su grado de entendimiento real. Los equipos del DAS aprenden de
tres maneras :

1. Grupos e n f o c a d o s . El cliente o los usuarios finales proporcionan retroali-
mentación sobre los incrementos de software que se entregan. Esto indica en
forma directa la satisfacción o la insatisfacción de las necesidades del negocio.

2. Rev i s iones t é c n i c a s formales . Los miembros del equipo del DAS revisan
los componen tes del sof tware desarrollado mientras mejoran su calidad y su
aprendizaje.

3 . Post mortem. El equipo de DAS se vuelve introspectivo al vigilar su propio
desempeño y proceso (con el proposito de aprender acerca de su enfoque y
después mejorarlo).

Es importante destacar que la filosofía del DAS e s meritoria sin importar el modelo
de proceso empleado. El acen to general en la dinámica de la organización propia en
los equipos, la colaboración interpersonal y el aprendizaje individual y por equipo
conducen grupos de proyectos de sof tware con una mayor posibilidad de éxito.

4.3.3 Método de desarrollo de sistemas dinámicos (MDSD)
El método de desarrollo de sistemas dinámicos [STA97] e s un enfoque de desarrollo de
software ágil que "proporciona un marco de t rabajo para construir y mantener siste-
mas con restricciones de t iempo muy estrechas mediante el empleo de la construc-
ción de prototipos incrementales en un ambiente de proyecto controlado" [CCS02].
Similar a a lgunos aspectos del proceso DRA descrito en el capítulo 3, el MDSD su-
giere una filosofía tomada de una modificación del principio de Pareto. En este ca-
so, 80 por ciento de la aplicación se puede entregar en 2096 del t iempo que tomaría
entregar 100 por ciento de la aplicación (sistema completo).

Al igual que la PE y el DSA, el MDSD sugiere un proceso iterativo de software. Sin
embargo, el enfoque del MDSD en cada iteración sigue la regla del 80 por ciento. Es-
to es, sólo se necesita el trabajo suficiente para cada incremento y para facilitar el

TM

PDF Editor

92 PARTE UNO EL PROCESO DEL SOFTWARE

En w w w . c s 3 ¡ n c .
c o m / D S D M . h t m

uno
MOSB.

movimiento hacia el nuevo incremento. Los detalles restantes se pueden completar
poster iormente cuando se conozcan m á s los requisitos de negocios o cuando los
cambios hayan sido solicitados o ajustados.

En la red mundial hay una organización (DSDM Consortium, www.dsdm.org) que
de manera colectiva a sume el papel de "conservador" del método. Esta organización
ha definido un modelo ágil de proceso, l lamado el ciclo de vida del MDSD. Este mé-
todo define tres ciclos iterativos diferentes, a los cuales preceden dos actividades del
ciclo de vida adicionales:

Estudio defectibilidad: establece los requisitos básicos de negocio y las restriccio-
nes asociadas con la aplicación del método y para evaluar si la aplicación es una
candidata viable para el proceso del MDSD.

Estudio de negocios: establece los requisitos funcionales y de información que per-
mitirán que la aplicación proporcione un valor al negocio; también define la arqui-
tectura básica de la aplicación.

Iteración de modelo funcional produce una serie de prototipos incrementales que
demuestran la funcionalidad para el cliente (nota: todos los prototipos del MDSD es-
tán d iseñados para evolucionar hacia la aplicación entregable). El propósito duran-
te este ciclo iterativo e s recopilar requisitos adicionales mediante la retroalimenta-
ción de lo que obtiene el usuario, mientras és te t rabaja con el prototipo.

Iteración de construcción y diseño: revisa la construcción de prototipos durante la
iteración del modelo funcional para asegurar que cada uno de ellos ha sido desarro-
llado de una manera que le permitirá proporcionar un valor operativo de negocios
para los usuarios finales. En a lgunos casos, la iteración del modelo funcional y el di-
seño y la iteración de construcción suceden en forma concurrente.

implemeniación: coloca el incremento de software m á s reciente (un prototipo
"operacionalizado") en el ambiente operativo. Se debe destacar que 1) el incremen-
to puede no estar 100 por ciento completo o 2) se pueden requerir cambios cuando
el incremento se coloca en el sitio. En cualquier caso, el t rabajo de desarrollo del
MDSD continúa al regresar a la actividad de iteración del modelo de función.

El MDSD se puede combinar con la PE para obtener un enfoque conjunto que de-
fine un modelo sólido de proceso (el ciclo de vida del MDSD) con los aspectos prác-
ticos (PE) necesarios para construir incrementos de software. Además, los concep-
tos del DAS de colaboración y equipos autoorganizados se pueden adaptar a un mo-
delo de proceso combinado.

4.3.4 Melé
Melé (término derivado de una jugada de rugby10) es un modelo ágil de proceso que
desarrollaron Jefff Sutherland y su equipo a principios de la década de 1990. En años

10 Un grupo de jugadores se alinea alrededor del balón y los compañeros de equipo trabajan juntos (al-
gunas veces de manera violenta) para desplazar el balón hacia el lado contrario del campo de juego

TM

PDF Editor

http://www.dsdm.org

CAPÍTULO 4 DESARROLLO ÁGIL 93

recientes, S c h w a b e r y Beedle [SCH01] han presentado el desarrollo posterior de los
métodos de melé. Los principios de la melé [ADM96] son consistentes con el mani-
fiesto ágil.

• Los equipos de t rabajo pequeños están organizados para "maximizar la co-
municación, minimizar los gastos generales y maximizar el hecho de compar-
tir conocimiento tácito e informal".

• El proceso debe adaptarse a los cambios técnicos y de negocios "para asegu-
rar que se produzca el mejor producto posible".

• El proceso produce incrementos frecuentes de sof tware "los cuales se pueden
inspeccionar, ajustar, probar, documentar y construir".

• El t rabajo de desarrollo y la gente que lo realiza están divididos en "particio-
nes o paquetes de ba jo acoplamiento".

• Conforme se construye el producto se realizan pruebas y documentación
constantes.

• Los procesos de melé proporcionan la "capacidad de declarar un producto co-
m o 'realizado' s iempre que es to se requiera (porque la competencia acaba de
hacer un lanzamiento, porque la compañía necesita el dinero, porque el usua-
rio/cliente necesita las funciones, porque ya se está en el momento en que se
prometió..." [ADM96].

Con los principios de la melé se guían las actividades dentro de un proceso que in-
corpora las siguientes actividades del marco de trabajo, requisitos, análisis, diseño,
evolución y entrega. En cada actividad del marco de t rabajo las tareas de t rabajo su-
ceden dentro del patrón de proceso (tratado en el párrafo siguiente) l lamado sprint.
El trabajo realizado dentro de un sprint (el número requerido de sprints variará de
acuerdo con el t amaño y la complejidad del producto) se adapta al problema y con
frecuencia lo modifica en tiempo real el equipo de melé. En la figura 4.3 se ilustra el
flujo general del proceso de melé.

I" ios m é t e n o s permiten construir un software más suave." • »- ")
Mifce Beetle et al.

La melé subraya el uso de un conjunto de "patrones de proceso de software"
(NOY02] que ha probado su efectividad en proyectos con tiempos de entrega muy re-
ducidos, requisitos cambiantes y condiciones críticas en los negocios. Cada uno de
es tos pat rones de proceso define un conjunto de actividades de desarrollo:

Retrasos: son una lista que considera la prioridad de los requisitos o característi-
cas de proyecto que proporcionan un valor comercial para el cliente. En cualquier
momento se pueden agregar e lementos a los retrasos (así se introducen los cam-
bios). El gerente de producto evalúa los retrasos y actualiza las prioridades de acuer-
do con lo requerido.

TM

PDF Editor

94 PARTE UNO EL PROCESO DEL SOFTWARE

Flujo de proceso de la melé.

Melé: reunión diaria de 15 minutos
Los miembros del equipo responden
a las preguntas básicas
1) ¿Qué hiciste desde la última reunión?
2) ¿Tienes algún obstáculo?
3) ¿Qué harás antes de la próxima reunión?

Retraso del producto:
Caracteristicas del producto deseadas por el cliente
que han recibido prioridad

La nueva funcionalidad
se demuestra

al final del sprint

Retraso de sprint:
Características
asignadas
al sprint

Elementos
de retraso

expandidos

CLAVE
La melé incorporo un
conjunto de potrones
de proceso que resalta
las prioridades del
proyecto, la división
del trabajo, las
unidades de trabajo, la
comunicación y la
retroalimentación
frecuente del diente.

Sprint: consisle en unidades de Lrabajo que se requieren para satisfacer un requi-
sito definido en los retrasos en un periodo predefinido (el lapso usual e s de 30 días).
En esta etapa, los e lementos de los retrasos a los que se dirigen las unidades de tra-
ba jo del sprint están congelados (es decir, durante el sprint no se introducen cam-
bios). Por lo tanto, el sprint permite a los miembros del equipo trabajar en un am-
biente enfocado al corto plazo, pero estable.

Reuniones de melé: son reuniones cortas (por lo general de 15 minutos) y las rea-
liza a diario el equipo de melé. Existen tres preguntas que plantean y responden to-
dos los miembros del equipo.

• ¿Qué hiciste desde la última reunión?

• ¿Cuáles obstáculos encontraste?

• ¿Qué esperas lograr para la siguiente reunión del equipo?

Un líder de equipo, l lamado "maestro de la melé", preside la reunión y evalúa las
respuestas de cada persona. Cada reunión de melé ayuda al equipo a descubrir pro-
blemas potenciales tan pronto como sea posible. Estas reuniones diarias también
conducen a la "socialización del conocimiento" [BEE99] y, por ende, a promover una
estructura de equipo con organización propia.

TM

PDF Editor

CAPITULO 4 DESARROLLO ÁGIL 9 5

Demostración: se entrega el incremento de sof tware al cliente de forma que éste
demuest re y evalúe la funcionalidad implementada. Es importante señalar que la de-
mostración quizá no contenga toda la funcionalidad planeada, sino aquellas funcio-
nes susceptibles de entregarse dentro del periodo establecido.

Beedle y sus colegas [BEE99] presentan un análisis completo de es tos pat rones y
establecen: "La MELÉ supone la existencia del caos...". El patrón de proceso de la
melé permite que un equipo de desarrollo de sof tware trabaje de manera exitosa en
un mundo donde la eliminación de la incertidumbre es imposible.

4.3.5 Cristal
Alistair Cockburn [COC02a] y Jim Highsmith [HIG02b| crearon la familia cristal de los
métodos ágiles11 con el fin de lograr un enfoque de desarrollo de sof tware que colo-
ca un premio en la "manejabilidad" durante lo que Cockburn caracteriza como "un
juego cooperativo de inventiva y comunicación con recursos limitados, con una me-
ta primaria consistente en la entrega de software útil y en funcionamiento y una meta
secundaria de prepararse para el juego siguiente" [CC)C02b].

Para a lcanzar la manejabilidad, Cockburn y Highsmith definieron un conjunto de
metodologías, cada una de ellas con elementos esenciales comunes a todas, y fun-
ciones, pa t rones de proceso, productos de t rabajo y prácticas únicas en cada una de
ellas. En realidad, la familia cristal es un conjunto de procesos ágiles, los cuales han
probado su efectividad en diferentes tipos de proyectos. El objetivo es permitir que
los equipos ágiles seleccionen el miembro de la familia cristal m á s apropiado para
su proyecto y ambiente.

4.3.6 Desarrollo conducido por características (DCC)
El desarrollo conducido por características (DCC) lo concibieron originalmente Peter
Coad y sus colegas [COA99] como un modelo de proceso práctico para la ingeniería
del sof tware orientada a objetos. Stephen Palmer y John Felsing [PAL02] han exten-
dido y mejorado el trabajo de Coad, al describir un proceso adaptativo y ágil que puede
aplicarse en proyectos de software de tamaño moderado y grande.

En el contexto del DCC una característica "es una función valuada por el cliente
que puede implementarse en dos semanas o menos" [COA99]. La importancia que
se le concede a la definición de características proporciona los siguientes beneficios.

• Como las características son bloques pequeños de funcionalidad entregable,
los usuarios las describen con mayor facilidad, pueden entender cómo éstas
se relacionan con otras con mayor rapidez, y pueden revisarlas de mejor ma-
nera en búsqueda de ambigüedades, errores u omisiones.

• Las características s e pueden organizar en un agrupamiento jerárquico rela-
cionado con el negocio.

11 El nombre "cristaI" se deriva de las características de los cristales geológicos, cada uno con su pro-
pio color, forma y dureza.

TM

PDF Editor

96 PMCTEISNO O-TOOCÍSOCELSOFWIMÍE.

• Como una característica e s el incremento de sof tware entregable, el equipo
desarrolla características operativas cada dos semanas .

• Debido a que las características son pequeñas , sus diseños y representaciones
de código son más fáciles de inspeccionar de manera efectiva.

• La planeación del proyecto, la elaboración de su programa y su rastreo los
guía la jerarquía de la característica, en lugar de hacerlo un conjunto de ta-
reas de ingeniería del software adaptado en forma arbitraria.

Coad y sus colegas [COA99] sugieren la siguiente plantilla para definir una caracte-
rística:

<acción> el <resultado> <porlparaldela> un <objeto>

donde un <objeto> es "una persona, sitio o cosa (incluyendo papeles, momentos en
el t iempo o intervalos de tiempo, o descripciones del tipo de catálogo de entrada)".
Los ejemplos de las características para una aplicación de comercio electrónico po-
drían ser:

Agregar el producto a un carrito de supermercado.
Desplegar las especificaciones técnicas de un producto.
Almacenar la información de navegación para un cliente.

Un conjunto de características agrupa características relacionadas en categorías re-
lacionadas con el negocio y se define como [COA99]:

<acción><-ar, -er, -ir> un <objeto>

Por ejemplo: hacer ¡a venta del producto e s un conjunto de características que podría
abarcar las características relacionadas con anterioridad y otras.

El enfoque del DCC define cinco actividades de "colaboración" dentro del marco
de t rabajo (en el DCC éstas se llaman "procesos") como se muestra en la figura 4.4.

Desarrollo
conducido por
características
[COA99]
(usado con
autorización).

(más forma que
contenido)

Una lista de
características
agrupadas
en conjuntos
y áreas
de contenido

Un plan de desarrollo
Propietarios de clase
Propietarios
del conjunto
de características

Un paquete
de diseño
(secuencias)

Función
cliente-valor
completada

TM

PDF Editor

CAPÍTULO 4 DESARROLLO ÁGIL 97

El DCC concede una mayor importancia a las directrices y técnicas de la gestión
del proyecto que muchos otros métodos ágiles. Cuando los proyectos crecen en ta-
maño y complejidad, con frecuencia la gestión ad hoc del proyecto es inadecuada.
Resulta esencial para los desarrolladores, sus gerentes y el cliente entender el esta-
tus del proyecto: cuáles logros se han tenido y cuáles programas se han encontrado.
Si la presión de la fecha límite es significativa, resulta crítico determinar si los incre-
mentos de software (características) están programados de manera apropiada. Para
lograrlo el DCC define seis puntos de fijación durante el diseño y la implementación
de una característica: "ensayo del diseño, diseño, inspección del diseño, código, ins-
pección del código, promoción de la construcción" [COA99].

4.3.7 Modelado ágü (MA)
En muchas situaciones los ingenieros de software deben construir sistemas grandes y
críticos para los negocios. El ámbito y la complejidad de dichos sistemas se deben mo-
delar de forma que 1) todas las circunscripciones entiendan mejor lo que se debe lo-
grar; 2) el problema se divida de manera efectiva entre la gente que lo debe resolver;
y 3) la calidad se evalúe en cada paso conforme el sistema se desarrolla y construye.

En los últimos 30 años se ha propuesto una amplia variedad de métodos y nota-
ción para el modelado de ingeniería del software en el análisis y diseño (tanto arqui-
tectónico como al nivel de componentes). Estos métodos tienen un mérito significa-
tivo, pero se ha comprobado que su aplicación enfrenta dificultades y es desafiante
poderlos sostener (sobre muchos proyectos). Parte del problema es el "peso" de es-
tos métodos de modelado. Con esto se hace referencia al volumen de notación re-
querida, el grado de formalismo sugerido, el tamaño de los modelos para proyectos
grandes, y la dificultad para el mantenimiento del modelo conforme ocurren los
cambios. Aun así, el modelado del análisis y el diseño tiene un beneficio sustancial
para los proyectos grandes: por ninguna otra razón que hacer que estos proyectos
sean manejables en el sentido intelectual. ¿Existe un enfoque ágil para el modelado
de la ingeniería del software que pudiera proporcionar una alternativa?

En el "Sitio oficial del modelado ágil", Scott Ambler [AMB02] describe el modela-
do ágil (MA) de la siguiente manera:

El modelado ágil (MA) es una tecnología basada en la práctica para el modelado efectivo
de los s is temas basados en software. Dicho de una forma más simple, el modelado ágil es
una colección de valores, principios y prácticas para el modelado de software que puede
aplicarse en un proyecto de desarrollo de software de una manera efectiva y ligera. Los
modelos ágiles son más efectivos que los tradicionales porque son sólo lo suficientemen-
te buenos, no tienen que ser perfectos [AMB02]:

Además de los valores consistentes con el manifiesto ágil, Ambler sugiere valor y hu-
mildad. Un equipo ágil debe tener el valor para tomar decisiones que ocasionarán el
rechazo y la refabricación de un diseño. Debe tener la humildad de reconocer que
quienes manejan la tecnología no tienen todas las respuestas, y que los expertos en
negocios y otros participantes de la empresa son dignos de respeto y consideración.

TM

PDF Editor

98 PARTE UNO EL PROCESO DEL SOFTWARE

^CONSUO^^.

"Viajar ligero"es un
enfoque apiopiado
paro lodo el trabajo
de ingeniería del
software. Construir
sólo aquellos modelos
que proporcionan
valor ¿eni más, ni
menos

A pesar de que el MA sugiere un arreglo amplio de principios de modelado
"esenciales" y "suplementarios", los responsables de que el MA sea único son los si-
guientes [AMB02J:

Modelar con un propósito. Un desarrollador que use el MA debe tener una meta
específica en mente (por ejemplo, comunicar información al cliente o ayudarle a en-
tender mejor algún aspecto del software) an tes de crear el modelo. Una vez identifi-
cada la meta para el modelo, el tipo de notación que se usará y el grado de detalle
requerido serán m á s obvios.

Usar múltiples modelos. Existen muchos modelos y notaciones diferentes con los
cuales describir el software. Sólo un pequeño subconjunto e s esencial para la ma-
yoría de los proyectos. El MA sugiere que para proporcionar la visión necesaria ca-
da modelo debe presentar un aspecto diferente del sistema, y sólo aquellos mode-
los que proporcionen un valor para la audiencia a la que están dirigidos deben
usarse.

Viajar ligero. La realización de trabajo de la ingeniería del software requiere con-
servar sólo los modelos que proporcionarán valor a largo plazo y descartar el res-
to. Cada producto de trabajo que se conserve debe recibir mantenimiento confor-
me se presentan cambios. Esto representa un trabajo que reduce la velocidad del
equipo. Ambler [AMB02] observa que "cada vez que se decide conservar un mode-
lo se intercambia la agilidad por la conveniencia de tener la información disponible
para el equipo de una forma abstracta (por ende, existe una posibilidad de mejorar
la comunicación dentro del equipo, así como con los propietarios del proyecto)".

El contenido es más importante que la representación. El modelado debe comuni-
car información a la audiencia a la que está dirigido. Un modelo sintácticamente
perfecto que comunique sólo un poco del contenido útil no tiene tanto valor como
un modelo con una notación defectuosa que, sin embargo, comunique un conteni-
do valioso para su audiencia.

Conocer los modelos y las herramientas con que se crean. Es necesario entender
las fortalezas y debilidades de cada modelo y las herramientas con los que se creó.

Adaptar en forma local. El enfoque del modelado se debe adaptar a las necesida-
des del equipo ágil.

Desarrollo ágil
Objetivo: El objetivo de las herramientas del
desarrollo ágil es ayudar en uno o más

aspectos del desarrollo ágil con énfasis en la facilitación

V de la generación rápida de software operativo. Estas

HERRAMIENTAS DE SOFTWARE

herramientas también se pueden utilizar cuando se aplican
los modelos prescriptivos de proceso (capítulo 3).

Mecánica: La mecánica de las herramientas varía. En general,
los conjuntos de herramientas técnicas incluyen apoyo
automatizado para la planeación del proyecto, el desarrollo

/

TM

PDF Editor

CAPÍTULO 4 DESARROLLO ÁGIL 99

s 3e viso y \a recopilación de requisitos, e\ diseño
, a generación de código y la realización de pruebas,

os representativas: '2

a c l o m o el desarrollo ágil es un tópico actual, la
•*rporia de los vendedores de herramientas d e
ÍCI—-ore pretenden vender herramientas que apoyen el
s-TDGue ágil. Las herramientas que se presentan a
x r r r i u a r i ó n tienen características que las hacen útiles
se - a ñ e r a particular pa ra los proyectos ágiles.

- eme, desarrollado por Microtool
i microtool.com), proporciona soporte para la

gestión d e un proceso óg'A en v a n a s actividades
técnicas dentro del proceso.

Ideogramic UML, desarrollado por Ideogramic
(www.ideogramic.com) es un conjunto de herramientas
pa ra el UML creado en forma específica para usarlo
dentro d e un proceso ágil.

Together Tool Set, distribuido por Borland
(www.borland.com o www.togethersoft.com),
proporciona un paquete de herramientas que apoya
muchas actividades técnicas dentro de la PE y otros
procesos ágiles.

Una filosofía ágil para la ingeniería del software se relaciona con cuatro aspectos
clave: la importancia de la organización propia de los equipos, los cuales controlan
el trabajo que realizan; comunicación y colaboración entre los miembros del equipo
y entre los profesionales y sus clientes; un reconocimiento de que el cambio repre-
senta una oportunidad; y un especial cuidado en la entrega rápida del software que
satisfaga al cliente. Los modelos de proceso ágil se diseñaron para cumplir con ca-
da uno de estos aspectos.

La programación extrema (PE) es el proceso ágil que más se utiliza. Organizada
como cuatro actividades del marco de trabajo —planeación, diseño, codificación y
pruebas—, la PE sugiere algunas técnicas innovadoras y poderosas que permiten a
un equipo ágil crear frecuentes lanzamientos de software al entregar características
y funcionalidad que describe y después prioriza el cliente.

El desarrollo de software adaptativo (DSA) destaca la colaboración humana y la
organización propia del equipo. Organizado con tres actividades del marco de tra-
bajo —especulación, colaboración y aprendizaje—, el DSA utiliza un proceso iterati-
vo que incorpora la planeación del ciclo adaptativo, métodos de recopilación de re-
quisitos relativamente rigurosos y un ciclo iterativo de desarrollo que incorpora gru-
pos enfocados en el cliente y revisiones técnicas formales como mecanismos de re-
troalimentación en tiempo real. El método de desarrollo de sistemas dinámicos
(MDSD) define tres diferentes ciclos iterativos —iteración funcional del modelo, itera-
ción de diseño y construcción e implementación— precedidos por dos actividades del
ciclo de vida adicionales: estudio de factibilidad y estudio de negocios. El MDSD abo-

12 Las he r r amien t a s m e n c i o n a d a s aquí son só lo una mues t ra de esta categoría. En casi todos los
casos los nombres son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.ideogramic.com
http://www.borland.com
http://www.togethersoft.com

100 PARTE UNO EL PROCESO DEL SOFTWARE

ga por el uso de programas y sugiere que sólo se requiere el trabajo suficiente para ca-
da incremento de software y así facilitar el movimiento hacia el incremento próximo.

La melé subraya el uso de un conjunto de patrones de proceso de software que
han probado su efectividad en proyectos con límites de t iempo muy ajustados, requi-
sitos cambiantes y que son críticos para el negocio. Cada patrón de proceso define
un conjunto de tareas de desarrollo y permite al equipo de melé construir un proce-
so que se adapte a las necesidades del proyecto.

Cristal es una familia de modelos ágiles de proceso que pueden adaptarse a las
características específicas de un proyecto. Como otros enfoques ágiles, cristal adop-
ta una estrategia iterativa, pero se ajusta al rigor del proceso para incluir proyectos
de t amaños y complejidades diferentes.

El desarrollo conducido por características (DCC) e s algo más "formal" que otros
métodos ágiles, pero aun así mantiene la agilidad al enfocar al equipo de proyecto
en el desarrollo de características, funciones que evalúa el cliente y que se pueden
implementar en dos s emanas o menos. El DCC concede una mayor importancia al
proyecto y a su gestión que otros enfoques ágiles. El modelado ágil (MA) sugiere que
el modelado es esencial para todos los sistemas, pero que la complejidad, tipo y ta-
m a ñ o del modelo debe ajustarse al software que será construido. Mediante la pro-
posición de una serie de principios de modelado esenciales y complementarios, el
MA proporciona una guía útil para los profesionales durante las tareas de análisis y
diseño.

[ADM961 Advanced D e v e l o p m e n t Methods , Inc., "Origins of Serum", 1996, h t t p : / / w w w . c o n t r o I -
c h a o s . c o m / .

(AG103] The Agile All iance H o m e Page, h t t p : / / w w w . a g i l e a l l i a n c e . o r g / h o m e .
[AMB02] Amble r , S„ "Wha t is Agile Mode l ing (AM)?", 2002 , h t t p : / / w w w . a g i l e m o d e l i n g . c o m /

index .h tm.
[BEC991 Beck, K., Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.
IBECOla] Beck, K. etal., "Manifestó for Agile Software Development", h t tp: / /www.agi lemanifesto .org/ .
(BECOlb] Beck, K. y M. Fowler , Planning Extreme Programming, Addison-Wesley, 2001.
[BEE991 Beedle, M. et al., "SCRUM: An ex t ens ión p a t t e r n l a n g u a g e for hype rp roduc t ive s o f t w a r e

d e v e l o p m e n t " , i nc lu ido en . Pattern Languages ofProgram Design 4, A d d i s o n Wesley, Long-
m a n , Read ing , MA, 1999. O b t e n i d o d e h t t p : / / j e f f s u t h e r l a n d . c o m / s c r u m / s c r u m - p l o p . p d f .

[BUSOO] B u s c h m a n n , E etal., Pattern-OrientedSoftwareArchitecture, 2 v o l ú m e n e s , Wiley, 1996,
2000.

[COA991 Coad , P , E. L e f e b v r e y J . DeLuca , lava Modeling in Color with UML, Prent ice-Hal l , 1999.
[COCO 1] C o c k b u r n , A. y j . H ighsmi th , "Agile S o f t w a r e D e v e l o p m e n t : T h e P e o p l e Factor" , IEEE

Computer, vol 34, n ú m . 11, n o v i e m b r e d e 2001, pp. 131-133.
[COC02a] Cockburn , A., Agile Sojbware Development, Addison-Wesley, 2002.
[COC02bl C o c k b u r n , A., "What is Agile a n d Wha t D o e s It Imply?", p r e s e n t a d o e n el Agile Deve-

l o p m e n t S u m m i t e n W e s t m i n s t e r Col lege e n Sa l t Lake City, m a r z o d e 2002, h t t p : / / c r y s t a l -
m e t h o d o l o g i e s . o r g / .

[CCS02] CS3 Consu l t ing Services, 2002, h t t p : / w w w . c s 3 i n c . c o m / D S D M . h t m .
[DEM981 DeMarco, T. y T. Lister, Peopleware, 2a . ed. , Dorset House , 1998.
[DEM02] DeMarco , T. y B. Boehm, "The Agile Me thods Fray", e n IEEE Computer, vol. 35, n ú m . 6,

jun io d e 2002, pp. 90-92.

TM

PDF Editor

http://www.agilealliance.org/home
http://www.agilemodeling.com/
http://www.agilemanifesto.org/
http://jeffsutherland.com/scrum/scrum-plop.pdf
http://www.cs3inc.com/DSDM.htm

CAPÍTULO 4 DESARROLLO ÁGIL 101

[FOWOO] Fowler, M. etal., Refactoring: Improving theDesign o/Existing Code, Addison-Wesley,
2000.

[FOWOl] Fowler M. y j . Highsmith, "The Agile Manifestó", Software Development Magazine, agosto
de 2001, h t t p : / / w w w . s d m a g a z i n e . c o m / d o c u m e n t s / s = 8 4 4 / s d m 0 1 0 8 a . h t m .

[FOW02] Fowler, M., "The New Methodology", junio de 2002, h t t p : / / w w w . m a r t i n f o w l e r . c o m /
art icles/newMethodology.html#N8B.

[H1G98] Highsmith, J., "Life—The Artificial a n d the Real", Software Developmcnt, 1998, en
h t tp : / /www.adap t ivesd .com/ar t i c l es /o rder .h tml .

[H1G00] H ighsmi th ,) . , Adaptive Software Development: An Evolutionaiy Approach lo Managing
Complex Systems, Dorset House Publishing, 1998.

[HIG01] Highsmith,) . (ed.), "The Great Methodologies Debate: Part 1", Cutter IT Journal, vol. 14.
núm. 12, diciembre de 2001.

[HIG02a] Highsmith, J. (ed.), "The Great Methodologies Debate: Part 2", Cutter IT Journal, vol. 15.
núm. I, e n e r o de 2002.

[HIG02b] Highsmith,)., Agile Software Development Ecosystems, Addison-Wesley, 2002.
[JAC02J Jacobson, I, "A Resounding 'Yes' to Agile Processes—But Also More", Cutter IT Journal,

vol. 15, núm. 1, enero de 2002, pp. 18-24.
[JEFOI] Jeffries, R, etal., ExtremeProgramming Installed, Addison-Wesley, 2001.
[NOY02] Noyes, B., "Rugby, Anyone?", Managing Development (una publ icación en linea de

Fawcet te Technical Publications), junio de 2002, h t t p : / / w w w . f a w c e t l e . c o m / r e s o u r c e s / m a -
n a g i n g d e v / m e t h o d o l o g i e s / s c r u m / .

[PAL02] Palmer, S. y j . Felsing, A PracticaI Guide to Feature Driven Development, Prentice-Hall ,
2002.

[SCH01] Schwaber , K. y M Beedle, Agile Software Development withSCRUM, Prentice-Hall, 2001.
[SCH02] Schwabe r , K, "Agile P rocesses and Self Organiza t ion" , Agile Alliance, 2002,

h t tp : / /www.aanpo .o rg /a r t i c l e s / index .
[STA971 S t a p l e t o n , D S D M — D y n a m i c System Development Method: The Method in Practice, Ad-

dison Wesley, 1997.
[WEL99I Wells, D., "XP—Unit Tests", 1999, h t t p : / / w w w . e x t r e m e p r o g r a m m i n g . o r g / r u l e s /

unittests.html.

4.1. Léase de nuevo el "Manif iesto para el desarrol lo ágil de so f tware" al principio de es te ca-
pí tulo. ¿El lector p u e d e p e n s a r en u n a s i tuación en la q u e u n o o m á s de los cua t ro "valores"
pueda meter a un equipo de sof tware en problemas?

4.2. Describase agilidad (para proyectos de sof tware) con pa labras propias.

4.3. ¿Por qué un p roceso iterativo facilita m á s m a n e j a r el cambio? ¿Todos los p r o c e s o s ági les
t ra tados en este capí tulo son iterativos? ¿Es posible concluir un proyecto en sólo una iteración
y aún así seguir s iendo ágil? Expliqúense las respuestas .

4.4. ¿Podría cada uno de los procesos ágiles describirse recurriendo a las actividades genéricas del
marco de trabajo mencionadas en el capítulo 2? Construyase una tabla que coloque las actividades
genéricas dentro de las actividades definidas para cada proceso ágil.

4.5. Trá tese de idear un "principio de agilidad" adicional que pudiera ayudar a una equ ipo de
ingeniería del sof tware a volverse aún m á s manejable .

4.6. Se lecc iónese un principio de agilidad de los e n u n c i a d o s de la sección 4.1 y t rá tese de de-
terminar si cada u n o de los mode los de p roceso p re sen tados en este capítulo mues t ran el prin-
cipio.

4.7. ¿Por q u é cambian tanto los requisitos? Después de todo, ¿la gente n o s abe lo q u e quiere?

4.8. Cons idé rense los s ie te r a sgos e n u n c i a d o s e n la secc ión 4.2.2. O r d é n e n s e los r a s g o s con
base en su percepc ión d e s d e lo q u e es m á s impor t an te has ta lo que t iene m e n o r importancia .

4.9. La mayor ía de los p r o c e s o s ági les r e comiendan la comun icac ión cara a cara . Aun en la
actual idad, los miembros de un equipo de sof tware y sus cl ientes pueden es tar geográf icamen-

TM

PDF Editor

http://www.sdmagazine.com/documents/s=844/sdm0108a.htm
http://www.martinfowler.com/
http://www.adaptivesd.com/articles/order.html
http://www.fawcetle.com/resources/ma-
http://www.aanpo.org/articles/index
http://www.extremeprogramming.org/rules/

102 PARTE UNO EL PROCESO DEL SOFTWARE

te separados entre sí. ¿Esto implica la necesidad de evitar la separación geográfica? ¿Es posible
pensar en formas de contrarrestar este problema?

4 .10 . Escríbase una historia del usuario para PE que describa los "sitios favoritos" o la caracterís-
tica de "favoritos" disponible en la mayoría de los exploradores Web.

4 . 1 1 . ¿Qué es una solución pico en PE?

4 . 1 2 . Descr íbanse los concep tos de PE refabricación y programación en pareja con palabras
propias.

4 . 1 3 . Utilícese la plantilla del patrón de proceso presentada en el capitulo 2 y desarróllese un
pat rón de proceso para cualquiera de los pa t rones de melé p r e sen t ados en la sección 4.3.4.
4 . 1 4 . ¿Por qué se dice que cristal es una familia de métodos ágiles?

4 . 1 5 . Utilícese la plantilla de característica para el DCC descri to en la sección 4.3.6 y defínase
un conjunto de características de un explorador Web. Ahora desarróllese un conjunto de carac-
terísticas para el conjunto mencionado antes.

4 . 1 6 . Visítese el sitio oficial del modelado ágil y hágase una lista completa de todos los princi-
pios de MA esenciales y complementarios.

O T R A S L E C T U R A S Y F U E N T E S DE I N F O R M A C I Ó N

La filosofía total y los principios subyacentes del desarrollo ágil de software se consideran a
profundidad en los libros de Ambler (Agile Modeling, Wiley, 2002), Beck [BEC99], Cockburn
[COC02] y Highsmith [HlG02bl.

Los libros de Beck 1BEC99], Jef'fries y sus colegas (Extreme Programming Installed, Addison-
Wesley, 2000), Succi y Marchesi (Extreme Programming Examined, Addison Wesley, 2001), New-
kirk y Martin (Extreme Programming in Practice, Addison Wesley, 2001) y Aver y sus colegas
(.Extreme Programming Applied: Play lo Win, Addison-Wesley, 2001) ofrecen una exposición de
los pros y contras de la PE junto con una guía de la mejor forma de aplicarla. McBreen (Ques-
tioning Extreme Programming, Addison Wesley, 2003) a sume una posición crítica con respecto a
la PE, al definir cuándo y dónde ésta es apropiada. Por otro lado, McBreen (Pair Programming
Iluminated, Addison-Wesley, 2003) presenta una consideración profunda de la programación en
pareja.

Fowler y sus colegas (Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999) se enfoca en un nivel muy detallado en el importante concepto de la refabricación dentro
de la PE. McBreen (Software Craftsmanship: The New Imperative, Addison-Wesley, 2001) analiza
el arle del software y aboga a favor de las alternativas ágiles y la ingeniería de software tradi-
cional.

El DSA lo aborda a profundidad Highsmith [HIG001. Stapetlon realizó un t ratamiento valioso
del MDSD (DSDM: The Method in Practice, Addison-Wesley, 1997). Palmer y Felsing [PAL02]
presentan un tratamiento detallado del DCC. Carmichael y Haywood (Better Software Faster.
Prentice-Hall, 2002) presentan otro útil t ratamiento del DCC que incluye un recuento paso a pa-
so por la mecánica del proceso. Schwaber y sus colegas (Agile Software Development with
SCRUM, Prentice-Hall, 2001) presentan un detallado tratamiento de la melé.

Martin (Agile Software Development, Prentice-Hall, 2003) analiza los principios, patrones y
prácticas ágiles poniendo especial cuidado en la PE. Poppendieck y Poppendieck (Lean Deve-
lopment; An Agile Toolkit for Software Development Managers, Addison-Wesley, 2003) proporcio-
na las directrices para manejar y controlar los proyectos ágiles. Highsmith (Agile Software
Development Ecosyslems, Addison-Wesley, 2002) presenta una valiosa visión de principios, pro-
cesos y prácticas ágiles. .

En Internet se dispone de una amplia variedad de fuentes de información sobre el desarro-
llo ágil de software. En el sitio web de SEPA se puede encontrar una lista actualizada de refe-
rencias en la red mundial, las cuales son relevantes para el proceso ágil:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

P A R T E

Dos
PRÁCTICA DE LA INGENIERÍA

DEL SOFTWARE

En esta parte de Ingeniería del software: un enfoque práctico se apren-
derá acerca de los principios, conceptos y métodos que comprende la
práctica de la ingeniería del software. En los capítulos siguientes se

abordarán las siguientes preguntas:

• ¿Qué conceptos y principios guían la práctica de la ingeniería del soft-

ware? • ; | w f c ^ P ¡

• ¿De qué manera la ingeniería de sistemas conduce a una ingeniería del
software efectiva?

• ¿Qué e s la ingeniería de requisitos, y cuáles son los conceptos rela-

cionados que conducen a un buen análisis de requisitos?

• ¿Cómo se crea el modelo de análisis y cuáles son sus elementos?

• ¿Qué es ingeniería de diseño y cuáles son los conceptos relacionados

que conducen a un buen diseño?

• ¿Qué conceptos, modelos y métodos se utilizan para crear diseños ar-

quitectónicos, de interfaz y al nivel de componentes?

• ¿Qué estrategias son aplicables a la realización de pruebas de software?

• ¿Qué métodos se utilizan para diseñar casos de prueba efectivos?

• ¿Qué mediciones y métricas se usan para establecer la calidad del análi-

sis y los modelos de diseño, código fuente y casos de prueba?

Una vez que estas preguntas hayan sido respondidas, habrá una mejor
preparación para la práctica de la ingeniería del software.

103

TM

PDF Editor

C A P Í T U L O

5 LA P R Á C T I C A :
U N A V I S I Ó N GENÉRICA

C O N C E P T O S

C L A V E

principios de :

el aná l i s i s . . . 1 1 7

el d e s p l i e g u e 1 2 6

el d i s eña . . . 1 1 9

el m o d e l a d a
ágH 121

la codificación 1 2 3

la comunica-
ción 1 0 9

la ingenier ía
del s o f t w a r e 1 0 7

la p l aneac ión 1 1 3

las pruebas .124

p r e g u n t a s
W S H H 1 1 5

resoluc ión d e
p r o b l e m a s 1 0 6

E n un libro que explora las vidas y los pensamientos de los ingenieros de
software, Ellen Ullman [ULL97] representa un f ragmento de vida al relatar
los pensamientos de un practicante ba jo presión:

No t e n g o idea d e q u é ho ra es . No hay v e n t a n a s en es ta oficina, ¡ tampoco reloj, só lo el

LHD p a r p a d e a n t e e n rojo d e u n h o r n o de m i c r o o n d a s , el cual p a r p a d e a 12:00, 12:00,

12:00, 12:00. Joel y y o h e m o s e s t a d o p r o g r a m a n d o por días. T e n e m o s u n "bicho", el

n e c i o d e m o n i o d e u n error. Por e s o la pu l sac ión ro ja s in t i empo s e s iente bien, c o m o

u n a lectura d e n u e s t r o s ce rebros , los c u a l e s s e h a n s i n c r o n i z a d o d e a lguna m a n e r a

a la m i s m a velocidad del p a r p a d e o . . .

¿En q u é e s t a m o s t r aba j ando? . . . Los deta l les s e m e e s c a p a n a h o r a . P o d r í a m o s es ta r

a y u d a n d o a g e n t e p o b r e y e n f e r m a o a j u s f a n d o u n a serie d e ru t inas d e b a j o nivel pa ra

verif icar bi ts en u n p ro toco lo de una b a s e d e d a t o s distr ibuida, n o m e impor ta . Me de -

bería importar ; e n o t ra par te d e mí s e r m á s ta rde , q u i z á c u a n d o s a l g a m o s d e e s t e -

cua r to l leno de c o m p u t a d o r a s — m e impor ta rá m u c h o por qué , p a r a qu ién y con q u é

p ropós i t o e s t o y esc r ib iendo s o f t w a r e . Pe ro a h o r a no . He p a s a d o a t r avés d e u n a

m e m b r a n a d o n d e el m u n d o real y s u s u s o s y a n o impor t an . Soy u n ingen ie ro de sof t -

ware . . .

Sin duda, una imagen oscura de la práctica de la ingeniería del software, pero
con la que, después de reflexionar, muchos de los lectores de es te libro serán
capaces de identificarse.

¿ Q u é e s ? La práctica es un amplio
arreglo de conceptos, principios,
métodos y herramientas que deben

p considerarse cuando se planea y
desarrolla el software. Representa los

detalles -las consideraciones técnicas y los
cómos- que están bajo la superficie del proceso
de software: las cosas que se necesitarán para
realmente construir software de computadora de
alfa calidad.

¿ Q u i é n lo h a c e ? La práctica de la ingeniería del
software la aplican los ingenieros de software y
sus gerentes.

¿ P o r q u é e s i m p o r t a n t e ? El proceso del soft-
ware proporciona a todos los involucrados en la
creación de un sistema o producto basado en

computadora un mapa del camino para llegar
de manera exitosa a su destino. La práctica pro-
porciona los detalles que se necesitan para tran-
sitar a lo largo del camino. Indica dónde están
ubicados los puentes, los bloqueos del camino y
los obstáculos. Ayuda a entender los conceptos
y principios que se deben comprender y seguir
para conducir de manera segura y rápida.
Enseña cómo conducir, dónde reducir y dónde
aumentar la velocidad. En el contexto de la inge-
niería del software, la práctica es lo que se rea-
liza a diario mientras el software evoluciona
desde una idea hasta una realidad,

¿ C u á l e s s o n los p a s o s ? Existen tres elementos
de la práctica que se aplican sin importar el
modelo de proceso que se escoja. Éstos son los

104

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 105

^CDKCptos, los principios y los métodos. Un cuar-
to elemento de la práctica -las herramientas-
apoya la aplicación de los métodos.

e s el p r o d u c t o o b t e n i d o ? La práctica
- : .ye ias actividades técnicas que producen
- o ; = os productos de trabajo definidos por el

cito de proceso del software que se ha elegi-

puedo estar seguro de que lo he
k e c h o c o r r e c t a m e n t e ? Primero se

comprender con firmeza los conceptos y princi-
pios aplicables al trabajo que se realiza en el
momento (por ejemplo, el diseño). Después es
preciso asegurarse que se ha seleccionado un
método apropiado para el trabajo; se debe
tener la certeza que se ha entendido la forma de
aplicar el método y el uso de las herramientas
automatizadas cuando éstas son apropiadas
para la tarea, y se debe ser firme en la necesi-
dad de usar técnicas para asegurar la calidad
de los productos de trabajo que se produzcan.

Las personas que crean sof tware de computadora practican el arte, la maestr ía o
la disciplina1 l lamada ingeniería del software. Pero, ¿qué es la "práctica" de la inge-
niería del software? En un sent ido genérico, la práctica e s una colección de concep-
tos, principios, métodos y herramientas a las que un ingeniero de sof tware recurre a
diario. La práctica permite a los gerentes coordinar proyectos de sof tware e ingenie-
ros de la especialidad para construir programas de computadora . La práctica multi-
plica un modelo de proceso de sof tware con los cómos técnicos y de gestión nece-
sarios para realizar el trabajo. La práctica t ransforma un enfoque fortuito en algo
más organizado, m á s efectivo y con más probabilidades de alcanzar el éxito.

5 . 1 L A P R Á C T I C A P E LA I N G E N I E R Í A P E L S O F T W A R E

En el capítulo 2 se introdujo un modelo de proceso de sof tware genérico compues-
to de una serie de actividades que establecen un marco de t rabajo para la práctica
de la ingeniería del software. Las actividades genéricas del marco de trabajo —comu
nicación, planeación, modelado, construcción y despl iegue—y las actividades som-
brilla establecen la arquitectura de una esqueleto para el t rabajo de ingeniería del
software. Todos los modelos de proceso de sof tware presentados en los capítulos 3
y 4 pueden organizarse en este esqueleto arquitectónico. ¿Pero qué cabida tiene ahí
la práctica de la ingeniería del software? En las secciones siguientes se considerarán
los conceptos y principios genéricos que se aplican a las actividades del marco de
trabajo.2

1 Algunos escritores utilizan uno de estos términos y excluyen los otros. En realidad, la ingeniería del
software es las tres cosas a la vez.

2 Se exhorta al lector para que revise las secciones relevantes dentro de este capítulo, conforme se
discutan los métodos específicos de la ingeniería del software y las actividades sombrilla en los ca-
pítulos posteriores del libro

TM

PDF Editor

106 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ O N S E J O ^

Se podría orgumentar
que el enfoque de
Polya consiste en
simple sentido común.
Es verdad. Peio es
sorprendente la
frecuencia con ta que
el sentido común no
es común en el
mundo del software.

5.1.1 La esencia de la práctica

En un libro clásico, How to Solve It, escrito antes de que existieran las computadoras
modernas, George Polya [POL45] puntualizó la esencia de la resolución de proble-
mas y, en consecuencia, la esencia de la práctica de la ingeniería del software:

1. Entender el problema (comunicación y análisis).

2 . Planear una solución (modelado y diseño de software).

3. Llevar a cabo el plan (generación de código).

4. Examinar el resultado para probar la precisión (realización de pruebas y asegu-
ramiento de la calidad).

En el contexto de la ingeniería del software estos pasos de sentido común conducen
a una serie de preguntas esenciales [adaptadas de POL45):

E n t e n d e r e l p r o b l e m a .

• ¿A quién le interesa la solución del problema? Es decir, ¿quiénes son los clientes?

• ¿Cuáles aspectos se desconocen? ¿Qué datos, funciones, características y
comportamientos se requieren para resolver de manera apropiada el
problema?

• ¿El problema puede dividirse en categorías? ¿Es posible representar problemas
menores que puedan entenderse con mayor facilidad?

• ¿El problema puede representarse de manera gráfica? ¿Se puede crear un
modelo de análisis?

P l a n e a r la so luc ión .

• ¿Se habían visto problemas similares antes? ¿Existen patrones reconocibles en
una solución potencial? ¿Hay un software existente que implemente los datos,
las funciones, las características y los comportamientos que se requieren?

• ¿Se ha resuelto un problema similar? Si es así, ¿los elementos de la solución
pueden reutilizarse?

• ¿Sepueden definirlos subproblemas? Si es así, ¿las soluciones para los subpro-
blemas parecen fáciles?

• ¿Se puede representar una solución de modo que conduzca a una implementa-
ción efectiva? ¿Se puede crear un modelo de diseño?

Llevar a c a b o e l plan.

• ¿La solución marcha conforme al plan? ¿El código fuente se puede seguir
conforme al modelo de diseño?

• ¿Es probable que cada parte de la solución del componente sea correcta? ¿Se ha
revisado el diseño y el código, o mejor aún, se han aplicado al algoritmo
pruebas de corrección?

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: U N A VISIÓN GENÉRICA 107

E x a m i n a r el r e s u l t a d o .

• ¿Es posible probar cada parte de la solución del componente? ¿Se ha implemen-
tado una estrategia de prueba razonable?

• ¿La solución produce resultados acordes con los datos, funciones, rasgos y
comportamientos que se requieren? ¿El sof tware ha sido validado contra todos
los requisitos de los clientes?

"En la solución de codn problema existe un grano de descubrimiento."
George Polya

i m amenzat un
i é software,

i esa seguro
tun

¡de negocios
Í os usuarios

i «abren é/.

5.1.2 Principios esenciales

El diccionario define la palabra principio como "una ley o supuesto importante que
se requiere en un sistema de pensamiento". A través de es te libro se examinan prin-
cipios en muchos grados diferentes de abstracción. Algunos se enfocan en la inge-
niería del software como un todo, otros consideran una actividad genérica y especí-
fica del marco de trabajo (por ejemplo, comunicación con el cliente), y otros se cen-
tran en acciones de la ingeniería del sof tware (como diseño arquitectónico) o tareas
técnicas (escribir un escenario de uso). Sin importar qué tan específicos son, los
principios ayudan a establecer un conjunto sólido de práctica de ingeniería del soft-
ware. Por esa razón son importantes.

David Hooker [H0096] ha propuesto siete principios esenciales, los cuales se
enfocan en la práctica de la ingeniería del sof tware como un todo, que se reprodu-
cen enseguida.3

El p r i m e r p r inc ip io : la razón por la que todo existe

Un sistema de sof tware existe por una razón: para ofrecer un valor a sus usuarios.
Todas las decisiones deben tomarse con es to en mente. Antes de especificar un
requisito de un sistema, antes de señalar una pieza de funcionalidad del sistema,
antes de determinar las pla taformas del hardware o los procesos de desarrollo, uno
debe hacerse preguntas como: ¿esto agrega un valor real al sistema? Si la respuesta
es negativa no se debe hacer. Todos los demás principios están apoyados en éste.

El s e g u n d o p r inc ip io : MS (mantenerlo simple)

El diseño de sof tware no es un proceso fortuito. Existen muchos factores que deben
considerarse en cualquier esfuerzo de diseño. Todo el diseño debe ser tan simple como
sea posible, pero no más simple. Esto facilita un sistema de m á s fácil comprensión y
entendimiento. Esto no quiere decir que las características, has ta las internas, deban
descartarse en nombre de la simplicidad. Además, los diseños más elegantes por lo
general son los m á s simples. Simple tampoco significa "rápido y malo". De hecho, se

3 Reproducido con permiso del autor [H00961. Hooker define patrones para es tos principios en:
ht tp: / /c2.com/cgi/wiki7SevenPrinciplesOfSoftwareDevelopment

TM

PDF Editor

http://c2.com/cgi/wiki7SevenPrinciplesOfSoftwareDevelopment

108 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

requiere de mucha reflexión y t rabajo sobre múltiples iteraciones para simplificar. El
resultado buscado es un sof tware que se mantenga y sea menos propenso al error.

'Existe cierta majestuosidad en la simplicidad, la cual está muy por encima de la curiosidad del ingenio."
A l e x a n d e r P o p e (1 6 8 8 - 1 7 4 4)

\ CLAVE
Si el so f tware t iene un
valor, ac to cambiará a
lo largo de su vida útil.
Por esa razón , el
so f tware d e b e
construirse d e to rmo
q u e s e le puedo dor
man ten imien to .

El t e r c e r p r inc ip io : mantener ¡a visión

Una visión clara es esencial para el éxito de un proyecto de software. Sin la visión clara
el proyecto podría terminar con "dos [o más] significados" en uno. Sin una integri-
dad conceptual un sistema amenaza con tornarse en una masa confusa de diseños
incompatibles, unida por un tipo inadecuado de tornillos...

Arriesgar la visión arquitectónica de un sistema de sof tware debilita y al final
rompe has ta un sistema bien diseñado. Tener a un arquitecto capaz de mantener la
visión y reforzar lo acordado ayuda al aseguramiento de que un proyecto de soft-
ware sea exitoso.

El c u a r t o p r inc ip io : lo que uno produzca, otros lo consumirán

En muy pocas ocasiones un sistema de sof tware con fuerza industrial se construye
y utiliza de manera aislada. De alguna u otra forma, alguien m á s utilizará, manten-
drá, documentará o dependerá de su capacidad de entender el sistema. Por lo tanto,
siempre debe especificarse, diseñarse e implementarse con la idea de que alguien
más tendrá que entender lo que se realice. La audiencia de cualquier producto de
software es potencialmente grande, por lo que se debe especificar t omando en cuen-
ta a los usuarios. Se debe diseñar teniendo en mente a quienes lo implementen, así
como codificar considerando a aquellos que deben mantener y extender el sistema.
Tal vez alguien tenga que depurar el código escrito y eso lo convertirá en un usua-
rio del código. El hecho de facilitar el t rabajo a otro agrega valor al sistema.

El q u i n t o p r inc ip io : estar abierto al futuro

Un sistema con u n a larga vida tiene m á s valor. En los ambientes computacionales
de la actualidad, en los que las especificaciones cambian a cada momento y las pla-
taformas de hardware son obsoletas después de algunos meses, la vida del sof twa-
re se mide, de modo típico, en meses en lugar de años. No obstante, los verdaderos
s is temas de software "con fuerza industrial" deben durar más tiempo. Estos s is temas
tendrán éxito si están listos para adaptarse a éstos y otros cambios. Los s is temas que
logran el éxito son aquellos que han sido diseñados de esta manera desde el princi-
pio. Nunca se debe diseñar para llegar a una esquina. Uno siempre se debe preguntar:
"¿qué tal si?", y prepararse para todas las respuestas posibles, al crear s is temas que
resuelvan el problema general, no un problema específico.4 Es muy probable que
esto conduzca a la reutilización de un sistema entero.

4 Nota del autor: esta recomendación puede ser peligrosa si se lleva hasta el extremo. El diseño para
el "problema general'' algunas veces requiere compromisos de desempeño y puede implicar un ma-
yor esfuerzo para el proyecto.

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA U N A VISIÓN GENÉRICA 109

El s e x t o pr incipio: planear para la reutilización

La reutilización ahorra tiempo y esfuerzo.5 Al alcanzar un alto grado de reutilización
se logra una de las metas más difíciles en el desarrollo de un sistema de software.
La reutilización de código y diseños ha sido proclamada como un beneficio impor-
tante del uso de tecnologías orientadas a objetos. Sin embargo, la recuperación de
la inversión no es automática. Las posibilidades de reutilización que proporciona la
programación orientada a objetos (o convencional) se podrán considerar si se tiene
una visión a futuro y una planeación. Existen muchas técnicas para llevar a cabo la
reutilización en cada etapa del proceso de desarrollo del sistema; las relativas al
diseño detallado y al nivel de código son muy conocidas y están bien documentadas.
La nueva bibliografía se está enfocando en la reutilización del diseño en la forma de
patrones de software. Sin embargo, esto es sólo una parte de la batalla.

La comunicación de oportunidades para la reutilización a otros integrantes de la
organización es primordial. ¿Cómo se puede reutilizar algo cuya existencia se ignora?
La planeación adelantada para la reutilización reduce el costo e incrementa el valor de los
componentes reutilizablesy los sistemas en que dichos componentes se incorporan.

El s é p t i m o pr incipio: pensar

Este último principio tal vez sea el que más se pasa por alto. Casi siempre, cuando se
tiene un pensamiento claro y completo antes de la acción, se producen los mejores resul-
tados. Cuando se reflexiona acerca de algo existe una mayor probabilidad de hacer-
lo bien. Siempre se obtiene conocimiento de la manera de hacerlo bien de nuevo. Si
se piensa en algo y aun así se hace mal, esto se convierte en una experiencia valio-
sa. Un efecto colateral del pensamiento es aprender a reconucer, cuando alguien no
sabe algo, en qué punto se puede investigar la respuesta. Cuando el pensamiento
claro se ha introducido en el sistema es cuando surge su valor real. La aplicación de
los primeros seis principios requiere una reflexión intensa, por lo que las recompen-
sas potenciales son enormes.

Si todos los ingenieros de software y todos los equipos de desarrollo tan sólo
siguieran los siete principios de Hooker, muchas de las dificultades que se han expe
rimentado durante la construcción de sistemas complejos basados en computadora
se podrían eliminar.

Antes de que los requisitos del cliente puedan analizarse, modelarse o especificarse,
éstos deben recopilarse por medio de una actividad de comunicación (también lla-
mada obtención de requisitos). Un cliente tiene un problema que se puede ajustar a

Nota del autor: aunque esto es cierto para quienes reutilizan el software en proyectos futuros, la reu-
tilización puede resultar cara para quienes deben diseñar y construir componentes reutilizables. Al-
gunos estudios indican que el diseño y la construcción de componentes reutilizables pueden costar
entre 25 y 200 por ciento más que el software solicitado En algunos casos, la diferencia de costo no
se puede justificar.

TM

PDF Editor

110 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ ^ O N S E J O ^ ^ -

Antes de comunicar se
debe estar seguro de
entender el punto de
vista de lo olio paite,
saber un poco (le sus
necesidades, y
entonces opinar.

una solución basada en computadora . Un desarrollador responde a la solicitud c J
ayuda del cliente. La comunicación ha comenzado. Pero el camino desde la c o m u l
nicación hasta el entendimiento suele estar lleno de baches.

La comunicación efectiva (entre pares técnicos, con el cliente u otros part icipantes
del software y con los gerentes de proyecto) está entre las actividades más desafiantes!
que enfrenta un ingeniero de software. En este contexto se examinan los principio* I
conceptos de comunicación de acuerdo con la manera en que se aplican en la c o m a l
nicación con el cliente. Sin embargo, muchos de los principios se aplican del m i s j n J
modo a las formas de comunicación que ocurren dentro de un proyecto de software I

P r inc ip io #1 : Escuchar. Se debe centrar la atención en las palabras de q u i e - |
habla, en vez de formular la respuesta a dichas palabras. Es necesario pedir u r J
explicación si algo no está claro, pero deben evitarse las interrupciones constantes J
Nunca se debe ser conflictivo con palabras o actitudes (por ejemplo, dirigir la mir i - l
da a los lados o sacudir la cabeza) cuando una persona habla.

P r inc ip io #2: Prepararse antes de comunicar. Se debe invertir algún tiemp J
en entender el problema antes de reunirse con otros. Si es necesario, se puede r e a J
lizar una investigación para entender el negocio y dominar la jerga. Si se tiene la re~-l
ponsabilidad de conducir la reunión, e s recomendable preparar una agenda del d J
antes de la junta.

P r inc ip io #3 : Alguien debe facilitar la actividad. Cualquier reunión de corr.-- |
nicación debe tener un líder o mediador 1) para mantener una conversación dins-i
mica y en una dirección productiva; 2) para mediar en cualquier conflicto que oca-I
rra; 3) para asegurar que se sigan los otros principios.

P r inc ip io #4 : La comunicación cara a cara es 1o mejor. Pero, por lo general,
funciona mejor cuando está presente otra representación de la información relevan-
te. Por ejemplo, un participante podría crear un esquema o un documento que sirva
como foco de la discusión.

"Los preguntas y las respuestas llanas forman el comino más corto hacia la mayoría de las perplejidades."
M o r k Twaln

P r inc ip io #5: Tomar notas y documentar las decisiones. Las cosas suelen
caer en malentendidos. Alguien que participe en la comunicación debe servir como
"grabadora" y escribir todos los puntos y decisiones importantes.

P r inc ip io #6: Buscar la colaboración. La colaboración y el consenso se pre-
sentan cuando el conocimiento colectivo de los miembros del equipo se combina
para describir las funciones o características del producto o sistema. Cada pequeña
colaboración sirve para construir confianza entre los miembros del equipo y crear
una meta común para dicho equipo.

P r inc ip io #7 : Conservar el enfoque, examinar un módulo a la vez. Entre
más gente esté implicada en una comunicación, más posibilidades existen de que la

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 111

discusión salte de un tópico al siguiente. El mediador debe mantener la conversación
centrada en un módulo sin dejar un tema hasta que éste haya sido resuelto (sin
embargo, véase el principio #9).

INFORMACIÓN
La diferencia entre clientes y usuarios tíñales
Los ingenieros de software se comunican con

muchos participantes diferentes, pero los clientes
finales tienen el impacto más significativo

el t rabajo técnico que sigue. En algunos casos el
v el usuario son uno mismo, pero en muchos

el cliente y el usuario final son personas
, que t rabajan pa ra diferentes administradores en
organizaciones de negocios.

es la persona o grupo que: 1) en un inicio
el software que se va a construir; 2) define los

generales de negocios para el software; 3)

proporciona los requisitos básicos del producto; 4)
coordina los recursos económicos pa ra el proyecto. En un
negocio de productos o sistemas, con frecuencia el cliente
es el departamento de mercadotecnia. En un ambiente de
TI el cliente puede ser un componente o departamento del
negocio.

Un usuario final es la persona o grupo que: 1) en realidad
usará el software que se construye para alcanzar algún
propósito de negocios, y 2) definirá los detalles operativos
del software d e forma que el propósito del negocio pueda
alcanzarse.

mi pasa si
i se p e d e
i m arreglo

le en

con el

Pr inc ip io #8: Si algo no está claro, se hace un dibujo. La comunicación ver-
bal sólo llega hasta cierto punto. Con frecuencia un esquema o figura puede propor-
cionar claridad cuando las palabras fallan al realizar su trabajo.

P r inc ip io #9 : a) Una vez que se llega a un acuerdo sobre algo, se debe con-
tinuar; b) si no se puede llegar a un acuerdo, se debe continuar; c) si una
característica o Junción no está clara y no se puede clarificar en el momento,
se debe continuar. La comunicación, como cualquier actividad de ingeniería del
software, requiere de tiempo. En lugar de que se itere sin fin, los participantes deben
reconocer que hay muchos tópicos que requieren análisis (véase el principio #2) y
que "continuar" algunas veces e s la mejor forma agilitar la comunicación.

P r inc ip io #10 : La negociación no es un concurso o un juego. Funciona
mejor cuando ambas partes ganan. En muchas ocasiones los ingenieros de soft
ware y el cliente deben negociar funciones y características, prioridades y fechas de
entrega. Si el equipo ha colaborado de buena forma, todas las partes tienen una meta
común. Por lo tanto, la negociación demandará el compromiso de todas las partes.

HOGARSEGURO

A Errores de comunicación

EÜj j El e s c e n a r i o : Lugar de t rabajo
de ingeniería del software.

a c t o r e s : Jamie Lazar, miembro del equipo de
Vinod Raman, miembro del equipo de
Ed Robbins, miembro del equipo d e software.

La c o n v e r s a c i ó n :

Ed: ¿Qué han oído acerca de este proyecto de
HogarSeguro?

V i n o d : La reunión de inicio está programada para la
próxima semana.

TM

PDF Editor

112 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Jamie: Yo y a he investigado un poco, pero no me fue
bien.

Ed: ¿Qué quieres decir?

J a m i e : Bueno, le hice una llamada a Usa Pérez, la
responsable de mercadotecnia en este asunto.

V i n o d : ¿Y...?

J a m i e : Yo quería que me dijera algo sobre las
características y funciones de HogarSeguro... ese tipo de
cosas. En lugar de eso, comenzó a hacerme preguntas
sobre seguridad de sistemas, vigilancia de sistemas... no
soy una experta.

V i n o d : ¿Qué te dice eso?

(Jamie se encoge de hombros.)

V i n o d : Que mercadotecnia nos necesitará pa ra que
actuemos como consultores y que será mejor que

hagamos algo d e tarea en esta á rea del producto antes
de la reunión de inicio. Doug dijo que quería que
"colaboráramos" con nuestro cliente, así que será mejor
que aprendamos cómo hacerlo.

Ed: Probablemente sería mejor que fuéramos a su
oficina. Las llamadas telefónicas no funcionan pa ra este
tipo d e asuntos.

J a m i e : Ambos están en lo correcto. Debemos actuar
¡untos o nuestras primeras comunicaciones serán un lío.

V i n o d : Vi que Doug leía un libro sobre "ingeniería de
requisitos". Podría apostar que ahí se enlistan algunos
principios para la buena comunicación. Se lo voy a pedir
prestado mañana .

J a m i e : Buena idea . . . después nos puedes enseñar.

V i n o d (s o n r i e n d o) : Sí, claro.

C O N J U N T O DE TAREAS

Conjunto de tareas genéricas para la comunicación

• Salidas y entradas resultantes.

%

3.

5.

1. Identificar al cliente primario y otros
participantes (sección 7.3.1).

2. Reunirse con el cliente primario para
las "preguntas libres de contexto" (sección 7.3.4), las
cuales definen:

• Las necesidades y valores del negocio.

• Las características y necesidades del usuario final.

• Las salidas visibles que se hayan requerido para
el usuario.

• Las restricciones del negocio.

Desarrollar un enunciado escrito de una página
sobre el ámbito del proyecto, el cual está sujeto a
revisión.

Revisar el enunciado del ámbito con los interesados
en el software y ajusfarlo según lo requerido.

Colaborar con el cliente y el usuario final para
definir:

• Escenarios de uso visibles pa ra el cliente con el
uso del formato estándar6 (sección 7.5).

• Características, funciones y comportamientos
importantes del software.

• Riesgos de negocios definidos por el cliente
(sección 25.3).

ó. Desarrollar una breve descripción escrita (por
ejemplo, una serie de listas) de escenarios,
sal idas/entradas, características/funciones y riesgos.

7. Iterar con el cliente para refinar los escenarios,
sal idas/entradas, características/funciones y riesgos.

8. Asignar prioridades definidas por el cliente a cada
escenario del usuario, característica, función y
comportamiento (sección 7.4.2).

9. Revisar toda la información recopilada durante la
actividad de comunicación con el cliente y otros
participantes, y ajustaría de la forma que se
requiera.

10. Prepararse para la actividad de planeación
(capítulos 2 3 y 24).

6 Los formatos para escenarios de uso se discuten e n el capítulo 8.

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA UNA VISIÓN GENÉRICA 113

5 , 3 P R Á C T I C A S P E LA P L A N E A C I Ó N

La actividad de comunicación ayuda al equipo de sof tware a definir sus metas y obje-
tivos generales (por supuesto, sujeto al cambio conforme pasa el tiempo). Sin
embargo, entender es tas metas y objetivos no e s lo mismo que definir un plan para
llegar a ellos. La actividad de planeación abarca un conjunto de prácticas técnicas y
de gestión que permiten al equipo de sof tware definir un mapa del camino mientras
se viaja a través de su meta estratégica y objetivos tácticos.

"En la preparación poro la batalla siempre he encontrado que los planes son inútiles, pero que la planeación es
indispensable.'

D w i g h f D. E i s e n h o w e r

Existen muchos enfoques diferentes para la planeación. Algunas personas son
"minimalistas", y a rgumentan que el cambio con frecuencia obvia la necesidad de un

plan detallado. Otros son tradicionalistas, y dicen que el plan proporciona un mapa
efectivo del camino, y mientras m á s detallado sea éste, menor probabilidad habrá de
que el equipo pierda el rumbo. Además, otros son "agüistas" y a rgumentan que tal
vez un "juego de planeación" rápido sea necesario, pero que el mapa del camino sur-
girá cuando comience el "trabajo real" sobre el software.

¿Qué hacer? En muchos proyectos la sobreplaneación consume t iempo y no pro-
duce frutos (demasiadas cosas cambian), pero la planeación insuficiente es una
receta para el caos. Como la mayoría de las cosas en la vida, la planeación se debe
producir con moderación, lo suficiente para proporcionar una guía útil para el equi
po —no más, no menos .

Sin importar el rigor con el que se conduzca la planeación, los siguientes princi-
pios son válidos en todo momento .

P r inc ip io #1 : Entender los alcances del proyecto. Es imposible utilizar un
mapa de carreteras si no se sabe el sitio a donde se quiere ir. El hecho de entender
los a lcances proporciona al equipo de sof tware un destino.

P r inc ip io #2 : Involucrar al cliente en la actividad de planeación. El cliente
define prioridades y establece las restricciones del proyecto. El ajuste de estas reali
dades a menudo requiere que los ingenieros de software negocien las órdenes de
entrega, los límites de tiempo y otros asuntos relacionados con el proyecto.

P r inc ip io #3 : Reconocer que la planeación es iterativa. El plan de un pro-
yecto nunca se graba en una piedra. En cuan to comience el trabajo es muy probable
que las cosas cambien. En consecuencia, debe ajustarse el plan para adaptarlo a los
cambios. Además, los modelos iterativos e increméntales del proceso dictan la repla-
neación (después de la entrega de cada incremento de software) basada en la retroa-
limentación recibida de los usuarios.

oceica
'1

v " o / e í t o s . TM

PDF Editor

114 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Pr inc ip io #4 : Estimar con base en el conocimiento disponible. La finalidad
de la estimación e s proporcionar un indicio del esfuerzo, costo y duración de las
tareas, con base en el conocimiento que el equipo tiene del trabajo que s e va a rea-
lizar. Si la información es vaga o poco confiable, las est imaciones tendrán, de igual

forma, poca confiabilidad.

P r inc ip io # 5 : Considerar el riesgo cuando se define el plan. Si el equipo ha
definido riesgos que t ienen un alto impacto y una alta probabilidad, e s necesario un
plan de contingencia. Además, el plan de proyecto (que incluye el calendario) se
debe ajustar para incluir la posibilidad de que uno o m á s de es tos riesgos se torne

un problema real.

P r inc ip io #6 : Ser realista. Las personas no trabajan el 100 por ciento de cada
día. El ruido siempre entra en cualquier comunicación humana . Las omisiones y la
ambigüedad son hechos de la vida. Los cambios ocurrirán. Hasta los mejores inge-
nieros de software cometen errores. Éstas y otras realidades deben considerarse
mientras se establece el plan del proyecto.

"0 éxito está más en función del sentido común consistente que del genio."
An W o n g

\ CLAVE
El término granuloridod
se refiere ol detalle con
el q u e algunos
e lementos de lo
planeación se
representan o dirigen.

Principio #7: Ajustar la granularidad mientras se define el plan. La granu-
laridad s e refiere al grado de detalle que se introduce conforme se desarrolla el plan.
Una "granularidad fina" en el plan proporciona detalles significativos de las tareas de
trabajo, los cuales se planean en incrementos relativamente cortos de t iempo (de
forma que el a juste y el control se den con frecuencia). Un plan de "granularidad
gruesa" proporciona tareas de t rabajo más amplias, las cuales se planean en perio-
dos m á s largos. Por lo general, la granularidad cambia de fina a gruesa conforme el
t iempo límite del proyecto está m á s lejos de la fecha actual. En las siguientes sema-
nas o meses el proyecto se puede planear con detalle significativo. Las actividades
que no se realizarán por muchos meses no requieren una granularidad fina (hay
demas iadas cosas que pueden cambiar).

P r inc ip io #8: Definir cómo se intentará asegurar la calidad. El plan debe
identificar la forma en que el equipo de sof tware pretende asegurar la calidad. Si
habrá revisiones técnicas formales,7 és tas se deben calendarizar. En caso de que se
utilice programación en pareja (capítulo 4) durante la construcción ésta debe estar
definida de manera explícita en el plan.

P r inc ip io #9 : Describir cómo se pretende incluir el cambio. Incluso a la
mejor planeación puede superarla el cambio incontrolable. El equipo de software
debe identificar la forma en que se incluirán los cambios conforme se realiza el tra-
ba jo de ingeniería del software. Por ejemplo, ¿el cliente puede solicitar un cambio en

7 Las revisiones técnicas formales se estudian en el capitulo 26.

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: U N A VISIÓN GENÉRICA 115

cualquier momento? ¿Si se presenta una solicitud de cambio el equipo está obliga-
do a implementarlo de inmediato? ¿Cómo se evalúan el impacto y el costo del cam-
bio?

Principio #10: Adaptar el plan a menudo y hacer los ajustes cuando éstos
se requieran. Día tras día los proyectos de software van por detrás del calendario
establecido. Por ello, es de mucha ayuda adaptar el progreso a diario. Se deben bus-
car áreas problemáticas y situaciones en las que el trabajo calendarizado no vaya de
acuerdo con el trabajo que se ejecuta en realidad. Cuando se encuentran desfases,
el plan se ajusta en concordancia con ello.

En la búsqueda de mayor efectividad, todos los integrantes del equipo de softwa-
re deben participar en la actividad de planeación. Sólo entonces son miembros del
equipo "comprometidos" con el plan.

En un excelente documento sobre procesos y proyectos de software, Barry
Boehm [BOE96] establece: "Se necesita un principio de organización que se reduzca
para proporcionar planes [de proyecto] simples para proyectos simples." Boehm
sugiere un enfoque dirigido a los objetivos, fundamentos y calendarios del proyecto,
a las responsabilidades, enfoques técnicos y de gestión y a los recursos requeridos.
Él lo llamó principio W^HH (why, what, when, who, where, how, how), debido a una
serie de preguntas que conducen a una definición de características clave del pro-
yecto y el plan de proyecto resultante:

I ¿Oifcs ¿Por q u é e s t á en d e s a r r o l l o e s t e s i s t e m a ? Todas las partes deben evaluar la
• • I » validez de las razones del negocio para el trabajo en el software. Dicho de otra

manera, ¿el propósito del negocio justifica el gasto de personal, tiempo y dinero?

¿Qué s e h a r á ? Se debe identificar la funcionalidad que se construirá y, por ende,
las tareas requeridas para realizar el trabajo.

i se
' y

t se deben
r p n

» • prtyetfo ¿ C u á n d o s e t e r m i n a r á ? Es n e c e s a r i o e s t a b l e c e r u n flujo d e t r a b a j o y u n t i e m p o

límite para las tareas clave del proyecto, asi como identificar los fundamentos reque-
ridos por el cliente.

¿Quién e s e l r e s p o n s a b l e d e u n a f u n c i ó n ? Se deben definir el papel y la res-
ponsabilidad de cada miembro del equipo de software

¿En d ó n d e s e u b i c a n d e n t r o d e la o rgan izac ión? No todos los papeles y res-
ponsabilidades residen dentro del mismo equipo de software. El cliente, los usuarios
y otros participantes también tienen responsabilidades.

¿ C ó m o s e r ea l i za rá e l t r a b a j o e n lo s s e n t i d o s t é c n i c o y d e ges t ión? Una
vez que se establece el ámbito del producto, es necesario definir una estrategia téc-
nica y de gestión para el proyecto.

¿Cuánto s e necesita de cada recurso? La r e s p u e s t a a e s t a p r e g u n t a s e o b t i e

ne al desarrollar estimaciones (capítulo 23) con base en las respuestas a las pregun-
tas anteriores.

TM

PDF Editor

116 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Las respuestas a las preguntas W5HH de Boehm son importantes independiente-
mente del t a m a ñ o o la complejidad de un proyecto de software. Pero, ¿cómo se ini-
cia el proceso de planeación?

" P e n s a m o s q u e los desar ro i ladores de so f tware es tán perd iendo uno ve rdad vital: la nayor ia de las o rgan izac iones n o
s a b e n lo que l a c e n . Ellas p iensan que lo saben , pe ro n o es as í"

Tom DeMarco

C O N J U N T O DE TAREAS

Conjunto de tazeos genéricas para la planeación

8 1. Reevaluar el ámbito del proyecto
(secciones 7 . 4 y 21.3).

2 . Evaluar los riesgos (sección 25.4) .

3. Desarrollar o refinar los escenarios del usuario
(secciones 7 . 5 y 8.5).

4 . Extraer funciones y características a partir d e los

escenarios (sección 8.5).

5 . Definir las funciones y características técnicas que
forman la infraestructura del software.

ó . Agrupar las funciones y características (escenarios)
d e acuerdo con la prioridad del cliente.

7 . Crear un plan d e proyecto con una granular idad
gruesa (capítulos 2 3 y 24).

Definir el número proyectado de incrementos d e
software.

Establecer un calendar io general del proyecto
(capítulo 24).

Establecer las fechas d e entrega proyectadas pa ra
c a d a incremento.

9 .

Crear un plan con granular idad fina pa ra la
iteración actual (capítulos 2 3 y 24).

Definir ta reas d e t r aba jo p a r a c a d a función y
característica (sección 23.6).

Estimar el esfuerzo p a r a c a d a tarea d e t r aba jo
(sección 23.6) .

Asignar responsabilidad pa ra c a d a tarea d e
t r aba jo (sección 23.4) .

Definir los productos d e t r aba jo que serán
producidos.

Identificar los métodos pa ra el aseguramiento d e
la cal idad que se usarán (capítulo 26).

Describir los métodos p a r a el cambio en la gestión
(capítulo 27).

Rastrear el progreso d e manera regular (sección
24.5.2) .

Observar las á r e a s problemáticas (por ejemplo, el
desfase del calendario).

Hacer los ajustes que se requieran.

5 . 4 P R Á C T I C A DEL M Q P E L A P O

Los modelos se crean para obtener un mejor entendimiento de la entidad real que s e
construirá. Cuando la entidad es un objeto físico (por ejemplo, un edificio, un avión,
una máquina), se puede construir un modelo idéntico en forma y tamaño, pero en
menor escala. Sin embargo, cuando la entidad es software, el modelo debe tomar
una forma diferente. Debe ser capaz de representar la información que el sof tware
transforma, la arquitectura y las funciones que permiten que ocurra la t ransforma-
ción, las características que desean los usuarios, y el comportamiento del sistema
conforme se realiza la transformación. Los modelos deben cumplir es tos objetivos
en diferentes grados de abstracción (primero al presentar el sof tware desde el punto
de vista del cliente y después al representar el sof tware en un nivel más técnico).

TM

PDF Editor

CAPITULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 117

C L Á V E

s de
5 repfesenton tos

¡ del d i en t e .
Í ¡nodelos de d iseño

i uno
i concreta

c c construcción

K
C L A V E

) del
s sé enfoca en

t del
Cb
" i q u e s e

Jo
(s e d e b e

Mr '
¡ q u e

En el trabajo de la ingeniería del software se crean dos clases de modelos: mode-
los de análisis y modelos de diseño. Los modelos de análisis representan los requisi-
tos del cliente al presentar el software en tres dominios diferentes: el dominio de la
información, el dominio funcional y el dominio del comportamiento. Los modelos de
diseño representan características del software que ayudan a los profesionales a
construirlo de manera efectiva: la arquitectura (capítulo 10), la interfaz del usuario
(capítulo 12), y el detalle al nivel de componentes (capítulo 11).

En las secciones siguientes se presentan los principios y conceptos básicos que
son relevantes para el modelado del análisis y el diseño. Los métodos técnicos y la
notación que permiten que los ingenieros de software creen modelos de análisis y
diseño se presentan en los capítulos posteriores.

"El p r i m e r p r o b l e m a del i n g e n i e r o e n c u a l q u i e r s i tuac ión d e d i s e ñ o e s descubr i r c u á l e s r e a l m e n t e e l p r o b l e m a . "

5.4.1 Principios del modelado del análisis

En las pasadas tres décadas se ha desarrollado un gran número de métodos de
modelado del análisis. Los investigadores han identificado los problemas del análi-
sis y sus causas y han desarrollado una variedad de notaciones de modelado y los
conceptos heurísticos correspondientes para manejarlos. Cada método de análisis
tiene un punto de vista único. Sin embargo, todos los métodos de análisis están rela-
cionados por medio de una serie de principios operativos:

Pr inc ip io SI: El dominio de información de un problema debe represen-
tarse y entenderse. El dominio de información lo forman los datos que fluyen hacia
el sistema (a partir de los usuarios finales, otros sistemas o dispositivos externos),
los datos que fluyen desde el sistema (a través de la interfaz del usuario, interfases
de red, reportes, gráficas y otros medios) y los a lmacenamientos de datos que se
recopilan y reorganizan los objetos consistentes de información (es decir, los datos
que se mantienen en forma permanente) .

P r inc ip io #2 : Se deben definir las funciones que ejecuta el software. Las
funciones del software proporcionan un beneficio directo a los usuarios Anales y
también aporta soporte interno a aquellas características visibles para el usuario.
Algunas funciones transforman los datos que fluyen hacia el sistema. En otros casos,
las funciones efectúan algún grado de control sobre el procesamiento interno del
software o elementos externos del sistema. Las funciones se pueden describir en
muchos grados diferentes de abstracción, que van desde un enunciado general del
propósito hasta una descripción detallada de los elementos del procesamiento que
deben utilizarse.

Principio #3: Se debe representar el comportamiento del software (como
una consecuencia de eventos externos). Al comportamiento del software de compu
tadora lo guía su interacción con el ambiente externo. La entrada que proporcionan

TM

PDF Editor

PARTE DOS PRÁCTICA E S LA INGENIERÍA DEL SOFTWARE

los usuarios finales, los datos de control que aporta un sistema externo o los datos
de monitoreo que se recolectan a través de una red ocasionan que el software se
comporte de una manera especifica.

P r inc ip io #4: Los modelos que presentan información, función y compor-
tamiento deben partirse de forma que descubran el detalle de una manera
estratificada (o jerárquica). El modelado del análisis es el primer paso en la reso-
lución de problemas en la ingeniería del software. Esto permite al profesional enten-
der mejor el problema y establecer una base para la solución (diseño). Los proble-
mas complejos son difíciles de resolver por completo. Por esta razón, se utiliza una
estrategia de "divide y ganarás". Un problema grande y complejo se divide en sub-
problemas hasta que cada subproblema es relativamente fácil de entender. Este con-
cepto se llama partición, y es una estrategia clave en el modelado del análisis.

Pr inc ip io #5 : La tarea del análisis debe moverse de la información esencial
hacia el detalle de implementación. El modelado del análisis comienza con la
descripción del problema desde la perspectiva del usuario final. La "esencia" del pro-
blema se describe sin ninguna consideración de la forma en la que se implementa-
rá la solución. Por ejemplo, un videojuego requiere que el jugador "instruya" al pro-
tagonista en qué dirección seguir cuando éste se mueve dentro de un laberinto peli-
groso. Esa es la esencia del problema. El detalle de implementación (descrita en
forma normal como una parte del modelo del diseño) indica cómo se implementará
la esencia. Respecto del videojuego se podría aplicar la entrada de voz. De manera
alternativa, se podría digitar un comando del teclado, o se podría apuntar un joystick
(o un mouse) en una dirección específica.

CONJUNTO DE TAREAS

Conjunto de tareas genéricas para
1. Revisar los requisitos del negocio, las 3.

característ icas/necesidades del
usuario, las salidas visibles pa ra el

usuario, las restricciones del negocio, y otros
requisitos técnicos que se hayan determinado
durante las actividades d e comunicación con el
cliente y d e planeación.

Expandir y refínar los escenarios del usuario (sección
8.5).

Definir a todos los actores.

Representar la forma en que los actores
interactúan con el software.

Extraer funciones y características a partir d e los
escenarios del usuario.

Revisar los escenarios del usuario pa ra verificar
que estén completos y su exactitud (sección 26.4).

4.

el modelado del análisis
Modelar el dominio de la información (sección 8.3).

Representar todos los objetos importantes d e
información.

Definir los atributos pa ra c a d a objeto d e
información.

Representar las relaciones entre los objetos d e
información.

Modelar el dominio funcional (sección 8.6).

Mostrar la forma en que las funciones modifican
los objetos d e datos.

Refinar las funciones pa ra proporcionar los
detalles d e la elaboración.

Escribir una narración del procesamiento que
describa c a d a función y subfunción.

Revisar los modelos funcionales (sección 26.4).

y

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: U N A VISIÓN GENÉRICA 119

I R \
5. Modelar el dominio del comportamiento (sección Revisar los modelos de comportamiento (sección

8.8). 26.4).

Identificar los eventos externos que ocasionan ¿ Analizar y modelar la inferíase del usuario (capítulo
cambios en el comportamiento dentro del] 2).
sistema.

Dirigir el análisis de tareas.
Identificar los estados que representan cada forma

de comportamiento observable desde el exterior. C r e a r P r o t°Hpos de la imagen en pantalla,

Presentar el modo en el que un evento lleva al 7 - Revisar todos los modelos en cuanto a que estén
sistema a cambiar de un estado a otro. completos, su consistencia y las omisiones. y

5.4.2 Principios d e modelado del diseño

El modelo de diseño del sof tware es el equivalente al plano de una casa para un
arquitecto. Comienza con la representación de la totalidad del objeto que será cons-
truido (por ejemplo, una reproducción tridimensional de la casa) y con lentitud lo

refina para proporcionar una guía para construir cada detalle (por ejemplo, el dise-
ño de la plomería). En forma similar, el modelo del diseño que se crea para el soft-
ware proporciona una variedad de diferentes vistas del sistema.

"Primero ve que el diseño seo sabio y justo: overiguodo esto, persigúelo resueltamente; no por un rechozo dejes ir el
propósito que te has resuelto efectuar.*

William Shakespeare

No hay pocos métodos para derivar los diferentes e lementos de un diseño de soft-
ware. Algunos métodos se guían mediante los datos al permitir a la estructura de

datos dictar la arquitectura del programa y los componentes de procesamiento resul-
tantes. A otros los conduce el patrón a! utilizar información acerca del dominio del
problema (el modelo de análisis) para desarrollar estilos arquitectónicos y pat rones
de procesamiento. Incluso otros están orientados a objetos, al usar los objetos del
dominio del problema como los conductores para la creación de estructuras de datos
y los métodos para manipularlos. Aún así, todos ellos siguen un conjunto de princi
píos de diseño que se pueden aplicar sin importar el método que se utilice:

P r inc ip io # 1: £7 diseño debe ser rastreable hasta el modelo de análisis. El
modelo de análisis describe el dominio de la información del problema, las funcio-
nes visibles para el usuario, el comportamiento del sistema y un conjunto de clases
de análisis que empaqueta los objetos del negocio con los métodos que les sirven.
El m o d e l o d e d i s e ñ o t r a d u c e e s t a i n f o r m a c i ó n a u n a a r q u i t e c t u r a : u n c o n j u n t o d e

subsistemas que impiementan las funciones más importantes y un conjunto de dise-
ños al nivel de componentes que son la realización de las clases de análisis. Excepto
el modelo asociado con la infraestructura de software, los e lementos del modelo de
diseño deben ser rastreables hasta el modelo de análisis.

TM

PDF Editor

120 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Eli C S . W W W C .

fld»/~aobyon/
D e s i g n / se pueden
entontiar comentoiíos
profundos sobie el
proceso de diseño.
Junto con una
exposwénde to
estético del diseño.

Principio #2: Siempre se debe considerar la arquitectura del sistema que
se va a construir. La arquitectura del software (capítulo 10) es el esqueleto del sis-
tema que se va a construir. Éste afecta las interfases, las estructuras de datos, el flujo
y el comportamiento del control del programa, la manera en que se pueden realizar
las pruebas, la facilidad de mantenimiento del sistema resultante, y mucho más. Por
todas estas razones, el diseño debe iniciarse con las consideraciones del diseño
arquitectónico. Sólo después de que se ha establecido la arquitectura, es posible
considerar los aspectos al nivel de componentes.

Pr inc ip io #3: El diseño de datos es tan importante como el diseño de fun-
ciones de procesamiento. El diseño de datos es un elemento esencial del diseño
arquitectónico. La manera en que se realizan los objetos de los datos dentro del dise-
ño no puede dejarse a la suerte. Un diseño de datos bien estructurado ayuda a sim-
plificar el flujo del programa, facilita el diseño y la implementación de los compo-
nentes del software, y confiere más eficiencia al procesamiento en general.

Pr inc ip io #4: Las interfaces (internas y externas) deben diseñarse con cui-
dado. La manera en que fluyen los datos entre los componentes de un sistema tiene
mucho que ver con la eficiencia del procesamiento, la propagación del error y la sim-
plicidad del diseño. Una interfaz bien diseñada facilita la integración y ayuda a quien
realiza la prueba a validar funciones de componentes.

Pr inc ip io #5: El diseño de interfaz del usuario debe ajustarse a las necesi-
dades del usuario final. Sin embargo, en cada caso, debe resaltarse la facilidad del
uso. La interfaz del usuario es la manifestación visible del software. Sin importar qué
tan sofisticadas sean sus funciones internas, sin importar qué tan comprensibles
sean las estructuras de datos, no importa qué tan bien diseñada esté su arquitectu-
ra, un diseño de interfaz pobre siempre conduce a la percepción de que el software
está "mal" hecho.

Pr incipio #6: El diseño al nivel de componentes debe ser independiente del
modo funcional. La independencia funcional es una medida del "significado senci-
llo" de un componente de software. La funcionalidad que entrega un componente
debe ser cohesiva; es decir, debe centrarse en una y sólo una función o subfunción.8

Princip io #7: Los componentes deben estar apareados entre sí en forma
mínima y vinculados con el ambiente extemo. El apareamiento se consigue de
muchas maneras: vía interfaz de componente, por mensajes, a través de datos glo-
bales. A medida que aumenta el nivel de apareamiento, la probabilidad de propaga-
ción del error también aumenta y la facilidad de mantenimiento general del softwa-
re disminuye. Por lo tanto, el apareamiento de componentes debe mantenerse tan
bajo como sea posible.

8 En el capítulo 9 se puede encontrar una exposición adicional acerca de la cohesión.

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 121

Pr inc ip io #8: Las representaciones del diseño (modelos) deben ser fácil-
mente comprensibles. El propósito del diseño es comunicar información a los pro-
fesionales que generarán códigos, a aquellos que probarán el software, y a quienes
tal vez mantengan el sof tware en lo futuro. Si el diseño es difícil de entender, no ser-
virá como un medio efectivo de comunicación.

P r inc ip io #9 : El diseño debe desarrollarse de manera iterativa. En cada ite-
ración el diseñador debe buscar la mayor simplicidad. Como casi todas las acti-
vidades creativas, el diseño ocurre de modo iterativo. Las primeras iteraciones sir-
ven para refinar el diseño y corregir errores, pero las iteraciones posteriores deben
buscar que el d iseño sea tan simple como sea posible.

Cuando se aplican es tos principios de manera apropiada, el ingeniero de sof twa-
re crea un diseño que muestra los factores internos y externos de calidad. Los facto-
res de calidad externos son aquellas propiedades del sof tware que los usuarios pue-
den observar fácilmente (como velocidad, confiabilidad, corrección, facilidad de
uso). Los factores de calidad internos son importantes para los ingenieros de softwa-
re, ya que conducen hacia un diseño de alta calidad desde una perspectiva técnica.
Lograr factores de calidad internos requiere que el diseñador entienda conceptos
básicos de diseño (capítulo 9).

INFORMACIÓN

Modelado ágil
En su libro sobre m o d e l a d o ágil , Scott Ambler

[AMB02] def ine una serie d e pr incip ios '

c u a n d o el anális is y el d iseño se conducen

del contexto d e la filosofía del desarrol lo ágil d e
(capítulo 4):

• # 1 : La meta p r imar ia del e q u i p o d e sof tware es

construir sof tware, no c rea r modelos .

2: Via jar l igero; es decir, n o d e b e n c rearse más

modelos d e los necesar ios .

3 : Intentar producir el mode lo m á s simple q u e

describirá el p rob lema o el sof tware.

~zo # 4 : Construir modelos de forma q u e éstos sean
a jus tables al cambio .

5 : Ser c a p a z d e enunc ia r un propósi to explícito

p a r a c a d a mode lo q u e se cree .

6 : A d a p t a r los modelos desar ro l lados al

sistema q u e se t iene en m a n o .

Principio # 7 : Trotar d e construir modelos útiles, pe ro

olvidarse d e construir mode los perfectos.

Principio # 8: N o volverse dogmá t i co ace r ca d e la sintaxis
del modelo. Si éste comunica su contenido d e m a n e r a

exitosa, la representac ión es secundar ia .

Principio # 9: Si el instinto indica que un modelo no es el
correcto aunque éste luzca bien en el papel,
probablemente existe una razón para estar
preocupados.

Principio # 10: Ob tene r retroal imentación ran pronto como

sea posible.

Sin impor tar el mode lo d e p roceso q u e se elija o las

práct icas específ icas d e la ingeniería del sof tware q u e se
ap l iquen , todos los equ ipos d e sof tware quieren ser ágiles.

Por lo tonto, estos principios se d e b e n ap l ica r sin importar

el modelo d e p roceso del sof tware q u e se h a y a

se lecc ionado.

9 Los pr incipios m e n c i o n a d o s en e s t a secc ión se h a n a b r e v i a d o y a d a p t a d o para los p ropós i t o s de e s t e

libro.

TM

PDF Editor

122 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

CONJUNTO DE TAREAS

Conjunto de tareas genéricas para el
1. Utilizar el mode lo d e anál is is ,

seleccionar un estilo arquitectónico

(patrón) a p r o p i a d o p a r a el sof tware
(capítulo 10).

2. Dividir el mode lo d e anális is en subsistemas d e

d i seño y ubicar éstos den t ro d e la arqui tectura
(capítulo 10).

Tener la cer teza de q u e c a d a subsistema es

coheren te en el sentido funcional .

Diseñar interfases d e subsistema.

Ubicar las clases o funciones de anális is p a r a
c a d a subsistema.

Median te la utilización del mode lo del dominio d e

la información, d i seña r estructuras d e d a t o s
a p r o p i a d a s .

3. Diseñar la interfaz del usuario (capítulo 12).

Revisar los resultados del anális is d e t a r ea s .

4 .

diseño
Especificar la secuencia d e acción con b a s e en los

escenar ios del usuar io .

C r e a r un mode lo d e compor tamien to d e la
interfaz.

Definir los objetos d e la in terfaz y mecanismos de
control.

Revisar el d iseño d e la in terfaz y a jusfar lo como

sea necesa r io (sección 26 .4) .

Conduci r el d iseño al nivel d e componen te .

Especificar todos los algori tmos en un g r a d o

relativamente b a j o d e abstracción.

Refinar la interfaz d e c a d a componente .

Definir les estructuras d e da tos en el nivel d e

componen te (sección 26 .4) .

Revisar el d iseño en el nivel de componen tes

(sección 26 .4) .

Desarrol lar un mode lo d e despl iegue (sección 9 .4 .5) .

5 . 5 P R Á C T I C A DE LA C O N S T R U C C I Ó N

La actividad de construcción abarca u n a serie de tareas de codificación y realización
de pruebas que conducen al sof tware operativo que está listo para entregarlo al
cliente o usuario final. En el trabajo de la ingeniería del software moderna la codifi-
cación puede ser: 1) la creación directa de código fuente de un lenguaje de progra-
mación; 2) la generación automática de código fuente al utilizar una representación
intermedia del diseño del componente que será construido; 3) la generación auto-
mática de código mediante un lenguaje de programación de cuarta generación (por
ejemplo, Visual C++).

"Durante gron parte de mi vida he sido un fisgón del software, asomándome furtivamente en el código sucio de otros
personas. Ocasionalmente, encuentro uno joya real, un programa bien estructurado escrito con un estilo consistente,
sin enredos, desarrollado de forma que cada componente es simple y organizado, y diseñado para que el producto
puedo cambiar con facilidad."

David P a m a s

El enfoque inicial de las pruebas está al nivel de componentes , con frecuencia lla-
m a d a s pruebas de unidad. Los otros niveles de prueba incluyen: 1) pruebas de inte-
gración (realizadas mientras el sistema está en construcción) 2) pruebas de validación,
las cuales evalúan si los requisitos han sido satisfechos para el sistema completo (o
para el incremento de software); y 3) pruebas de aceptación, que realiza el cliente en
un esfuerzo encaminado a ejercitar las características y funciones.

TM

PDF Editor

CAPITULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 123

j ^ O M S C J O ^ .

s encootrar

Existe una serie de principios y conceptos aplicables a la codificación y las prue-
bas. Éstos se presentan en las secciones siguientes.

5.5.1 Principios y conceptos de codificación

Los principios y conceptos que guían la tarea de codificación están al ineados de
manera muy cercana al estilo de la programación, los lenguajes de la programación
y los métodos de programación. Sin embargo, existe un conjunto de principios fun-
damenta les que pueden establecerse:

P r inc ip io s d e p r e p a r a c i ó n : Antes de escribir una línea de código se debe estar segu-
ro de:

«toe/ 1.
cóeun

2 . : elegante 2 .

«toe/ 3 .
: equivocado.
ario prestar
xriculor al 4 .

mapto le

« • t e
s 4e codificaciófl.

ware que se va a construir y el ambiente en el que és te va a operar.

Seleccionar un ambiente de programación que proporcione herramientas que
faciliten el trabajo.

5 . Crear un conjunto de pruebas de unidad que serán aplicadas una vez que se
complete el componente que se va a codificar.

P r inc ip io s d e c o d i f i c a c i ó n : Cuando se comience a escribir el código se debe estar
seguro de:

1. Restringir los algoritmos al seguir la práctica de la programación estructurada
[BOHOO],

2 . Seleccionar las estructuras de datos que satisfarán las necesidades del diseño.

3 . Entender la arquitectura del sof tware y crear interfases que sean consistentes
con ella.

4 . Mantener la lógica condicional tan simple como sea posible.

5 . Crear ciclos anidados en una forma que los haga fáciles de probar.

6. Seleccionar nombres de variables significativas y seguir otros es tándares lo-
cales de codificación.

7 . Escribir código que tenga documentación propia.

8. Crear una configuración lineal (por ejemplo, sangrías y líneas en blanco que
ayuden a la comprensión del código).

P r inc ip io s d e va l idac ión : Después de haber completado los primeros pases de codi-
ficación, se debe estar seguro de•

1. Conducir un ensayo de código cuando sea apropiado

2 . Realizar pruebas de unidad y corregir los errores que se hayan descubierto.

3 . Refabricar el código.

TM

PDF Editor

124 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

2 .

Los libros sobre codificación y los principios que la guían incluyen trabajos recien-
tes sobre el estilo de programación [KER78], construcción práctica de software
IMCC93], perlas de programación [BEN991, el arte de la programación [KNU99],
aspectos de la programación pragmática IHUN99], y muchos otros.

Conjunto de tazeos genéricas poza la constzucción
CONJUNTO DE TAREAS

1. Construir la infraestructura
arquitectónica (capítulo 10).

Revisar el diseño arquitectónico.

Codificar y probar los componentes que forman la
infraestructura arquitectónica.

Adquirir patrones arquitectónicos reutilizables.

Probar la infraestructura pa ra asegurar la
integridad de la interfaz.

Construir un componente del software (capítulo 11).

Revisar el diseño al nivel de componente.

Crear una serie de pruebas de unidad pa ra el
componente (secciones 13.3.1 y 14.7).

Codificar las estructuras de datos y la inferíase del
componente.

3.

Codificar los algoritmos internos y las funciones de
procesamiento relacionadas.

Revisar el código conforme éste se escribe (sección
26.4).

Buscar la exactitud.

Asegurarse de que se han mantenido los
estándares de codificación.

Asegurarse de que el código se documenta a sí
mismo.

Realizar pruebas de unidad al componente.

Dirigir todas las pruebas de unidad.

Corregir los errores descubiertos.

Aplicar de nuevo las pruebas de unidad.

Integrar el componente terminado a la infraestructura
arquitectónica.

•
¿Cuáles son
los objetivos

de los pruebas al
software?

5.5.2 Principios d e las pruebas

En un libro clásico sobre las pruebas realizadas al software, Glen Myers [MYE79]
establece una serie de reglas que bien pueden servir como objetivos de las pruebas:

• Las pruebas consisten en un proceso en el que se ejecuta un programa con la
intención de encontrar un error que aún no se descubre.

• Un buen caso de prueba es aquel en el que hay una gran probabilidad de
encontrar un error que aún no se descubre.

• Una prueba exitosa es aquella que encuentra un error que aún no se
descubría.

Estos objetivos implican un cambio radical desde el punto de vista de algunos desa-
rrolladores de software. Éstos se oponen a la visión inusual de que la prueba exito-
sa es aquella en la que no se encuentran errores. El objetivo aquí es diseñar pruebas
que de manera sistemática descubran diferentes clases de errores y que lo hagan
con un gasto mínimo de tiempo y esfuerzo.

Davis [DAV95] sugiere un conjunto de principios para las pruebas,1 0 el cual se ha
adaptado para aprovecharlo en este libro:

10 Aquí se presenta sólo un pequeño subconjunto de los principios de Davis para las pruebas. Para ob-

tener más información véase (DAV95).

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 125

F C O N S E J O £ .

) amplio
'.de

.debe
•quese

'ai lo grande",
•enla
del

í i se termina
cxqueño-,ol

teñios
. Para las

soto es
reí

•yprobar

Pr inc ip io # 1: Todas las pruebas deben ser rastreables hasta los requisitos
del clienteEl objetivo de las pruebas realizadas al sof tware es descubrir errores.
De aqui se desprende que los defectos más severos (desde el punto de vista del clien-
te) son aquellos que hacen fallar el programa al tratar de satisfacer sus requisitos.

P r inc ip io # 2 : Las pruebas se deben planear mucho antes de que comience
el proceso de prueba. La planeación de las pruebas (capítulo 13) puede comenzar
tan pronto como el modelo de análisis esté completo. La definición detallada de los
casos de prueba puede comenzar en cuan to el modelo de diseño haya sido solidifi-
cado. Por tanto, todas las pruebas se pueden planear y diseñar antes de que se haya
generado cualquier código.

P r inc ip io #3 : El principio de Pareto es aplicable para las pruebas de soft-
ware. Para establecerlo de manera simple, el principio de Pareto implica que 80 por
ciento de los errores descubiertos durante las pruebas con probabilidad serán ras-
treables hasta 20 por ciento de todos los programas. El problema, por supuesto, es
aislar estos componentes sospechosos y después probarlos.

P r inc ip io #4 : Las pruebas deben comenzar "en lo pequeño" y progresar
hacia "lo grande". Las primeras pruebas que se planean y ejecutan, por lo general,
se enfocan en los componen tes individuales. Conforme progresan las pruebas, el
enfoque cambia en un intento de encontrar errores en grupos integrados de compo-
nentes y, por último, en el sistema completo.

P r inc ip io #5 : Las pruebas exhaustivas no son posibles. El número de per-
mutaciones entre las rutas, incluso de un programa con un t amaño moderado, es
excepcionalmente grande. Por esta razón es imposible ejecutar cada combinación
de rutas para las pruebas. Sin embargo, se puede cubrir de manera adecuada la lógi-
ca del programa para asegurar que se hayan ejercitado todas las condiciones al nivel
de componentes (capítulo 14).

CONJUNTO DE TAREAS

Conjunto de tareas genéricas para las pruebas
1. Diseñar pruebas de unidad pora

cada componente del software
(sección 13.3.1)

Revisar cada prueba de unidad pora asegurar una
cobertura apropiada .

Dirigir la prueba de unidad.

Corregir los errores descubiertos.

Aplicar de nuevo las pruebas de unidad.

2. Desarrollar una estrategia de integración (sección
13.3.2).

Establecer el orden y la estrategia que se usará
para la integración.

Definir las "construcciones" y las pruebas
requeridas para ejercitarlas

11 Este principio se refiere a las pruebas funcionales, es decir, a las que se enfocan en los requisitos.
Las pruebas estructurales (que se enfocan en los detalles arquitectónicos o lógicos) pueden no refe-

rirse en forma directa a los requisitos específicos.

TM

PDF Editor

GIIIKi

126 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Dirigir pruebas de humo a diario.

Dirigir pruebas de regresión cada vez que sea
necesario.

Desarrollar una estrategia de validación (sección
13.5).

Establecer los criterios de validación.

Definir las pruebas requeridas para validar el
software.

Dirigir las pruebas de integración y validación.

Corregir los errores descubiertos.

Aplicar de nuevo las pruebas cada vez que sea

5. Dirigir las pruebas con mucho orden.

Realizar las pruebas de recuperación (sección
13.6.1).

Realizar las pruebas de seguridad (sección
13.6.2).

Realizar las pruebas de tensión (sección 13.6.3).

Realizar las pruebas de desempeño (sección
13.6.4).

6. Coordinar con el cliente las pruebas de aceptación
(sección 13.5.3).

\

(c O M S E J O ^ .

Se debe tener lo
seguridad de que el
¡tente sobe qué
esperar antes de que
se entregue el me-
mento de software.
De otra manera, el
dente esperaiá más
deloquesel

Como se mencionó en el capítulo 2, la actividad de despliegue abarca tres acciones:
entrega, soporte y retroalimentación. Como el software moderno es evolutivo por
naturaleza, el despliegue no se presenta una sola vez, sino varias veces conforme el
software avanza hacia su terminación. Cada ciclo de entrega le proporciona al clien-
te y a los usuarios finales un incremento de software operativo que provee funcio-
nes y características útiles. Cada ciclo de soporte proporciona documentación y asis-
tencia humana para todas las funciones y características introducidas durante todos
los ciclos de despliegue que se han presentado hasta la fecha. Cada ciclo de retroa-
limentación ofrece al equipo de software una guía importante que conduce a modi-
ficaciones en las funciones, características y el enfoque que se toma para el siguien-
te incremento.

La entrega de un incremento de software representa un fundamento importante
para cualquier proyecto de software. Cuando el equipo se prepara para crear un
incremento, se debe seguir una serie de principios clave:

Pr incipio # I : S e deben administrar las expectativas que el cliente tiene del
software. Con demasiada frecuencia, el cliente espera más de lo que el equipo ha
prometido entregar y de inmediato se presenta un desacuerdo. Esto genera una
retroalimentación improductiva que arruina la moral del equipo. En su libro sobre la
administración de expectativas, Naomi Kartun [KAR94] establece: "El punto inicial
para administrar las expectativas es volverse más consciente acerca de lo que se
comunica y de la forma en que se hace". Sugiere que un ingeniero de software debe
ser cuidadoso de no enviar al cliente mensajes conflictivos (como prometer más de
lo que se puede entregar de manera razonable en el marco de tiempo con el que se
cuenta, o entregar más de lo que se promete para un incremento de software y des-
pués menos de lo prometido para el siguiente).

TM

PDF Editor

CAPITULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 127

Principio #2: Se debe ensamblar y probar un paquete de entrega completo.
Se debe ensamblar un CD-ROM u otro medio que contenga todo el software ejecu-
table, archivos con los datos de soporte, documentos de soporte y otra información
relevante para que después lo prueben los usuarios reales. Todos los protocolos de
instalación y otras características operativas se deben ejercitar posteriormente en
todas las configuraciones de cómputo posibles (por ejemplo, hardware, sistemas
operativos, dispositivos periféricos, arreglos de red).

Pr inc ip io #3 : Se debe establecer un régimen de soporte antes de entregar
el software. Un usuario final espera responsabilidad e información exacta cuando
surja una pregunta o problema. Si el soporte es ad hoc o, aún peor, inexistente, el
cliente se siente insatisfecho de inmediato. El soporte debe ser planeado, el material
de soporte se debe preparar y se deben establecer mecanismos para mantener un
registro apropiado con que el equipo de software pueda realizar una evaluación
categórica de los tipos de soporte solicitados.

Pr inc ip io #4: Se debe proporcionar material instructivo apropiado a los
usuarios finales. El equipo de software entrega más que el software en sí; en caso
de ser necesario, se debe desarrollar un entrenamiento apropiado, se deben propor-
cionar directrices para la resolución de problemas, y se deben publicar descripciones
acerca de "cuál es la diferencia con este incremento de software".12

Principio #5: El software con errores se debe arreglar primero y entregar-
se después. Ante la presión del tiempo, algunas organizaciones de software entre-
gan incrementos de baja calidad con una advertencia para el cliente de que los erro-
res "se eliminarán en la próxima versión". Esto es un error. En el negocio del soft-
ware se dice: "Los clientes olvidarán que se les entregó un producto de alta calidad
unos pocos días después, pero nunca olvidarán los problemas que les causó un pro-
ducto de baja calidad. El software se los recuerda todos los días".

El software entregado proporciona un beneficio para el usuario final, pero tam-
bién provee una retroalimentación útil para el equipo de software. Al utilizar el incre-
mento, los usuarios finales deben ser motivados a comentar sobre las característi-
cas y funciones, facilidad de uso, confiabilidad y cualesquiera otras características
apropiadas. La retroalimentación debe recopilarla y registrarla el equipo de softwa-
re y aprovecharla para 1) hacer modificaciones inmediatas al incremento entregado
(si es necesario); 2) definir los cambios que serán incorporados en el próximo incre-
mento planeado; 3) realizar las modificaciones necesarias al diseño para ajustarlo a
los cambios; y 4) revisar el plan (incluyendo el calendario de entrega) del próximo
incremento para reflejar los cambios.

12 Durante la actividad de comunicación el equipo de software debe determinar los tipos de materia-
les de ayuda que quieren los usuarios.

TM

PDF Editor

128 PARTE DOS PRÁCTICA DE LA INGENIERIA DEL SOFTWARE

CONJUNTO DE TAREAS

2. Establecer la persona o grupo encargado del
r - o p o r * f o L u m o n o

Crear la documentación o las herramientas de
soporte por computadora.

Establecer mecanismos d e contacto (por e jemplo ,
un sitio w e b , teléfono, correo electrónico).

Establecer mecanismos p a r a la localización d e

p rob lemas .

Establecer mecanismos p a r a el repor te d e

p rob lemas .

3.

Conjunto de tareas genericas para el
1. C r e a r medios de en t rega .

Ensamblar y p r o b a r todos los

archivos ejecutables.

Ensamblar y p r o b a r todos los archivos d e da tos .

C r e a r y p r o b a r toda la documentac ión del usuario.

Implementar las versiones electrónicas (por

e jemplo , pdf).

Implementar archivos d e " a y u d a " con hipertexto.

Implementar una g u í a p a r a la resolución d e

p rob lemas .

P robar los medios d e en t r ega con un g r u p o

p e q u e ñ o d e usuarios representat ivos.

4 .

5.

6.

despliegue
Establecer u n a b a s e d e da tos p a r a el repor te d e

p r o b l e m a s / e r r o r e s .

Establecer mecanismos d e retroal imentación del

usuar io .

Definir el p roceso d e retroal imentación.

Definir las fo rmas d e retroal imentación (en pape l o

electrónica)

Establecer la b a s e d e d a t o s d e retroal imentación.

Definir el p roceso d e evaluación d e la

retroal imentación.

Diseminar los medios de en t rega a todos los

usuarios.

Dirigir las funciones d e sopor te continuas.

Proporcionar asistencia en la instalación y el

inicio.

Proporc ionar asistencia cont inua y d e resolución

de p rob lemas .

Recopilar la retroal imentación del usuar io

Registrar la retroal imentación.

Evaluar la retroal imentación.

Comunica rse con los usuar ios sobre la

retroalimentación.

La práctica de la ingeniería del software incluye conceptos, principios, métodos y
herramientas que aplican los ingenieros de sof tware durante el proceso de softwa-
re. Cada proyecto de ingeniería del software es diferente, a u n así existe un conjunto
de principios y tareas aplicables para cada actividad del marco de t rabajo del proce-
so, sin importar el proyecto o producto.

Si se pretende dirigir una buena práctica de la ingeniería del software, e s necesa-
rio un conjunto de puntos esenciales técnicos y de gestión. Los puntos técnicos
incluyen la necesidad de entender los requisitos y las á reas de incertidumbre del pro-
totipo, así como la necesidad de definir de manera explícita la arquitectura del soft-
ware y el plan de integración de componentes . Los puntos esenciales de gestión
incluyen la necesidad de definir prioridades y especificar un calendario realista que
las refleje, la necesidad de precisar medidas de control del proyecto apropiadas para
la calidad y el cambio.

TM

PDF Editor

CAPÍTULO 5 LA PRÁCTICA: UNA VISIÓN GENÉRICA 129

Los principios de comunicación con el cliente se enfocan en la necesidad de redu-
cir el ruido y mejorar el canal de comunicación conforme progresa la conversación
entre el desarrollador y el cliente. Ambas partes deben colaborar para que se esta-
blezca la mejor comunicación.

Los principios de planeación se enfocan en las directrices encaminadas a cons-
truir el mejor mapa para realizar el trabajo que conducirá a terminar un sistema o
producto. El plan se puede diseñar sólo para un incremento de software, o se puede
definir respecto del proyecto completo. Independientemente de ello, el plan debe
indicar qué se hará, quién lo hará y cuándo se completará el trabajo.

El modelado incluye tanto el análisis como el diseño, al describir representacio-
nes del software que se vuelven más detalladas de manera progresiva. La finalidad
de los modelos es solidificar la comprensión del trabajo que se realizará y propor-
cionar una guía técnica para quienes implementarán el software.

La construcción incorpora un ciclo de codificación y pruebas en el cual primero
se genera el código fuente y después éste se prueba para detectar errores. La inte-
gración combina los componentes individuales e involucra una serie de pruebas que
se enfocan en los aspectos del funcionamiento general y de las interfases locales.
Los principios de codificación definen las acciones genéricas que deben ocurrir antes
de que se escriba el código, mientras éste se crea y después de que se haya comple-
tado. Aunque existen muchos principios para las pruebas, sólo uno es el dominante:
las pruebas se forman con un proceso en el que un programa se ejecuta con el obje-
tivo de encontrar un error.

Durante el desarrollo del software evolutivo se presenta el desarrollo para cada
incremento de software que se presenta al cliente. Los principios clave para la entre-
ga consideran administrar las expectativas del cliente y dotar al usuario con infor
mación de soporte para el software. El soporte necesita una preparación previa. La
retroalimentación permite al cliente sugerir cambios que tienen un valor de negocios
y proporcionan al desarrollador una entrada para el próximo ciclo iterativo de la
ingeniería del software.

[AMB02] Ambler, S. y R. Jeffrics, Agile Modeling, Wiley, 2002.
1BEN99] Bentley, J„ Programming Pearls, 2a. ed., Addison-Wesley, 1999.
IBOE 96] Boehm, B., "Anchoring the Software Process", en IEEE Software, vol. 13, núm. 4, julio

de 1996, pp. 73-82.
[BOHOO] Bohl, M. y M. Rin, Tools for Structured Design: An Introduction lo Programming Logic,

5a. ed., Prentice-Hall, 2000.
[DAV95] Davis, A., 201 Principies of Software Development, McGraw-Hill, 1995.
[FOW991 Fowler, M. et al., Refactoring: Improving the Design ofExisting Code, Addison-Wesley,

1999.
[GAR95] Garlan, D. y M. Shaw, "An introduction to Sof tware Architeclure", en ñdvanees in

Software Engineering and Knowledge Engineering, vol. 1 (V. Ambriola y G. Tortora, eds.),
World Scientific Publishing Company, 1995.

[HIG00I Highsmith,]., Adaptive Software Development: An Evolutionary Approach to Managing
Complex Systems, Dorsct House Publishing, 2000.

TM

PDF Editor

PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

[H0096] Hooker, D„ "Seven Principies of Software Development", septiembre de 1996, disponible
en http://c2.com/cgi/wikiSevenPrinciplesOfSoftwareDevelopment.

[HUN95] Hunt, D., A. Bailey y B. Taylor, The Art of Facilitation, Perseus Book Group, 1995.
[HUN99] Hunt A., D. Thomas y W. Cunningham, The Pragmatic Programmer, Addison-Wesley,

1999.
DUS99] Justice, T. etal., TheFacilitators Fieldbook, AMACOM, 1999.
[KAN931 Kanner, C., J. Falk y H. Q. Nguyen, Testing Computer Software, 2a. ed., Van Nostrand

Reinhold, 1993.
[KAN96J Kaner, S. et al., The Facilitator's Cuide to Preparatoiy Decisión Making, New Society

Publishing, 1996.
[KAR94] Karten, N., Managing Expcctations, DorsetHouse, 1994.
[KER78] Kernighan, B. y P. Plauger, The Elements of Programming Style, 2a. ed., McGraw-Hill,

1978.
[KNU98] Knuth, D„ The Art of Computer Programming, 3 vo lúmenes , Addison-Wesley, 1998.
[MCC93] McConnnell, S., Code Complete, Microsoft Press, 1993.
(MCC97J McConnell, S„ "Software's Ten Essentials", en IEEE Software, vol. 14, núm. 2, marzo-

abril, 1997, pp. 143-144.
[MYE78J Myers, G„ Composite Structured Design, Van Nostrand, 1978.
[MYE79] Myers, G„ The Art of Software Testing, Wiley, 1979.
[PAR72] P a m a s , D.L., "On Criteria to Be Used in Decomposing Sys tems into Modules", en

CACM, vol. 14, núm. 1, abril de 1972, pp. 221-227.
1POL45] Polya, G„ How to Solve II, Princeton University Press, 1945.
[ROS75] Ross, D., J. Goodenough y C. Irvine, "Software Engineering: Process, Principies and

Goals", en IEEE Computer, vol. 8, núm. 5, mayo de 1975.
[SHA95a) Shaw, M. y D. Garlan, "Formulations and Formalisms in Software Architecture", Volume

1000—Lecture Notes in Computer Science, Springer-Verlag, 1995.
[SHA95b] Shaw, M. e t al., "Abstractions for Software Architecture and Tools to Support Them",
en IEEE Trans. Software Engineering, vol. SE-21, núm. 4, abril de 1995, pp. 314-335.

ISTE74] Stevens, W., G. Myers y L. Constant ine, "Structured Design", en IBM Systems Journal,
vol. 13, núm. 2, 1974, pp. 115-139.

[TAY90] Taylor D. A., Object-Oriented Technology: A Manager's Guide, Addison-Wesley, 1990.
[ULL97] Ullman, E., Cióse to the Machine: Technophilia and its Discontents, City Lights Books,

1997.
[W1R71] Wirth, N„ "Program Development by Stepwise Refinement", en CACM, vol. 14, núm. 4,

1971, pp. 221-227.
[W0095] Wood, J. y D. Silver, Joint Application Design, Wiley. 1995.
[ZAH90] Zahniser, R. A., "Building Software in Groups", en American Programmer, vol. 3, núms.

7-8, julio-agosto de 1990.

5.1. Inténtese resumir en u n párrafo breve los "siete principios para el desarrollo de software"
de David Hooker (sección 5.1). Trátese de extraer la esencia de su guia en sólo u n a s cuan tas
oraciones y sin usar las palabras de Hooker.

5.2. ¿Existen otros puntos técnicos "esenciales" que se puedan recomendar a los ingenieros de
software? Enunciar cada uno de ellos y explicar por qué se han incluido.

5.3. ¿Existen otros puntos "esenciales" de gestión que se puedan recomendar a los ingenieros de
software? Enunciar cada uno de ellos y explicar por qué se ha incluido.

5.4. Un principio impor tante de la comunicación es tablece "prepare an te s de comunicar".
¿Cómo podría esta preparación mani fes ta rse por si misma en los pr imeros t r aba jos que se
realizan? ¿Cuáles productos de t rabajo podrían resultar como consecuencia de la preparación
oportuna?

TM

PDF Editor

http://c2.com/cgi/wikiSevenPrinciplesOfSoftwareDevelopment

CAPÍTULO 5 LA PRÁCTICA: U N A VISIÓN GENÉRICA 131

5.5. H á g a s e u n a inves t igac ión d e la "facil i tación" p a r a la act ividad d e c o m u n i c a c i ó n (utilícen-
s e las r e fe renc ia s q u e s e p r o p o r c i o n a n u o t ras) y p r e p á r e s e u n c o n j u n t o de di rect r ices q u e se
e n f o q u e n só lo e n la facil i tación.

5 . 6 . ¿En q u é di f ieren la c o m u n i c a c i ó n ágil y la comun icac ión d e la ingenier ía de s o f t w a r e tra-
dicional? ¿En q u é s o n s imi lares?

5.7. ¿Por q u é e s n e c e s a r i o con t inua r?

5.8. Real izar u n a inves t igac ión d e la "negoc iac ión" p a r a la ac t iv idad de c o m u n i c a c i ó n y p r e p a -
rar un c o n j u n t o d e di rect r ices q u e s e e n f o q u e n só lo e n la negoc iac ión .

5.9. Describir lo q u e significa granularidad e n el con t ex to de un ca l enda r io de proyecto.

5.10. ¿Por q u é s o n impor t an te s los m o d e l o s e n el t r aba jo d e la ingenier ía de so f twa re? ¿Siempre
son necesar ios? ¿Son cal i f icadores pa ra su respues ta ace rca d e la neces idad?

5.11 . ¿Cuáles s o n los t r es "dominios" q u e s e c o n s i d e r a n d u r a n t e el m o d e l a d o del anál is is?

5.12. Tratar de ag rega r u n pr incipio adicional a los e n u n c i a d o s pa ra la codif icación d e la s ec -
ción 5.6.

5.13. ¿Qué e s u n a p r u e b a ex i tosa?

5.14. ¿Se e s t á d e a c u e r d o con el s igu ien te e n u n c i a d o ? : "debido a q u e e n t r e g a m o s múl t ip les
i n c r e m e n t o s al cl iente, n o d e b e m o s p r e o c u p a m o s p o r la cal idad e n los p r i m e r o s i n c r e m e n t o s :
los p r o b l e m a s s e p u e d e n resolver e n i t e rac iones pos te r io res . Expliqúese la r e spues t a .

5.15. ¿Por q u é e s impor t an t e la r e t roa l imen tac ión pa ra el e q u i p o d e s o f t w a r e ?

O T R A S L E C T U R A S Y F U E N T E S DE I N F O R M A C I Ó N

La c o m u n i c a c i ó n c o n el c l iente e s u n a act ividad m u y i m p o r t a n t e e n la ingenier ía del s o f t w a r e ;
n o o b s t a n t e , a l g u n o s p r o f e s i o n a l e s n o ded ican t i empo a leer ace rca de ella. Los l ibros de P a r d e e
(To Satsfy and Delight Your Costumer, Dorset House , 1996) y Karten [KAR94] p roporc ionan una
g r an pe r spec t iva d e los m é t o d o s p a r a la in te racc ión efect iva con el cl iente. En m u c h o s l ibros
s o b r e la ges t ión d e p royec tos s e c o n s i d e r a n los c o n c e p t o s y pr incipios de la c o m u n i c a c i ó n y la
p l a n e a c i ó n . Las o fe r t a s út i les re la t ivas a la ges t ión d e p r o y e c t o s incluyen: Hughs y Cotterell
(Software Project Management, s e g u n d a edic ión , McGraw-Hill, 1999), Phillips (The Software
Project Manager's Handbook, IEEE C o m p u t e r Society Press , 1998), McConnel l (Software Project
survivai ouide, Microsoft Press, 1998) y Gilb (Principies of software Engineering Management.
Addison-Wesley, 1998).

Casi cua lqu ie r libro sobre ingenier ía del s o f t w a r e c o n t i e n e una exposic ión útil s o b r e los con-
cep to s y pr incipios p a r a el anál is is , el d i seño y las p ruebas . Entre las m e j o r e s o f e r t a s e s t án los
l ibros d e Endres y s u s c o l e g a s (Handbook of Software and Systems Engineering, Addison-Wesley,
2003), Sommerv i l l e (Software Engineering, sex ta edición, Addison-Wesley, 2000), Pf leeger
(Software Engineering: Theory and Practice, Prent ice-Hall . 2001) y Schach (Object-Oriented and
Ciassicai Software Engineering, McGraw-Hill, 2001). Davis h a r ecop i l ado u n a ampl ia colección de
pr incipios de s o f t w a r e en [DAV95],

Los c o n c e p t o s y pr incipios del m o d e l a d o s e c o n s i d e r a n e n m u c h o s libros d e d i c a d o s al a n á -
lisis d e requis i tos o al d i s e ñ o d e s o f t w a r e . Young (EJfective Requirements Practices, Addison-
Wesley, 2001) resa l ta u n "equipo c o n j u n t o " de c l i en tes y desa r ro l l adores q u e e l aboren los requi-
s i tos co l ec t i vamen te . Weigers (Software Requirements, Microsoft Press, 1999) p r e s e n t a m u c h o s
requis i tos c l ave de ingenier ía y requis i tos de las p rác t icas de ges t ión . Sommerv i l l e y Kotonya
(Requirements Engineering: Process and Techniques, Wiley. 1998) a n a l i z a n los c o n c e p t o s y las téc-
n i c a s d e "ob tenc ión" y o t r o s pr incipios d e la ingenier ía de requis i tos .

El libro de N o r m a n (The Design ofEveryday Things. Cur rency /Doub leday . 1990) e s u n a lec tu-
ra ob l igada p a r a cua lqu ie r ingeniero de s o f t w a r e q u e in t en te h a c e r el t r aba jo de d i s e ñ o
Winograd y s u s co legas (Bringing Design to Software, Addison-Wesley. 1996) h a n ed i t ado u n a
exce l en t e colecc ión d e e n s a y o s q u e t ra tan sobre los a s p e c t o s p rác t i cos del d i s e ñ o de so f tware .
C o n s t a n t i n e y Lockwood (Software for Use, Addison-Wesley, 1999) p r e s e n t a n los c o n c e p t o s a s o -

TM

PDF Editor

132 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

ciados con el "diseño centrado en el usuario". Tognazzini (Tog on Software Design, Addison-
Wesley, 1995) presenta una valiosa exposición filosófica de la naturaleza del diseño y el impac-
to de las decisiones sobre la calidad y la capacidad del equipo para producir un software que
proporcione un gran valor a su cliente.

Hay cientos de libros que tratan sobre uno o más elementos de la actividad de construcción.
Kernighan y Plauger (KER78] escribieron un texto clásico sobre el estilo de programación;
McConnell (MCC93] presenta directrices pragmát icas para la construcción práctica de software;
Bentley ¡BEN99] sugiere una amplia variedad de perlas de programación; Knuth [KNU98] ha
escrito una serie clásica de tres volúmenes sobre el arte de la programación, y Hunt |HUN99|
sugiere directrices pragmáticas de programación. La bibliografía sobre pruebas ha florecido en
la década pasada. Myers [MYE79] s e conserva como un clásico. Los libros de Whitaker (How to
Break Software, Addison-Wesley, 2002), Kaner y sus colegas (Lessons Learned in Software Testing,
Wiley, 2001) y Marick (The Craft of Software Testing, Prentice-Hall, 1997) presentan conceptos y
principios importantes sobre las pruebas, así como una guía pragmática considerable.

En Internet existe una amplia variedad de fuentes de información sobre la práctica de la
ingeniería del software. En el sitio web de SEPA se puede encontrar una lista actualizada de
referencias en la red mundial, las cuales son relevantes para la práctica de la ingeniería de soft-
ware:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

I N G E N I E R Í A
DE SISTEMAS 6

C O N C E P T O S

C L A V E Hace casi 500 años, Maquiavelo dijo: "No hay nada más difícil de llevar a
cabo, más peligroso de realizar o de éxito m á s incierto que encabezar la
introducción de un nuevo orden de cosas". Durante los 50 últimos años,

los s is temas basados en computadora han introducido un nuevo orden. Aunque
la tecnología ha tenido varios avances desde la época de Maquiavelo, sus pala-
bras aún siguen vigentes.

La ingeniería del sof tware ocurre como consecuencia de un proceso l lamado
ingeniería de sistemas. En lugar de concentrarse sólo en el software, esta disci-
plina se centra en una variedad de e lementos mientras analiza, diseña y orga-
niza aquellos e lementos de un sistema que pueden ser un producto, un servicio
o una tecnología para la transformación o control de información.

El proceso de ingeniería de s is temas a sume distintas formas, según el domi-
nio de aplicación en que se utilice. La ingeniería de procesos de negocios se apli-
ca cuando el contexto del trabajo se enfoca en una empresa . Cuando se va a
construir un producto (en es te contexto un producto incluye todo, desde un telé-
fono inalámbrico hasta un sistema de control de tráfico aéreo), al proceso se le
llama ingeniería de producto.

Tanto la ingeniería de procesos de negocio como la de producto intentan
poner orden en el desarrollo de s is temas basados en computadora . Aunque cada
uno de ellos se utiliza en un dominio de aplicación diferente, ambos buscan
poner al sof tware en su contexto. Es decir, tanto la ingeniería de procesos de

¿ Q u é e s ? Antes de que sea posible
construir el software, por medio de la
ingeniería, se debe entender el "siste-
ma" en que éste reside. Pora lograr-
lo es necesario determinar el objetivo

general del sistema; se debe identificar el papel
que tienen el hardware, el software, las perso-
nas, las bases de datos, los procedimientos y
otros elementos del sistema; y se deben identifi-
car, analizar, especificar, modelar, validar y ges-
tionar los requisitos operacionales. Estas activi-
dades son el fundamento de la ingeniería de sis-
temas.

¿ Q u i é n lo h a c e ? Un ingeniero de sistemas tra-
baja para entender los requisitos de un sistema
al trabajar con el cliente, usuarios futuros y otros
-reresados.

¿ P o r q u é e s i m p o r t a n t e ? Existe un a n t i g u o
proverbio que dice: "los árboles no dejan ver el
bosque". En este contexto, el "bosque" es el sis-
tema y los árboles son los elementos tecnológi-
cos (incluido el software) que se requieren para
realizar el sistema. Si se construyen los elemen-
tos tecnológicos de una manera precipitada
antes de entender el sistema, sin duda se come-
terán errores que decepcionarán al cliente
Antes de preocuparse por los árboles se debe
entender el bosque.

¿ C u á l e s s o n los p a s o s ? 5e identifican los obje-
tivos y requisitos operacionales más detallados
al obtener información del cliente; se analizan
los requisitos para evaluar su claridad, si está
completo y es consistente; se crea una especifi
cación, q u e p o r lo general está incorporada a

133

TM

PDF Editor

134 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

un modelo de sistema, que después lo validan
los participantes y clientes. Por último, se gestio-
nan los requisitos del sistema para asegurar que
los cambios se controlan de manera apropiada.

¿Cuál e s el p r o d u c t o o b t e n i d o ? Se debe pro-
ducir una representación efectiva del sistema,
como consecuencia de b ingeniería del mismo. Se
puede realizar a través de un prototipo, una
especificación o incluso un modelo simbólico,
pero debe comunicar las características operati-
vas, funcionales y de comportamiento del siste-

ma que se va a construir e incorporarlo dentro
de la arquitectura del sistema.

¿Cómo puedo estar seguro de que lo he
h e c h o c o r r e c t a m e n t e ? Mediante una revi-
sión de todos los productos de trabajo obteni-
dos, para verificar su claridad, si está completo
y es consistente. Es importante mencionar que
los cambios en los requisitos de un sistema
deben gestionarse con métodos sólidos de GCS
(capítulo 27).

negocios como la ingeniería de producto,1 t rabajan para asignar un papel al softwa-
re de computadora y, al mismo tiempo, establecer los enlaces que unen al software
con otros elementos de un sistema basado en computadora.

Este capítulo se centrará en las necesidades de gestión y en las actividades espe-
cíficas del proceso que permitan a la organización de sof tware asegurarse de hacer
las cosas correctas en el t iempo correcto y del modo correcto.

6 . 1 S I S T E M A S B A S A D O S EN C O M P U T A D O R A

La palabra sistema tal vez sea el término m á s usado y del que m á s se abusa en el
léxico técnico. Se habla de s is temas políticos, s is temas educativos, de s is temas de
aviación y s is temas de fabricación, de s is temas bancarios y s is temas de locomoción.
La palabra dice muy poco. El adjetivo se utiliza para describir el sistema y así enten-
der el contexto en el que se usa la palabra. El diccionario Webster define sistema de
la siguiente manera:

I. Un conjunto o disposición de cosas relacionadas que forman una unidad o un todo or-
gánico; 2. Una serie de hechos, principios, reglas, etcétera, clasificado y dispuestos de ma-
nera ordenada que muestran un plan lógico de la unión de las partes; 3. Un método o plan
de clasificación o disposición; 4. Una manera establecida de hacer algo; método; procedi-
miento...

En el diccionario aparecen cinco definiciones más, pero no se sugiere un sinónimo
preciso. Sistema es una palabra especial. Al retomar la definición del diccionario
Webster, un sistema basado en computadora se define como:

Un conjunto o disposición de e lementos que están organizados para cumplir una meta
predefinida al procesar información.

1 En realidad, el término ingeniería de sistemas se emplea con frecuencia en este contexto. Sin em-
bargo, para los propósitos de este libro "ingeniería de sistemas" es genérico y abarca la ingeniería
de procesos del negocio y la ingeniería de producto.

TM

PDF Editor

CAPITULO 6 INGENIERÍA DE SISTEMAS 135

^ O N S E J Q Í ^

r a debe coer en lo
i de tener una

i 'centrodo en el
i'.Fara

'.deben
r todos los
i de un

i antes de
í en el

Es posible que la meta sea apoyar una función de negocio o desarrollar un produc-
to que pueda venderse para generar beneficios. Para cumplir la meta, un sistema
basado en computadora emplea una variedad de e lementos del sistema:

S o f t w a r e . Programas de computadora, estructuras de datos y documentación
que sirven para hacer efectivo el método, procedimiento o control lógico que se
requiere.

H a r d w a r e . Dispositivos electrónicos que proporcionan capacidad de cálculo, dis-
positivos de interconexión (por ejemplo, conmutadores de red, dispositivos de tele-
comunicación) que permiten el flujo de datos, y dispositivos electromecánicos (como
sensores, motores, bombas) que proporcionan una función externa, del mundo real.

P e r s o n a s . Usuarios y operadores del hardware y software.

B a s e s d e d a t o s . Una extensa y organizada recopilación de información a la cual
s e tiene acceso a t ravés de software y que persiste a t ravés del tiempo.

D o c u m e n t a c i ó n . Información descriptiva (por ejemplo, modelos, especificacio-
nes, manuales , archivos de ayuda en línea, sitios web) que detalla el uso y operación
del sistema.

P r o c e d i m i e n t o s . Los pasos que definen el uso específico de cada e lemento del
sistema o el contexto de procedimiento en que reside el sistema.

Estos e lementos se combinan de varias maneras para t ransformar la información.
Por ejemplo, un depar tamento de mercadotecnia t ransforma la información bruta de
ventas en un perfil del comprador típico del producto; un robot t ransforma un archi-
vo de órdenes que contiene instrucciones específicas en un conjunto de señales de
control que provocan alguna acción física específica. La creación de un sistema de infor-
mación para asesorar al departamento de mercadotecnia y un software de control para
el robot requiere de la ingeniería de sistemas.

"Nunca confíes en una computadora que no puedas lanzar por la ventana."
Stcve Woiniak

K
CL/AVE

complejos
•eafcdod una

s q u e a
i sistemas.

Una característica complicada de los s is temas basados en computadora e s que tal
vez constituyen un macroelemento de un sistema aún mayor. El macroelemento es
un sistema basado en computadora que es parte de un sistema mayor basado tam-
bién en computadora. Por ejemplo, un sistema de automatización de una ftbnca se
considera una jerarquía de sistemas. En el nivel más ba jo de la jerarquía se encuen-
tra una máquina de control numérico, robots y dispositivos de entrada de informa
ción. Cada uno de és tos es un sistema basado en computadora por derecho propio.
Los elementos de la máquina de control numérico incluyen hardware electrónico y
electromecánico (por ejemplo, procesador y memoria, motores, sensores), sof tware
(para comunicaciones y control de la máquina), personas (el operador de la máqui-
na), u n a base de datos (el programa de CN almacenado), documentación y procedí-

TM

PDF Editor

1 3 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

mientos. Podría aplicarse una descomposición similar al robot y al dispositivo de
entrada de información. Todos son s is temas basados en computadora.

En el siguiente nivel de la jerarquía se define una célula de fabricación. Ésta e s ur
sistema basado en computadora que puede tener e lementos propios (por ejemplo,
computadoras , instalaciones mecánicas), y también integra los macroelementos que
se han denominado máquina de control numérico, robot y dispositivo de entrada de
información.

En resumen, la célula de fabricación y sus macroelementos están compuestos de
e lementos del sistema con las etiquetas genéricas: software, hardware, personas
bases de datos, procedimientos y documentación. En algunos casos los macroele-
mentos pueden compartir un e lemento genérico. Por ejemplo, el robot y la máquina
de CN podría operarlas el mismo operador (el e lemento personas). En otros casos,
los e lementos genéricos son exclusivos de un sistema.

El papel del ingeniero de s is temas es definir los e lementos de un sistema especí-
fico basado en computadora en el contexto de la jerarquía global de sistemas
(macroelementos). En las secciones siguientes se examinan las tareas que constitu-
yen la ingeniería de s is temas de computadoras .

L H J E R A R Q U Í A P E LA I N G E N I E R Í A P E S I S T E M A S

Sin importar su dominio de enfoque, la ingeniería de s is temas abarca una serie de
métodos para navegar de arriba hacia abajo y de abajo hacia arriba en la jerarquía
ilustrada en la figura 6.1. El proceso de la ingeniería de s is temas por lo general
comienza con una "visión global". Es decir, se examina el dominio entero del nego-
cio o producto para asegurarse de que se puede establecer el contexto tecnológico
o de negocios apropiado. La visión global es refinada para enfocarse totalmente en
un dominio específico de interés. Dentro de un dominio especial se analiza la necesi-
dad de elementos del sistema (por ejemplo, información, software, hardware, perso-
nas). Al final se inicia el análisis, diseño y construcción del e lemento del sistema
deseado. En la parte alta de la jerarquía se establece un contexto muy amplio, y en el
de la parte baja se conducen actividades técnicas detalladas, realizadas por la disci-
plina de ingeniería correspondiente (por ejemplo, ingeniería de hardware o software).2

Dicho de una manera un poco más formal, la visión global (VG) la compone un
conjunto de dominios (D,) en donde cada uno de ellos puede ser un sistema o un sis-
tema de s is temas por derecho propio.

VG = (D„ D2, D3,.... Dn 1

Cada dominio lo componen elementos (E;) específicos, los cuales tienen un papel
para cumplir el objetivo y las metas del dominio o componente:

T j s o e r ó de Sistemas
X 5 S) proporciona
M á s tuertes útiles en
wwwjKose.org.

\
CLÁVE

<x bueno ingeniería de
se ten ios comienza con
¡ r en tendrn ien to doro
del c o n t e x t o - l o visión

y después, de
•nuera progresiva, el
e v o q u e se delimita
ñosta lo comprensión
de los detalles técnicos.

2 Sin embargo, en algunas situaciones los ingenieros del sistema deben considerar primero los ele-
mentos individuales del sistema. Mediante el uso de este enfoque, los subsistemas se describen de
abajo hacia arriba al considerar primero los componentes detallados que forman el subsistema.

TM

PDF Editor

CAPITULO 6 INGENIERÍA DE SISTEMAS 137

A ' - I£;/ £2. £3, £ m)

Por último, cada e lemento se implementa al especificar los componentes (Q) técni-
cos que logran la función necesaria para un elemento:

E¡ = I C „ C 2 , C A Cjtl

En el contexto de software un componente podría ser un programa de computado-
ra, un componente reutilizable de un programa, un módulo, una clase u objeto o
incluso un enunciado en lenguaje de programación.

"Siempre diseño los cosos considerándolos en su contexto inmediato superior: uno silla en un cuorto, un cuarto en una
casa, uno casa en un vecindario, un vecindario en un plan urbano."

Eliel S a a r i n e n

Es importante notar que el ingeniero de s is temas estrecha m á s el enfoque de tra-
bajo conforme avanza hacia abajo en la jerarquía descrita. Sin embargo, la visión
global muestra una clara definición de la funcionalidad general que le permitirá al
ingeniero entender el dominio y el sistema o producto en el contexto apropiado.

d e
d e

6.2.1 Modelado del sistema

El modelado de sistemas es un e lemento importante del proceso de ingeniería de sis-
temas. Sin importar que el enfoque esté en la visión global o en la visión detallada,
el ingeniero crea modelos que [MOT92]:

Dominio d e negó,
o de producto

Dominio d e interés

Elemento del sistema

V i s i ó n d e l e l e m e n t o

~ i r n r ~ i r n r ~ i i 11 ~ ~ i 111111 T T f f l 1 11 I t r r d í 111 I L L L U I I I I l ü z m
V i s i ó n d e t a l l a d a

Visión del dominio

V i s i ó n g l o b a l

TM

PDF Editor

138 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

¿Qué se
• logro ton el

modelo de lo
ingeniería de
sistemas?

% CLAVE
Un ingeniero d e
s i s t emas considera los
s iguientes factores al
de te rminar soluciones
a l ternat ivas:
supues tos ,
simplificaciones,
l imitaciones,
restricciones y
preferencias del
cliente.

• Definen los procesos que satisfacen las necesidades de la visión que se considera
• Representen el comportamiento de los procesos y los supuestos en los que se

basa el comportamiento.

• Definen de modo explícito las entradas exógenas3 y endógenas de informa-
ción al modelo.

• Representan todas las uniones (incluidas las salidas) que permiten al
ingeniero entender mejor la visión.

Al construir un modelo del sistema el ingeniero debe considerar algunas restricciones:

1. Supuestos que reducen el número de permutaciones y variaciones posibles, lo
que permite al modelo reflejar el problema de una manera razonable. Por
ejemplo, un producto de representación tridimensional que utiliza la industria
del entretenimiento para crear animaciones realistas. Un dominio del producto
permite la representación de formas humanas en tres dimensiones. Las entra-
das a este dominio comprenden la habilidad de adaptar movimiento de un ac-
tor humano vivo, de un video o de la creación de modelos gráficos. El
ingeniero de sistemas hace ciertos supuestos sobre el intervalo de movimiento
humano permitido (por ejemplo, las piernas no pueden enrollarse alrededor
del torso) de modo que pueda limitarse el proceso y la gama de entradas.

2. Simplificaciones que permiten la creación del modelo a tiempo. Para ilustrarlo
se puede considerar una compañía de productos de oficina que vende y sumi-
nistra una amplia variedad de fotocopiadoras, escáneres y equipos similares.
El ingeniero de sistemas modela las necesidades de la organización suminis-
tradora y trabaja para entender el flujo de información que engendra una or-
den de suministro. Aunque una orden de suministro puede originarse desde
muchas fuentes, el ingeniero toma en cuenta sólo dos de ellas: la demanda
interna y la petición externa. Esto permite una partición simplificada de entra-
das que se requiere para generar la orden de suministro.

3. Limitaciones que ayudan a delimitar el sistema. Por ejemplo, se modela un sis-
tema de aeronáutica para un avión de próxima generación. Como el avión
tiene un diseño de dos motores, el dominio de monitoreo para la propulsión
será modelado para acomodar un máximo de dos motores y sus numerosos
sistemas asociados.

4 . Restricciones que guían la manera de crear el modelo y tomar el enfoque al
implementarlo. Por ejemplo, la infraestructura tecnológica para el sistema de
representación tridimensional descrito antes utiliza procesadores duales ba-
sados en G5. La complejidad de cálculo de los problemas debe restringirse
para encajar en los límites de proceso que imponen estos procesadores.

3 Las entradas exógenas unen un elemento de una visión dada con otros elementos en el mismo ni-
vel o en otros niveles; las entradas endógenas unen componentes individuales de un elemento en
una visión particular.

TM

PDF Editor

C A P Í T U L O 6 INGENIERÍA DE SISTEMAS 139

5 . Preferencias q u e indican la arquitectura preferida para todos los datos , funcio-
nes y tecnología. La solución preferida a veces entra en conflicto con otros
factores restrictivos. Sin embargo, la satisfacción del cliente m u c h a s veces se
t oma en cuenta has t a el p u n t o de realizar su en foque preferido.

El modelo de s is tema resul tante (desde cualquier visión) puede reclamar una solu-
ción automát ica por completo, semiau tomát ica o un en foque manual . De hecho, con
f recuencia es posible caracterizar mode los de cada tipo que sirvan c o m o soluciones
al ternat ivas del problema que se t iene entre manos . En esencia , el ingeniero de sis-
t e m a s tan sólo modifica la influencia relativa de diferentes e l emen tos del s is tema
(personas, hardware , software) para crear mode los de cada tipo.

"Las cosos simples deben set sim)les. Las tosas complejos deben ser posibles."
Alan Kay

6.2.2 Simulación de l s i s tema

*
idelo

~é simulo-
i sistema

unentoel
'pmyecto.

rio
áeutüuar
x proceso
' el cual

rvn
émbolo en

ieroaón, y
jízor oíros

poro afinar

Muchos s i s t emas basados en computadora interactúan con el m u n d o real en forma
reactiva. Es decir, los even tos del m u n d o real los moni torean el ha rdware y el sof t -
w a r e que c o m p o n e n el s is tema b a s a d o en computadora y, con base en es tos even-
tos, el s i s tema impone control sobre las máquinas , los procesos e incluso sobre la
gen te que genera los eventos. Los s i s temas de t iempo real y s is temas empot rados a
m e n u d o per tenecen a la categoría de s is temas reactivos.

Muchos s i s temas de la categoría de los reactivos controlan m á q u i n a s o p rocesos
(como aerol íneas comercia les o refinerías de petróleo) que deben operar con un
g rado muy alto de confiabilidad. Si el s is tema falla podr ían ocurrir pérdidas c c o n ó
micas o h u m a n a s significativas. Por esta razón, el mode lado del s is tema y las herra-
mien tas de simulación se utilizan para ayudar a el iminar sorpresas c u a n d o se cons-

truyen sis temas reactivos basados en computadora. Estas herramientas se aplican
durante el proceso de ingeniería de sistemas, cuando se especifica el papel del hard-
ware, el software, las bases de datos y las personas. El modelado y las herramientas de
simulación permiten al ingeniero de s is temas probar una especificación del sistema.

HERRAMIENTAS DE SOFTWARE

Herramientas de simulación del sistema
N

O b j e t i v o : Las herramientas de simulación del
sistema proporcionan al ingeniero de software

c capacidad de predecir el comportamiento de un
esterna de tiempo real antes de que éste se construya.
Además, estas herramientas permiten al ingeniero de
software desarrollar maquetas del sistema en tiempo
-«al, lo que permite al cliente tener una visión del

funcionamiento, operación y respuesta antes de la
implementación real.

M e c á n i c a : Las herramientas de esta categoría permiten
al equipo definir los elementos de un sistema basado
en computadoras, y después ejecutar varias
simulaciones para entender mejor las características
operacionales y el desempeño general del sistema.

Y

TM

PDF Editor

1 4 0 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

r
Existen dos amp l i a s ca tegor ías d e simulación del

sistema: 1) he r ramien tas d e propósitos genera le s q u e

pueden mode la r d e m a n e r a virtual cualquier sistema

b a s a d o en computadoras , y 2) her ramientas d e

propósitos especiales , q u e es tán d i s e ñ a d a s p a r a

emplear las en un dominio de apl icación específ ica
(como en sistemas d e aero l íneas , sistemas d e

manufac tu ra , sistemas electrónicos).

Herramientas representativas4

CSIM, desa r ro l l ado por Lockheed Mart ín A d v a n c e d

Technology Labs [www.all .extemal. lnco.com), es un

simulador d e eventos discretos d e propósitos genera le s

p a r a sistemas or ien tados a d i a g r a m a s d e edificios.

Simics, desa r ro l l ado p o r Virtutech (www.virtutech.com), es

una p la ta forma d e simulación d e sistema q u e p u e d e

mode l a r y ana l i za r sistemas b a s a d o s en h a r d w a r e y
sof tware.

SIX, desa r ro l l ado p o r Wolverine Sof tware

(www.wolverine.com), p roporc iona bloques d e

construcción d e propósi to genera l p a r a mode la r el

d e s e m p e ñ o d e una ampl ia va r i edad d e sistemas.

En h t t p : / /www. id s i a . ch /~and rea / s im too l s . h tml se p u e d e

encont ra r una serie d e vínculos a va r i a s fuentes d e
simulación de sistemas.

•
¿Cuáles
son las

• rqar ter turas que
se definen y

desarrollan como

p r t e de la IPN?

La m e t a d e la ingeniería de procesos de negocios (IPN) e s definir a rqu i t ec tu ras q u e per-
mi tan q u e un negoc io utilice i n fo rmac ión de m a n e r a efect iva. C u a n d o las neces ida
d e s d e tecnología d e in fo rmac ión d e u n a c o m p a ñ í a s e o b s e r v a n d e m a n e r a global
casi n o h a y d u d a d e q u e s e requiera la ingenier ía de s i s t emas . No só lo s e requiere la
espec i f icac ión d e la a rqui tec tura d e c ó m p u t o aprop iada , s ino t a m b i é n s e d e b e de sa -
rrollar la a rqu i tec tu ra d e s o f t w a r e que pueb la la conf igu rac ión única d e f u e n t e s de
c ó m p u t o d e la o rgan izac ión . La ingenier ía d e p r o c e s o s de negoc ios e s un e n f o q u e

q u e c rea u n plan genera l p a r a i m p l e m e n t a r la a rqu i tec tu ra d e c ó m p u t o [SPE93],
Se d e b e n ana l i za r y d i s eña r t res a rqu i t ec tu ras d i f e ren te s d e n t r o del c o n t e x t o d e

obje t ivos y m e t a s de negoc ios .

• Arqui tectura de d a t o s

• Arqui tectura de ap l icac iones

• Inf raes t ruc tura d e la tecnología

La arquitectura de datos p ropo rc iona un m a r c o de t r aba jo p a r a las n e c e s i d a d e s de
in fo rmac ión d e un negoc io o d e u n a func ión d e negoc ios . Los ladrillos d e la arqui-
tec tura s o n los ob je tos de d a t o s q u e util iza el negocio . Un ob je to de los da to s c o n -

t iene un c o n j u n t o de a t r ibu tos q u e de f ine algún a spec to , cua l idad , carac ter í s t ica o
descr ip tor d e los da to s q u e s e descr iben .

Una v e z def in ido u n c o n j u n t o d e d a t o s s e ident if ican s u s re lac iones . Una relación
indica la f o r m a e n que los ob je tos e s t á n c o n e c t a d o s en t r e sí. C o m o e j e m p l o s e pue -

4 Las herramientas mostradas aquí son una muestra de esta categoría. En la mayoría de los casos los
nombres están registrados por sus respectivos desarrolladores.

TM

PDF Editor

http://www.all.extemal.lnco.com
http://www.virtutech.com
http://www.wolverine.com
http://www.idsia.ch/~andrea/simtools.html

C A P Í T U L O 6 INGENIERÍA DE SISTEMAS 141

^ O N S E J O ^

de
no debe

en PEI ni
Sin embargo,

i que estos
nosehan

el ingeniero
. oíos

que el
m / y o y e c l o e s

d e n cons ide ra r los ob j e to s c l i e n t e y p r o d u c t o A . Los d o s ob j e to s p u e d e n c o n e c t a r -
s e po r la re lación compra-, e s decir , un c l i e n t e compra p r o d u c t o A o p r o d u c t o A es
comprado por u n c l i en te . Los ob j e to s de d a t o s (que p u e d e n existir c i en tos o h a s t a
mi les p a r a u n a act ividad d e n e g o c i o s impor tan te) fluyen en t r e f u n c i o n e s d e negoc io ,
e s t á n o r g a n i z a d o s d e n t r o d e u n a b a s e de d a t o s y s e t r a n s f o r m a n para o f rece r infor-
m a c i ó n q u e sa t i s face las n e c e s i d a d e s del negoc io .

La arquitectura de aplicación aba rca aque l lo s e l e m e n t o s d e un s i s t ema que t rans-

f o r m a n ob je tos d e n t r o d e la a rqu i tec tu ra d e d a t o s po r a lgún p ropós i to del negocio .
En el con tex to d e es te libro s e cons idera q u e la a rqui tec tura d e apl icación e s el sis-
t e m a d e p r o g r a m a s (sof tware) q u e rea l iza es ta t r ans fo rmac ión . Sin e m b a r g o , en un
con tex to m á s ampl io , la a rqu i tec tu ra d e apl icación p u e d e incorporar el pape l de las
p e r s o n a s (quienes son t r a n s f o r m a d o r e s y u s u a r i o s de información) y p roced imien tos
d e n e g o c i o s q u e n o h a n s ido a u t o m a t i z a d o s .

La infraestructura tecnológica p ropo rc iona el f u n d a m e n t o para las e s t ruc tu ra s d e
d a t o s y d e apl icación. La in f raes t ruc tu ra c o m p r e n d e el h a r d w a r e y el s o f t w a r e con
q u e s e apoyan las ap l i cac iones y los da tos . Es to incluye c o m p u t a d o r a s , s i s t e m a s d e
operación, redes de computadora , en laces de te lecomunicaciones , tecnologías d e a l m a -
c e n a m i e n t o y la a rqui tec tura (por e jemplo , cliente, servidor) d i s e ñ a d a p a r a imple-
m e n t a r e s t a s t ecnolog ías .

En la figura 6.2 se de f ine e ilustra u n a je ra rqu ía d e p r o c e s o d e negoc ios p a r a
m o d e l a r e s t a s a rqu i t ec tu ras d e s i s t ema .

jerarquía

«a del
de

Area d e negocio

La empresa . Planeación
estratégica

de la información
(visión global)

Planeación
estratégica

de la información
(visión global)

Planeación
estratégica

de la información
(visión global)

Requisito d e proceso

Un á r
neg

ea d e
ocio

1 L

A n á l i s i s d e l
área d e
negocio

(visión d e
dominio)

Construcción
e integración

(visión
detallada)

Ingeniero
d e software

11

TM

PDF Editor

142 C A P Í T U L O 6 INGENIERÍA DE SISTEMAS

^ C O N S E J O ^ -

A menudo se utiliza
en este contexto el
modelo concurrente
del proceso (capítulo
3). Coda disciplina de
ingeniería trabaja en
paralelo. Se áebe
estar seguro de que
se promueva la
comunicación
mientras cada
disciplina desempeña
su trabajo.

La m e t a d e la ingeniería de producto e s t raduci r el d e s e o del cliente, d e u n a serie de
c a p a c i d a d e s def inidas , a un p roduc to del t r aba jo . Para consegu i r e s t a m e t a la inge-

nier ía d e p r o d u c t o — c o m o la ingenier ía d e p r o c e s o s d e negocios— d e b e c rea r una
a rqu i tec tu ra y una es t ruc tura . La a rqu i tec tu ra a b a r c a c u a t r o c o m p o n e n t e s d e siste-
m a dist intos: so f tware , h a r d w a r e , da to s (y b a s e s de datos) y p e r s o n a s . Se es tab lece
u n a in f raes t ruc tura de s o p o r t e e incluye la t ecno log ía requer ida p a r a uni r los com-
p o n e n t e s y la i n fo rmac ión (como d o c u m e n t o s , CD-ROM, video) q u e s e e m p l e a para
da r s o p o r t e a los c o m p o n e n t e s .

C o m o lo m u e s t r a la figura 6.3, la visión global s e cons igue m e d i a n t e la ingenier ía
d e requis i tos (capítulo 7). Los requis i tos gene ra l e s del p r o d u c t o s e ob t i enen del clien-
te. Es tos requis i tos c o m p r e n d e n n e c e s i d a d e s de in fo rmac ión y control , func iona l idad

del p roduc to y c o m p o r t a m i e n t o , d e s e m p e ñ o genera l del p roduc to , d i seño , restric-

c iones de la in te r faz y o t r a s n e c e s i d a d e s especia les . Una vez q u e s e c o n o c e n es tos
requis i tos , el t r a b a j o de la ingenier ía de requis i tos e s a s igna r func ión y c o m p o r t a -

m i e n t o a c a d a u n o de los cua t ro c o m p o n e n t e s a n t e s descr i tos .
Una vez h e c h a la a s ignac ión c o m i e n z a la ingenier ía d e c o m p o n e n t e s del s i s tema.

La ingenier ía d e c o m p o n e n t e s del s i s t ema e s en real idad u n c o n j u n t o de ac t iv idades

c o n c u r r e n t e s q u e dir ige po r s e p a r a d o c a d a u n o d e los c o m p o n e n t e s del s i s t ema
ingenier ía d e so f tware , ingenier ía d e h a r d w a r e , ingenier ía h u m a n a e ingenier ía de

La jerarquía de
l a i n g e n i e r í a d e
productos.

H a r d w a r e

C a p a c i d a d e s

Sof tware

Requisito d e proceso

Ingeniería de
componente

(visión de
dominio)

Datos Función Compor-
tamiento

1 1 1 m i ITT

Modelado de
análisis y diseño

(visión del
elemento)
Componentes
d e programa

Construcción
e integración

(visión
detallada)

Ingeniero
d e software

El producto
completo

Ingeniería de
requisitos

(visión global)

TM

PDF Editor

C A P Í T U L O 6 INGENIERÍA DE SISTEMAS 143

b a s e s d e da tos . Cada u n a de e s t a s discipl inas d e ingenier ía t o m a una vis ión d e domi-
n io específ ica, pe ro e s impor t an te s e ñ a l a r q u e las d isc ipl inas d e ingenier ía d e b e n
e s t ab lece r y m a n t e n e r una comun icac ión act iva en t r e ellas. Parte del pape l d e la
ingenier ía de requis i tos e s e s t ab lece r los m e c a n i s m o s d e in terfaz q u e p e r m i t a n q u e
e s t o s u c e d a .

La visión d e e l e m e n t o p a r a la ingenier ía d e p r o d u c t o e s la disciplina d e ingenie-
ría ap l i cada a un c o m p o n e n t e a s ignado . Para la ingenier ía d e s o f t w a r e e s t o significa
ac t iv idades d e m o d e l a d o del anál is is y d i s e ñ o (cubierto en detal le e n capí tu los pos -
teriores) y ac t iv idades de cons t rucc ión y desp l iegue q u e a b a r c a n : gene rac ión d e

código, p r u e b a s y tareas" de sopor te . Los m o d e l o s de anál is is de t a r e a s a s ignan requi-
si tos a las r e p r e s e n t a c i o n e s d e da tos , f unc ión y c o m p o r t a m i e n t o . El d i s e ñ o convier-
te el m o d e l o de anál is is en d i seños d e da tos , a rqui tec tónicos , d e in terfaz y e n el nivel
d e c o m p o n e n t e s del so f tware .

HOGARSEGURO

Ingeniería de sistema preliminar

El e s c e n a r i o : Lugar de trabajo
: de ingeniería del software después de la ¡unía

e> inicio de HogarSeguro

s: Jamie Lazar, miembro del equipo de
Vinod Raman, miembro del equipo d e
Ed Robbins, miembro del equipo de software,

rsación:

3 que estuvo muy bien.

Sí pero todo lo que hicimos fue ver el sistema
general; todavía tenemos q u e reunir muchos

para hacer el software.

Por eso tenemos juntas adicionales
s en los próximos cinco días. Por cierto,

aue dos de los "dientes" estuvieran aquí en las
semanas. Ya sabes, que estén con nosotros

zoe podamos comunicarnos en realidad y

. ¿Y qué opinaron los demás?

Bueno, me miraron como si estuviera loco, pero
[el gerente de ingeniería del software] le gustó la

-es ágil- así que está hablando con ellos.

io estaba tomando notas con mi PDA durante la
v obtuve uno lista de funciones básicas.

Qué bien, déjame ver.

Ed: Ya les mande a los dos una copia por correo
electrónico. Revísenla y luego hablamos

V i n o d : ¿Qué te parece después de la comida?

(Jamie y Vinod recibieron el siguiente texto d e Ed.)

Notas preeliminares de la estructura/funcionalidad d e
HogarSeguro:

• El sistema utilizará una o más PC. varios paneles de
control manuales y montables en la pared , varios
sensores y varios controladores de
d i s p o s i t i v o s / a p l i c a c i o n e s .

• Todos se comunicarán por protocolos inalámbricos
(por ejemplo, 802.1 Ib) y serán diseñados pa ra la
construcción efe casas nuevas y la aplicación en casas
existentes.

• Todo el hardware, a excepción de nuestra nueva cajo
inalámbrica, estará fuera del anaquel

Funcionalidad básica del software obtenida de la
conversación de inicio.
Funciones de seguridad de la casa:

• Sensor de movimiento de puerta/ventana para
monitorear un acceso no autorizado (robos).

• Moni toreo de fuego y humo
• Monitoreo de nivel de agua en sótano (por ejemplo,

inundoción o rompimiento del calentador de aguo).

TM

PDF Editor

144 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

• Monitoreo d e movimiento en el exterior.

• Cambio d e colocación d e seguridad por Internet.

Funciones d e vigilancia en la casa :

• Conectar a una o más cámara s d e video colocadas
fue ra /den t ro d e la casa .

• Controlar p a n o r a m a / z o o m en las cámaras .
• Definir zonas d e monitoreo d e las cámaras .
• Mostrar tomas d e la c ámar a en PC.
• Tener acceso a las tomas d e la c ámara vía Internet.
• G r a b a r digital y selectivamente las tomas d e b

c á m a r a .
• Mostrar d e nuevo las tomas d e la cámara .

Funciones d e la gestión d e la casa :

• Controlar a lumbrado.
• Controlar instrumentos.
• Controlar HVAC.
• Controlar equipo d e aud io /v tdeo en la casa

• Habilitar la casa dentro d e una modalidad
"vacaciones/viaje" con un conjunto d e botones:
• Disponer apa ra to s / a lumbrado /HVAC p a r a que

actúen d e manera a p r o p i a d a

• Disponer un mensaje en la máquina contestadora.

• Contactar vendedores p a r a suspender en t rega d e
periódicos, correo, etcétera.

Funciones d e la gestión d e comunicación:

• Funciones d e la máquina contestadora.
• Lista d e l lamadas a través d e un identificador.

• Hora del mensaje .

• Texto del mensaje a través d e un sistema d e
reconocimiento d e voz.

• Funciones del correo electrónico (todas las funciones

estándares del correo electrónico).

• Mostrar correo electrónico estándar

• Lectura d e voz por correo electrónico vía acceso
telefónico.

• Directorio telefónico personal.

• Vínculo con el PDA.

Otras funciones:
Por definirse.
Todas las funciones serán accesibles vía Internet con

una contraseña a p r o p i a d a como protección.

6 . 5 M O D E L A D O DEL S I S T E M A

Debido a que un sistema puede representarse con diferentes grados de abstracción
(por ejemplo, la visión global, la visión de dominio, la visión de elemento), los mode-
los de sistema t ienden a ser jerárquicos o estratificados por naturaleza. En la parte
m á s alta de la jerarquía se presenta un modelo del sistema completo (la visión glo-
bal) . Los objetos principales de datos, las funciones de procesamiento y los compor-
tamientos se representan sin incluir el componente del sistema que implementará
los e lementos del modelo de visión global. A medida que la jerarquía se refina o
estratifica se modela el detalle al nivel de componentes (en es te caso, representa-
ciones de hardware, software, etcétera). Al final, los modelos de s is temas evolucio-
nan a modelos de ingeniería (los cuales se refinan después) que son específicos para
la disciplina de ingeniería apropiada.

6.5.1 Mode lado Hatley-Pirbhcri

Todo sistema basado en computadora puede modelarse como transformación de la
información al emplear una plantilla de entrada-proceso-salida. Hatley y Pirbha;
[HAT87] han ampliado esta visión para incluir dos características adicionales del sis-
tema: procesamiento de la interfaz del usuario y mantenimiento y procesamiento de

TM

PDF Editor

C A P I T U L O 6 INGENIERÍA DE SISTEMAS 1 4 5

K
CLAVE

i -epcesenta lo
i.el

> y l o
) ton lo

r del usuario y
• /

a u t o c o m p r o b a c i ó n . A u n q u e e s t a s ca rac te r í s t i cas ad ic iona les n o es tán p r e s e n t e s en
t odos los s i s t e m a s b a s a d o s e n c o m p u t a d o r a , s o n c o m u n e s y su especif icación h a c e
q u e cualquier m o d e l o d e s i s t ema sea m á s robus to .

Con el u s o d e la r ep resen tac ión d e en t r ada , p r o c e s a m i e n t o , sal ida, p r o c e s a m i e n -
tos d e la in te r faz del u sua r io y p r o c e s a m i e n t o d e a u t o c o m p r o b a c i ó n , u n ingen ie ro d e
s i s t e m a s p u e d e c rea r un m o d e l o de c o m p o n e n t e s d e s i s t ema que de je un f u n d a -
m e n t o p a r a e t a p a s pos te r io res e n c a d a u n a de las discipl inas d e ingenier ía .

En el desar ro l lo d e un m o d e l o d e s i s t ema s e utiliza u n a plantilla m o d e l o del sis-
t e m a [HAT87]. El ingen ie ro de s i s t e m a s a s igna e l e m e n t o s d e s i s t ema a c a d a una de

las c inco r eg iones d e p r o c e s a m i e n t o d e n t r o d e la plantilla: 1) in ter faz del usuar io , 2)
en t r ada , 3) f u n c i o n a m i e n t o y control del s i s tema, 4) sal ida, y 5) m a n t e n i m i e n t o y
a u t o c o m p r o b a c i ó n .

Al igual q u e casi t o d a s las t écn icas de m o d e l a d o u t i l i zadas en la ingenier ía d e s is-
t e m a s y d e so f tware , la plantilla m o d e l o del s i s t ema le permi te al ana l i s ta c rea r u n a
jerarquía en detal le . En el nivel m á s a l to d e la je rarquía e s t á el diagrama de contexto
del sistema (DCS). El d i a g r a m a d e con tex to "es tab lece los l imites d e in fo rmac ión
en t r e el s i s t ema que i m p l e m e n t a y el a m b i e n t e en el q u e ope ra el s i s t ema" [HAT87].
Es decir, el DCS def ine t o d o s los p r o d u c t o r e s ex t e rnos de in fo rmac ión q u e el s is te-
ma utiliza, t odos los c o n s u m i d o r e s e x t e m o s de in fo rmac ión que el s i s t ema crea, y

t o d a s las e n t i d a d e s q u e se c o m u n i c a n a t r avés de la in ter faz o rea l izan m a n t e n i -
m i e n t o y a u t o c o m p r o b a c i ó n .

Para i lustrar el u s o del DCS se cons ide ra rá u n sistema de clasificación de cinta
transportadora (SCCT) descr i to en la s iguiente dec la rac ión (un t a n t o confusa) de
obje t ivos:

El SCCT debe desarrollarse de manera que las cajas que se mueven a lo largo de la cinta
transportadora sean identificadas y ordenadas en uno de los seis contenedores al final de
la cinta. Las cajas pasarán a través de una estación clasificadora, donde se identificarán.
Con base en un número de identificación impreso en un lateral tle la caja y un coillyo de
barras, las cajas se mandarán a los contenedores apropiados. Las cajas pasan en un or-
den aleatorio y están igualmente espaciadas. La linea se mueve con lentitud.

Una computadora de escritorio localizada en la estación clasificadora ejecuta todo el
software del SCCT, interactúa con el lector de código de barras para leer números de parte
en cada caja, interactúa con el equipo de monitoreo de la línea transportadora para obte-
ner la velocidad de la linea transportadora, almacena todos los números de parte clasifi-
cados, interactúa con un operador de la estación clasificadora para producir varios
reportes y diagnósticos, manda señales de control al hardware para clasificar las cajas, y
se comunica con un sistema de automatización central de la fábrica.

El DCS p a r a el SCCT se m u e s t r a e n la figura 6.4. El d i a g r a m a s e divide en c inco seg -
m e n t o s principales. El s e g m e n t o de arriba represen ta el p rocesamien to de la in ter faz
del usuar io , y los s e g m e n t o s d e la izquierda y d e la d e r e c h a m u e s t r a n el p rocesa -
m i e n t o d e e n t r a d a y d e sal ida, r e spec t i vamen te . El s e g m e n t o cent ra l c o n t i e n e fun-
c i o n e s d e control y p roceso , y el s e g m e n t o d e a b a j o s e en foca en el m a n t e n i m i e n t o

TM

PDF Editor

146 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Diagrama de
contexto del
sistema del
SCCT.

y la autocomprobación. Cada caja que se muestra en la figura representa una enti-
dad externa-, es decir, un productor o consumidor de información del sistema. Por
ejemplo, el lector de código de barras produce información que e s introducida al sis-
tema SCCT. El símbolo para el sistema completo (o, a niveles m á s bajos, subsistemas
principales) es un rectángulo con las esquinas redondeadas. Por lo tanto, el SCCT se
representa en la región de procesamiento y control al centro del DCS. Las flechas eti-
quetadas que se muestran en el DCS representan información (datos y control) que
va de un ambiente externo hacia el sistema SCCT. La entidad externa lector de códi-
go de barras produce entrada de información etiquetada como código de barras. En
esencia, el DSC coloca cualquier sistema en el contexto del ambiente externo.

El ingeniero de s is temas refina el diagrama de contexto de arquitectura al estu-
diar con más detalle el rectángulo sombreado de la figura 6.4. Se identifican los sub-
sistemas principales que permiten funcionar al sistema clasificador de cinta trans-
portadora dentro del contexto definido por el DCS. Los subsistemas principales se
definen en un diagrama de flujo del sistema (DFS) que se obtiene del DCS. El flujo de
información a través de las regiones del DCS se utiliza para guiar al ingeniero de sis-
temas en el desarrollo del DFS, un esquema m á s detallado del SCCT. El diagrama de
flujo del sistema muestra los subsis temas principales y el flujo de las líneas de infor-
mación importantes (datos y control). Además, la plantilla del sistema divide el pro-
ceso del subsistema en cada una de las cinco regiones de proceso previamente estu-
diadas. En este punto, cada uno de los subsis temas puede contener uno o más ele-
mentos del sistema (por ejemplo, hardware, software, personas) tal y como los ha
asignado el ingeniero de sistemas.

TM

PDF Editor

C A P Í T U L O 6 INGENIERÍA DE SISTEMAS 147

Diagrama d e flujo d e más al to nivel d e lo arquitectura

DFS d e A

DFS d e C

El d i a g r a m a d e flujo del s i s t ema (DFS) inicial s e convier te en el n o d o super io r d e

u n a jerarquía d e DFS. Cada r ec t ángu lo r e d o n d e a d o del DFS original p u e d e e x p a n

dirse en o t ra planti l la de a rqu i tec tu ra d e d i c a d a a ella en f o r m a exclusiva. Este p ro -

c e s o s e ilustra d e m a n e r a e s q u e m á t i c a en la f igura 6.5. Cada u n o d e los DFS del sis-
t e m a p u e d e uti l izarse c o m o p u n t o de par t ida d e subs igu ien te s f a se s d e ingenier ía
p a r a el s u b s i s t e m a q u e se descr ibe .

En los subs igu ien tes t r aba jos d e ingenier ía s e p u e d e n especi f icar (delimitar) los
s u b s i s t e m a s y la in fo rmac ión que f luyen en t r e ellos. Un re la to descr ip t ivo d e c a d a
subs i s t ema y u n a def inición de t o d o s los d a t o s q u e fluyen en t r e los s u b s i s t e m a s son
e l e m e n t o s i m p o r t a n t e s d e la especi f icac ión del s i s t ema .

6.5.2 Mode lado de l s i s tema con UML

El UML proporc iona u n a can t idad impre s ionan t e de d i a g r a m a s q u e p u e d e n utilizar-
s e p a r a el anál is is y d i s e ñ o al nivel d e s o f t w a r e y del s i s t ema . 5 Para el SCCT se m o d e -
lan c u a t r o e l e m e n t o s i m p o r t a n t e s del s i s tema: 1) el h a r d w a r e q u e pe rmi t e el SCCT;
2) el s o f t w a r e q u e i m p l e m e n t a el a c c e s o a la b a s e de da to s y la clasif icación; 3) el
o p e r a d o r que a c a t a var ias pe t ic iones del s i s t ema; y 4) la b a s e de d a t o s q u e con t i ene
in fo rmac ión r e l evan t e del código d e b a r r a s y el des t ino .

5 En los capítulos del 8 al 11 se presenta una exposición más detallada de los diagramas de UML. Para
una exposición completa del UML el lector interesado debe consultar [SCH02], [LAR01] o [BEN99],

TM

PDF Editor

148 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

D i a g r a m a d e
d e s p l i e g u e
d e l h a r d w a r e
d e S C C T .

En wwwjotioiwi .
toro/timl/ndex.
jsp se puede

espeííkocw completa
de lo smtWra y
semántico del UML

posteriofes).

El h a r d w a r e del SCCT se p u e d e m o d e l a r en el nivel del s i s t ema m e d i a n t e u n dia-
grama de despliegue d e UML, c o m o se ilustra e n la figura 6.6. Cada ca ja t r id imensio-

nal m u e s t r a u n e l e m e n t o del h a r d w a r e q u e e s pa r t e d e la a rqu i tec tu ra física del sis-
t e m a . En a l g u n o s ca sos , los e l e m e n t o s del h a r d w a r e t end rán q u e d i s eña r se y cons -
t ruirse c o m o pa r t e del proyecto . Sin e m b a r g o , en m u c h o s c a s o s los e l e m e n t o s del
h a r d w a r e s e p u e d e n adquirir ya cons t ru idos . El r e to p a r a el equ ipo d e ingenier ía es
real izar la in te r faz d e los e l e m e n t o s del h a r d w a r e d e m a n e r a ap rop iada .

Los e l e m e n t o s del s o f t w a r e p a r a el SCCT se p u e d e n mode l a r e n una va r i edad de
f o r m a s m e d i a n t e el u s o d e UML. Los a s p e c t o s d e p r o c e d i m i e n t o del s o f t w a r e del
SCCT se p u e d e n r e p r e s e n t a r m e d i a n t e un diagrama de actividad (figura 6.7). Esta
n o t a c i ó n del UML e s s imilar al d i a g r a m a d e flujo y s e util iza p a r a r ep re sen t a r lo que
s u c e d e m i e n t r a s el s i s t ema real iza s u s func iones . Los r e c t á n g u l o s r e d o n d e a d o s
implican u n a func ión especí f ica del s i s t ema; las flechas r e p r e s e n t a n el flujo a t ravés

del s i s t ema; el r o m b o d e dec is ión r e p r e s e n t a u n a decis ión ramif icada (cada flecha
q u e sa le del r o m b o e s t á e t ique tada) ; las l íneas só l idas ho r i zon ta l e s implican la rea-
l ización de ac t iv idades en parale lo .

Otra n o t a c i ó n de UML q u e s e p u e d e u sa r p a r a m o d e l a r s o f t w a r e e s el diagrama de
clase (junto c o n m u c h o s d i a g r a m a s r e l ac ionados con las c lases q u e se e x a m i n a n en
a p a r t a d o s pos t e r io re s d e es te libro). En el nivel d e la ingenier ía del s i s t ema las cla-
ses 6 s e ex t r aen e n un e n u n c i a d o del p r o b l e m a . Para el SCCT las c lases c a n d i d a t a s

6 En capítulos anteriores se destacó que una clase representa un conjunto de entidades que forman
parte del dominio del sistema. El sistema puede almacenar o transformar estas entidades o pueden
servir como un productor o consumidor de la información que el sistema produce.

TM

PDF Editor

C A P I T U L O 6 INGENIERÍA DE SISTEMAS 149

podr ían se r de: ca ja , l í n e a d e c o n d u c c i ó n , l e c t o r d e c ó d i g o d e barras , c o n t r o -
l a d o r d e m a n i o b r a s , s o l i c i t u d de l o p e r a d o r , r e p o r t e , p r o d u c t o y otras. Cada
c lase encapsu la un con jun to d e a t r ibutos q u e r ep re sen t a t o d a la in formación n e c e s a -
ria ace rca d e la c lase . Una descr ipción d e c lase t ambién con t iene un c o n j u n t o d e ope -
r ac iones q u e s e apl ican a la c lase en el con tex to del s i s t ema SCCT. En la figura 6.8 s e
m u e s t r a un d i a g r a m a d e c lase d e UML la c lase caja .

El o p e r a d o r del SCCT se p u e d e mode l a r con un d i ag rama de UML de t ipo c a s o s
d e u s o c o m o se m u e s t r a en la f igura 6.9. El d i a g r a m a de c a s o d e u s o ilustra la fo rma
en la que un a c t o r (en e s t e c a s o el o p e r a d o r q u e s e r ep re sen t a con u n a figura a d h e -
rida) in te rac túa con el s i s t ema . Cada óva lo e t i q u e t a d o d e n t r o de la ca ja (la cual
r ep re sen t a la f ron te ra del s i s t ema SCCT) implica un c a s o de u s o —un e scena r io
escr i to q u e desc r ibe u n a in teracc ión con el s i s t ema .

í Producir la
\ en r r ada del

^ C o n d u c t o r d e t e n i d o

5
C o n d u c t o r « n m o v i m i e n t o

c Obtener estatus
5 operación)(Leer el c ó d i g o ^ (Obtener el estatus

d e bar ras J y del conductor D

Código de barras
inválido

TM

PDF Editor

150 P A P T E D O S PRACTICA DE LA INGENIERÍA DEL SOFTWARE

Diagrama de
clase de UML
para la c lase
caja. C o j a '

cód igo d e bar ras
velocidad hacia delante
ubicación del conductor
altura
profundidad
peso
contenido
atributos

Nombre de la clase

lectura del código
d e ba r ras !)

actualización
de velocidad))

lectura de velocidad!)
actualización

d e la ubicación!)
lectura d e ubicación!)
obtención de dimensiones!)
pobtención del pe so ()
verificación de contenido!)

Atributos

Operaciones
(los paréntesis
al final del nombre
indican la lista d e
atributos que requiere
la operación)

TM

PDF Editor

CAPÍTULO 6 INGENIERÍA DE SISTEMAS 151

HERRAMIENTAS DE SOFTWARE

Herramientas de modelado de sistemas
O b j e t i v o : Las herramientas de modelado de

^ sistemas proporcionan al ingeniero de software
c o p a c i d a d de modelar todos los elementos de un

j sS>ema basado en computadoras al usar una notación
| específica para la herramienta.

c ó n i c a : Las mecánicas de las herramientas varían.
¡ lo general, las herramientas de esta categoría ayudan
• a rigeniero de sistemas a modelar 1) la estructura de
I «saos los elementos funcionales del sistema; 2) el
| comportamiento estático y dinámico del sistema; 3) la

• • u f u z máquina-humano.

Herramientas representativas7

describe, desarrollado por Embarcadero Technologies
I -«-«w embarcadero.com), es una adaptación de
I -erramientas de modelado basadas en UML que puede
i - p r e sen t a r sistemas de software o sistemas completos.

Rational XDE and Rose, desarrollado por Rational
Technologies (www.rational.com), proporciona una
adaptación basada en UML de herramientas de
desarrollo y modelado para sistemas basados en
computadoras, la cual se utiliza de manera amplia.

Real-Time Studio, desarrollado por Artisan Software
(www.artisansw.com) es una conjunto de herramientas
de modelado y desarrollo que dan soporte al
desarrollo de sistemas en tiempo real.

Telelog ic Tau, desarrollado por Telelogic
(www.telelogic.com), es un conjunto con herramientas
basadas en UML que da soporte al modelado de
diseño y análisis, y tiene vínculos con características de
construcción de software.

Un s i s l ema de a l ta tecnología c o m p r e n d e va r ios c o m p o n e n t e s : h a r d w a r e , so f tware ,

p e r s o n a s , b a s e s d e da to s y p roced imien tos . La ingenier ía d e s i s t e m a s ayuda a t r a -
ducir las n e c e s i d a d e s del c l iente e n u n m o d e l o d e s i s t ema q u e e m p l e a u n o o m á s d e
e s t o s c o m p o n e n t e s .

La ingenier ía d e s i s t e m a s c o m i e n z a al a d o p t a r una "visión global". Se ana l iza el
domin io del negoc io o p roduc to p a r a es tab lecer t o d o s los requis i tos bás icos . El e n f o -

q u e s e r educe e n t o n c e s a u n a "visión d e dominio" , d o n d e c a d a u n o de . lo s e l e m e n
tos del s i s t ema s e ana l iza en fo rma individual. Cada e l e m e n t o s e a s igna a u n o o m á s
c o m p o n e n t e s d e ingenier ía , los c u a l e s s e e s tud ian ap l i c ando la disciplina d e inge-
nier ía co r respond ien te .

La ingenier ía del p r o c e s o d e negoc ios e s un e n f o q u e de la ingenier ía de s i s t e m a s

m e d i a n t e el cual s e de f inen a rqu i t ec tu ras q u e p e r m i t a n a un negoc io utilizar la infor-
m a c i ó n de m a n e r a ef icaz . El obje t ivo d e la ingenier ía del p r o c e s o d e negoc ios e s
c rea r u n a a rqui tec tura d e da tos , u n a a rqu i tec tu ra de ap l icac ión y u n a inf raes t ruc tu-
ra d e tecnología c o m p r e n s i b l e s q u e sa t i s fagan las n e c e s i d a d e s d e la es t ra teg ia d e
negoc io y los obje t ivos y m e t a s d e c a d a á r e a del negocio .

La ingenier ía d e p r o d u c t o s e s un e n f o q u e de la ingenier ía de s i s t e m a s q u e
c o m i e n z a con el anál is is del s i s t ema . El ingen ie ro de s i s t e m a s identif ica las neces i -

7 Las herramientas mostradas aquí son una muestra dentro de esta categoría. En la mayoría de los
casos los nombres están registrados por sus respectivos desarrolladores.

TM

PDF Editor

http://www.rational.com
http://www.artisansw.com
http://www.telelogic.com

1 5 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

d a d e s del cliente, d e t e r m i n a la factibil idad e c o n ó m i c a y técn ica , y a s igna func iones
y r e n d i m i e n t o s al so f tware , el h a r d w a r e , las p e r s o n a s y las b a s e s de da tos ; e s decir
a los c o m p o n e n t e s clave d e la ingenier ía .

[BEN991 Bennett, S., S. McRobb y R. Farmer, Object-Oriented Systems Analysis and Design Usátg
UML, McGraw-Hill, 1999.

[HAR93] Hares, J. S., Information Engineeringfor Advanced Practitioner, Wiley, 1993, pp. 12-13.
[HAT87] Hatley, D.). e I. A. Pirbhai, Strategies for Real-Time System Specification, Dorset House

1987.
[LAR01] Larman, C., Applying UML and Pattems: An Introduction to Object-Oriented Analysis and

Design and [he Unifed Process, 2a. ed„ Prentice-Hall, mayo de 2001.
[MAR901 Martin, J . Information Engineering: Book II—Planning and Analysis, Prentice-Hall, 1990.
[MOT92] Motamarri, S., "Systems Modeling and Description", en Software Engineering Notes, ve

17, núm. 2, abril de 1992, pp. 57-63.
|SCH02)Schmuller,)., Teach YourselfUML in 24 Hours, 2a. ed., Sams Publishing, 2002.
[SPE93] Spewak, S., Enterprise Architecture Planning, QED Publishing, 1993.
[THA97] Thayer, R. H. y M. Dorfman, Software Requirements Engineering, 2a. ed., IEEE Computer

Society Press, 1997.

6.1. Encontrar tantos sinónimos como se pueda de la palabra "sistema". ¡Buena suerte!

6.2 . Construir un "sistema de sistemas" jerárquico para un sistema, producto o servicio con el
cual se esté familiarizado. La jerarquía se debe extender hasta los elementos simples del siste-
ma (hardware, software, etcétera) de al menos una rama de cada estructura.

6.3 . Seleccionar un sistema o producto grande con el que esté familiarizado. Definir el conjun-
to de dominios que definan la visión global del sistema o producto. Describir el conjunto de ele-
mentos que componen uno o dos de los dominios. Para un elemento, identificar los compo-
nentes técnicos que deben desarrollarse.

6.4. Seleccionar algún sistema o producto grande con el cual esté familiarizado. Establecer las
suposiciones, simplificaciones, limitaciones, restricciones y preferencias que se deberían hacer
para construir un modelo de sistema de modelo eficaz (y realizable).

6.5. La ingenieria de procesos del negocio requiere definir datos, arquitectura de aplicaciones,
además de una infraestructura de aplicaciones. Describir cada uno de estos términos mediante
un ejemplo.

6.6. Un ingeniero de sistemas puede tener una de tres procedencias: el desarrollo de sistemas,
el cliente o una organización externa. Discutir los pros y los contras de cada procedencia
Describir un ingeniero de sistemas "ideal".

6.7. El profesor entregará una descripción de alto nivel de un sistema o producto basado en
computadoras.

a) Desarrollar un conjunto de preguntas que se debería realizar como ingeniero de siste-
mas.

b) Proponer al menos dos ubicaciones diferentes para el sistema con base en las respues-
tas a sus preguntas.

c) En clase, comparar sus ubicaciones con las de sus compañeros.

6 . 8 . Desarrollar un diagrama de contexto del sistema para el sistema basado en computado-
ras que se haya elegido (o uno asignado por su profesor).

TM

PDF Editor

C A P Í T U L O 6 INGENIERÍA DE SISTEMAS 153

6.9 Aunque la información hasta este punto está muy entrecortada, trátese de desarrollar un
diagrama de desarrollo, un diagrama de actividad, un diagrama de clase y un diagrama de caso
de uso con UML para el producto HogarSeguro.

6 . 10 . Realizar una investigación bibliográfica y escribir un documento breve que describa
cómo funcionan las herramientas de modelado y simulación. Alternativa: recopile bibliografía
de dos o más vendedores de herramientas de modelado y simulación y evalúe sus similitudes y
diferencias.

6 . 11 . ¿Existen características de un sistema que no se puedan establecer durante las activida-
des de la ingeniería de sistemas? Describir las características, si existen, y explicar por qué su
consideración se debe retrasar a fases posteriores del desarrollo.

6 . 12 . ¿Existen situaciones en las que la especificación formal del sistema se pueda abreviar o
eliminar por completo? Expliqúese la respuesta.

O T R A S L E C T U R A S Y F U E N T E S DE I N F O R M A C I Ó N

Los libros de Hatley y sus colegas (Processfor Systems Architecture and Requirements Engineering,
Dorset House, 2001), Buede {The Engineering Design of Systems: Models and Methods, Wiley,
1999), Weiss y sus colegas (Software Product-Une Engineering, Addison-Wesley, 1999),
Blanchard y Fabrycky (System Engineering and Analysis, 3a. ed., Prentice-Hall, 1998), Armstrong
y Sage (Introduction lo Systems Engineering, Wiley, 1997), y Martin (Systems Engineering
Guidebook, CRC Press, 1996) presentan el proceso de la ingeniería del sistema (con un énfasis
distinto en la ingeniería) y proporcionan una guía muy valiosa. Blanchard (System Engineering
Management, segunda edición, Wiley, 1997) y Lacy (System Engineering Management, McGraw-
Hill, 1992) exponen aspectos de gestión de la ingeniería del sistema.

Chorafas (Enterprise Architecture and New Generation Systems, St. Lucie Press, 2001) presen-
ta ingeniería de información y arquitecturas de sistema para la "siguiente generación" de solu-
ciones de TI; se incluyen sistemas basados en Internet. Wallnau y sus colegas (Building Systems
from Comercial Componennts, Addison-Wesley, 2001) se enfoca en los aspectos de la ingeniería
de sistemas basada en componentes para productos y sistemas de información. Lozinsky
(Enterprise-Wide Software Solutions: Integration Strategies and Practices, Addison-Wesley, 1998)
abarca el uso de paquetes de software como una solución que permite a las compañías pasar
de los sistemas heredados a los procesos de negocio modernos. Una exposición muy valiosa del
riesgo y la ingeniería del sistema se presenta en el libro de Bradley (Elimination of Risk in
Systems, Tharsis Boooks, 2002).

Davis (Business Process Modeling with Aris: A PracticaI Ouiúe, Springer-Verlas, 2001). Bustard
y sus colegas (System Models for Business Process Improvement, Artech House, 2000), y Scheer
(Business Process Engineering: Reference Models for Industrial Enterprises, Springer-Vcrlag, 1998)
describen los métodos de modelado del proceso de negocios para sistemas de información y de
toda una empresa.

Davis y Yen (The Information System Consuitant's Handbook: Systems Analysis and Design, CRC
Press, 1998) presentan una cobertura enciclopédica de los aspectos del análisis y diseño de sis-
temas en el dominio de los sistemas de información. Una ayuda excelente del IEEE por Thayer
y Dorfman [THA97J discute la interrelación entre los análisis al nivel de sistema y al nivel de
software.

Law y sus colegas (Simulation Modeling and Analysis, McGraw-Hill, 1999) analizan técnicas
de modelado y simulación de sistemas para una amplia variedad de dominios de aplicación.

Para los lectores involucrados de manera activa en el trabajo de sistemas o que están inte-
resados en un tratamiento más elaborado del tópico, los libros de Gerald Weinberg (An
Introduction to General System Thinking, Wiley, Interscience, 1976, y On the Design of Stable
Systems, Wiley-Interscience, 1979) se han convertido en clásicos y ofrecen una excelente expo-
sición sobre el "pensamiento general de sistemas", lo que de manera implícita conduce a un
enfoque general del análisis y diseño de sistemas. Otros libros más recientes de Weinberg

(General Principies of Systems Design, Dorset House, 1998 y Rethinking Systems Analysis and
Design, Dorset House, 1998) continúan la tradición de este primer trabajo.

TM

PDF Editor

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

En Internet existe una amplia variedad de fuentes de información sobre la ingeniería de
t emas y materias relacionadas. En el sitio Web de SEPA, h t t p : / / w w w . m h h e . c o m / p r e s s m a r .
se puede encontrar una lista actualizada de referencias en la red mundial que son relevante
para la ingeniería del sistema, la ingeniería de la información, la ingeniería de proceso del negó-]
ció y la ingeniería del producto.

TM

PDF Editor

http://www.mhhe.com/pressmar

C A P I T U L O

I N G E N I E R Í A

DE R E Q U I S I T O S 7
CEPTOS

VE

>...173

. . . .159

.179

.160

.161

.158

.169

.160

.158

.183

.171

.162

.161

La c o m p r e n s i ó n d e los requis i tos de un p r o b l e m a e s t á en t r e las t a r ea s m á s
difíciles q u e e n f r e n t a u n ingeniero d e so f tware . C u a n d o se p i ensa por pri-
m e r a vez ace rca de ello, la ingenier ía d e requis i tos n o p a r e c e tan difícil.

D e s p u é s d e todo, ¿el c l iente n o s a b e lo q u e s e requiere? ¿Los u sua r io s finales n o
debe r í an e n t e n d e r b ien las ca rac te r í s t i cas y func iones q u e les p ropo rc iona rán u n
benef ic io? Es s o r p r e n d e n t e , pe ro e n m u c h a s o c a s i o n e s la r e s p u e s t a a e s t a s p re -
g u n t a s es: "no". Y a u n si los c l ientes y u sua r io s finales s o n explíci tos e n s u s n e -
ces idades , e s t o s requis i tos p u e d e n c a m b i a r d u r a n t e el proyecto. La ingenier ía d e
requis i tos e s difícil.

En el p ró logo a un libro d e Ralph Young [YOUO1 ¡ sob re las p r ác t i ca s e fec t ivas
e n los requisi tos, el a u t o r d e e s t e libro escribió:

Es tu peor pesadilla. Un cliente entra en tu oficina, se sienta, te mira directo a los ojos,
y dice: "Yo sé que usted piensa que entiende lo que digo, pero lo que usted no en
tiende es que lo que digo no es realmente lo que quiero decir". Esto sucede de ma-
nera invariable cuando el proyecto está avanzado, después de que se han realizado
los compromisos relativos al tiempo de entrega, las reputaciones están en juego y el
dinero está en serio peligro.

Todos los que hemos trabajado en el negocio de los sistemas y el software por más
de unos cuantos años hemos vivido esta pesadilla, y sólo unos pocos de nosotros he-
mos aprendido a continuar aun con esta circunstancia. Nosotros tenemos dificulta-
des cuando traíamos de obtener requisitos de nuestros clientes. Tenemos problemas
al comprender la información que adquirimos. Con frecuencia, registramos los rc-

¿Qué e s ? La ingen ie r í a d e requisi-
tos a y u d a a ios i n g e n i e r o s d e sof twa-
re a e n t e n d e r m e j o r el p r o b l e m a e n
c u y a solución t r a b a j a r á n . Incluye el
c o n j u n t o d e t a r e a s q u e c o n d u c e n o

cuál s e r á el i m p a c t o del s o f t w a r e
el negoc io , q u é e s lo q u e el cliente q u i e r e

i n t e r a c t u a r á n los u sua r io s f ina les con el
• e.
lo hace? Los i n g e n i e r o s d e s o f t w a r e

veces r e fe r idos c o m o ingenieros de sis-
o analistas e n el m u n d o d e la TI) y o t ros

(ge ren te s , c l ientes y u s u a r i o s f inales)
en la i ngen ie r í a d e requisi tos .

¿Por q u é es impor t an t e? El d i s e ñ o y la cons-
t rucción d e un e l e g a n t e p r o g r a m a d e c o m p u t a -
d o r a q u e resue lva el p r o b l e m a incor rec to n o
sa t i s face las n e c e s i d a d e s d e n a d i e . Por lo tanto,
es muy i m p o r t a n t e e n t e n d e r lo q u e el c l iente
q u i e r e a n t e s d e c o m e n z a r a d i s e ñ a r y construir
un s is tema b a s a d o en c o m p u t a d o r a .

¿Cuáles son los p a s o s ? La ingen ie r í a d e requi-
sitos e m p i e z a con la f a s e d e inicio, la cual es
u n a t a r e a q u e d e f i n e el á m b i t o y la n a t u r a l e z a
dei p r o b l e m a q u e d e b e resolverse . D e s p u é s con-
t inúa con la o b t e n c i ó n , q u e es u n a t a r e a q u e
a y u d a a l cliente a de f in i r sus n e c e s i d a d e s ; pos-
t e r io rmente s igue con la e l a b o r a c i ó n , q u e e s la

155

TM

PDF Editor

156 P A R T E D O S PRÁCTICA DE LA INGENIERÍA D A SOFTWARE

f a se d o n d e se r e f inan y m o d i f i c a n los requis i tos
b á s i c o s . C u a n d o el cliente h a d e f i n i d o el p r o b l e -
m a se lleva a c a b o ia n e g o c i a c i ó n , d o n d e s e
de f ine c u á l e s son las p r i o r i d a d e s , c u á l e s a s p e c -
tos son e s e n c i a l e s y e n q u é m o m e n t o s e requ ie -
ren. Por último, el p r o b l e m a s e e spec i f i ca d e
a l g u n a m a n e r a , y d e s p u é s es v a l i d a d o y revisa-
d o p a r a a s e g u r a r q u e la c o n c e p c i ó n de l p r o b l e -
ma q u e t i ene el i n g e n i e r o d e s o f t w a r e co inc ide
con la p e r c e p c i ó n de l cliente.

¿Cuál es el p r o d u c t o o b t e n i d o ? El ob je t ivo
del p r o c e s o d e la i ngen ie r í a d e requis i tos e s
d a r l e a t o d a s las p a r t e s u n a exp l i cac ión escr i ta
del p r o b l e m a . Esto p u e d e l o g r a r s e p o r m e d i o d e

v a r i o s p r o d u c t o s d e t r a b a j o : e s c e n a r i o s d e uso,
l istas d e func iones y ca rac te r í s t i cas , m o d e l o s d e
aná l i s i s o a l g u n a e spec i f i cac ión .

¿Cómo p u e d o es ta r seguro de que lo he
hecho correctamente? El i n g e n i e r o d e soft-
w a r e revisa los p r o d u c t o s d e t r a b a j o d e la inge-
n i e r í a d e requis i tos ¡unto con el cliente y los
u s u a r i o s f ina l e s p a r a a s e g u r a r s e q u e h a y a
e n t e n d i d o lo q u e en r e a l i d a d p r e t e n d í a n deci r le .
Es n e c e s a r i o h a c e r u n a a d v e r t e n c i a : a u n des-
p u é s d e q u e t o d a s las p a r t e s e s t án d e a c u e r d o ,
las c o s a s c a m b i a n , y c o n t i n u a r á n h a c i é n d o l o a
t r avés d e la v i d a del p royec to .

quisitos de una manera desorganizada e invertimos muy poco tiempo en verificar lo que
registramos. Permitimos que el cambio nos controle en lugar de establecer mecanismos
para controlarlo. En resumen, fallamos al establecer un cimiento sólido para el sistema o
software. Cada uno de estos problemas representa un reto. Cuando éstos se combinan, la
imagen es desalentadora incluso para los gerentes y profesionales del sofware más expe-
rimentados. Pero existen soluciones.

Sería d e s h o n e s t o decir q u e la ingenier ía d e requis i tos e s la "solución" p a r a los re tos
que s e h a n e n u n c i a d o . Pero p roporc iona u n e n f o q u e sól ido p a r a a b o r d a r d ichos
desaf ios .

7 . 1 U N P V E N T E H A C I A EL D I S E Ñ O Y L A C O H S T R V C C I Ó N

Las ac t iv idades d e d i s e ñ o y cons t rucc ión d e s o f t w a r e de c o m p u t a d o r a son desaf ian-

tes , c rea t ivas y h a s t a divert idas. De h e c h o , la cons t rucc ión e s tan irresistible que
m u c h o s desa r ro l l ado res de s o f t w a r e qu ie ren en t ra r en ella a n t e s d e c o m p r e n d e r con
claridad d e qué e s lo q u e s e neces i ta . Ellos a r g u m e n t a n q u e las c o s a s s e ac la ra rán
m i e n t r a s cons t ruyen ; q u e los i n t e r e s a d o s en el s o f t w a r e s e r á n c a p a c e s d e e n t e n d e r
mejor las n e c e s i d a d e s só lo d e s p u é s de e x a m i n a r las p r imera s i te rac iones del soft-
ware ; q u e las c o s a s c a m b i a n t a n ráp ido que la ingenier ía d e requis i tos e s u n a pérdi-
da d e t i empo; q u e la l ínea de b a s e p r o d u c e u n p r o g r a m a q u e func iona y todo lo

d e m á s e s secundar io . Lo que h a c e s e d u c t o r e s a e s to s a r g u m e n t o s e s q u e con t ienen
e l e m e n t o s d e ve rdad . ' Pero c a d a u n o d e ellos e s imper fec to y p u e d e conduci r a un
p royec to d e s o f t w a r e fallido.

1 En particular, esto es cierto para los proyectos chicos (menos de un mes) que implican un esfuerzo
relativamente pequeño. Conforme el software crece en tamaño y complejidad, estos argumentos co-
mienzan a derrumbarse.

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 157

"La parte más difícil de construir un sistema de software es decidir qué construir. Ninguna parte del trabajo estropea
tanto el sistema resultante si se hace mal. Ninguna parte es más difícil de rectificar después."

Fred Brooks

LVE

ida para el

S i l ella,
«esuhOTite

' d e no

del

La ingenier ía d e requisi tos, c o m o t o d a s las d e m á s ac t iv idades de la ingenier ía del
s o f t w a r e , d e b e a d a p t a r s e a las n e c e s i d a d e s del p roceso , el p royec to , el p r o d u c t o y las
p e r s o n a s q u e rea l izan el t raba jo . Desde la perspect iva del p r o c e s o del so f tware , la
ingenier ía d e requis i tos (IR) e s u n a acc ión d e la ingenier ía del s o f t w a r e q u e c o m i e n -
za d u r a n t e la act ividad de comun icac ión y con t inúa en la act ividad de mode lado .

En a l g u n o s c a s o s s e elige un e n f o q u e abreviado. En otros , cada una d e las t a r ea s
def in idas para c o m p r e n d e r los requis i tos s e d e b e llevar a cabo de m a n e r a r igurosa.

Sobre todo, el equ ipo de s o f t w a r e debe a d a p t a r su e n f o q u e a la IR, lo q u e n o signifi-
ca a b a n d o n o . Es esenc ia l q u e el e q u i p o de s o f t w a r e h a g a u n e s f u e r z o real po r e n t e n -
der los requis i tos d e u n p r o b l e m a antes d e in ten ta r resolverlo.

La ingenier ía d e requis i tos t i ende un p u e n t e hac ia el d i seño y la cons t rucc ión .
Pero ¿dónde s e origina el p u e n t e ? Se p u e d e a r g u m e n t a r q u e c o m i e n z a al p ie d e los

pa r t i c ipan tes del p royec to (es decir , ge ren tes , cl ientes, u sua r io s finales), d o n d e s e
def inen las neces idades del negocio, s e descr iben los escenar ios de los usuarios, se deli-
n e a n las ca rac te r í s t i cas y func iones , y s e ident if ican las res t r icc iones del p royec to .
Ot ros quizá s u g i e r a n q u e c o m i e n z a con la def inición m á s ampl ia del s i s t ema , e n el
q u e el s o f t w a r e e s sólo u n c o m p o n e n t e (capítulo 6) del domin io del s i s t ema q u e e s
a ú n mayor . Pero sin impor ta r el p u n t o d e inicio, el t r aba jo a lo la rgo del p u e n t e se
inicia en la pa r t e al ta del proyecto , lo q u e pe rmi t e que el equ ipo de s o f t w a r e examl

n e el c o n t e x t o del t r aba jo d e s o f t w a r e q u e s e r á realizado,- las n e c e s i d a d e s especif i -
c a s q u e el d i s e ñ o y la cons t rucc ión d e b e n aborda r ; las p r io r idades q u e indican el
o r d e n en el q u e se d e b e c o m p l e t a r el t rabajo; y la in fo rmac ión , las func iones y los
c o m p o r t a m i e n t o s q u e t e n d r á n un impac to p r o f u n d o en el d i s e ñ o resu l tan te .

—

La ingenier ía d e requis i tos p roporc iona el m e c a n i s m o a p r o p i a d o p a r a e n t e n d e r lo
q u e el c l iente quiere , ana l i za r las neces idades , eva lua r la factibilidad, negoc ia r una
so luc ión razonable , especi f icar la solución sin a m b i g ü e d a d e s , val idar la especi f ica-
c ión , y admin i s t r a r los requis i tos c o n f o r m e é s to s s e t r a n s f o r m a n en un s i s t ema ope -
racional [THA97]. El p r o c e s o d e la ingenier ía d e requis i tos s e lleva a c a b o a t r avés d e
s ie te d is t in tas func iones : inicio, obtención, elaboración, negociación, especificación,

validación y gestión.
Resulta impor t an te de s t aca r q u e a l g u n a s d e e s t a s f u n c i o n e s de la ingeniería de

requis i tos ocu r r en e n para le lo y q u e t o d a s d e b e n a d a p t a r s e a las n e c e s i d a d e s del
p royec to . T o d a s e s t á n dirigidas a definir lo que el c l iente quiere , y t odas s i rven para
es tab lecer una b a s e sólida r e spec to del d i s e ñ o y la cons t rucc ión d e lo q u e o b t e n d r á
el cl iente.

TM

PDF Editor

158 P A R T E D O S PRÁCTICA DE LA INGENIERÍA D A SOFTWARE

7.2.1 Inicio

¿Cómo se inicia un p royec to d e s o f t w a r e ? ¿Es u n e v e n t o a i s lado q u e s e convier te en

el ca ta l izador p a r a un n u e v o s i s t ema o p r o d u c t o b a s a d o e n c o m p u t a d o r a ? ¿O la
neces idad evoluc iona con el t i empo? No exis ten r e s p u e s t a s def ini t ivas p a r a e s t a s
p regun tas .

"Por lo general, tas semillas de los desastres más importantes en software se siembran en los primeros tres meses
desde el comienzo del proyecto.'

Capers J o n e s

En a lgunos casos , una conversac ión informal e s t odo lo que s e neces i ta para pre-

cipitar un e s f u e r z o impor tan te de ingeniería del so f tware . Pero e n genera l , la mayoría
d e los proyectos c o m i e n z a c u a n d o s e identifica u n a neces idad d e negocios o s e des-
cubre un n u e v o m e r c a d o o servicio potencial . Los par t ic ipantes d e la comun idad de
negoc ios (es decir, los ge ren tes , gen t e de mercadotecn ia , ge ren t e s d e producto) defi-
n e n un caso d e negoc ios p a r a la idea, t ra tan d e identificar la ampl i tud y p rofundidad
del mercado , h a c e n un anál is is prel iminar de factibilidad, e identif ican u n a descripción
funcional del ámbi to del proyecto. Toda e s t a in formación es tá su je ta a cambios (una
si tuación probable) , pe ro e s suficiente p a r a susci tar conversac iones con la o rganiza-

ción d e ingeniería del sof tware . 2

Al inicio3 del p royec to los ingen ie ros d e s o f t w a r e h a c e n una serie d e p r egun t a s
l ibres d e con tex to , las c u a l e s s e e x p o n e n en la secc ión 7.3.4. El ob je t ivo e s es tab le -
cer u n a c o m p r e n s i ó n bás i ca del p rob lema , las p e r s o n a s q u e quieren u n a so luc ión , la
na tu ra l eza d e la so luc ión q u e s e de sea , y la efect ividad d e la comun icac ión prelimi-

na r en t r e el c l iente y el desar ro l lador .

7.2.2 Obtención
En verdad p a r e c e m u y s imple p regun ta r le al cliente, a los u s u a r i o s y o t ro s in te resa-
d o s c u á l e s son los obje t ivos p a r a el s i s t e m a o p roduc to , q u é e s lo q u e s e d e b e lograr,
de q u é f o r m a el p roduc to sa t i s face las n e c e s i d a d e s del negoc io y po r ú l t imo c ó m o se
uti l izará el s i s t ema o p roduc to día a día. Pero n o e s s imple, e s m u y difícil.

Christel y Kang [CR192] ident if ican u n a serie de p r o b l e m a s q u e ayudan a e n t e n d e r
¿ P o r qué po r q u é e s difícil la obtención d e requisi tos:

• P r o b l e m a s d e á m b i t o . El límite del s i s t ema es tá m a l def in ido o los
e s difícil

comprender con
claridad |o que c l i e n t e s / u s u a r i o s especif ican deta l les t écn i cos i nnecesa r io s q u e p u e d e n
q w e r e el c l i e n t e ? confundi r , e n lugar d e clarificar, los obje t ivos g e n e r a l e s del s i s t ema .

2 Si se va a construir un sistema basado en computadora, las discusiones comienzan con la ingenie-
ría del sistema, una actividad que define la visión global y la visión de dominio para el sistema (ca-
pitulo 6).

3 Los lectores del capitulo 3 recordarán que el proceso unificado define una "fase de inicio" más com-
pleta, la cual incluye las tareas de inicio, obtención y elaboración tal como se examinan en este ca-
pítulo.

TM

PDF Editor

C A P I T U L O 7 INGENIERÍA DE REQUISITOS 159

es
sedebe

íadavees

mcbose
diseño,

w t t d e
se

• P r o b l e m a s d e c o m p r e n s i ó n . Los c l ien tes /usuar ios no es tán seguros por
completo de qué es lo que se necesi ta , comprenden poco acerca de las capa-
cidades y l imitaciones de su ambiente de cómputo , no comprenden del todo
el dominio del problema, t ienen dificultades al comunicar neces idades al
ingeniero de s is temas, omiten información que consideran "obvia", especi-
fican requisitos que chocan con las neces idades de otros c l ientes /usuar ios , o
especifican requisitos ambiguos o inestables.

• P r o b l e m a s d e v o l a t i l i d a d . Los problemas cambian confo rme t ranscurre el
t iempo.

Para ayudar a superar es tos problemas, los ingenieros de requisitos deben realizar
en forma organizada la actividad de recopilación de requisitos.

7.2.3 Elaboración

La información conseguida con el cliente duran te el inicio y la obtención se expan-
de y se refina durante la elaboración. Esta actividad de la ingeniería de requisitos se
enfoca en el desarrollo de un modelo técnico ref inado de las funciones, característi-
cas y restr icciones del sof tware .

La elaboración es una acción del modelado del análisis (capítulo 8) y se compo-
n e de una serie de ta reas de mode lado y ref inamiento. La elaboración se conduce
med ian te la creación y el ref inamiento de escenar ios del usuar io que describen la

fo rma en que el usuar io final (y ot ros actores) interactuarán con el s is tema. Cada
escenar io del usuar io s e anal iza para obtener clases de análisis: ent idades del domi-
nio de negocios visibles para el usuar io final. Se def inen los atr ibutos de cada clase
de análisis y se identifican los servicios4 que requiere cada clase. Se identifican las

re laciones y la colaboración entre las clases y se produce una variedad de d iagramas
de UML complementar ios .

El resul tado final de la e laboración es un modelo de análisis que define el domi-
nio de la información, las func iones y el compor tamien to del problema.

INFORMACIÓN

Modelado del análisis
1 Supóngase por un momento que es necesario
especificar todos los requisitos para la

i de una cocina gourmet. Se conocen las
¡ de la sala, la ubicación de las puertas y

y el espacio disponible en la pared.
especificar por completo lo que se va a construir
hacer una lista de todos los gabinetes y

aplicaciones (su fabricante, modelo, número y
dimensiones). Después se podrían especificar las
contrapartes (laminado, granito, etcétera), uniones de
plomería, pisos y los techos. Esta lista podría constituir una
especificación útil, pero no proporciona un modelo de lo
que se desea. Para completar el modelo se podría crear
una representación tridimensional que muestre la posición

4 También se utilizan los términos operaciones y métodos.

TM

PDF Editor

160 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

/ T . d e los gabinetes y aplicaciones y los relaciones entre ellos.
A partir del modelo, sería más fácil evaluar la eficiencia
del flujo de t raba jo (un requisito p a r a todas las cocinas), y
la apariencia estética del salón (un requisito personal, pe ro
muy importante.)

Los modelos de análisis se construyen por una razón
muy parecida a la del desarrollo d e un plano d e t raba jo o

una representación tridimensional pa ra el caso d e la
cocina. Es importante evaluar c a d a componente del
sistema en relación con los otros. Esto permite determinar

cómo encajan los requisitos en esta visión y evaluar la
"estética" del sistema como ha sido concebido.

^ O N S E J O ^

En una negociación
e k a i no debe babet
ganador ni perdedor.
Ambas parles ganan
porque se solidifica un
'trato" con el que las
dos pueden vivir.

CLAVE
l o formalidad y el
formato d e una
especificación varían
con el t a m a ñ o y la
complejidad del
sof tware que se va a
construir.

7.2.4 Negociac ión

Dados los recursos limitados del negocio, no resulta inusual que los clientes y usua-
rios pidan m á s de lo que se puede lograr. También es relativamente común que dife-
rentes clientes o usuarios propongan requisitos que entran en conflicto entre sí a
argumentar que su versión e s "esencial para nuestras necesidades especiales".

El ingeniero de requisitos debe conciliar estos conflictos por medio de un proce-
so de negociación. Se pide a los clientes, usuarios y otros interesados que ordenen
sus requisitos y después discutan los conflictos relacionados con la prioridad. Se
identifican y analizan los riesgos asociados con cada requisito (para obtener más
detalles véase el capítulo 25). Se hacen "estimaciones" preliminares del esfuerzo
requerido para su desarrollo y después s e utilizan para evaluar el impacto de cada
requisito en el costo del proyecto y sobre el t iempo de entrega. Mediante un enfoque
iterativo, los requisitos se eliminan, combinan o modifican de forma que cada parte
alcance cierto grado de satisfacción.

7.2.5 Especificación

En el contexto de los s is temas basados en computadora (y en software), el término
especificación tiene significados diferentes para personas distintas. Una especifica-
ción puede ser un documento escrito, un conjunto de modelos gráficos, un modelo
matemático formal, una colección de escenarios de uso, un prototipo o cualquier
combinación de éstos.

Algunos sugieren que para una especificación se debe desarrollar y utilizar una
"plantilla estándar" [SOM97] argumentan que esto conduce a que los requisitos sean
presentados de una manera más consistente y por ende más entendible. Sin embar-
go, a lgunas veces e s necesar io ser flexible mientras se desarrolla una especificación.
Respecto de sistemas grandes el mejor enfoque podría ser un documento escrito que
combinara descripciones en el lenguaje natural y modelos gráficos. Por otro lado, en
cuanto a productos o s is temas más pequeños, podría ser que no se necesite más que
escenarios de uso, cuando dichos s is temas residan en ambientes técnicos que se
comprendan bien.

La especificación es el producto de trabajo final que genera la ingeniería de requi-
sitos. Sirve como base para las actividades de ingeniería de sof tware subsecuentes.

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 161

dave
c wtdoáón

tsb
. Se mo-

tel
xanátsis

yquehs
se tan esta-

Descr ibe la func ión y el d e s e m p e ñ o d e un s i s t ema b a s a d o e n c o m p u t a d o r a y las r e s -
t r icc iones q u e regirán su desarrol lo .

7.2.6 Validación

La cal idad d e los p r o d u c t o s d e t r aba jo p r o c e d e n t e s d e la ingenier ía de requis i tos s e
eva lúa d u r a n t e un p a s o d e validación. La val idación d e requis i tos e x a m i n a la espec i -
ficación para a segu ra r q u e t odos los requis i tos d e s o f t w a r e s e h a n es tab lec ido d e
m a n e r a precisa; q u e s e h a n d e t e c t a d o las incons is tenc ias , o m i s i o n e s y e r r o r e s y q u e
é s t o s h a n s ido corregidos , y que los p roduc to s d e t r aba jo c u m p l e n con los e s t á n d a -
res e s t ab lec idos p a r a el p roceso , p royec to y produc to .

El m e c a n i s m o pr imar io p a r a la val idación d e requis i tos e s la revis ión técnica for-
mal (capítulo 26). El equ ipo d e revisión q u e valida los requis i tos incluye ingen ie ros
d e so f tware , cl ientes, u sua r io s y o t ro s i n t e r e s a d o s q u e e x a m i n a n la especi f icac ión y
b u s c a n e r ro res e n el con t en ido o la in te rpre tac ión , á r e a s q u e tal v e z requ ie ran una
clarif icación, in fo rmac ión fal tante , incons i s tenc ias (que e s un p rob lema i m p o r t a n t e
c u a n d o s e desar ro l lan p r o d u c t o s o s i s t e m a s g randes) , conf l ic tos en t r e los requisi tos,
o requis i tos i r reales (inalcanzables) .

INFORMACIÓN

Lista de verificación para la validación de requisitos
Con frecuencia resulta útil e x a m i n a r c a d a

requisito frente a una serie d e p reguntas en

d e lista de verificación. Enseguida se presenta un

subconjunto d e las p reguntas q u e d e b e n

K x

¿El requisito se p u e d e p r o b a r ? Si es así, ¿se pueden

especif icar las p ruebas (a lgunas veces l l amadas criterios
d e val idación) p a r a ejerci tar el requisito?

• j - c s requisitos es tán es tablecidos de m a n e r a c la ra?

¿Estos pueden malinterpretarse?

2 fuente del requisito (por e jemplo , una persona , una

-Eojloción o un reglamento) está identif icada? ¿El

e r u n á a d o final del requisito h a sido e x a m i n a d o p o r la

u e n t e original o c o m p a r á n d o l o con ella?

; E -equisito está restr ingido en términos cuantitativos?

jCuá les otros requisitos es tán re lac ionados con éste?

j á i ó n regis t rados d e m a n e r a c la ra p o r med io d e una

TTcfriz de referencias c r u z a d a s u o t ro mecanismo?

• ¡ 3 requisito viola a l g u n a restricción del dominio del

K

• ¿El requisito es ras t reable p a r a cualquier mode lo d e
sistema q u e haya sido c r eado?

• ¿El requisito es ras t reable p a r a los objet ivos genera le s

del s istema o producto?

• ¿La especificación está es t ructurada d e una forma q u e

c o n d u z c a a su comprens ión , referencia y traducción

fácil en productos d e t r a b a j o más técnicos?

• ¿Se ha c r e a d o algún índice p a r a la especif icación?

• ¿Los requisitos a s o c i a d o s con el rendimiento, el
d e s e m p e ñ o y las caracter ís t icas operoc iona les se han

es tablecido d e m a n e r a c la ra? ¿Cuáles requisitos

pa recen ser implícitos?

« i a l e obtener
de

ü t sobre
é

7.2.7 Gestión d e requisitos

En el capí tulo 6 s e es tableció q u e los requisi tos p a r a los s i s t emas b a s a d o s en c o m p u -
t a d o r a s c a m b i a n y q u e el d e s e o d e cambia r lo s pers i s te d u r a n t e la vida del s i s t ema .
La ges t ión de requis i tos e s u n c o n j u n t o de ac t iv idades q u e ayudan al e q u i p o d e p ro -

yec to a identificar, con t ro la r y ras t rea r los requis i tos y los c a m b i o s a e s to s en cua l -

TM

PDF Editor

162 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ C O N S I J O ^

Cuando un sistema es
grande y complejo, la
determinación de las
conexiones entre los
reqtiiíihK puede ser
una totea redituable.
Se recomiendo el uso
de las tablas de rastrea-
bilidad pora facilitar un
poco el trabajo.

quier m o m e n t o m i e n t r a s s e desar ro l la el proyecto . 5 M u c h a s d e e s t a s ac t iv idades s o a l
idént icas a las ac t iv idades d e la ges t ión de la conf igurac ión del s o f t w a r e (CCS) que I
s e t r a t an e n el capí tu lo 27.

La ges t ión de requis i tos c o m i e n z a con la identif icación. Cada r eque r imien to se
as igna a un solo ident i f icador . Una vez ident i f icados los requis i tos s e desar ro l lan las

t ab l a s d e ras t reabi l idad. En la figura 7.1 s e m u e s t r a de m a n e r a e s q u e m á t i c a u n a
tabla d e ras t reabi l idad, c a d a u n a de el las re lac iona los requis i tos con u n o o mas
a s p e c t o s del s i s t ema o d e su a m b i e n t e . Entre las m u c h a s t ab las de ras t reabi l idad
pos ib les e s t á n las s iguientes :

Tabla d e r a s t r e a b i l i d a d d e l a s c a r a c t e r í s t i c a s . Mues t ra la m a n e r a en q u e los

requis i tos s e r e l ac ionan con las carac ter í s t icas del s i s t e m a / p r o d u c t o observables
p a r a el cl iente.

Tabla d e ras t reab i l idad d e la f u e n t e . Identif ica la f u e n t e d e c a d a requisi to.

Tabla d e r a s t r e a b i l i d a d d e d e p e n d e n c i a . Indica la f o r m a e n q u e los requisitos
e s t á n r e l ac ionados e n t r e sí.

Tabla d e r a s t r e a b i l i d a d de l s u b s i s t e m a . Es tab lece ca t egor í a s en t r e los requ:
s i tos d e a c u e r d o con el (los) s u b s i s t e m a (s) q u e gob ie rna (n).

Tabla d e r a s t r e a b i l i d a d d e la i n t e r f a z . Mues t ra la f o r m a en q u e los requisi tos

s e r e l ac ionan con las in te r fases i n t e rnas y e x t e m a s del s i s t ema .

En m u c h o s casos , e s t a s t ab l a s d e ras t reabi l idad s e m a n t i e n e n c o m o p a r t e de la
b a s e d e da to s de los requis i tos d e f o r m a q u e p u e d a b u s c á r s e l e s con rap idez para
e n t e n d e r c ó m o el c a m b i o e n u n requis i to a fec ta rá d i fe ren tes a s p e c t o s del s i s tema
q u e s e cons t ru i rá .

Tabla
genérica de
rastreabilidad. Requ

\ Aspe<

U I S ¡ T O ^ ^ \ ^

:to es

A 0 1

pecí M ico d

A 0 3

el sist • •, • , .
A 0 4

ema

A 0 5

3 SU Q mbie
8{J?ÍB5Í

nte

Aíi

ROI

R 0 2

R 0 3 •
R 0 4

R 0 5

R n n v H

5 La gestión formal de requisitos se inicia sólo para proyectos grandes, los cuales tienen cientos de re-
quisitos identificables. En los proyectos pequeños esta función de la ingeniería de requisitos es bas-
tante menos formal.

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 163

HERRAMIENTAS DE SOFTWARE

Ingeniería de requisitos
O b j e t i v o : Las herramientas de la ingeniería
de requisitos ayudan en la recopilación,

o, gestión y validación de requisitos.

l i ca : La mecánica de las herramientas varía. Por lo
* las herramientas de la ingeniería de requisitos

i una variedad de modelos gráficos (por
d UML) que muestran los aspectos de información,

niento y comportamiento de un sistema. Estos
l forman la base para todos las otras actividades

r s Droceso del software.

titas representativas6

: Systems Guide, Inc. ha p reparado una lista
i completa de herramientas pa ra la

i de requisitos, ésta se puede encontrar en
i. systemsguild.com/Guildsite/Robs/retools

. 5 modelado de requisitos se estudia en el capítulo 8.
E -etramientas que se presentan a continuación se

i en la gestión de requisitos.

, desarrollado por Cybernetic Intelligence GMBH
--«•-«.easy-rm.com), construye un diccionario/glosario

específico del proyecto que contiene descripciones y
atributos detallados de los requisitos.

OnVourMark Pro, desarrollado por Omni-Vista
(www.omni-vista.com), construye una base de datos de
los requisitos, establece relaciones entre éstos, y
permite a los usuarios analizar la relación entre los
requisitos y los calendarios/costos.

Rational RequisitePro, desarrollado por Rational Software
(www.rational.com), permite a los usuarios desarrollar
una base de datos de los requisitos, representa las
relaciones entre éstos y los organiza, prioriza y rastrea.

RTM, desarrollado por Integrated Chipware
(www.chipware.com), es una herramienta para la
descripción y rastreobilidad de requisitos que también
soporta ciertos aspectos del control del cambio y
gestión de las pruebas.

Se debe hacer notar que muchas tareas de la gestión de
requisitos se pueden realizar con una simple hoja de
cálculo o un sistema pequeño para el manejo de bases
de datos.

En un e s c e n a r i o ideal , los c l ientes y los ingen ie ros de s o f t w a r e t r aba jan j un to s en el
m i s m o equipo. 7 En ta les casos , la ingenier ía d e requis i tos se t ra ta só lo d e guiar con -

v e r s a c i o n e s signif icat ivas con co legas q u e son m i e m b r o s bien c o n o c i d o s del equ ipo .
Sin e m b a r g o , en la real idad a m e n u d o e s b a s t a n t e di ferente .

Los cl ientes p u e d e n es ta r en u n a c iudad o pa í s diferente, pueden tener sólo una
idea vaga de lo que se requiere, tal vez t engan op in iones conflictivas acerca del s iste-

m a q u e s e construirá , quizá su conoc imien to técnico sea l imitado y t engan un t iempo
l imitado p a r a interactuar con el ingeniero d e requisi tos. Ninguna de e s t a s s i tuac iones
e s deseable , pero son m u y c o m u n e s , y el equipo de so f tware con f recuencia se ve obli-
g a d o a t raba jar d e n t r o d e las res t r icciones q u e impone es ta s i tuación.

En las s e c c i o n e s s igu ien tes s e e x a m i n a n los p a s o s r eque r idos para iniciar la inge-
nier ía d e requisi tos; e s decir, p a r a c o m e n z a r un p royec to de forma q u e s e m a n t e n g a
en m o v i m i e n t o hacia u n a so luc ión exi tosa.

6 Las herramientas mencionadas aquí son una muestra dentro de esla categoría. En la mayoría de los
casos los nombres están registrados por sus respectivos desarrolladores.

7 Este enfoque se recomienda para todos los proyectos y es una parte integral de la filosofía para el
desarrollo ágil de software

TM

PDF Editor

http://www.omni-vista.com
http://www.rational.com
http://www.chipware.com

1 6 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

fe?

CLAVE
Un in t e re sado e s
cua lquiera q u e
participo e n f o r m a
directa en el s i s t e m a
q u e s e va a desarrol lar
u o b t i e n e benef ic ios d e
é s t e .

7.3.1 Identif icación d e los in teresados

Sommervi l le y Sawyer [SOM97] de f inen a los interesados c o m o " todos aque l los
se benef ic ian en u n a f o r m a directa o indirecta del s i s t ema q u e e s t á e n desarrollo*
Ya se h a ident i f icado a los s o s p e c h o s o s usua les : g e r e n t e s de o p e r a c i o n e s d e nc
cios, g e r e n t e s d e p roduc to , gen t e de m e r c a d o t e c n i a , c l ientes i n t e rnos y e x t e m o s
usua r io s finales, consu l to res , i ngen ie ros d e p roduc to , ingen ie ros d e s o f t w a r e , ing
n ieros d e sopor t e y m a n t e n i m i e n t o y o t ros . Cada in t e re sado t iene u n a visión difr

rente del s i s tema, ob t iene benef ic ios d i ferentes c u a n d o és te s e desarrol la de m a n "
exi tosa , y e s t á ab ier to a d i fe ren tes r iesgos si el e s f u e r z o d e desar ro l lo l legara a fallar

En el inicio el i ngen ie ro d e requis i tos p u e d e c rea r u n a lista d e p e r s o n a s q u e c
t r ibuirán d u r a n t e la ob tenc ión d e requis i tos (sección 7.4). La lista inicial c rece rá c
fo rme s e e s t ab l ezca c o n t a c t o con los in te resados , ya q u e a c a d a u n o d e e l los se
p regun ta rá : "¿Con qu ién m á s p i ensa q u e deber ía hablar?"

7.3.2 Reconocimiento d e múlt iples puntos d e vista

Debido a que exis ten m u c h o s c l i en tes d i ferentes , los requis i tos del s i s t ema s e explo-
ra rán d e s d e d iversos p u n t o s de vista. Por e jemplo , el g r u p o d e m e r c a d o t e c n i a est¿
i n t e r e s a d o en f u n c i o n e s y ca rac te r í s t i cas q u e e s t imu len al m e r c a d o potencia l , que

h a g a n q u e el n u e v o s i s t ema sea fácil d e vender . Los g e r e n t e s d e negoc ios e s t á n inte-
r e s a d o s en un g r u p o d e carac te r í s t i cas q u e s e p u e d a n cons t ru i r s in r ebasa r un pre-
s u p u e s t o y q u e e s t é n l is tas p a r a l legar a n i c h o s d e m e r c a d o def inidos . Los usuarios
finales p u e d e n d e s e a r ca rac te r í s t i cas con las q u e es tén fami l ia r izados y s e a n fáciles
de a p r e n d e r y utilizar. Los ingen ie ros de s o f t w a r e qu izá e s t é n i n t e r e s a d o s en fun-
c i o n e s q u e d e n el sopor t e d e la in f raes t ruc tu ra y ca rac te r í s t i cas m á s acces ib les al
m e r c a d o . Los ingen ie ros de s o p o r t e s e p u e d e n e n f o c a r e n la facilidad d e man ten i -
m i e n t o del s o f t w a r e .

"Coloque a tres interesados en uno habitación y pregúnteles qué tipo de sistema quieren. Es probable que obtenga
cuatro o más opiniones diferentes"

Anónimo

Cada u n o de e s to s c o m p o n e n t e s (y otros) p ropo rc iona rán in fo rmac ión al p roceso
de la ingenier ía d e requisi tos . C o n f o r m e s e recopi la i n fo rmac ión d e s d e múltiples
p u n t o s d e vista, los requis i tos q u e su r j an p u e d e n se r i ncons i s t en te s o e n t r a r en con-
flicto con a lgún otro. El t r a b a j o del ingen ie ro de requis i tos e s ca tegor iza r toda la
in fo rmac ión d e los i n t e r e sados (incluidos los requis i tos i ncons i s t en te s y conflictivosi
en u n a f o r m a que pe rmi t a a q u i e n e s t o m e n la dec i s iones elegir un c o n j u n t o d e requi-
s i tos p a r a el s i s t ema q u e s e a n cons i s t en t e s d e m a n e r a in te rna .

7.3.3 Traba jo con respecto a l a co laborac ión

En los capí tu los p rev ios s e h a m e n c i o n a d o q u e los c l ientes (y o t ro s in teresadosi
d e b e r í a n co labora r en t r e sí (evi tando p e l e a s insignif icantes) y con los p rofes iona les

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 165

de la ingeniería del sof tware si se desea obtener un s is tema exitoso. Pero, ¿cómo se
logra es ta colaboración?

El t rabajo del ingeniero de requisitos es identificar á r eas en común (es decir, los
requisitos en los que todos los interesados están de acuerdo) y á reas de conflicto o
inconsistencia (esto es, los requisitos solicitados por un interesado que ent ran en
conflicto con las neces idades de otro). Ésta es, por supuesto, la última categoría que
presenta un desafio.

Utilización de los 'puntos de prioridad"
INFORMACIÓN

Jna forma de resolver los conflictos entre
requisitos, al mismo tiempo que se entiende

««portando relativa de todos, es la utilización de
: de "votación" basado en puntos de prioridad.

r * r e s a d o s reciben la misma cantidad de puntos
que pueden "gastarse" en cualquier número de

Se presenta una lista d e requisitos y los
-id¡can la importancia relativa de cada uno

(desde su punto de vista) al asignarle uno o más puntos de
prioridad. Los puntos asignados no se pueden reutilizar.
Una vez que los puntos de prioridad del interesado se han
agotado, dicha persona no puede realizar ninguna otra
acción sobre los requisitos. Los puntos totales que asignen
a cada requisito todos los interesados indican la
importancia general de cada requisito.

La colaboración n o significa, necesar iamente , que los requisitos se definan por
consenso. En m u c h o s casos, los in teresados colaboran al proporcionar su visión de
los requisitos, pero un fuerte "campeón de proyecto" (por ejemplo, un gerente de nego-
cios o un técnico importante) puede tomar la decisión final acerca de cuáles requi-
sitos se aceptan.

7.3.4 Formulación d e l a s p r imeras p r e g u n t a s

En es te capítulo se ha des tacado que las preguntas formuladas al inicio del proyec-
to deben ser "libres de contexto" [GAU89]. El primer conjunto de preguntas libres de
contexto se enfoca en el cliente y otros interesados, me ta s genera les y en los Dene-
ficios. Por ejemplo, el ingeniero de requisitos podría preguntar:

• ¿Quién está detrás de la solicitud de este trabajo?

• ¿Quién usará la solución?

• ¿Cuál será el beneficio económico de una solución exitosa?

• ¿Existe otra fuente para la solución requerida?

Estas preguntas ayudan a identificar a todos los part icipantes que tendrían inte-
rés en el sof tware que será construido. Además, estas p reguntas identifican el bene-
ficio medible de u n a implementación exitosa y las al ternativas posibles para perso-
nalizar el desarrollo del software.

"Es mejor saber oigo de b s preguntas que todo de los respuestas."
J a m e s Thnrber

TM

PDF Editor

166 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

7 ¿Cuales son
• las pregun-

t a s que ayudan a
omprender en

forma preliminar
el problema?

La siguiente serie de preguntas permite que el equipo de sof tware c o m p r e
mejor el problema y deja que el cliente exprese sus percepciones acerca de una
ción:

• ¿Cómo podría caracter izarse un buen resul tado generado por una solución
exitosa?

• ¿Cuáles p roblemas debería a tacar esta solución?

• ¿Podría usted describir o mostrar el ambiente de negocios en el que se
utilizará la solución?

• ¿Los aspec tos especiales del d e s e m p e ñ o o las restr icciones a fec tarán la fo
en que se busque la solución?

La serie final de p regun tas se enfoca en la efectividad d e la actividad de com
cación en sí misma. Gause y Weinberg [GAU89] las l laman las "metapreguntas '
p roponen la siguiente lista abreviada:

• ¿Es usted la pe r sona adecuada para contes tar esta pregunta? ¿Sus respues tas
son "oficíales"?

• ¿Mis preguntas son re levantes pa ra su problema?

• ¿Estoy hac iendo demas iadas preguntas?

• ¿Alguien m á s puede proporcionar información adicional?

• ¿Debería preguntar le a lguna otra cosa?

" 0 que pregunta es un tonto durante tinto minutos; el que no pregunta es un tonto por siempre."
Proverbio chino

Estas preguntas (y otras) ayudarán a "romper el hielo" y a iniciar la conversación 1
esencial para la obtención exitosa. Pero un formato de reunión de pregunta y res-
puesta n o es un en foque que haya sido exitoso de m a n e r a contundente . De hecho, I
la sesión de preguntas y respues tas se debe usar sólo pa ra el pr imer encuentro, y
después se debe reemplazar por un fo rma to de obtención de requisitos que combi- !
ne e lementos de resolución de problemas, negociación y especificación. En la sec-
ción 7.4 se presenta un enfoque de es te tipo.

7 . 4 O B T E N C I Ó N DE R E Q U I S I T O S

El formato de pregunta y respues ta descri to en la sección 7.3.4 es útil en la e tapa ini-
cial, pe ro n o es un en foque que haya s ido exitoso de mane ra decisiva para una
obtención de requisitos m á s detallada; de hecho, la ses ión de p regun tas y respues-
tas se debe usar sólo para el primer encuen t ro y después se debe reemplazar por un
formato de obtención de requisitos que combine e l emen tos de la resolución, elabo-
ración, negociación y especificación del problema. En la siguiente sección se pre-
senta un en foque de es te tipo.

TM

PDF Editor

C A P I T U L O 7 INGENIERÍA DE REQUISITOS 167

¿Cuóles
son l a s

b á s i c a s
a cabo

7.4.1 Recopilación con jun ta d e requisitos

C u a n d o s e d e s e a es t imular un e s f u e r z o c o n j u n t o y o r i en t ado al e q u i p o d e recopi la-
ción de requisi tos, u n e q u i p o d e pa r t i c ipan tes y desa r ro l l adores t r aba jan j un to s p a r a
identif icar el p rob l ema , p r o p o n e r e l e m e n t o s d e solución, negoc ia r d i f e ren te s e n f o -
q u e s y especif icar u n c o n j u n t o pre l iminar d e requis i tos p a r a la solución [ZAH90].8

Se h a n p r o p u e s t o s m u c h o s y d i f e ren te s e n f o q u e s p a r a la recopi lación c o n j u n t a de
requisi tos . Cada u n o utiliza un e scena r io m u y diferente , p e r o t odos apl ican a lguna
var iac ión de las s igu ien tes d i rect r ices bás icas :

• Las r e u n i o n e s las dirige a l g u n o de los as i s ten tes , ya s ea un ingeniero de
s o f t w a r e o u n cliente (junto con o t ros par t i c ipan tes in teresados) .

• Se e s t ab l ecen reglas p a r a la p r epa rac ión y la par t ic ipac ión .

• Se sugiere una a g e n d a q u e s e a tan formal c o m o para cubrir t odos los p u n t o s
impor tan tes , p e r o t an informal c o m o p a r a es t imular el flujo d e ideas.

• Un m o d e r a d o r (puede se r un cliente, un desa r ro l l ador o un a g e n t e externo)
cont ro la la r eun ión .

• Se utiliza un " m e c a n i s m o de def inic ión" (pueden se r ho ja s d e t raba jo ,
gráficos, ho ja s adher ib les , u n tab lero e lectrónico, un m e n s a j e r o e lec t rónico o
un foro virtual).

• La m e t a e s identif icar el p rob l ema , p r o p o n e r e l e m e n t o s d e so luc ión , negoc ia r

d i fe ren tes e n f o q u e s y especi f icar un c o n j u n t o d e requis i tos d e solución preli-
m i n a r e s en u n a a t m ó s f e r a q u e c o n d u z c a al c u m p l i m i e n t o d e la meta .

Para e n t e n d e r m e j o r el flujo d e los e v e n t o s (conforme é s to s ocurren) , s e p r e s e n -
ta u n e scena r io b r eve q u e desc r ibe la s e c u e n c i a de e v e n t o s q u e c o n d u c e n a la r eu -
nión p a r a la recopi lac ión d e requis i tos y q u e ocur ren d u r a n t e la r eun ión y d e s p u é s
d e és ta .

"Dedicamos mucho tiempo - l o mayoría del esfuerzo del proyecto- no a la ¡mplementación ni a las pruebas, sino a
tratar de decidir qué es lo que se va a construir."

Brian Lawrence

Duran te la fase d e inicio (sección 7.3), l as p r e g u n t a s y r e s p u e s t a s bás i cas e s t a -

blecen el á m b i t o del p r o b l e m a y la pe rcepc ión global d e una solución. Fuera d e e s t a s
r e u n i o n e s iniciales, los pa r t i c ipan tes escr iben una "solicitud d e p roduc to" d e una o

d o s pág inas . Se fijan un lugar, una hora y una f echa p a r a la r eun ión y s e se lecc iona
un mode rado r . Los m i e m b r o s del equ ipo d e s o f t w a r e y o t r a s o r g a n i z a c i o n e s intere-

8 A este enfoque se le llama algunas veces técnica de especificación facilitada de la aplicación (FAST,
por sus siglas en inglés).

TM

PDF Editor

l l i l I M i

168 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

requisitos. En
www.rarola.
com/wp-jadJitm

bueno descripción de

^ O N S E J O ^

Si un sistema o
producto servirá o
muchos usuarios se
debe tener lo
completa seguridad de
que los requisitos se
obtienen de una
muestra representa-
tivo de los usuarios. Si
sólo uno de los
usuarios define todos
los requisitos, el
tiesgo de rechazo es
alto.

s a d a s son inv i tados a asistir . La solici tud d e p r o d u c t o s e distr ibuye a t odos los asis-
t en t e s a n t e s de la f echa d e reun ión .

Mient ras revisa la solicitud de p r o d u c t o en los d í a s p rev ios a la r eun ión , s e p ide a
c a d a a s i s t en t e h a c e r u n a lista d e ob je tos q u e s o n pa r t e del a m b i e n t e q u e rodea al sis-
t ema , o t ro s ob je tos q u e és te p roduc i rá , y ob j e to s q u e utiliza p a r a real izar s u s fun-
c iones . Además , s e le p ide a c a d a as i s t en te q u e e l abore una lista d e los servicios
(procesos o func iones) q u e m a n i p u l a n o in t e rac túan con los ob je tos . Por último,

t a m b i é n s e p r e p a r a n l istas de las res t r icc iones (por e jemplo , cos to , t a m a ñ o , reglas
del negocio) y d e los cri ter ios d e r end imien to (por e j emplo , velocidad, exact i tud) . Se
in fo rma a los a s i s t en tes q u e n o s e e s p e r a que las l istas s e a n exhaus t ivas , s ino que
reflejen la pe rcepc ión q u e c a d a p e r s o n a t iene del s i s t ema .

C o m o un e jemplo , 9 cons idé re se el f r a g m e n t o d e u n d o c u m e n t o previo a la reu-
nión, escr i to por u n a p e r s o n a de m e r c a d o t e c n i a involucrada e n el p royec to de
HogarSeguro. Esta pe r sona escribe la s iguiente nar rac ión acerca de la función de segu-
ridad en el h o g a r q u e s e r á pa r t e d e HogarSeguro.

Nuestra investigación indica que el mercado para los sistemas de administración del ho-
gar está creciendo a una tasa de 40 por ciento anual. La primera función de HogarSeguro
que saquemos al mercado debería ser ia función de seguridad en el hogar. La mayoría de
la gente está familiarizada con los "sistemas de alarma", por lo que dicha función sería fá-
cil de vender.

La función de seguridad en el hogar protegería contra o reconocería una variedad de
"situaciones" indeseables como una entrada ilegal, fuego, inundaciones, niveles de mo-
nóxido de carbono y otras. Utilizará nuestros sensores inalámbricos para detectar cada si-
tuación, el usuario podrá programarla y llamará por teléfono automáticamente a una
oficina de monitoreo cuando detecte alguna situación.

En real idad, o t ro s pod r í an contr ibuir a e s te re la to d u r a n t e la r eun ión p a r a la reco-
pilación d e requis i tos , y m u c h a m á s in fo rmac ión es tar ía disponible . Pero a u n con
in fo rmac ión adicional , la a m b i g ü e d a d podr ía e s t a r p re sen te , e s p robab le q u e exis-
t ieran o m i s i o n e s y podr ían ocurrir e r rores . Por aho ra , la "descr ipción funcional"
an ter ior s e r á suf ic iente .

El e q u i p o d e recopi lac ión de requis i tos lo c o m p o n e n r e p r e s e n t a n t e s d e los d e p a r -

t a m e n t o s d e m e r c a d o t e c n i a , de ingenier ía d e h a r d w a r e y s o f t w a r e y de m a n u f a c t u -
ra. Se uti l izará un m o d e r a d o r ex te rno .

Cada p e r s o n a desar ro l la las l istas p r e v i a m e n t e descr i tas . Los ob je tos descr i tos
para HogarSeguro podr ían incluir el pane l d e control , los de t ec to r e s d e h u m o , los
s e n s o r e s en p u e r t a s y ven t anas , los de t ec to r e s de movimien to , u n a a l a rma , un even-
to (cuando a lgún s e n s o r se active), u n a panta l la , u n a PC, n ú m e r o s te lefónicos , una

9. El ejemplo de HogarSeguro (con extensiones y variaciones) se utiliza para ilustrar métodos impor-
tantes de la ingeniera del software en muchos de los capítulos que siguen. Como ejercicio, seria útil
realizar una reunión para la recopilación de requisitos propia y desarrollar una serie de listas para
ésta.

TM

PDF Editor

http://www.rarola

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 169

l l amada te le fónica y o t ros . La lista d e servic ios podría incluir la configuración del sis-
t ema , la colocación d e la a l a r m a , el monitoreo d e s enso re s , la marcación te lefónica ,
la programación del pane l d e cont ro l y la lectura de panta l la (obsérvese q u e los se r -
vicios a c t ú a n sob re los objetos) . De u n a m a n e r a similar, c a d a a s i s t en t e e l abora rá lis-
tas d e res t r icc iones (por e jemplo , el s i s t ema d e b e r e c o n o c e r c u a n d o los s e n s o r e s n o
e s t é n en f u n c i o n a m i e n t o , d e b e se r amigab l e p a r a el usuar io , d e b e t e n e r u n a in te r faz
d i rec ta con la l ínea telefónica) y cr i ter ios d e r e n d i m i e n t o (por e jemplo , el e v e n t o d e
un s e n s o r d e b e se r r econoc ido en u n s e g u n d o o m e n o s ; s e debe i m p l e m e n t a r un
e s q u e m a p a r a la pr ior idad d e los eventos) .

"los hechos no dejan de existir sólo porque son ignorados."
Aldoas Huxley

i reprimir el
t á e ignorar la

i cíente por
NA costoso" 0
i táctica". La

n a q u e s
r uno listo que

¡para
i lograr
b

ib mente

C u a n d o se inicia la r eun ión p a r a la recopi lac ión de d o c u m e n t o s , el p r imer tópico
q u e s e t ra ta e s la neses idad y la just i f icación p a r a el n u e v o producto , t o d o s d e b e n
es ta r d e a c u e r d o en q u e la n e c e s i d a d del p r o d u c t o s e justifica. Una v e z es tab lec ido
el a c u e r d o , c a d a pa r t i c ipan te p r e s e n t a s u s l istas p a r a examina r l a s . Las l istas p u e d e n
fijarse e n las p a r e d e s del sa lón u s a n d o h o j a s g r a n d e s d e pape l , p e g a r s e en los m u r o s
m e d i a n t e h o j a s a d h e s i v a s o escr ib i rse en un p izar rón . De m a n e r a a l te rna t iva , las lis-
t a s p u e d e n h a b e r s ido co locadas e n un bolet ín e lectrónico, en un sitio Web interno,
o s i t uadas d e n t r o d e u n a m b i e n t e d e fo ro de discusión (chat room) p a r a revisar las

a n t e s d e la r eun ión . En fo rma ideal , c a d a a s u n t o en la lista debe permi t i r m a n i p u -
larse po r s e p a r a d o p a r a q u e las l istas se p u e d a n combina r , los a s u n t o s p u e d a n
bor ra rse y s e les p u e d a n rea l izar ad ic iones . En e s t a e t a p a la crítica y el d e b a t e e s t á n
e s t r i c t amen te prohibidos .

Después d e q u e las listas individuales sob re el á r e a d e un tópico s e hayan p re -
s e n t a d o , el g r u p o c rea u n a lista c o m b i n a d a . Dicha lista e l imina los a s u n t o s r e d u n -
dan t e s , incorpora ideas n u e v a s su rg idas d u r a n t e el deba te , p e r o n o borra n a d a .
Después d e h a b e r s e c r e a d o las l istas c o m b i n a d a s para t o d a s las á r e a s d e los dist in-

tos tópicos , el m o d e r a d o r coord ina el deba te . La lista c o m b i n a d a s e reduce , se
i nc r emen ta o r ep lan tea p a r a ref le jar de m a n e r a a p r o p i a d a el p r o d u c t o / s i s t e m a q u e
s e desar ro l la rá . El ob je t ivo e s desar ro l la r una lista c o n s e n s a d a en el á r e a d e c a d a
tópico (objetos, servicios, res t r icc iones y rendimiento) . D e s p u é s d i c h a s l istas s e inte-
g r a n p a r a la acc ión poster ior .

C u a n d o s e c o m p l e t a n las listas c o n s e s a d a s , el equ ipo s e divide en s u b e q u i p o s

m e n o r e s ; c a d a u n o t r aba j a p a r a desar ro l la r miniespecificaciones p a r a u n o o m á s
a s u n t o s d e c a d a u n a d e las listas.1 0 Cada miniespec i f icac ión e s una expl icación con -
cisa d e la pa labra o f rase con ten ida en la lista. Por e j emplo , la miniespec i f icac ión
p a r a el ob j e to P a n e l d e c o n t r o l d e HogarSeguro podría ser :

10 En lugar de crear miniespecificaciones, muchos equipos de software eligen desarrollar escenarios
del usuario llamados casos de uso. Éstos se consideran con detalle en la sección 7.5.

r

TM

PDF Editor

1 1

170 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

El Panel de control es una unidad empotrada en la pared con un tamaño aproximado de
9 x 5 pulgadas. El panel de control tiene conexión inalámbrica con los sensores y una PC
La interacción con el usuario ocurre por medio de un tablero de 12 teclas. Una pantalla
LCD de 2 x 2 pulgadas proporciona la retroalimentación del usuario. El software provee
sugerencias e imágenes interactivas y funciones similares.

Después , c a d a s u b e q u i p o p r e s e n t a s u s min iespec i f icac iones a t odos los as is tentes
p a r a comen ta r l a s . Se rea l izan las adic iones , a n u l a c i o n e s y e l abo rac iones posten:-!

res. En a l g u n o s casos , el desar ro l lo d e las min iespec i f icac iones descubr i rá n u e v e *
requis i tos d e objetos , servicios, res t r icc iones y r end imien to q u e s e a g r e g a r á n a las
l istas or iginales . Duran te los d e b a t e s el equ ipo e n c o n t r a r á a lgún a s u n t o que i
p u e d a resolverse d u r a n t e la r eun ión . Se m a n t e n d r á una lista de a s u n t o s pend ien te s
para que d e s p u é s s e p u e d a ac tua r sob re e s t a s ideas.

D e s p u é s d e comple t a r las min iespec i f icac iones , c a d a as i s t en te h a c e una lista ó a
cri ter ios d e val idación p a r a el p r o d u c t o / s i s t e m a y la p r e s e n t a al equipo. En tonces s a

c rea u n a lista c o n s e n s a d a d e cri ter ios d e val idación. Por últ imo, u n o o m á s p a r t i ó !
p a n t e s (o a g e n t e s e x t e m o s) rec iben el e n c a r g o d e escribir las e spec i f i cac iones c o r - i
p le tas m e d i a n t e el u s o de t o d a s los a s u n t o s t r a t a d o s en la r eun ión .

H O G A R S E G U R O

Guiar una reunión para ¡a recopilación de requisitos

Ei escenario: Una sala de
reuniones. Se realiza la primera reunión p a r a la
recopilación d e requisitos.

Los a c t o r e s : Jamie Lazar, miembro del equ ipo d e
software; Vinod Raman, miembro del equipo d e
software; Ed Robbins, miembro del equipo d e software;
Doug Miller, miembro del equipo d e software; tres
miembros d e mercadotecnia; un representante d e
ingeniería del producto; y un moderador.

La conversación: .
Moderador (apuntando hacia ei pizarrón
b l a n c o) : Entonces é sa es la lista actual d e objetos y
servicios p a r a la función d e seguridad en el hogar.

Persona d e mercadotecnia: Desde nuestra
perspectiva, esta lista a b a r c a toda la función.

V i n o d : ¿ N a d i e mencionó que los usuarios querían toda
la funcionalidad d e HogarSeguro accesible por Internet?
Eso incluiría la función d e seguridad en el hogar, ¿no?

Persona d e mercadotecnia: Sí, es correcto...
tendremos que a g r e g a r e sa funcionalidad y los objetos
aprop iados . '{

Facilitador: ¿Eso también a g r e g a a lgunas
restricciones?

J a m i e : Sí, tanto técnicas como legales.

Representante d e producción: ¿Y eso qué
significa?

J a m i e : Debemos estar seguros d e que alguien externo
n o p u e d a entrar en el sistema, de sa rmado y robar la
casa o hacer a lgo peor. Gran par te d e la
responsabilidad recae en nosotros.

Doug: Muy cierto.

M e r c a d o t e c n i a : Pero aun así necesitamos la
conectívidad por Internet... sólo asegúrense de impedir
que cualquier intruso entre.

Ed: Es más fácil decirlo que hacerlo y. . .

Moderador (interrumpiendo): No quiero debatir
este asunto a h o r a . Anotemos q u e es una acción que
d e b e realizarse y continuemos.

(Doug, que lleva el registro d e b reunión, hace la
anotación correspondiente.)

M o d e r a d o r : Siento que aún hay más cosas por
considerar aquí .

(El g rupo utiliza los siguientes 4 5 minutos en refinar y
expandir los detalles d e la función d e seguridad en el
hogar.)

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 171

7.4.2 Despl iegue d e l a función d e c a l i d a d

El despliegue de la Junción de calidad (QFD. por sus siglas en inglés) es una técnica
que traduce las necesidades del cliente en requisitos técnicos para el software. El
QFD "se concentra en aumentar la satisfacción del cliente desde el proceso de la
ingeniería del sof tware [ZUL92]." Para lograr lo anterior, el QFD resalta una com-
prensión de lo que es valioso para el cliente y después despliega estos valores duran-
te el proceso de ingeniería. El QFD identifica tres tipos de requisitos [ZUL92]:

Requis i tos normales . Reflejan los objetivos y metas establecidos para un pro-
ducto o sistema durante las reuniones con el cliente. Si estos requisitos están pre-
sentes, el cliente estará satisfecho. Algunos ejemplos de requisitos normales podrí-
an ser los tipos de gráficos en pantalla, las funciones específicas del sistema, y los
niveles de rendimiento solicitados.

Requisitos esperados . Están implícitos en el producto o sistema y pueden parecer
tan obvios, aunque son fundamentales, que el cliente no los establece de manera explí-
cita. Su ausencia causaría una insatisfacción significativa. Algunos ejemplos de requisi-
tos esperados son la facilidad de la interacción humano/máquina , corrección y confia-
bilidad operacional general y facilidad en la instalación del software.

Requis i tos e s t imulantes . Reflejan las características que van más allá de las
expectativas del cliente y que prueban ser muy satisfactorias cuando están presen-
tes. Por ejemplo, un sof tware procesador de palabras se solicita con características
estándar. El producto ent regado contiene varias capacidades de configuración de
página que son bas tante satisfactorias e inesperadas.

En la actualidad, el QFD abarca la totalidad del proceso de ingeniería [PAR96]. Sin
embargo, muchos conceptos del QFD son aplicables a la actividad de obtención de requi-
sitos. En los párrafos siguientes se presenta una visión general de dichos conceptos
(adaptados para el software de computadora).

"A menudo los expectativas fallan, y entre más lo hocen más prometen.*
Wilfiam Shakespeare

En las reuniones con el cliente, la Junción de despliegue se aplica para determinar
el valor de cada función que se requiere para el sistema. El despliegue de la informa-
ción identifica los datos de los objetos y eventos que debe consumir y producir el sis-
tema. Los datos están ligados a las funciones. Por último, el despliegue de tareas exa-
mina el comportamiento del sistema o producto dentro del contexto de su entorno.
El análisis de valor se realiza para determinar la prioridad relativa de los requisitos
determinados durante cada uno de los tres despliegues.

El QFD utiliza entrevistas y observación del cliente, sondeos y exploración de los
datos históricos (por ejemplo, los reportes de problemas) como datos crudos para la
actividad de recopilación de requisitos. Después, es tos datos se traducen en una

TM

PDF Editor

172 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

tabla d e requisitos —llamada la tabla de la voz del cliente— que s e revisa con el cliente
Una variedad d e d iagramas , matr ices y m é t o d o s d e evaluación s e utilizan p a r a obtener
los requisitos e spe rados y tratar de consegui r los requisitos es t imulantes [BOS91].

7.4.3 Escenarios del usuar io

Conforme se recopi lan los requis i tos s e c o m i e n z a a mate r ia l i za r una visión g e n e r a
de las f u n c i o n e s y carac ter í s t icas del s i s t ema . Sin embargo , resul ta difícil cont inuar
con ac t iv idades d e ingenier ía del s o f t w a r e m á s t écn icas m i e n t r a s el equ ipo d e soft-
w a r e n o e n t i e n d a la m a n e r a en q u e las dis t in tas c lases d e u sua r io s f inales apl icarán
e s t a s f u n c i o n e s y caracter ís t icas . Para lograrlo, los desa r ro l l ado res y u sua r io s pue- ¡
d e n c rea r un c o n j u n t o d e e s c e n a r i o s q u e ident if ican u n a c a d e n a d e u s o p a r a el sis-
t e m a q u e s e va a construir . Los e scena r ios , l l amados con f recuenc ia casos de use
(JAC92], p r o p o r c i o n a n una descr ipc ión d e c ó m o se u s a r á el s i s t ema . Los c a s o s de
u s o se e x a m i n a n con un mayor detal le en la secc ión 7.5.

H O G A R S E G U R O

Desarrollo de un escenario de uso preliminar

El e s c e n a r i o : Una sala de
•euniones. Continúa la primera reunión para la
recopilación de requisitos.

Los a c t o r e s : Jamie Lazar, miembro del equipo de
software; Vinod Román, miembro del equipo de
software; Ed Robbins, miembro del equipo d e software;
Doug Miller, miembro del equipo de software; tres
miembros d e mercadotecnia; un representante de
ingeniería del producto; y un moderador.

La conversación:

M o d e r a d o r : Hemos estado hablando acerca de la
seguridad para el acceso a la funcionalidad d e
HogarSeguro, la cual será accesible por Internet. Me
gustaría tratar algo.

Desarrollemos un escenario d e uso pa ra el acceso a la
función de seguridad en el hogar.

J a m i e : ¿Cómo? " •

M o d e r a d o r : Podemos hacerlo de un par de formas,
pero por ahora me gustaría mantener las cosas
realmente informales. Dinos (y apunta a una persona d e
mercadotecnia) cómo visualizas el acceso al sistema.

P e r s o n a d e m e r c a d o t e c n i a : Humm..., bueno, es lo
que haría si estuviera fuera d e casa y tuviera que dejar a
alguien dentro, digamos una persona de limpieza o un
técnico en reparaciones, quien no tendría el código de
seguridad.

M o d e r a d o r (s o n r i e n d o) : Ésa es la razón por lo que
lo harías. . . dime cómo lo harías realmente.
P e r s o n a d e m e r c a d o t e c n i a : Humm..., la primera
cosa que necesitaría es una PC. Entraría en un sitio web
que tendríamos pa ra todos los usuarios de HogarSeguro.
Introduciría mi identificación d e usuario y. . .
V i n o d (i n t e r r u m p i e n d o) : La página web tendría que
estar asegurada , codificada, pa ra garantizar que
estamos seguros y. . .
M o d e r a d o r (i n t e r r u m p i e n d o) : Ésa es una buena
información, Vinod, pero es técnica. Vamos a enfocarnos
en la forma en que el usuario final usará esta capacidad,
¿de acuerdo?
V i n o d : N o hay problema.
P e r s o n a d e m e r c a d o t e c n i a : Entonces, como estaba
diciendo, entraría en ei sitio web e introduciría mi
identificación d e usuario y dos niveles de contraseña.
J a m i e : ¿Qué pasa si olvido mi contraseña?
M o d e r a d o r (i n t e r r u m p i e n d o) : Buen punto, Jamie,
pero no vamos a profundizar en eso ahora . Haremos
una nota del tema y la llamaremos una "excepción*.
Estoy seguro que existirán otras.
P e r s o n a d e m e r c a d o t e c n i a : Después de introducir
las contraseñas, aparecerá una pantalla representando
todas las funciones de SafeHome. Seleccionaría lo
función de seguridad en ei hogar. El sistema podría
requerir que yo verificara quién soy, digamos
preguntándome mi dirección, teléfono o a lgo así.

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 1 7 3

desplegar ía una imagen del panel d e control del
de seguridad, ¡unto con una lista d e las funciones

puedo realizar: activar el sistema, desactivar el
desactivar uno o más sensores. Supongo q u e

i podría permitirme reconfigurar las zonas d e
' y otras cosas como ésa , pero no estoy seguro.

(Mientras la persona d e mercadotecnia continúa
hablando , Doug toma las notas correspondientes. Dichas
notas forman la base p a r a el primer caso d e uso
informal. De manera alternativa, se le p u d o haber
pedido a la persona d e mercadotecnia que escribiera el
escenario, pero esto se har ía fuera d e la reunión.)

7.4.4 Productos de t r aba jo d e l a obtención

Los p roduc to s d e t r aba jo p roduc idos c o m o c o n s e c u e n c i a de la ob tenc ión de requisi-
tos var iará de a c u e r d o con el t a m a ñ o del s i s t ema o p roduc to q u e s e vaya a construir .
La mayor ía d e los s i s t e m a s incluye los s igu ien tes p r o d u c t o s d e t raba jo :

• Un e n u n c i a d o d e n e c e s i d a d y factibil idad.

• Un e n u n c i a d o l imitado del á m b i t o del s i s t ema o p roduc to .

• Una lista de cl ientes, u s u a r i o s y o t ro s i n t e r e s a d o s q u e par t ic iparon en la
ob tenc ión d e requisi tos .

• Una descr ipc ión del a m b i e n t e técn ico del s i s t ema .

• Una lista d e requis i tos (de m a n e r a p re fe ren te o r g a n i z a d o s por función) y las
res t r icc iones d e domin io ap l icab les a c a d a uno .

• Un c o n j u n t o d e e s c e n a r i o s d e u s o q u e p roporc ionen un d i sce rn imien to d e la
ut i l ización del s i s t ema o p r o d u c t o en d i fe ren tes cond ic iones d e operac ión .

• Cua lesqu ie ra p ro to t ipos desa r ro l l ados p a r a definir d e mejor fo rma los requi -
si tos.

Cada u n o d e e s t o s p roduc to s d e t r aba jo los revisa t o d a la g e n t e q u e h a par t ic ipado
en la ob tenc ión d e requisi tos .

7 . 5 D E S A R R O L L O P E C A S O S D E U S O

En un libro q u e ana l iza la m a n e r a d e escribir c a s o s de u s o ef icaces , Alistair Cockburn
[COCO 1] m e n c i o n a q u e "un c a s o d e u s o cap tu ra un con t ra to . . . [que] descr ibe el c o m -
p o r t a m i e n t o del s i s t ema e n d i fe ren tes c o n d i c i o n e s m i e n t r a s é s t e r e s p o n d e a la pe t i -
ción d e u n o d e s u s usuar ios" . En esenc ia , un caso de uso cuen ta una historia estili-
z a d a d e la m a n e r a en q u e un u s u a r i o final (el cual d e s e m p e ñ a u n o d e var ios p a p e -
les posibles) in te rac túa con el s i s t ema en un c o n j u n t o espec í f ico d e c i rcuns tanc ias .
La historia p u e d e se r un tex to narra t ivo, un e s q u e m a d e t a r e a s o in te racc iones , u n a

descr ipc ión b a s a d a en u n a planti l la o una r ep re sen t ac ión por m e d i o d e d i ag ramas .
Sin impor ta r su fo rma , un c a s o de u s o m u e s t r a el s o f t w a r e o s i s t ema d e s d e el p u n t o
de vista del u s u a r i o final.

El p r imer p a s o al escribir un c a s o d e u s o cons i s te en definir el c o n j u n t o de "acto-
res" q u e e s t a r á n invo lucrados en la historia . Los actores s on las d i fe ren tes p e r s o n a s

kVE
" « u s ó s e

: d punto
B octor.
• popel

• los

i cuando
cor el

TM

PDF Editor

174

www.ra t iond .
tom/prodoct s /
whitepapers/
1 0 0 6 2 2 . ¡ s p p u e d e

bojoise un excelente
documento sobre los
casos d e uso.

? ¿ Q u é s e
™ n e c e s i t a
saber para d e s a -
rrollar un c a s o d e
uso e f i c a z ?

. Ü 1 H B

P A S T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

(o disposit ivos) q u e ut i l izan el s i s t ema o p roduc to d e n t r o del con tex to d e la funciór
y el c o m p o r t a m i e n t o q u e se descr ibirá . Los ac to res r ep re sen t an los p a p e l e s q u e jue-
gan las p e r s o n a s (o disposit ivos) c o n f o r m e el s i s t ema opera . Def inido d e u n a mane-

r a m á s formal , un ac to r e s a lgún e l e m e n t o q u e s e c o m u n i c a con el s i s t ema o pro-
duc to y q u e e s ex te rno al s i s t ema e n sí m i s m o . Cada ac to r t iene u n a o m á s metas
c u a n d o utiliza el s i s t ema .

Es i m p o r t a n t e s e ñ a l a r q u e un a c t o r y un usua r io final n o son n e c e s a r i a m e n t e le
mi smo . Un usua r io típico p u e d e d e s e m p e ñ a r va r ios p a p e l e s al u s a r u n s i s t ema
mien t r a s q u e u n ac to r r e p r e s e n t a u n a c lase de en t idad ex te rna (con f r ecuenc ia , per-
n o s iempre , u n a persona) q u e d e s e m p e ñ a sólo u n papel en el con tex to del ca so de
uso . C o m o un e jemplo , c o n s i d é r e s e al o p e r a d o r d e una m á q u i n a (un usuar io) que

in te rac túa con la c o m p u t a d o r a d e cont ro l p a r a u n a célula d e m a n u f a c t u r a q u e con-
t iene va r ios robo t s y m á q u i n a s d e cont ro l n u m é r i c o . Después de la revisión cuida-
d o s a de los requisi tos, el s o f t w a r e p a r a la c o m p u t a d o r a d e cont ro l requ ie re cuatrc
d i fe ren tes m o d o s (actores) para su in teracción: m o d o d e p rog ramac ión , m o d o de
prueba , m o d o d e m o n i t o r e o y m o d o d e reso luc ión d e p rob lemas . Por lo tanto, se
p u e d e n definir cua t ro ac tores : el p rog ramador , el q u e rea l iza las p ruebas , el que
m o n i t o r e a y el q u e resue lve los p rob lemas . En a l g u n o s c a s o s el o p e r a d o r de la
m á q u i n a p u e d e d e s e m p e ñ a r t odos e s to s pape les . En o t r a s s i tuac iones , son pe r sonas

d i fe ren tes las q u e p u e d e n d e s e m p e ñ a r el pape l de c a d a actor .
C o m o la ob tenc ión d e requis i tos e s u n a act ividad evolut iva, n o t odos los ac to res

s e ident i f ican d u r a n t e la p r imera i teración. Duran te és ta e s posible identif icar los

ac to res pr imar ios 0AC92], m i e n t r a s q u e los ac to res s e c u n d a r i o s s e ident i f ican con
f o r m e s e a p r e n d e m á s ace rca del s i s t ema . Los actores primarios i n t e rac túan para
lograr la func ión requer ida del s i s t ema y o b t i e n e n el benef ic io q u e s e e spe ra de és te
Ellos t r a b a j a n d e m a n e r a directa y f r e c u e n t e con el so f tware . Los ac to res s ecunda -
rios dan s o p o r t e al s i s t ema d e m a n e r a q u e los a c t o r e s p r imar ios p u e d a n h a c e r su tra-
ba jo .

Ya ident i f icados los ac to res p u e d e n desar ro l la r se los c a s o s d e uso . J acobson
[JAC92] sug ie re va r ias p regun tas 1 1 que s e debe r í an con t e s t a r m e d i a n t e un c a s o de
uso.

• ¿Quién(es) es(son) el(los) actor(es) pr imario(s)?

• ¿Cuáles son las m e t a s del ac to r?

• ¿Cuáles s o n las cond ic iones prev ias q u e d e b e n existir a n t e s d e c o m e n z a r la
h is tor ia?

• ¿Cuáles s o n las t a r e a s o func iones pr inc ipa les q u e real iza el ac tor?

• ¿Cuáles e x c e p c i o n e s podr ían cons ide ra r se m i e n t r a s s e desc r ibe la h is tor ia?

• ¿Cuáles son las va r i ac iones pos ib les en la in teracc ión del ac tor?

11 Las preguntas de Jacobson se han extendido para proporcionar una visión más completa del conte-
nido del caso de uso.

TM

PDF Editor

http://www.rationd

CAPÍTULO 7 INGENIERÍA DE REQUISITOS 175

• ¿Cuál e s la i n fo rmac ión del s i s t ema q u e el ac to r adquir i rá , p roduc i rá o
c a m b i a r á ?

• ¿El a c t o r t e n d r á q u e in fo rmar al s i s t ema ace rca de c a m b i o s en el m e d i o
a m b i e n t e ex t e rno?

• ¿Cuál e s la i n fo rmac ión q u e el actor d e s e a del s i s t ema?

• ¿El a c t o r qu ie re se r i n f o r m a d o ace rca de c a m b i o s i ne spe rados?

C o m o s e recordará , los requis i tos bás i cos d e HogarSeguro de f inen t r e s ac tores : el
p r o p i e t a r i o d e la c a s a (un usuario) , u n a d m i n i s t r a d o r d e la c o n f i g u r a c i ó n
(p robab lemente la m i s m a p e r s o n a q u e el p r o p i e t a r i o , p e r o en u n a func ión d i feren-
te), los s e n s o r e s (dispositivos a g r e g a d o s al s i s tema) , y el s u b s i s t e m a d e m o n i t o -
r e o (la e s t ac ión cent ra l q u e m o n i t o r e a la func ión d e segur idad en el h o g a r d o n d e
e s t á ins ta lado HogarSeguro). Para los p ropós i tos de es te e j e m p l o só lo s e cons idera
al ac to r p r o p i e t a r i o . Éste in te rac túa con la func ión d e segur idad en el h o g a r en dife-
r e n t e s f o r m a s m e d i a n t e el u s o el pane l d e cont ro l d e la a l a r m a o u n a PC:

• Ingresa u n a c o n t r a s e ñ a para permitir t o d a s las d e m á s in te racc iones .

• Indaga ace rca del e s t a t u s d e u n a z o n a d e segur idad .

• Indaga ace rca del e s t a t u s d e un senso r .

• Pres iona el bo tón de p á n i c o en c a s o d e emergenc i a .

• Ac t iva /desac t iva el s i s t ema d e segur idad .

Si s e cons ide ra la s i tuac ión e n la cual el p ropie ta r io util iza el pane l d e control , el c a s o

d e u s o bás ico p a r a la ac t ivac ión del s i s t ema s e p r e s e n t a d e la s igu ien te manera : 1 2

HogarSeguro

n i
Ul

a l a r m a
verif icar

f u e g o

-• -y.; '

sa l ida
en c a s a
instante
desv iac ión
n o listo

A
a c t i v a d o e n c e n d i d o O o

a p e g a d o sa l ida en c a s a

uJ 0 0
max p r u e b a desv iac ión

CU CD CD
instante c ó d i g o

0 0
listo

0 0 0
' p a n ico '

12 Nótese que este caso de uso difiere de la situación en la cual se entra en el sistema a través de In-
ternet. En este caso, la interacción se lleva a cabo por medio del panel de control, el acceso es dife-
rente que cuando se utiliza una PC.

TM

PDF Editor

176 P A R T E D O S PRÁCTICA DE LA INGENIERÍA D A SOFTWARE

1. El propietario observa el panel de control de HogarSeguro (figura 7.2) para determinar si
el sistema está listo para entrar. Si el sistema no está listo se despliega un mensaje de
no listo sobre la pantalla LCD, y el propietario debe cerrar en forma física puertas y ven-
tanas para que el mensaje desaparezca. (Un mensaje de no listo implica que un sensor
se encuentra abierto; es decir, que una puerta o ventana está abierta.)

2 El propietario utiliza el teclado para introducir una contraseña de cuatro dígitos. La con-
traseña se compara con la clave almacenada en el sistema. Si la contraseña es inco-
rrecta, el panel de control emitirá un sonido y se reiniciará para recibir otra entrada. Si la
contraseña es correcta, el panel de control esperará la siguiente acción.

3. El propietario selecciona e introduce en casa o salida (véase la figura 7.2) para activar el
sistema. En casa activa sólo los sensores del perímetro (los sensores para la detección
de movimiento interno se desactivan). Salida activa todos los sensores.

4. Cuando se realiza la activación, el propietario puede observar una luz roja de alarma.

El c a s o d e u s o b á s i c o p r e s e n t a una historia d e a l to nivel q u e desc r ibe la in teracción
en t r e el ac to r y el s i s t ema .

En m u c h a s ocas iones , los c a s o s de u s o t i enen una mayor e l aborac ión p a r a pro-
porc ionar m á s deta l les ace rca de la in teracc ión . Por e jemplo , Cockburn [COCOi;
sugiere la s iguiente plantilla para las desc r ipc iones de ta l l adas d e los c a s o s d e uso

^ O N S E J O ^

Con frecuencia, los
osos de uso se
escriben de manera
informal. Sin
embaigo, se reco-
mienda el uso de lo
plantilla mostrada
oqul pora aseguro:
que se consideren
todos los aspedos
clave.

Caso de uso:

Actor primario:

Meta en el contexto:

Condiciones previas:

Activador:

Inicio de monitoreo

Propietario de la casa.

Establecer el sistema para monitorear los sensores
cuando el propietario salga de la casa o permanez-
ca dentro ella.

El sistema ha sido programado para una contrase-
ña y reconocer diferentes sensores.

El propietario decide "iniciar" el sistema, es decir,
encender las funciones de alarma.

Escenario:

1. Propietario: observa el panel de control.

2. Propietario: introduce la contraseña.

3. Propietario: selecciona "en casa" o "salida".

4. Propietario: observa la luz roja de alarma para indicar que HogarSeguro está en ope-
ración.

Excepciones:

1. El panel de control no está listo: el propietario verifica todos los sensores para deter-
minar cuáles están abiertos; los cierra.

2. La contraseña es incorrecta (el panel de control emite un sonido): el propietario intro-
duce de nuevo la contraseña correcta.

3. La contraseña no es reconocida: debe contactarse el subsistema de monitoreo y res-
puesta para reprogramar la contraseña.

4. Se selecciona en casa: el panel de control emite un sonido doble y se enciende la luz
de en casa; se activan los sensores del perímetro.

TM

PDF Editor

CAPÍTULO 7 INGENIERÍA DE REQUISITOS 177

5. Se selecciona salida: el panel de control emite un sonido triple y se enciende la luz de
salida; se activan todos los sensores.

Prioridad:

Disponible desde:

Frecuencia de uso:

Canal hacia el actor:

Actores secundarios:

Esencial, debe implementarse.

El primer incremento.

Muchas veces al día.

A través de la interfaz del panel de control.

Técnicos de soporte, sensores.

\
CLAVE
¡ rteresodos pueden

r codo c a s o d e
11 s i g n a r l e su

i relativa.

Canales hacia los actores secundarios:

Técnico de soporte: línea telefónica.

Sensores: interfaces alámbricas e inalámbricas.

Asuntos pendientes:

1. ¿Debería haber una forma de activar el sistema sin el uso de una contraseña o con una
clave abreviada?

2. ¿El panel de control debería desplegar otros mensajes de texto?

3. ¿De cuánto tiempo dispone el propietario para introducir la contraseña desde el
momento en que presiona la primera tecla?

4. ¿Existe alguna forma de desactivar el sistema antes de que éste se active en realidad?

Los c a s o s d e u s o p a r a las o t r a s in te racc iones del p r o p i e t a r i o s e desar ro l la r ían de
u n a m a n e r a similar. Es i m p o r t a n t e s eña l a r q u e c a d a c a s o d e u s o d e b e rev isarse con
cu idado . Si a lgún e l e m e n t o d e la in teracc ión e s amb iguo , existe la posibi l idad d e q u e

u n a revisión del c a s o d e u s o d e s c u b r a el p rob lema .

HOGARSEGURO

Desarrollo de un diagrama de alto nivel para un caso de uso

El e s c e n a r i o : Una sala de
nes. Continúa la reunión pa ra la recopilación de

requisitos.

Los a c t o r e s : Jamie Lazar, miembro del equipo d e
software; Vinod Raman, miembro del equipo de software;
zz Robbins, miembro del equipo de software; Doug

ir, miembro del equipo de software; tres miembros de
-e-cadotecnia ; un representante de ¡ngeniería del
rroducto; y un moderador.

l a conversación:

arador: Hemos invertido bastante tiempo
i acerca d e la función de seguridad en el hogar

l HogarSeguro. Durante el descanso dibujé un
i og rama de caso de uso para resumir b s escenarios

s que son parte de esta función. Denle un vistazo,

i los asistentes ven la figura 7.3)

J a m i e : Apenas estoy comenzando a aprender la
notación del UML. Entonces, ¿la función de seguridad en
el hogar b representa la ca ja grande con los óvalos en
su interior? ¿Y los ó v a b s representan b s casos d e uso
que escribimos en texto?

M o d e r a d o r : Sí. Y las figuras pegadas representan
actores; es decir, las personas o cosas que interactúan
con ei sistema según se describe en el caso de uso... ah ,
y utilicé el cuadro etiquetado pa ra representar un actor
que no es una persona, en este caso son sensores.

D o u g : ¿Eso es legal en el UML?

M o d e r a d o r : Lo legalidad no es el punto. Lo importante
es comunicar b información. Yo pienso que el uso de una
figura que parece una persona pero que representa un
dispositivo puede confundirnos. Entonces he adaptado
un poco b s cosas. No creo que esto represente un
problema.

TM

PDF Editor

1 7 8 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

V i n o d : De a c u e r d o , en tonces tenemos narrat ivos d e

casos d e uso p a r a c a d a u n o d e los óvalos. ¿Neces i tamos

desarrol lar nar ra t ivas m á s de ta l l adas con base en

plantillas? He leído a c e r c a d e ellas.
M o d e r a d o r : Probablemente , p e r o eso p u e d e e s p e r a r

has ta q u e h a y a m o s c o n s i d e r a d o ot ras funciones de

HogarSeguro.

P e r s o n a d e m e r c a d o t e c n i a : Esperen, he e s t a d o

v iendo este d i a g r a m a , y d e repente me di cuen ta q u e

h e m o s o lv idado a lgo.

M o d e r a d o r : ¿De v e r d a d ? ¿ Q u é es lo q u e olvidamos?

(La reunión continúa)

D i a g r a m a d e
c a s o d e u s o
p a r a l a
f u n c i ó n d e
s e g u r i d a d e n
e l h o g a r d e
HogarSeguro.

desactiva
sistema

Entra en el
sistema por
. Internet .

l i e ta r io
j c a s a

Responde c
evento de

v a l a r m a ^

' Encuentra
una condick
V de error

A d m i n i s t r a d o r
d e l s i s t e m a

sensores y tas
características

del sistema

HERRAMIENTAS DE SOFTWARE

•

Desarrollo de casos de uso
O b j e t i v o : Ayuda en el desarrol lo de casos d e
uso al p roporc iona r plantillas q u e sólo

requieren el l lenado d e espac ios en b lanco , p a r a as í c rea r

casos d e uso ef icaces . La mayor ía d e las func iona l idades
p a r a los casos d e uso es tán incluidas en un conjunto d e

funciones más a m p l i o p a r a la ingeniería d e requisitos.

H e r r a m i e n t a s r e p r e s e n t a t i v a s ' 3

Clear Requirement Workbench, de sa r ro l l ado p o r LiveSpecs
Software (www.livespecs.com), p roporc iona sopor te

a u t o m a t i z a d o p a r a la creación y evaluación d e casos

d e uso, a s í c o m o u n a va r i edad d e o t ras funciones p a r a

. la ingeniería d e requisitos.

La vas ta mayor ía d e las her ramientas p a r a el m o d e l a d o

del análisis, b a s a d a s en UML, p roporc ionan sopor te

g rá f ico y en texto p a r a el desarrol lo y m o d e l a d o d e

casos d e uso.

Objects by Design, una fuente p a r a he r ramien tas d e UML

(www.objec t sbydes ign .com/ too ls /uml too ls_byCompany

html) p roporc iona vínculos completos p a r a conocer

her ramientas d e este tipo.

En UseCases .o rg (www.usecases .org) se p u e d e encont ra r

una va r i edad d e plantillas p a r a desarrol lar casos d e
uso, así c o m o una b a s e de da tos p a r a soportarlos.

13 Las h e r r a m i e n t a s m e n c i o n a d a s aqu í s o n u n a m u e s t r a de e s t a ca tegor ía . En la mayor ía d e los c a s o s

los n o m b r e s e s t á n r eg i s t r ados p o r s u s respec t ivos desa r ro l l adores .

TM

PDF Editor

http://www.livespecs.com
http://www.objectsbydesign.com/tools/umltools_byCompany
http://www.usecases.org

CAPÍTULO 7 INGENIERÍA DE REQUISITOS 179

I Q D E L Q D E A N Á L I S I S

^ C O N S E J O ^

.ienpre es una buena
oec involucrar o los
naesados. Una de
te mejores formas de
facerlo es pedirle a
a¡áa uno que elabore
osos de uso que
xsaibon la formo en
pe se utilizará el
software.

El objet ivo del mode lo de análisis es describir los dominios requer idos de informa-
ción, func ionamiento y compor tamien to para un sis tema b a s a d o en computadoras .
El mode lo cambia en forma dinámica confo rme los ingenieros de so f tware aprenden
m á s acerca del s is tema que se va a construir y los in teresados ent ienden mejor lo
que necesi tan. Por es ta razón el modelo de análisis e s una representación de los
requisitos en un m o m e n t o determinado, por lo que se espera que és te cambie .

Conforme el modelo de análisis evoluciona, ciertos e lementos se volverán relativa-
mente estables, por lo que proporcionarán una base sólida para las ta reas d e d iseño
que siguen. Sin embargo, otros e lementos del modelo pueden ser m á s volátiles, lo que
indicará que el cliente aún no entiende por completo los requisitos para el sistema.

El mode lo de análisis y los m é t o d o s uti l izados para construirlo se describen con
detalle en el capítulo 8. En las secciones siguientes se presenta una breve visión
general .

7.6.1 Elementos del modelo de análisis
Existen m u c h a s maneras de buscar los requisitos para un sis tema basado en compu-
tadora . Algunas pe r sonas involucradas con el so f tware dicen que lo mejor e s selec-
cionar un m o d o de representación (por ejemplo, el caso de uso) y aplicarlo sin tomar

en cuenta todos los m o d o s res tantes . Otros profesionales c reen que resulta valioso
utilizar varios m o d o s de representac ión para mos t ra r el modelo de análisis. Las dife-
rentes formas de representación obligan al equipo de sof tware a considerar los
requisitos desde distintos pun tos de vista, un en foque que t iene mayores probabili-
d a d e s de descubrir omisiones, inconsis tencias y ambigüedades .

Los e l emen tos específicos del mode lo de análisis los de termina el m é t o d o de
mode lado que se utilice (capítulo 8). Sin embargo , existe un con jun to de e l emen tos

genéricos común a la mayoría de ios modelos de análisis:

E l e m e n t o s b a s a d o s e n e s c e n a r i o s . El s is tema se describe, desde el pun to de
vista del usuar io , por medio de un enfoque b a s a d o en escenarios . Por e jemplo, los
c a s o s de u s o bás icos y s u s correspondientes d i ag ramas de caso de uso (figura 7.3)
evolucionan para convertirse en casos de uso m á s e laborados b a s a d o s e n plantillas.
Los e l emen tos del modelo de análisis b a s a d o s en escenar ios con frecuencia son los
pr imeros que se desarrollan duran te la elaboración del modelo. Por tal motivo, sir-
ven c o m o una en t rada para la creación de ot ros e lementos de modelado.

Un en foque algo diferente dent ro del mode lado b a s a d o en escenar ios mues t ra las
act ividades o func iones que han s ido definidas c o m o par te de la tarea de obtención
de requisitos. Estas func iones existen dent ro de un contexto de procesamiento . Esto
es, la secuencia de actividades (también se pueden utilizar los té rminos func iones u
operaciones) que describe el p rocesamien to den t ro de un contexto l imitado se defi-
ne c o m o par te del mode lo de análisis. Como la mayoría de los e l emen tos del m o d e
lo d e anális is (y ot ros mode los de la ingeniería de software) , las act ividades (funcio

TM

PDF Editor

180 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

nes) s e p u e d e n r e p r e s e n t a r en m u c h o s g r a d o s d i f e ren te s d e abs t racc ión . Los m o d e -

los en es ta ca tegor ía p u e d e n def in i rse de m a n e r a i terat iva. Cada i teración p ropor -
c iona de ta l les ad ic iona les del p r o c e s a m i e n t o . C o m o u n e jemplo , en la figura 7.4 s e

p r e s e n t a u n d i a g r a m a d e actividad e n UML p a r a la ob tenc ión d e requisi tos.1 4 Se
m u e s t r a n t r e s niveles d e e l aborac ión .

Diagramas
de actividad
para la
obtención de
documentos.

¿Priorización formal?

N o

(Completar j
la plantilla J

i
X

u|ar di.
del caso

Definir
actores

Escribir
el escenario

Crear casos
d e uso

I

)

D i a g r a m a d e
c l a s e p a r a e l
Sensor .

Sensor

nombre / id
tipo
ubicación
á rea
característicos

identificar!]
activar!)
desact ivorj)
reconfígurar()

14 El diagrama de actividad es bastante parecido al diagrama de flujo: un diagrama gráfico para repre-
sentar las secuencias y lógica del flujo de control (capítulo 11).

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 181

de aislar
es buscar

desaip-
éesaitode
x uso. Al

sde

¿recapitulo
encontrar

este tema.

CLAVE
es uno

de manera
los estímulos
ocosionon los

entre los

E l e m e n t o s b a s a d o s e n c l a s e s . Cada e s c e n a r i o d e u s o implica u n c o n j u n t o d e
"objetos" q u e s e man ipu la m i e n t r a s un ac to r in te rac túa con el s i s t ema . Estos ob j e to s
s e clasif ican en c lases : una colecc ión d e c l a se s con a t r ibu tos s imi lares y c o m p o r t a -
m i e n t o s en c o m ú n . Por e jemplo , s e p u e d e u s a r un d i a g r a m a d e c l a se p a r a m o s t r a r
u n a c l a se d e S e n s o r p a r a la func ión de segur idad d e HogarSeguro (figura 7.5).
O b s é r v e s e q u e el d i a g r a m a lista los a t r ibu tos d e los s e n s o r e s (por e j emplo , nombre/¡d,
tipo) y las o p e r a c i o n e s [por e jemplo , identificar(), habilitar()\ que p u e d e n apl icarse

p a r a modif icar d ichos atr ibutos . A d e m á s d e los d i a g r a m a s d e c lase , o t r o s e l e m e n t o s
del m o d e l a d o del anál is is m u e s t r a n la fo rma en que las c l a s e s co l aboran con u n o y
o t ro y las re lac iones e in t e racc iones en t r e las c lases . Lo an te r io r s e e x a m i n a con
m a y o r de ta l le en el capí tu lo 8.

E l e m e n t o s d e c o m p o r t a m i e n t o . El c o m p o r t a m i e n t o d e un s i s t ema b a s a d o en
c o m p u t a d o r a p u e d e t ener un p r o f u n d o e fec to sob re el d i s e ñ o q u e s e elija, as í c o m o
e n el e n f o q u e d e i m p l e m e n t a c i ó n q u e s e apl ique . Por lo t an to , el m o d e l o d e anál is is
debe p roporc iona r e l e m e n t o s d e m o d e l a d o q u e m u e s t r e n el c o m p o r t a m i e n t o .

El d i a g r a m a d e e s t a d o (capítulo 8) e s un m é t o d o p a r a r ep re sen t a r el c o m p o r t a -

m i e n t o de un s i s t ema al mos t r a r s u s e s t a d o s y los e v e n t o s q u e o c a s i o n a n q u e d icho
s i s t ema c a m b i e d e e s t ado . Un e s t a d o e s cua lqu ie r f o r m a de c o m p o r t a m i e n t o obse r -
vable . Además , el d i a g r a m a d e e s t a d o indica las acc iones (por e jemplo , la ac t ivación
del proceso) q u e s e t o m a n c o m o c o n s e c u e n c i a d e un e v e n t o part icular .

Para ilustrar un diagrama d e e s t ado , c o n s i d é r e s e el e s t a d o d e lec tura d e c o m a n -
d o s de u n a fo tocop iado ra d e oficina. En la figura 7.6 s e p r e s e n t a el d i a g r a m a de e s t a

d o co r r e spond ien t e e n UML. Un rec t ángu lo r e d o n d e a d o r e p r e s e n t a un e s t ado . El rec-
t ángu lo s e divide en t res á r ea s : 1) el n o m b r e del e s t a d o (por e jemplo , Lectura d e
c o m a n d o s) , 2) las variables de estado q u e indican la m a n e r a en q u e el e s t a d o s e

5 en
p a i a e l

de

Lectura
d e comandos

Estatus del sistema = "Listo" ^
Mensa je desp legado =

"introducir cmd"
Display status - s teady
Estatus desp legado - es table .

Entrada/subsistemas listo
Acción: pedir la entrada del

usuario en el panel
Acción: leer la entrada del

\
Acción: interpretar la entrada

del usuario

Nombre del es tado

"Variables d e es tado

Actividades de es tado
TM

PDF Editor

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

H O G A R S E G U R O

Modelado preliminar del comportamiento

L S J g l El e s c e n a r i o : Una salo d e
reuniones. Continúa lo reunión paro la recopilación d e
requisitos.

Los a c t o r e s : jamie Lazar, miembro del equipo de
software; Vinod Raman, miembro del equipo de
software; £d Robbins, miembro del equipo de software;
Doug Miüer, miembro del equipo d e software; tres
miembros de mercadotecnia; un representante de
ingeniería del producto; y un moderador.

La c o n v e r s a c i ó n :

M o d e r a d o r : Estamos a punto d e terminar de hablar
acerca d e la funcionalidad de seguridad en el hogar de
HogarSeguro. Pero antes de hacerlo, me gustaría discutir
el comportamiento d e la función.

P e r s o n a d e m e r c a d o t e c n i a : Yo no entiendo lo que
quieres decir con comportamiento.

Ed (r i e n d o) : Es cuando le da s al producto un "tiempo
fuero" si se comporta mal.

M o d e r a d o r : N o exactamente. Déjenme explicarles. (El
moderador les explica al equipo d e recopilación de
requisitos los conceptos básicos del modelado del
comportamiento.)

P e r s o n a d e m e r c a d o t e c n i a : Esto parece un poco
técnico, no sé si yo pueda ayudar en esta parte.

M o d e r a d o r : Seguro que puedes. ¿Cuál es el
comportamiento que observas desde el punto d e vista de:
usuario?

P e r s o n a d e m e r c a d o t e c n i a : Eh. . bueno, el sistema
estará monitoreando los sensores, estará leyendo
comandos del propietario d e la casa. Desplegará su
estatus.

M o d e r a d o r : Ves, tú puedes hacerlo.

J a m i e : También revisará la PC pa ra determinar si existe
alguna entrada desde ahí, por ejemplo: un acceso
basado en Internet o información d e configuración.

V i n o d : Sí, de hecho, la configuración del sistema es un
estado por derecho propio.

D o u g : Me parece que van muy rápido. Vamos a
pensarlo un poco más. . . ¿Existe alguna forma de hacer
un d iagrama de esto?

M o d e r a d o r : Sí existe, pero vamos a posponerlo para
después de la reunión.

manifiesta a sí mismo en el m u n d o exterior, y 3) las actividades de estado que ind;-l
can la forma en que se ingresa al e s t ado (entrada/) y las acciones (do:) invocadas!
mient ras se pe rmanece en el mismo.

E l e m e n t o s o r i e n t a d o s al flujo. Cuando la información fluye a t ravés de un sis-l
tema basado en computadora , és ta se t ransforma. El s is tema acepta la en t rada ea l
una variedad de formas, aplica func iones para t ransformarla y produce una sal icí l
también en formas diferentes. La en t rada puede ser una señal de control que traní-l
mite un transductor, una serie de n ú m e r o s que teclea un operador humano , u - |
paque te de información transmit ido a t ravés de una liga de red, o un voluminos-J
archivo de datos obten ido de un a lmacenamien to secundario. La transformacié-.l
puede incluir una sola comparac ión lógica, un algori tmo numér ico complejo o un
en foque de interferencia de reglas per tenec iente a un s is tema experto. La salical
puede encender una sola luz de LED o producir un reporte de 200 páginas. En efec-l
to, e s posible c rea r un mode lo de flujo pa ra cualquier s i s tema b a s a d o en compu-l
tadora, sin importar su t a m a ñ o o complej idad. En el capítulo 8 se presenta una expc-l
sición m á s detal lada del mode lado del flujo.

TM

PDF Editor

C A P I T U L O 7 INGENIERÍA DE REQUISITOS 183

7.6.2 Patrones de análisis

/
se puede

i t f y
s recursos

i s potrones.

A ¿Existe algu-
i plantilla

i para
• patro-

Cualquiera que lleve a c a b o ingenier ía de requis i tos en m á s de u n o s c u a n t o s pro-
y e c t o s de s o f t w a r e c o m i e n z a a da r se c u e n t a q u e c ie r tas c o s a s s u c e d e n d e m a n e r a
r ecur ren te en t o d o s los p royec tos d e n t r o d e un domin io d e apl icación específ ico. 1 5

Éstos p u e d e n d e n o m i n a r s e patrones de análisis [FOW97] y r e p r e s e n t a n a lgo (por
e jemplo , una c lase , u n a func ión o un compor t amien to) d e n t r o del d o m i n i o d e apl i -
cac ión q u e p u e d e reut i l izarse al mode l a r m u c h a s apl icaciones .

Geyer-Shultz y Hahsler |GEY01] sugie ren d o s benef ic ios q u e p u e d e n a soc i a r se
con el u s o de p a t r o n e s de análisis:

Primero, los patrones de análisis aceleran el desarrollo de modelos de análisis abstractos
que capturan los requisitos principales del problema concreto al proporcionar modelos
reutilizables del análisis, los cuales incluyen ejemplos, asi como una descripción de las
ventajas y limitaciones. Segundo, los patrones de análisis facilitan la transformación del
modelo de análisis en un modelo de diseño al sugerir patrones de diseño y soluciones con-
fiables para problemas comunes.

Los p a t r o n e s d e anál is is se in tegran al m o d e l o respect ivo m e d i a n t e una re fe ren-

cia al n o m b r e del pa t rón . Éstos t a m b i é n s e e n c u e n t r a n a l m a c e n a d o s en un depós i to
p a r a q u e los ingen ie ros de requis i tos p u e d a n uti l izar los servicios d e b ú s q u e d a y así
encon t r a r lo s y reuti l izarlos.

La in fo rmac ión ace rca d e un p a t r ó n de aná l i s i s s e p r e s e n t a en una plantilla e s t á n -
da r q u e t iene la s iguiente forma[GEY01]:1 6

Nombre del patrón: un descriptor que captura la esencia del patrón. El descriptor se
utiliza dentro del modelo de análisis cuando se hace alguna referencia al patrón

Intención: describe aquello que el patrón pretende lograr o representar o el problema
que ataca dentro del contexto de un dominio de aplicación

Motivación: un escenario que ilustra la forma en que el patrón se puede utilizar para
atacar el problema.

Fuerzas y contexto: una descripción de los aspectos externos (fuerzas externas) ca-
paces de afectar la manera en que se utiliza el patrón, asi como de los asuntos externos
que serán resueltos cuando se aplique el patrón. Los aspectos externos pueden incluir
cuestiones relacionadas con los negocios, restricciones técnicas externas, y asuntos rela-
cionados con las personas

Solución: una descripción de la forma en que se aplica el patrón para resolver el pro-
blema, poniendo especial atención en los aspectos estructurales y de comportamiento.

Consecuencias: se enfoca en lo que sucede cuando se aplica el patrón y en los cam-
bios que se producen durante su aplicación.

15 En algunas situaciones las cosas se repiten sin importar el dominio de aplicación. Por ejemplo, las
características y funciones de las interfases del usuario son comunes, independientemente del do-
minio de aplicación que se considere.

16 En la bibliografía se ha propuesto una variedad de plantillas de patrón. Los lectores interesados pue
den consultar [FOW97], IBUS96) y (GAM95), entre muchas otras fuentes.

lili

TM

PDF Editor

194 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Diseño: examina la manera en que el patrón de análisis se puede lograr por medio de
patrones de diseño conocidos.

Usos conocidos: ejemplos de usos en sistemas reales.

Patrones relacionados: uno o más patrones de análisis que están relacionados con
el patrón en cuestión, porque el patrón de análisis 1) por lo general se utiliza junto con el
patrón en estudio, 2) es similar en el sentido estructural a dicho patrón, 3) es una varia-
ción del mismo.

En el capí tu lo 8 s e p r e s e n t a n e j emplos d e p a t r o n e s de análisis , así c o m o o t ros aná-
lisis d e e s t e tópico.

I N F O R M A C I Ó N

Patrones
Los patrones se pueden ver en casi cualquier
actividad de la vida diaria.

Considérense las películas de acción y aventuras - d e
manera más específica las películas policiacas de acción y
aventuras con matices de comedia- . Se pueden definir
patrones para el HéroeyCompañero, CapilánJefedelHéroe,
CriminalconCorazón y muchos más.

Por ejemplo, el CapitárJefedelHéroe de manera invariable
es más viejo, usa corbata (el héroe no), les grita en forma
constante al HéroeyCompañero, usualmente es quien da el

perfil cómico, o puede usarse en un papel más malévolo para
poner trabas burocráticas o intereses personales en el camino
del HéroeyCompañero. Se ha establecido un patrón
dramático.

Para un ejemplo algo más técnico considérese un
teléfono celular. Los siguientes patrones son obvios: Llamar,
BuscorNúmero, VerMensajes entre muchos otros. Cada
uno de estos patrones puede describirse una vez y después
reutilizarse en el software pa ra cualquier teléfono celular.

En u n con tex to ideal de la ingenier ía d e requis i tos , l a s t a r ea s d e inicio, ob tenc ión y

e l aborac ión d e t e r m i n a n los requis i tos con el suf ic iente de ta l le c o m o p a r a empren -
der los p a s o s s u b s e c u e n t e s de la ingenier ía del s o f t w a r e . D e s g r a c i a d a m e n t e , es to
s u c e d e m u y r a r a vez . En real idad, el cl iente y el desar ro l lador en t r an en un p roceso
d e negociación, en el cual se le debe pedir al c l iente un b a l a n c e de la funcional idad,
el r end imien to y o t r a s ca rac te r í s t i cas del s i s t ema o p roduc to f r en te al cos to y el t iem-

p o de colocación en el m e r c a d o . El obje t ivo d e e s t a negoc iac ión e s desarrol lar un
p lan d e p royec to q u e sa t i s faga las n e c e s i d a d e s del c l iente al m i s m o t i e m p o q u e refle-
ja las res t r icc iones del m u n d o real (por e jemplo , t i empo, gen t e , p re supues to) a las
q u e es tá some t ido el equ ipo de s o f t w a r e .

"Un ocuerdo es d orte de dividir un postel de tal formo que codo uno piense que se quedó con la rebanada más grande."

Ludwig Erhard

Las m e j o r e s n e g o c i a c i o n e s s o n aque l las q u e b u s c a n un resu l t ado del t ipo "ganar-
ganar" . 1 7 Esto es , el c l iente g a n a al ob t ene r el s i s t ema o p r o d u c t o que sa t i s face la

17 Se han escrito docenas de libros sobre las aptitudes para la negociación (por ejemplo, [LEWOO], [FAR97],
(DON96)) Ésta es una de las competencias más importantes que un ingeniero o gerente de software jo-
ven (o no tan joveni puede aprender. Se recomienda leer al menos uno de los libros mencionados.

TM

PDF Editor

CAPITULO 7 INGENIERÍA DE REQUISITOS 185

puede

mayoría de sus necesidades , y el equipo de sof tware gana al t rabajar con presu-
pues tos y límites de t iempo realistas y a lcanzables .

Bohem [BOE98] def ine un con jun to de actividades de negociación en el inicio de
cada iteración del proceso del sof tware . En lugar de la actividad sencilla de comuni
cación con el cliente, se def inen las s iguientes actividades:

1. Identificación de los in teresados clave en el s is tema o subs is tema.

2 . Determinación de las "condiciones ganadoras" de los interesados.

3 . Negociación de las condiciones ganado ra s de los in teresados para reconciliar-
las en conjun to d e condiciones del tipo gana r -gana r para todos los involucra-
dos (incluido el equipo de sof tware) .

La conclusión exitosa de es tos p a s o s iniciales asegura un resul tado del tipo ganar-
ganar , el cual se convierte en el criterio clave para cont inuar con las act ividades sub-
secuen tes de la ingeniería del sof tware .

I N F O R M A C I Ó N

El arte de Ja negociación
El aprendizaje del arte de la negociación
efectiva es una actividad que sirve a través de

técnica y personal. La consideración de las
: directrices puede resultar muy valiosa:

•econocer que no es uno competencia. Para ser
exitoso, ambos lados deben tener el sentimiento de
naber g a n a d o o logrado algo. Las dos partes
•endrán que llegar a un acuerdo.

Diseñar una estrategia. Decidir que es lo que se
desearía lograr; qué es lo que la otra parte quiere
alcanzar, y qué es lo que se va a hacer pa ra que
ambas cosas sucedan.

Escuchar de manera activa. No se debe pensar en
formular una respuesta mientras la otra parte está

hablando. Es necesario escuchar. Es posible que se
obtenga un conocimiento que ayudará a negociar de
mejor manera la posición propia.

4. Enfocarse en los intereses de la otra parte. Si se
quieren evitar los conflictos no se debe tomar una
p o s i c i ó n in f l ex ib l e .

5 . No dejar que se vuelva personal. Enfocarse en el
problema que debe ser resuello.

6. Ser creativo. Cuando existen situaciones de
estancamiento no se debe tener miedo d e pensar
fuera de los cánones.

7. Estar listo para pactar. Una vez que se ha llegado a
un acuerdo, no es necesario esperar: se debe pactar
dicho convenio y seguir adelanto.

H O G A R S E G U R O

El inicio de una negociación

El e s c e n a r i o : Oficina de Lisa
, después de la primera reunión pa ra la

i de requisitos.

- o s a c t o r e s : Doug Miller, gerente d e ingeniería de
«aftware y Lisa Pérez, gerente de mercadotecnia.

Le c o n v e r s a c i ó n :

Lisa : Bien, escuché que en la primera reunión no les fue
ouy bien.

D o u g : En realidad sí. Enviaste algunos buenos
elementos a la reunión... contribuyeron bastante.

Lisa (s o n r i e n d o) : Sí daro , ellos me dijeron que llegaron
y que no fue una actividad muy tranquila que digamos.

D o u g (r i endo) : Me aseguraré de quitarme la gorra d e
técnico la próxima vez que fe visite... Mira, Lisa, yo creo
que podemos tener un problema en terminar todas fas
funcionalidades pa ra la función de seguridad en eí hogar

TM

PDF Editor

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

paro las fechas d e las que está hablando tu gerencia. Es
muy pront< yo lo sé, pero ya he estado haciendo un
pequeño respaldo de la planeación y. . .

Lisa: Debemos tenerlo paro esa fecha, Doug. ¿De cuál
funcionalidad estás hablando?

D o u g : Me parece que podemos sacar toda la función
de seguridad en el hogar para la fecha límite, pero
tendremos que retrasar el acceso por Internet hasta la
segunda entrega.

l i s a : Doug, el acceso por Internet es lo que d a a
HogarSeguro la calidad d e "novedoso". Vamos a
construir toda nuestra campaña de mercadotecnia
alrededor de esto. ¡Debemos tenerlo!

D o u g : Entiendo tu situación, d e verdad. El problema es
q u e pa ra dar te acceso a Internet necesitaremos tener un

sitio Web completamente seguro, ya construido y en
funcionamiento. Para eso se necesita tiempo y gente.
También tendremos que construir funcionalidades
adicionales en la primera entrega. . . no creo que lo
podamos hacer con los recursos que tenemos ahora.

Lisa (frunciendo el ceño): Ya veo, pero debes
encontrar una forma de hacerlo. Es crucial para las
funciones de seguridad en el hogar y para las otras
funciones también.. . las otras funciones pueden esperar
hasta las siguientes entregas, estaré de acuerdo con
eso.

Lisa y Doug parecen estar en un callejón sin salida, y
aún así deben negociar una solución a este problema. Er
esta situación, ¿pueden "ganar" los dos? En el papel de
un mediador, ¿cuál sería una sugerencia apropiada?

7 . 8 V A L I D A C I Ó N D E R E Q U I S I T O S

Al crear cada e l emen to del modelo de análisis, é s te se examina para conocer su c ? n l
sistencia, sus omis iones y ambigüedades . A los requisitos q u e representa el m o d e J
el cliente les da jerarquía y se agrupan en paque tes de requisitos que se imp lemerJ
tan c o m o incrementos de sof tware y se le ent regan. Una revisión del modelo de a n a l
lisis se enfoca en las s iguientes preguntas :

i se Q Cuando i
• revisan los

requisitos, ¿cuáles
preguntas deben
hacerse?

¿Cada requisi to es consis tente con el objetivo general del s i s t ema /p roduc to '

¿Todos los requisitos han sido especif icados con el g rado apropiado de
abstracción? Esto es, ¿algunos requisitos proporc ionan un grado de detalle
técnico que sea inapropiado en esta etapa?

¿El requisi to es necesar io en realidad o representa una característica
agregada irrelevante para el objetivo del s is tema?

¿Cada requisito está limitado y n o es ambiguo?

¿Cada requisito t iene una atribución? Esto es, ¿existe una fuente (por lo
general , específica, individual) de te rminada pa ra cada requisito?

¿Algunos requisitos en t ran en conflicto con otros?

¿Cada requisito es a lcanzable en el ambiente técnico que recibirá al sistema i
producto?

¿Cada requisito se puede probar una vez que és te haya s ido imp lemen tado '

¿El modelo de requisitos refleja de m a n e r a apropiada la información, la
función y el compor tamien to del s is tema que será construido?

¿El modelo de requisitos se ha somet ido a "partición" para que exponga en
forma progresiva información m á s detal lada acerca del s is tema?

TM

PDF Editor

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 187

• ¿Se han usado pa t rones de requisitos para simplificar el mode lo de requisitos?
¿Todos los pa t rones se han val idado de mane ra apropiada? ¿Todos los
pa t rones son consis tentes con los requisitos del cliente?

Éstas y ot ras p reguntas deben real izarse y contes tarse para asegurar que el modelo
de requisitos es un reflejo exacto de las neces idades del cliente y que proporciona
una base sólida para el diseño.

Antes de que el d iseño y la construcción de un sis tema basado en computadora pue-
dan comenzar , es necesar io en tender los requisitos. Esto se logra rea l izando una
serie de ta reas de ingeniería de requisitos, la cual se lleva a cabo durante las activi-
dades de comunicación con el cliente y mode lado que han sido definidas para el pro-
ceso genér ico del sof tware . Los miembros del equipo de sof tware realizan siete fun-
c iones dist intas dent ro de la ingeniería de requisitos: inicio, obtención, e laboración,
negociación, especificación, validación y gestión.

Al inicio del proyecto el desarrol lador y el cl iente (así c o m o otros interesados)
es tablecen los requisitos bás icos del problema, definen las restr icciones predomi-
nan tes del proyecto y especifican las caracterís t icas y func iones m á s impor tantes
que deben estar p resen tes en el s is tema para que éste a lcance sus objetivos. Esta
información es expandida y refinada durante la obtención, una actividad para la
recopilación de requisitos que emplea reuniones que e n c a b e z a un moderador facili
tadas, el QFD y el desarrollo de escenar ios de uso.

La elaboración posterior expande los requisitos hacia un mode lo de análisis; es
decir, una colección de e l emen tos del mode lo b a s a d o s en escenar ios , en actividades
y en clases, de compor tamien to y or ientados al flujo. En la creación de es tos ele-
m e n t o s s e puede utilizar una variedad de notac iones de modelado. El mode lo puede
referirse a pa t rones de análisis, caracterís t icas del dominio del problema que son
recurrentes a t ravés de diferentes aplicaciones.

Cuando se identifican los requisitos y se crea el modelo de análisis, el equipo de
sof tware , el cliente y ot ros in teresados en ei proyecto negocian la prioridad, dispo-
nibilidad y costo relativo de cada requisito. El objetivo de esta negociación es desa
rrollar un plan de proyecto realista. Además, cada requisito y el modelo de análisis
c o m o un todo se validan cont ras tándolos con las neces idades del cliente para ase -
gurar que se construirá el s is tema correcto.

SÍ;::

[BOE98J Boehm, B. y A. Egyed, "Software Requircments Negotiation: Somc Lcssons Lcarned",
en Proc. Intl. Con/. Software Engineeríng. ACM/IEEE, 1998, pp. 503-506.

[BOS91]Bossert, J. L., Quality Function Deployment: A Practitioner's Approach, ASQC Press, 1991.
[BUS96] Buschmann. F. et al., Pattem-Oriented Software Architecture: A System Paltcrn, Wiley,

1996.

TM

PDF Editor

iinirn

1 8 8 P A U T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

[COCOl] Cockburn, A., Wríting Effective Use-Cases, Addison-Wesley, 2001.
[CRI92] Christel, M. G. y K. C. Kang, "Issues in Requirements Elicitation", en Software Engineering |

institute. CMU/SEI-92-TR-12 7, septiembre de 1992.
[DON96] Donaldson, M. C. y M. Donaldson, Negotiating for Dummies, IDG Books Worldwide

1996.
[FAR97] Farber, D. C., Common Sense Negociation. The Art of Winning Gracefully, Bay Press, 1997
[FOW97] Fowler, M„ Analysis Pallems: Reusable Object Models, Addison-Wesley, 1977.
[GAM95] Gamma, E. et al, Design Pattems: Elemente of Reusable Object-Oriented Software

Addison-Wesley, 1995.
[GAU89] Gause, D. C. y G. M. Weinberg, Exploring Requirements: Quality Befóte Design, Dorsei

House, 1989.
[GEY01] Geyer-Schultz, A. y M, Hahsler, Software Engineering with Analysis Pattems, Technicaí I

Report 01/2001, Instituí für lnformationsverarbeitung und-wirtschaft, Wirschaftsuniversiíá
Wien, noviembre de 2001, obtenido de http://wwwai.wu-wien.ac.at/~hahsler/research/vir-
Iib_working2001 /virlib/.

(JAC92J Jacobson, I., Objetc-Oriented Software Engineering, Addison-Wesley, 1992.
|LEW00j Lewicki, R., D. Saunders y J. Minton, Essentials ofNegotiation, McGraw-Hill, 2002.
[PAR96] Pardee, W„ To Satisjy and Delight Your Costumer, Dorset House, 1996.
ISOM97] Somerville, 1. y P. Sawyer, Requirements Engineering, Wiley, 1997.
[THA97] Thayer, R. H. y M Dorftnan, Software Requirements Engineering, 2a. ed., IEEE Computer

Society Press, 1997.
[YOUOl] Young, R., Effective Requirements Practices, Addison-Wesley, 2001.
[ZAH90] Zahniser, R. A., "Buiiding Software in Groups", en American Programmer, vol.3. núms. 7-

8, julio-agosto de 1990.
[ZUL92] Zultner, R., "Quality Function Deployment for Software: Satisfying Costumers", e n |

American Programmer, febrero de 1992, pp. 28-41.

7.1. ¿Por qué varios desabolladores de software no prestan mucha atención a la ingeniería de]
requisitos? ¿Se llegan a dar circunstancias en las que se puede omitir?

7.2. ¿Qué implica el "análisis de factibilidad" cuando se examina dentro del contexto de la fun-]
ción inicio?

7.3. A usted se le ha dado la responsabilidad de obtener requisitos de un cliente que dice es
demasiado ocupado para reunirse con usted. ¿Qué debe hacer?

7.4. Exponer algunos de los problemas que pueden surgir cuando los requisitos deben obte-]
nerse de tres o cuatro clientes diferentes.

7.5. ¿Por qué se dice que el modelo de análisis representa una foto instantánea de un sisten
en el tiempo?

7.6. Suponga que ha convencido al cliente (usted es un excelente vendedor) de cada demancá
que ha hecho como desarrollador. ¿Eso lo convierte en un negociador experto? ¿Por qué?

7.7. Desarrollar al menos tres "preguntas de contexto libre" adicionales que pueda hacerle i]
algún interesado durante la fase de inicio.

7.8. A través de este capítulo se ha hecho referencia al "cliente". Describa al "cliente" para tas 1
desarrolladores de sistemas de información, para constructores de productos basados en compu- I
tadora, para constructores de sistemas. Debe tenerse precaución: pueden existir más clientes (
este problema de lo que se imagina.

7.9. Desarrolle un "paquete" que facilite la recopilación de requisitos. El equipo debe incluir ur I
conjunto de directrices para realizar una reunión de recopilación de requisitos y una serie de I
materiales que puedan utilizarse para facilitar la creación de listas y otros dispositivos que pue-
dan ayudar en la definición de requisitos.

TM

PDF Editor

http://wwwai.wu-wien.ac.at/~hahsler/research/vir-

C A P Í T U L O 7 INGENIERÍA DE REQUISITOS 189

7.10. El profesor hará grupos de cuatro o cinco estudiantes. La mitad del grupo representará el
papel del departamento de mercadotecnia, y la otra mitad, el de ingeniería del software. Lo que
se pretenderá es definir los requisitos para la función de seguridad de HogarSeguro, descrita en
este capitulo. Realizar una reunión de recopilación de requisitos mientras se utilizan las direc-
trices presentadas en este capitulo.

7 .11 . Desarrolle un caso de uso para una de las siguientes actividades:

a) Hacer un retiro en cajero automático.
b) Utilizar su tarjeta de crédito para una comida en un restaurante.
c) Comprar la despensa con una cuenta de cobro en línea.
d) Buscar libros (sobre un tema específico) a través de una librería en línea.
e) Una actividad que defina su instructor.

7 .12 . ¿Qué representan las "excepciones" en los casos de uso?

7 .13. Explicar con brevedad cada uno de los elementos de un modelo de análisis. Indicar con
qué contribuye cada elemento al modelo, cómo es que cada modelo es único y qué información
general presenta cada modelo.

7 .14. Describir con argumentos propios un patrón de análisis.

7.15. Con la plantilla presentada en la sección 7.6.2, sugerir uno o más patrones para una apli-
cación que aplique el instructor.

7 .16 . ¿Qué significa "ganar-ganar" en el contexto de la negociación durante la actividad de
ingeniería de requisitos?

7 .17 . ¿Qué se cree que suceda cuando la validación de requisitos descubre un error? ¿Quién es
el indicado para corregir el error?

Debido a que es primordial para la creación exitosa de cualquier sistema complejo basado en
computadora, la ingeniería de requisitos se expone en una gran cantidad de libros. Hull y sus
colegas (Requirements Engineeríng, Springer-Verlag, 2002), Bray (An Introducción to Requirements
Engineeríng, Addison Wesley, 2002), Arlow (Requirements Engineeríng, Addison-Wesíey, 2001),
Gilb (Requirements Engineeríng, Addison-Wesley, 2000), G r a h a m {Requircments Engineeríng aricl
Rapid Development, Addison-Wesley, 1999) y Sommerville y Kotonya (Requirements Engineeríng•
Proceses and Techniques, Wiley. 1998) son sólo algunos libros dedicados a este tema. Dan Bcrry
(http://se.uwaterloo.ca/~dbeny/bib.html) ha publicado una amplia variedad de escritos acerca
de tópicos relacionados con la ingeniería de requisitos.

Lauesen (Software Requirements: Styles and Techniques, Addison-Wesley, 2002) presenta una
amplia muestra de notaciones y métodos para el análisis de requisitos. Weigers (Software
Requirements, Microsoft Press, 1999) y Leffingwell y sus colegas (Managing Software Requirements:
A Unifted Approach, Addison-Wesley, 2000) presentan una colección útil de las mejores prácti-
cas de requisitos y sugieren guias pragmáticas para casi todos los aspectos del proceso de la
ingeniería de requisitos.

Robertson y Robertson (Masteríng the Requirements Process, Addison Wesley, 1999) presen-
tan un estudio de caso muy detallado que ayuda a explicar todos los aspectos del análisis de
requisitos y el modelo de análisis de software. Kovitz (Practica! Software Requirements: A Manual
of Contení and Style, Manning Publications, 1998) explica paso a paso un enfoque para el análi-
sis de requisitos y una guía de estilo para aquellos que deben desarrollar especificaciones de
requisitos. Jackson (Software Requirements Analysis and Speciftcation: A Lexicón of Pracüces,
Principies and Prejudices, Addison-Wesley, 1995) presenta una visión sugerente del tema de la A
a la Z (de manera literal). Ploesch (Asseraons, Scenaríos and Prototypes, Springer-Verlag, 2003)
explica técnicas avanzadas para desanollar requisitos de software.

TM

PDF Editor

http://se.uwaterloo.ca/~dbeny/bib.html

1 9 0 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Windle y Abreo (Software Requirements Using the Unifted Process, Prentice-Hall, 2002) expo-
nen la ingeniería de requisitos dentro del contexto del proceso unificado y la notación del UML
Alexander y Steven (Writing Better Requirements, Addison-Wesley, 2002) presentan un breve
conjunto de directrices para escribir requisitos claros, representarlos como escenarios y revisar
el resultado final.

El modelado de casos de uso es a menudo el conductor de la creación de todos los demás
aspectos del modelo de análisis. Bittner y Spence (Use-Case Modeling, Addison-Wesley, 2002)
examinan el tema de manera amplia, así como Cockbum [COCOl), Armour y Miller (Advanced
Use-Case Modeling: Software Systems, Addison-Wesley, 2000), Kulak y sus colegas (Use Cases:
Requirements in Context, Addison-Wesley, 2000), y Schneider y Winters (Applying Use Cases,
Addison-Wesley, 1998).

En Internet se puede disponer de una amplia variedad de fuentes de información sobre aná-
lisis e ingeniería de requisitos. En el sitio web de SEPA, ht tp: / /www.mhhe.com/pressman,
se puede encontrar una lista actualizada de referencias en la red mundial que son relevantes
para el análisis y la ingeniería de requisitos.

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

M O D E L A D O
DEL ANÁLISIS 8

C E P T O S

V E

.194

>...196

.219

. .211

....219

. . . 2 0 2

. . . .225

....197

....234

....215

.211

.198
194

En el ámbito técnico, la ingeniería de sof tware comienza con una serie de
tareas de modelado que conducen a una especificación de requisitos y a
una representación completa del diseño del software que se construirá. El

modelo de análisis, que en realidad e s u n a serie de modelos, es la primera repre-
sentación técnica de un sistema.

En un libro sobre métodos de modelado del análisis, Tom DeMarco [DEM79]
describe el proceso de la siguiente manera :

Al observar los problemas y fallas reconocidas de la fase de análisis es necesario agre-
garle los siguientes objetivos:

• Los productos del análisis deben tener una elevada facilidad de manteni-
miento. Esto se aplica en particular ai documento final [especificación de re-
quisitos de software].

• Los problemas de gran tamaño deben tratarse con un método efectivo de par-
tición. La especificación del tipo de las novelas victorianas ya no sirve.

• Deben utilizarse gráficas cuando sea posible.

• Se debe diferenciar entre consideraciones lógicas [esenciales] y físicas [de im-
plementación]...

Como mínimo se necesita...

• Algo que ayude a hacer una partición de los requisitos y a documentarla antes
de la especificación...

• Algunos medios para el seguimiento y evaluación de las interfases...

• Herramientas nuevas para describir la lógica y la táctica, algo mejor que un
texto narrativo.

Aunque DeMarco escribió acerca de los atributos del modelado del análisis hace
más de un cuarto de siglo, sus contribuciones s e siguen aplicando en la notación
y los métodos modernos de modelado del análisis.

¿ Q u é e s ? La p a l a b r a e s c r i t a e s u n

v e h í c u l o m a r a v i l l o s o p a r a la c o m u n i -

c a c i ó n , p e r o n o e s , n e c e s a r i a m e n t e ,

la m e j o r forma d e r e p r e s e n t a r l o s

r e q u i s i t o s p a r a el s o f t w a r e d e c o m -

p u t a d o r a . El m o d e l a d o d e l a n á l i s i s u t i l i za u n a

c o m b i n a c i ó n d e formatos e n t e x t o y d i a g r a m a s

p a r a r e p r e s e n t a r los r e q u i s i t o s d e los d a t o s , l a s

U n c i o n e s y e l c o m p o r t a m i e n t o d e u n a m a n e r a

q u e e s r e l a t i v a m e n t e fác i l d e e n t e n d e r y, a u n m á s

i m p o r t a n t e , c o n d u c e a u n a rev i s ión p a r a l o g r a r la

c o r r e c c i ó n , la i n t e g r i d a d y l a c o n s i s t e n c i a .

¿ Q u i é n l o h a c e ? U n i n g e n i e r o d e s o f t w a r e (a l g u -

n a s v e c e s l l a m a d o a n a l i s t a) c o n s t r u y e e l m o d e l o

e m p l e a n d o r e q u i s i t o s o b t e n i d o s d e l c l i en te .

¿Por q u é e s importante? Para validar los
requ i s i tos d e l s o f t w a r e e s n e c e s a r i o e x a m i n a r l o s

d e s d e a l g u n o s p u n t o s d e v is ta d i f e r e n t e s . El m o d e -

1 9 1

TM

PDF Editor

1 9 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA D a SOFTWARE

l a d o del aná l i s i s r e p r e s e n t a los requis i tos e n múl-
tiples " d i m e n s i o n e s " , con lo q u e se i n c r e m e n t a la
p r o b a b i l i d a d d e e n c o n t r a r e r ro res , d e q u e sur-
jan incons is tenc ias y d e q u e s e d e s c u b r a n omi -
siones.

¿ C u á l e s s o n l o s p a s o s ? Los requisitos d e infor-
m a c i ó n , f u n c i o n a l e s y d e c o m p o r t a m i e n t o se
m o d e l a n m e d i a n t e va r io s t ipos d e d i a g r a m a s . El
m o d e l a d o b a s a d o e n e s c e n a r i o s r e p r e s e n t a el
s i s tema d e s d e el pun to d e vista de l usua r io . Ei
m o d e l a d o o r i e n t a d o a l f lu jo ind ica c ó m o s e
t r a n s f o r m a n los o b j e t o s d e d a t o s a l r e a l i z a r s e
las f unc iones de l p r o c e s a m i e n t o . El m o d e l a d o
b a s a d o e n c l a ses d e f i n e o b j e t o s , a t r ibu tos y re la-
c iones . El m o d e l a d o de l c o m p o r t a m i e n t o p r e -
senta los e s t a d o s del s i s tema y sus c lases , a s í
c o m o el i m p a c t o d e los even tos s o b r e sus es ta -

dos . U n a vez q u e s e h a n c r e a d o los mode lo :
p r e l im ina re s , és tos s e r e f inan y a n a l i z a n p a r o
e v a l u a r su c a l i d a d , i n t eg r idad y cons is tencic
D e s p u é s , el m o d e l o d e aná l i s i s f inal lo va l ida r
ios i n t e r e s a d o s

¿Cuál e s el producto o b t e n i d o ? Para el
m o d e l o d e aná l i s i s e s pos ib l e e leg i r una a m p l i o
v a r i e d a d d e t ipos d e d i a g r a m a s . C a d a u n a de
e s t a s r e p r e s e n t a c i o n e s o f r e c e una visión d e uno
o m á s d e los e l emen tos de l m o d e l o .

¿Cómo p u e d o e s tar s e g u r o d e q u e lo he
h e c h o c o r r e c t a m e n t e ? Los productos de
t r a b a j o del m o d e l a d o del aná l i s i s d e b e n revisar-
s e e n lo relat ivo a su co r recc ión , i n t eg r idad y
cons i s tenc ia . Estos d e b e n ref le jar las neces ida -
d e s d e t o d o s los i n t e r e s a d o s y e s t a b l e c e r una
b a s e d e s d e la cual p u e d a c o n d u c i r s e el d iseño.

8 . 1 A N Á L I S I S D E R E Q U I S I T O S

CLAVE
El modelo de análisis y
lo especificación de
requisitos proporciona
un medio para evaluar
la calidad uno vez que
el software esté
construido.

El análisis de requisitos genera la especificación de características operacionales d J
software; indica la interfaz del sof tware con otros e lementos del sistema, y estable- '
ce las restricciones que debe tener el software. El análisis de requisitos permite que
el ingeniero de sof tware (a veces l lamado en es te contexto analista o modelador) sd
extienda sobre requerimientos básicos establecidos durante tareas anteriores a
ingeniería de requisitos y construya modelos que representen escenarios del usua-l
rio, actividades funcionales, clases de problemas y sus relaciones, el comportamien-
to de las clases y el sistema y, a medida que se t ransforma, el flujo de datos.

El análisis de requisitos le proporciona al diseñador de sof tware una representa-
ción de información, función y comportamiento que puede trasladar a diseños arqui-
tectónicos, de interfaz y en el nivel de componentes . Por último, el modelo de aná-
lisis y la especificación de requisitos ofrecen al desarrollador y al cliente los medios
para evaluar la calidad una vez construido el software.

Por medio del modelado del análisis el ingeniero de sof tware se centra primerc
en el qué, no en el cómo. ¿Qué objetos manipula el sistema, qué funciones debe
desempeñar el sistema, qué comportamientos muestra el sistema, qué interfaces se
definen y qué restricciones se aplican?1

En capítulos anteriores se estableció que en esta etapa tal vez no fuera posible
realizar una especificación completa de requisitos. Quizá el desarrollador no esté

1 Es necesario mencionar que conforme los clientes se vuelven más refinados en el sentido tecnoló-
gico existe una tendencia hacia la especificación tanto del cómo como del qué. Sin embargo, el en-
foque primario debe permanecer en el qué.

TM

PDF Editor

C A P I T U L O 8 MODELADO DEL ANÁUSIS 193

de

Y
de

seguro de qué enfoque específico realizará la función y si se desempeñará de mane-
ra apropiada. Estas realidades favorecen un enfoque iterativo para el análisis y el
modelado de requisitos. El analista debe modelar lo que se conoce y utilizar ese
modelo como base para diseñar un incremento de software.2

8.1.1 Filosofía y objetivos generales
El modelo de análisis debe cumplir tres objetivos primarios: 1) describir lo que
requiere el cliente, 2) establecer u n a base para la creación de un diseño de softwa-
re, y 3) definir un conjunto de requisitos que puedan validarse una vez construido el
software. El modelo de análisis llena el vacío entre una descripción al nivel de siste-
ma (capítulo 6) —que detalla la funcionalidad general del sistema, la cual se logra al
aplicar software, hardware, datos, humanos— y otros e lementos del sistema y del
diseño de sof tware (capítulo 9) —que detallan la arquitectura de aplicación del soft-
ware, la interfaz con el usuario y la estructura en el nivel de componentes—. Esta
relación se ilustra en la figura 8.1.

"Los probiemos dignos de otocor demuestran su volor devolviendo el golpe."

Es importante puntualizar que algunos e lementos del modelo de análisis están
presentes (en un grado más alto de abstracción) en la descripción del sistema, y que
esas tareas de ingeniería de requisitos en realidad comienzan como parte de la inge-
niería de sistemas. Además, todos los e lementos del modelo de análisis son identi-
ficables de manera directa en las partes del modelo del diseño. No siempre es posi-
ble una división clara de tareas de análisis y diseño entre es tas dos importantes acti-
vidades del modelado. De modo invariable, como parte del análisis se realiza algún
diseño y algún análisis se efectúa durante el diseño.

2 De manera alternativa, el equipo de software puede elegir la creación de un prototipo (capitulo 3)
en un esfuerzo encaminado a entender mejor los requisitos para el sistema.

TM

PDF Editor

194 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

8.1.2 Reglas prácticas de análisis
Arlow y Neustadt [ARL02] sugieren varias reglas prácticas que deben seguirse para
crear el modelo de análisis:

• El modelo debe centrarse en los requisitos visibles dentro del problema o dominio
de negocio. El grado de abstracción debe ser alto de forma relativa. "No se debe
perder t iempo en detalles" [ARL02] que tratan de explicar cómo funcionará el

sistema.

• Cada elemento del modelo de análisis debe agregarse a un acuerdo general de los
requisitos de software y proporcionar una visión interna del dominio de informa-
ción, función y comportamiento del sistema.

• Debe retrasarse la consideración de la infraestructura y otros modelos no funcio-
nales hasta el diseño. Por ejemplo, e s posible que se requiera una base de
datos, pero las clases necesar ias para implementarla, las funciones que se
requieren para acceder a ella y el comportamiento que se exhibirá cuando se
utilice debe considerarse sólo después de que se haya completado el análisis
de dominio del problema.

• Se debe minimizar el acoplamiento de todo el sistema. Es importante repre-
sentar las relaciones entre clases y funciones. Sin embargo, si el nivel de
"interconexión" es ex t remadamente alto se deben hacer esfuerzos para

reducirlo.

• Se debe tener la seguridad de que el modelo de análisis proporciona valor a todos
los interesados. Cada circunscripción tiene su propio uso del modelo. Por
ejemplo, los interesados relacionados con los negocios deben utilizar el
modelo para validar los requisitos; los diseñadores, como base para el diseño;
la gente de aseguramiento de la calidad, como ayuda para planear pruebas de

aceptación.

• El modelo debe mantenerse tan simple como sea posible. No se deben agregar
d iagramas adicionales cuando és tos no ofrezcan información nueva. No se
deben utilizar formas de notación nuevas cuando basta con una simple lista.

8.1.3 Análisis del dominio
Al examinar la ingeniería de requisitos (capítulo 7) se estableció que los pat rones de
análisis a menudo ocurren de nuevo en muchas aplicaciones dentro de un dominio
de negocio especifico. Si es tos pat rones se definen y se clasifican por categoría de
una manera que permitan al ingeniero o al analista de sof tware reconocerlos y reu-
tilizarlos, la creación del modelo de análisis se acelera. Un factor de mayor impor-
tancia es que la probabilidad de aplicar pat rones de diseño reutilizables y compo-
nen tes ejecutables de sof tware aumenta en forma sustancial. Esto ofrece tiempo al
mercado y reduce los costos del desarrollo.

En www.iturls.
íom/EBsísh/
Software
Engineeríng/
SE modS.asp
pueden encontrarse
muthos reíURos útiles
pora el onéfisb del
dominio.

TM

PDF Editor

http://www.iturls

C A P I T U L O 8 MODELADO DEL ANÁLISIS 1 9 5

Entrada y salida para el análisis del dominio.

Literatura técnica

Aplicaciones existentes

Sondeos a los clientes

Recomendación experta

Requisitos actuales/futuros

Taxonomías de clase

^ Estándares de reutilización Modelo
1 Modelos funcionales d e análisis

m Lenguajes de dominio
del dominio

¿Pero, en pr imer lugar, c ó m o se r e c o n o c e n los p a t r o n e s d e anál is is? ¿Quiénes los
de f inen , los a s ignan a u n a ca tegor ía y los p r e p a r a n p a r a apl icar los en p royec tos sub -
s e c u e n t e s ? Las r e s p u e s t a s a e s t a s p r e g u n t a s res iden en el análisis del dominio.
Firesmith [FIR93] descr ibe el anál is is del d o m i n i o de la s iguiente m a n e r a :

El análisis del dominio de software es ia identificación, el análisis y la especificación de re-
quisitos comunes de un dominio especifico de aplicación para, de manera típica, reutili-
zarlo en múltiples proyectos dentro de ese dominio de aplicación... [El análisis del
dominio orientado a objetos es] la identificación, el análisis y la especificación de capaci-
dades comunes reutilizables dentro de un dominio específico de aplicación, en términos
de objetos, clases, subensamblajes y marcos de trabajo.

El "domin io d e apl icación específ ico" p u e d e var ia r d e s d e a e r o n á u t i c a h a s t a servicios
banca r ios , d e s d e v ideo juegos en mul t imedia h a s t a s o f t w a r e ap l i cado en i n s t r u m e n -
tal médico . La m e t a del aná l i s i s o d e domin io e s directa: e n c o n t r a r o c rea r aque l las
c lases d e anál is is o f u n c i o n e s y ca rac te r í s t i cas c o m u n e s q u e s e apl ican a m p l i a m e n -
te p a r a q u e p u e d a n reut i l izarse.3

• • ae ró del dominio.

"El gran arte del aprendizaje es entender poco a poco"

John Locke

En cierta fo rma , el pape l d e un ana l i s t a de domin io e s similar al de un m a e s t r o
fo r j ador de h e r r a m i e n t a s en un a m b i e n t e d e m a n u f a c t u r a pesada . El t r aba jo d e es te
ú l t imo e s d i s eña r y fabr icar i n s t r u m e n t o s q u e p u e d a n se r u s a d o s por m u c h a gen t e
que realiza t r aba jos similares. El pape l del analista de dominio 4 e s descubr i r y definir

3 Una visión complementaria del análisis del dominio "involucra el modelado del dominio de forma
que los ingenieros de software y otros interesados puedan aprender más de él.. no todas las clases
del dominio resultan necesariamente en el desarrollo de clases reutilizables" [LET03|.

4 No debe suponerse que si se cuenta con la colaboración de un analista del dominio, un ingen! .>ro de
software no tiene por qué comprender el dominio de aplicación. Todos los miembros de un equipo
de software deben tener algún conocimiento del dominio en el cual se colocará el software

TM

PDF Editor

1 9 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

pa t rones de análisis reutilizables, c lases de análisis e información relacionada q u e
pueda usar mucha gen te en apl icaciones parecidas.

La figura 8.2 [ARA89] ilustra en t radas y sal idas clave para el proceso de análisis
de dominio. Las fuen tes de conocimiento del dominio se examinan en un intento p e :
identificar obje tos que pueden ser reutil izados a t ravés del dominio.

8 . 2 E N F O & U E S D E M O D E L A D O P E Í . A M A M W K •

Una visión del m o d e l a d o del análisis, l lamado análisis estructurado, considera que los
da tos y el proceso que t r ans fo rman los da tos son en t idades separadas . Los objetos
de da tos se mode lan en u n a forma que define sus atr ibutos y relaciones. Los proce-
sos que manipulan los obje tos de los datos se mode lan de tal m a n e r a que muestran
c ó m o t rans fo rman los datos, mientras los obje tos de da tos fluyen por el s is tema.

Un s e g u n d o en foque del mode lado del análisis, l lamado análisis orientado a obje-
tos, se centra en la definición de c lases y en la m a n e r a en que és tas colaboran entre
el las para efectuar los requisitos del cliente. El UML y el proceso unificado (capítulo
3) es tán or ientados a objetos en forma predominante .

El [o]nálisis es frustrante, lleno de relociones interpersonales complejos, indefinido y difícil. En pocas palabras, es
fascinante. Una vez que estás enganchado, el viejo placer de la construcción de sistemas nunca será suficiente para
satisfacerte."

Tom DeMarco

Aunque el modelo de análisis p ropues to en es te capítulo combina características
de a m b o s enfoques , es común que los equipos de sof tware elijan u n o y excluyan
todas las representac iones del otro. El cues t ionamiento n o es cuál es el mejor, s ino
qué combinación de represen tac iones le proporc ionará a los in teresados el mejor
modelo de requisitos de sof tware y el puente m á s efectivo para el diseño de software.

El modelado del análisis conduce a la derivación de cada u n o de los e l emen tos de
mode lado mos t rados en la figura 8.3. No obstante , el conten ido específico de cada
e l emen to (por ejemplo, los d i ag ramas con que se construyen el e l emen to y el mode-
lo) p u e d e diferir de proyecto a proyecto. Como ya se ha puntua l izado m u c h a s veces
en este libro, el equipo de sof tware debe t rabajar para man tene r lo simple. Sólo se
deben utilizar aquellos e l emen tos que agreguen valor al modelo.

"¿Por qué debemos construir modelos? ¿Por qué no construimos el sistema y yo? la respuesta es que podemos
construir modelos de tal forma que resaltemos o enfaticemos ciertas características críticas de un sistema, al mismo
tiempo que quitamos énfasis a otros aspectos del sistemo."

Ed Yourdon

TM

PDF Editor

C A P Í T U L O 8 M O D E L A D O DEL ANÁLISIS 1 9 7

=xxlelo Cosos de uso. texto
Cosos de uso. diogramas
Diogromos de actividad
Diogramas de carril

i

Elementos orientados
«'fojo „

Diogramas de flujo de datos
Diogramas de flujo de control
Narrativas de procesamiento

Modelo d e análisis

Diagramas de clase
Paquetes de análisis
Modelos CRC
Diagramas de colaboración

Diagramas de estado
Diagramas de secuencia

8 . 3 C O N C E P T O S D E L M O D E L A D O D E D A T O S

M sobre
dédalos

K
CÚVVE

de datos es
nsRsenfáción de

información
que se

con software.

El modelado del análisis a menudo comienza con el modelado de datos. El ingeniero
o analista de sof tware define todos los objetos de datos que se procesan dentro del
sistema y las relaciones entre los objetos de datos, además de otra información per-
tinente para las relaciones.

8.3.1 Objetos de datos
Un objeto de datos es u n a representación de casi cualquier información compuesta
que el sof tware debe entender. Información compuesta se refiere a algo que tiene
muchas propiedades o atributos diferentes. Por lo tanto, "anchura" (un valor indivi-
dual) no sería un objeto de datos válido, pero las d i m e n s i o n e s (la incorporación de
altura, anchura y profundidad) podrían definirse como un objeto.

Un objeto de datos puede ser una entidad externa (por ejemplo, cualquier cosa que
produzca o consuma información), una cosa (por ejemplo, un reporte o un despliegue),
un suceso (como una llamada telefónica) o un evento (como una alarma), un papel (por
ejemplo, un vendedor), una unidad organizacional (como un departamento de conta-
duría), un lugar (como un almacén), o una estructura (como un archivo). Por ejemplo,
una persona o un auto pueden verse como un objeto de datos en el sentido de que cual-
quiera de ellos puede definirse en términos de un conjunto de atributos. La descripción
del objeto de datos incorpora el objeto y todos sus atributos.

Un objeto de datos encapsula sólo datos: no existe alguna referencia dentro de un
objeto de datos a las operaciones actúen sobre los datos.5 Por lo tanto, el objeto de
da tos puede representarse como una tabla, tal como se muestra en la figura 8.4. Los
encabezados de la tabla reflejan los atributos del objeto. En este caso, un au to se
d e f i n e e n t é r m i n o s d e m a r c a , mode lo , n ú m e r o d e ser ie , tipo d e car rocer ía , color y propieta-

rio. El contenido de la tabla representa ejemplos específicos del objeto de datos. Por
ejemplo, un Chevy Corvette es una muestra del objeto de datos auto.

5 Esta distinción separa los objetos de datos y las clases u objetos definidos como parte del enfoque
orientado a objetos.

TM

PDF Editor

198 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Representación
tabular de
objetos de
datos.

\
CUV VE

Los atributos definen a
un objeto de datos,

describen sus
característicos y, en
algunos casos, hacen
referencia o otro
objeto.

Referencia Web

"norniolizoción" es
importante para todos
oqueBos que intentnn
reolizai modelado de
datos. En www.
datamodel.org
puede encontrarse uno
introducción útil.

Nombres
d e atributos

Une los objetos d e datos entre sí,
en este caso , propie tar io

identificador
Atributos

descriptivos
Atributos

referenciales

M a r c a Mode lo # d e id. Tipo Color Propietario

Lexus LS400 A B 1 2 3 . . . Sedan Blanco RSP
CCD

B M W 750iL XZ765. . . C o u p é Blanco UL
| Ford Taurus Q 1 2 A 4 5 . . S e d á n Azul BLF

Instancia

8.3.2 Atributos
Los atributos definen las propiedades de un objeto de datos y toman una de las tres
características diferentes. Se pueden utilizar para 1) nombrar una ocurrencia de:
objeto de datos, 2) describir la ocurrencia o 3) hacer referencia a otra ocurrencia er
otra tabla. Además, se debe definir uno o m á s atributos como un identificador; es
decir, el atributo identificador se convierte en una "clave" cuando se desea encontrar
una ocurrencia del objeto de datos. En algunos casos, los valores para el (los) ider-
tificador(es) son únicos, aunque es to no es un requisito. En referencia al objeto de
datos auto , un identificador razonable podría ser el número de serie.

El conjunto de atributos apropiado para un objeto de datos se determina mediar-
te la comprensión del contexto del problema. Los atributos para a u t o sirven bier
para una aplicación que utilice el Departamento de vehículos de motor, pero estes
atributos serían inútiles para una compañía automotriz que necesite un sof tware
para el control de fabricación. En este último caso, los atributos para auto tal v e r
incluir ían t a m b i é n número de serie, tipo de carrocería y color, p e r o a d e m á s t end r í an q u t j

a d i c i o n a r s e m u c h o s m á s a t r i b u t o s (c o m o código interior, tipo de tren de manejo, desigrs-

dor de paquete de ajuste, tipo de transmisión) p a r a h a c e r d e a u t o u n ob j e to significativa
en el contexto de control de fabricación.

Objetos de datos y clases OO, ¿son
V Cuando se deba te acerca d e los objetos d e

datos es común que surja una pregunta: ¿un
objeto d e datos es lo mismo que una clase or ientada a
objetos? La respuesta es: "no".

Un objeto de datos define un elemento compuesto d e
los datos; esto es, incorpora una colección d e elementos d e
datos individuales (atributos) y da un nombre a la
colección d e elementos (el nombre del objeto d e datos).

^ U n a clase O O encapsula atributos d e los datos, pero

I N F O R M A C I Ó N

lo mismo?
también incorpora las operaciones que manipulan los
datos implicados por dichos atributos. Además , la
definición d e clases implica una infraestructura completa
que es par te del enfoque de la ingeniería de software
orientada a objetos. Las clases se comunican entre sí a
través d e mensajes; pueden organizarse en jerarquías;
proporcionan características he r edadas p a r a objetos que
son una instancia p a r a una clase.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 199

o) Una conexión básica entre objetos
de datos

b) Relaciones entre objetos
de datos

8.3.3 Relaciones
Los objetos de datos están conectados entre sí de muchas maneras diferentes. Por
ejemplo, dos objetos de datos, p e r s o n a y auto , pueden representarse con la simple
notación ilustrada en la figura 8.5a. Se establece una conexión entre p e r s o n a y
a u t o porque los objetos se relacionan entre sí. ¿Pero, cuáles son las relaciones? La
respuesta se determina entendiendo el papel de las personas (propietarios, en este

están caso) y de los autos dentro del contexto del sof tware que se construirá. Se puede
á definir un conjunto de pare jas objeto/relación que definan las relaciones relevantes.

Por ejemplo:

• Una persona posee un auto.

• Una persona está asegurada para conducir un auto.

Las relaciones posee y está asegurada para conducir definen las conexiones relevan-
tes entre persona y auto. En la figura 8.5b se ilustran es tas pare jas objeto/relación
de manera gráfica. Las flechas de la figura 8.5b ofrecen información importante
acerca de la direccionalidad de la relación y a menudo reducen la ambigüedad o las
malas interpretaciones.

8.3.4 Cardinalidad y modalidad
Los e lementos del modelado de datos —objetos de datos, atributos y relaciones—
ofrecen la base para entender el dominio de información de un problema. Sin
embargo, también es necesario comprender información adicional relacionada con

es tos e lementos básicos.
Hasta este punto se ha definido un conjunto de objetos y se han representado las

parejas objeto/relación que los limitan. Pero un simple par que establece que
o b j e t o x se relaciona con objetoY no proporciona suficiente información para los
propósitos de la ingeniería del software. Se debe entender cuántas ocurrencias del
o b j e t o x es tán relacionadas con cuántas ocurrencias del objetoY. Esto conduce al
concepto del modelado de datos l lamado cardinalidad.

El modelo de datos debe ser capaz de representar el número de ocurrencias de
los objetos en una relación dada. Tillmann [T1L93J define la cardinalidad de un par
objeto/relación de la siguiente manera: "Cardinalidad e s la especificación del núme-

TM

PDF Editor

2 0 0 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

I Cómo se
maneja una

situación en la
que un i
datos está rela-
cionado con la
ocurrencia de
muchos otros
objetos de datos?

ro de ocurrencias de un [objeto] que puede relacionarse con el n ú m e r o de ocurren-
cias de otro [objeto]". Por ejemplo, un obje to puede relacionarse sólo con otro obje-
to (una relación 1:1); un objeto puede relacionarse con m u c h o s obje tos (una relaci .
1 :N); un n ú m e r o de ocurrencias de un objeto puede relacionarse con algún otro]
n ú m e r o de ocurrencias de otro obje to (una relación M:N).6 La cardinalidad tambier !
define "el n ú m e r o m á x i m o de objetos que puede participar en una relación" [TIL93] A
Sin embargo , no indica si un objeto particular de da tos debe participar o n o en la
relación. El modelo de da tos agrega modal idad al par obje to / re lac ión para especif
car es ta información.

I N F O R M A C I Ó N
r

Diagramas de entidad-relación
La pareja objeto-relación es la piedra angular
del modelo de datos. Estas parejas pueden

representarse d e manera gráfica mediante el d iagrama de
entidad-relación (DER).' El DER lo propuso originalmente
Peter Chen [CHE77] para el diseño de sistemas de bases
relaciónales, y después otros lo han ampliado. Con el DER
se identifica un conjunto de componentes primarios:
objetos de datos, atributos, relaciones e indicadores de
varios tipos. El propósito primordial del DER es representar
objetos de datos y sus relaciones.

Ya se ha hecho una introducción de la notación
rudimentaria pa ra el DER. Los objetos de datos se

representan por medio de un rectángulo etiquetado. Las
relaciones se representan mediante una línea etiquetada
que conecta objetos. En algunas variaciones del DER la
línea de conexión contiene un rombo que está etiquetado
con la relación. Las conexiones entre objetos d e datos y
relaciones se establecen mediante una variedad de
símbolos especiales que indican su cardinalidad y
modalidad.

Para más información sobre el modelado de datos y el
d iagrama de entidad-relación el lector interesado puede
consultar [THA00]

La modalidad de una relación es de 0 si no hay una necesidad explícita para que
ocurra la relación o la relación es opcional . La modal idad es 1 si u n a ocurrencia de
la relación es obligatoria.

6
7

Por ejemplo, un tío puede tener muchos sobrinos y un sobrino puede tener muchos tios.
Aunque el DER todavía se usa en algunas aplicaciones para el diseño de bases de datos, en la ac-
tualidad la notación en UML es la más utilizada para el diseño de datos.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 2 0 1

in un medio automatizado para crear
s de entidad-relación, diccionarios de objetos de

y modelos relacionados.

¡ka : Las herramientas en esta categoría permiten
describir objetos de datos y sus relaciones. En

casos utilizan la notación del DER; en otras
modelan las relaciones por medio de otros

. Además permiten la creación de un modelo
de datos al generar un esquema d e base de datos

SM80.

itas representativas8

ERWin, desarrollado por Computes Associates
ca.com), ayuda en el diseño de objetos de datos,

propias y elementos clave para bases de datos.

>, desarrollado por Embarcadero Software
embarcadero.com), brinda soporte al modelado

•relación.

Oracle/Designer, desarrollado por Oracle Systems
(www.orade.com), modela procesos de negocios,
entidades de datos y relaciones que se transforman en
diseños a partir de los cuales se generan aplicaciones
completas y bases de datos.

MetoScope, desarrollado por Madrone Systems
(www.madronesystems.com), es una herramienta pa ra
el modelado de datos de ba jo costo que d a soporte a
la representación gráfica de datos.

ModelSphere, desarrollado por Magna Solutions GMBH
(www.magnasolutions.com), d a soporte a una variedad
de herramientas de modelado relaciona!.

VisibleAnolysl, desarrollado por Visible Systems
(www.visible.com), da soporte a una variedad de
funciones de modelado del análisis, incluido el
modelado de datos.

Cualquier estudio sobre el análisis orientado a objetos debería comenzar definiendo
el término orientado a objetos. ¿Qué e s un punto de vista orientado a objetos? ¿Por
qué un método se considera orientado a objetos? ¿Qué es un objeto? Cuando la OO
obtuvo una amplia variedad de adeptos durante las décadas de 1980 y 1990, existie-
ron muchas opiniones diferentes (por ejemplo, [BER93|, ¡TAY90], (STR88], [B0086 |
acerca de las respuestas correctas a es tas preguntas. En la actualidad ha surgido una
visión coherente de la OO.

El objetivo del análisis orientado a objetos (AOO) es definir todas las clases (ade-
más de las relaciones y el comportamiento asociado con ellas) relevantes para el
problema y que deben resolverse. Esto se logra llevando a cabo a lgunas tareas:

1. Deben comunicarse los requisitos básicos del usuario entre el cliente y el in-
geniero de software.

2. Deben identificarse las clases (es decir, se definen los atributos y métodos).

3 . Se define una jerarquía de clases.

4 . Deben representarse las relaciones de objeto a objeto (conexiones entre objetos).

5. Debe modelarse el comportamiento del objeto.

6. Las tareas 1 a 5 se vuelven a aplicar de manera iterativa hasta que el modelo
esté completo.

8 Las herramientas mencionadas aquí son una muestra de esta categoría. En la mayoría de los casos
los nombres están registrados por sus respectivos desarrolladores.

TM

PDF Editor

http://www.orade.com
http://www.madronesystems.com
http://www.magnasolutions.com
http://www.visible.com

2 0 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

En lugar de examinar un problema mediante un modelo m á s convencional c e l l
t ipo ent rada-procesamiento-sa l ida (flujo de información) o un modelo derivado i
fo rma exclusiva de las es t ruc turas jerárquicas de información, el AOO construye i
modelo or ientado a las c lases que se basa en la comprens ión de los conceptos i

I N F O R M A C I Ó N

Conceptos orientados a objetos
Los conceptos orientados a objetos (OO) están
bien establecidos en el mundo de la ingeniería

del software. A continuación se presentan las descripciones
abreviadas de conceptos O O que se encuentran con
frecuencia durante el modelado del análisis. En el capítulo
10 se presentan otros objetos O O que están alineados d e
manera más cercana al diseño de software.

Atributos: una colección de valores de los datos que
describen una clase.

Clase: encapsula los datos y las abstracciones de
procedimiento requeridos para describir el contenido y el
comportamiento de alguna entidad del mundo real. Dicho
de otra manera , una clase es una descripción
general izada (por ejemplo, una plantilla, un patrón o un

plano de trabajo) que describe una colección de objetos
similares.

Objetos: instancias de una clase específica. Los obje^s
heredan los atributos y operaciones de una clase.

Operaciones: también llamadas métodos y servicios
proporcionan la representación de uno de los
comportamientos de una clase.

Subclase: una especialización de la superclase. Ur-c
subclase puede heredar tanto los atributos como las
operaciones de una superclase.

Superclase: también llamada una clase básica, es ,
generalización de un conjunto de clases que están
relacionadas con ella.

Aunque el éxito de un s is tema o producto b a s a d o en computadora se
m u c h a s formas, la satisfacción del usuar io encabeza la lista. Si los inger
sof tware ent ienden la mane ra en q u e los usuar ios f inales (y ot ros actores)
interactuar con el s is tema, el equipo de sof tware será m á s capaz de caracte
fo rma apropiada los requisitos y construir mode los significativos de análisis r<
ño. Por lo tanto, el modelado del análisis con UML comienza con la creación de ¡
narios en la forma de casos de uso, d i ag ramas de actividad y d iag ramas de

8.5.1 Escritura de casos de uso
Un caso de uso captura las interacciones que ocurren entre los productores ¡
sumidores de información y del s i s tema en sí mismo. En es ta sección se ex
forma en que se desarrollan los casos d e uso c o m o una par te de la a c t i n
modelado del análisis.9

El concepto de un c a s o de uso (capítulo 7) e s re la t ivamente fácil de enter
cribe un escenar io de uso específico en un lenguaje directo desde el punte

9 Los casos de uso son una parte particularmente importante del modelado del análisis
terfases con el usuario. El análisis de la interfaz se trata con detalle en el capítulo 12.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 2 0 3

d e un actor definido.1 0 Pero c ó m o p u e d e sabe r se 1) ¿sobre qué escribir? 2), ¿cuánto
escribir acerca d e ello? 3), ¿qué tan detal lada debe se r la descripción?, y 4) ¿ c ó m o orga-
nizar la descripción? Estas son las p regun tas que deben contes ta rse para q u e los ca sos
de uso tengan un valor c o m o her ramien ta para el m o d e l a d o del análisis.

"[Los cosos de u so] s o n s implemen te uno a y u d o para definir lo que ex i s t e f u e r a del s i s t ema (ac tores) y lo q u e debe r í a
real izar el sistema (cosos de uso) . "

Ivor Jacobson

situó-
i casos de

el

élainge-
ajusflos.

esto no
deban

los
i técnicas
m el

¿ S o b r e q u é e s c r i b i r ? Las p r i m e r a s d o s t a r e a s d e la ingenier ía d e requisi tos1 1 —ini-

cio y ob tenc ión— p r o p o r c i o n a n la in fo rmac ión necesa r i a p a r a c o m e n z a r a escribir
c a s o s de uso. Las r e u n i o n e s p a r a la recopi lación d e requisi tos, desp l i egue d e la fun-
ción d e cal idad (QFD) y o t ro s m e c a n i s m o s p a r a la ingenier ía d e requis i tos s e ut i l izan
p a r a identif icar a los in te resados , definir el á m b i t o del p rob lema , especi f icar las
m e t a s ope ra t ivas globales , e s q u e m a t i z a r t odos los requis i tos func iona le s c o n o c i d o s
y describir las c o s a s (objetos) q u e m a n i p u l a r á el s i s t ema .

El desarro l lo d e u n a ser ie de c a s o s de u s o s e c o m i e n z a h a c i e n d o u n a lista de las
func iones o ac t iv idades q u e rea l iza un ac to r específ ico. Éstas p u e d e n o b t e n e r s e d e
u n a lista d e f u n c i o n e s r e q u e r i d a s del s i s t ema por m e d i o d e c o n v e r s a c i o n e s con los
c l ientes o u sua r io s finales, o m e d i a n t e una eva luac ión d e los d i a g r a m a s de act ividad
(sección 8.5.2) desa r ro l l ados c o m o pa r t e del m o d e l a d o del análisis.

Desarrollo de otro escenario de uso preliminar

El e s c e n a r i o : Una sala de
la segunda ¡unta para la recopilación

s : Jamie Lazar, miembro del equipo de
Ed Robbins, miembro del equipo de software;

f, gerente de ingeniería del software; tres
de mercadotecnia; un representante de
de producto; y un moderador.

— : ¿ n :

n Es hora d s que comencemos a hablar
de la función de vigilancia d e HogarSeguro.
a desarrollar un escenario de usuario para el
a la función d e seguridad en el hogar.

J a m i e : ¿Quién hace el papel del actor en esto?

M o d e r a d o r : Creo que Meredith (una persona de
mercadotecnia) ha estado t rabajando en esa
funcionalidad. ¿Por qué no haces tó el papel?

M e r e d i t h : ¿Quieres que lo hagamos igual que la última
vez, no es asi?

M o d e r a d o r : Correcto... de la misma forma.

M e r e d i t h : Bueno, es obvio que la razón pa ra la
vigilancia es permitir que el propietario esté pendiente d e
la casa mientras él o ella están fuera, g raba r y
reproducir videos que se hayan capturado. . . ese tipo de

10 Un actor no es una persona especifica, sino el papel que desempeña una persona (o dispositivo) den-
tro de un contexto específico. Un actor "llama al sistema para entregar uno de sus servicios"
[COCOl],

11 Estas tareas de la ingeniería de requisitos se examinan con detalle en el capítulo 7.

TM

PDF Editor

2 0 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Ed: ¿El video será digital y se almacenará en disco?

M o d e r a d o r : Buerva pregunta, pero por ahora
pospongamos los aspectos d e implementación.
¿Meredith? ¡V

M e r e d i t h : De acuerdo, entonces básicamente hay dos
partes para la función de vigilancia... la primera
configura el sistema, incluyendo el establecimiento de un
piano de la casa -necesitamos herramientas que ayuden
ol propietario a hacerlo- y la segunda parte es la función
de vigilancia real en sí misma. Como el establecimiento
del plano es par te de la actividad de configuración, me
enfocaré en la función de vigilancia.

M o d e r a d o r (s o n r i e n d o) : Me quitaste las palabras
d e Id boca. •>' s '

M e r e d i t h : Mm... Quiero tener acceso a la función d e
vigilancia, ya sea o través d e la PC o de Internet. Siento
que el acceso por Internet sería el de uso más frecuente.
De cualquier manera, quiero ser capaz d e desplegar
vistas de las cámaras en una PC y controlar el

movimiento y los acercamientos de una cámara
específica. Especifico la cámara seleccionada desde el
plano de la casa. Quiero g raba r y reproducir la salida
de las cámaras de manera selectiva. Tombión quiero ser
capaz de bloquear el acceso o une o más cámaras con
una contraseña específica. Y quiero la opción de ver
pequeñas ventanas que muestren vistas de todas las
cámaras y después ser capaz de seleccionar la que
quiero destacar.

J a m i e : Esas se llaman vistas en miniatura.

M e r e d i t h : Bien, entonces quiero vistas en miniatura de
todas los cámaras. También quiero que la interfaz con le
función de vigilancia tenga la misma apariencia que
todas las otras interfases d e HogarSoguro. Quiero que
sea intuitiva; es decir, que hó sea necesario leer un
manual para poder usarla. / B U »

M o d e r a d o r : Buen trabajo, ahora entremos en esta
función con un poco más de detalle. ..

¡11®

La función de vigilancia en el hogar de HogarSeguro que se examina en el recua-1
dro identifica las s iguientes funciones (una lista abreviada) que realiza el actor i d e r - l
tificado como prop ie tar io d e l a casa:

• Tener acceso a la cámara de vigilancia vía Internet.

• Seleccionar la cámara que desea ver.

• Solicitar vistas en miniatura de todas las cámaras .

• Desplegar vistas de la cámara en una ven tana de una PC.

• Controlar la visión panorámica y de acercamien to en una cámara específica

• Registrar en forma selectiva la salida de cámara .

• Repetir la salida de cámara .

Conforme se realizan las conversac iones poster iores con el in teresado (quiesl
d e s e m p e ñ a el papel de un propietario), el equipo de recopilación de requisitos desa-
rrolla casos de u s o para cada una de las func iones menc ionadas . En general, 1:s
casos de uso se escriben pr imero en un estilo narrat ivo informal. Si se requiere'
mayor formalidad se rescribe el m i s m o caso de u s o uti l izando un formato estructu-
rado similar al propuesto en el capítulo 7 y reproducido en es ta sección c o m o i r a

recuadro.
Con fines ilustrativos, cons idérese la función "acceso a cámara de vigilancia-des-

pliegue de vistas de cámara (ACV-DVC)". El in teresado que d e s e m p e ñ a el papel e s
propietar io podría escribir el siguiente relato:

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 205

Caso de uso: Acceso a cámara de vigilancia-despliegue de vistas de cámara
(ACV-DVC)

Actor: propietario

Si me encuentro en un lugar lejano puedo usar una PC con un software de navegación
apropiado para entrar al sitio web de los productos HogarSeguro. Ingreso mi clave de usua-
rio y dos niveles de contraseñas y, después de que estoy validado, tengo acceso a toda la
funcionalidad de mi sistema HogarSeguro instalado. Para tener acceso a la vista de una cá-
mara específica selecciono "vigilancia" de los botones desplegados para las funciones más
importantes. Después escojo "seleccionar una cámara" y se despliega un plano de planta
de la casa. Entonces selecciono la cámara en la que estoy interesado. En forma alterna,
puedo ver simultáneamente una lista con vistas en miniatura de todas las cámaras al se-
leccionar "todas las cámaras" como mi opción de visualización. Una vez que he seleccio-
nado una cámara, selecciono "vista" y una vista de un cuadro por segundo aparece en una
ventana, a la cual identifica la cámara clave. Si quiero cambiar de cámara, elijo "seleccio-
nar una cámara" y la ventana de visión original desaparece y se despliega de nuevo el
plano de planta de la casa.

Una var iación del c a s o de u s o r e l a t ado p r e s e n t a la in teracc ión c o m o una secuenc ia
o r d e n a d a d e las a c c i o n e s del usuar io . Cada acc ión s e r e p r e s e n t a c o m o un e n u n c i a -
d o declara t ivo. Después d e visitar la func ión ACV-DVC, s e p u e d e escribir:

Caso de uso: Acceso a cámara de vigilancia-despliegue de vistas de cámara
(ACV-DVC)

Actor: propietario

1. El propietario entra en el sitio Web de HogarSeguro.

2. El propietario introduce su clave de usuario.
3. El propietario introduce dos contraseñas (cada una de al menos ocho caracteres).

4. El sistema despliega todos los botones de las funciones más importantes.

5. El propietario selecciona "vigilancia" de los botones de funciones más importantes.

6. El propietario elige "seleccionar una cámara".

7. El sistema despliega el plano de planta de la casa.

8. El propietario selecciona un icono de cámara del plano de planta.

9. El propietario selecciona el botón "vista".

10. El sistema despliega una ventana de visión, identificado por la clave de la cámara.

11. El sistema muestra salida de video dentro de la ventana de visión con una veloci-
dad de un marco por segundo.

Es i m p o r t a n t e d e s t a c a r que e s t a p re sen tac ión secuenc ia l n o cons idera a l g u n a s inte-
r acc iones a l t e rna t ivas (la narra t iva t iene un flujo m á s libre y r ep re sen t a u n a s c u a n -
tas a l ternat ivas) . Los c a s o s d e u s o de es te t ipo s e ref ieren a l g u n a s v e c e s c o m o esce-
narios primarios [SCH98].

"Los cosos d e uso p u e d e n usa r se e n muchos procesos [d e s o f t w a r e] . Nuestro favor i to e s un proceso que s e o i te ra t ivo y
conducido por el r iesgo ."

Geri Schneider y Jason Winters

TM

PDF Editor

2 0 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

•
¿Cómo se
examinan

cursos
alternativos de
acción mientras
se desarrolla un
caso de uso?

Por supuesto, para una comprensión completa de la función que se pretende
cribir es esencial una descripción de las interacciones alternativas. Por lo tanto,
paso en el escenario primario se evalúa realizando las siguientes preguntas [SC

• ¿El acto puede ejecutar otra acción en este punto?

• ¿Es posible que el actor encuentre alguna condición de error en este punte -
es así, ¿cuál podría ser?

• ¿Es posible que el actor encuentre algún otro comportamiento provocado
algún evento fuera de su control? Si es así, ¿cuál podría ser?

El resultado de las respuestas a es tas preguntas es la creación de un conjunte
escenarios secundarios que son parte del caso de uso original, pero que represe
comportamientos alternativos.

Por ejemplo, considérense los pasos 6 y 7 en el escenario primario presen
líneas atrás:

6. El propietario elige "seleccionar una cámara".

7. El sistema despliega el plano de planta de la casa.

¿El actor puede ejecutar otra acción en este punto? La respuesta es: "sí". Con refe
cia al relato de flujo libre, el actor puede elegir ver las vistas en miniatura de t<~
las cámaras de manera simultánea. Por ende, un escenario secundario podría
"Ver las vistas en miniatura de todas las cámaras".

¿Es posible que el actor encuentre alguna condición de error en este punto? C
un sistema basado en computadora está en funcionamiento puede ocurrir cualq
cantidad de condiciones de error. En este contexto se consideran sólo las condicio-
nes de error que pueden ocurrir como resultado directo de las acciones descritas er
los pasos 6 o 7. De nuevo, la respuesta a la pregunta es: "sí". Puede ser que nunca
se haya configurado un plano de planta con iconos de las cámaras . Por lo tanto, 5_
elegir "seleccionar una cámara" se produce una condición de error: "no existe un
plano de planta configurado para esta casa".12 Esta condición de error se convierte
en un escenario secundario.

¿Es posible que el actor encuentre algún otro comportamiento en este punto? De
nuevo, la respuesta a la pregunta es: "si". Cuando se realizan los pasos 6 y 7 el sis-
tema puede encontrar una condición de alarma. Esto podría resultar en que el siste-
ma desplegara una notificación especial de alarma (tipo, ubicación, acción del sis-
tema) y le proporcione al actor una serie de opciones relacionadas con la naturale-
za de la alarma. Como este escenario secundario puede ocurrir para casi todas las
interacciones, no se convertirá en una parte del caso de uso para el ACV-DVC. Er

12 En este caso, otro actor, el administrador del sistema, tendría que configurar el plano de planta,
instalar e inicializar (es decir, asignar una ID a cada equipo) para todas las cámaras, así como rea-
lizar pruebas para estar seguro de que cada una de ellas es accesible por medio del sistema y a tra-
vés del plano de planta.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 2 0 7

vez de eso, se desarrollará un caso de uso por separado —"condición de alarma
encontrada"—, el cual estará referenciado a otros casos de uso, según se requiera.

En relación con las plantillas formales para los casos de uso que se muestran en
el recuadro, los escenarios secundarios se representan como excepciones a la
secuencia básica descrita respecto al ACV-DVC.

H O G A R S E G U R O

Plantilla de caso de uso para 1a vigilancia

en contexto!

Caso d e uso: Acceso o la cámara
de vigilancia-despliegue de vistas
de cámara (ACV-DVC).

Propietario !

Ver la salida d e las cámaras
colocadas a lo largo de la casa
desde cualquier ubicación remota
a través de I

, previas: El sistema se debe configurar por
completo; se deben obtener ID y
contraseñas apropiadas para los
usuarios.

Ei propietario decide echarle un
vitazo a su casa mientras se
encuentra fuera de ella.

El propietario entra al sitio web de Producios
HogarSeguro.

2 El propietario introduce su ID de usuario,

i El propietario introduce dos contraseñas (cada una
de al menos ocho caracteres).

- El sistema despliega todos los botones d e las
funciones más importantes.

i El propietario selecciona "vigilancia" de los botones
de las funciones más importantes.

6 El propietario selecciona "escoger una cámara".

El sistema despliega el plano de la casa.

8. El propietario selecciona el icono de una cámara del
plano de planta.

; El propietario selecciona el botón "vista".

0 El sistema despliega una ventana de visualización
que está identificada con la ID de la cámara .

11. El sistema despliega la salida de video dentro de ta
ventana de visualización a un cuadro por segundo.

Excepciones:

1. La ID o las contraseñas son incorrectos o no se
reconocen; véase el caso de uso: "validar ID y
contraseñas".

2. La función d e vigilancia no está configurada pa ra
este sistema, así que el sistema despliega el mensaje
de error apropiado; véase el caso de uso:
"configurar la función de vigilancia".

3. El propietario selecciona "Ver vistas en miniatura
para todas las cámaras"; véase el caso de uso: "Ver
vistas en miniatura para todas las cámaros".

4. No está disponible un plano de planta o éste no se
ha configurado, asi que el sistema despliega el
mensaje de error apropiado; véase ei caso de uso
"configurar plano de la casa".

5. Se encuentra una condición de alarma; véase el
caso d e uso: "condición d e alarma encontrada".

Prioridad: Prioridad moderada , que se
implementará después de las
funciones básicas.

Disponible en: El tercer incremento.

Frecuencia de uso: Poco frecuente.

Canal hacia el actor: A través d e un browser basado en
PC y conexión de Internet al sitio
web de HogarSeguro.

Actores secundarios: Administrador del sistema,
cámaras .

Canales hacia los actores secundarios:

1. Administrador del sistema: sistema b a s a d o en PC.

2. Cámaras: conectividad inalámbrica

TM

PDF Editor

208 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Aspectos pendientes: 3. ¿La respuesta del sistema vio Internet será aceptable
dado el anchó de banda requerido para fas vistas
de cámara? I

1. ¿Cuál es el mecanismo q u e protege contra el uso no
autorizado de esta capacidad por parte de los
empleados d e la compañía? 4. ¿Se desarrollará una capac idad pa ra proporciona'

video a una tasa mayor de cuadros por segundo
cuando estén disponibles conexiones con mayor
ancho de banda? 9

2. ¿La seguridad es suficiente? El ingreso no autorizado
en esta característica representaría una invasión
importante d e la privacidad.

¿Cuándo s e han ;

t e m i i r a d o j e estr ibi l los
cosos do u s ó ? Para uno
exposiítón valiosa de
este tópico, véase
oot ips .org /

use-tases-done.

htmfootips.org/

use-cases-done.

h t m l

En muchos casos no es necesario crear una representación gráfica de un e s c e r ;
rio de uso. Sin embargo, la representación diagramática puede facilitar la compren-
sión, en particular cuando el escenario e s complejo. Como se mencionó en el car -
tulo 7, el UML proporciona una capacidad para hacer diagramas de casos de uso pre-
liminar para el producto HogarSeguro. Cada caso de uso s e representa mediante l - 1
óvalo. En esta sección sólo se ha examinado en detalle el caso de uso para el ACV-
D V C .

8.5.2 Desarrollo de un diagrama de actividad
El diagrama de actividad en UML (que se trató en forma breve en los capítulos 6 y 7
complementa el caso de uso al proporcionar una representación gráfica del flujo de inte
racción dentro de un escenario específico. De manera similar al d iagrama de fluj:
un diagrama de actividad utiliza rectángulos redondeados para indicar una funcic-
específica del sistema, flechas para representar el flujo a través del sistema, romb> s
de decisión para mostrar una ramificación por decisión (cada flecha que sale de
rombo se etiqueta), y líneas horizontales sólidas para indicar que ocurren activida-
des paralelas.

Diagrama
preliminar de
caso de uso
para el
sistema
HogarSeguro.

HogarSeguro

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 2 0 9

a d e

d e
a la
d e

e
•retas d e

/ introducir con t r a seña^
e ID del usuario J

Contraseñas/ID válidas Contraseñas/1 D no válidos

También se pueden
seleccionar

otras funciones

" Seleccionar u n a \ (Opción pa ra \
función^importante/ \ reingreso J

Seleccionar

/ N o restan
intentos de entrada

Restan intentos
de entrada

Seleccionar una
c á m a r a específica

Seleccionar una cámara
i en miniatura

Seleccionar un ¡cono)
la salida d e una cámara

en una ventana •

C Opción para
otra vista)

Salir d e esta función Ver otra cámara

(C L A V E
de

enUML
te acciones

que
r t r a s s e

función.

En la figura 8.7 s e m u e s t r a un d i a g r a m a d e act ividad p a r a la func ión de ACV-
DVC. Se d e b e resa l ta r que el d i a g r a m a d e act ividad ag rega de ta l les ad i c iona le s que

n o s e m e n c i o n a n d e m a n e r a directa (pero sí implícita) en el c a s o d e uso. Por e j e m -
plo, un u s u a r i o p u e d e in ten ta r ingresar la I D u s u a r i o y la c o n t r a s e ñ a só lo un n ú m e -
r o l imi tado d e veces . Es to s e r ep re sen t a m e d i a n t e un r o m b o d e dec is ión d e b a j o d e

opción para reingreso.

8.5.3 Diagramas de carril
El diagrama de carril d e UML e s u n a var iac ión útil del d i a g r a m a d e act ividad, ya q u e
pe rmi t e al m o d e l a d o r la r ep resen tac ión del flujo d e ac t iv idades descr i tas po r el c a s o
d e u s o y, al m i s m o t iempo, indicar q u é a c t o r (si hay múl t ip les a c t o r e s invo luc rados
en u n a func ión específ ica) o c lase d e anál is is t iene la r e sponsab i l idad d e la acc ión
descr i ta m e d i a n t e un r ec t ángu lo d e act ividad. Las r e sponsab i l i dades s e r ep re sen t an

TM

PDF Editor

Introducir contraseña
e ID del usuario

Contraseñas/ID válidas
!ontraseñas/ID

no válidas
función importante

ion pa ra reingreso

Restan intentos
\ d e entrada

Seleccionar una
.cámara específica

;<xionar una cámara
especifica-vistas

en miniatura .

Seleccionar un
¡cono de cámara

Generar salida
d e video

Vista de salida de cámara
en una ventana et iquetada

* 4
C & V E

Un diagrama de
caniles en UML
representa el flujo de
los ocácnes y los
de r i sones e indico
a x f e s odores realizan
r a l o uno de eSos.

c o m o s e g m e n t o s pa ra le los q u e dividen el d i a g r a m a en f o r m a vertical, c o m o los
c a n i l e s d e una a lberca .

Existen tres c lases d e anál is is —Propie tar io , Inter faz y Cámara— con responsa-
bil idades d i rec tas o indirectas en el con tex to del d iagrama de actividad r ep resen tado
en la figura 8.7. Respecto d e la figura 8.8, el d i ag rama de actividad se reorganiza de
forma q u e las act ividades a soc i adas con una clase d e anál is is part icular pe r tenezcan

al carril co r respondien te a dicha clase. Por e jemplo, la clase In ter faz r ep resen ta la
interfaz con el usuar io d e acue rdo con la visión del propietario. El d i ag rama de activi
dad cons idera d o s opc iones q u e s o n responsabi l idad d e la interfaz: opción para el rein

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Diagrama de carril para la función de Acceso a la cámara de vigilancia-despliegue de
vistas de cámara.

Propietario Cámara

Vistas en
miniatura

Interfaz

(
También se

pueden
seleccionar

otras f Seleccionar vigilancia \
funciones N , J

N o restan
intentos d e entrada

Opción
" \ ^ pora otra vista y

Salir d e
_ e s t a función

<8>
Ver otra
cámara

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 211

greso y opción para otra vista. Estas opc iones y las dec is iones a soc i adas con ellas per-
t enecen al carril d e Interfaz . Sin embargo , las flechas c o n d u c e n desde e s e carril d e
regreso al carril de propie tar io , d o n d e ocur ren las acc iones del propietar io.

¿ J L . D E L A D Q O B I AL F L U J O

El m o d e l a d o d e d a t o s o r i e n t a d o al flujo e s una d e las n o t a c i o n e s d e aná l i s i s utiliza-
d a s con m a y o r ampl i tud en la ac tua l idad . 1 3 Aunque el diagrama de flujo de datos
(DFD) y los d i a g r a m a s y la in fo rmac ión r e l ac ionados n o son una pa r t e formal d e
UML, p u e d e n uti l izarse p a r a c o m p l e m e n t a r los d i a g r a m a s en UML y p roporc iona r un

c o n o c i m i e n t o adic ional d e los requis i tos y el flujo del s i s t ema .
El DFD t iene una visión del s i s t ema del t ipo en t r ada -p roceso - sa l i da . Es to es , los

ob j e to s d e d a t o s fluyen hacia el interior del so f tware , s e t r a n s f o r m a n m e d i a n t e e le-
m e n t o s d e p r o c e s a m i e n t o , y los ob j e to s d e d a t o s r e su l t an te s fluyen al exter ior del
so f tware . Los ob j e to s d e d a t o s s e r ep re sen t an m e d i a n t e f l echas ro tu l adas y las t r ans -
f o r m a c i o n e s s e r e p r e s e n t a n por m e d i o d e círculos (t ambién l l amadas burbujas). El
DFD se p r e s e n t a en u n a fo rma jerárquica . Es to es , el p r imer m o d e l o d e flujo d e d a t o s
(a lgunas v e c e s l l amado un DFD de nivel 0 o diagrama de contexto) r ep re sen t a el sis-

t e m a c o m o un todo. Los d i a g r a m a s de flujo d e d a t o s s u b s e c u e n t e s re f lnan el d ia-
g r a m a d e con tex to , ya q u e p roporc ionan una can t idad c rec ien te de de ta l les con c a d a
nivel subs iguien te .

"Ei propósi to d e los d i a g r a m a s de f lujo d e da tos e s proporc ionar un p u e n t e semánt ico e n t r e los usuar ios y los
d e s a b o l l a d o r e s de s i s t emas . "

Kenneth Rozar

*
xtsonas
fie el DFD

btiejo
yqueno
enla

mderno.
i visión que
a forma de

•t poten-
úlU ol nivel

Si es de
•recomiendo

el DFD.

8.6.1 Creación de un modelo de flujo de datos
El d i a g r a m a d e f lu jo d e d a t o s p e r m i t e q u e el ingeniero d e s o f t w a r e desar ro l le m o d e -
los del d o m i n i o d e in fo rmac ión y del domin io func iona l al m i s m o t i empo. A med ida
q u e el DFD se ref ina hacia g r a d o s m a y o r e s d e detal le , el ana l i s t a d e s e m p e ñ a una

d e s c o m p o s i c i ó n funcional implícita del s i s t ema . Al m i s m o t iempo, el r e f i namien to
del DFD resul ta en un c o r r e s p o n d i e n t e r e f inamien to d e da to s m i e n t r a s s e m u e v e
hacia los p r o c e s o s q u e i nco rpo ran la apl icación

Unas p o c a s di rect r ices s i m p l e s p e r m i t e n o b t e n e r u n a ayuda invaluable d u r a n t e la
c reac ión d e un d i a g r a m a d e flujo d e datos : 1) el nivel 0 del d i a g r a m a de flujo d e d a t o s
debe r e p r e s e n t a r al s o f t w a r e / s i s t e m a c o m o u n a so la bu rbu ja ; 2) la en t r ada y la sali-
da pr imaria d e b e n e s t ab l ece r se con cu idado; 3) la ref inación debe c o m e n z a r po r el

a i s l amien to d e p rocesos , ob j e to s d e da to s y a l m a c e n a m i e n t o s d e d a t o s c a n d i d a t o s a
se r r e p r e s e n t a d o s en el s iguiente nivel; 4) t odas las flechas y b u r b u j a s s e d e b e n ro tu -
lar con n o m b r e s significativos; 5) s e debe m a n t e n e r la con t inu idad del f lujo de infor-

13 El modelo de flujo de datos es una actividad de modelado esencial en el análisis estructurado.

TM

PDF Editor

212 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

DFD al nivel
de contexto
para la
función de
seguridad de
HogarSeguro.

\ CLAVE
l a continuidad del flu¡o
de información debe
mantenerse conforme
se refina cada nivel del
DFD. Esto significa que
lo entrada y salida en
un nivel deben ser los
mismas que la entrada
y salida en un nivel
refinado.

mación al cambiar de nivel a nivel;14 y 6) la refinación de las burbujas debe hacerse
una por una. Existe una tendencia natural a complicar de más el diagrama de fin;:
de datos. Esto ocurre cuando el analista intenta mostrar muchos detalles demasia-
do pronto o representar aspectos de procedimiento del sof tware en lugar de ele
mentos del flujo de información.

El uso del DFD y de la notación relacionada se ilustra de nuevo considerando la
función de seguridad en el hogar de HogarSeguro. En la figura 8.9 se muestra un DFC
al nivel de contexto para la función de seguridad. Las entidades externas primarias
(cajas) producen información para el uso del sistema y consumen información que
éste genera. Las flechas rotuladas representan objetos de datos o jerarquías de obje-
tos de datos. Por ejemplo, c o m a n d o s y d a t o s del usuar io abarcan todos los
comandos de configuración, todos los comandos de activación/desactivación, todas
las interacciones y todos los datos que se ingresan para calificar o expandir un
comando.

El DFD de nivel 0 ahora se expande a un modelo de flujo de datos de nivel 1. ¿Pero
cómo se logra esto? Un enfoque simple, pero efectivo, es realizar un "análisis gra-
matical" [ABB83] sobre la narrativa que describe la burbuja al nivel de contexto. Esto
es, se aislan todos los sustantivos y verbos en la narrativa de procesamiento de
HogarSeguro15 obtenida durante la primera reunión para la recopilación de requisi-
tos. Con propósitos ilustrativos, considérese el siguiente texto narrativo de procesa-
miento con la primera aparición de todos los sustantivos subrayados y la primera
aparición de todos los verbos en itálicas.16

14 Esto es, los objetos de datos que Huyen hacia el sistema o cualquier transformación en algún nivel,
deben ser los mismos objetos de datos (o sus partes constituyentes) que fluyen hacia la transfor-
mación en un nivel más refinado.

15 Una narrativa del procesamiento es similar en estilo al caso de uso, pero algo diferente en propó-
sito. La narrativa del procesamiento proporciona una descripción general de la función que será de-
sarrollada. No es un escenario escrito desde el punto de vista de alguno de los actores.

16 Debe notarse que se omiten los sustantivos o verbos que son sinónimos o que no tienen una inge-
rencia directa en el proceso de modelación. También se debe notar que, cuando se considere el mo-
delado basado en clases de la sección 8.7, se usará un análisis gramatical similar.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 213

s gramatical
ide

i xw puede
run

t paso inicial
: inste alguna

i pora definir
E X datos y las

sque
i ellos.

La función de seguridad de HogarSeguro permite al propietario configurar el sistema de se-
guridad cuando éste se instala, monitorear todos los sensores que se conectan al sistema
de seguridad y que interactúan con el propietario a través de Internet una PC o un panel
de control.

Durante la instalación, la PC de HogarSeguro se utiliza para programar y configurar el
sistema. A cada sensor se le asigna un número y lipa, se programa una contraseña ma-
estra para habilitar o deshabilitar el sistema, y algunos números telefónicos ingresan para
marcarse cuando se presenta un evento en los sensores.

Cuando se reconoce un evento en los sensores, el software solicita una alarma audible
que el propietario especifica durante las actividades de configuración del sistema, el soft-
ware marca el número telefónico de un servicio de monitoreo. proporciona información
acerca de la ubicación, reporta la naturaleza del evento que se ha detectado. El número
telefónico se remarca cada 20 segundos hasta que se obtiene una conexión telefónica.

El propietario recibe información de seguridad a través de un panel de control, la PC o
un buscador que en forma colectiva se denomina una interfaz La interfaz despliega men-
sajes de opción e información del estatus del sistema en el panel de control, la PC o la ven-
tana del buscador. La interacción del propietario asume la siguiente forma...

En re lación con el anál is is g ramat i ca l c o m i e n z a a surgir un pa t rón . Los v e r b o s son
los p r o c e s o s d e HogarSeguro-, e s t o es , al final p u e d e n r ep re sen t a r se c o m o b u r b u j a s
en un DFD s u b s e c u e n t e . Los sus t an t ivos son e n t i d a d e s e x t e r n a s (cajas), ob j e to s d e

d a t o s o d e cont ro l (flechas), o a l m a c e n a m i e n t o s d e d a t o s (l íneas dobles) . D e s p u é s
debe o b s e r v a r s e q u e los sus t an t ivos y v e r b o s se p u e d a n a soc i a r d e d is t in tas f o r m a s

t de nivel 1
i Va función

i seguridad de

TM

PDF Editor

2 1 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

DFD de nivel 2
que refina el
proceso de
monitoreo
de sensores.

^CQNSEJoff i

Se debe tenerla
segundad de que loda
lo narrativa de proce-
samiento que se
intento analizar está
escrita con el mismo
grado de abstracción.

entre sí. Por ejemplo, a cada sensor se le asigna un número y un tipo; por lo tanto,
el número y el tipo son atributos del objeto de datos s ensor . Entonces, al realizar ur
análisis gramatical sobre la narrativa de procesamiento para una burbuja en cual-
quier nivel del DFD, se puede generar mucha información útil acerca de c ó m o pro-
ceder con la refinación para el siguiente nivel. En la figura 8.10 se presenta un DFD
de nivel 1 para el cual se ha utilizado esta información. El proceso al nivel de con-
texto mostrado en la figura 8.9 se ha expandido a seis procesos obtenidos de un exa-
men del análisis gramatical. De manera similar, el flujo de información entre los pro-
cesos en el nivel 1 ha sido obtenido del análisis. Además, se mant iene la continui-
dad del flujo de información entre los niveles 0 y 1.

Los procesos representados en el DFD de nivel 1 se refinan después hacia niveles
más bajos. Por ejemplo, es posible refinar el proceso monitorear sensores hacia ur.
DFD de nivel 2 como se muestra en la figura 8.11. De nuevo, debe señalarse que se
mant iene la continuidad del flujo de información entre los niveles.

La refinación de los DFD continúa hasta que cada burbuja realiza una sola fun-
ción; es decir, hasta que el proceso que representa la burbuja desempeñe una función
que podría implementarse con facilidad como un componente de programa. En e
capítulo 9 se examina un concepto, l lamado cohesión, con el cual se evalúa la sim-
plicidad de una función dada. Por ahora , se busca refinar los DFD hasta que cada
burbuja tenga "un solo significado".

8.6.2 Creación de un modelo de control del flujo
En muchos tipos de aplicaciones el modelo de datos y el diagrama de flujo de datos
son todo lo que se necesita para obtener una visión significativa de los requisitos de'.

Formato
pa ra el

despliegue

Generar
señal

de a larma

Información de configuración a larma
ubicación
del sensor

' D a l o s
d e a larma Evaluar

contra
ifiguración

Número
telefónico

ID, tipo
de sensor Leer

sensores
Marcar
teléfono

Estatus
el sensor

Datos
d e configuración

Información
del sensor

Tonos de números
telefónicos

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 215

\ ¿ C " " 0 s e

so f tware . Sin e m b a r g o , c o m o ya se ha m e n c i o n a d o , existe u n a c lase m u y g r a n d e d e
ap l i cac iones q u e e s t á n gu iadas po r e v e n t o s e n lugar de da tos , que p r o d u c e n infor-
mac ión d e control e n lugar d e repor tes o despl iegues , y q u e p r o c e s a n in fo rmac ión
con un especia l in te rés po r el t i e m p o y el r end imien to . Dichas ap l icac iones requie -

ren aplicar el modelado de control del flujo, a d e m á s del m o d e l a d o del f lu jo d e da tos .
Ya s e ha m e n c i o n a d o q u e un e v e n t o o e l e m e n t o d e cont ro l s e i m p l e m e n t a c o m o

un valor b o o l e a n o (por e jemplo , v e r d a d e r o o falso, e n c e n d i d o o a p a g a d o , I o 0) o
u n a lista discreta de cond ic iones (vacío, s a t u r a d o , lleno). En la se lecc ión de los e v e n -
tos q u e son c a n d i d a t o s po tenc ia l e s se sug ie ren las s igu ien tes directrices:

• Hacer u n a lista d e t o d o s los s e n s o r e s q u e el s o f t w a r e "lee".

• Listar t odas las cond ic iones d e in ter rupción.

• Listar t odos los " in ter ruptores" que m a n e j a un ope rador .

• Listar t odas las cond ic iones de da tos .

• De a c u e r d o con el anál is is d e sus t an t ivos y ve rbos ap l i cado a la narra t iva de
p r o c e s a m i e n t o , revisar t odos los " e l e m e n t o s d e cont ro l" c o m o posibi l idades
d e e n t r a d a s y sa l idas del control d e flujo.

• Describir el c o m p o r t a m i e n t o de un s i s t ema m e d i a n t e la identif icación d e s u s
e s t ados ; d e t e r m i n a r el g r a do en el q u e se a l canza c a d a es tado , y definir las
t r ans ic iones en t r e los e s t ados .

• Enfoca r se en pos ib les o m i s i o n e s —un error muy c o m ú n al especi f icar el
control—; por e j emplo , se p u e d e p regun ta r : "¿existe a lguna o t ra m a n e r a d e
a l canza r e s te e s t a d o o salir de él?".

8.6.3 Especificación de control
La especificación de control (EC) r ep re sen t a el c o m p o r t a m i e n t o del s i s t ema (en el
nivel de sde el cual e s t á referido) d e d o s m a n e r a s di ferentes . 1 7 La EC con t i ene un dia-
g r a m a d e e s t a d o q u e e s u n a especi f icac ión secuenc ia ! del c o m p o r t a m i e n t o . También
p u e d e c o n t e n e r u n a tabla d e ac t ivación del p rog rama : una especi f icac ión c o m b i n a -
toria del c o m p o r t a m i e n t o .

En la figura 8.12 s e m u e s t r a un d i a g r a m a d e e s t a d o pre l iminar 1 8 pa ra el m o d e l o
d e control del flujo en el nivel I p a r a HogarSeguro. El d i ag rama indica c ó m o r e sponde
el s i s t ema a d i f e ren te s e v e n t o s c o n f o r m e és te a t rav iesa los c u a t r o e s t a d o s def in idos
en e s t e nivel. Al revisar el d i a g r a m a d e es tado , un ingeniero de s o f t w a r e p u e d e
de t e rmina r el c o m p o r t a m i e n t o del s i s t ema y, aún m á s impor tan te , p u e d e e n c o n t r a r
si exis ten "hoyos" en el c o m p o r t a m i e n t o especi f icado.

17 Después, en este mismo capítulo, se presenta notación adicional para el modelado del comporta-
miento.

18 La notación para el diagrama de estado se muestra aquí de conformidad con la notación del UML.
En el análisis estructurado se cuenta con un "diagrama de transición de estado", pero el formato del
UML es superior en contenido y representación de información

TM

PDF Editor

216 P A R T E D O S P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

Diagrama de estado para la función de seguridad de HogarSeguro.

senso rDi spa rodo /
reinicioTemporizador

Por ejemplo, el diagrama de es tado (figura 8.12) indica que las transiciones desc ;
el es tado desocupado pueden ocurrir si el sistema se reinicia, activa o apaga. Si el sis-
tema se activa (es decir, se enciende el sistema de alarma) ocurre una transiciór
hacia el es tado MonitoreoEstatusSistema, los mensa jes que se despliegan cambian,
como se muestra, y se solicita el proceso SistemaControfyMonitoreo. Con el estadc
Monitoreo Stratus Sistema ocurren dos transiciones: 1) al desactivar el sistema se pre-
senta una transición de regreso al es tado desocupado; 2) cuando se dispara un ser -
sor ocurre una transición hacia el estado AcciónEnAIarma. Durante la revisión se
consideran todas las transiciones y el contenido de todos los estados.

HOGARSEGURO

Modelado del flujo de datos

H e s c e n a r i o : Cubículo de Jamie,
! que ha concluido la última reunión pa ra la

-ecopiiación de requisitos.

Los a c t o r e s : Jamie, Vinod y Ed, miembros del equipo
óe ingeniería de! software de HogarSeguro.

La conversación:
(Jamie ha bosquejado los modelos que se muestran en
las figuras 8.9, 8 .10, 8.11 y 8 .12 y se los muestra a Ed y
Vinod).
J a m i e : Tomé un curso de ingeniería del software en la
universidad, y ahí aprendi estas cosas. El profesor dijo

TM

PDF Editor

C A P I T U L O 8 MODELADO DEL ANÁLISIS 2 1 7

La EC descr ibe e! c o m p o r t a m i e n t o del s i s t ema , pe ro n o br inda in fo rmac ión acer -
ca del t r a b a j o interior d e los p r o c e s o s q u e act iva . La n o t a c i ó n d e m o d e l a d o q u e pro-
porc iona es ta in fo rmac ión se es tud ia en la secc ión 8.6.4.

8.6.4 Especificación de proceso
La especificación de proceso (EP) s e utiliza para describir t odos los p r o c e s o s del
m o d e l o d e flujo q u e a p a r e c e n e n el nivel final d e ref inación. El con t en ido d e la e spe -
cif icación d e p r o c e s o p u e d e incluir texto nar ra t ivo , u n a descr ipción en l engua j e d e
d i s e ñ o d e p r o g r a m a s (LDP)19 del a lgor i tmo del p roceso , e c u a c i o n e s m a t e m á t i c a s ,
tablas , d i a g r a m a s o gráf icas . Al p roporc iona r u n a EP p a r a a c o m p a ñ a r c a d a burbu ja

en el m o d e l o d e flujo, el i ngen ie ro d e s o f t w a r e c rea una "miniespeci f icac ión" que
p u e d e servir c o m o guía para el d i seño del c o m p o n e n t e del s o f t w a r e q u e i m p l e m e n -
tará el p roceso .

Para i lustrar el u s o d e la EP, c o n s i d é r e s e la t r an s fo rmac ión procesamiento de con-
traseña r e p r e s e n t a d a en el m o d e l o d e flujo p a r a HogarSeguro (figura 8.10). La EP para
es ta func ión podr ía t o m a r la fo rma:

EP: procesamiento de contraseña (en el panel de control). La transformación pro-
cesamiento de contraseña valida la contraseña en el panel de control para la función de se-

estó un poco pasado de moda, pero ¿saben
Me ayuda a clarificar las cosas.

Es genial. Pero aquí no veo ninguna ciase ni ningún

esto es sólo un modelo de flujo con algunos
de comportamiento incluidas.

¿Entonces, estos DFD representan una visión E-P-
iottware, no?

¿E-P-S?

Entrada-proceso-salida. En realidad los DFD son
. . . Si los observas por un momento,

la forma en que los objetos fluyen a través del
y cómo éstos se transforman.

como si pudiéramos convertir c a d a burbuja
componente ejecutable.. . al menos en el nivel más

del DFD.

Esa es la mejor parte, sí se puede. De hecho,
forma d e traducir los DFD a una arquitectura

Ed: ¿De verdad?

J a m i e : Sí, pero primero debemos desarrollar un modelo
de análisis completo, y éste no lo es.

V i n o d : Bueno, es un primer paso. Pero vamos a tener
que abordar elementos basados en clases y también
aspectos del comportamiento, aunque este d iagrama de
estado hace algo d e eso.

Ed: Tenemos mucho trabajo por hacer y no mucho
tiempo pa ra hacerlo,

(Doug -el gerente de ingeniería del software- entra en el
cubículo.)

D o u g : Entonces, ¿los primeros días estarán dedicados al
desarrollo del modelo d e análisis, eh?

Jamie (con orgullo): Ya comenzamos.

D o u g : Bien, tenemos mucho t rabajo por hacer y no
mucho tiempo pa ra hacerlo.

(Los tres ingenieros d e software se miran entre sí y
sonríen.)

19 El lenguaje de diseño de programas (LDP) mezcla la sintaxis del lenguaje de programación con la
narrativa en texto para proporcionar detalles del diseño del procedimiento. El LDP se estudia en el
capítulo 11.

TM

PDF Editor

2 1 8 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

gur idad de HogarSeguro. El procesamiento de contraseña rec ibe u n a c o n t r a s e ñ a d e cua t ro

dígi tos a part ir de la func ión de interacción con el usuario. La c o n t r a s e ñ a s e c o m p a r a pri-

m e r o c o n la c o n t r a s e ñ a m a e s t r a a l m a c e n a d a e n el s i s t ema . Si la c o n t r a s e ñ a m a e s t r a co in -

c ide [Mensaje de ID vál ida = ve rdadero] s e p a s a a la func ión d e mensaje y despliegue del

estatus. Si la c o n t r a s e ñ a m a e s t r a n o coincide, s e c o m p a r a n los cua t ro dígitos con u n a ta-

bla de c o n t r a s e ñ a s s e c u n d a r i a s (és tas s e p u e d e n a s igna r a inv i t ados o t r a b a j a d o r e s q u e

n e c e s i t a n en t r a r en la c a s a c u a n d o el p rop ie ta r io n o esté) . Si la c o n t r a s e ñ a co inc ide con

a lguna en t r ada d e n t r o d e la tabla (m e n s a j e de Id válida = ve rdadero] , s e p a s a a la func ión

de mensaje y despliegue del estatus. Si n o existe a lguna co inc idenc ia [m e n s a j e d e Id válida

= falso], s e pa sa a la func ión de m e n s a j e y desp l i egue del e s t a tus .

Si e n e s t a e t a p a s e d e s e a n t e n e r d e t a l l e s a l g o r í t m i c o s a d i c i o n a l e s , s e p o d r í a i n c l u i r

t a m b i é n u n a r e p r e s e n t a c i ó n e n l e n g u a j e d e d i s e ñ o d e p r o g r a m a s c o m o p a r t e d e la

EP. S i n e m b a r g o , m u c h o s p r o f e s i o n a l e s d e l s o f t w a r e c r e e n q u e la v e r s i ó n e n L D P s e

p u e d e p o s p o n e r h a s t a q u e c o m i e n c e e l d i s e ñ o d e c o m p o n e n t e s .

r H E R R A M I E N T A S D E SOFTWARE

•

Análisis estructurado
O b j e t i v o : Las herramientas del análisis
estructurado ayudan a un ingeniero de software

a crear modelos de datos, modelos de flujo y modelos de
comportamiento de una manera que permita la
verificación de la continuidad y la consistencia, así como
su fácil edición y extensión. Los modelos creados utilizando
estas herramientas brindan al ingeniero de software una
visión de la representación del análisis y ayudan o
eliminar errores antes de que éstos se propaguen en el
diseño o, aun peor, en la misma implementación.

M e c á n i c a : Las herramientas de esta categoría utilizan un
"diccionario de datos" como la base de datos central para
la descripción de todos los objetos de datos. Una vez que
las entradas del diccionario están definidas, pueden
crearse diagramas de entidad-relación y se pueden
desarrollar las jerarquías de objetos. Las características de
diagramación del flujo de datos permiten crear fácilmente
este modelo gráfico y también proporciona caracteristicas
pa ra la creación de especificaciones de control (EC) y
especificaciones de proceso (EP). Las herramientas de
análisis también ayudan al ingeniero de software en la
creación de modelos de comportamiento que usan los
diagramas de estado como notación operativa.

H e r r a m i e n t a s r e p r e s e n t a t i v a s 2 0

AxiomSys, desarrollado por STG, Inc. (www.stgcase.com),
proporciona un paquete completo de herramientas
para el análisis de la estructura que incluye extensiones
de Hartley-Pirbhai para el modelado de sistemas en
tiempo real.

MacA&D, WinA&D, desarrollados por Excel Software
(www.excelsoftware.com), proporcionan un conjunto
de herramientas simples y bara tas para el análisis y el
diseño en máquinas Mac y Windows.

MetaCASE Workbench, desarrollado por Metacase
Consulting (www.metacase.com) es una
metaherramienta utilizada para definir un método de
análisis o diseño (incluido en análisis estructurado): sus
conceptos, reglas, notaciones y generadores.

System Architect, desarrollado por Popkin Software
(www.popkin.com), proporciona un amplio rango de
herramientas de análisis y diseño, incluye herramientas
para el modelado de datos y el análisis estructurado.

20 Las herramientas mencionadas aquí representan una muestra de esta categoría. En la mayoría de
los casos los nombres están registrados por sus respectivos desarrolladores.

TM

PDF Editor

http://www.stgcase.com
http://www.excelsoftware.com
http://www.metacase.com
http://www.popkin.com

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 219

• 8 - F M O D E L A D O R A S A D O EN C L A S E S

| ¿De qué
f o r m a s e

s t a n a sí
i l a s (l a s e s

[* « t f s i s como
; del

i d e so lu-
i*

¿Qué se debe hacer para desarrollar los e lementos basados en clases de un modelo
de análisis: clases y objetos, atributos, operaciones, paquetes , modelos CRC y dia-
g ramas de colaboración? Las secciones siguientes presentan una serie de directrices
informales que ayudarán a identificarlos y representarlos.

8.7.1 Identificación de clases de análisis
Al observar el interior de una habitación se verá que existe un conjunto de objetos
físicos que pueden identificarse, clasificarse y definirse con facilidad (en términos de
atributos y operaciones). Pero cuando se "observa" el espacio del problema de una
aplicación de software, quizá las clases (y los objetos) sean más difíciles de com-
prender.

"El problema r e a l m e n t e difícil es descubr i r cuá les son los ob je tos correc tos [c l a se s] e n p r i m e r l uga r . "
Cari Argila

Se puede iniciar la identificación de clases al examinar el enunciado del proble-
ma o (de acuerdo con la terminología aplicada previamente en es te capítulo) al rea-
lizar un "análisis gramatical" sobre las narrativas desarrolladas para el sistema que
se va a construir o de los casos de uso. Las clases se determinan al subrayar cada
sustantivo e introduciéndolas en una simple tabla. Los s inónimos deben anotarse. Si
la clase s e requiere para implementar una solución, en tonces e s parte del espacio de
solución; por ot ro lado, si una clase sólo se necesita para describir una solución e s
parte del espacio del problema. ¿Qué se debe buscar después de que todos los sus-
tantivos han sido aislados? Las clases se manifiestan en una de las siguientes formas:

• Entidades externas (por ejemplo, otros sistemas, dispositivos, personas) que
producen o consumen información que usará un s is tema basado en compu-
tadora.

• Cosas (por ejemplo, reportes, despliegues, letras, señales) que son par te del
dominio de la información para el problema.

• Sucesos o eventos (por ejemplo, una transferencia de propiedad o la consecu-
ción de una serie de movimientos de robot) que ocurren dentro del contexto
de la operación del sistema.

• Papeles (por ejemplo, gerente, ingeniero, personal de ventas) que desempeñan
personas que interactúan con el sistema.

• Unidades organizacionales (por ejemplo, división, grupo, equipo) relevantes
para alguna aplicación.

• Sitios (por ejemplo, el piso de manufactura o el puerto de carga) que esta-
blecen el contexto del problema y la función global del sistema.

TM

PDF Editor

2 2 0 P A S T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

• Estructuras (por ejemplo, sensores, vehículos de cuatro ruedas o computadoras
que definen una clase de objetos o clases de objetos relacionadas.

Esta categorización es una de las muchas que se han propuesto en la bibliografía
Por ejemplo, si los desarrolladores del software para un sistema de observado-1
médica definen un objeto con el nombre de Imagenlnvertida o Inversióndelmagen
podrían estar cometiendo un error sutil. La Imagen obtenida del software podría
por supuesto, ser una clase (es una cosa integrante del dominio de la información
La inversión de la imagen es una operación que se aplica a la clase. Probablemente
la inversión<) se definiría como una operación para la clase Imagen, pero no se esta-
blecería como una clase diferente para connotar "inversión de imagen". Como esta-
blece Cashman [CAS89]: "El objetivo de la orientación hacia los objetos es encapsu-
lar, pero aun así mantener separados, los datos y las operaciones sobre los datos'

Para ilustrar la forma en que las clases de análisis pueden definirse durante las
primeras etapas del modelado, se utiliza de nuevo la función de seguridad ce
HogarSeguro. En la sección 8.6.1 se realizó un "análisis gramatical" sobre la narrati-
va del procesamiento22 para la función de seguridad. Al extraer los sustantivos se
puede proponer una serie de clases potenciales:

C l a s e p o t e n c i a l

propietario

sensor

panel d e control

instalación

sistema (alias sistema de seguridad)

número, tipo

contraseña maestra

número telefónico

evento del sensor

alarma audible

servicio d e monitoreo

C l a s i f i c a c i ó n g e n e r a l

papel o entidad externa

entidad externa

entidad externa

ocurrencia

cosa

no objetos, atributos del sensor

cosa

cosa

ocurrencia

entidad externa

unidad organizacional o entidad externa

La lista podría extenderse hasta que todos los sustantivos en la narrativa del proce-
samiento hayan sido considerados. Obsérvese que cada entrada en la lista ha sido

21 Otra categorización importante —la cual define entidad, frontera y clases de controlador— se exa-
mina en la sección 8.7.4.

22 Es importante notar q u e esta técnica debe usarse también para todos los casos de uso desarrolla-
d o s c o m o parte de la actividad para la recopilación de requisitos (obtención). Esto es, los casos de
uso pueden anal izarse gramaticalmente para extraer clases de análisis potenciales.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 221

l lamada como un objeto potencial. Cada uno de ellos debe considerarse a fondo
antes de tomar una decisión final.

[_Como s e
((t e r m i n a
i d a s e

"Las clases luchan , a l g u n a s c lases t r i u n f a n , o t r a s son e l i m i n a d a s . "
M a o Zedong

t en una
i » aná l i s i s?

Coad y Yourdon [COA91] sugieren seis características de selección que se deben
usar cuando un analista considera cada clase potencial para incluirlas en el modelo
de análisis:

1. Información referida. La clase potencial será útil durante el análisis sólo si la
información acerca de ella debe recordarse para que el sistema pueda funcio-
nar.

2. Servicios requeridos. La clase potencial debe tener un conjunto de operaciones
identificables que puedan cambiar el valor de sus atributos de alguna manera.

3 . Atributos múltiples. Durante el análisis de requisitos el enfoque debe estar en
la información "importante"; una clase con un solo atributo puede, de hecho,
ser útil durante el diseño, pero probablemente es mejor representarla como
un atributo de otra clase durante la actividad de análisis.

4 . Atributos comunes. Es posible definir un conjunto de atributos para la clase
potencial, y es tos atributos pueden aplicarse en todas las instancias de la
clase.

5 . Operaciones comunes. Es posible definir un conjunto de operaciones para la
clase potencial, y estas operaciones pueden aplicarse en todas las instancias
de la clase.

6. Requisitos esenciales. Las entidades externas que aparecen en el espacio del
problema, y que producen o consumen información esencial para la opera-
ción de cualquier solución para el sistema, se definirán casi siempre como
clases en el modelo de requisitos.

Considerarla una clase legítima para incluirla en el modelo de requisitos requiere
que una clase potencial satisfaga todas (o casi todas) estas características. La deci-
sión de incluir clases potenciales en el modelo de análisis es algo subjetiva, y una
evaluación posterior puede ocasionar que se descarte o reinstale una clase. Sin
embargo, el primer paso del modelado basado en clases e s la definición de clases, y
se deben tomar decisiones (incluso subjetivas). Con esto en mente, se aplican las
características de selección a la lista de clases potenciales de HogarSeguro:

Clase potencial

propietario

sensor

panel de control

Número de característica q u e aplica

rechazada; 1 y 2 fallan aunque aplica 6

aceptada: todas aplican

aceptada: todas aplican

TM

PDF Editor

222 P A E T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

instalación

sistema (alias función de seguridad)

número, tipo

contraseña maestra

número telefónico

evento del sensor

alarma audible

servicio d e monitoreo

rechazada:

aceptada: todos aplican

rechazada: falla 3, atributos del sensor

rechazada: falla 3

rechazada: falla 3

aceptada: todas aplican

aceptada: aplican 2, 3, 4 , 5, 6

rechazada: I y 2 fallan aunque aplica 6

ClfAVE
los atributos son el
conjunto de objetos de
datos que definen por
completo la clase
dentro del contexto del
problema.

Se debe señalar que 1) la lista anterior no está completa (se tendrían que agregar
ses adicionales para terminar el modelo); 2) algunas de las clases potenciales i
zadas se convertirán en atributos para las clases aceptadas (por ejemplo, número
tipo s o n a t r i b u t o s d e sensor , y con t raseña maes t ra y número telefónico s e p u e d e n c o n

tir en atributos de s i s tema); 3) la existencia de enunciados diferentes del prob
podría ocasionar decisiones distintas de "aceptación o rechazo" (por ejemplo, si
propietario tuviera una contraseña diferente o si pudiera identificarse por su voz
clase Propietario satisfaría las características 1 y 2 y ésta habría sido aceptada

8.7.2 Especificación de atributos
Los atributos describen una clase que ha sido seleccionada para incluirla en
modelo de análisis. En esencia, los atributos son los que definen la clase, lo cual
rifica qué significa la clase en el contexto del espacio del problema.

En el desarrollo de un conjunto de atributos significativo para una clase de análi-
sis un ingeniero de sof tware puede estudiar de nuevo un caso de uso y selección 3-
aquellas "cosas" que "pertenecen" de manera razonable a la clase. Además, se debe
contestar la siguiente pregunta para cada clase: ¿Cuáles elementos de datos (com
puestos o elementales) definen esta clase en el contexto del problema?

Esto se ilustra considerando la clase s i s t e m a definida para HogarSeguro. Se h£
mencionado que el propietario puede configurar la función de seguridad para refle-
jar la información del sensor, información de la respuesta de alarma, información de
la activación/desactivación, información de la identificación, y así sucesivamente
Estos elementos de datos compuestos se pueden representar de la siguiente manera

información de identificación = ID del sistema + verificación del número telefónico + estatus

del sistema

información de la respuesta de alarma = tiempo de retraso + número telefónico

información de la activación/desactivación = contraseña maestra + número de intentos permi-

sibles + contraseña temporal

Algunos de los datos a la derecha del signo de igual podrían refinarse hasta un nivel
elemental, pero para los propósitos de este capítulo constituyen una lista razonable
de atributos para la clase s i s t e m a (parte sombreada de la figura 8.13).

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 223

f a K U J o f .

2 definen los
pora uno

móísis, el
xbe estar en

nto
é problema

tos comporto-
•squeridos

a y k r m t a -

Los sensores son parte del sistema global de HogarSeguro, y aun así no están en -
listados como elementos de datos o como atributos en la figura 8.13. Ya se ha defi-
nido s e n s o r como una clase, y varios objetos de s e n s o r se asociarán con la clase
s i s tema. En general, s e evita la definición de un e lemento como un atributo si más
de uno de los e lementos se asociará con la clase.

8.7.3 Definición de operaciones
Las operaciones definen el comportamiento de un objeto. Aunque existen muchos
tipos distintos de operaciones, és tas se pueden dividir, por lo general, en tres gran-
des categorías: 1) operaciones que manipulan los datos de alguna manera (por e jem-
plo, al agregar, borrar, reformatear, seleccionar), 2) operaciones que realizan un
cómputo, 3) operaciones que preguntan acerca del es tado de un objeto, y 4) opera-
ciones que monitorean un objeto para la ocurrencia de un evento de control. Estas
funciones se ejecutan al operar sobre atributos o asociaciones (sección 8.7.5). Por lo
tanto, una operación debe tener "conocimiento" de la naturaleza de los atributos y
asociaciones de la clase.

Como una primera iteración en la obtención de un conjunto de operaciones para
una clase de análisis, el analista puede estudiar otra vez la narrativa de un procesa-
miento (o caso de uso) y seleccionar aquellas operaciones que per tenezcan de
manera razonable a la clase. Esto s e logra estudiando de nuevo el análisis gramati-
cal y aislando los verbos. Algunos de es tos verbos serán opciones legítimas y podrán
conectarse con facilidad a una clase específica. Por ejemplo, en la narrativa del pro-
cesamiento presentada párrafos a t rás en es te capítulo, se observa que "al sensor s e
le asigna un número y un tipo" o "se programa una contraseña maestra para habili-
tar y deshabilitar el sistema". Estas frases indican algunos hechos:

Sistema

ID sistema
verificaciónNúmeroTelefónico
Estafussistema
Tiemporetraso
Numeróte lefónico
Contraseñamaestra
Contraseñatemporal
Númerodeintentos

p rogramar ()
desp legar !)
reiniciar()
buscar()
modificar!)
l lamar()

TM

PDF Editor

224 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

• Que una operación de asignar<) es relevante para la clase sensor.

• Que una operación de programar,() está encapsulada por la clase s istema

• Que habilitar() y deshabilitar() son operaciones que se aplican a la clase
s i s tema

En una investigación posterior tal vez la operación programarf) sea dividida en J
serie de suboperaciones más específicas que se requieren para configurar el siste-J
Por ejemplo, programarf) implica la especificación de números telefónicos, la cc"l
guración de características del sistema (como al crear la tabla de sensores, al ir r J
ducir las características de la alarma) y la introducción de contraseña(s). Sin em:a(
go, por ahora programar() se especifica como una sola operación.

Modelos de clase

El e s c e n a r i o : Cubículo de Ed, al
comenzar el modelado del análisis.

Los a c t o r e s : Jamie, Vinod y Ed, miembros del equipo
de ingeniería del software d e HogarSeguro.

La conversac ión:

(Ed ha estado t raba jando en la extracción de clases o
partir d e la plantilla de caso de uso para el " A c c e s o a
l a c á m a r a d e v i g i l a n c i a - d e s p l i e g u e d e v i s tas
d e c á m a r a " {presentado en un recuadro anterior en
este capítulo] y está mostrando a sus colegas las clases
que ha extraído.

Ed: Entonces, cuando el propietario quiere escoger una
cámara, él o ella debe elegirla de un plano d e planta. He
definido una clase llamada P l a n o d e P l a n t a . Aquí está
el diagrama. ' ' f '

(Todos miran la figura 8.14.) 1 1 ,

J a m i e : Entonces P l a n o d e P l a n t a es una clase que se
une a las paredes que están compuestas por segmentos
de pared, puertas y ventanas, y también las cámaras ;
eso es lo que significan esas líneas etiquetadas, ¿no?

Ed: Sí , esas líneas se llaman "asociaciones". Las clases
están asociadas entre sí de acuerdo con las asociaciones
a j e les he mostrado, [las asociaciones sé estudian en la
sección 8.7.5.] í f ¡ ,

V i n o d : Entonces el plano de planta real está hecho de
paredes y contiene cámaras y sensores colocados dentro

de estas paredes. ¿Cómo sabe el plano de planta dónc-e
colocar esos objetos? |

Ed: N o lo sabe, pero las otras clases sí. Miren los
atributos de aba jo , digamos, S e g m e n t o s d e P a r e d :
cuales se usan para construir una pared. El segmento de
pared tiene unas coordenadas de inicio y final, y la
operación de dibujo(] hace el resto.

J a m i e ; Y lo mismo pasa pa ra las puertas y ventanas.
Parece como si las cámaras tuvieran unos pocos de
atributos extra. | |

Ed: Sí, los necesito p a r a poder d a r la información del
movimiento y el acercamiento.

V i n o d : Tengo una pregunta. ¿Por qué la cámara tiene
una ID, pero las otras clases no?

Ed: Vamos a necesitar identificar c a d a cámara pa ra
propósitos del despliegue.

J a m i e : Tiene sentido pa ra mí, pero tengo algunas otras
preguntas, (jamie hace preguntas que resultan en
modificaciones menores.)

V i n o d : ¿Tienes tarjetas CRC pa ra cada una d e estas
clases? Si es así, debemos seguirlas, sólo hay que estar
seguros de que no se ha omitido nada .

Ed: N o estoy seguro de cómo hacerlas.

V i n o d : No es difícil, y los resultados son muy buenos.
Les mostraré. ,

TM

PDF Editor

C A P I T U L O 8 MODELADO DEL ANÁLISIS 225

a de
para

^Planta
el

en el

P l a n o d e P l a n t a

t ipo
n o m b r e
D imens ionesex te rnas

d e t e r m i n a r T i p o ()
p o s i c i o n a r P l a n o d e P l a n t a))
e sca l a r) ¡
c a m b i a r c o l o r))

Se ubica dentro de ».

C á m a r a

r
u b i c a c i ó n
c a m p o d e V i s i ó n
Angu lodeTomo
C o n f i g u r a c i ó n
A c e r c a m i e n t o

Es p a r t e d e

Par «d
t ipo
D i m e n s i o n e s p a r e d

de te rminarT
ca lcularDim

P ° 0
ens iones ()

S e g m e n t o
de Pared

t ipo
C o o r d e n a d a s i n i c i o
C o o r d e n a d a s f i n a l
S i g u i e n t e S e g men tó
P a r e d

d e t e r m m a r T ¡ p o ()
d i b u j a r

Ventana

t ipo
C o o r d e n a d a s i n i c i o
C o o r d e n a d a s f i n a l
S igu íen teVentana

de t e rmina rT ipo{)
d i b u j a r

V e n t a n a

t ipo
C o o r d e n a d a s i n i c i o
C o o r d e n a d a s f i n a l
S igu ien tePuer ta

d e t e r m i n a r T i p o f)
d i b u j a r

8.7.4 Modelado de Clase-Responsabilidad-Colaborador (CRC)
El modelado de Clase-Responsabilidad-Colaborador (CRC) [WIR90] proporciona un
medio simple para identificar y organizar las clases relevantes para los requisitos del
sistema o producto. Ambler [AMB95] describe el modelado CRC de la siguiente
forma:

Un modelo CRC en realidad e s una colección de tar jetas índice es tándar que representan
clases. Las tarjetas se dividen en tres secciones. A lo largo del borde superior de la tarjeta
s e escribe el nombre de la clase. En el cuerpo de la tarjeta se listan las responsabilidades
de la clase a la izquierda y los colaboradores a la derecha.

En realidad, el modelo CRC puede utilizar tar jetas índice reales o virtuales. El objeti-
vo es desarrollar una representación organizada de las clases. Las responsabilidades

TM

PDF Editor

2 2 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

son los atributos y las operaciones relevantes para la clase. Dicho de manera
simple, una responsabilidad es "cualquier cosa que la clase sabe o hace" [AMB9F1
Los colaboradores son aquellas clases que se requieren para que una clase reciba a
información necesaria para completar una responsabilidad. En general, una c o l a b c l
ración implica ya sea una solicitud de información o la solicitud de alguna acción

"Uno de los propósitos de los tarjetas CRC es follor ol inicio, fallar constantemente y (ollar sin que sea caro. Es mucho
más barato tirar un bulto de tarjetas que reorganizar una gran cantidad de código fuente."

C Horstmunr

En w w w .

theumlcoie.com/

encontrarse una

casos.

En la figura 8.15 se ilustra una tarjeta índice CRC simple para la clase Planode-
planta. La lista de responsabil idades que se muestra en la tarjeta CRC es preliminar
y está sujeta a adiciones o modificaciones. Las clases Pared y Cámara se anotar
enseguida de la responsabilidad que requerirá su colaboración.

Clases . Las directrices básicas para identificar clases y objetos ya se han prese-
tado en es te mismo capítulo. La taxonomía de los tipos de clases que s e presentó er
la sección 8.7.1 se puede extender considerando las siguientes categorías:

• Clases de entidad, también l lamadas clases de modelo o negocios, se extraen
de manera directa del enunciado del problema (por ejemplo, Planodeplanta
y Sensor) . De manera típica, e s tas clases representan clases que se almace-
narán en una base de datos y que persisten durante la aplicación (a menos
que se borren de manera específica).

• Clases de frontera. Se utilizan para crear la interfaz (por ejemplo, pantallas
interactivas o reportes impresos) que el usuario ve y con la cual interactúa
cuando se utiliza el software. Las clases de entidad contienen información

Una carta
índice del
modelo CRC.

i
|

i
— - Clase: P l anodeP lan t a
- Descripción
—

— Responsab i l idad C o l a b o r a d o r
Define el nombre / t ipo del plano d e planta

Mane ja la posición del plano de planta

Escala el p lano d e planta pa ra su despliegue

Escala el p lano d e planta pa ra su despliegue

Incorpora paredes , puertas y ventanas Pared
Muestra la posición d e las c á m a r a s d e video Cámara

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 227

importante para los usuarios, pero no se despliegan a sí mismas. Las clases
de frontera están diseñadas con la responsabilidad de mane ja r la forma en
que los objetos de entidad se presentan a los usuarios. Por ejemplo, una clase
de frontera llamada VentanadeCámara tendría la responsabilidad de
desplegar la salida de una cámara de vigilancia para el sistema HogarSeguro.

Las clases de controlador manejan una "unidad de trabajo" [UML03] desde el
inicio hasta el final. Esto es, las clases de controlador se pueden diseñar para
manejar 1) la creación o actualización de los objetos de entidad; 2) la inme-
diatez de objetos de frontera conforme éstos obtienen información de objetos
de entidad; 3) la comunicación compleja entre conjuntos de objetos; y 4) la
validación de datos comunicados entre los objetos o entre el usuario y la apli-
cación. En general , las clases de controlador no se consideran sino hasta que
ha comenzado el diseño.

"Los objetos pueden clasificar*
n y los que se pier

de manera científica en tres grandes categorías: los
Am "

que no funcionan, los que se
UoawlHflUlKf

pueden clasificar*
n y los que se pier Bol!.

Russe l l Bake r

| ¿ « h s
' ¿rectr ices

narse

i k asignación

da-

i s I B d a s e s ?

Responsabi l idades . En las secciones 8.7.2 y 8.7.3 se han presen tado las directri-
ces básicas para identificar responsabilidades (atributos y operaciones). Wirfs-Brock
y sus colegas [WIR90] sugieren cinco directrices para determinar las responsabilida-
des de las clases:

1. La inte l igencia de l s i s t e m a s e d e b e distribuir en tre las c l a s e s para
abordar de mejor manera las n e c e s i d a d e s del problema Cada aplica-
ción abarca un cierto grado de inteligencia; esto es, lo que el sistema sabe y
puede hacer. Esta inteligencia puede distribuirse entre las clases de varias
maneras diferentes. Las clases "poco inteligentes" (aquellas que tienen menos
responsabilidades) pueden modelarse para actuar al servicio de unas cuantas
clases "muy inteligentes" (las que tienen muchas responsabilidades). Aunque
este enfoque hace que el flujo de control en un sistema sea directo, tiene unas
cuantas desventajas: a) concentra toda la inteligencia en unas pocas clases, lo
que dificulta los cambios, y b) t iende a requerir más clases, y por ende, un me-
jor esfuerzo de desarrollo.

Si la inteligencia del sistema se distribuye con mayor amplitud entre las
clases de una aplicación, cada objeto sabe y hace sólo u n a s cuantas cosas (las
cuales, por lo general, son bien enfocadas), y la cohesión del sistema mejora.
Lo anterior aumenta la facilidad de mantenimiento del sof tware y reduce el
impacto de los efectos colaterales debidos al cambio.

Para determinar si la inteligencia del sistema está bien distribuida las res-
ponsabilidades ano tadas en cada tarjeta índice del modelo CRC deben eva-
luarse y así comprobar si alguna clase tiene una lista de responsabilidades

TM

PDF Editor

228 P A R T E D O S PRÁCTICA DE LA INGENIERIA D A SOFTWARE

demasiado larga. Esto indica una concentración de inteligencia.23 Además, las
responsabilidades para cada clase deben mostrar el mismo grado de abstract im

2. Cada responsabil idad debe es tab lecerse tan general c o m o s e a posi-
ble. Esta directriz implica que las responsabilidades generales (tanto atribu-
tos como operaciones) deben estar en la parte alta de la jerarquía de la clase
(debido a que son genéricas son aplicables en todas las subclases).

3. La información y el comportamiento relacionado c o n ella deben
dentro de la m i s m a clase . Con esto se logra el principio OO llamado en
sulación. Los datos y los procesos que manipulan los datos deben empaque-
tarse como una unidad cohesiva.

4. La información relativa a una c o s a d e b e local izarse c o n una sola
c lase , n o distribuirse entre muchas de ellas. Una sola clase debe tomar
la responsabilidad de almacenar y manipular un tipo específico de informa-
ción. En general, esta responsabilidad no se puede compartir entre varias cla-
ses. Si la información se distribuye, el software se vuelve más difícil de
mantener y más desafiante de probar.

5. Las responsabi l idades pueden compartirse entre c la se s relacionadas
cuando e s t o e s apropiado. Existen muchos casos en los que una variedad
de objetos relacionados deben mostrar el mismo comportamiento al mismo
tiempo. Como un ejemplo, considérese un videojuego que debe desplegar las
siguientes clases: Jugador, Cuerpojugador, Brazosjugador, Piernasjuga-
dor, Cabezajugador. Cada una de estas clases tiene sus propios atributos
(p o r e j e m p l o , posición, orientación, color, velocidad) y t o d o s d e b e n a c t u a l i z a r s e y

desplegarse cuando el usuario manipula un jqystick. Por lo tanto, las respon-
sabilidades actualizad) y desplegar,() deben compartirlas cada uno de los obje-
tos mencionados. El Jugador sabe cuando algo ha cambiado y se requiere
actualizar(). Colabora con los otros objetos para lograr una nueva posición u
orientación, pero cada objeto controla su propio despliegue.

Colaboraciones. Las clases cumplen sus responsabilidades en una de dos formas:
1) una clase puede utilizar sus propias operaciones para manipular sus propios atri-
butos, y con ello cumplir con una responsabilidad particular, o 2) una clase puede
colaborar con otras clases.

Wirfs-Brock y sus colegas [W1R90] definen las colaboraciones de la siguiente
manera:

Las c o l a b o r a c i o n e s r e p r e s e n t a n las sol ic i tudes q u e u n cl iente h a c e a u n servidor con el fin

d e cumpl i r u n a responsab i l idad . Una co laborac ión e s la mate r ia l i zac ión del c o n t r a t o en -

tre el c l iente y el servidor . . . Se d ice q u e u n o b j e t o co labora con o t ro ob je to si, pa ra c u m -

plir con u n a responsabi l idad , neces i t a env ia r a l g u n o s m e n s a j e s al o t ro obje to . Una

23 En tales casos puede ser necesario dividir las clases en múltiples clases o subsis temas completos
para distribuir la inteligencia de manera m á s eficaz.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 229

colaboración sencilla fluye en una dirección, lo que representa una solicitud del cliente al

servidor. Desde el pun to de vista del cliente, cada una de sus co laborac iones es tá asociada

con una responsabil idad particular que ha implementado el servidor.

Las colaboraciones identifican las relaciones entre clases. Cuando un conjunto de
clases colabora para lograr algún requisito, éste puede organizarse en un subsiste-
ma (un aspecto de diseño).

Las colaboraciones se identifican al determinar si una clase puede cumplir cada
responsabilidad por sí misma. Si no es así, entonces se requiere de la interacción con
otra clase y, por ende, una colaboración.

Como un ejemplo, considérese la función de seguridad de HogarSeguro. Como
parte del procedimiento de activación, el objeto PaneldeControl debe determinar
si algún sensor está abierto. Se define una responsabilidad llamada determinar-esta-
tus-sensor(). Si los sensores están abiertos, PaneldeControl debe establecer un
atributo de es tatus como "no listo". La información de los sensores se obtiene de
cada objeto sensor. Por lo tanto, la responsabilidad determinar-estatus-control() tra-
baja en colaboración con sensor.

Para ayudarse en la identificación de los colaboradores, el analista puede exami-
nar tres relaciones genéricas diferentes entre las clases [WIR90]: 1) la relación es-
parte-de, 2) la relación tiene-conocimiento-de, y 3) la relación depende de. Cada una
de las tres relaciones genéricas se considera con brevedad en los siguientes párra-
fos.

Todas las clases que son parte de una clase agregada se conectan a ésta a través
de una relación del tipo es-parte-de. Considérense las clases definidas para el video-
juego ya mencionado, la clase Cuerpojugador es-parte-de Jugador, al igual que
Brazosjugador, Piernasjugador y Cabezajugador En UML estas relaciones se
representan como la agregación mostrada en la figura 8.16.

Cuando una clase debe obtener información de otra clase se establece la relación
tiene-conocimiento-de. La responsabilidad determinar-estatus-sensor() mencionada
antes ejemplifica una relación del tipo tiene-conocimiento-de.

La relación depende-de implica que dos clases tienen una dependencia que no se
logra mediante las relaciones tiene-conocimiento-de o es-parte-de. Por ejemplo,
cabezajugador siempre debe estar conectada a Cuerpojugador (a menos que el
videojuego sea violento en particular). Aun así, cada objeto puede existir sin el cono-
cimiento directo del otro. Un atributo del objeto Cabezajugador llamado pos ic ión
central está determinado desde la posición central de Cuerpojugador. Esta infor-
mación se obtiene a través de un tercer objeto, Jugador, quien la adquiere de
Cuerpojugador Por ende, Cabezajugador depende-de Cuerpojugador.

En todos los casos, el nombre de la clase del colaborador se registra en la tarjeta
índice del modelo CRC enseguida de la responsabilidad que ha producido la colabo-
ración. Por lo tanto, la tarjeta índice contiene una lista de responsabilidades y las
colaboraciones correspondientes que permiten que las responsabilidades puedan
cumplirse (figura 8.15).

TM

PDF Editor

230 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Una clase
agregada
compuesta.

Cabezajugadoi CuerpoJugador BrazosJugador PiernasJugador

Cuando se ha desarrollado un modelo CRC completo, los representantes del d i c -
tes y la ingeniería del sof tware pueden revisar el modelo utilizando el siguiente ení>
que [AMB95]:

1. Todos los participantes en la revisión (del modelo CRC) reciben un subcon-
junto de las tar jetas índice del modelo CRC. Las tar jetas que colaboran se de-
ben separar (es decir, ningún revisor debe tener dos que colaboren).

2. Todos los escenarios de caso de uso (y los d iagramas de caso de uso corres-
pondientes) deben organizarse en categorías.

3 . El líder de la revisión lee el caso de uso en forma deliberada. Cuando el líder
llega a una clase nombrada pasa una señal a la persona que t iene la tarjeta
índice de clase correspondiente. Por ejemplo, un caso de uso para HogarSe-
guro cont iene la siguiente narrativa:

El propietario observa el panel de control de HogarSeguro para determinar si el sistema
está listo para la entrada. Si no lo está , el propietario podrá cerrar físicamente venta-
n a s y puertas para que s e presente el indicador de listo. [Un indicador de no-listo im-
plica que un sensor está abierto; es decir, que esa puerta o ventana está abierta.]

Cuando el líder de la revisión llega a "panel de control", en la narrativa del casc
de uso, la señal se pasa a la persona que posee la carta índice del Panelde-
control . La frase "implica que un sensor está abierto" requiere que la tarjeta
índice contenga una responsabilidad que validará esta implicación (lo cual se
logra mediante la responsabilidad determinar-estatus-sensor()). Enseguida de
la responsabilidad escrita en la tarjeta está el colaborador s ensor . Entonces, la
señal se pasa a la clase sensor .

4 . Cuando se pasa la señal, la persona que posee la tarjeta de clase debe descri-
bir las responsabilidades anotadas en ella. El grupo determina si una (o más)
de las responsabilidades satisface el requisito del caso de uso.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 231

5. Si las responsabilidades y las colaboraciones anotadas en las tarjetas índice
no satisfacen el caso de uso, se hacen las modificaciones necesarias a la tar-
jeta. Esto puede incluir la definición de clases nuevas (y corresponden a las
tarjetas de índice de CRC) o la especificación de responsabilidades o colabora-
ciones nuevas revisadas sobre las tarjetas existentes.

Esta forma de operación continúa hasta que se termina con el caso de uso. Cuando
se han revisado todos los casos de uso se continúa con el modelado del análisis.

lelos CRC

! e s c e n a r i o : Cubículo de Ed,
I análisis.

s : Vinod y Ed, miembros del equipo de
del software de HogarSeguro

i decidido enseñarle a Ed cómo desarrollar
s CRC mediante un ejemplo.)

: Mientras tú has estado t rabajando en lo
¡ y Jamie ha estado involucrado con la
i , yo he estado t rabajando en la función de

i del hogar. | |

: ¿Cuál es el estatus d e eso? Mercadotecnia cambia su
: vista a cada momento. ,,t

Aquí está el primer corte del caso de uso paro
i a f u n c i ó n . l o hemos refinado un poco, pero

i darte una idea genera!.

Función d e administración del hogar de

: Queremos utilizar la interfaz d e
i del hogar en una PC o con una conexión

t para controlar dispositivos electrónicos que
i consoladores de interfoz inalámbricos. El sistema

> permitirme encender y a p a g a r luces específicas,
• aplicaciones conectadas a una interfaz

D, configurar los sistemas d e calefacción y aire
i con las temperaturas que yo defina; pa ra

i quiero seleccionar los dispositivos de un plano de
i de la casa. Cada dispositivo debe estar

híicado sobre el plano d e la planta. Como una
i opcional, quiero controlar todos los

sitivos audiovisuales: audio, televisión, DVD,
l y j&adoras digitales, etcétera

Con una solo selección, quiero ser capaz de configurar
la casa completa para varias situaciones. Una es en
casa; la otra, fuera de casa; una tercera, salida por la
noche, y una cuarta, viaje largo. Todas estas situaciones
tendrán configuraciones que se aplicarán a todos los
dispositivos. En los estados salida por la noche y viaje
largo el sistema debe encender y a p a g a r luces a
intervalos aleatorios (para aparentar que alguien está en
casa) y controlar el sistema de calefacción y aire
acondicionado. Debo ser capaz de invalidar estas
configuraciones a través de Internet con la protección d e
una contraseña apropiada .

Ed: ¿La gente de hardware tiene concebidas todas las
interfases inalámbricas?

V i n o d (s o n r i e n d o) : Están t rabajando en ellas,
digamos que no es un gran problema. De cualquier
manera, extraje una serie de clases para la
administración del hogar, y podemos utilizar alguna de
ellas como ejemplo. Usemos la clase
InterfazAdministraciónHogar.
Ed: De acuerdo.. entonces, las responsabilidades
son... los atributos y operaciones pa ra la clase, y las
colaboraciones son las clases hacia las que apuntan las
responsabilidades.

V i n o d : Creo que no entendiste la CRC.

Ed: Tal vez un poco, pero continúa.

V i n o d : Entonces, aquí está mi definición de clase pa ra
InterfazAdministraciónHogar.

Atributos:
Panelopciones: proporciona información en botones que
permiten al usuario seleccionar una funcionalidad.

Panelsituación: proporciona información en botones que
permiten al usuario seleccionar la situación.

TM

PDF Editor

2 3 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Pionodeplanta: el mismo que el objeto de vigilancia, pero
éste despliega los dispositivos. (> : .

IconosdeDispositivo: información sobre iconos que
representan luces, aplicaciones, cámaras , etcétera.

PanelesdeDispositivo: simulación d e uria aplicación o
panel de control de un dispositivo; permite el control.

Operaciones:
DespíegarControllj, selecaonarControl(),
desplegarSihjcK¡ón(), seleccionarSituación(),
enlrarPlanodePlanlaü, seleca'onorlconoDispositivofj,
desplegarPanelDispositivofl entrar PanelDispositivolj,...

Clase: InterhzAdministraciónHogar

Responsabilidad Colaborador
despiegarControl P a n e l o p e r a c i o n e s (clase)

seleécionarControl P a n e l o p e r a c i o n e s (clase)

desplegarSituación P a n e l S i t u a c i ó n (clase)

seleccionarSituación

entrarPlanodePlanta

P a n e l S i t u a c i ó n (clase)

P l a n o d e P l a n t a (clase)

Ed: Entonces cuando se invoca la operación
entrarplanodePlantall, ésta colabora con el objeto
P l a n o d e P l a n t a como el que desarrollamos pa ra la
vigilancia. Espera, aquí tengo su descripción. (Ven la
figura 8.14)

V i n o d : Exactamente. Y s¡ quisiéramos revisar todo el
modelo de clase, podríamos comenzar con esta carta
índice, después ir a la carta índíce del colaborador, y ce
ahí, a una de los colaboradores de los colaboradores, y
así sucesivamente,

Ed: Buena forma de encontrar omisiones o errores.

Vinod: Sí.

K

cávE
Una asociación def ine
una relación entre
clases. La multiplicidad
define cuántas de una
clase es tán
relacionadas con
cuántos de otro clase.

^ ¿ Q u é e s un
• e s t e r e o t i p o ?

8.7.5 Asociaciones y dependencias
En muchos casos, dos clases de análisis se relacionan entre sí de alguna manera, pare-
cida a la forma en que se relacionan dos objetos de datos (sección 8.3.3). En UML estas
relaciones se llaman asociaciones. Véase de nuevo la figura 8.14; la clase PlanodePlanta
se define al identificar un conjunto de asociaciones entre PlanodePlanta y otras dos cia-
ses, Cámara y Pared. La clase Pared se asocia con tres clases que permiten que se
construya una pared, SegmentodePared, Ventana y Puerta.

En algunos casos, una asociación se puede definir en forma m á s extensa al indi-
car multiplicidad (el término cardinalidad ya se usó an tes en es te capítulo). En refe-
rencia a la figura 8.14, un objeto de Pared se construye con uno o más objetos de
S e g m e n t o s d e P a r e d . Además, el ob je to Pared puede con tene r 0 o m á s objetos
de Ventana y 0 o más objetos de Puerta. Estas restricciones de multiplicidad se ilus-
tran en la figura 8.17, donde "uno o más" se representa mediante 1 ..* y "0 o más" po-
medio 0..*. En UML el asterisco indica una frontera superior ilimitada en el rango.-

En muchos casos existe una relación cliente-servidor entre dos clases de análisis.
En tales casos, una clase de cliente depende de alguna manera de la clase de servi-
dor y se establece una relación independencia. Las dependencias se definen median-
te un estereotipo. Un estereotipo es un "mecanismo de extensibilidad" [ARL02] den

24 Otras relaciones de multiplicidad —una a una, una a muchas, muchas a muchas, una a un rango es-
pecífico con límites inferior y superior, y otras— se pueden indicar como parte de una asociación

TM

PDF Editor

C A P I T U L O 8 MODELADO DEL ANÁLISIS 233

tro del UML que permite a un ingeniero de software definir un elemento de modela-
do especial cuya semántica define el cliente. En UML los estereotipos se representan
dentro de comillas angulares (por ejemplo, « e s t e r e o t i p o ») .

Como una ilustración de una dependencia simple dentro del sistema de vigilan-
cia de HogarSeguro, un objeto de Cámara (en este caso, la clase de servidor) pro-
porciona una imagen de video o un objeto de VentanadeDespliegue (en este caso,
la del cliente). La relación entre estos dos objetos no es una asociación simple, aun así
existe una asociación de dependencia. En un caso de uso escrito para la vigilancia
(que no se muestra), el modelador aprende que se debe proporcionar una contraseña
especial para ver ubicaciones específicas de cámara. Una forma de lograr esto es que
Cámara pida una contraseña y después dé permiso a VentanadeDespliegue para
producir la imagen de video. Esto se puede representar como se muestra en la figura
8.18, donde « a c c e s o » implica que el uso de la salida de la cámara está controlado
mediante una contraseña especial.

8.7.6 Paquetes de análisis
Una parte importante del modelado del análisis es la categorización. Esto es, los
diferentes elementos del modelo de análisis (por ejemplo, casos de uso, clases de

TM

PDF Editor

234 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Paquetes.
MedioAmbi

+Árbol
i ente j

+Paisa¡e
+Camino
+Pared
+Puente
+Edificio
+EfectoVisual
+Escera

. Nombre del paquete

R e f l l a s D e U u e f l o U .

Personaje» |

+ReglasDeMovim¡enlo
+Restricc¡onesEnAcción

• Jugador
•Protagonista
•Antagonista
+PapeldeSoporte

\ CLAVE
Un paquete se utilizo
paro ensamblar uno
colección de clases
relacionadas.

análisis) se clasifican de una manera que los empaquete como una agrupación
mada un paquete de análisis—, a la cual se le asigna un nombre representativo.

Para ilustrar la utilización de paquetes de análisis considérese el videojuego q j d
se presentó párrafos atrás. AI desarrollar el modelo de análisis para el videojuego >
obtiene un gran número de clases. Algunas se enfocan en el ambiente del juego;;
ejemplo, las escenas visuales que el usuario ve mientras se desarrolla el jueg: •
Clases como Árbol, Paisaje , Camino, Pared, Puente , Edificio, EfectoVis'
podrían estar dentro de esta categoría. Otras se enfocan en los personajes dentro ct. 1
juego al describir sus características físicas, acciones y restricciones. Se podrían de:"
nir clases como Jugador (la cual se describió con anterioridad), Protagonista
Antagonis ta y Pape l e sdeSopor te . Además, otras describen las reglas del jueg :
cómo navega el jugador a través del ambiente. Aquí son candidatas clases con-/:
R e g l a s D e M o v i m i e n t o y Restr icc ionesEnAcción. Pueden existir muchas o t r i í
categorías. Estas clases pueden representarse como los paquetes de análisis que SÍ
muestran en la figura 8.19.

El signo de m á s que precede al nombre de la clase de análisis en cada p a q u e a
indica que las clases tienen visibilidad pública y que, por lo tanto, son accesibles
desde otros paquetes. Aunque no se muestran en esta figura, hay otros símbolos que
pueden preceder a un elemento dentro de un paquete. Un signo de menos indica que un
elemento está oculto de todos los otros paquetes , y un símbolo # indica que un ele-
mento es accesible sólo a las clases contenidas dentro de un paquete dado.

8 . 8 C R E A C I Ó N P E • M O D E L O P E C O M P O R T A M I E N T O

Los diagramas de clase, las tarjetas índice CRC y otros modelos orientados a las cla-
ses t ratados en la sección 8.7 representan e lementos estáticos del modelo de análi-

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANALISIS 235

i se
ilo

i U soft-

i « t e m o ?

kVE
i • J » s e

E definir
l o g r a r l o ,

(• c o s e
i d f i n d e

t e puntos de
i *

sis. Ahora es tiempo de hacer una transición al comportamiento dinámico del siste-
ma o producto. Para lograrlo el comportamiento del sistema debe presentarse c o m o
una función de los elementos específicos y el tiempo.

El modelo de comportamiento indica la forma en que el software responderá a los even-
tos o estímulos externos. En la creación del modelo el analista debe realizar los siguien-
tes pasos:

1. Evaluar todos los casos de uso para entender por completo la secuencia de
interacción dentro del sistema.

2. Identificar los eventos que conducen la secuencia de interacción y entender la
forma en que es tos eventos se relacionan con las clases específicas.

3 . Crear una secuencia para cada caso de uso.

4 . Construir un diagrama de es tado para el sistema.

5 . Revisar el modelo de comportamiento para verificar su exactitud y consisten-
cia.

Cada uno de es tos pasos se expone en las secciones siguientes.

8.8.1 Identificación de eventos con el caso de uso
Como se mencionó en la sección 8.5, el caso de uso representa una secuencia de
actividades que implica a los actores y al sistema. En general, s iempre que el siste-
ma y un actor intercambian información ocurre un evento. Si se recuerda la expli-
cación anterior acerca del modelado del comportamiento en la sección 8.6.3, será
importante puntualizar que el evento no e s la información que se ha intercambia-
do, s ino el hecho de que la información haya sido intercambiada.

Los puntos del intercambio de información se obtienen examinando un caso de
uso. A manera de ilustración, se reconsiderará el caso de uso para una pequeña
parte de la función de seguridad de HogarSeguro.

El propietario utiliza el teclado para introducir una contraseña de cuatro dígitos. La con-
traseña se compara con la contraseña válida almacenada en el sistema. Si la contraseña
es incorrecta, el panel de control emitirá un sonido por una sola vez y se reiniciará para
esperar otra entrada. Si la contraseña es correcta, el panel de control esperará la acción
posterior.

Las par tes subrayadas del escenario del caso de uso indican eventos. Se debe iden-
tificar a un autor para cada evento; la información intercambiada se debe anotar, y
cualquier condición o restricción debe registrarse.

Como ejemplo de un evento típico, considérese la frase subrayada del caso de uso
"el propietario utiliza el teclado para introducir u n a contraseña de cuatro dígitos". En
el contexto del modelo de análisis, el objeto, propietario,2 5 t ransmite un evento al

25 En este ejemplo se asume que cada usuario (propietario) que interactúa con HogarSeguro tiene una
contraseña de identificación y que, por lo tanto, es un objeto legítimo.

TM

PDF Editor

2 3 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

< 5 *

< & V E
El s is temo t iene
es tados que
representon un
comportamiento
especifico observable
desde el exterior; una
cióse t iene estados que
representan su
comportamiento
cuando el s is tema
realiza sus funciones.

objeto PaneldeControl . El evento podría llamarse introducción de contraseña
información transferida son los cuatro dígitos que constituyen la contraseña.
ésta no es una parte esencial del modelo de comportamiento. Es importante :
que a lgunos eventos t ienen un impacto explícito sobre el flujo de control del i
uso, mientras que otros no tienen impacto directo sobre el flujo de control. Por <
pío, el evento introducción de contraseña no cambia de manera explícita el fluj: i
control del caso de uso, pero los resultados del evento comparación de cont
(derivado de la interacción "la contraseña se compara con la contraseña vá
a lmacenada en el sistema") tendrá un impacto explícito sobre la información
flujo de control del software de HogarSeguro.

Una vez que se han identificado todos los eventos, éstos se ubican con los i
tos involucrados. Los objetos pueden ser responsables de generar eventos (por <
pío, Propietario genera el evento de introducción de contraseña) o de recor
eventos que han ocurrido en cualquier sitio (por ejemplo, PaneldeControl re
ce el resultado binario del evento comparación de contraseña).

8.8.2 Representaciones de estado
En el contexto del modelado del comportamiento se pueden considerar dos dife
tes caracterizaciones de los estados: 1) el es tado de cada clase conforme el siste
realiza su función, y 2) el es tado del sistema como se observa desde el exterior (
forme el sistema realiza su función.26

El es tado de una clase implica características tanto pasivas como activas [CHA^
Un estado pasivo es simplemente el estatus actual de todos los atributos de un obje
Por ejemplo, el es tado pasivo de la clase Jugador (en la aplicación de videoji
estudiada con anterioridad) incluiría los atributos de posición y orientación del Jugador]
así como otras características relevantes para el juego (por ejemplo, un atributo i
indique la existencia de deseos mágicos). El estado activo de un objeto indica el esta'
actual del objeto cuando éste está sujeto a una transformación o a un procesamie
to continuos. La clase Jugador podría tener los siguientes es tados activos: en,
miento, en descanso, herido, en curación, atrapado, perdido, etcétera. Debe ocurrir i
evento (algunas veces l lamado un disparador) para obligar a un objeto a hacer
transición de un estado activo a otro.

En los párrafos siguientes se explican dos diferentes representaciones del cc
portamiento. La primera indica la forma en que una clase individual cambia sus es
do con base en eventos externos, y la segunda muestra el comportamiento del so:":-
ware como una función del tiempo.

Diagramas de e s t a d o para c l a s e s d e anális is . Un componente de un model]
del comportamiento es un diagrama de es tado en UML que representa los estad
activos para cada clase y los eventos (disparadores) que ocasionan cambios entre ¡

26 Los diagramas de es tado presentados en la sección 8.6.3 muestran el es tado del sistema. La expo
sición en esta sección se enfocará al es tado de cada clase dentro del modelo de análisis.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 2 3 7

de estado
• clase

trol.

Temporizador s TiempoCerrado

M E
de un

* estado
el
' sin

las clases
.un

f e secuencia

-itool
c forma en

rcsesse
* estado o

es tos es tados activos. En la figura 8.20 se ilustra un diagrama de es tado para la clase
PaneldeControl en la función de seguridad de HogarSeguro.

Cada flecha en la figura 8.20 representa u n a transición desde un es tado activo de
una clase hasta otro. Las et iquetas mostradas para cada flecha representan el even-
to que dispara la transición. Aunque el modelo de es tado activo proporciona un dis-
cernimiento activo de la "historia de vida" de una clase, es posible especificar infor-
mación adicional para proporcionar mayor profundidad en la comprensión del com-
portamiento de una clase. Además de especificar el evento que ocasiona la transi-
ción, el analista puede especificar una guardia y una acción [CHA93]. Una guardia es
una condición booleana que debe satisfacerse para que ocurra la transición. Por
ejemplo, la guardia para la transición desde el es tado de "lectura" al es tado de "com-
paración" de la figura 8.20 se puede determinar al examinar el caso de uso:

si (introducción de cont raseña = 4 dígitos), e n t o n c e s comparar con contraseña a lmacenada

En general, la guardia para una transición por lo regular depende del valor de uno o
m á s atributos de un objeto. En ot ras palabras, la guardia depende del es tado pasivo
del objeto.

Una acción sucede de manera concurrente con la transición del es tado o c o m o
consecuencia de éste, y por lo general implica una o más operaciones (responsabili-
dades) del objeto. Por ejemplo, una acción conectada con el evento contraseña intro-
ducida (figura 8.20) e s una operación llamada ValidarContraseña() que da acceso a

TM

PDF Editor

2 3 8 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ r o p i e t a i i o j

Diagiama de secuencia (parcial) para la función de seguridad de HogarSeguro.

i Panel de control] Sistema Sensores

I

Sistema
lis listo < 2 > -

Contraseña introducida

Lectura

númerDelntenlos >
Intentosmóximos

<2>
Temporizado; >
Tiempocerrado

Solicitud de búsqueda ú
Resultado |

Contraseña = correcta I
' j j Solicitud de activación

I

Selección

Activación exitosa 1 I Activación exitosa

un objeto de c o n t r a s e ñ a y realiza una comparación dígito por dígito para validar la
contraseña introducida.

Diagramas d e s e c u e n c i a . El segundo tipo de representación de comportamien-
to, l lamado un diagrama de secuencia en UML, indica cómo los eventos causan tran-
siciones de objeto a objeto. Una vez que se han identificado los eventos al examinar
un caso de uso, el modelador crea un diagrama de secuencia: una representación de
cómo los eventos causan un flujo de un evento a otro como una función del tiempo.
En esencia, el diagrama de secuencia es una versión abreviada del caso de uso.
Representa clases clave y eventos que causan que el comportamiento fluya de clase
a clase.

En la figura 8.21 se ilustra un diagrama de secuencia parcial de la función de
seguridad de HogarSeguro. Cada flecha representa un evento (derivado de un caso
de uso) e indica cómo el evento canaliza el comportamiento entre los objetos de
HogarSeguro. El t iempo se mide de manera vertical (hacia abajo), y los rectángulos
verticales delgados representan el t iempo invertido en procesar u n a actividad. Los
estados se pueden mostrar a lo largo de una línea de tiempo vertical.

El primer evento, sistema listo, se deriva del ambiente externo y canaliza el com-
portamiento a un objeto de propietario. El propietario introduce una contraseña. Se
pasa un evento de solicitud de búsqueda al s i s t ema , el cual busca la contraseña en
una base de datos simple y regresa un resultado (encontrado o no encontrado) al
PaneldeControl (ahora en el es tado de comparación). Una contraseña válida resul-

TM

PDF Editor

C A P I T U L O 8 MODELADO DEL ANÁLISIS 2 3 9

ta en un evento contraseña=correcta para el S is tema, el cual activa los sensores con
un evento de solicitud de activación. Por último, el control se pasa de regreso al pro-
pietario con el evento activación exitosa.

Una vez que se ha desarrollado un diagrama de secuencia completo, todos los
eventos que ocasionan transiciones entre objetos del sistema se pueden cotejar con
un conjunto de eventos de entrada y eventos de salida (de un objeto). Esta informa-
ción es útil en la creación de un diseño eficaz para el sistema que será construido.

HERRAMIENTAS DE SOFTWARE

Modelado del análisis generalizado en UML
O b j e t i v o : Las herramientas pa ra el modelado
del análisis proporcionan la capacidad de
modelos basados en escenarios, modelos

en clases y modelos de comportamiento mediante
¡UML.

3 Las herramientas en esta categoría soportan
-ango de diagramas en UML requeridos para

u n modelo de análisis (estas herramientas
soportan el modelado del diseño). Además de la
x diagramas, las herramientas en esta categoría

i lo verificación de la consistencia y la corrección
o s diagramas en UML; 2) proporcionan vínculos

á s e ñ o y la generación de código; 3) construyen
de datos que ayudan a la administración y

de grandes modelos en UML requeridos para
complejos.

ÜS r e p r e s e n t a t i v a s 2 7

herramientas soportan un rango completo
en UML requeridos para el modelado del

ArgoilML, una herramienta de fuente abierta
(argouml.tigris.org).

Control Center, desarrollado por TogetherSoft
(www.tagethersoft.com).

Enterprise Archítect, desarrollado por Sparx Systems
(www.sparxsystems.com.au).

Object Technology Workbench (OTW), desarrollado por
OTW Software (www.otwsoftware.com).

Power Designer, desarrollado por Sybase
(www.sybase.com).

Rational Rose, desarrollado por Rational Corporation
(www.rational.com).

System Archítect, desarrollado por Popkin Software
(www.popkin.com).

UML Studio, desarrollado por Pragsoft Corporation
(www.pragsoft.com).

Visio, desarrollado por Microsoft (www.microsoft.com).

Visual UML, desarrollado por Visual Object Modelers
(www.visualuml.com).

El objetivo del modelado del análisis es crear una variedad de representaciones que
muestran los requisitos del software para la información, la función y el comporta-
miento. Esto se logra aplicando dos diferentes filosofías de modelado (pero poten-
cialmente complementarias): el análisis estructurado y el análisis orientado a obje-
tos. El análisis estructurado considera al software como un transformador de infor-

27 Las herramientas mencionadas aquí son una muestra de esta categoría. En la mayoría de los casos
los nombres están registrados por sus respectivos desarrolladores

TM

PDF Editor

http://www.tagethersoft.com
http://www.sparxsystems.com.au
http://www.otwsoftware.com
http://www.sybase.com
http://www.rational.com
http://www.popkin.com
http://www.pragsoft.com
http://www.microsoft.com
http://www.visualuml.com

240 P A S T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

mación. Éste ayuda al ingeniero de software a identificar los objetos de datos,
relaciones y la manera en la cual estos objetos de datos se transforman mientras
yen a través de las funciones de procesamiento del software. El análisis orient
objetos examina un dominio de problema definido como un conjunto de casos
uso en un esfuerzo por extraer clases que definen el problema. Cada clase tiene
conjunto de atributos y operaciones. Las clases están relacionadas entre sí en i
variedad de formas diferentes y se moldean mediante la aplicación de diagramas i
UML. El modelo de análisis lo componen cuatro elementos de modelado: me
basados en escenarios, modelos de flujo, modelos basados en clases y modelos
comportamiento.

Los modelos basados en escenarios muestran los requisitos del software desee
punto de vista del usuario. El caso de uso —una descripción narrativa o basada
una plantilla de una interacción entre un actor y el software— es el elemento
mario del modelado. El caso de uso, derivado durante la obtención de requr
define los casos clave para una función o interacción específica. El grado de fr
lidad y detalle del caso de uso varía, pero el resultado final proporciona la en
necesaria a las otras actividades de modelado del análisis. Los escenarios tam
pueden describirse por medio de un diagrama de actividad: una representación
fica del tipo de un diagrama de flujo que muestra el flujo del procesamiento de -

de un escenario específico. Los diagramas de carril ilustran la forma en que el
de procesamiento incumbe a varios actores o clases.

Los modelos de flujo se enfocan en el flujo de objetos de datos conforme las
ciones de procesamiento los transforman. Los modelos de flujo, que se derivan
análisis estructurado, utilizan el diagrama de flujo de datos; ésta es una notación
modelado que muestra la manera en que una entrada se transforma en una
conforme los objetos de datos se mueven a través del sistema. Cada función del
ware que transforma datos se describe mediante una especificación del proc*
narrativa. Además del flujo de datos, este elemento de modelado también mu
el flujo de control (una representación que ilustra la forma en que los eventos
tan el comportamiento del sistema).

El modelado basado en clases utiliza información derivada de elementos
modelado orientado al flujo y basado en escenarios para extraer clases candida"
atributos y operaciones de las narrativas basadas en texto. Se establecen los c
rios para la definición de una clase. La tarjeta índice clase-responsabilidad-col
rador puede usarse en la definición de relaciones entre las clases. Además, se p
aplicar una variedad de notaciones de modelado en UML para definir jerarqi
relaciones, asociaciones, agregaciones y dependencias entre las clases. Los pa
tes de análisis se utilizan para categorizar y agrupar clases de manera que sean rrc

manejables para los sistemas grandes.
Los primeros tres elementos del modelado del análisis proporcionan una visi:

estática del software. Los modelos de comportamiento muestran un desemp
dinámico. El modelo de comportamiento utiliza la entrada de elementos basados

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 2 4 1

escenarios, orientados al flujo y basados en clases para representar los estados de
las clases de análisis y del sistema como un todo. Esto se logra identificando los
estados, definiendo los eventos que ocasionan que una clase (o sistema) tenga una
transición de un estado a otro, e identificando las acciones que suceden cuando se
realiza la transición. En el modelado del comportamiento se utiliza la notación en
UML de los diagramas de estado y los diagramas de secuencia.

[ABB83] Abbott, R., "Program Design by Informal English Descriptions", en CACM, vol. 26, núm.
11, noviembre de 1983, pp. 892-894.

[AMB95] Ambler, S„ "Using Use-Cases", en Software Development, julio de 1995, pp. 53-61.
[ARA89] Arango, G. y R. Prieto-Diaz, "Domain Analysis: Concepts and Research Directions", en

Domairt Analysis: Acquisition of Reusable Information for Software Construction, (Arango, G. y
R. Prieto-Diaz, eds.), IEEE Computer Society Press, 1989.

[ARL02] Arlow,). e I. Neustadt, UML and the Unified Process, Addison-Wesley, 2002.
[BER93] Berard, E. V., Essays on Objetc-Oriented Software Engineering, Addison-Wesley, 1993.
[BOO86] Booch, G„ "Object-Oriented Development", en IEE Trans. Software Engineering, vol. SE-

12, núm. 2, febrero de 1986, pp. 21 lff.
[BUD96] Budd, T., An Introduction to Objetc-Oriented Programming, 2a. ed., Addison-Wesley,

1996.
[CAS89] Cashman, M., "Object-Oriented Domain Analysis", en ACM Software Engineering Notes,

vol. 14, núm. 6, octubre de 1989, p. 67.
[CHA93] de Champeaux, D., D. Lea y P. Faure, Object-Oriented System Development, Addison-

Wesley, 1993.
[CHE77] Chen, P., The Entity-Relationship Approach to Logical Database Design, QED Information

Systems, 1977.
[COA91] Coad, P. y E. Yourdon, Object-Oriented Analysis, 2a. ed., Prentice-Hall, 1991.
[COCO 1] Cockburn, A., Writing Effective Use Cases, Addison-Wesley, 2001.
[DAV93] Davis, A„ Software Requirements: Objects, Functions and States, Prentice-Hall, 1993.
[DEM79] DeMarco, T., Structured Analysis and System Speciftcation, Prentice-Hall, 1979
[FIR93] Firesmith, D. G., Object-Oriented Requirements Analysis and Logical Design, Wiley, 1993.
[LET03] Lethbridge, T., comunicación personal sobre el análisis del dominio, mayo de 2003.
[OMG03] Object Management Group, OMG Unified Modeling Language Specification, versión

1.5, marzo de 2003, disponible en h t tp : / /www.ra t iona l . com/uml / resources /documenta -
t ion/ .

[SCH02] Schmuller, J., Teach Yoursel/UML in 24 Hours, 2a. ed., SAMS Publishing 2002.
[SCH98J Schneider, G. y J. Winters, Applying Use Cases, Addison-Wesley, 1998.
[STR88] Stroustrup, B., "What is Object-Oriented Programming?", en IEEE Software, vol. 5, núm.

3, mayo de 1988, pp. 10-20.
[TAY90] Taylor, D. A., Object-Oriented Technology: A Manager s Guide, Addison-Wesley, 1990.
[THA00] Thalheim, B„ Entity Relationship Modeling, Springer-Verlag, 2000.
[TIL931 Tillmann, G., A Practical Guide to Logical Data Modeling, McGraw-Hill, 1993.
[UML03] The UML Café, "Customers Don't Print Themselves", disponible en h t t p : / / w w w

theumlcafe .com/a0079.htm, mayo de 2003.
(WIR90) Wirfs-Brock, R., B. Wilkerson y L. Weiner, Designing Object-Oriented Software, Prentice-

Hall, 1990.

8 . 1 . ¿Es posible comenzar a codificar inmediatamente después de haber creado el modelo de
análisis? Explicar la respuesta y después justificar los puntos en contra.

TM

PDF Editor

http://www.rational.com/uml/resources/documenta-
http://www

2 4 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

8 . 2 . Un análisis práct ico es aquel en el cual el mode lo "debe enfocarse en los requisitos que
son visibles den t ro de los dominios del p rob lema o del negocio". ¿Cuáles tipos de requisitos nc
son visibles en es tos dominios? Dar a lgunos ejemplos.

8.3. ¿Cuál es el propósi to del análisis del dominio? ¿Cómo se relaciona con el concepto de los
pa t rones de requisitos?

8.4. En u n a s cuan t a s líneas, trátese de describir las diferencias primordiales ent re el análisis
es t ructurado y el análisis or ientado a objetos.

8.5. ¿Es posible desarrollar un mode lo de análisis eficaz sin desarrollar los cuatro e lementos
que se m u e s t r a n en la figura 8.3? Explicar la respuesta .

8 . 6 . Supóngase que h a n pedido construir u n o de los s iguientes s is temas.

a) Un registro de cursos basado en red para una universidad.
b) Un s is tema procesador de ó rdenes basado en Internet para una t ienda de compu tadoras
c) Un s is tema simple de facturación para un negocio pequeño .
d) El sof tware que reemplace un Rolodex y que se encuen t re dentro de un te léfono inalám-

brico.
e) Un libro de cocina au tomát ico que es té construido dentro de un horno eléctrico o de

microondas .

Selecciónese el s is tema que se considere in teresante y descr íbanse sus obje tos de datos, rela-
c iones y atributos.

8.7. Dibujar un mode lo al nivel de contexto (DFD de nivel 0) para uno de los cinco s i s temas que
s e listan en el problema 8.6. Escribir una narrat iva del p rocesamiento para el s is tema al nivel de
contexto.

8 . 8 . Utilizar el DFD al nivel de contexto desarrol lado en el problema 8.7 para dibujar los dia-
g r a m a s de (lujo de los niveles 1 y 2. Para comenzar , utilícese un "análisis gramatical" en la
narrativa del p rocesamien to al nivel de contexto. Recuérdese especificar todo el fluido de infor-
mación mient ras rotula todas las flechas que se encuent ran ent re las burbujas . Úsense nombres
significativos para cada t ransformación.

8.9. Desarról lense especif icaciones de control (EC) y especif icaciones de proceso (EP) para e:
s is tema que seleccionó en el problema 8.6. Trátese de que el mode lo sea lo m á s comple to posi-
ble.

8 . 1 0 . El depa r t amen to de obras públicas de una ciudad grande ha decidido desarrollar un sis-
t ema de ras t reo y reparación de b a c h e s b a s a d o en la Web (SRRB). Se incluye la siguiente des-
cripción:

Los c iudadanos pueden entrar al sitio Web y reportar la ubicación y severidad de los
baches . Cuando és tos se reportan ent ran a un "sistema de reparación del depa r t amen to de
obras públicas", donde se les asigna un número de identificación, junto con la dirección de la
calle, el t amaño (en una escala de 0 a 10), la ubicación (en la orilla de la calle, en medio,
etcétera), el distrito (determinado por la dirección de la calle), y la urgencia de la repara-
ción (determinada por el t a m a ñ o del bache). Los da tos de la orden de t rabajo es tán aso-
ciados con cada bache e incluyen la ubicación y el t a m a ñ o del bache, n ú m e r o de identifi-
cación de la reparación, cantidad de personal necesar io , horas apl icadas a la reparación,
es tado del bache (trabajo en progreso, reparado, r epa rado en forma temporal , n o repara-
do), cantidad de material de rel leno utilizado, y cos to de la reparación (cálculo de las horas
aplicadas, n ú m e r o de personas , material y equipo utilizados). Por último, se crea un archi-
vo de d a ñ o s para registrar información sobre averías repor tadas debido a los baches , el
cual incluye nombre del c iudadano, dirección, n ú m e r o telefónico, tipo de daño, precio del
d a ñ o en dólares. El SRRB es un s is tema b a s a d o en la Web; todas las pet ic iones se hacen
en forma interactiva.

Con base en una notación de análisis es t ructurada, desarrol le un modelo de análisis pa ra el
SRRB.

TM

PDF Editor

C A P Í T U L O 8 MODELADO DEL ANÁLISIS 243

8.11. Describir los términos orientados a objetos encapsulaciórt y herencia.

8.12. Escribir un caso de uso basado en una plantilla para el sistema de gestión para el hogar
HogarSeguro, descrito de manera informal en un recuadro ubicado enseguida de la sección
8.7.4.

8.13. Dibujar un diagrama de caso de uso en UML para el sistema SRRB presentado en el pro-
blema 8. 10. Tendrán que hacerse varios supuestos sobre la manera en que el usuario interac-
túa con es te sistema.

8.14. Desarrollar un modelo de clase para el sistema SRRB presentado en el problema 8.10.

8.15. Desarrollar un conjunto completo de tar jetas índice del modelo CRC para el sistema SRRB
presentado en el problema 8.10.

8 . 1 6 . Encabezar una revisión de las tarjetas índice de CRC con sus colegas. ¿Cuántas clases
adicionales, responsabilidades y colaboradores fueron agregados como consecuencia de la revi-
sión?

8.17. Describir la diferencia entre una asociación y una dependencia para una clase de análi-
sis.

8.18. ¿Qué e s un paquete de análisis y cómo debe utilizarse?

8.19. ¿De qué manera difiere un diagrama de estado para clases de análisis de los diagramas
de estado presentados para el sistema completo?

• *
Se han publicado docenas de libros sobre análisis estructurado. En la mayoría se trata el tema
de una manera adecuada, pero sólo en unos cuantos se presenta un trabajo en verdad exce-
lente. DeMarco y Plauger (Structured Analysis and System Specification, Pearson, 1985) es un clá-
sico que sigue siendo una buena introducción a la notación básica. Los libros de Kendal y
Kendal (Systems Analysis and Design, 5a. ed., Prentice-Hall, 2002) y Hoffer eí al. (Modern Systems
Analysis and Design, Addison-Wesley, 3a. ed., 2001) son referencias valiosas. El libro de Yourdon
(Modern Structured Analysis, Yourdon-Press, 1989) sobre el tema se conserva entre las publica-
ciones más completas a la fecha.

Alien (Dato Modeling for Everyone, Wrox Press, 2002), Simpson y Witt (Data Modeling
Essentials, 2a. ed., Coriolis Group, 2000), Reingruber y Gregory (Data Modeling Handbook, Wiley,
1995) presentan guías detalladas para crear modelos de datos relacionados con la calidad
industrial. Un interesante libro de Hay (Dato Modeling Patterns, Dorset House, 1995) presenta
patrones de modelos de da tos típicos que se encuentran en muchos negocios diferentes. Un tra-
tamiento detallado del modelado del comportamiento puede encontrarse en Kowal (Behavior
Models: Speájying User's Expectations, Prentice-Hall, 1992).

Los casos de uso son la base del análisis orientado a objetos. Los libros de Bittner y Spence
(Use Case Modeling, Addison-Wesley, 2002), Cockburn [COCOl], Armour y Miller {Advanced Use-
Case Modeling: Software Systems, Addison-Wesley, 2000) y Rosemberg y Scot (Use-Case Driven
Object Modeling with UML: A Practical Approach, Addison-Wesley, 1999) proporcionan una guía
valiosa en la creación y uso de este importante mecanismo de representación y logro de reque-
rimientos.

Arlow y Neustadt han escrito apreciables análisis del UML [ARL02], Schmuller [SCH02],
Fowlery Scott (UML Distilled, 2a. ed., Addison-Wesley, 1999), Booch y sus colegas (The UML User
Cuide, Addison-Wesley, 1998) y Rumbaugh y sus colegas (The Unified Modeling Language
Reference Manual, Addison-Wesley, 1998).

Los métodos de análisis y diseño que apoyan el proceso unificado los explica Larman
(Appfying UML and Pattems: An Introducüon to Object-Oriented Analysis and Design and the Unified
process, 2a. ed., Prentice-Hall, 2001), Dennis y sus colegas (Siystem Analysis and Design: An
Object-Oriented Approach with UML, Wiley, 2001), y Rosenberg y Scott (Use-Case Driven Object
Modeling with UML, Addison-Wesley, 1999), Balcer y Mellor (Executable UML: A Foundation for

TM

PDF Editor

244 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Model Driven Architecture, Addison-Wesley, 2002) exponen la semántica general del UML, los
modelos que se pueden crear, y una forma de considerar el UML como un lenguaje ejecutable
Starr (Executable UML: How to Build Class Models, Prentice-Hall, 2001) ofrece una guia útil y
sugerencias detalladas para crear clases de diseño y análisis efectivos.

En Internet se dispone de una gran variedad de fuentes de información sobre el modelado
del análisis. En el sitio SEPA se puede encontrar una lista actualizada de referencias de la red
que son notables para el modelado del análisis:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

INGENIERÍA
DEL D I S E Ñ O 9

I C E P T O S
r e

....252
tm . . .253

i *259

....259

W ...262

....256
...254

it
...256

254
•m., .258

>...257

La ingeniería del diseño abarca un conjunto de principios, conceptos y prác-
ticas que conducen al desarrollo de un sistema o producto de alta calidad.
Los principios del diseño (explicados en el capítulo 5) establecen una filo-

sofía primordial que guían al diseñador en el t rabajo que desempeña . Es necesa-
rio comprender los conceptos del diseño antes de que se apliquen las mecánicas
de la práctica del diseño, y la práctica del d iseño mismo conduce a la creación de
varias representaciones del software, el cual sirve c o m o guía para la actividad de
construcción que sigue.

La ingeniería del diseño no es una frase común dentro del contexto de la inge-
niería del software. Sin embargo, debería serlo. El d iseño es una actividad pri-
mordial de la ingeniería. A principios de la década de 1990, Mitch Kapor, el crea-
dor de Lotus 1-2-3, presentó un "manifiesto sobre el diseño de software" en Dr.
Dobbs Journal. Ahí afirma:

¿Qué e s el diseño? Es el lugar en donde una persona se puede parar con un pie en
dos mundos —el mundo de la tecnología y el de la gente y los propósitos humanos—

e intenta unirlos...
El crítico de arquitectura romana Vitruvius aportó la noción de que las construc-

ciones bien diseñadas eran aquellas que mostraban firmeza, comodidad y placer. Lo
mismo debe decirse del buen software. Firmeza el programa no debe tener ningún
error que inhiba su función. Comodidad-, un programa debe cumplir con los propósi-
to s para los que fue creado. Placer• la experiencia de usar el programa debe ser agra
dable. Aquí se presentan los principios de una teoría de diseño para software.

¿ Q u é e s ? El diseño es lo que casi
cualquier ingeniero quiere hacer. Es
el sitio donde manda la creatividad,
donde los requisitos del cliente, las
necesidades de negocio y las consi-

deraciones técnicas se unen en la formulación
de un producto o sistema. El diseño crea una
-«presentación o modelo del software, pero a
3¡ferencia del modelo de análisis (que se enfoca
en la descripción de los datos, las funciones y el
omportamiento requeridos), el modelo de dise-
o proporciona detalles acerca de las estructu-

-as de datos, las arquitecturas, las ¡nterfaces y
os componentes del software que son necesarios
rara implementar el sistema.

¿ Q u i é n l o h a c e ? Los ingenieros de software
encabezan cada una de las tareas de diseño.

¿ P o r q u é e s i m p o r t a n t e ? El diseño permite al
ingeniero de software modelar el sistema o pro-
ducto que se va a construir. Este modelo puede
evaluarse en relación con su calidad y mejorar-
se antes de generar código, de realizar pruebas
y de que los usuarios finales se vean involucra-
dos a gran escala. El diseño es el sitio en el que
se establece la calidad del software.

¿ C u á l e s s o n los p a s o s ? El diseño presenta el
software de diferentes formas. Primero, debe
representarse la arquitectura del sistema o pro-
ducto. Después, se modelan las ¡nterfaces que
conecta" e software con los usuarios finales,

245

TM

PDF Editor

246 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

con otros sistemas y dispositivos y con los pro-
pios componentes que lo constituyen. Por último,
se diseñan los componentes del software que se
utilizarán en la construcción del el sistema. Cada
una de estas visiones representa una acción de
diseño diferente, pero todas deben ajustarse a
un conjunto de conceptos básicos del diseño que
determinan todo el trabajo de diseño.

¿Cuá l e s e l p r o d u c t o o b r e n i d o ? Un modelo
que abarca representaciones arquitectónicas, de

interfaz, en e! nivel de componentes y de des-
pliegue. >/ -

¿Cómo p u e d o e s t a r s e g u r o d e q u e lo he
h e c h o correc tamente? El modelo de dise ; :
lo evalúa e! equipo de software en un esfuer:
encaminado a determinar si éste contiene e r —r
res, inconsistencias u omisiones; si existen m e -
res alternativas; y si el modelo puede implem -
tarse dentro de las restricciones, el itinerario \ i
costo que Han sido establecidos. ¿C

La meta de la ingeniería del diseño es producir un modelo de representador, :M
muestre firmeza, comodidad y placer. Para lograrlo, un diseñador debe practica- •
diversificación y después la convergencia. Belady [BEL81] establece que "la dive J
ficación es la adquisición de un repertorio de alternativas, la materia prima del ¿ . s i
ño: componentes , soluciones de componentes y conocimiento, todo contenidc : •
catálogos, libros de texto y en la mente". Una vez que se ha integrado es te conj _ - j a
de información, el diseñador debe elegir y tomar e lementos del repertorio que
plan los requisitos definidos por la ingeniería de requisitos (capítulo 7) y el m o c e B
de análisis (capítulo 8). Cuando es to ocurre, se consideran y se rechazan las a l t ea
nativas, y el ingeniero de diseño converge en "una configuración particular de c c o B
ponentes y, por lo tanto, en la creación del producto final" [BEL81],

La diversificación y la convergencia demandan intuición y juicio. Estas cualida; J
están basadas en la experiencia de construir entidades similares, un conjunto
principios que guían cómo evoluciona el modelo, un conjunto de criterios que p e J
miten juzgar la calidad, y un proceso de iteración que conduce a una rep resen ta r •
del diseño final.

La ingeniería del diseño para el sof tware de computadora está en un cambio CCOH
tinuo, en la medida en que evolucionan mejores métodos, mejores análisis y - J
comprensión m á s amplia. Aun en la actualidad, la mayoría de las metodologías
diseño de sof tware carecen de profundidad, flexibilidad y naturaleza cuantitatr. a.,
que por lo general se asocian con disciplinas de diseño de ingeniería m á s c lás ica I
Sin embargo, existen métodos para el diseño de software, se dispone de cr i te- :«
para la calidad del diseño, y es posible aplicar notación de diseño. En este capit
se explorarán los conceptos y principios fundamenta les aplicables a todo el d iseñJ
de software, los e lementos del modelo del diseño y el impacto de los pat rones so t J
el proceso de diseño. En los capítulos 10, 11 y 12 se examina una variedad de mé: : -
dos de diseño de sof tware mientras se aplican al diseño arquitectónico, de i n t e r a J
y en el nivel de componentes .

TM

PDF Editor

C A P Í T U L O 9 INGENIERÍA DEL DISEÑO 2 4 7

t inentos b a s a d o s
en e s c e n a r i o s

Diagramas de flujo de dalos
Diagramas de flujo de control
Narrativas de procesamiento

ramas
iramas
ira mas Diseño d e interfaz

Modelo de análisis J
E lementos d e

c o m p o r t a m i e n t o
Diagramas de estado
Diagramas de
secuencia

Diseño a rqu i tec tón ico

Diseño d e d a t o s / d a s e

9 . 1 D I S E Ñ O DENTRO DEL CONTEXTO DE LA INGENIERÍA DEL SOFTWARE

*
ide

tsiempre
r rarwfe-

ipara
tos

¡ del diseño,
té que se ha

i é fundo-
i x b e

laaquitec-
:9toncesse

r otras
(¿seño.

El diseño del sof tware se encuentra en el núcleo técnico de la respectiva ingeniería
y se aplica de manera independiente al modelo de sof tware que se utilice. Una vez
que se analizan y especifican los requisitos, el diseño del software es la última
acción de la ingeniería correspondiente dentro de la actividad del modelado, la cual
establece una plataforma para la construcción (generación de código y pruebas).

"El m i l a g r o m á s c o m ú n d e la in geniería d e s o f t w a r e es la t ransic ión del anál is is a l c s e ñ o y de l d i s e ñ o a l c ó d i g o . "
Richard Due

Cada uno de los e lementos del modelo de análisis (capítulo 8) proporciona la
información necesaria para crear los cuatro modelos de diseño que se requieren
para una especificación completa de diseño. En la figura 9.1 s e ilustra el flujo de
información durante el d iseño del software. Los requisitos del software que mues-
tran los e lementos basados en escenarios, basados en clases, or ientados al flujo y de
comportamiento alimentan la tarea de diseño. Mediante la notación de diseño y de los
métodos de diseño que se exponen en capítulos posteriores, la tarea de diseño pro-
duce un diseño de datos-clase, un diseño arquitectónico, un diseño de interfaz y un
diseño de componentes .

El diseño de datos-clase t ransforma los modelos de análisis y clases (capítulo 8)
en las clases de diseño y las estructuras de datos que se requieren para implemen-

Trcmsformaclón del modelo de análisis en un modelo de diseño.

Diseño en el nivel
d e c o m p o n e n t e s

Elementos b a s a d o s
e n c l a ses

>ogramas de clase
; :quetes de análisis
vtodelos CRC
D agramas de colaboración

Modelo de diseño

TM

PDF Editor

248 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

tar el software. Las clases y relaciones que definen las tarjetas índice CRC y el con-
tenido detallado de datos que muestran los atributos de clase y otras notaciones pro-
porcionan la base para la actividad de diseño de datos. Una parte del diseño de cla-
ses puede ocurrir en conjunto con el diseño de la arquitectura del software. El dise-
ño de clase m á s detallado se realiza a medida que se diseña cada componen te del
software.

El diseño arquitectónico define la relación entre los e lementos estructurales más
importantes del software, los estilos arquitectónicos y pat rones de diseño que pue-
den usarse para satisfacer los requisitos definidos por el sistema, y las restricciones
que afectan la manera en que se pueden implementar los pat rones arquitectónicos
[SHA96]. La representación del diseño arquitectónico —el marco de t rabajo de un
sistema basado en computadora— puede derivarse de la especificación del sistema,
del modelo de análisis y de la interacción de los subsis temas definidos dentro del
modelo de análisis.

El diseño de la interfaz describe la forma en que el sof tware se comunica con los
s is temas que interactúan con él y con los h u m a n o s que los utilizan. Una interfaz
implica un flujo de información (por ejemplo, datos o control) y un tipo de compor-
tamiento especifico. Por lo tanto, los escenarios de uso y los modelos de comporta-
miento proporcionan mucha de la información que se requiere en el diseño de la
interfaz.

El diseño al nivel de componentes t ransforma los e lementos estructurales de la
arquitectura del sof tware en una descripción procedimental de los componentes de
éste. La información obtenida de los modelos basados en clases, los modelos de flujo
y los modelos de comportamiento sirven como base para el diseño de componentes

"Exis ten d o s f o r m a s d e const ru i r un d i s eño d e s o f t w a r e . Una f o r m a e s hace r lo t a n s imple q u e o b v i a m e n t e n o h a y
deficiencias , y lo o t ra es hace r lo t a n compl icado q u e no ex i s t en def ic ienc ias obv ias . El p r i m e r m é t o d o es m u c h o m á s
difícil ."

C A . R . Honre

Durante el diseño se toman decisiones que al final incidirán en el éxito de la cons-
trucción del software, así como en, con el mismo grado de importancia, la facilidad
con que el sof tware puede mantenerse . Pero, ¿por qué es tan importante el d i seño '

La importancia del diseño del sof tware puede describirse con una sola palabra:
calidad. El diseño es la etapa en la que se fomentará la calidad en la ingeniería de!
software. El diseño proporciona las representaciones del sof tware susceptibles de
evaluar respecto de la calidad. El diseño es la única forma en que, de manera exac-
ta, un requisito del cliente se puede convertir en un sistema o producto de software
terminado. El diseño del sof tware sirve como fundamento para todas las actividades
subsecuentes de la ingeniería del sof tware y del soporte de éste. Sin diseño se corre
el riesgo de construir un sistema inestable, el cual fallará cuando se realicen cam-
bios pequeños; que será difícil de probar; cuya calidad no podrá evaluarse sino hasta

TM

PDF Editor

C A P Í T U L O 9 INGENIERÍA DEL DISEÑO 249

etapas tardías del proceso del software, cuando queda poco tiempo y ya se ha gas-
tado mucho dinero en él.

9 . 2 P R O C E S O Y C A L I D A D DEL D I S E Ñ O

El diseño del sof tware es un proceso iterativo mediante el cual los requisitos s e tra-
ducen en un "plano" para construir el software. Al inicio, el plano representa una
visión holística del software. Es decir, el diseño se representa en un grado alto de
abstracción, el cual puede rastrearse de manera directa has ta conseguir el objetivo
específico del sistema y requisitos más detallados de comportamiento, funcionales y
de datos. A medida en que ocurren las iteraciones del diseño, un refinamiento sub-
siguiente conduce a representaciones del diseño a grados mucho más ba jos de abs-
tracción. Estos grados aún se pueden rastrear hasta los requisitos, pero la conexión
es más sutil.

A través del proceso del diseño, la calidad en evolución de és te se evalúa con una
serie de revisiones técnicas formales o con revisiones de diseño explicadas en el
capítulo 26. McGlaughlin [MCG91] sugiere tres características que sirven como guía
en la evaluación de un buen diseño:

• El diseño debe implementar todos los requisitos explícitos contenidos en el
modelo de análisis, y debe ajustarse a todos los requisitos implícitos que
desea el cliente.

• El diseño debe ser una guía legible y comprensible para quienes generan
código y quienes realizan pruebas y, en consecuencia, dan soporte al
software.

• El d iseño debe proporcionar una imagen completa del software —dando
dirección a los dominios de datos, funcionales y de comportamiento— desde
una perspectiva de implementación.

Cada una de es tas características es en realidad una meta del proceso de diseño.
Pero, ¿cómo se alcanza cada una de ellas?

"Escribir una brillante p ieza de cód igo q u e f u n c i o n e es u n a cosa ; d i s e ñ a r a l g o q u e pu e d a s o p o r t a r a l a r g o p l a z o u n
negocio es otra muy diferente."

C Fergusoi t

Directr ices de calidad. Con el fin de evaluar la calidad de una representación de
diseño se deben establecer los criterios técnicos para un buen diseño. En secciones
posteriores de es te capítulo se expondrán los conceptos de diseño que también sir-
ven c o m o criterios de calidad del software. Por ahora s e presentan las siguientes
directrices:

1. Un diseño debe presentar una estructura arquitectónica que a) se haya creado
mediante pat rones de diseño reconocibles, b) la integren componentes que

TM

PDF Editor

250 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

*® ¿ C u á l e s son
• l a s ca rac t e -

r ís t icas d e un
buen d i s e ñ o ?

2 .

3.

4 .

exhiban buenas características de diseño (éstas se explican más adelante er
este capítulo), y c) pueda implementarse de manera evolutiva, ' para que de
esta forma facilite la implementación y las pruebas.

Un diseño debe ser modular, es to es, el sof tware deberá dividirse de man
lógica en e lementos o subsistemas.

Un diseño debe contener distintas representaciones de los datos, la arquite:
tura, las interfaces y los componentes .

Un diseño debe conducir a estructuras de datos que sean apropiadas para
clases que habrán de implementarse y que procedan de pat rones de datos
conocibles.

5 . Un diseño debe conducir a componentes que presenten características f>
nales independientes.

Un diseño debe conducir a interfases que reduzcan la complejidad de las cc-]
nexiones entre los componentes y el ambiente externo.

Un diseño debe obtenerse por medio de un método repetible que se base er
información obtenida durante el análisis de requisitos del software.

Un diseño debe representarse por medio de una notación que comunique ce
manera eficaz su significado.

6.

7.

8 .

Estas directrices de diseño no se logran por casualidad. El proceso de diseño del
ware fomenta el buen diseño aplicando principios fundamenta les de diseño,
metodología sistemática y una revisión cuidadosa.

INFORMACIÓN

Evaluación de la calidad del diseño: la revisión técnica formal

hacer un resumen de la técnica en este punto. Una RTF es
una reunión que dirigen miembros del equipo d e softwa-e
Por lo general participan dos, tres o cuatro personas,
depende del ámbito de la información de diseño que se
revisará. Cada persona desempeña un papel: el líder de
revisión planea la reunión, establece la agenda y después
realiza la reunión; el relator toma notas para que nada se
olvide; el productor es la persona cuyo producto de traba-:
(por ejemplo, el diseño de un componente del software) se
revisa. Antes de la reunión, cada persona en el equipo de
revisión recibe una copia del producto de trabajo del

El diseño es importante porque permite que un
equipo de software evalúe la calidad2 del software antes
de ¡mplementarlo; es decir, en un momento en el que los
errores, omisiones o inconsistencias son fáciles de corregir
y no resultan caras. Pero ¿cómo se evalúa la calidad
durante el diseño? El software no se puede comprobar
porque no existe un software ejecutable al cual aplicarle
pruebas. ¿Qué debe hacerse?

Durante el diseño, la calidad se evalúa al realizar una
serie de revisiones técnicas formales (RTF). Las RTF se
tratan con detalle en el capítulo 26, 3 pero resulta valioso

V

1 Para s is temas más pequeños a lgunas veces el diseño puede desarrollarse en forma lineal.
2 Los factores de calidad tratados en el capítulo 15 pueden ayudar al equipo de revisión mientras

evalúa la calidad.
3 En es te punto se podría considerar la revisión de la sección 26.4. Las RTF son una parte crítica

proceso de diseño y un mecanismo importante para lograr la calidad del diseño.

TM

PDF Editor

C A P Í T U L O 9 INGENIERÍA DEL DISEÑO 251

• se le pide que lo lea en busca de errores,
o ambigüedades. Cuando la reunión comienza,
' es detectar todos los problemas del producto

: para que éstos puedan corregirse antes de que
c -nplementación. La RTF tiene una duración típica

de entre 9 0 minutos y dos horas. Al concluir la RTF, el
equipo de revisión determina si se requieren acciones
posteriores por parte del productor antes de que el
producto de trabajo del diseño pueda aprobarse como
parte del modelo de diseño final.

A

"Lo cal idad n o es a l g o q u e s e po i g a e n c i m a de los sujetos y objetos c o m o a d o r n o e n u n á r b o l d n o v i d o d . "
Rober l Pirs ig

de
a

é
tsena
miago,

:que
é

son

unirse

Atributos d e calidad. Hewletl-Packard [GRA87] desarrolló un conjunto de atribu-
tos de calidad; entre ellos están la funcionalidad, la facilidad de uso, la confiabilidad,
el desempeño y la soportabilidad. Estos atributos de calidad representan un objetivo
para todo el diseño de software:

• La funcionalidad se estima al evaluar el conjunto de características y capaci-
dades del programa, la generalidad de las funciones que se entregan y la
seguridad del sistema en su totalidad.

• La facilidad de uso se valora al considerar los factores h u m a n o s (capítulo 12),
la estética, consistencia y documentación generales.

• La confiabilidad se evalúa al medir la frecuencia y severidad de las fallas, la
precisión de los resultados de salida, la media del momento de fallas (MMF),
la habilidad para recuperarse de las fallas y la previsibilidad del programa.

• El desempeño se mide con la velocidad de procesamiento, t iempo de
respuesta, consumo de recursos, rendimiento y eficacia.

• La soportabilidad combina la habilidad de extender el programa (extensibi-
lidad), la adaptabilidad y la serviciabilidad —estos tres atributos representan
un concepto m á s común, facilidad de mantenimiento— además , resistencia a
pruebas, compatibilidad, configurabilidad (habilidad para organizar y
controlar e lementos de la configuración de software) (capítulo 27), la facilidad
con que puede instalarse el sistema, y la facilidad con que se pueden localizar
los problemas.

No todos los atributos de la calidad del sof tware tienen el mismo peso cuando se
desarrolla el diseño del software. Tal vez una aplicación tenga un especial interés en
la seguridad. Es posible que otra demande desempeño con un enfoque particular en la
velocidad de procesamiento. Una tercera puede centrarse en la confiabilidad. Sin
importar el peso, es importante puntualizar que es tos atributos de calidad deben
considerarse al comienzo del diseño, no después de que el diseño es té completo y
haya comenzado la construcción.

TM

PDF Editor

252 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Conjunto de tareas genéricas para el diseño
CONJUNTO DE TAREAS

1. Examinar el modelo del dominio de
la información y diseñar las estructuras de

datos apropiadas para los objetos de datos y
sus atributos

2. Por medio del modelo de análisis, seleccionar un
estilo arquitectónico (patrón) que sea apropiado
para el software.

3. Dividir el modelo de análisis en subsistemas de
diseño y ubicar estos subsistemas dentro de la
arquitectura.
Asegurarse de que cada subsistema es cohesivo en

su funcionamiento.
Diseñar las interfaces del subsistema.
Ubicar clases o funciones de análisis pa ra cada

subsistema.
4. Crear un conjunto d e clases de diseño o

componentes.
Traducir cada descripción de las clases de análisis en

una clase de diseño.
Verificar cada clase d e diseño contra los criterios d e

diseño; considerar los aspectos de la herencia.
Definir métodos y mensajes asociados con c a d a

clase de diseño.

5.

ó.

7.

Evaluar y seleccionar patrones de diseño pa ra urc
clase de diseño o un subsistema.

Revisar las clases de diseño y modificarlas según a
requiera.

Diseñar cualquier interfaz requerida con sistemas :
dispositivos externos.
Diseñar la interfaz del usuario.
Revisar los resultados del análisis de tareas.
Especificar la secuencia de acción con base en
escenarios del usuario.

Crear un modelo de comportamiento de la interior
Definir los objetos de la interfaz y mecanismos de

control.
Revisar el diseño de la interfaz y modificarlo sega-

se requiera.
Conducir el diseño al nivel d e componentes.
Especificar todos los algoritmos a un grado de

abstracción relativamente bajo.
Refinar la interfaz de cada componente.
Definir estructuras de datos al nivel de componerles
Revisar cada componente y corregir todos los <

descubiertos.
Desarrollar un modelo de despliegue.

A través de la historia de la ingeniería del software ha evolucionado un conjunto i
conceptos fundamentales de diseño de software. Aunque el grado de interés en i
concepto ha variado con los años, han pasado la prueba del tiempo. Cada uno i
ce al ingeniero de software un fundamento sobre el cual pueden aplicarse métc
de diseño más elaborados.

M. A. Jackson DAC75] dijo una vez: "El comienzo de la sabiduría para [un ir
niero de software] es reconocer la diferencia entre hacer que un programe funck
y conseguir que lo haga del modo correcto". Los conceptos fundamentales del
ño de software ofrecen el marco de trabajo necesario para hacer las cosas "del i
correcto".

9.3.1 Abstracción
Cuando se considera una solución modular a cualquier problema se pueden expc
muchos grados de abstracción. En un alto grado de abstracción una solución se i
blece en términos generales con el lenguaje del entorno del problema. En los gra¿
de menor abstracción se proporciona una descripción más detallada de la soluci;*J

TM

PDF Editor

C A P Í T U L O 9 INGENIERÍA DEL DISEÑO 253

" l a abstracción es una de las formas fundamentales en las que el humano se enfrenta a lo complejidad.''
G r a d y Booch

5pora
r ¿Unciones

lyde
i sean útiles

l e n
i Si pueden

i dominio
ide

L sera aún

En la medida en que cambian los diferentes grados de abstracción se trabaja para
crear abstracciones procedimentales y de datos. Una abstracción procedimental s e
refiere a una secuencia de instrucciones que tiene una función específica y limitada.
El nombre de abstracción procedimental implica es tas funciones, pero se omiten
detalles específicos. Un ejemplo de abstracción procedimental seria la palabra abrir
para una puerta. Abrir implica una larga secuencia de pasos procedimentales (por
ejemplo, caminar a la puerta, alcanzar la manija, darle vuelta a la manija y empujar
la puerta, hacerse a un lado para abrir paso a la puerta que se abre, etc.).4

Una abstracción de datos es una colección nombrada de datos que describe un
objeto de datos. En el contexto de abstracción procedimental, abrirse puede definir
como una abstracción de datos llamada puerta. Como cualquier objeto de datos, la
abstracción de datos para puerta abarcaría una serie de atributos que la describan
(por e j e m p l o , puerta, tipo, dirección de apertura, mecanismo de apertura, peso, dimensiones).

Se puede decir que la abstracción procedimental abrir emplearía la información con-
tenida en los atributos de la abstracción de datos puerta.

9.3.2 Arquitectura
La arquitectura del software alude a "la estructura general del sof tware y las formas
en que la estructura proporciona una integridad conceptual para un sistema"
[SHA95a], En su forma más simple, la arquitectura es la estructura u organización de
los componen tes del programa (módulos), la manera en que és tos componen tes
interactúan, y la estructura de datos que utilizan los componentes . En un sentido
m á s amplio, sin embargo, los componen tes pueden generalizarse para representar
e lementos importantes del sistema y sus interacciones.

"Una arquitectura de software es el producto del trabajo de desarrollo que ofrece el mayor rendimiento de la
inversión con respecto a la calidad, el tiempo y el costo."

Len B a s s el al.

i_AMpue(k

Una de las metas del diseño de sof tware es derivar una representación arquitec-
tónica de un sistema. Esta representación sirve como el marco de trabajo a partir del
cual se conducen actividades de diseño más detalladas. Un conjunto de patrones

4 Sin embargo, debe notarse que un conjunto de operaciones puede reemplazarse con otro, siempre
que la función implicada por la abstracción de procedimiento sea la misma. Por lo tanto, los pasos
requeridos para implementar abrir podrían cambiar en forma sustancial si la puerta fuera automá-
tica y estuviera unida a un sensor.

TM

PDF Editor

2 5 4

(C O N S E J O ^

No debe dejarse que
la arquitectura sucedo
por si sola. Sieso
paso, el resto del
tiempo de proyecto se
invertirá en tratar de
obligarla o ajustarse al
diseño. Se reco-
mienda diseñar la
arquitectura de
manera explícita.

P A R T E D O S PRÁCTICA DE LA INGENIERÍA D A SOFTWARE

arquitectónicos permite que un ingeniero de sof tware reutilice conceptos en el nivea
de diseño.

El d iseño arquitectónico puede representarse al usar uno o más de muchos mode-l
los diferentes (GAR95J. Los modelos estructurales representan la arquitectura cocrcj
una colección organizada de componen tes del programa. Los modelos del maree ja
trabajo incrementan el grado de abstracción del diseño al intentar identificar mar : J
de t rabajo repetibles del diseño arquitectónico que se encuentran en tipos de aplica-l
ciones similares. Los modelos dinámicos abordan los aspectos conductuales de t a
arquitectura del programa, al indicar cómo puede cambiar la configuración de la estr_;]
tura o el sistema, como función de los eventos externos. Los modelos del proceso s d
centran en el diseño del proceso técnico o de negocios que el sistema debe c o r : r - |
ner. Por último, los modelos funcionales pueden utilizarse para representar la jerar-j
quia funcional de un sistema. El diseño arquitectónico se expone en el capítulo 10

9.3.3 Patrones
Brad Appleton define un patrón de diseño de la siguiente manera: "Un patrón es u n
semilla de conocimiento, la cual tiene un nombre y transporta la esencia de una s : J
ción probada a un problema recurrente dentro de cierto contexto en medio de inte-I
reses en competencia" [APP98]. Dicho de otro modo, un patrón de diseño descr-nJ
una estructura de diseño que resuelve un problema de diseño particular dentre j t l
un contexto específico y en medio de "fuerzas" que pueden tener un impacto en M
manera en que se aplica y utiliza el patrón.

pot rón desc r ibe u n p r o b l e m a q u e o c u r r e u n o y o t ro v e z e n nues t ro en to rno , y d e s p u é s desc r ibe lo esenc io de :
solución o dicho p r o b l e m a , d e t a l f o r m a q u e p u e d o s u s a r e s t a solución u n millón d e veces m á s , s in n u n c a hace r lo dos
veces d e la m i s m a f o r m a . "

Chr i s topher A l e x a n d í

La finalidad de cada patrón de diseño es proporcionar una descripción que le : Í - J
mita al diseñador determinar 1) si el patrón e s aplicable al t rabajo actual, 2) si J
patrón se puede reutilizar (por ende, ahorrar t iempo del diseño), y 3) si el pa t - r^ l
puede servir como guía para desarrollar un patrón similar, pero diferente en cua . ru l
a la funcionalidad o estructura. Los pat rones de diseño se exponen con mayor de :¿- |
lie en la sección 9.5.

9.3.4 Modularidad
Los pat rones de arquitectura y diseño de sof tware materializan la modularidad
decir, el software se divide en componentes con nombres independientes y que es p e - á l
ble abordar en forma individual. Estos componen tes l lamados módulos se i n t e g - s J
para satisfacer los requisitos del problema.

Se ha establecido que la "modularidad es el atributo particular del sof tware C-JJ
permite que un programa sea manejable de manera intelectual" [MYE78]. El softv.3-1
re monolítico (es decir, un programa grande compuesto por un módulo sencillo} - a l

TM

PDF Editor

C A P Í T U L O 9 INGENIERÍA DEL DISEÑO 2 5 5

puede entenderlo con facilidad un ingeniero de software. El número de rutas de con-
trol, la amplitud de las referencias, el número de variables y la complejidad general
imposibilitaría comprenderlo. Este punto se ilustra con el siguiente argumento,
basado en observaciones de solución de problemas humanos.

Considérense dos problemas, p, y p2. Si la complejidad observada para p] es
mayor que la de p2 se deduce que el esfuerzo requerido para resolver p, es mayor que
el esfuerzo necesario para resolverp2 . Como un caso general, este resultado es obvio
en el sentido intuitivo; la resolución de un problema difícil toma más tiempo.

También se deduce que la complejidad observada de dos problemas, cuando
están combinados, con frecuencia es mayor que la suma de las complejidades obser-
vadas cuando cada una de ellas se toma por separado: esto conduce a una estrate-
gia de "divide y vencerás" (es más fácil resolver un problema complejo cuando éste
se divide en piezas más manejables). Esto tiene implicaciones importantes con res-
pecto a la modularidad y al software. De hecho, es un argumento para la modulari-
dad.

Es posible concluir que si el software se subdivide en forma indefinida, el esfuer-
zo requerido para desarrollarlo se reducirá en forma sensible. Por desgracia, hay
otras fuerzas que entran en juego, lo que ocasiona que esta conclusión sea (triste-
mente) inválida. En relación con la figura 9.2, el esfuerzo (costo) para desarrollar un
solo módulo de software decrece conforme se incrementa el número de módulos. Si
se tiene el mismo conjunto de requisitos, más módulos significan un tamaño indivi-
dual menor. Sin embargo, a medida que crece el número de módulos, el esfuerzo
(costo) asociado con la integración de los módulos también crece. Estas caracterís-
ticas conducen también a la curva total del costo o el esfuerzo que se muestra en la
figura. Existe un número M de módulos que resultaría en un costo de desarrollo
mínimo, aunque hasta el momento no se tiene la sofisticación necesaria para pre-
decir M con seguridad.

Las curvas que se muestran en la figura 9.2 proporcionan una guía útil cuando se
considera la modularidad. Ésta debe aplicarse, pero se debe tener cuidado de per-

I I Costo total del software

/ l Costo por integrar

Cos to /módulo

Número de módulos

TM

PDF Editor

2 5 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

\
CL°AVE

Lo finalidod d e lo
ocultación de
información es reservar
los detalles de las
estructuras de datos y
de los procesamientos
de procedimiento
detrás d e una inteifoz
del módulo. El
conocimiento de los
detalles no d e b e estar
al alcance de los
usuarios del módulo.

manecer eri la vecindad de M. Debe evitarse la modularidad excesiva o insuficiente
pero ¿cómo puede conocerse la vecindad de M? ¿Qué tan modular debe hacerse e
software? Las respuestas a estas preguntas requieren comprender otros conceptos
de diseño que se considerarán después, en este mismo capítulo.

Un diseño y el programa resultante se modularizan de manera que el desarrolle
se pueda planear con mayor facilidad; se puedan definir y entregar incrementos de:
software; los cambios puedan ajustarse con mayor facilidad; las pruebas y la elimi
nación de errores se pueda conducir con m á s eficiencia, y el mantenimiento se
pueda conducir sin efectos laterales de consideración.

9 . 3 . 5 O c u l t a c i ó n d e i n f o r m a c i ó n

El concepto de modularidad conduce a todos los diseñadores de software a formu-
larse una pregunta fundamental : ¿cómo puede descomponerse una solución de soft-
ware para obtener el mejor conjunto de módulos? El principio de ocultación de infor-
mación [PAR72] sugiere que los módulos "se caracterizan por las decisiones de dise-
ño que (cada uno) oculta a los otros". En ot ras palabras, los módulos deben especi-
ficarse y diseñarse de manera que la información (procedimiento y datos) que esta
dentro del módulo sea inaccesible para otros módulos que no necesiten esa infor-
mación.

La ocultación implica que se puede conseguir una modularidad efectiva al definí:
un conjunto de módulos independientes que se comuniquen entre sí y que inter-
cambien sólo la información necesaria para lograr la función del software. La abs-
tracción ayuda a definir las entidades de procedimiento (o información) que confor-
man el software. La ocultación define y fortalece las restricciones de acceso para lo;
detalles de procedimiento dentro de un módulo y para cualquier estructura de datos
local que utilice el módulo [ROS75],

El uso de la ocultación de información, como un criterio de diseño para sistemas
modulares, proporciona los mayores beneficios cuando se requieren modificaciones
durante la realización de las pruebas y, después, en el curso de mantenimiento de
software. Como la mayoría de los datos y procedimientos está oculta de las otras
partes del software, existe una probabilidad menor de introducir errores inadvertidos
al realizar las modificaciones y propagarlos a otros lugares dentro del software.

9 .3 .6 I n d e p e n d e n c i a f u n c i o n a l

El concepto de independencia funcional es la suma directa de la modularidad y de los
conceptos de abstracción y ocultación de información. En referencias obligadas
sobre el diseño de software, Wirth |WIR71] y Pamas [PAR72] aluden a las técnicas de refi-
namiento que mejoran la independencia de los módulos. Trabajos posteriores de
Stevens, Myers y Constantine [STE74] consolidaron el concepto.

La independencia funcional se consigue al desarrollar módulos con una funciór
"determinante" y u n a "aversión" a la interacción excesiva con otros módulos. Dich:
de otra manera, se desea diseñar el software de tal manera que cada módulo aborde
una subfunción específica de los requisitos y tenga una sola interfaz cuando se

TM

PDF Editor

C A P Í T U L O 9 INGENIERÍA DEL DISEÑO 257

kVE
i a u n o

] del
e u n

] en

tVE
) e s uno

] del
e u n

i a n e c i a d o
s y a l

*
r nndencio a

id detalle
l ignorar los

t conduce
I t omisiones

t el diseño
i más difícil
i Se teco-

relrefh
r x s o a

observe desde otras partes de la estructura del programa. Es justo preguntarse por
qué e s importante la independencia.

El sof tware con una modularidad efectiva, es decir, con módulos independientes,
es más fácil de desarrollar porque la función se puede fraccionar y las interfaces se
simplifican (considérense las ramificaciones cuando el desarrollo se realiza en equi-
po). Los módulos independientes son m á s fáciles de mantener (y probar) porque se
limitan los efectos secundarios que originan las modificaciones al diseño o ai códi-
go, se reduce la propagación de errores, y e s posible emplear módulos reutilizables.
En resumen, la independencia funcional es una clave para el buen diseño, y el dise-
ño es la clave para lograr la calidad del software.

La independencia se evalúa aplicando dos criterios cualitativos: cohesión y aco-
plamiento. La cohesión e s una medida de la fuerza funcional relativa de un módulo.
El acoplamiento es una medida de la interdependencia relativa entre los módulos.

La cohesión es una extensión natural del concepto de ocultación de información
descrito en la sección 9.3.5. Un módulo cohesivo realiza una sola tarea, para lo que
requiere muy poca interacción con otros componentes en otras partes del programa.
Dicho de manera sencilla, un módulo cohesivo debe (idealmente) hacer sólo una cosa.

El acoplamiento e s una medida de la interconexión entre los módulos de una
estructura de software. El acoplamiento depende de la complejidad de la interfaz
entre los módulos, el punto donde se realiza una entrada o referencia a un módulo,
y los datos que pasan a través de la interfaz. En el diseño de sof tware se intenta con-
seguir el acoplamiento más ba jo posible. Una conectividad sencilla entre los módu-
los da como resultado un sof tware m á s fácil de entender y menos propenso a expe-
rimentar el "efecto ola" [STE74], el cual se presenta cuando surgen problemas en un
lugar y después se propagan a través del sistema.

9.3.7 Refinamiento
El refinamiento paso a paso e s una estrategia de diseño descendente que propuso ini-
cialmente Niklaus Wirth [WIR71]. El desarrollo de un programa se realiza al retinar
de manera sucesiva los niveles de detalle procedimentales. Una jerarquía se desa-
rrolla al descomponer el enunciado macroscópico de una función (una abstracción
procedimental) paso a paso hasta alcanzar las oraciones del lenguaje de programa-
ción.

En realidad, el refinamiento es un proceso de elaboración. Se inicia con el enun-
ciado de una función (o una descripción de datos) que se define con un alto grado
de abstracción. Esto es, el enunciado describe los datos o la función de manera con-
ceptual, pero no proporciona información acerca de los trabajos internos de la fun-
ción o de la estructura interna de los datos. El refinamiento hace que el diseñador
trabaje sobre el enunciado original y que proporcione más y más detalles conforme
se realiza cada refinamiento sucesivo (elaboración).

La abstracción y el refinamiento son conceptos complementarios. La abstracción
le permite a un diseñador especificar procedimientos y datos sin considerar detalles

TM

PDF Editor

258 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

R e f e r e n c i a W e b

En www.
refactoring.tom
se pueden encentro!
excelentes recwsos
poro lo l e f o b n t o e f c

de grado menor. El refinamiento ayuda al diseñador a revelar los detalles de
menor mientras se realiza el diseño. Ambos conceptos auxilian al diseñador
creación de un modelo de diseño completo a medida que evoluciona la activida:
diseño.

"No follé. Sólo encontré 10 000 formos fallidos de hacer los cosas."
Thomos

9.3.8 Refabricación
Una actividad importante de diseño que sugieren muchos métodos ágiles (
lo 4) es la refabricación, técnica de reorganización que simplifica el diseño (o c_
de un componente sin cambiar su función o comportamiento. Fowler [FOW99]
ne la refabricación de la siguiente manera: "La refabricación es el proceso de c .
biar un sistema de software de tal forma que no se altere el comportamiento
no de su código [diseño] y aún así se mejore su estructura interna."

Cuando un software se refabrica el diseño existente se examina en busca
redundancias, e lementos de diseño inútiles, algoritmos innecesarios o insuficic
estructuras de datos inapropiadas o construidas de manera incorrecta, o cualc .
otra falla de diseño que se pueda corregir para lograr un mejor diseño. Por ejerr r
una primera iteración de diseño podría producir un componente que muestra pal
cohesión (realiza tres funciones que tienen muy pocas relaciones entre sí). El
ñador puede decidir que el componente debe refabricarse en tres componentes i
tintos, cada uno de ellos con una elevada cohesión. El resultado será un softwr
más fácil de integrar, probar y mantener .

Conceptos de diseño

El e s c e n a r i o : Cubículo de Vinod,
comienza el modelado del diseño.

Los a c t o r e s : Vinod, Jamie y Ed, miembros del equipo
de ingeniería del software de HogarSeguro. También,
Shakiro un nuevo miembro del equipo

l a conversación:
(Los cuatro miembros del equipo acaban d e regresar de
un seminario matutino, titulado "Aplicación de conceptos
básicos de diseño", que ofreció un profesor local de
ciencia computacional.)

V i n o d : ¿Obtuvieron algo del seminario?

i sabía la mayor par te de las cosas, pero
3ue no es una mala idea escucharlas de nuevo.

J a m i e : Cuando realizaba mis estudios profesionales os
SC nunca entendí realmente por qué la ocultación de
información era tan importante como dicen.

V i n o d : Porque... es una técnica pa ra reducir la
propagación del error en un programa. En realidad, i
la independencia funcional también se logra lo mismo

S h a k i r a : Yo no tengo un título en SC, entonces muchos
de las cosas que mencionó el instructor son nuevas p c r :
mí. Y yo puedo generar un buen código y rápido. No
veo por qué este asunto es tan importante.

J a m i e : He visto tu t rabajo, Shalc, y ¿sabes qué? Tú
haces muchas de estas cosas en forma natural. |
es que tus diseños y tu código funcionan.

TM

PDF Editor

CAPÍTULO 9 INGENIERÍA DEL DISEÑO 259

i (sonr iendo): Sueno, yo siempre froto de
código, montenerlo enfocado en una cosa,
r simples y restringidos las interfases, reutilizar

código siempre que puedo... ese tipo de cosas.

Moduloridad, independencia funcional, ocultación,
¿ves?

: Todavía recuerdo el primer curso de
..ación que tomé... nos enseñaron a refinar el
iterativamente.

Tú sabes que lo mismo puede aplicarse al

El único concepto del que no había escuchado antes
"refabricación".

Shakira: Se utiliza en Programación Extrema, creo que
eso dijo.

Ed: Sí, no es por completo diferente al refinamiento, sólo
lo haces después de que el diseño o el código han sido
completados. Si me preguntan a mí, es un tipo de paso
hacia la optimización del software.

J a m i e : Regresemos al diseño de HogarSeguro. Creo
que deberíamos poner estos conceptos en nuestra lista de
revisión mientras desarrollamos el modelo de diseño para
HogarSeguro.

Vinod: Estoy de acuerdo. Pero igual de importante,
comprometámonos todos a pensar en ellos conforme
desarrollamos el diseño.

9.3.9 Clases de diseño
En el capítulo 8 se mencionó que el modelo de análisis define un conjunto comple-
to de clases de análisis. Cada una de estas clases describe algún elemento del domi-
nio del problema, con enfoque en los aspectos del problema visibles para el usuario
o el cliente. El grado de abstracción de una clase de análisis es relativamente alto.

Conforme evoluciona el modelo de diseño, el equipo de software debe definir un
conjunto de clases de diseño que 1) refine las clases de análisis al proporcionar deta-
lles del diseño que permitirán la implementación de las clases, y 2) produzca un con-
junto nuevo de clases de diseño que implementen una infraestructura de software
para soportar la solución del negocio. Se sugieren cinco diferentes tipos de clases de
diseño, cada uno representa una capa distinta de la arquitectura de diseño [AMB01]:

Las clases de interfaz con el usuario definen todas las abstracciones necesarias
para la interacción humano-computadora (IHC). En muchos casos, la IHC
ocurre dentro del contexto de una metáfora (por ejemplo, un libro de verifica-
ción, un formato de orden, una máquina de fax) y las clases de diseño para la
interfaz pueden ser representaciones visuales de los elementos de la
metáfora.

Las clases del dominio de negocios a menudo son refinamientos de las clases
de análisis definidas antes. Las clases identifican los atributos y servicios
(métodos) necesarios para implementar algún elemento del dominio de
negocios.

Las clases de proceso implementan abstracciones del negocio en un nivel más
bajo, las cuales se requieren para manejar por completo las clases del
dominio de negocios.

Las clases persistentes representan almacenamientos de datos (por ejemplo,
una base de datos) que persistirán más allá de la ejecución del software.

¿ (t e é t i p o s
« c d a s e s
« d i s e ñ a d o r ?

TM

PDF Editor

260 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

¿ Q u é e s
• u n a c l a s e d e

d i s e ñ o " b i e n
f o r m a d a " ?

• Las clases de sistema implementan las funciones de gestión y control de!
software que permiten que el sistema opere y se comunique dentro de s;.
entorno de computación y con el mundo exterior.

A medida que evoluciona el modelo de diseño, el equipo de software debe
llar un conjunto completo de atributos y operaciones para cada clase de dis
grado de abstracción se reduce conforme cada clase de análisis se transforrv
una representación del diseño. Esto es, las clases de análisis representan
servicios asociados que se aplican a éstos) usando la jerga del dominio de n -
Las clases de diseño presentan un mayor detalle técnico, pues son una guía
¡mplementación.

Arlow y Neustadt [ARL021 sugieren revisar cada clase de diseño para asegur; -
la misma esté "bien formada". Ellos definen cuatro características de una
diseño bien formada:

Completa y suficiente. Una clase de diseño debe ser la encapsulación
ta de todos los atributos y métodos que se pueden esperar, en forma razonable
base en una interpretación reconocible del nombre de la clase), que existar
clase. Por ejemplo, la clase e s c e n a definida para el software de edición de -
está completa sólo si contiene todos los atributos y métodos que pueden
de manera razonable con la creación de una escena de video. La suficiencia
ra que la clase de diseño contenga sólo aquellos métodos que sean suficiente-
lograr el objetivo, ni más ni menos.

Primitivismo. Los métodos asociados con una clase de diseño deben en
en el cumplimiento de un servicio para la clase. Una vez que el servicio h ;
implementado con un método, la clase no debe proporcionar otra forma de
mentar la misma cosa. Por ejemplo, la clase videoClip del software de ed
video podrían tener atributos punto-inicial y punto-final para indicar los puntos de
y fin del clip (nótese que el video bruto cargado en el sistema puede ser más
que el clip que se usa). Los métodos cstablecerPuntolnicialf) y establecerPuntoFinJ-
porcionan los únicos medios para configurar los puntos de inicio y fin del clip.

Cohesión alta. Una clase de diseño cohesiva tiene un conjunto de r
dades pequeño y enfocado, y aplica atributos y métodos de manera sencii:;
implementar dichas responsabilidades. Por ejemplo, la clase VideoClip del
re para la edición de video podría contener un conjunto de métodos para
videoclip. Mientras cada método se enfoque sólo en atributos asociados con e
clip se mantendrá la cohesión.

Acoplamiento bajo. Dentro del modelo de diseño es necesario que las
diseño colaboren con alguna otra. Sin embargo, la colaboración se debe
en un mínimo aceptable. Si un modelo de diseño tiene un acoplamiento alto
las clases de diseño colaboran con todas las otras clases de diseño), el si;
difícil de implementar, probar y mantener a través del tiempo. En general, las :

TM

PDF Editor

CAPÍTULO 9 INGENIERÍA DEL DISEÑO 261

de diseño dentro de un subsistema deben tener sólo un conocimiento limitado de las
clases en otros subsistemas. Esta restricción, llamada la Ley de Deméter [LIE03],
sugiere que un método sólo debe enviar mensajes a métodos de clases vecinas.5

PlanodePlanta

1

tipo
dimensiones exteriores

1

C á m a r a tipo
dimensiones exteriores

1 tipo
id
Campodevisión
Angulodebúsqueda
Configuraciónacercamiento

agregarCámara()
agregarPared()
agregarVentana))
borrarSegmento(|
dibujar))

tipo
id
Campodevisión
Angulodebúsqueda
Configuraciónacercamiento

agregarCámara()
agregarPared()
agregarVentana))
borrarSegmento(|
dibujar))

S e g m e n t o

Coordenadainicío
Coordenadafin
obteneríipoj]
dibujar))

S e g m e n t o d e p a r e d 1

1

Ventana 1

1

Refinación de una clase

El e scenar io : Cubículo de Ed,
continúa el modelado del diseño.

Los actores: Vinod y Ed, miembros del equipo de
-geniería del software de HogarSeguro.

La conversac ión:

Ed trabaja en la clase P l a n o d e P l a n t a [véase el
debate en el recuadro de la sección 8.7.4 y la figura
8.14] y la ha refinado para el modelo de diseño.)

análisis en una clase de diseño

Ed: Entonces ¿recuerdas la clase P lanodePlanta , no?
Se utiliza como una parte de las funciones de vigilancia v
administración del hogar.

Vinod (a f i r m a n d o con la c a b e z a) : Sí, me parece
recordar que la usamos como parte de nuestros análisis
de CRC para la administración del hogar.

Ed: Lo hicimos. De cualquier manera, la estoy refinando
para el diseño. Quiero mostrar cómo implementaremos

5 Una forma menos formal de enunciar la Ley de Deméter es "Cada unidad debe hablar sólo con sus
amigos; no con extraños."

TM

PDF Editor

262 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

realmente la clase P lanodeP lanta . Mi idea es
implementarla como un conjunto de listas ligadas [una
estructura de datos específica]. Entonces, tuve que
refinar la ciase de análisis P l a n o d e p l a n t a (figura
8.14) y, en realidad, hasta simplificarla.

Vinod: La clase de análisis sólo mostraba cosas en el
dominio del problema, bueno, realmente sobre la
pantalla de la computadora, que fueran visibles paro el
usuario final ¿no?

Ed: Sí, pero para la clase de diseño P lanodePlanta
tengo que agregar algunas cosas que son
¡mplementacián específica. Necesitaba mostrar que
PlanodePlanta es una agregación de segmentos -y
por ende la clase S e g m e n t o - y que la clase
S e g m e n t o está compuesta de listas para segmentos de

pared, ventanas, puertas y cosas así. la clase Cámara
colabora con P lanodePlanta y, obviamente, puede
haber muchas cámaras en el plano de planta.

Vinod: Bueno, veamos una fotografía de esta nueva
clase de diseño P lanodePlanta .

(Ed le muestra el esquema de la figura 9.3.)

Vinod: De acuerdo, veo lo que estás tratando de hace-
Esto te permite modificar fácilmente el plano de planta
porque puedes agregar nuevos elementos o borrar otro?
de la lista - la agregación- sin ningún problema.

Ed (a f i rmando con la c a b e z a) : Sí, yo creo que
funcionará.

Vinod: Yo también.

9 . 4 EL M Q P S L Q P E P ¡ S S Ñ Q

\ CLAVE
El modelo de diseño
tiene cuatro elementos
importantes: datos,
arquitectura,
componentes e
interfaz.

El modelo de diseño puede verse en dos dimensiones diferentes, como se ilustra e-i
la figura 9.4. La dimensión del proceso indica la evolución del modelo de diseño co-
forme se e jecutan las tareas de diseño como una parte del proceso del software La
dimensión de abstracción representa el grado de detalle a medida que cada eleme*
to del modelo de análisis se t ransforma en un equivalente del diseño y después se
refina de una manera iterativa. En la figura, la línea punteada indica la frontera entre
los modelos de análisis y diseño. En algunos casos se distingue con claridad entre l:s
modelos de análisis y diseño; en otros, el modelo de análisis se combina con el dist
ño y la distinción resulta menos obvia.

Los e lementos del modelo del diseño utilizan muchos de los d iagramas en Uin-
aplicados en el modelo de análisis. La diferencia es que estos d iagramas están r e i -
nados y elaborados como par te del diseño; se proporciona un mayor detalle para ;
implementación específica y se resaltan la estructura y el estilo arquitectónicos, 1: í
componen tes que residen dentro de la arquitectura y las interfaces entre los comp:
nentes y con el mundo exterior.

"Los p r e g u n t a s acerca d e si el d iseño es necesar io o ev i tab le es tán b a s t a n t e f u e r a de lugar : el d i seno es inevi table , l a
a l t e rna t iva al b u e n diseño e s el mal d iseño y no su inexis tencia ."

D o u g l a s M a r t i n

Sin embargo, es importante mencionar que los elementos del modelo anotados ;
lo largo del eje horizontal no siempre se desarrollan de una manera secuencial. E~
la mayoría de los casos, el diseño arquitectónico preliminar establece la plataforrr =
y lo siguen el diseño de interfaz y el diseño al nivel de componentes , los cuales 3
menudo se realizan en paralelo. El modelo de despliegue con frecuencia se retrase
hasta que el diseño ha sido desarrollado por completo.

TM

PDF Editor

CAPÍTULO 9 I N G E N I E R Í A D E L D I S E Ñ O 263

Dimensiones del modelo de diseño.

Alto

« o d e l o d e anális is

•O
O

e
*5
c

E
o

D i a g r a m a s d e c l a s e
P a q u e t e s d e a n á l i s i s
M o d e l o s C R C
D i a a r a m a s d e

c o l a b o r a c i ó n
D i a g r a m a s d e f lu jo

d e d a t o s
D i a g r a m a s d e f lu jo

d e cont ro l
N a r r a t i v a s d e

p r o c e s a m i e n t o

R e a l i z a c i o n e s d e clas«
d e d i s e ñ o

S u b s i s t e m a s
D i a g r a m a s d e

c o l a b o r a c i ó n

d e d iseño

B o j o

Refinamientos c

R e a l i z a c i o n e s d e c l a s e s
d e d i s e ñ o

S u b s i s t e m a s
D i a g r a m a s d e

c o l a b o r a c i ó n

C a s o s d e u s o - t ex to
D i a g r a m a s d e c a s o

d e u s o
D i a g r a m a s d e a c t i v i d a d
D i a g r a m a s d e car r i l
D i a g r a m a s d e

c o l a b o r a c i ó n
D i a g r a m a s d e e s t a d o
D i a g r a m a s d e s e c u e n c i a

D i s e ñ o d e i n f e r í a s e
t é c n i c a

D i s e ñ o d e n a v e g a c i ó n
D i s e ñ o d e I G U

D i a g r a m a s d e c l a s e
P a q u e t e s d e a n á l i s i s
M o d e l o s C R C
D i a a r a m a s d e

c o l a b o r a c i ó n
D i a g r a m a s d e f

d e d a t o s
D i a a r a m a s d e flujo

d e l con t ro l
N a r r a t i v a s d e

p r o c e s a m i e n t o
D i a g r a m a s d e e s t a d o
D i a g r a m a s d e s e c u e n c i a

D i a g r a m a s d e c o m p o n e n t e
C l a s e s d e d i s e ñ o
D i a g r a m a s d e a c t i v i d a d
D i a g r a m a s d e s e c u e n c i a

Refinamientos a:

D i a g r a m a s d e c o m p o n e n t e
C l a s e s d e d i s e ñ o
D i a g r a m a s d e a c t i v i d a d
D i a g r a m a s d e s e c u e n c i a

Requ i s i tos :

Res t r i cc iones
I n t e r o p e r a b i l i d a d
O b j e t i v o s y

c o n f i g u r a c i ó n

R e a l i z a c i o n e s d e c l a s e
d e d i s e ñ o

S u b s i s t e m a s
D i a g r a m a s d e c o l a b o r a c i ó n
D i a g r a m a s d e c o m p o n e n t e
C l a s e s d e d i s e ñ o
D i a g r a m a s d e a c t i v i d a d
D i a g r a m a s d e s e c u e n c i a

D i a g r a m a s d e d e s p l i e g u e

E l e m e n t o s
a r q u i t e c t ó n i c o s

E l e m e n t o s
d e i n t e r f a z

E l e m e n t o s a l nivel
d e c o m p o n e n t e s

E l emen tos a l nivel
de l d e s p l i e g u e

Dimensión del proceso

*VE
' « t a

el diseño
e enfoca en

i boses de
I de los
.el

datos
las

de datos
«quieren para

: los
* datos

9.4.1 Elementos del diseño de datos
Al igual que otras actividades de la ingeniería del software, el diseño de datos (algu-
nas veces l lamado arquitectura de datos) crea un modelo de datos o información que
se representa con un alto grado de abstracción (la visión de los datos del c l iente /usua-
rio). Después, es te modelo de datos se refina en representaciones que de manera
progresiva tienen una implementación específica y que pueden procesarse median-
te el sistema basado en computadora . En muchas aplicaciones de sof tware la arqui-
tectura de los datos tendrá una profunda influencia sobre la arquitectura del softwa-
re que los debe procesar.

La estructura de los datos s iempre ha sido una parte importante del diseño del
software. Al nivel de los componentes del sistema, las estructuras del d iseño de
datos y los algoritmos con que se manipulan son esenciales para la creación de apli-
caciones de alta calidad. Al nivel de aplicación, la traducción de un modelo de datos
(obtenido como una base de la ingeniería de requisitos) a una base de datos es esen-
cial para a lcanzar los objetivos de negocio de un sistema. Al nivel de negocios, la
colección de información a lmacenada en bases de datos dispersas y reorganizadas
en una "conjunción de datos" permite la explotación de datos o el descubrimiento de
un conocimiento que puede tener un impacto sobre el éxito del mismo negocio. En

TM

PDF Editor

264 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

\ CLAVE
El modelo
arquitectónico se
derivo del dominio de
aplicación, del modelo
de análisis y de los
estilos y potrones
disponibles.

cada caso, el diseño de datos juega un papel importante. El diseño de datos se exp:
ca con mayor detalle en el capítulo 10.

9.4.2 Elementos del diseño arquitectónico
El diseño arquitectónico para el sof tware es el equivalente al p lano de planta de u r :
casa. Este plano muestra la configuración general de las habitaciones, su tamaf
forma y las relaciones entre ellas, y las puertas y ven tanas que permiten el mov
miento hacia y desde los cuartos. El p lano de planta proporciona una visión glot :
de la casa. Los elementos del diseño arquitectónico dan una visión general del so:
ware.

"Puedes usor un borrador en lo tabla de diseño o un martillo en el sitio de construcción."
Frank l loyd Wrigbt

El modelo arquitectónico [SHA96] se obtiene a partir de tres fuentes: I) la infc -
mación acerca del dominio de aplicación para el software que se va a construir
los e lementos del modelo de análisis específico, tales como diagramas de flujo a:
datos o clases de análisis, sus relaciones y colaboraciones para el problema que
tiene a la mano, y 3) la disponibilidad de patrones (sección 9.5) y estilos arquitect
nicos (capítulo 10).

9.4.3 Elementos de diseño de interfaz
El diseño de interfaz para software es el equivalente a un conjunto de dibujos deta
liados (y especificaciones) para puertas, ven tanas y utilidades externas de una casa.
Estos dibujos representan el t amaño y forma de las puer tas y ventanas, la manera er
que operan, la manera en que las conexiones de las utilidades (como agua, e n e r e :
eléctrica, gas, teléfono) llegan a la casa y se distribuyen entre las habitaciones reprt
sen tadas en el plano de planta. Estos dibujos indican dónde está localizado el t i r
bre de la puerta, si hay un intercomunicador que anuncie la presencia de un visíta-
te y cómo está instalado el sistema de seguridad. En esencia, los dibujos (y especifi-
caciones) detallados para las puertas, ventanas y utilidades externas indican con-
fluyen las cosas y la información desde y hacia la casa y dentro de las habitaciones
que son parte del plano de planta. Los elementos del diseño de interfaz para so::
ware mues t ran cómo fluye la información hacia o fuera del sistema y cómo éste es : :
comunicado entre los componentes definidos c o m o parte de la arquitectura.

"El público está más fomiliarizodo con el diseño molo que con el bueno. En efecto, está condicionado o preferir el mal diseño porque ?
con lo que vive. Lo nuevo es omenozonte, lo viejo es seguro."

Existen tres e lementos importantes del diseño de interfaz: 1) la interfaz con e
usuario (IU); 2) interfaces externas a otros sistemas, artefactos, redes u otros pr<
ductores o consumidores de información; y 3) interfaces internas entre varios con"

TM

PDF Editor

CAPÍTULO 9 INGENIERÍA DEL DISEÑO 265

KVE
s portes paro

de diseño
. la interfaz

i í las
con sistemas

l i o
ríos

am
dentro

ponentes de diseño. Estos e lementos de diseño de interfaz permiten al sof tware
comunicarse de manera externa y permiten la comunicación y colaboración interna
entre los componen tes que pueblan la arquitectura del software.

El diseño de la IU es una acción primordial de la ingeniería de software, y se con-
sidera con detalle en el capítulo 12. El diseño de una IU incorpora e lementos estéti-
cos (por ejemplo, distribución, color, gráficas, mecanismos de interacción), e lemen-
tos ergonómicos (por ejemplo, información y ubicación de la distribución, metáforas,
navegación de la IU), y e lementos técnicos (como pa t rones de la IU, componentes
reutilizables). En general, la IU es un subsistema único dentro de la arquitectura de
aplicación general.

El diseño de las interfases externas requiere información definitiva acerca de la
entidad hacia donde se manda o recibe la información. En todos los casos, esta
información debe recopilarse durante la ingeniería de requisitos (capítulo 7) y verifi-
carse u n a vez que comience el diseño de la interfaz.6 El diseño de interfases exter-
nas debe incorporar revisión de errores y (cuando sea necesario) características
apropiadas de seguridad.

El diseño de las interfaces internas está cercanamente alineado con el diseño al
nivel de los componen tes (capítulo 11). Las realizaciones del diseño de clases de
análisis representan todas las operaciones y e squemas de mensajes requeridos para
permitir la comunicación y colaboración entre las operaciones de varias clases. Cada

PDAInalómbrico

TeléfonoMóvil

PaneldeControl

pantallaLCD
indicadoresLED
característicasTeclado
bocino
interfaselnalámbrica
leerGolpedeTeclal)
decodificarTeclaj)
desplegarEstatus()
luzLEDs))
enviarMensajeControl(

l Teclado

« I n t e r f a z »
Teclado

eerGolpedeTecla(
decodificarTecla()

6 No resulta poco común que las características de la interfaz cambien con el tiempo. Por lo tanto, un
diseñador debe asegurar que la especificación para la interfaz se mantenga actualizada.

TM

PDF Editor

266 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

En w w w . o s e i t . c o m
puede encontrase
inforrootión muy
v o t a saine el diseüci
detall).

mensaje debe ser diseñado para ajustarse a la transferencia de información de requi-
sitos y los requerimientos funcionales específicos de la operación que ha sido solici
tada.

En a lgunos casos, una interfaz se modela de una manera muy parecida a u r ;
clase. El UML define una interfaz de la siguiente manera [OMGOl]: "Una interfaz es
un determinante de las operaciones [públicas] visibles de manera ex tema de una
clase, componente u otro clasificador (incluidos los subsistemas) sin especificación
de estructura interna". Dicho de un modo m á s simple, una interfaz es un conjunt:
de operaciones que describe parte del comportamiento de una clase y proporciona
acceso a e sas operaciones.

Por ejemplo, la función de seguridad de HogarSeguro emplea un panel de contrc
que permite al propietario de la casa controlar ciertos aspectos de la función de
seguridad. En una versión avanzada del sistema, las funciones del panel de contr.
pueden implementarse vía PDA inalámbrico o teléfono móvil.

La clase PaneldeControl (figura 9.5) proporciona el comportamiento asociad;
con un teclado y, por lo tanto, debe implementar operaciones de leerTeclaPresionada
y decodificafTecia(). Si e s tas operaciones se suministrarán a otra clase (en este casc
a PDAInalámbrico y TeléfonoMóvil) , resulta inútil definir una interfaz como :
que se muestra en la figura. La interfaz llamada Teclado se muestra como un este-
reotipo de « i n t e r f a z » o como un círculo pequeño y et iquetado que se conecta :
la clase con una línea. La interfaz se define sin atributos y con el conjunto de ope
raciones necesar ias para lograr el comportamiento de un teclado.

"Un error común que cometen las personas cuando tratan d e diseñar algo completamente a p rueba d e tontos es
subest imar la ingenuidad de los q u e son completamente tontos."

D o u g l a s A d a m s

La línea punteada con un triángulo abierto en su extremo (figura 9.5) indica qu;
la clase PaneldeControl proporciona operaciones de Tec lado como parte de su
comportamiento. En UML esto se caracteriza como una realización. Esto es, parte de
comportamiento de PaneldeControl se implementará al realizar las operaciones de
Teclado. Estas operaciones se proporcionarán a otras clases que entren a la inter-
faz.

9.4.4 Elementos de diseño al nivel de componentes
El diseño al nivel de componen tes para el sof tware equivale a un conjunto de dibu
jos detallados (y especificaciones) para cada cuarto en una casa. Estos dibujos mues-
tran el a lambrado y la instalación sanitaria dentro de cada cuarto, la ubicación de lo;
receptáculos eléctricos e interruptores, llaves, lavabos, tinas, desagües y armarios
También describen los pisos que se usarán, los moldes que se aplicarán, y cualquier
otro detalle asociado con el cuarto. El diseño al nivel de componentes para softwa
re describe por completo el detalle interno de cada componente del software. Para

TM

PDF Editor

http://www.oseit.com

CAPÍTULO 9 INGENIERÍA DEL DISEÑO 267

a de
ite

para
-nsor.

lograrlo el diseño al nivel de componentes define estructuras de datos para todos los
objetos de datos locales, así como detalle algorítmico para todo el procesamiento
que ocurre dentro de un componente y una interfaz que permite el acceso a todas
las operaciones de los componentes (comportamientos).

" l o s df italles no son los detalles. Ellos hacen el diseño."
Char les l a m e s

Dentro del contexto de la ingeniería del software orientada a objetos, un compo-
nen te se representa a manera de diagrama en UML como se muestra en la figura 9.6.
En esta figura se representa un componente llamado ManejoSensor (parte de la
función de seguridad de HogarSeguro). El componente está conectado a una clase
llamada Sensor , la cual está asignada a éste mediante una flecha punteada. El com-
ponente ManejoSensor realiza todas las funciones asociadas con los sensores de
HogarSeguro, entre las que se encuentran su monitoreo y configuración. En el capí-
tulo 11 se presenta una explicación más a fondo acerca de los d iagramas de com-
ponente.

Los detalles de diseño de un componente se pueden modelar a muchos grados dis-
tintos de abstracción. En la representación del procesamiento lógico se puede utilizar
un diagrama de actividad. El flujo detallado de procedimiento para un componente
puede representarse, ya sea mediante un pseudocódigo (una representación del tipo
de lenguaje de programación que se describe en el capítulo 11), o de algún formato
diagramático (por ejemplo, un diagrama de actividad o un diagrama de flujo).

9.4.5 Elementos de diseño al nivel del despliegue
Los e lementos de diseño al nivel del despliegue indican c ó m o se ubicarán la funcio-
nalidad y los subsis temas dentro del entorno computacional físico que soportará al
software. Por ejemplo, los e lementos del producto HogarSeguro es tán configurados
para operar dentro de tres entornos de computación primarios: una PC doméstica, el
panel de control de HogarSeguro y un servidor ubicado en CP1 Corp. (lo que propor-
ciona acceso al sistema a través de Internet).

Durante el diseño se desarrolla un diagrama de despliegue en UML y después se
refina, como se muestra en la figura 9.7. En ésta se muestran tres ambientes com-
putacionales (en realidad, debería haber más, si se incluyen sensores, cámaras y
otros). Se indican los subsis temas (funcionalidad) que se alojan dentro de cada ele-

TM

PDF Editor

268 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Diagrama de
despliegue
en UML para
HogarSeguro.

Panel de control

Seguridad

/

Servidor de CP1

AccesoPropietario

V

7
Computadora persona|

Acceso externo >

Seguridad Vigilancia

, 4
— '

AdministraciónHogar Comunicación

/

%.
CLAVE

Los diagramas de
despliegue comienzan
en un formato
descriptor, donde el
entorno de despliegue
se describe en
términos generales.
Después se utilizo un
formato de instancia y
se describen de
manera explícito los

mentó de cómputo. Por ejemplo, la computadora personal aloja subsis temas que
implementan seguridad, vigilancia, administración del hogar y características ce
comunicación. Además, se h a diseñado un subsistema de acceso externo para con-
trolar todos los intentos de acceso al sistema HogarSeguro desde u n a fuente exter-
na. Cada subsistema sería elaborado para indicar los componen tes que implemento

El diagrama mostrado en la figura 9.7 está en forma de descriptor. Esto significa
que el diagrama de despliegue muestra el entorno computacional , pero no indica ce
manera explícita detalles de configuración. Por ejemplo, no se identifica la "compu-
tadora personal". Podría ser una "Wintel" PC o una Macintosh, una estación de tra-
bajo Sun o una Linux-box. Estos detalles s e proporcionan cuando el diagrama de
despliegue se revisa en forma de instancia durante e tapas posteriores del diseño o
cuando comienza la construcción. Se identifica cada instancia del despliegue (una
configuración de hardware con un nombre específico).

configuración.

"Deja todo y retírate, tomo una pequeña relajación. Cuando regreses al t rabajo, tu juicio será más seguro. Toma algo
de distancio porque entonces el t rabajo parece más pequeño, una mayor porte del mismo puede ser capturado en uno
mirada y lo falta de armonio y propordón se observo con más facilidad."

Leonardo DaVinci

TM

PDF Editor

CAPÍTULO 9 INGENIERÍA DEL DISEÑO 269

Los mejores diseñadores en cualquier campo de t rabajo tienen la misteriosa habi-
lidad de vislumbrar pat rones que caracterizan un problema y los pat rones corres-
pondientes que pueden combinarse para crear una solución. A través del proceso de
diseño, un ingeniero de sof tware debe buscar toda oportunidad para reutilizar patro-
nes de diseño existentes (cuando cumplen las necesidades de un diseño) en vez de
crear nuevos.

9.5.1 Descripción de un patrón de diseño
Las disciplinas maduras de la ingeniería utilizan miles de pat rones de diseño. Por
ejemplo, un ingeniero mecánico utiliza un eje de dos pasos como un patrón de dise-
ño clave. Los atributos (diámetros del eje, d imensiones del orificio de las llaves, etcé-
tera) y las operaciones (por ejemplo, la rotación del giro y la conexión del giro) son
inherentes al patrón. Un ingeniero eléctrico utiliza un circuito integrado (un patrón
de diseño en ext remo complejo) para resolver un elemento específico de un proble-
ma nuevo. Los pat rones de diseño pueden describirse empleando la plantilla [MAI03]
que se muestra en el recuadro "Plantilla del patrón de diseño".

INFORMACIÓN

Plantilla del patrón de diseño
Nombre del patrón: describe lo esencia del
patrón en un nombre corto, pero expresivo,

i: describe el patrón y lo que hace.

-conocido-como: lista los sinónimos para el

en: proporciona un ejemplo del problema.

lidad: anota situaciones específicas de diseño en
es aplicable el patrón.

: describe las clases que se requieren para
*tar el patrón.

Participantes: describe las responsabilidades de las clases
que se requieren para implementar el patrón.

Colaboraciones: describe cómo colaboran los participantes
para llevar a cabo sus responsabilidades.

Consecuencias: describe las "fuerzas de diseño" que
afectan al patrón y los intercambios potenciales que deben
considerarse cuando se implemento el patrón.

Patrones relacionados: patrones de diseño relacionados
mediante referencias cruzadas.

y

VE
de diseño

1 aquellos
¡ lo solución

i lo forma
se puede
el diseño.

Una descripción del patrón de diseño puede considerar también un conjunto de
fuerzas de diseño. Las fuerzas de diseño describen requisitos no funcionales (por
ejemplo, facilidad de mantenimiento, portabilidad) asociados con el sof tware en el
que se aplicará el patrón. Además, las fuerzas definen las limitaciones que restrin-
gen la manera en que se implementará el diseño. En esencia, las fuerzas de diseño
describen el ambiente y las condiciones que deben existir para que el patrón del
diseño sea aplicable. Las características del patrón (clases, responsabil idades y cola-
boraciones) indican los atributos ajustables del diseño para permitir que el patrón se
ajuste a una variedad de problemas (GAM95). Estos atributos representan caracte-
rísticas del diseño que pueden buscarse (por ejemplo, a t ravés de una base de datos)

TM

PDF Editor

270 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

para que sea factible encontrar un patrón apropiado. Por último, la guía asocia i.i
con el u so de un patrón de diseño indica las ramificaciones de las decisiones 3=11

diseño.

•
¿ Q u é t i p o s
d e p a t r o n e s

d e d i s e ñ o e s t á n
d i s p o n i b l e s p a r a
el i n g e n i e r o d e
s o f t w a r e ?

"Los potrones están o medio hornear, lo que significo que siempre debes terminarlos y adaptarlos a tu propio
entorno."

M a r t í n F o w f e t

Los nombres de los pat rones de diseño deben elegirse con cuidado. Uno de i a
problemas técnicos clave en la reutilización de sof tware es la falta de habilidad p a a
encontrar pat rones reutilizables existentes, a pesar de que existen cientos o miles x
patrones. La búsqueda del patrón "correcto" tiene un apoyo inmenso si se cuerna
con un nombre significativo del patrón.

9.5.2 Utilización de patrones en el diseño
Los pat rones de diseño pueden usarse durante el diseño del software. Una vez q j -
se ha desarrollado el modelo de análisis (capítulo 8), el diseñador puede exa r r . - -
una representación detallada del problema que debe resolver y las restricciones jjc
impone el problema. La descripción del problema se examina en varios grados
abstracción para determinar si es flexible para uno o más de los siguientes tipos de pas» - j

nes de diseño.

Patrones arqui tec tónicos . Estos pat rones definen la estructura general del
ware, indican las relaciones entre los subsis temas y los componen tes del so
y definen las reglas para especificar las relaciones entre los e lementos (el
paquetes, componentes , subsistemas) de la arquitectura.

Patrones de d i s eño . Estos pat rones se aplican a un e lemento específico
diseño c o m o un agregado de componentes para resolver algún problema de di:
relaciones entre los componentes o los mecanismos para efectuar la comunic
de componente a componente .

Idiomas. A veces l lamados patrones de código, estos pat rones específicos de
guaje por lo general implementan un e lemento algorítmico o un componente
protocolo de interfaz específico o un mecanismo de comunicación entre los coirp:-

nentes.

Cada uno de los tipos de pat rones difiere en el grado de abstracción con e.
está representado y con el grado en el que proporciona una guía directa para la a a
vidad de construcción (en este caso, codificación) del proceso de sof tware

9.5.3 Marcos de trabajo
En algunos casos e s necesar io proporcionar u n a infraestructura esquelética e s r^
fica de implementación, l lamada marco de trabajo, para el t rabajo de diseño. Est:
el diseñador puede seleccionar una "miniarquitectura reutilizable que ofrezca el

TM

PDF Editor

CAPITULO 9 INGENIERÍA DEL DISEÑO 271

portamiento y la estructura genérica para una familia de abstracciones de software,
junto con un contexto.. . que especifique su colaboración y uso dentro de un domi-

K V E nio dado" [APP98).
! trabajo es U n m a r c o de trabajo no e s un patrón arquitectónico, s ino un esqueleto con una
> de código colección de "puntos de conexión" (también l lamados ganchos y ranuras) que le per-

miten adaptarse a un dominio de un problema específico. Los puntos de conexión
; tJn c'oses permiten al diseñador integrar clases o funcionalidad específicas del problema den-

tro del esqueleto. En un contexto orientado al objeto, un marco de trabajo es una
colección de clases que cooperan.

En esencia, el diseñador de un marco de t rabajo argumentará que una miniarqui-
tectura reutilizable se puede aplicar a todo el software que se desarrollará dentro de
un dominio limitado de aplicación. Para que sean más efectivos, los marcos de tra-
ba jo se aplican sin cambios. Se pueden agregar e lementos de diseño adicionales,
pero sólo a través de los puntos de conexión que permiten que el diseñador desa-
rrolle el esqueleto del marco de trabajo.

La ingeniería de diseño comienza cuando la primera iteración de la ingeniería de
requisitos llega a su fin. La finalidad del diseño de sof tware es aplicar un conjunto
de principios, conceptos y prácticas que conducen al desarrollo de un sistema o pro-
ducto de alta calidad. La meta del diseño e s crear un modelo de software que imple-
men te todos los requisitos del cliente de manera correcta y complazca a aquellos
que lo usen. Los ingenieros de diseño deben examinar por medio de muchas alter-
nativas de diseño y converger en la solución que mejor cumpla las necesidades de
los interesados en el proyecto.

El proceso de diseño avanza de una visión general de software a una visión m á s
estrecha que define el detalle requerido para implementar un sistema. El proceso
comienza con un enfoque en la arquitectura. Se definen los subsistemas; s e estable-
cen mecanismos de comunicación entre los subsistemas; se identifican los compo-
nentes; y se desarrolla una descripción detallada de cada componente . Además, se
diseñan las interfases internas, externas y del usuario.

Los conceptos de diseño han evolucionado en la primera mitad del siglo de tra-
ba jo de la ingeniería del software. Estos conceptos describen atributos del software
de computadora que deben estar presentes sin importar el proceso de ingeniería del
sof tware que se elija, los métodos de diseño que se apliquen, o los lenguajes de pro-
gramación que utilicen.

El modelo de diseño abarca cuatro e lementos diferentes. En la medida en que s e
desarrolla cada uno de estos elementos evoluciona una visión más completa del
diseño. El e lemento arquitectónico utiliza información derivada del dominio de apli-
cación, el modelo de análisis y catálogos disponibles para pat rones y estilos que
deriven una representación estructural completa del software, sus s is temas y com-

TM

PDF Editor

272 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

ponentes. Los elementos de diseño de interfaz modelan interfaces internas y exter-í
ñas y la interfaz del usuario. Los elementos al nivel de componentes definen caza
uno de los módulos (componentes) que pueblan la arquitectura. Por último, los ó t
mentos de diseño al nivel de despliegue asignan la arquitectura, sus componentes
las interfases a la configuración física que albergará el software.

El diseño basado en patrones es una técnica que reutiliza elementos de dis
que han probado ser exitosos en el pasado. Cada patrón arquitectónico, patrón
diseño o idioma se cataloga, se documenta por completo y se considera cuidadc
mente cuando se evalúa para incluirlo en una aplicación específica. Los marcos
trabajo, una extensión de los patrones, ofrecen un esqueleto arquitectónico para
diseño de subsistemas completos dentro de un dominio de aplicación específica

[AMB01J Ambler, S.. The Objecl Primer. Cambridge Univ. Press, 2a. ed., 2001.
[APP98] Appleton, B„ "Patterns and Software: Essential Concepts and Terminology, pu rx .

obtenerse en h t tp : / /www.enterac t .com/~bradapp/docs /pa t tems- in t ro .h tml .
[ARL02] Arlow,). e I. Neusdadt, UML and the Unified Process, Addison-Wesley, 2002.
[BEL81] Belady, L., prólogo de Software Design: Methods and Techniques (L. J. Peters, autor), '

don Press, 1981.
¡FOWOO] Fowler, M. et ai, Re/acloríng. Improving the Design of Eásting Code, Addison-We

2 0 0 0 .
[GAM951 Gamma, E. et al., Design Patterns, Addison-Wesley, 1995.
[GAR95] Garlan, D. y M. Shaw, "An lntroduction to Software Architecture", en Advances

Software Engineering and Knowledge Engineering, vol. I (V. Ambriola y G. Tortora, eds .) '
Scientific Publishing Company, 1995.

[GRA87] Grady, R. B. y D. L. Casswell, Software Metrics: Establishing a Company-Wide Program.]
Prentice-Hall, 1987.

[JAC75] Jackson, M. A., Principies ofProgram Design, Academic Press, 1975.
[UE03] Lieberherr, K., "Demeter: Aspect-Oriented Programming", mayo de 2003, disponible i

h t tp : / /www.ccs .neu.edu/home/ l ieber /LoD.html .
[MA103) Maioriello, J., "What Are Design Patterns and Do 1 Need Them?", developer.com,;

disponible en h t tp : / /www.developer .com/des ign/ar t ic le .php/147456l .
[MCG91] McGlaughlin, R., "Some Notes on Program Design". en Software Engineering Notes

16, núm. 4, octubre de 1991, pp. 53-54.
[MYE78] Myers, G„ Composite Structured Design, Van Nostrand, 1978.
[OMGOl] Object Management Group, OMG Unified Modeling Language Speciftcaüon, versiór

septiembre de 2001.
IPAR721 Pamas, D. L., "On Criteria to be used in Decomposing Systems into Modules",

vol. 14, núm. 1, abril de 1972, pp. 221-227.
[ROS75] Ross, D., I Goodenough y C. Irvine, "Software Engineering: Process, Principies

Goals", en IEEE Computer, vol. 8, núm. 5, mayo de 1975.
[SCH02] Schmuller,). , Teach YourseifUML, SAMS Publishing, 2002.
[SHA96] Shaw, M. y D. Garlan. Software Architecture, Prentice-Hall, 1996.
[STA02] "Metaphor", en The Stanford HCl Leammg Space, 2002, ht tp: / /hci .Stanford.edu/hcfcl

concepts /metaphor .html .
[STE74] Stevens, W„ G. Myers y L. Constantine, "Structured Design", en IBM Systems)ouma¡ :

13, núm. 2, 1974. pp. 115-139.
[W1R71] Wirth, N., "Program Development by Stepwise Refinement", en CACM, vol. 14, n u - -

1971, pp. 221-227.

TM

PDF Editor

http://www.enteract.com/~bradapp/docs/pattems-intro.html
http://www.ccs.neu.edu/home/lieber/LoD.html
http://www.developer.com/design/article.php/147456l
http://hci.Stanford.edu/hcfcl

CAPÍTULO 9 INGENIERÍA DEL DISEÑO 273

P R O B L E M A S Y P U N T O S A C O N S I D E R A R

9 . 1 . ¿Se diseña un software cuando se "escribe" un programa? ¿Qué es lo que hace que el dise-
ño de software sea diferente a la generación de código?

9 . 2 . Si un diseño de software no es un programa (de hecho no lo es), ¿entonces, qué es?

9 . 3 . ¿Cómo se evalúa la calidad de un diseño de software?

9 . 4 . Examinar el conjunto de tareas presentadas para un diseño. ¿Cuándo se evalúa ia calidad
dentro del conjunto de tareas? ¿Cómo se logra esto?

9 . 5 . Dar ejemplos de tres abstracciones de da tos y abstracciones procedimentales que puedan
utilizarse para manipularlas.

9 . 6 . Describir con argumentos propios la arquitectura de software.

9 . 7 . Sugerir un patrón de diseño relacionado con una categoria de cosas cotidianas (por e jem-
plo, productos electrónicos, automóviles, aparatos). Documentar el patrón con ayuda de la
plantilla que se presenta en la sección 9.5.

9 . 8 . ¿Existe algún caso en el que los problemas complejos requieran de menos esfuerzo para
resolverse? ¿Cómo afectaría ese caso el argumento para la modularidad?

9 . 9 . se debe implementar un diseño modular como software monolítico? ¿Cómo se puede
lograr esto? ¿El desempeño es la única justificación para la implementación del sof tware mono-
lítico?

9 . 1 0 . Explicar la relación entre el concepto de ocultación de información como un atributo de
modularidad efectiva y el concepto de independencia del módulo.

9 . 1 1 . ¿Cómo se relacionan los conceptos de acoplamiento y portabilidad del software? Dar
ejemplos que apoyen la explicación.

9 . 1 2 . Aplicar un "enfoque de refinamiento paso a paso" para desarrollar tres grados diferentes
de abstracción procedimental para uno o más de los siguientes programas: a) Desarrollar una
máquina que expida cheques que, al dar una cantidad numérica en dólares, imprima la canti-
dad en palabras que por lo general se requiere en un cheque; b) resolver de manera iterativa la
raiz de una ecuación trascendental; c) desarrollar una tarea simple que planee algoritmos para
un sistema operativo.

9 . 1 3 . Realizar una pequeña investigación sobre programación extrema y escribir un texto
breve acerca de la refabricación para un proceso de desarrollo de software ágil.

9 . 1 4 . Visitar un depósito de patrones de diseño (en la web) y navegue por unos minutos a tra-
vés de los patrones. Elegir uno y presentarlo ante los compañeros de clase.

O T R A S L E C T U R A S Y F U E N T E S DE I N F O R M A C I Ó N

Donald Norman ha escrito dos libros (The Design o/Eveiyday Things, Doubleday, 1990, y The
Psychology of Everyday Things, HarperCollins, 1988) que se han convertido en clásicos en la
bibliografía sobre diseño y "debe" leerlos cualquiera que diseñe cualquier cosa que usen los
humanos. Adams (Conceptual Blockbusting, 3a. ed., Addison-Wesley, 1986) ha escrito un libro
que es una lectura esencial para los diseñadores que quieran ampliar su manera de pensar. Por
último, un texto clásico de Polya (How to Solve It, Princeton University Press, 2a. ed„ 1988) pro-
porciona un proceso de resolución de problemas genérico que puede ayudar a los diseñadores
de software al enfrentarse con problemas complejos.

Dentro de la misma tradición, Winograd el al. (Bringing Design lo Software, Addison-Wesley,
1996) analiza los diseños de software que funcionan, los que n o funcionan y por qué. Un libro
fascinante editado por Wixon y Ramsey (Field Methods Casebook for Software Design, Wiley,

TM

PDF Editor

274 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

1996) sugiere métodos de investigación de campo (muy parecidos a los que utilizan los a n "
pólogos) para entender cómo los usuarios finales hacen el trabajo que hacen, y después ofirec;
una guía para diseñar el sof tware que satisfaga sus necesidades. Beyer y Holtzblatt (Contextj-
Design: A Customer-Centered Approach to Systems Designs, Academic Press, 1997) ofrecen o c i
visión del diseño de software que integra al cliente-usuario en cada aspecto del proceso áe
diseño de software.

McConnell (Code Complete, Microsoft Press, 1993) presenta una excelente exposición de);s
aspectos prácticos de diseñar sof tware para computadora de alta calidad. Robertson (Siirc
Program Design, 3a. ed., Kboyd y Fraser Publishing, 1999) ofrece una útil explicación introdu;
toria del diseño de software para quienes comienzan su estudio acerca del tema. Fowler y s - s
colegas (Refactoríng: Improving the Design ofExisting Code, Addison-Wesley, 1999) exponen t í -
n icas para el mejoramiento incremental de los diseños de software.

En la década pasada se han escrito muchos libros sobre diseños basados en patrones pa~
ingenieros de software. Gamma y sus colegas [GAM95] han escrito el libro fundamental scc";
el tema. Otros libros de Douglass (Real-Time Design Pattems, Addison-Wesley, 2002), Mets¿:-
(Design Pattems Applied, Wrox Press, 2002), Marinescu y Román (EJB Design Pattems, Wiir
2001) sitúan patrones de diseño en ambientes de aplicación y lenguajes específicos. Aderr Í ;
los libros clásicos del arquitecto Christopher Alexander (Notes on the Synthesis o/Form, Har. r :
University Press, 1964, y A Pattem Language: Towns, Buildings, Construction, Oxford Universr
Press, 1977) debe leerlos el diseñador de software que pretenda comprender a fondo los par-
nés de diseño.

En Internet se dispone de una amplia variedad de fuentes de información sobre ingenie-.*
de diseño. Una lista actualizada de referencias en la red mundial relevantes para el diseño :
software y la ingeniería de diseño puede encontrarse en el sitio web de SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

D I S E Ñ O
ARQUITECTÓNICO 10

.296

d e . . .297

. . 288

fclo . . 2 8 7

i » . .276

de .294

de . . 2 8 4

. . 2 7 9

ée datos 278

.281

. . . 3 0 2

.296

.294

El d i s e ñ o s e h a d e s c r i t o c o m o u n p r o c e s o d e v a r i o s p a s o s e n el c u a l l a s r e -
p r e s e n t a c i o n e s d e la e s t r u c t u r a d e l o s d a t o s y el p r o g r a m a , l a s c a r a c t e r í s -

t i c a s d e la i n f o r m a c i ó n y el d e t a l l e p r o c e d i m e n t a l s e s i n t e t i z a n a p a r t i r d e

l o s r e q u i s i t o s . E s t a d e s c r i p c i ó n la a m p l í a F r e e m a n [FRE80]:

[D)iseñó es una actividad relacionada con la toma de decisiones, a m e n u d o de natu-

raleza estructural. Comparte con la programación una preocupación relacionada con

abs t raer la representac ión de la información y las secuenc ias del procesamiento , pe-

ro el grado de detal les es muy diferente en los ext remos. El d iseño construye repre-

sen tac iones coheren tes y bien p l aneadas de los programas , q u e se concent ran en las

interrelaciones ent re las par tes al nivel m á s elevado y las operac iones lógicas e n los

niveles inferiores. . .

C o m o s e i n d i c ó e n el c a p i t u l o 9, e l d i s e ñ o e s t á o r i e n t a d o a la i n f o r m a c i ó n . Los

m é t o d o s d e d i s e ñ o de l s o f t w a r e s e d e r i v a n d e la c o n s i d e r a c i ó n d e c a d a u n o d e

l o s t r e s d o m i n i o s d e l a n á l i s i s d e l m o d e l o . L o s d o m i n i o s d e la i n f o r m a c i ó n , la f u n -

c i ó n y el c o m p o r t a m i e n t o s i r v e n c o m o g u í a p a r a el d i s e ñ o de l s o f t w a r e .

En e s t e c a p í t u l o s e p r e s e n t a r á n l o s m é t o d o s r e q u e r i d o s p a r a c r e a r " r e p r e s e n -

t a c i o n e s c o h e r e n t e s y b i e n p l a n e a d a s " d e l a s c a p a s d e los d a t o s y la a r q u i t e c t u -

r a d e l m o d e l o d e d i s e ñ o . El o b j e t i v o e s p r o p o r c i o n a r u n e n f o q u e s i s t e m á t i c o de l

d i s e ñ o a r q u i t e c t ó n i c o : los p l a n o s p r e l i m i n a r e s q u e s e u t i l i z a n .

¿ Q u é e s ? Ei diseño arquitectónico
represento la estructura d e da tos y
los componen te s del p r o g r a m a nece-
sarios p a r a construir un sistema com-
putacional . A s u m e el estilo arquitec-

tónico q u e t omará el sistema, la estructura y las
p rop i edades d e los componen tes q u e constituyen
e sistema y las interrelaciones entre todos los
componentes arqui tectónicos d e un sistema.

i n l o h a c e ? A u n q u e un ingeniero de soft-
ware p u e d e d i señar los da tos y la arqui tec tura ,
a m e n u d o el t r a b a j o se a s i g n a a especial is tas
c u a n d o se construyen sistemas g r a n d e s y com-
ciejos. Un d i señador de b a s e d e da tos o d e al-
macén d e da tos c r e a la arqui tectura d e da tos del
sistema. El "arquitecto del s is tema" selecciona un
estilo arqui tectónico a p r o p i a d o p a r a los requisi-

tos der ivados du ran t e la ingenier ía del sistema y
el análisis d e los requisitos del software.

¿Por q u é es impor t an t e? Nadie trataría de
construir u n a c a s a sin un p lano, ¿ve rdad? Tam-
p o c o e m p e z a r í a a t r a z a r p i a n o s b o s q u e j a n d o la
distribución d e la fon taner ía . Necesi tar ía un p a -
n o r a m a gene ra l (la p rop ia ca sa) an tes d e preo-
c u p a r s e p o r los detalles. Eso es lo q u e h a c e el di-
s e ñ o arquitectónico: p roporc iona una vista gene
ral y a s e g u r a q u e se o b t e n g a lo q u e se d e s e a .

¿Cuáles son los p a s o s ? El diseño arquitectóni-
co e m p i e z a con el d i seño d e los d a t o s y luego
p a s a a la derivación d e u n a o m á s representa-
ciones de la estructura arqui tectónica del siste-
m a . Se anc l z a r 'os estilos o pa t rones arquitec-
tónicos a : t emos p a r a der ivar la estructura q u e se
a m o l d a mejor c os requisitos del cliente. En

275

TM

PDF Editor

276 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

cuanto se selecciona una opción se e l abo ra la
arquitectura e m p l e a n d o un método d e diseño
a p r o p i a d o .

¿Cual e s el producto obten ido? Un modelo
q u e a b a r c a la arquitectura d e los da tos y la es-
tructura del p r o g r a m a se c rea d u r a n t e esta eta-
p a del diseño. Además , se descr iben las propie-
d a d e s de los componentes y sus relaciones ¡interac-
ciones).

¿Cómo p u e d o estar s e g u r o de q u e lo he
h e c h o c o r r e c t a m e n t e ? En c a d a e t a p a se re-
visan los productos resultantes del diseño de:
sof tware p a r a verificar la clar idad, la cor reo
ción, el g r a d o en q u e se han comple tado y s.
consistencia con los requisitos y entre unos
otros.

1 0 . 1 A R Q U I T E C T U R A DEL S O F T W A R E

En su notable libro sobre el tema, Shaw y Garlan [SHA96] analizan la arquitec:
del software de la siguiente manera:

Desde la primera vez que un programa se dividió en módulos, los s is temas de software
han tenido arquitecturas, y los programadores han sido responsables de las interacciones
entre los módulos y las propiedades globales del ensamblaje . Históricamente, las arqu:-
tecturas han estado implícitas (como accidentes de implementación o s is temas heredades
del pasado). Los buenos desarrolladores de software han adoptado con frecuencia uno :
varios patrones arquitectónicos como estrategia para la organización del sistema, pero los
emplean de manera informal y no tienen medios para hacerlos explícitos en el sistema re-

sultante.

Hoy, la arquitectura del software efectiva y su representación y diseño explícitos :
han vuelto temas dominantes en la ingeniería del software.

" l o arqui tec tura d e u n s i s t ema e s u n morco conceptual comple to que descr ibe su f o r m a y es t ruc tura (sus componen te :
y la m o n e r o en que s e i n t e g r a n) . "

Jerrold Grochow

10.1.1 ¿Qué es la arquitectura?
Cuando se analiza la arquitectura de un edificio vienen a la mente muchos a tribu: J
diferentes. En el aspecto más simple se considera la forma general de la estructura
física. Pero, en realidad, la arquitectura es mucho más, es la manera en que los d - j
versos componentes de un edificio se integran para formar un todo cohesionado, a
la manera en que el edificio se amolda a su ambiente y se combina con otros e c í - j
cios vecinos. Es el grado en el cual el edificio cumple con el propósito estableció: «
en que satisface las necesidades de su propietario. Es la percepción estética de la ~ |
tructura —el impacto visual del edificio— y la manera en que las texturas, los coi :-J
res y los materiales se combinan para crear la fachada externa y el "entorno vivier-l
te" del interior. Son pequeños detalles: el diseño de la iluminación, el tipo de piso, -a
colocación de las cosas que cuelgan de las paredes, la lista es casi interminable -A
nalmente, se trata de un arte.

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 277

KVE
• del
»modelar

• de un
l i m o n e r a
£ » 0 5 Y los

irtresí.

¿Pero qué pasa con la arquitectura del software? Bass, Clement y Kazman [BAS03]
definen es te término elusivo de la siguiente manera:

La arquitectura del sof tware de un programa o sistema de cómputo e s la estructura o las
estructuras del sistema, que incluyen los componentes del software, las propiedades visi-

bles externamente de esos componentes y las relaciones entre ellos.

La arquitectura no e s el sof tware operativo. En cambio, e s una representación que
permite que un ingeniero del software: 1) analice la efectividad del diseño para cum-
plir con los requisitos establecidos, 2) considere opciones arquitectónicas en una
etapa en que aún resulta relativamente fácil hacer cambios al diseño, y 3) reduzca
los riesgos asociados con la construcción del software.

"Cósese t u o n t o a n t e s con su a rqu i tec tu ra y d e s p u é s a r r e p i é n t a s e a s u g u s t o . "

es útdes a
sde

N*l

IJ id.
*/

K
CLAVE

ICO
i una

] de Gestolt
» s S e m o , lo que

i al ingeniero de
i examinados

i un todo.

Esta definición destaca el papel de los "componentes del software" en cualquier
representación arquitectónica. En el contexto del diseño arquitectónico, un compo-
nente de software es algo tan simple como un módulo del programa o una clase
orientada a objetos, pero también se extiende para incluir bases de datos y middle-
ware que permita configurar una red de clientes y servidores.

En es te libro, el diseño de la arquitectura del sof tware considera dos niveles de la
pirámide del diseño (figura 9.1): el diseño de datos y el diseño arquitectónico. En el
contexto del análisis anterior, el diseño de los datos permite representar el compo-
nente de datos de la arquitectura en s is temas convencionales y definiciones de cla-
se (atributos y operaciones de encapsulamiento) de los s is temas orientados a obje-
tos. El diseño arquitectónico se concentra en la representación de la estructura de
los componen tes del software, sus propiedades e interacciones.

10.1.2 ¿Por qué es importante la arquitectura?
En un libro dedicado a la arquitectura del software, Bass y sus colegas IBAS03] iden-
tifican tres razones clave por las cuales la arquitectura del sof tware e s importante:

• Las representaciones de la arquitectura del sof tware permiten la comunica-
ción entre todas las partes (participantes) interesadas en el desarrollo de un
sistema de cómputo.

• La arquitectura destaca las decisiones iniciales relacionadas con el diseño que
tendrán un impacto profundo en todo el trabajo de la ingeniería del sof tware
que le sigue y, lo que también resulta importante, en el éxito final del sistema
como entidad operacional.

• La arquitectura "constituye un modelo relativamente pequeño e intelectual-
mente comprensible de cómo está estructurado el sistema y c ó m o trabajan
juntos sus componentes" [BAS03].

TM

PDF Editor

278 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

El modelo de diseño arquitectónico y los patrones arquitectónicos que contiene >JB
transferibles. Es decir, los estilos y patrones arquitectónicos (sección 10.3.1) se api :
al diseño de otros sistemas y representan un conjunto de abstracciones que penr s r
a los ingenieros de software describir la arquitectura de maneras predecibles.

I Q . 2 D I S E Ñ O P E P A T O S mm
-

La acción de diseño de datos t raduce los objetos de datos definidos como parte ad
modelo de análisis (capítulo 8) en estructuras globales al nivel de componentes x
software y, cuando es necesario, una arquitectura de base de datos al nivel de a :
cación. En a lgunas si tuaciones debe diseñarse y construirse una base de datos esr-r jj
cíficamente para un nuevo sistema. Sin embargo, en otras, se emplean una o
bases de datos existentes.

10.2.1 Diseño de datos al nivel arquitectónico
Hoy los negocios grandes y pequeños están inundados de datos. No resulta pocc ;
m ú n que incluso u n negocio de t amaño moderado tenga docenas de bases de
que sirven a muchas aplicaciones que abarcan cientos de gigabytes de datos. E
to consiste en extraer información útil de este entorno de datos, sobre todo
la información deseada tiene funcionalidad cruzada (por ejemplo, información
sólo se obtiene si los datos específicos de mercadotecnia es tán relacionados de
ñera cruzada con los datos de ingeniería del producto).

En el siguiente sitio
Web se obtiene
infonnMión otara de

almocén de dalos:
www.
datawurehouse.
com. „

"ta calidad de los datos marca lo diferencia entre un almocén y un basurero d e dotos."
J a r r e t t R o s e n b e u

Para resolver este desafio la comunidad de empresas de la tecnología de la info
ción (TI) ha desarrollado la técnica de minería de datos, también denominada desc:.: --I
miento de conocimiento en bases de datos (DCBD), que recorre bases de datos existe r - e i
con el fin de extraer información apropiada en el ámbito de los negocios. Sin embarp: I
la existencia de múltiples bases de datos, sus diferentes estructuras, el grado de d e ^ - |
lie que contienen y muchos otros factores hacen que la minería de datos resulte d r ; . [j
dentro de un entorno existente de base de datos. Una solución alterna, denominada .. -
macen de datos agrega una capa adicional a la arquitectura de datos.

Un almacén de datos e s un entorno de datos independiente que no está diré: J -
mente integrado en las aplicaciones cotidianas, pero que abarca todos los datos x - |
lizados en un negocio [MAT96]. En cierto sentido, un almacén de da tos es una b ¿ ^ |
de datos grande e independiente que tiene acceso a los datos a lmacenados en
bases de datos que sirven al conjunto de aplicaciones requeridas en un negocio.

Conviene más dejar el análisis detallado del diseño de estructuras de datos, b a s e s !
de datos y a lmacenes de datos a los libros dedicados a estos temas (por ejemp : . l
[DATOOO], [PRE98], [KIM98]). El lector interesado debe leer la sección Otras / e e f u r J

y fuentes de información de este capítulo como referencia adicional.

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 279

Minería y almacenamiento
de datos
Objetivo: Los herramientas de la minería de

ayudan en la identificación de relaciones entre
que describen un objeto de datos específico o un
de objetos de datos. Las herramientas para el
-miento de datos ayudan en el diseño de modelos

un almacén de datos.

ica: Estas herramientas tienen diversas mecánicas.
-|, las herramientas de minería aceptan conjuntos
de datos como entrada y permiten que el usuario

ulte para tratar de comprender mejor las
s entre diversos elementos de datos. Las

entas de almacenamiento empleadas en el diseño
ionan vínculos con la entidad u otras opciones de

i entas representat ivas '

1 de datos:
Objects, desarrollada por Business Objects, SA

-ww.businessobjects.com), es un conjunto de
-erramientas de diseño de datos que apoya "la

HERRAMIENTAS DE SOFTWARE

integración, la consulta, el informe, el análisis y el
análisis de datos".

SPSS, desarrollado por SPSS, Inc. (www.spss.com),
proporciona una amplia variedad de funciones
estadísticas que permiten el análisis de conjuntos grandes
de datos.

Almacenamiento de datos:
Industry Warehouse Studio, desarrollada por Sybase

(www.sybase.com), proporciona uno infraestructura de
almacén de datos empaquetado que "sirve como
trampolín" para iniciar el diseño de un almacén de datos.

IFW Business Intelligence Suite, desarrollada por
Modelware (www.modelwarepl.com), es un conjunto de
modelos, herramientas de software y diseños de base
de datos que "proporcionan un camino rápido al
almacén de datos y al diseño y la implementación de
centros de acopio de datos".

Una lista extensa de herramientas y recursos de minería y
almacenamiento de datos se encontrará en el Data
Warehousing Information Center (www.dwinfocenter.org).

¿ C a á l e s
p r á r a p i o s

q r f c a b l e s a l
de d a t o s ?

10.2.2 Diseño de datos al nivel de componentes
El diseño de datos al nivel de componentes se concentra en la representación de es-
tructuras de datos a las que se tiene acceso en forma directa mediante uno o más
componentes de software. Wasserman [WAS80] ha propuesto un conjunto de princi-
pios que se emplea para especificar y diseñar estas estructuras de datos. En realidad,
el diseño de datos empieza durante la creación del modelo de análisis. Si se recuerda
que el análisis y el diseño de requisitos suelen superponerse, se considerará el siguien-
te conjunto de principios (adaptado de [WAS80]) para la especificación de datos:

1. Los principios del análisis sistemático aplicados a la Junción y el comportamiento
también deben aplicarse a los datos. También es necesario desarrollar y revisar
las representaciones del flujo de datos y el contenido, identificar los objetos
de datos, considerar organizaciones alternas de datos y evaluar el impacto de
los datos que modelan el diseño del software.

2. Deben identificarse todas las estructuras de datos y las operaciones que se reali-
zarán. El diseño de una estructura de datos eficiente debe tener en cuenta las
operaciones que se realizarán en la estructura de datos. Los atributos y opera-
ciones encapsulados dentro de una clase satisfacen este principio.

1 El autor no respalda las herramientas expuestas; sólo representan una muestra de esta categoría.
En casi todos los casos los nombres son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.spss.com
http://www.sybase.com
http://www.modelwarepl.com
http://www.dwinfocenter.org

280 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

3 . Debe establecerse un mecanismo para la definición del contenido de cada objei
de datos y usarlo para definir los datos y las operaciones que se les aplican. Los
diagramas de clase (capítulo 8) definen los elementos de datos (atributos)
contenidos dentro de una clase y el procesamiento (operaciones) que se api
ca a e sos elementos de datos.

4 . Las decisiones del diseño al nivel de datos deben posponerse hasta una de las i
timas etapas del proceso de diseño. Un proceso de refinación paso a paso es
aplicable al diseño de datos. Es decir, la organización general de los datos
puede definirse durante el análisis de los requisitos, refinarse durante el tra
ba jo de diseño de datos y especificarse de manera detallada durante el diser
al nivel de componentes .

5 . La representación de una estructura de datos sólo debe conocerse para los mó£.<-
los que deben usar directamente los datos que contiene tal estructura. El concer
to de ocultación de la información y el concepto relacionado del acoplamier : :
(capítulo 9) proporcionan conocimientos importantes sobre la calidad de ur.
diseño de software.

6. Debe desarrollarse una biblioteca de estructuras de datos útiles y también las
operaciones que pueden aplicárseles. Esto se logra con una biblioteca de clase:

7. Un diseño de software y un lenguaje de programación deben dar soporte a la es-
pecificación y la realización de los tipos de datos abstractos. La implementacié"
de una sofisticada estructura de datos llega a volverse excesivamente difícil s
no existen medios para la especificación directa de la estructura en el lengLi
je de programación elegido para la implementación.

Estos principios forman una base para un enfoque de diseño de datos, al nive!
componentes , que se integre a las actividades de análisis y diseño.

1 0 . 3 E S T I L O S Y P A T R O N E S A R Q U I T E C T Ó N I C O S

Cuando un constructor es tadounidense usa la frase "colonial con una sala al centr:
(centre hall colonial) para describir una casa, la mayoría de quienes estén famili¿-
zados con las casas en Estados Unidos evocará u n a imagen general del aspecto a:
la casa y de su plano general. El constructor ha usado un estilo arquitectónico core
mecanismo descriptivo para diferenciar la casa de otros estilos (por ejemplo, mar:
en A, rancho elevado, Cape Cod). Pero algo más importante es que el estilo arquite.
tónico también es una plantilla para la construcción. Resulta necesario proporcior^r
mayores detalles de la casa. Se deben especificar sus dimensiones finales, agrega-
características personalizadas, determinar los materiales de construcción, pero t
estilo ("colonial con sala al centro") e s el que guía el trabajo del constructor.

"En el f o n d o d e lo m e n t e de todo artista hay un patrón o tipo de arquitectura.*
G . K. C h e s t e r t o r

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 281

El software que se construye para sistemas de cómputo también muestra uno o
muchos estilos arquitectónicos. Cada estilo describe una categoría de sistemas que
abarca 1) un conjunto de componentes (por ejemplo, una base de datos, módulos
computacionales) que realizan una función requerida por el sistema; 2) un conjunto
de conectares que permiten la "comunicación, coordinación y cooperación" entre los
componentes; 3) restricciones que definen cómo se integran los componentes para
formar el sistema, y 4) modelos semánticos que permiten a un diseñador, mediante
el análisis de las propiedades conocidas de las partes que lo integran (BAS03), com-
prender las propiedades generales de un sistema.

Un estilo arquitectónico es una transformación impuesta al diseño de todo un sis-
tema. El objetivo es establecer una estructura para todos los componentes del siste-
ma. En caso de que una arquitectura existente se vaya a someter a reingenieria (ca-
pítulo 31), la imposición de un estilo arquitectónico desembocará en cambios funda-
mentales en la estructura del software, incluida una reasignación de la funcionalidad
de los componentes [BOSOO].

Un patrón arquitectónico, al igual que un estilo, impone una transformación en el
diseño de una arquitectura. Sin embargo, un patrón difiere de un estilo en varios ele-
mentos fundamentales: 1) el alcance de un patrón es menor, ya que se concentra en
un aspecto en lugar de hacerlo en toda la arquitectura; 2) un patrón impone una re-
gla sobre la arquitectura, pues describe la manera en que el software manejará al-
gún aspecto de su funcionalidad al nivel de la infraestructura (por ejemplo, concu-
rrencia) [BOSOO]; 3) los patrones arquitectónicos tienden a abarcar aspectos especí-
ficos del comportamiento dentro del contexto de la arquitectura (por ejemplo, cómo
maneja una aplicación en tiempo real la sincronización o las interrupciones). Los pa-
trones se usan junto con un estilo arquitectónico para determinar la forma de la es-
tructura general de un sistema. En la siguiente sección se expondrán estilos y patro-
nes arquitectónicos de uso común en el software.

10.3.1 Una breve taxonomía de estilos arquitectónicos
Aunque se han creado millones de sistemas de cómputo en los últimos 50 años, la
gran mayoría puede clasificarse (consúltense ISHA96], [BUS96], [BAS03]) en un nú-
mero relativamente pequeño de estilos arquitectónicos:

Arquitectura centrada e n datos . Un almacén de datos (por ejemplo, un archivo o
una base de datos) se encuentra en el centro de esta arquitectura; otros componen-
tes tienen acceso a él y cuentan con la opción de actualizar, agregar, eliminar o, por
otra parte, modificar los datos de ese almacén. En la figura 10.1 se ilustra un estilo
típico centrado en datos. El software cliente tiene acceso a un almacén central. En
algunos casos éste es pasivo. Es decir, el software cliente accede a los datos inde-
pendientemente de cualquier cambio hecho a los datos o a las acciones de otro soft-
ware cliente. Una variación de este enfoque transforma el depósito en un "pizarrón"
que envía notificaciones al software cliente cuando cambian los datos de interés pa-
ra el cliente.

TM

PDF Editor

282 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Arquitectura
centrada en
datos.

Una arquitectura centrada en datos promueve la capacidad de integración [BAS::
Esto significa que es posible cambiar componentes existentes y agregar nuevos <
ponentes cliente a la arquitectura sin preocuparse por otros clientes (ya que los i
ponentes cliente operan en forma independiente). Además, es posible pasar datos e - - |
tre clientes empleando el mecanismo del pizarrón (es decir, el componen te p i z a r : - i |
sirve para coordinar la transferencia de información entre clientes). Los compor es I
tes cliente ejecutan los procesos de manera independiente.

Arquitectura de flujo d e d a t o s . Esta arquitectura se aplica cuando los datos &
entrada se habrán de transformar en datos de salida mediante una serie de compor es-
tes para el cálculo o la manipulación. Una estructura de tuberías y filtros (figura 1 : 2
tiene un conjunto de componentes , denominados filtros, conectados por tuberías ojc
transmiten datos de un componente al siguiente. Cada filtro funciona sin toma: t

C F F B I T W
Arquitectura
de flujo de
datos.

Tuberías

Tuberías y filtros

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 283

cuenta si los componentes tienen flujo ascendente o descendente; está diseñado pa-

ra esperar la entrada de datos con cierta forma y producir su salida (al siguiente fil-
tro) de una forma especifica. Sin embargo, no es necesario que el filtro conozca el
funcionamiento de los filtros vecinos.

"En los disciplinas d e lo ingeniería se usan ampliamente potrones y estilos de diseño."
M a r y S h o w y David G a r l a n

Si el flujo de datos degenera en una sola línea de t ransformaciones se denomina
procesamiento por lotes secuencial. Esta estructura acepta un procesamiento por lo-
tes de datos y luego aplica una serie de componen tes secuenciales (filtros) para
transformarlos.

Arquitectura de l lamada y retorno. Este estilo arquitectónico permite que un di-
señador de software (arquitecto del sistema) obtenga una estructura de programa
que resulta relativamente fácil modificar y cambiar de tamaño. En esta categoría hay
dos subestilos [BAS03]:

• Arquitectura de programa principaí/subprograma. Esta estructura de programa
clásica separa la función en una jerarquía de control donde un programa
"principal" invoca a varios componentes de programa, que a su vez pueden
invocar a otros componentes . En la figura 10.3 se ilustra una arquitectura de
este tipo.

• Arquitectura de llamada de procedimiento remoto. Los componentes de una ar-
quitectura de programa principaí /subprograma se distribuyen entre varias
computadoras de una red.

TM

PDF Editor

PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

C B E X F
Arquitectura
estratificada.

Arquitectura or ientada a obje tos . Los componen tes de un sistema encapsu 3-
los datos y las operaciones que deben aplicarse para manipular los datos. La c o r
nicación y coordinación entre componentes se consigue mediante el paso de mensa

Arquitectura estrat i f icada. En la figura 10.4 se ¡lustra la estructura básica de
arquitectura estratificada. Hay varias capas definidas; cada una de ellas realiza cor
raciones que se acercan progresivamente al conjunto de instrucciones de la m á o j B
na. En la capa externa los componentes sirven a las operaciones de interfaz de USÜ
rio. En la capa interna los componentes sirven como interfaz con el sistema opert
tivo. Las capas intermedias proporcionan servicios de utilería y de sof tware de ar-
caciones.

Estos estilos arquitectónicos sólo son un pequeño subconjunto de los que disr >d
ne el diseñador de software.2 Una vez que la ingeniería de requisitos define las z r
racterísticas y restricciones del sistema que habrá de construirse, podrán elegírs; d
estilo arquitectónico o la combinación de estilos que mejor combinen con las carar-
terísticas y restricciones. En muchos casos será apropiado m á s de un estilo y podra»
diseñarse y evaluarse distintas opciones. Por ejemplo, en muchas aplicaciones 2t
base de datos se combina un estilo por capas (apropiado para casi todos los s i s u l
mas) con una arquitectura centrada en datos.

10.3.2 Patrones arquitectónicos
Si el constructor decide construir una casa colonial con sala al centro sólo p a a l
aplicar un estilo arquitectónico. Los detalles del estilo (por ejemplo, número de o f l

2 Consúltese [BOSOO], [HOFOO], IBAS03], [SHA97], [BUS96] y [SHA96] para contar con un análiso j
(aliado de los estilos y patrones arquitectónicos.

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 2 8 5

-ÍOGARSEGURO

Elección de un estilo arquitectónico

El escenar io : Cubículo de Jamie,
J p s continúa el modelado del diseño.
actores: Jamie y Ed, integrantes del equipo de
ieria del software HogarSeguro.

•versac ión:

frunciendo el ceño): Hemos estado modelando la
1 con UML... ya sabes, clases, relaciones y ese tipo
Así que supongo que lo adecuado será aplicar la

i orientada a objetos.3

_ .p_ j Pero...

*k Pero... tengo problemas para visualizar lo que es la
* ¥ c t u r a orientada a objetos. Conozco la arquitectu-

Bamada y retorno, una tipo de jerarquía de proce-
r.cional, pero orientada a objetos... no sé, me

amorfo.

(sonriendo): Amorfo, ¿eh?

lo que quiero decir es que no logro visualizar
. sólo el diseño de clases flotando en

el espacio.

Jamie: Bueno, eso no es cierto. Hay jerarquías de
clase... piensa en la jerarquía (agregación) que hicimos
para el objeto P lanoCasa [figura 9.3]. Una arquitectu-
ra orientada a objetos es una combinación de esa
estructura y las interconexiones (ya sabes, colaboracio-
nes) entre las clases. La mostraremos al describir por
completo los atributos y las operaciones, los mensajes
que se intercambian y la estructura de las clases.

Ed: Voy a dedicar una hora a correlacionar una arqui-
tectura de llamada y retorno, luego regresaré aquí y
pensaré en la arquitectura orientada a objetos.

Jamie: Doug no tendrá problema con eso. Él dijo que
debemos considerar arquitecturas alternas Por cierto, no
hay ninguna razón para no combinar ambas arquitectu-
ras.

Ed: Bueno, en eso estoy.

meneas, fachada de la casa, colocación de puertas y ventanas) variarán considera-
blemente, pero una vez que se ha tomado la decisión de la arquitectura general de
la casa, el estilo se impondrá al diseño.4

Los patrones arquitectónicos difieren un poco.5 Por ejemplo, cada casa (y todo es-
tilo arquitectónico para casas) emplea un patrón cocina, el cual define la necesidad
de colocar los artículos básicos de cocina, un fregadero, alacenas y, posiblemente,

3 Podría argumentarse que la arquitectura de HogarSeguro debe considerarse en un nivel más elevado
que la arquitectura indicada. HogarSeguro tiene diversos subsistemas (funcionalidad de monitoreo
de la casa, el sitio de monitoreo de la compañía y el subsistema que se ejecuta en la PC del propie-
tario). Dentro de los subsistemas prevalecen los procesos concurrentes (por ejemplo, el monitoreo
de sensores) y el manejo de eventos. A este nivel, algunas decisiones arquitectónicas se toman du-
rante la ingeniería del sistema y el producto (capítulo 6), pero el diseño arquitectónico dentro de la
ingeniería del software muy bien tendría que considerar estos aspectos.

4 Esto indica que tendrá una sala central y un pasillo, que las habitaciones estarán colocadas a la iz-
quierda y la derecha de la sala, que la casa tendrá dos (o más) pisos, que los dormitorios estarán en
la planta alta, etc. Estas "reglas" se imponen una vez que se ha tomado la decisión de usar el estilo
colonial con sala al centro.

5 Es importante observar que no hay un acuerdo universal sobre la terminología. Algunas personas
(por ejemplo, [BUS96]) usan los términos estilos y patrones como sinónimos, mientras que otros ha-
cen la sutil distinción sugerida en esta sección.

TM

PDF Editor

286 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

\ CLAVE
Uno arquitectura del
software tiene varios
patrones
arquitectónicos que
atienden temas como
la concurrencia, la
persistencia y lo
distribución.

reglas para ubicar cosas relacionadas con el flujo de t rabajo en la habitación. Ade
más, el patrón podría especificar la necesidad de cubiertas y acabados, iluminación,
interruptores de pared o una isla central, pisos, etc. Obviamente, hay más de un di-
s e ñ o de cocina, pero todo diseño se concebirá dentro del contexto de la "soluciór '
que sugiere el patrón cocina.

Como ya se indicó, los patrones arquitectónicos para el sof tware definen un e r
foque específico para el mane jo de alguna característica de comportamiento del S Í
tema. Bosch [BOSOO] define varios pat rones arquitectónicos. En los siguientes p á r n
fos s e presentan ejemplos representativos.

Concurrencia. Muchas aplicaciones deben manejar varias tareas de manera tal que
simulen paralelismo (es decir, esto ocurre cada vez que un solo procesador mane a
varias tareas "paralelas" o componentes) . Una aplicación tiene varias maneras 2
manejar la concurrencia, y cada una se presenta mediante un patrón arquitectóni:»
diferente. Por ejemplo, un enfoque consiste en usar un patrón de mane jo de proce
sos del sistema operativo que ofrece características integradas del sistema opera 1
vo que permiten la ejecución concurrente de los componentes . El patrón también ir
corpora funcionalidad del sistema operativo que mane ja la comunicación entre 1 3
procesos, la calendarización y otras funciones requeridas para alcanzar la concu-
rrencia. Otro método sería definir un calendarizador de tareas al nivel de apl icadóc.
Un patrón calendarizador de tareas contiene un conjunto de objetos activos, y c a r a
uno de ellos incluye una operación t i c o [BOSOO]. El calendarizador invoca perioc-
camente t icf) para cada objeto, que luego realiza las funciones que debe realizar a* -
tes de regresar el control al calendarizador, mismo que invoca de nuevo la opera-
ción tice) para el siguiente objeto concurrente.

Pers i s tenc ia . Los datos persisten si sobreviven después de la ejecución del p r e n -
so que los creó. Los datos persistentes se a lmacenan en una base de datos o un ar-
chivo; en un momento posterior, otros procesos t ienen la opción de leerlos o m o a -
ficarlos. En los entornos orientados a objetos la idea de un objeto persistente extien-
de un poco más el concepto de persistencia. Los valores de todos los atributos del
objeto, el es tado general de és te y otra información complementaria s e a lmace r^n j
para su aplicación y recuperación posterior. En general, se emplean dos patrones ar
quitectónicos para lograr la persistencia: 1) un patrón de sistema de administraos
de base de datos que aplica las capacidades de a lmacenamiento y recuperación de _~
sistema de administración de base de datos a la arquitectura de la aplicación, : 2
un patrón de persistencia al nivel de la aplicación que construye características de pe-
sistencia en la arquitectura de ésta (por ejemplo, el sof tware de procesamiento j e
palabras que mane ja su propia estructura de documento).

Distribución. El problema de la distribución dirige la manera en que se común: zar
entre sí los sistemas, o los componentes de éstos, en un entorno distribuido Es-»
problema incluye dos elementos: 1) la manera en que las entidades se conectan ca-
tre sí, y 2) la naturaleza de la comunicación. El patrón arquitectónico m á s comúr

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 287

tablecido para dirigir el problema de la distribución es el de corredor. Un corredor ac-
túa como "intermediario" entre el componente cliente y un componente servidor. El
cliente envía un mensaje al corredor (que contiene toda la información apropiada
para que se realice la comunicación), el cual completa la conexión. CORBA (capítu-
lo 30) es un ejemplo de una arquitectura de corredor.

Antes de elegir cualquiera de los patrones arquitectónicos indicados en los párra-
fos anteriores, debe evaluarse si es apropiado para la aplicación y el estilo arquitec-
tónico general, además de evaluar su facilidad de mantenimiento, confiabilidad, se-
guridad y desempeño.

10.3.3 Organización y reíinamiento
Debido a que el proceso de diseño suele dejar a un ingeniero de software con varias
opciones arquitectónicas, es importante establecer un conjunto de criterios de dise-
ño para evaluar un diseño arquitectónico. Las siguientes preguntas [BAS03] propor-
cionan una visión específica del estilo arquitectónico que se ha derivado.

Control. ¿Cómo se maneja el control dentro de la arquitectura? ¿Existe una jerar-
quía de control distintiva y, si es así, cuál es la función de los componentes dentro
de esta jerarquía de control? ¿Cómo transfieren los campos el control dentro del sis-
tema? ¿Cómo se comparte el control entre los componentes? ¿Cuál es la topología
del control (es decir, cuál es la forma geométrica que asume el control)? ¿Está sin-
cronizado el control o los componentes operan asincrónicamente?

Datos . ¿Cómo se comunican los datos entre los componentes? ¿El flujo de datos
es continuo o los objetos de datos se pasan esporádicamente al sistema? ¿Cuál es el
modo de transferencia de los datos (por ejemplo, los datos se pasan de un compo-
nente a otro o están disponibles globalmente para compartirse entre los componen-
tes del sistema)? ¿Existen componentes de datos (por ejemplo, un pizarrón o alma-
cén) y, de ser así, cuál es su papel? ¿Cómo interactúan los componentes funcionales
con los de datos? ¿Los componentes de datos son pasivos o activos (es decir, inte-
ractúan activamente con otros componentes del sistema)? ¿Cómo interactúan los
datos y el control dentro del sistema?

Estas preguntas proporcionan al diseñador una evaluación temprana de la calidad
del diseño y sientan las bases para un análisis más detallado de la arquitectura.

Cuando empieza el diseño arquitectónico debe ponerse en contexto el software que
se habrá de desarrollar; es decir, el diseño debe definir las entidades externas (otros
sistemas, otros dispositivos, otras personas) con las que interactúa el software y tam-
bién la naturaleza de la interacción. Esta información suele adquirirse del modelo de
análisis y toda la demás información reunida durante la ingeniería de requisitos. Una
vez que se ha modelado el contexto y que se han descrito todas las interfaces exter-

TM

PDF Editor

288 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

ñas del software, el diseñador especifica la estructura del sistema al definir y refina-*
los componentes del software que implementan la arquitectura. Este proceso prosu
de manera iterativa hasta que se obtiene una estructura arquitectónica completa

"l)n doctor entierro sus errores, pero un arquitecto sólo puede aconsejar o su cliente que plante vides.'
Frank Lbyd Wrigh-.

10.4.1 Representación del sistema en el contexto
En el capítulo 6 se indica que un ingeniero del sistema debe modelar el contexto

\ CLAVE
El contexto
arquitectónico
representa la manera
en que el software
interactúa con los
entidades externas a
sus límites.

•
¿Cómo inter-
actúan los

s is temas ent re sí?

diagrama de contexto del sistema (figura 6.4) cumple con este requisito al repn
tar el flujo de la información dentro y fuera del sistema, la información del usuar
el procesamiento relevante de soporte. Al nivel de diseño arquitectónico, un arqu •
tecto del sof tware aplica un diseño de contexto arquitectónico (DCA) para moce r r
la manera en que el software interactuará con las entidades ubicadas más allá de
límites. La estructura genérica de los d iagramas de contexto arquitectónico se
tran en la figura 10.5.

Si se toma como referencia la figura, los s is temas que interactúan con el
de destino (el sistema para el que se está desarrollando un diseño arquitectónico'
representan así:

• Sistemas superordinados: los que emplean el sistema de destino como parte ;
algún esquema de procesamiento de nivel más elevado.

• Sistemas subordinados: los que utiliza el sistema de destino y que proporcio-
nan los datos o el procesamiento necesarios para completar la funcionalids;
del sistema de destino.

Diagiama de
contexto
arquitectónico
(adaptado de
[BOSOO]).

Sistemas superordinados

1 1 1

Usados

Sistemas subordinados

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 289

• Sistemas al nivel de par: los que interactúan de igual a igual (es decir, la infor-
mación la producen o consumen los pares y el sistema de destino).

• Actores: las entidades (personas, dispositivos) que interactúan con el sistema
de destino produciendo o consumiendo información necesaria para el proce-
samiento de requisitos.

Cada una de estas entidades externas se comunica con el sistema de destino me-
diante una interfaz (los pequeños rectángulos sombreados).

Para ilustrar la utilización del DCA considérese de nuevo la función de seguridad
casera del producto HogarSeguro. El controlador general y el sistema de Internet del
producto HogarSeguro son superdordinados a la función de seguridad y se muestran
arriba de la función en la figura 10.6. La función de vigilancia es un sistema par y em-
plea (es empleado por) la función de seguridad en versiones posteriores del produc-
to. Los páneles de propietario y control son actores que actúan como productores y
consumidores de la información utilizada, producida (o de ambos tipos) por el soft-
ware de seguridad. Por último, el software de seguridad emplea los sensores, que se
muestran como subordinados de éste.

Como parte del diseño arquitectónico tendrían que especificarse los detalles de
cada interfaz mostrada en la figura 10.6. En esta etapa deben identificarse todos los
datos que fluyen al interior o el exterior del sistema de destino.

10.4.2 Definición de arquetipos
Un arquetipo es una clase o un patrón que representa una abstracción central impor-
tantísima en el diseño de una arquitectura para el sistema de destino. En general, se
requiere un conjunto relativamente pequeño de arquetipos para diseñar incluso sis-
temas relativamente complejos. La arquitectura del sistema de destino la integran

Producto
HogarSeguro

Sistema basado 1
en Interne! 1

Función de 1
vigilancia 1

Usa
Pares

TM

PDF Editor

290 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Relaciones
UML para los
arquetipos de
la función de
seguridad de
HogarSeguro
(adaptado de
[BOSOO]).

arquetipos, que representan e lementos estables de la arquitectura pero que puede-
dar paso a instancias de muchas maneras diferentes, con base en el comportarme-
to del sistema.

En muchos casos, los arquetipos se derivan al examinar las clases de análisis c t
finidas como parte del modelo de análisis. Si se continúa el análisis de la función ir
seguridad casera de HogarSeguro se definirían los siguientes arquetipos:

• Nodo . Representa una colección cohesiva de e lementos de entrada y salida
en la función de seguridad casera. Por ejemplo, un nodo estaría integrado pe -
1) varios sensores y 2) varios indicadores de alarma (salida).

• Detec tor . Una abstracción que abarca todo el equipo de sensores que ali-
men ta información en el sistema de destino.

• Indicador. Una abstracción que representa todos los mecanismos (por eje~
pío, sirena de alarma, luces parpadeantes , timbre) para indicar que está ocu-
rriendo una condición de alarma.

• Controlador. Una abstracción que describe el mecanismo que permite el ar
m a d o o desarmado de un nodo. Si los controladores residen en una red tiener
la capacidad de comunicarse entre sí.

Cada uno de es tos arquetipos se describe con la notación UML, como se muestra ¿a
la figura 10.7.

Recuérdese que los arquetipos forman la base de la arquitectura pero son abs tnc
ciones que deben refinarse aún m á s a medida que avanza el diseño arquitectór : :
Por ejemplo, D e t e c t o r podría refinarse en una jerarquía de clase de sensores.

10.4.3 Refinamiento de la arquitectura en componentes
A medida que se refina la arquitectura del sof tware en componentes , la estrucr-ra-
del sistema empieza a emerger. Pero ¿cómo se eligen es tos componentes? Para

Controlador

1
Se comunica con

Nodo

3 1

Detector Indicador

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 291

*
te de

idel
i» derivan

s: los
¡de la aplico-

i rrnxslrudvra
Debido o

)de
; cliende lo

i el tiempo
i liante el

a pensar en
j cuidado.

ponder, el diseñador de la arquitectura empieza con las clases descritas como parte
del modelo de análisis.6 Estas clases de análisis representan ent idades dentro del do-
minio de la aplicación (negocio) que deben a tenderse dentro de la arquitectura del
software. Por tanto, el dominio de la aplicación e s una fuente para la derivación y el
refinamiento de los componentes . Otra fuente e s el dominio de la infraestructura. La
arquitectura debe adecuarse a muchos componentes de infraestructura que habili-
tan los componen tes de la aplicación, pero que no tienen conexión de negocios con
el dominio de la aplicación. Por ejemplo, los componen tes de administración de me-
moria, de comunicación, de base de datos y de administración de tareas suelen in-
tegrarse en la arquitectura del software.

La interfaz descrita en el diagrama de contexto de la arquitectura (sección 10.4.1)
indica que uno o m á s componen tes especializados procesan los datos que fluyen por
la interfaz. En algunos casos (por ejemplo, una interfaz gráfica de usuario) debe di-
señarse una arquitectura completa de subsis temas con muchos componentes .

"Lo es t ruc tura de u n s i s t ema de s o f t w a r e proporciona la ecología en q u e nace, m a d u r a y m u e r e el código. Un habi ta t
b i e n d i s e ñ a d o p e r m i t e el éxi to en la evolución de todos los componen te s necesar ios d e u n s is tema de s o f t w a r e : '

R . P a t t i s

Continuando con la función de seguridad casera de HogarSeguro, se definirá el
conjunto de componen tes de nivel superior que at ienden la siguiente funcionalidad:

• Administración de comunicación externa: coordina la comunicación de la fun-
ción de seguridad con ent idades externas; por ejemplo, s is temas de Internet,
notificación externa de alarma.

• Procesamiento del panel de control: maneja toda la funcionalidad del panel de
control.

• Manejo del detector, coordina el acceso a todos los detectores conectados al
sistema.

• Procesamiento de alarma: verifica todas las condiciones de alarma y actúa so-

bre ellas.
Cada uno de es tos componentes de nivel superior tendría que elaborarse iterativa-
mente y luego posicionarse dentro de la arquitectura general de HogarSeguro. Para
cada uno se definirían clases de diseño (con los atributos y las operaciones apropia-
das). Sin embargo, e s importante observar que los detalles de diseño de todos los
atributos y las operaciones sólo s e especificarían hasta la realización del diseño en
el nivel de componen tes (capítulo 11).

En la figura 10.8 se ilustra la estructura arquitectónica general (representada como
un diagrama de componentes UML). El componente Manejo de comunicación externa

6 Si se elige un enfoque convencional (no orientado a objetos». es posible derivar los componentes del
modelo de tlujo de datos. En la sección 10.6 se analizara este enfoque

TM

PDF Editor

292 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Estructura general de la arquitectura de HogarSeguro con componentes de nivel

Selección
~ „ d e función

Procesamiento
de panel

de control

Manejo de
detector

1 Procesamiento
de alarma

adquiere las transacciones provenientes de los componentes que procesan la inL-^z
gráfica de usuario de HogarSeguro y la interfaz de Internet. El componente director dt - -
garSeguro maneja esta información y selecciona la función de producto apropiada rs
este caso, seguridad). El componente procesamiento de panel de control interactúa
el propietario para armar o desarmar la función de seguridad. El componente marr.-M
de detector agrupa los sensores para detectar una condición de alarma, y el compor s-
te procesamiento de alarma produce una salida cuando se detecta la alarma.

10.4.4 Descripción de la creación de instancias del sistema
El diseño arquitectónico que se ha modelado hasta este punto a todavía es de ur n
vel relativamente alto. Se ha representado el contexto del sistema; se han def
los arquetipos que indican las abstracciones importantes dentro del dominio del]
blema; es evidente la estructura general del sistema; y se han identificado los |
cipales componentes del software. Sin embargo, aún se necesita mayor refinar
to (recuérdese que todo el diseño e s iterativo).

Esto se logra desarrollando u n a instancia de la arquitectura. Es decir, la arqur.r:
tura se aplica a un problema específico con el propósito de demostrar que la e s t
tura y los componentes son apropiados.

En la figura 10.9 se ilustra una instancia de la arquitectura HogarSeguro para el i
t ema de seguridad. Los componentes que muestra la figura 10.8 se retinan aún
para mostrar detalles adicionales. Por ejemplo, el componente manejo de detector ir
ractúa con el componente de infraestructura calendarizador que implementa el as
miento "concurrente" de cada objeto sensor del sistema de seguridad. Una elaborac
similar se realiza para cada uno de los componentes representados en la figura IO S

TM

PDF Editor

CAPITULO 10 DISEÑO ARQUITECTÓNICO 293

Instancia de la función de seguridad con elaboración de componentes.

Director
HogarSeguro

Manejo de
comunicación

externa

Procesamiento
d e panel
de control

*

Manejo de
detector

Protocolo de
| teclado numérico

Funciones de
] despliegue CP

de alarma

y v

^ Calendarizador I S Comunicación I \
1 telefónica I »

Sensor j Alarma

HERRAMIENTAS DE SOFTWARE

Diseño arquitectónico
Objet ivo: Las herramientas de diseño
arquitectónico modelan la estructura general del

i al representar interfases, dependencias,
es e interacciones de los componentes.

canica: Las herramientas cuentan con mecánicas
as. En casi todos los casos, la capacidad del diseño

nico es parte de la funcionalidad de las
nientas automatizadas para modelado de análisis y

Herramientas representa t ivas 7

n, desarrollada por Synthis Corp.

(www.synthis.com), es una herramienta especializada
para el diseño y la construcción de arquitectura
específicas de componentes Web.

ObjectiF, desarrollada por microTOOL GmbH
(www.microtool.coml, es una herramienta de diseño
UML que lleva a arquitecturas (por ejemplo, Coldfusion,
J2EE, Fusebox) sensibles a la ingeniería de software
basada en componentes (capítulo 30).

Rational Rose, desarrollada por Rational
(www.rational.com), es una herramienta de diseño
basada en UML que soporta todos los aspectos del
diseño arquitectónico.

7 Las herramientas expuestas sólo representan una muestra de esta categoría. En casi todos los ca-
sos los nombres son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.synthis.com
http://www.microtool.coml
http://www.rational.com

2 9 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

1 0 . 5 E V A L U A C I Ó N D E D I S E Ñ O S A P A M T E C T Ó N I C O S ALTEEMOS

En el mejor de los casos, el diseño produce varias opciones arquitectónicas que
evalúan para determinar cuál es la m á s apropiada respecto al problema que habn
de resolverse. En las siguientes secciones se analizaran diseños arquitectónicos a.
temos.

"Tal v e z s e o e n e l s ó t a n o . D é j a m e ir escoleras a r r iba y r ev i sa r . '

M. C. Escher

10.5.1 Un método de análisis de compensación para la arquitectura
El Instituto de Ingeniería del Software (SEI, por sus siglas en inglés) ha desarrollad
un método de análisis de compensación para la arquitectura (MACA) [KAZ98] que ¿c
fine un proceso de evaluación iterativo para las arquitecturas del software. Las ;
guientes actividades de análisis del diseño se realizan iterativamente:

1. Recopilar escenarios. Se desarrolla un conjunto de casos de uso (capítulos 7 •
8) para representar el sistema desde el punto de vista del usuario.

2. Deducir requisitos, restricciones y descripción de entornos. Esta información se
requiere como parte de la ingeniería de requisitos y se usa para asegurarse ct
que se atiendan todas las preocupaciones de los participantes.

3 . Describir los estilos/patrones arquitectónicos que se han elegido para dirigir los
escenarios y requisitos.

4 . Evaluar los atributos de calidad al considerar cada atributo de manera aislada.
Entre los atributos de calidad para la evaluación del diseño arquitectónico se
incluyen confiabilidad, desempeño, seguridad, facilidad de mantenimiento,
flexibilidad, facilidad de prueba, portabilidad, facilidad de reutilización e interc-
perabilidad.

5 . Identificar la sensibilidad de los atributos de calidad respecto de varios atributos
arquitectónicos para un estilo arquitectónico específico. Esto se logra haciendo
pequeños cambios en la arquitectura y determinando la sensibilidad al cam-
bio de un atributo de calidad, como el desempeño. Cualquier atributo al que
afecte significativamente la variación en la arquitectura se considerará un
punto de sensibilidad.

6. Analizar las arquitecturas alternas (desarrolladas en el paso 3) empleando el anc
lisis de sensibilidad aplicado en el paso 5. El SEI describe este enfoque de la si-
guiente manera [KAZ98]:

Una vez d e t e r m i n a d o s los p u n t o s de sensibi l idad a rqu i tec tón ica s e e n c u e n t r a n los p u n t o s

e n q u e se r equ ie re c o m p e n s a c i ó n con só lo identif icar los e l e m e n t o s a rqu i t ec tón icos a los

Informoóón o fondo
sobre MACA se
obtendré en
www.sei.cirai.sdu/
ata/otajnethod.
html.

TM

PDF Editor

http://www.sei.cirai.sdu/

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 295

que son sensibles varios atributos. Por ejemplo, el desempeño de una arquitectura clien-

te-servidor sería muy sensible al número de servidores (el desempeño aumentará , dentro
de cierto rango, al aumentar el número de servidores)... Por tanto, el número de servido-
res es un punto de compensación para esta arquitectura.

Estos seis pasos representan la primera iteración MACA. Con base en los resultados
de los pasos 5 y 6 será posible eliminar algunas opciones arquitectónicas, modificar
una o más de las arquitecturas restantes y representarlas con más detalle, y luego
aplicar de nueva cuenta los pasos de MACA.8

HOGARSEGURO

Evaluación de la arquitectura

- j ' G n El e scenar io : Oficina de Doug
as continúa el modelado del diseño

s : Vinod, Jamíe, Shakira y Ed, integrantes
: de ingeniería del software HogarSeguro.

Doug Miller, jefe del grupo de ingeniería del

rsación:

Sé que están derivando un par de arquitecturas
, para el producto HogarSeguro, y eso es

Supongo que mi pregunta es ¿cómo elegiremos la

Estoy trabajando en un estilo de llamada y retorno, y
Jamie o yo vamos a derivar una arquitectura

: a objetos.

Muy bien, ¿y cómo la elegiremos?

: Tomé un curso de diseño en mis años de
i , y recuerdo que hay varias maneras de

: Las hay, pero son un poco académicas. Mira,
que podemos hacer nuestra evaluación y elegir la

> casos de uso y escenarios.

¿No es lo mismo?

: No cuando estás hablando de evaluación
r-suitectónica. Ya tenemos un conjunto completo de

casos de uso. Así que apliquemos cada una de las
arquitecturas y veamos cómo reacciona el sistema; es
decir, cómo funcionan los componentes y los conectares
en el contexto del caso de uso.

Ed: Es uno buena idea. Eso nos asegura que no
dejaremos nada fuera.

Vinod: Cierto, pero también nos indica si el diseño
arquitectónico no es directo, si tiene que doblarse como
moño para hacer el trabajo, por decirlo así.

Jamie: ¿No es lo mismo un escenario que un caso de
uso?

Vinod: No, en este caso un escenario es algo diferente.

Doug: Estás hablando de un escenario de calidad o uno
de cambio, ¿o no?

Vinod: Si. Lo que hacemos es regresar con los
participantes y preguntarles cómo cambiará
HogarSeguro en los siguientes tres años, por decir algo.
Ya sabes, nuevas versiones, características, ese tipo de
cosas. Construimos un conjunto de escenarios de cambio.
También desarrollamos un conjunto de escenarios de
calidad que definen los atributos que nos gustaría ver en
la arquitectura del software.

Jamie: Y los aplicamos a las opciones.

Vinod: Exacto. El estilo que maneje mejor los casos de
uso y los escenarios es el que escogeremos.

8 El método de análisis de la arquitectura del software (MAAS) es una alternativa a MACA y vale la pena
que los lectores interesados en el análisis arquitectónico lo examinen Un artículo sobre MAAS se
descarga de http://www.sei.cmu.edu/publications/artides/saam-metho-propert-sas.htm.

TM

PDF Editor

http://www.sei.cmu.edu/publications/artides/saam-metho-propert-sas.htm

2 9 6 PAUTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

10.5.2 Complejidad arquitectónica
Una técnica útil para evaluar la complejidad general de una arquitectura determ:-;
da consiste en considerar las dependencias entre componentes dentro de la arc_
tectura. Estas dependencias las orienta la información, el flujo de control, o ambas
dentro del sistema. Zhao [ZHA98] sugiere tres tipos de dependencias:

Dependencias compartidas que representan relaciones de dependencia entre consumido-
res que usan el mismo recurso o los productores que producen para los mismos consu-
midores. Por ejemplo, supónganse dos componentes u y v que se refieren a los mismo:
datos globales. Entonces existe una relación de dependencia compartida entre u y v .

Dependencias de finjo que representan las relaciones de dependencia entre productores
consumidores de recursos. Por ejemplo, para dos componentes u y v, si u debe comple-
tarse antes de que el control pase a v (prerrequisito) o si u se comunica con v median! :
parámetros , entonces existe una relación de dependencia de flujo entre u y v .

Dependencias restringidas que representan restricciones al flujo relativo de control entre
un conjunto de actividades. Por ejemplo, si dos componentes u y u n o pueden ejecutarse
al mismo t iempo (exclusión mutua), entonces existe una relación de dependencia restrin-
gida entre u y v .

Las dependencias compartidas y de flujo que señala Zhao son similares al con
de acoplamiento descrito en el capítulo 9. Acoplamiento es un concepto importante de
diseño que se aplica al nivel de arquitectura y de componentes. En el capítulo 15
expondrán métricas simples para evaluar el acoplamiento.

10.5.3 Lenguajes de descripción arquitectónica
El arquitecto de una casa tiene un conjunto de herramientas estandarizadas y de
tación que permite representar el diseño de una manera poco ambigua y fáci.
comprender. Aunque el arquitecto del software puede dibujar con notación UML
necesitan otras formas de diagramación, y unas cuantas herramientas relación
para aplicar un enfoque más formal a la especificación de un diseño arquitect

El lenguaje de descripción arquitectónica (LDA) proporciona una semántica y
sintaxis para describir una arquitectura del software. Hofmann y sus colegas [H
sugieren que un LDA debe proporcionar al diseñador la capacidad de separar
ponentes arquitectónicos, de integrar componentes individuales en bloques a
tectónicos mayores y de representar interfaces (mecanismos de conexión)
componentes. Una vez que se hayan establecido las técnicas descriptivas, ba
en el lenguaje para diseño arquitectónico, es más probable que se establezcan
métodos de evaluación efectivos para la arquitectura a medida que el diseño evoá--
ciona.

k . I

TM

PDF Editor

CAPÍTULO 10 DISEÑO ARQUITECTÓNICO 297

HERRAMIENTAS DE SOFTWARE

Lenguajes de descripción arquitectónica
El siguiente resumen de varios LDA importantes
lo preparó Rickard Land [LAN02] y se

i con el permiso del autor. Debe observarse que
> cinco LDA se han desarrollado con fines de

ción y no son productos comerciales,

t (poset.stanford.edu/rapide/) [LUC95] construye a
sartir de la noción de conjuntos parciales ordenados.

i (www.cs.cmu.edu/-UniCon) [SHA96] define
arquitecturas de software desde el punto de vista de
distracciones útiles para los diseñadores.

«.cs.cmu.edu/~able/aesop/) [GAR94] atiende
el problema de reutilización del estilo.

Wrighl (www.cs.cmu.edu/~able/wright/) [ALL97]
formaliza los estilos arquitectónicos empleando
predicados, lo que permite comprobar la estática
para determinar la consistencia y el grado en que se
ha completado una arquitectura.

Acmé (www.cs.cmu.edu/~acme/)[GAROO] es un LDA de
segunda generación.

UML (www.uml.org/) incluye muchos de los artefactos
necesarios para descripciones arquitectónicas; no es
tan completo como otros LDA.

Los estilos analizados en la sección 10.3.1 representan arquitecturas radicalmente
diferentes; por tanto, no debe sorprender que no exista una completa correlación (o
mapeo) que logre la transición del modelo de análisis a diversos estilos arquitectó-
nicos. En realidad, no hay correlación práctica para a lgunos estilos arquitectónicos.
El diseñador debe abocarse a la traducción de requisitos en diseño para es tos esti-
los mediante las técnicas anal izadas en la sección 10.4.

Ilustrar un enfoque de la correlación arquitectónica requiere tener en cuenta una
técnica de correlación aplicada a la arquitectura de llamada y retomo (una estructu-
ra muy común en muchos tipos de sistemas). Esta técnica de correlación permite que
un diseñador derive arquitecturas de llamada y retorno razonablemente complejas a
partir de d iagramas de flujo de datos dentro del modelo de análisis. La técnica, a ve-
ces denominada diseño estructurado, se presenta en libros de Myers [MYE78] y Your-
don y Constantin [YOU79].

El diseño estructurado suele caracterizarse como un método de diseño or ientado
a flujo de datos, ya que proporciona una conveniente transición de un diagrama de
flujo de datos (capítulo 8) a una arquitectura del software. El tipo de flujo de infor-
mación e s el controlador para el enfoque de correlación o mapeo.

10.6.1 Flujo de transformación
La información debe entrar y salir del software en una forma lógica para "la realidad
externa". Por ejemplo, los datos escritos en un teclado, los tonos de una línea tele-
fónica y las imágenes de video en una aplicación multimedia son medios de infor-
mación de la realidad externa. Estos datos externos deben convertirse en una forma
interna para el procesamiento. La información ingresa en el sistema por rutas que

TM

PDF Editor

http://www.cs.cmu.edu/-UniCon
http://www.cs.cmu.edu/~able/wright/
http://www.cs.cmu.edu/~acme/)%5bGAROO
http://www.uml.org/

2 9 8 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

t ransforman los datos externos en una forma interna. Estas rutas se identifican c:
mo flujo de entrada. En el núcleo del sof tware ocurre una transición. Los datos en-
trantes se pasan por un centro de transformación y empiezan a moverse por rutas que
ahora los llevan "fuera" del software. Al desplazamiento de los datos por estas rutas
se le denomina flujo de salida. El flujo general de datos ocurre de manera secuencü
y sigue una o u n a s cuantas rutas "en linea recta".9 Cuando un segmento de un <fcs-|
g rama de flujo de datos muestra es tas características está presente el flujo de trars

formación.

10.6.2 Flujo de transacción
AI flujo de información suele caracterizarlo un solo e lemento de datos, l lamado t r j r - l
sacción, que dispara otro flujo de datos por una de muchas rutas. Cuando un diag-i |
ma de flujo de datos (DFD) asume la forma mostrada en la figura 10.10 está preser ca
el flujo de transacción.

Al flujo de transacción lo caracterizan los datos que s e desplazan por un carrr. ;»
entrante que convierte la información proveniente del exterior en una transacc: J
Ésta se evalúa y, con base en su valor, se inicia el flujo por una de muchas ruta: d
acción. Al e lemento que concentra y distribuye el flujo de información, del que e~¿
nan muchas rutas de acción, se le denomina centro de transacción.

Debe observarse que, dentro del DFD de un sistema grande, tienen que estar : •
sen tes los flujos de transformación y transacción. Por ejemplo, en una t r ansacora l
orientada a flujo, el flujo de información por un camino de acción puede tener i r 4
racterísticas del flujo de transformación..

9 Una correlación obvia para este tipo de flujo de información es la arquitectura de flujo de datos a
crita en la sección 10.3.1. Sin embargo, hay muchos casos en que esta arquitectura tal vez no st= •
mejor elección para un sistema complejo. Entre los ejemplos se incluyen sistemas que expenTra-
tarán cambios sustanciales con el tiempo o sistemas en los cuales el procesamiento asociadc •
el flujo de datos no necesariamente resulta secuencial.

Flujo de
transacción.

TM

PDF Editor

C A P Í T U L O 1 0 DISEÑO ARQUITECTÓNICO 299

10.6.3 Correlación d e t rans formaciones

La correlación de transformaciones es un conjunto de pasos de diseño que permite
que un DFD con características de flujo de transformación se correlacione con un es-
tilo arquitectónico específico. Ilustrar este enfoque requiere considerar de nuevo la
función de seguridad HogarSeguro.'0 Un elemento del modelo de análisis es un con-
junto de diagramas de flujo de datos que describen el flujo de información dentro de
la función de seguridad. Con el fin de correlacionar estos diagramas en una arqui-
tectura se llevan a cabo los siguientes pasos de diseño:

Paso 1. Revisar el m o d e l o fundamental del s i s tema. El modelo fundamental
del sistema o diagrama de contexto describe la función de seguridad como una sola
transformación, que representa a los productores y consumidores externos de los
datos que fluyen al interior y hacia fuera de la función. En la figura 10.11 se descri-
be un modelo de nivel 0; en la 10.12 se muestra un flujo de datos refinado para la
función de seguridad.

Paso 2. Revisar y refinar los diagramas de flujo de datos para el software.
La información obtenida de los modelos de análisis se refina para producir mayor
detalle. Por ejemplo, se examina el DFD de nivel 2 para supervisar sensores (figura
10.13) y se deriva un diagrama de flujo de datos de nivel 3, como se muestra en la
figura 10.14. En el nivel 3 cada transformación del DFD muestra una cohesión rela-
tivamente alta (capítulo 9). Es decir, el proceso implícito en una transformación rea-
liza una función única y distintiva que puede implementarse como un componente
del software HogarSeguro. Por tanto, el DFD de la figura 10.14 contiene suficiente de-
talle para un "primer corte" en el diseño arquitectónico del subsistema supervisar
sensores, y se sigue adelante sin mayor refinamiento.

Comandos y datos
• de usuario

Información de
despliegue

Tipo de
alarma Software

HogarSeguro

Tonos de número
telefónico

Despliegue
de panel de

control

Alarma

Estatus de
sensores Sensores

10 Sólo se considera una parte de la función de seguridad de HogarSeguro que usa el panel de control.
No se tendrán en cuenta otras características expuestas al principio de este libro y en este capítulo.

TM

PDF Editor

3 0 0 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Panel
d e control

Comandos
leusuario
y datos

Datos
d e configuración

Solicitud de
configuración Información de conl con

usuario

Datos de_
nfiguración

Activar/
desactivar
> sistema ¡

\ Inicio
Contraseña \ detención

' activación \
desactivación

Mensa je ID válido
Datos de_ /

configuración /
icion
liegue

Información
d e sensores Alarme

Tipo de alarma Sensores
Estatus

d e sensores Tonos de
número telefó nico

DFD d e n ive l 2
q u e re f ina l a
t r a n s f o r m a c i ó n
m o n i f o r e a r
sensores.

Información
de sensores Formar

despliegue

Gene ra r
señal d e
a larma

Información de configuración | ID, tipo,
" ^ ^ ^ ^ " ^ " ^ " u b i c a c i ó n

^ \ d e sensores

configuración / c o n t [a
Datos

de a larma

Número
telefónico

ID, tipo
de sensores Leer

sensores
Marcar
teléfono

Tipo
d e alarma

Estatus
d e sensores

Tonos de número"
telefónico

P a s o 3 . D e t e r m i n a r s i e l D F D t i e n e c a r a c t e r í s t i c a s d e f l u j o d e t r a n s i ó

c i ó n o d e t r a n s a c c i ó n . E n g e n e r a l , s i e m p r e e s p o s i b l e r e p r e s e n t a r el f l u j o d e : «

m a c i ó n d e n t r o d e u n s i s t e m a c o m o u n a t r a n s f o r m a c i ó n . S i n e m b a r g o , c u a n d o s e en-

c u e n t r a u n a c a r a c t e r í s t i c a o b v i a d e t r a n s a c c i ó n (f i g u r a 1 0 . 1 0) , s e r e c o m i e n d a

c o r r e l a c i ó n d e d i s e ñ o d i f e r e n t e . E n e s t e p a s o e l d i s e ñ a d o r s e l e c c i o n a l a s c a r

DFD d e n i v e l
1 p a r a l a
f u n c i ó n d e
s e g u r i d a d d e
HogarSeguro.

TM

PDF Editor

C A P Í T U L O 1 0 DISEÑO ARQUITECTONICO 301

con formato Datos d e configuración

Formar '
ispliegue Leer

sensores ID, tipo\
ubicaciónX

de sensores
Generar
señal d e
. a larma ,

/Adquirí r \
información'

Datos
d e alarma lablecer >

idiciones
a l a r m a i

numero
números

Generar

DFD de nivel 3 para monitorear sensores con límites de flujo.

Información d e configuración! — ' ID, tipo,
ubicación

Información
d e sensores

Estatus
del sensores i

ID, configuración
d e sensores

,VE
se encontro-
iposdef lu -
tienlTO del

: orienta-
o s flujos se

l c estructura
j se deriva

c correlación

»
b ubicación

: de flu¡o
! explotar

altemos de
Esto toma
tiempo y

informa-

Tipo
Ide alarma

Código de
condición de

a larma, ID d e sensores,
información de calendario Número

telefónico

conexión
con red

niccy

Tono
listo pa ra
número

telefónico Tonos de número
telefónico

ticas de flujo global (de todo el software) con base en la naturaleza prevaleciente del
DFD. Además, se aislan las regiones locales del flujo de transformación o transac-
ción. Estos subflujos se aprovechan para refinar la arquitectura del programa deriva-
do de una característica global descrita antes. Por ahora, la atención se centrará só-
lo en el flujo de datos del subsistema monitorear sensores descrito en la figura 10.14.

Al evaluar el DFD (figura 10.14) se aprecia que los datos entran al software por
una ruta de entrada y salen por tres rutas de salida. No participa un centro de tran-
sacción distintivo (aunque la transformación establece condiciones de alarma que
podrían percibirse como tales). Por tanto, se supondrá una característica general de
transformación para el flujo de la información.

P a s o 4 . Aislar el centro d e transformación al e spec i f i car l ímites d e flujo de
entrada y salida. En la sección anterior, el flujo de entrada se describió como un
camino que convierte la información con forma externa en información interna; el
flujo de salida hace la conversión inversa. Los límites de los flujos de entrada y sali-
da están abiertos a la interpretación. Es decir, diferentes diseñadores seleccionarán
puntos l igeramente diferentes del flujo como posición de los límites. En realidad, las
soluciones al ternas de diseño se obtienen al modificar la posición de los límites de
flujo. Aunque debe tenerse cuidado al seleccionar los límites, la variación en una
burbuja a lo largo del camino de flujo generalmente tendrá poco impacto en la es-
tructura final del programa.

TM

PDF Editor

•

302 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ O N S U O i ^

No se debe odoptor
un enfoque dogmático
en esto etapa. Jal vez
seo necesario estable-
cer dos o más contro-
ladorespara
procesamiento o
cálculo de entrada,
con base en lo com-
plejidad del sistema
que habrá de cons-
truirse. Si el sentido
común dicta este en-
foque, ¡úsese/

Factorización
de primer
nivel para
supervisar
sensores.

Los límites de flujo en este ejemplo se ilustran como curvas sombreadas que
rren verticalmente por el flujo de la figura 10.14. Las t ransformaciones (bur
que constituyen el centro de transformación caen dentro de los dos límites sombrt i -
dos que corren de arriba abajo en la figura. Podría respaldarse el argumento de
es posible reajustar un límite (por ejemplo, podría proponerse un límite de flujo
entrada que separe leer sensores y adquirir información de respuesta). En este paso de r.
seño debe resaltarse la selección de límites razonables, no la larga iteración sobri
posición de los límites.

P a s o 5. Realizar una "factorización d e primer nivel". La arquitectura del :~
grama que se ha derivado a partir de los resultados de la correlación lleva a una as-
tribución descendente del control. La factorización genera una estructura de pro— r

ma en que los componentes descendentes se encargan de la toma de decisión—
los componen tes de ba jo nivel realizan más t rabajo de entrada, cálculo y salida - -
componen tes de nivel intermedio se encargan de parte del control y realizan
dades moderadas de trabajo.

Al encontrar el flujo de transformación se correlaciona un DFD con una e s t r u j a
ra específica (una arquitectura de l lamada y retorno) que proporciona control para
procesamiento de la información de entrada, de t ransformación y de salida. En U f
gura 10.15 se muestra esta factorización de primer nivel para el subsistema supt-m-
sar sensores. Un controlador principal (llamado supervisar director de sensores) resi.^r

TM

PDF Editor

C A P Í T U L O 1 0 DISEÑO ARQUITECTÓNICO 303

en la parte superior de la estructura del programa y coordina las siguientes funcio-
nes subordinadas de control:

• Un controlador de procesamiento de información entrante, llamado controlador
de entrada de sensores, coordina la recepción de todos los datos de entrada.

• Un controlador de flujo de transformación, llamado controlador de condiciones
de alarma, supervisa todas las operaciones de los datos en forma adecuada
para el trabajo interno (por ejemplo, un módulo que invoca varios procedi-
mientos de transformación de datos).

• Un controlador de procesamiento de información saliente, llamado controla-
dor de salida de alarma, coordina la producción de información de salida.

Aunque una estructura de tres picos se desprende de la figura 10.15, flujos com-
plejos en sistemas grandes llegan a pedir dos o más módulos de control para cada
una de las funciones genéricas de control descritas. El número de módulos en el pri-
mer nivel debe limitarse al mínimo posible para realizar las funciones de control y
aun mantener buenas características de independencia funcional.

Paso 6. Realice una "factorización de s e g u n d o nivel". La factorización de se-
gundo nivel se logra al correlacionar las transformaciones individuales (burbujas) de
una DFD con los módulos apropiados dentro de la arquitectura. Si se empieza en el
límite del centro de transformación y se desplaza hacia fuera por rutas de entrada y
luego por rutas de salida, las transformaciones se correlacionarán en niveles subor-
dinados de la estructura del software. En la figura 10.16 se muestra el enfoque ge-
neral de la factorización de segundo nivel.

Aunque en la figura 10.16 se ilustra una correlación uno a uno entre transforma-
ciones de DFD y módulos de software, suelen ocurrir correlaciones diferentes. Es po-
sible combinar dos o hasta tres burbujas y representarlas como un componente, o
expandir una sola burbuja en dos o más componentes. Consideraciones prácticas y
medidas de la calidad del diseño dictan el resultado de la factorización de segundo
nivel. La revisión y el refinamiento producen cambios en la estructura, pero sirven
como diseño de "primera iteración"

La factorización de segundo nivel para el flujo de entrada se realiza de la misma
manera. La factorización se realiza nuevamente al desplazarse hacia fuera, desde el
límite del centro de transformación en el lado del flujo de entrada. El centro de trans-
formación del software del subsistema monitorear sensores se correlaciona de mane-
ra un poco diferente. Cada conversión de datos o transformación de datos de la par-
te de la transformación del DFD se correlaciona con un módulo que está subordina-
do al controlador de transformación. En la figura 10.17 se muestra una arquitectura
de primera iteración completa.

Los componentes correlacionados de la manera anterior y mostrados en la figu-
ra 10.17 representan un diseño inicial de la arquitectura del software. Aunque el
nombre de los componentes indica una función, debe escribirse una breve explica-

TM

PDF Editor

Monitorear
director d e

sensores

Controlador
de salida
de a larma

Controlador
de condiciones

d e a larma

Controlador
de entrada
d e sensores

Generar
señal de
alarma

Establecer
condiciones
de a larma

Configurar
conexion cor
red telefónico

«leccionar
número

telefónico

Formar
despliegue información

de respuesta

Generar
pulsos

3ara linea
Generar

despliegue

Formar

señal de
.alarma j

conexión
con red

telefónica Supervisar
director

de sensores
Limite de f l u j o \

de transformación

Generar
señal

de alarma
Formar

despliegue conexion con
red telefónica

Controlador Controlador Controlador
de entrada de condiciones d e salida
de sensores de alarma de alarma

3 0 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Generar
despliegue

Estructura de primera iteración para supervisar sensores.

Factorización
de segundo
nivel para
supervisar
sensores.

TM

PDF Editor

C A P Í T U L O 1 0 DISEÑO ARQUITECTÓNICO 305

ilain-
<unáinal

quese
Hobje-

r m c o -
y un

bajo.

ción de su procesamiento (adaptado de la especificación creada durante el modela-
do del análisis).

P a s o 7. Refinar la arquitectura de primera i teración e m p l e a n d o d i s e ñ o h e u -
rístico para mejorar la cal idad del s o f t w a r e . Siempre es posible refinar una ar-
quitectura de primera iteración si se aplican conceptos de independencia funcional
(capítulo 9). Los componen tes se expanden o contraen para producir una factoriza-
ción sensible, una buena cohesión, un acoplamiento mínimo y, lo que e s más impor-
tante, una estructura que se implemente sin dificultades, se pruebe sin confusión y
se mantenga sin problemas.

Los refinamientos los determinan los métodos de análisis y evaluación descritos
brevemente en la sección 10.5, además de las consideraciones prácticas y el sent ido
común. Por ejemplo, hay ocasiones que el controlador del flujo de datos de entrada
resulta totalmente innecesario, que se requiere algún procesamiento de entrada en
un componente subordinado al controlador de transformación, que no puede evitar-
se el acoplamiento elevado debido a los datos globales, o que no logran alcanzarse
las características óptimas de la estructura. Los requisitos del software, junto con el
juicio humano, deben servir para tomar la decisión final.

El objetivo de los siete pasos precedentes es desarrollar una representación arqui-
tectónica del software. Es decir, una vez definida la estructura, es posible evaluar y
refinar la arquitectura del sof tware al tener un panorama general de él. Las modifi-
caciones hechas en es te momento requieren poca información adicional, pero ten-
drán un fuerte impacto en la calidad del software.

El lector debe hacer una breve pausa y considerar la diferencia entre el enfoque
del diseño descrito y el proceso de "escribir programas". Si el código es la única re-
presentación del software, el desarrollador tendrá gran dificultad para evaluar o re-
finar a voluntad, en un nivel global u holístico. En realidad, tendrá dificultad para
"ver el bosque entre los árboles".

-ÍOGARSEGURO

Refinamiento de una arquitectura de primera iteración

« I B I El e s c e n a r i o : Cubículo de Jamie,
s se continúa con el modelado del diseño,

a c t o r e s : Jamie y Ed, integrantes del equipo de in-
-ía del software HogarSeguro.

conversación:
acaba de completar un diseño de primera iteración
subsistema monitorear sensores. Se detiene para pe-
su opinión a Jamie.)

Ed: Mira, aquí está la arquitectura que he obtenido.

(Ed muestra a Jamie la figura 10.17, que ella estudia por
unos momentos.]

J a m i e : Está muy bien, pero creo que podemos hacer al-
gunas cosas para simplificarla y mejorarla.

Ed: ¿Cómo cuáles?

J a m i e : Bueno, ¿por qué usas el componente con trota-
dor de entrada de sensores?

TM

PDF Editor

306 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Ed: Porque necesitas un sensor para b correlación.

J a m i e : En realidad no. El controlador no hace mucho,
porque estamos manejando un solo camino de flujo para
los datos de entrada. Podemos eliminar et controlador sin
exponernos a efectos colaterales.

Ed: Puedo vivir con eso. Haré el cambio y...

J a m i e (s o n r i e n d o) : jEspera! También podemos redu-
cir los componentes establecer condiciones de alarma y
seleccionar número telefónico. En realidad el controlador
de transformación que muestras no es necesario, y la pe-
queña reducción de la cohesión resulta tolerable.

Ed: Simplificación, ¿eh?

J a m i e : Así es. Y mientras hacemos refinamientos, ser;;
buena idea reducir los componentes formar despliegue •
generar despliegue. El formato del despliegue del pane
de control es simple. Podemos definir un nuevo módulo
llamado producir despliegue.

Ed (t r a z a n d o u n b o c e t o) : ¿De modo que esto es le
que crees que podemos hacer?

¡Muestra a Jamie la figura 10.18.)

J a m i e : Es un inicio.

Estructura re-
finada del
programa
para
supervisar
sensores.

10.6.4 Correlación d e t ransacc iones

En muchas aplicaciones de software, un solo elemento de datos dispara varios
jos de información que afectan una función relacionada con el e lemento de
que dispara. El e lemento de datos, l lamado transacción, y sus correspondientes a
racterísticas de flujo se analizaron en la sección 10.6.2. En esta sección se consr f j
rarán los pasos de diseño empleados para correlacionar el flujo de transacciór rd

u n a arquitectura de software.
La correlación de t ransacciones se ilustrará si se considera el subsistema ús •

teracción con el usuario de la función de seguridad de HogarSeguro. En la r J
10.12 se muestra el flujo de datos de nivel 1 para este subsistema. Al refinar e ~nJ
se deriva un diagrama de flujo de datos de nivel 2, como se muestra en la : r a
10.19. El objeto de datos c o m a n d o s d e usuario fluye dentro del sistema y gena
un flujo de información adicional por una de tres rutas de acción. Un solo eler^Ti

Supervisar
aireclor

de sensores

Controlador
salida

de alarma

Establecer
condiciones
de alarma

información
de respuesta

Configurar
conexion con
red telefónica

Producir
despliegue señal

de alarma

TM

PDF Editor

C A P Í T U L O 1 0 DISEÑO ARQUITECTÓNICO 307

de datos, tipo de comando, hace que el flujo de datos se expanda hacia fuera del
concentrador. Por tanto, la característica general del flujo de datos está orientada a
la transacción.

Debe observarse que el flujo de información a lo largo de dos de las tres rutas de
acción acomoda el flujo de entrada adicional (por ejemplo, parámetros y datos del
s i s tema son entradas del camino de acción "configurar"). Todas las rutas de acción
fluyen en una sola transformación, desplegar mensajes y estatus.

Los pasos del diseño para la correlación de transacciones son similares y en al-
gunos casos idénticos a los pasos para correlación de transformaciones (sección
10.6.3). Una diferencia importante se encuentra en la correlación del DFD con la es-
tructura del software.

Paso 1. Revisar el m o d e l o fundamental del s is tema.

Paso 2. Revisar y reñnar los diagramas de flujo de datos para el software.

Paso 3. Determinar si el DFD tiene características de flujo de transforma-
c ión o de transacción.

Los pasos 1, 2 y 3 son idénticos a los correspondientes en la correlación de trans-
formaciones. El DFD que se muestra en la figura 10.19 tiene una característica de
flujo de transformación clásico. Sin embargo, el flujo por las rutas de acción que
emanan de la burbuja invocar procesamiento de comandos parece contar con carac-
terísticas de flujo de transformación. Por tanto, deben determinarse límites de flujo
para ambos tipos.

Paso 4. Identificar el centro de transacción y las características de flujo en
cada una de las rutas de acción. La ubicación del centro de transacción se des-
prende directamente del DFD. El centro de transacción se encuentra en el origen de
varias rutas de acción que fluyen de él de manera radial. En el caso del flujo mostra-
do en la figura 10.19, la burbuja invocar procesamiento de comandos es el centro de
transacción.

El camino entrante (es decir, el camino del flujo en que se recibe la transacción) y
todas las rutas de acción deben estar aislados. Es necesario evaluar la característica de
flujo individual de cada camino de acción. Por ejemplo, el camino "contraseña" (mos-
trado dentro de un área sombreada en la figura 10.19) tiene características de transfor-
mación. El flujo de entrada, de transformación y de salida se indican con límites.

Paso 5. Correlacionar el DFD c o n una estructura de programa sensible al
procesamiento de la transacción. El flujo de transacción se correlaciona con una
arquitectura que contiene una rama entrante y una para despacho. La estructura de
la rama entrante se desarrolla de manera muy parecida a la correlación de transfor-
maciones. Si se empieza en el centro de transacción, las burbujas ubicadas a lo lar-
go del camino entrante se correlacionan con módulos. La estructura de la rama para
despacho contiene un módulo despachador que controla todos los módulos de ac-

TM

PDF Editor

308 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Comandos
de usuario

Leer
comandos

de usuario

Inicio
detención Información d e confii ¡uracion

Mensaje
de activación/
desactivación

Datos de
configuración

Activar/
desactivai

sistema

Contraseña

' Datos de
configuración

DesplegarX
mensajes I — •
y estatus ¡ Informador

v ^ ^ d e despliegue

Contraseña

Producir
mensaje

de que no
. es válida .

Mensaje
inténtelo de nuevo'

Contraseña
no válida

DFD de nivel 2 para el subsistema de interacción con el usuario.

Datos de
configuración

Parámetros y datos sin trabajar
del sistema ~

Tipo de / á J : T T L
comandos (Leer \ V > ' a , c h , v o c e

^Configurar { datos del
sistema

Datos de
configuración
con formato

ción subordinados. Cada camino de flujo de acción del DFD se correlaciona cor
estructura que corresponde a sus características de flujo específicas. Este proces: j a
ilustra esquemát icamente en la figura 10.20.

Si s e toma en cuenta el flujo de datos del subsis tema de interacción con el u s . a J
rio, la factorización de primer nivel para el paso 5 se muestra en la figura 10.21. _aH
burbujas leer comandos del usuario y activar/desactivar sistema se correlacionar. J-j
rectamente con la arquitectura sin necesidad de módulos de control inmediat : SI
centro de transacción, invocar comando de procesamiento, se correlaciona d i r e - r J
mente con el módulo despachador del mismo nombre. Se crean consoladores p a a
la configuración del sistema y el procesamiento de la contraseña, como se ilustra a •
figura 10.21.

P a s o 6 . Factorizar y ref inar la es tructura de t ransacc ión y la de c a d a cana-j
n o d e a c c i ó n . Cada camino de acción del DFD tiene sus propias características M
flujo de información. Ya se ha observado que es posible encontrar los flujos de trans
mación o transacción. La "subestructura" relacionada con el camino de acci ta •
desarrolla empleando los pasos de diseño anal izados en esta sección y en la i - s |
rior.

Como ejemplo, considérese el flujo de información de procesamiento de la : f l l
t raseña que se muestra en la figura 10.19 (dentro del área sombreada). El flujo r - »

TM

PDF Editor

Leer
comandos
de usuario

Controlador d e |
configuración I

de sistema

Activar/
desactivar

sistema

Controlador de
procesamiento
de contraseña

Director de
interacción

con el usuario

Invocar
procesamiento
de comandos

tra características de transformación clásicas. Se ingresa una contraseña (flujo en-
trante) y se transmite a un centro de transformación donde se compara contra las
contraseñas almacenadas. Si no se obtiene una coincidencia, se producen una alar-
ma y un mensaje de precaución (flujo saliente). El camino "configurar" se dibuja de
manera similar empleando correlación de transformaciones. En la figura 10.22 se
muestra la arquitectura del software resultante.

Paso 7. Refinar la arquitectura de primera iteración empleando diseño heu-
rístico para mejorar la calidad del software. Este paso para la correlación de
transacciones es idéntico al de transformaciones. En ambos enfoques de diseño, cri-

TM

PDF Editor

3 1 0

Arquitectura
de primera
iteración para
el subsistema
de interacción
con el usuario.

leer
comandos
de usuario

Invocar
procesamiento
de comandos

Activar/ I Controlador
desactivar I procesamier
sistema I de contrasei

Comparar
contraseña

con archivo

Controlador
de salida

de contraser.;

Producir
mensaje de q.

no es válicc

"Hogalo lo más simple posible, pero no más simple de lo necesorio."
Albe r t Eins t ; •

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

10.6.5 Refinamiento del d iseño arqui tec tónico

Cualquier análisis del refinamiento del diseño debe prologarse con el siguiente : M
mentario: recuerde que un "diseño óptimo" que no funciona tiene un mérito cues:
nable. El diseñador de sof tware debe preocuparse por desarrollar una represer a
ción del sof tware que cumpla con todos los requisitos funcionales y de desempe-;
así como la aceptación del mérito basado en las medidas y la heurística del dise" x j

Debe estimularse el refinamiento de la arquitectura del sof tware durante las p-
meras e tapas del diseño. Como se analizó al principio de este capítulo, es posible os
rivar, refinar y evaluar estilos arquitectónicos alternos para determinar cuál es a
"mejor" enfoque. Este método para afrontar la optimización es uno de los verde j i -
ros beneficios que se obtienen de desarrollar una representación de la a r q u i t e c t o
del software.

Es importante indicar que a menudo la simplicidad estructural refleja e l e g a n c i a
eficiencia. El objetivo del refinamiento del diseño debe ser el uso del menor núrr s a
de componentes que permitan u n a integración efectiva de los módulos y de la s |

terios c o m o independencia del módulo, factibilidad (eficacia de la implementac:; - f \
la prueba) y facilidad de mantenimiento deben ponderarse cuidadosamente cuar a»
se propongan modificaciones estructurales.

Construir
archivo de

configuración

TM

PDF Editor

C A P Í T U L O 1 0 DISEÑO ARQUITECTÓNICO 311

tructura de datos menos compleja que sirva adecuadamente para los requisitos de
información.

La arquitectura del software proporciona un concepto holístico del sistema que ha-
brá de construirse. Describe la estructura y la organización de los componentes del
software, sus propiedades y la conexión entre ellos. Entre los componentes del soft-
ware se incluyen los módulos del programa y las diversas representaciones de datos
que éste manipula. Por tanto, el diseño de datos es una parte integral de la deriva-
ción de la arquitectura del software. La arquitectura destaca las decisiones iniciales
del diseño y proporciona un mecanismo para considerar los beneficios de estructu-
ras de sistema alternas.

El diseño de datos traduce los objetos de datos (definidos en el modelo de análi-
sis) a estructuras de datos que residen dentro del software. Los atributos que descri-
ben el objeto, la relación entre los objetos de datos y su utilización dentro del pro-
grama influyen en la elección de las estructuras de datos. En un grado más elevado
de abstracción, el diseño de datos lleva a la definición de una arquitectura para una
base de datos o un almacén de datos.

El ingeniero del software tiene a su disposición varios estilos y patrones arquitec-
tónicos, Cada estilo describe una categoría del sistema que abarca 1) un conjunto de
componentes que realizan una función requerida por un sistema, 2) un conjunto de co-
nectares que permiten la comunicación, coordinación y cooperación entre compo-
nentes, 3) restricciones que definen la manera en que se integran los componentes
para formar el sistema, y 4) modelos semánticos que permiten a un diseñador com-
prender las propiedades generales de un sistema.

En sentido general, el diseño arquitectónico se realiza aplicando varios pasos. En
primer lugar, el sistema debe estar representado en el contexto; es decir, el diseña-
dor debe definir las entidades externas que interactúan con el software y la natura-
leza de la interacción. Una vez que se ha especificado el contexto, el diseñador de-
be identificar un conjunto de abstracciones de nivel superior, llamadas arquetipos,
que representan elementos centrales del comportamiento o la función del sistema;
después de que se han definido las abstracciones, el diseño empieza a acercarse al
dominio de la implementación. Se identifican los componentes y se representan
dentro del contexto de una arquitectura que los soporta. Por último, se crean instan-
cias específicas de la arquitectura para "probar" el diseño en un contexto real.

Como un simple ejemplo de diseño arquitectónico, el método de correlación o ma-
peo presentado en este capítulo emplea las características del flujo de datos para de-
rivar un estilo arquitectónico de uso común. Un diagrama de flujo de datos se corre-
laciona con una estructura del programa empleando uno o dos enfoques de correla-
ción (correlación de transformación o de transacción). Una vez que se ha derivado
una arquitectura, se elabora ésta y luego se compara contra los criterios de calidad.

TM

PDF Editor

312 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

[AH083] Aho, A. V., J. Hopcrofl y J. Ullmann. Data Structures and Algorithms, Addison-Wesj;
1983.

[ALL97J Alien R., "A Formal Approach lo Software Architecture", tesis de doctorado, Camegie Me
University, Número de reporte técnico: CMU-CS-97-144,1997.

[BAR001 Barroca. L. y P. Hall (eds.), Software Architecture- Advances and Applications, Sprir.: -.
Verlag, 2000.

[BAS03] Bass, L., P. Clements y R. Kazman, Software Architecture in Practice, 2a. ed., Addis-:-

Wesley, 2003.
[BOSOO] Bosch, J., Design & Use o/Software Architectures, Addison-Wesley, 2000.
[BUS96] Buschmann, F., Paltern-Oriented Software Architecture, Wiley, 1996.
[DAT00] Date, C. J., An Introduction lo Database Systems, 7a. ed., Addison-Wesley, 2000.
[DIK00) Dikel, D., D. Kane y J. Wiison, Software Architecture: Organizational Principies and '•

lems, Prentice-Hall, 2000.
[FRE80] Freeman, P„ 'The Context of Design", en Software Design Techniques, 3a. ed. (P. Fre

y A. Wasserman, eds.), IEEE Computer Society Press, 1980, pp. 2-4.
[GAR94] Garlan D.. R. Alien y J. Ockerbloom, "Exploiting Style in Architectural Design I

ments" , en Proceedings of SIGSOFT '94 Symposium on the Foundations of Software i
ring, 1994.

[GAR00] Garlan D.. R. T. Monroe y D. Wile, "Acmé: Architectural Description of Componen:
sed Systems", en Foundations of Component-Based Systems, G. T. Leavens y M. Sit,
(eds.), Cambridge University Press, 2000.

[HOFOO] Hofmeister, C., R. Nord y D. Soni, Applied Software Architecture, Addison-Wesley.;
[HOFOl] Hofmann, C. et al., "Approaches to Software Architecture", se descarga de: h t tp : / / c

seer.nj .nec.com/84015.html.
[KAZ98] Kazman, R. el al., The Architectural TTadeoJf Analysis Melhod, Sof tware Engir

Institute, CMU/SEI-98-TR-008, julio de 1998.
[KIM98] Kimball, R„ L. Reeves, M. Ross y W. Thomthwai te , The Data Warehouse Lifecycle '

kit: Expert Methods for Designing, Developing, and Deploying Data Warehouses, Wiley
[LAN02] Land R., A Brief Survey of Software Architecture, reporte técnico, Departamento de l

nieria de Cómputo, Universidad Málardalen, Suecia, febrero de 2002.
[LUC95] Luckham D. C. et al., "Specification and Analysis of System Architecture Using I

en IEEE TYansactions on Software Engineering, e jemplar "Special Issue on Software ,
ture", 1995.

[MAT96] Mattison, R., Data Warehousing: Strategies, Technologies, and Techniques, McGrav.
1996.

¡MYE78] Myers, G., Composite Slruclured Design, Van Nostrand, 1978.
[PRE98] Preiss, B. R., Data Structures and Algorithms: With Object-Oriented Design Pati

C++, Wiley, 1998.
[SHA96J Shaw, M. y D. Garlan, Software Architecture, Prentice-Hall, 1996.
[SHA97] Shaw, M. y P. Clements . "A Field Guide to Boxoiogy: Preliminary Classificatior : 1

chitectural Styles for Software Systems", en Proc. COMPSAC, Washington, DC, agosto de :

[WAS80] Wasserman. A., "Principies of Systematic Data Design and Implementation". e
ware Design Techniques (P. Freeman y A. Wasserman, eds.), 3a. ed., IEEE Computer ¡
Press, 1980, pp. 287-293.

[YOU79] Yourdon, E. y L. Constantine, Structured Design, Prentice-Hall, 1979.
[ZHA98] Zhao,)., "On Assessing the Complexity of Software Architectures", en Proc. Intl.

Arclvtecture Workshop, ACM, Orlando, FL, 1998, pp. 163-167.

1 0 . 1 . Empleando la arquitectura de una casa o un edificio como metáfora , realizar cc
ciones con la arquitectura del software. ¿En qué son similares las disciplinas de la ar
clásica y la del software? ¿En qué se diferencian?

TM

PDF Editor

http://c

C A P Í T U L O 1 0 DISEÑO ARQUITECTÓNICO 313

10.2. Escribir un artículo de tres a cinco páginas que presente directrices para seleccionar es-
tructuras de datos basadas en la naturaleza del problema. Empezar delineando las estructuras
de datos clásicas encontradas en el trabajo del software y luego describir los criterios para se-
leccionar, a partir de éstas, tipos particulares de problemas.

10.3. Explicar la diferencia entre una base de datos que sirve a una o más aplicaciones de ne-
gocios convencionales y un almacén de datos.

10.4. Presentar dos o tres ejemplos de aplicaciones para cada uno de los estilos arquitectóni-
cos indicados en la sección 10.3.1.

10.5. Algunos de los estilos arquitectónico indicados en la sección 10.3.1 son de naturaleza je-
rárquica, otros no. Elaborar una lista de cada tipo. ¿Cómo se implementarían los estilos arqui-
tectónicos que no son jerárquicos?

10.6. Los términos estilo arquitectónico, patrón arquitectónico y marco conceptual suelen encon-
trarse en el análisis sobre la arquitectura del software. Investigar un poco (utilizar la Web) y des-
cribir la diferencia entre cada uno de estos términos y sus contrapartes.

10.7. Seleccionar una aplicación con la que se esté familiarizado. Responder cada una de las
preguntas planteadas para control y datos en la sección 10.3.3.

10.8. Investigar la MACA (visitar el sitio Web de SEI) y presentar un análisis detallado de los
seis pasos presentados en la sección 10.5.1.

10.9. Algunos diseñadores sostienen que todos los flujos de datos deben considerarse orienta-
dos a la transformación. Analizar la manera en que esta convención afectará la arquitectura
del software que se deriva cuando un flujo orientado a la transacción se trata como transfor-
mación. Utilizar un flujo de ejemplo para ilustrar puntos importantes.

10.10. Si no se ha hecho, completar el problema 8.10. Emplear los métodos de diseño descritos en es-
te capítulo para desarrollar una arquitectura del software para el PHTRS.

10.11. Empleando un diagrama de flujo de datos y una descripción del procesamiento, descri-
bir un sistema de cómputo que tenga distintas características de flujo de transformación. Defi-
nir los límites del flujo y correlacionar el diagrama de flujo de datos con la arquitectura del
software empleando la técnica descrita en la sección 10.6.3.

10.12. Empleando un diagrama de flujo de datos y una descripción del procesamiento, descri-
bir un sistema de cómputo que tenga distintas características de flujo de transacción. Defina
los límites del flujo y correlacione el diagrama de flujo de datos con la arquitectura del software
empleando la técnica descrita en la sección 10.6.4.

O T R A S L E C T U R A S Y F U E N T E S DE I N F O R M A C I Ó N

La literatura sobre arquitectura de software ha aumentado a lo largo de la década pasada, libros
de Fowler (Patterns of Enterprise Application Architecture, Addison-Wesley, 2003), Clementsy sus
colegas (Documentig Software Architecture: View and Beyond, Addison-Wesley, 2002), Schmidt y
sus colegas (Pattern-Oriented Software Architectures, dos volúmenes, Wiley, 2000), Bosch
[B0S00], Dikel y sus colegas [DIKOO], Hofmeister y sus colegas [HOFOO] Bass, Clements y
Kazman (BAS03], Shaw y Garlan [SHA96] y Buschmann eí al. [BUS96] proporcionan un análisis
a fondo del tema. Un trabajo previo de Garlan lAn ¡ntroduction to Software Architecture, Software
Engineering Institute, CMU/SEI-94-TR-021,1994) Tiene una excelente introducción. Clementsy
Northrop (Software Product Lines: Practices and Pattems, Addison-Wesley, 2001) trata el diseño
de arquitecturas que dan soporte a líneas de productos de sofware. Clements y sus colegas
(Evaiuating Software Architectures, Addison-Wesley 2002) considera los temas asociados con la
evaluación de alternativas de arquitectura y la selección de la mejor arquitectura para un pro-
blema de dominio dado.

TM

PDF Editor

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Libros específicos sobre implementación de arquitectura tratan el diseño arquitectónico de-
tro de un ambiente de desarrollo o tecnología especiales. Wallnau y sus colegas (Building Systers
from Commercial Componente, Addison-Wesley, 2001) presentan métodos para construir arc_
tecturas basadas en componentes. Pritchard (COAÍ and CORBA Side-by-Side, Addison-Wesk*
1999), Mowbray (CORBA Design Patterns, Wiley, 1997) y Mark el al. (Objetet Manageme-:
Architecture Guide, Wiley, 1996) provee lineaminttos de diseño detallados para la estructura - -
soporte CORBA, Shanley (Protected Mode Software Architecture, Addison-Wesley 1996) proporc:
na asesoria sobre diseño arquitectónico para cualquier sistema operativo basado en tiempo TÍ L.
para PC, sistemas operativos multiproposito o drívers.

La investigación actual sobre arquitectura de software se documenta anualmente en 1 JÍ
Proceedings of the International Workshop en Software Architecture, patrocinados por la ACM r
otras organizaciones de computación, y los Proceedings of the International Conference :n
Software Engineering Barroca y Hall [BAR00] presentan un útil estudio de investigación recie- :

El modelado de datos es un requisito para un buen diseño en esta materia. Los libros JS:
Teory (Database Modeling and Design, Academic Press. 1998); Schmidt (Data Modeling -r
Information Professionals, Prentice-Hall, 1998); Bobak (Data Modeling and Design for Toas s
Architectures, Artech House, 1997); Silverstone, Graziano e Inmon (The Data Model Resc u •
Book, Wiley, 1997); Date [DAT00), y Reingruber y Gregoiy (The Data Modeling Handbook: A Bes -
Practice Approach lo Building Quality Data Models, Wiley, 1994) contiene presentaciones de t a n -
das sobre notación de modelado de datos, heuristic y aspectos del diseño de bases de dates El
diseño de almacenes de datos se ha vuelto más importante en los últimos años. Los libres je
Humphreys, Hawkins y Dy (Data Warehousing: Architecture and Implementation, Prentice-
1999); Kimball el al. [K1M981 e lnmon (1NM95] tratan el tópico con mucho detalle.

El estudio general del diseño de software con discución de aspectos de arquitectura y á s í - j
ño de datos puede encontrarse en la mayoría de los libros dedicados a la ingeniería de sofr» ®-
re. Tratamientos más rigurosos del tema se hallan en Feijs (A Formalization of Design Metí - .
Prentice-Hall, 1993) Witt etal. (Software Architecture and Design Principies, Thomson Publ
1994) y Budgen (Software Design, Addisson-Wesley, 1994).

Presentaciones completas de diseño orientado al flujo de datos pueden encontrarse en
[MYE78], Yourdon y Constantine [YOU79], y Page-Jones (The Practica! Cuide to Structured
Design, 2a. ed. Prentice Hall, 1998). Estos libros están dedicados sólo al diseño se in
extensos análisis del flujo de datos.

Una amplia variedad de fuentes de información sobre el diseño arquitectónico están
nibles en Internet. Una lista actualizada de referencias en la World Wide Web que son re
tes para el diseño arquitectónico puede encontrarse en el sitio Web de SEPA:
http: / /www.mhhe.com/pressman.

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

D I S E Ñ O AL NIVEL
DE C O M P O N E N T E S 11

r o s

-329
327

318

317

321
325

325

340
322
331
338
-343

324

-340
322

El d iseño al nivel de componentes s e presenta después de que se ha com-
pletado la primera iteración del diseño arquitectónico. En esta etapa ya se
han establecido los datos generales y la estructura del programa. El objeti-

vo e s traducir el modelo de diseño en un sof tware operacional. Pero el grado de
abstracción del modelo de diseño existente es relativamente elevado, y el del pro-
grama operacional, bajo. La traducción llega a ser desafiante, abriendo la puerta
para el ingreso de errores sutiles que resultan difíciles de encontrar y corregir en
e tapas posteriores del proceso de software. En una famosa conferencia, Edsgar
Dijkstra, una de las personas que m á s ha contribuido a nuestra comprensión del
diseño de software, afirmó [DIJ72]:

Al p a r e c e r , la d i f e r enc i a e n t r e el s o f t w a r e y m u c h o s o t r o s p r o d u c t o s e s q u e en é s to s ,

c o m o regla gene ra l , m a y o r ca l idad r e p r e s e n t a p rec io m á s e l e v a d o . Q u i e n e s d e s e a n

s o f t w a r e r e a l m e n t e c o n f i a b l e d e s c u b r i r á n q u e d e b e n e n c o n t r a r un m e d i o p a r a ev i ta r

la m a y o r p a r t e d e los e r r o r e s d e s d e e l p r inc ip io y, c o m o r e s u l t a d o , el p r o c e s o d e p r o

g r a m a c i ó n se vo lverá m u c h o m á s e c o n ó m i c o . . . los b u e n o s p r o g r a m a d o r e s . . . n o d e -

b e n d e s p e r d i c i a r su t i e m p o d e p u r a n d o : d e b e n ev i ta r los e r r o r e s d e s d e el pr incipio.

Aunque es tas palabras fueron pronunciadas hace muchos años, aún son vá-
lidas. Cuando el modelo de diseño se traduce en código fuente deben seguirse
una serie de principios de diseño que no sólo realicen la traducción, sino que
"eviten la introducción de errores desde el principio".

Es posible representar el diseño al nivel de componentes empleando un len-
guaje de programación. En esencia, el programa se crea con el modelo de dise-
ño arquitectónico como guía. Un enfoque alterno consiste en representar el di-
seño al nivel de componentes empleando alguna representación intermedia (por
ejemplo, gráfica, tabular o basada en texto) que se traduzca fácilmente en códi-
go fuente. Independientemente del mecanismo con que se represente el diseño
al nivel de componentes , las estructuras de datos, las interfaces y los algoritmos
definidos deben adecuarse a diversas líneas generales de diseño bien definidas,
que ayuden a evitar errores a medida que evoluciona el diseño procedimental.
En este capítulo se examinaran esas líneas generales y los métodos disponibles
para seguirlas.

¿ Q u é e s ? Un conjunto completo de
componentes de software se defi-
ne durante el diseño arquitectóni-
co, pero las estructuras de datos

internas y el procesamiento de detalles de cada
componente no se representan en un grado de
abstracción parecido al código El diseño al ni-
vel de componentes define las estructuras de da-

3 1 5

TM

PDF Editor

316 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

los, los a lgori tmos, las caracter ís t icas d e la inter-
f a z y los mecanismos d e comunicación a s igna -
d o s a c a d a componen te d e software.

¿Quién lo h a c e ? Un ingeniero de software rea-
liza el d i s e ñ o al nivel d e componen tes .

¿Por q u é e s importante? Antes de construir el
sof tware se d e b e tener b c a p a c i d a d d e determi-
n a r si f u n c i o n a r á bien. El d i seño al nivel d e com-
ponentes represen ta el so f tware d e tal m a n e r a
q u e permite revisar si los detal les del d i seño son
correctos y consistentes con las representac iones
iniciales del d i seño (es decir, ios d iseños d e da -
tos, arqui tectura e in ter faz j Proporc iona una
m a n e r a d e eva luar si f unc iona rán tas estructu-
ras, las interfaces y b s a lgori tmos.

¿Cuáles son los p a s o s ? Las representaciones
al nivel d e d iseños d e da tos , arqui tectura e inter-
faz representan la bose del d i s e ñ o af nivel d e
componen tes La definición d e c lase o b na r r a -
tiva d e p rocesamien to d e c a d a c o m p o n e n t e se
t raduce en un diseño de t a l l ado q u e usa d i a g r a -

m a s o fo rmas d e texto q u e especif ican estructu-
ras d e da tos internas, detalle d e la interfaz local
y lógica d e procesamiento . La notac ión de dise-
ñ o a b a r c a d i a g r a m a s UML y representac ione ;
complementa r ias . El d i seño procedimenta l se es-
pec fica med ian te un conjunto d e construcciones
d e p rog ramac ión es t ructurada.

¿Cuál e s el producto o b t e n i d o ? El diseño d;
c a d a componente , r e p r e s e n t a d o en una noto
ción g rá f i ca , tabular o textual, e s el principo!
produc to de t r a b a j o c r e a d o duran te el d i seño d
nivel d e componentes .

¿Cómo p u e d o es tar s e g u r o d e q u e lo he
h e c h o correctamente? Se realiza un recc
rr ido o u n a inspección del diseño. Éste se e x a m
na p a r a de te rminar si las estructuras d e da to :
b s interfaces, b s secuencias y condic iones lógi
cas son correctas y p a r a ver si a r r o j a n b s d a t e :
a p r o p i a d o s o la t ransformación d e control asic
n a d a al componen te du ran t e b s pr imeras etc
p a s del d iseño.

11 .i ¿ftUÉ ES
De manera general, un componente es un bloque de construcción modular para d
sof tware de cómputo. De manera m á s formal, la especificación unificada de lengua
je de modelado de OMG [OMGOl] define un componente como "una parte modula:
desplegable y reemplazable de un sistema que encapsula implementación y expeor
un conjunto de interfaces".

Como se analizó en el capítulo 10, los componen tes pueblan la arquitectura x
sof tware y, por tanto, ayudan a cumplir con los objetivos y requisitos del sistema tu
construcción. Debido a que los componentes residen en el interior de la arquitecto
ra del software, deben comunicarse y colaborar con otros componentes y con enr-
dades (como otros sistemas, dispositivos, personas) que existen fuera de los l imita
del software.

Hi-

l o s detofles no son sólo detcUes. Integran el diseño."
Charles Eamts

El verdadero significado del término "componente" variará dependiendo del p je-
to de vista del ingeniero de software que lo usa. En la siguiente sección se revisara-
tres conceptos importantes de lo que es un componente y la manera en que se s¿
a medida que se realiza el modelado del diseño.

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 317

kVE
i íunto de

10

¡ e s un
i x dases que

i entre sí.

*
tjuelosmo-

r x análisis y
Micciones

. b probable
ión de

i x análisis ori-
0 pasos

s adiciona-
1 seguidos
sdemo-

i diseño pa-
rla clase

: elaborada
$ del corn-

il. 1.1 Concepto or ientado a objetos

En el contexto de la ingeniería del sof tware orientada a objetos, un componente con-
tiene un conjunto de clases que colaboran entre sí.1 Cada clase de un componente
se ha elaborado completamente para incluir todos los atributos y las operaciones re-
levantes para su implementación. Como parte de la elaboración del diseño, también
deben definirse todas las interfaces (mensajes) que permiten que las clases se comu-

niquen y colaboren con otras clases de diseño. Para lograrlo, el diseñador empieza
con el modelo de análisis y elabora clases de análisis (en el caso de componentes que
se relacionan con el dominio del problema) y clases de infraestructura (en el caso de
componentes que proporcionan servicios de soporte para el dominio del problema).

Este proceso de elaboración del diseño se ilustra imaginando que el sof tware se
construirá para una imprenta sofisticada. El objetivo general del software e s recopi-
lar las necesidades del cliente en el mostrador, cotizar un t rabajo de impresión y pa-
sarlo a una planta de producción automat izada. Durante la ingeniería de los requi-
sitos se deriva una clase de análisis denominada Trabajolmprenta. Los atributos y
las operaciones definidos durante el análisis s e observan en la parte superior iz-
quierda de la figura 11.1. Durante el diseño arquitectónico se define Trabajolm-
prenta como un componente de la arquitectura de sof tware y se representa em-
pleando la notación abreviada de UML que se muestra en la parte central derecha de
la figura. Observe que Trabajolmprenta tiene dos interfaces, caícularTrabajo, que
proporciona la capacidad de cotizar el trabajo, e iniciarTrabajo, que pasa el trabajo a
la planta de producción. Éstas se representan empleando los símbolos que se mues-
tran a la izquierda del recuadro del componente .

El diseño al nivel de componen tes empieza en este punto. Deben elaborarse los
detalles del componente Trabajolmprenta para que proporcionen la información
suficiente que guíe la implementación. La clase de análisis original se elabora para
dar forma a todos los atributos y las operaciones requeridos para implementar la cla-
se como el componente Trabajolmprenta. Tomando como referencia la parte infe-
rior derecha de la figura 11.1, la clase de diseño Trabajolmprenta e laborada con-
tiene información de atributos más detallada, además de una descripción expandida
de las operaciones requeridas para implementar el componente . Las interfaces caí-
cularTrabajo e iniciaiTrabajo llevan implícitas la comunicación y colaboración con
otros componentes (que no se muestran aquí). Por ejemplo, la operación calcular-
CostoPagina() (parte de la interfaz caícularTrabajo) colaboraría con un componente
TablaPrecios que contiene la información de precios de los trabajos. La operación
verificarPrioridadf) (parte de la interfaz iniciafTYabajo) colaboraría con el componen-
te ColaTrabajos para determinar los tipos y las prioridades de los trabajos en espe-
ra (o en cola) que se encuent ran en producción.

Esta actividad de elaboración se aplica a cada componente definido c o m o parte
del diseño arquitectónico. Una vez completado, se elabora aún más cada atributo,

1 En algunos casos un componente podría contener una sola clase

TM

PDF Editor

318 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

operación e interfaz. Deben especificarse las estructuras de datos apropiadas p i n
cada atributo. Además, también se diseña el detalle algorítmico que se requiere p:
ra implementar la lógica de procesamiento asociada con cada operación. Esta a:
vidad de diseño procedimental se anal izará más adelante, en este mismo cap:: -
Por último, se diseñan los mecanismos necesarios para implementar la interfaz. E" s
caso del software orientado a objetos, esto abarca la descripción de todos los mera-i
jes que se requieren para realizar la comunicación entre objetos dentro del sistema

Elaboración
de un
componente
de diseño.

11.1.2 El concep to convenc iona l

En el contexto de la ingeniería del sof tware convencional, un componente es un e £
mentó funcional de un programa que incorpora la lógica del procesamiento, las r J
tructuras internas de los datos necesarios para implementar dicha lógica, y ur.a «
terfaz que permita la invocación del componen te y el paso de los datos. Un co~r»«l
nente convencional, también denominado módulo, reside dentro de la a rqui ter - -®

cokularCostodeTrabajol(J
Imprímify posortrobajo(|

cakulorTrabojo

« i n t e r f a z »
cokularTrobajo Trabo jolmprento

HpoPopd
p w o P o p d

x cokxPopel
* ampliación

requisiiosColor
corocleristicasProduccion

I I opcionesDisIribucion
opcionesEncuadernado
por todaiAl macen
refine
pñor idod

costoTotaíTrabo^o
nomeroOT

« i n t e r f a z »
inictarTrabajo

colculaiCostoPogino()
| coku lo fCos ioPop^ |)
cokukjrCosloProd()
calcula rCosloTr a b a ¡oToiol |
constru¡rOrdenTrobajo(\
revi$afPrioridad(|
pasarTr a b a joAPr oducc ¡on (

Componente
de diseño

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 319

del sof tware y representa uno de tres papeles importantes: I) como componente de
control que coordina la invocación de todos los d e m á s componentes del dominio del
problema, 2) como componente del dominio del problema que implementa una fun-
ción completa o parcial requerida por el cliente, o 3) como componente de infraes-
tructura responsable de funciones que soportan el procesamiento requerido en el do-
minio del problema.

Como los componen tes orientados a objetos, los componen tes del sof tware con-
vencional se derivan del modelo de análisis. Sin embargo, en este caso el e lemento
de datos orientado al flujo del modelo de análisis sirve como base para la derivación.
Cada transformación (burbuja) representada en los niveles inferiores del diagrama
de flujo de datos (capítulo 8) se correlaciona directamente (sección 10.6) con una je-
rarquía de módulos. Los componen tes de control (módulos) residen cerca de la par-
te superior de la jerarquía (arquitectura) y los componentes del dominio del problema
tienden a residir hacia la parte inferior de la jerarquía. Para lograr una modularidad
efectiva, se aplican conceptos de diseño como la independencia funcional (capítulo
9) a medida que se elaboran los componentes .

"Invariablemente se descubre que un sistemo complejo que funciona ha evolucionado a partir de un sistema simple
que también funcionaba.

John Goll

*
r se elabora el

f coda
rrtede

t el punto
i desplaza al

i x estructuras
! específicas y
i procedlmen-

: -nanipular las
s de datos.
» , no debe

tquela
i que debe

ríos
sola

i global de
9 s e m a

s componentes.

Este proceso de elaboración del diseño de componen tes convencionales se ilus-
tra considerando de nuevo el sof tware que se habrá de construir para un sofisticado
centro de fotocopiado. Un conjunto de d iagramas de flujo de datos se derivaría du-
rante el modelado del análisis. Se supondrá que és tos se correlacionan (sección
10.6) dentro de la arquitectura que se muestra en la figura 11.2. Cada recuadro re-
presenta un componente de software. Tómese en cuenta que los recuadros con pan-
talla gris t ienen una función equivalente a las operaciones definidas en la clase Tra-
bajo lmprenta anal izada en la sección 11.1.1. Sin embargo, en es te caso cada ope-
ración se representa c o m o un módulo separado que se invoca como se muestra en
la figura. Con otros módulos se controla el procesamiento y, por tanto, son compo-
nen tes de control.

Durante el diseño al nivel de componentes , se elabora cada módulo mostrado en
la figura 11.2. La interfaz del módulo se define de manera explícita. Es decir, se re-
presenta cada objeto de datos o de control que fluye por la interfaz. El algoritmo que
permite que el módulo realice su función está diseñado con el enfoque de refina-
miento paso a paso analizado en el capítulo 9. El comportamiento del módulo sue-
le representarse con un diagrama de estado.

Para ilustrar es te proceso considérese el módulo CalcularCostoPagina. Su objetivo
e s calcular el costo de impresión por página a partir de las especificaciones del clien-
te. Los datos necesar ios para realizar esta función son: número de páginas en el docu-
mento, número total de documentos que se producirán, impresión por una o ambas caras, color

TM

PDF Editor

320 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

o blanco y negro y tamaño. Estos datos se pasan a CalcularCostoPagina mediante la
terfaz del módulo. Éste usa los datos y determina un costo por página que se ba5¿
en el t amaño y la complejidad del trabajo (una función de todos los datos pasados a
módulo con la interfaz). El costo por página es inversamente proporcional al tarr¿
ño del trabajo y directamente proporcional a su complejidad.

Gráfica de
estructura
de un siste-
ma conven-
cional.

Sistema de
] administración

de trabajo

i Leer datos
j de trabajo
loe impresión

] Calcular costo
de página

, Desarrollar
costo

de trabajo

HCalcular costo
de papel

Seleccionar
la función

I de manejo
de trabajo

T

] Calcular costo
de prod.

Revisar
prioridad

Pasar trabe
a producc

En la figura 11.3 se representa el diseño al nivel de componen tes empleand •
notación UML modificada. El módulo CalcularCostoPagina tiene acceso a losd¿ - (|
invocar al módulo obtenerDatosTrabajo, que permite el paso de todos los datos - n e -
vantes al componente , y una interfaz de base de datos, accesarBDCostos, que p e m f l
te que el módulo tenga acceso a una base de datos con todos los costos de :.
sión. A medida que prosigue el diseño se elabora el módulo CalcularCostoPagir.. J
ra proporcionar el detalle del algoritmo y la interfase (figura 11.3). El detalle
goritmo se representa empleando el texto de seudocódigo que se muestra en la M
ra con un diagrama de actividad de UML. Las interfaces se representan como ura a
lección de objetos o e lementos de datos de entrada y salida. La elaboración
seño continúa hasta que s e proporcione detalle suficiente para guiar la const>
del componente .

TM

PDF Editor

C A P I T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 3 2 1

al nivel
snentes

Calculaz-
a.

Módulo elaborado

obtenerDatosTrabajo
o

Componente de diseño

accesarBDCostos

CostoPagina

entra: numeroPagínas
entra: numeroDocumentos
entra: lados= I, 2
entra: colon* I, 2, 3, 4
entra: tamañoPagina = A, B, C, D
sale: costo de página
entra: tamañoTrabajo
entra: colora 1, 2, 3, 4
entra: tamañoPagina - A, B, C, D
sale: CBP
sale: SF

obtenerDatosTrabajo (numeroPagínas,
numeroDocumentos, lados, color,

tamañoPagina, costoPagina)
accesarBDCostosftamañoTrabajo, color,
tamañoPagina, CBP, SF)
calcularCostoPagina()

tamaño de trabajo (TT) »
numeroPagínas = numeroDocumentos;

buscar costo base de página (CBP) ->
accesarBDCostos (TT, color);

buscar factor de tamaño (FT) ->
accesarBDCostos (TT, color, tamaño)

factor de complejidad de trabajo (FCT) =
I + [(lados-l)*costolado + FT]

costoPagina » CBP * FCT

11.1.3 Un concep to re lac ionado con el proceso

En los conceptos orientado a objetos y convencional del diseño al nivel de compo-
nentes presentados en las secciones anteriores, se supone que los componentes se
han diseñado desde cero. Es decir, que el diseñador debe crear un nuevo componen-
te basado en especificaciones derivadas del modelo de análisis. Hay, por supuesto,
otro enfoque.

En la década pasada, la comunidad de la ingeniería del sof tware ha des tacado la
necesidad de construir s is temas que usen los componen tes de sof tware existentes.
En esencia, un catálogo de componentes probados al nivel de diseño o de código
queda a disposición del ingeniero de software a medida que avanza en el trabajo de
diseño. Mientras se desarrolla la arquitectura del software, se eligen del catálogo los
componentes o patrones de diseño y se usan para poblar la arquitectura. Debido a que
es tos componentes se han creado con la reutilización en mente, se encuentra a dis-
posición del diseñador una descripción completa de su interfaz, la función o las fun-
ciones que realiza y la comunicación y colaboración que requiere. La ingeniería del
software basada en componentes se analizará de manera muy detallada en el capí-
tulo 30.

TM

PDF Editor

322 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

HERRAMIENTAS DE SOFTWARE h

Middleware e ingeniería de software basada en componentes
Uno de los elementos clave que lleva al éxito o
el fracaso de la ingeniería del software basada

en componentes es la disponibilidad de middleware. Ésta
es una colección de componentes de infraestructura que
permiten que los componentes del dominio del problema
se comuniquen con otros en una red o dentro de un siste-
ma complejo. Quienes desean usar ingeniería del software
basada en componentes a medida que avanza el proceso
de software cuentan con tres estándares competidores:

OMG CORBA {http://www.corba.org/).
Microsoft COM

(http://www.microsoft.com/com/tech/complus.asp!

Sun JavaBeans (http://java.sun.com/products/ejb/).

Los anteriores sitios Web presentan una amplia variedcx:
de tutoriales, manuales, herramientas y recursos generae-
sobre estos importantes estándares de middleware. En e
capítulo 30 se encontrará más información acerca de la
ingeniería del software basada en componentes.

Como ya se ha observado, el diseño al nivel de componentes se basa en info~
desarrollada como parte del modelo de análisis (capítulo 8) y representada
parte del modelo arquitectónico (capítulo 10). Cuando se elige un método de
niería de software basado en componentes, el diseño al nivel de éstos se cont-
en la elaboración de las clases de análisis (clases específicas del dominio del |
ma), y la definición y la afinación de las clases de infraestructura. La descripciór
tallada de los atributos, las operaciones y las interfaces empleados por estas
representa el detalle de diseño requerido como precursor de la actividad de a r s - l
trucción.

11.2.1 Principios bás icos d e d iseño

Hay cuatro principios básicos de diseño aplicables al diseño al nivel de c o m p - : - -
tes y se han adoptado ampliamente cuando se aplica ingeniería de software or .enaj
da a objetos. La motivación elemental para la aplicación de estos principios es
diseños que sean más sensibles al cambio y reducir la propagación de efectos:
darios cuando ocurren cambios. Estos principios pueden usarse para guiar al -
ñador a medida que desarrolla un componente de software.

El principio abierto-cerrado (PAC). "[El componente de] un módulo debe
abierto para extensión, pero cerrado para modificación" [MAROO]. Esta frase pareec
contradicción, pero representa una de las características más importantes ¿ i
buen diseño al nivel de componentes. Para expresarlo de manera simple, el
dor debe especificar el componente de manera que permita extenderlo (dentr;
dominio funcional que atiende) sin necesidad de modificaciones internas al
componente (al nivel de código o lógica). Para ello, el diseñador crea abstrae
que sirven como memoria intermedia entre la funcionalidad que tal vez habrá oe
tenderse y la propia clase de diseño.

TM

PDF Editor

http://www.corba.org/
http://www.microsoft.com/com/tech/complus.asp
http://java.sun.com/products/ejb/

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 3 2 3

t o
PAC

« i n t e r f a z »
Sensor

leer()
habilitar! ¡
inhabilitar! ¡
p roba r))

4 V

i Detector

sensorPuertas/
Ventanas

SensorHumo DeteclorMovimiento SensorCalor S e n s o r C 0 2

Por ejemplo, suponga que la función de seguridad HogarSeguro usa la clase D e -
tec tor que debe revisar el estatus de cada tipo de sensor de seguridad. Es probable
que con el t iempo aumenten el número y los tipos de sensores de seguridad. Si la ló-
gica de procesamiento interno está implementada como una secuencia de construc-
ciones s i -entonces-sLno (if-then-else), donde cada una at iende un tipo de sensor di-
ferente, la adición de un nuevo tipo de sensor requerirá lógica de procesamiento in-
terno adicional (un si-entonces-si_no adicional). Esto es una violación del PAC.

Una manera de cumplir con el PAC en el caso de la clase D e t e c t o r s e ilustra en
la figura 11.4. La interfaz sensor presenta una vista consistente de sensores para el
componente Detec tor . Si se agrega un nuevo tipo de sensor no se requieren cam-
bios en la clase De tec tor (componente). Se preserva el PAC.

HOGARSEGURO

El PAC en acción

Lo e s c e n a : Cubículo de Vinod.

s : Vinod y Shakira, integrantes del equipo
ingeniería del software HogarSeguro.

conversación:
V i n o d : Acabo d e recibir una llamada d e Doug (el ge-

- del equipo). Dice que marketing quiere agregar un
i sensor.

= k i r a (s o n r i e n d o) : ¡Otra vez!

J : Sí... y no vas a creer con lo que han salido aho-

n k i r a : Sorpréndeme.

Vinod (r i e n d o) : Lo llamaron sensor detector de ladridos.

S h a k i r a : ¿Qué significa?

V i n o d : Es pa ra la gente que deja sus mascotas en de-
partamentos o condominios o casas muy cercanas. S pe-
rro empieza a ladrar. El vecino se enoja y se queja. Con
este sensor, si el perro ladra durante más de un minuto,
por decir algo, el sensor detona una a larma especial que
llama al teléfono celular del dueño.

S h a k i r a : No bromees.

V i n o d : Es en serio. Doug quiere saber cuánto tiempo
nos tomará agregarlo a la función d e seguridad.

Shakira (pensando por un momento): No mu-
cho... mira [le muestra a Vinod la figuro 11.4]. Hemos
aislado las clases de sensores reales tras la interfaz sen-
sor. Siempre y cuando tengamos especificaciones del
sensor de perros, se agrega en un tris. Lo único que ten-

TM

PDF Editor

324 P A R T E D O S PRÁCTICA DE LA INGENIERÍA D A SOFTWARE

go que hacer es crear un componente apropiado.. . o
sea, uno clase, para él. No hay ninguna necesidad de
cambiar el componente Detector.

V i n o d : Entonces le puedo decir a Doug que no hay mu-
cho problema,

S h a k i r a : Conociendo a Doug, nos tendrá ocupados y
no enviará lo cosa esa contra perros hasta la próxima
versión.

V i n o d : No está mal, pero ¿lo podrías implementar a!-:
ra mismo si él lo quisiera?

S h a k i r a : Sí, la manera en que diseñamos la interfaz - i
permite hacerlo sin mucho esfuerzo.

Vinod (pensando por un momento): ¿Alguna
has oído hablar del "Principio Abierto-Cerrado"?

Shakira (encogiendo los hombros): Nunca
Vinod (sonr iendo) : No importa.

(C O N S E J O ^

Si se prescinde del di-
seño y se pasa direc-
tamente al código,
sólo recuérdese que
éste es la 'concre-
ción" final. Así que se
estaró violando el PID.

Principio d e sus t i tuc ión d e Liskov (PSL). "Debe tenerse la opción de sustituí- i
subclases con sus clases principales." [MAROO] Este principio del diseño, que orig
mente propuso Barbara Liskov [LIS88], sugiere que un componente que use una
se principal debe seguir funcionando apropiadamente si, en cambio, se pasa a! i
ponente una clase derivada. El PSL exige que cualquier clase derivada de una •
principal se apegue a cualquier contrato implícito entre la clase principal y los i
ponentes que la usan. En el contexto de esta explicación, un "contrato" es una
dición previa que debe ser verdad después de que el componen te usa una clase |
cipal y una condición posterior que debe ser cierta después de que el componente J
una clase principal. Cuando un diseñador crea clases derivadas, también deben
tarse a las condiciones previas y posteriores.

Principio d e inversión d e la d e p e n d e n c i a (PID). "Dependa de las abstraed: --r l
no de las concreciones." [MAROO] Como h e m o s visto en el análisis del PAC, las a-5-1
tracciones son el lugar donde un diseño se puede extender sin grandes complica
nes. Cuanto m á s dependa un componente de otros componentes concretos (en - J
gar de abstractos, como la interfaz), más difícil será extenderlos.

Principio d e s e g r e g a c i ó n de la interfaz (PSI). "Es mejor tener muchas inter:.™
específicas del cliente que una interfaz de propósito general." [MAROO] Hay mucho; la-
sos en que varios componentes de cliente usan las operaciones proporcionadas por
clase de servidor. El PSI sugiere que el diseñador debe crear una interfaz espec A -
zada para servir a cada categoría importante del cliente. Sólo las operaciones im:
tantes para una categoría especial de clientes deben especificarse en la interfaz o a l
ra esos clientes. Si varios clientes necesitan las mismas operaciones, deben especi-
ficarse en cada una de las interfaces especializadas.

Por ejemplo, piense en la clase P lanoCasa que se usa en HogarSeguro para -i
ciones de seguridad y vigilancia. En el caso de las funciones de seguridad, PlanoO- •
s a sólo se emplea durante las actividades de configuración y utiliza las operaci: -as
colocarDispositivo(), mostrarDispositivo(), agruparDispositivo() y eliminarDisposic * •
para colocar, mostrar, agrupar y eliminar sensores del plano. La función de vigi la-aB
de HogarSeguro usa las cuatro operaciones indicadas para seguridad, pero sóle t a l
quiere operaciones espaciales para manejar las cámaras: mostrarPVf) y mostrarle :z-\

TM

PDF Editor

CAPÍTULO 11 DISEÑO AL NIVEL DE COMPONENTES 325

kVE
i * compo-
ne reutilizo-

! más que
i i s eño técni-

i requiere
óón efec-

i mecanismos
i (capítulo

positivo)). Por tanto, el PSI sugiere que los componentes de cliente de las dos funcio-

nes de HogarSeguro tengan interfaces especializadas y definidas para ellas. La interfaz
de seguridad sólo abarcaría las operaciones colocarDispositivof), mostrarDispositivo(),
agruparDispositivo() y eliminarDispositivof). La interfaz de vigilancia incorporaría las
cuatro operaciones anteriores, además de mostrarPV() y mostrar¡DDispositivo().

Aunque los principios de diseño al nivel de componentes proporcionan una guía
útil, los propios componen tes no existen en el vacío. En muchos casos, los compo-
nentes o las clases individuales se organizan en subsis temas o paquetes. Es razona-
ble preguntar, ¿cómo debe presentarse esta actividad de empaquetamiento? Exacta-
mente, ¿cómo deben organizarse los componen tes a medida que avanza el diseño?
Martin (MAROO] sugiere principios adicionales de empaquetamiento que son aplica-
bles al diseño al nivel de componentes .

Principio de equivalencia entre reuti l ización y vers ión (PER). "La esencia de la
reutilización es la misma que de la versión." |MAROO] Cuando las clases o componen-
tes se diseñan para reutilizarlos, hay un contrato explícito entre el desarrollador de
la entidad reutilizable y la persona que la usará. El desarrollador se compromete a
establecer un sistema de control de versiones que dé soporte y mantenga las versio-
nes anteriores de la entidad mientras los usuarios actualizan lentamente la versión
más actual. En lugar de atender cada clase individualmente, lo aconsejable sería agru-
par las clases reutilizables en paquetes que pueden manejarse y controlarse a medi-
da que evolucionan nuevas versiones.

Principio del c ierre c o m ú n (PCC). "Las clases que cambian juntas deben permane-
cer juntas." [MAROO] Las clases deben empaquetarse de manera que sean un todo co-
herente. Es decir, cuando las clases se empaque tan como parte de un diseño, deben
atender la misma área de funciones o comportamientos . Cuando alguna caracterís-
tica de esa área debe cambiar, e s probable que sólo deban modificarse las clases del
paquete. Esto lleva a un control de cambios y a un manejo de las versiones más efec-
tivos.

Principio c o m ú n d e la reuti l ización (PCR). "Las clases que no se reutilizan juntas
no deben agruparse juntas." [MAROO] Cuando una o m á s clases cambian en un pa-
quete, también cambia el número de versión del paquete. Todas las d e m á s clases o
los d e m á s paquetes que dependen de ese paquete deben actualizarse ahora a la ver-
sión m á s reciente del paquete y probarse para asegurar que la nueva versión funcio-
na sin incidentes. Si no hubo cohesión al agrupar las clases, es posible que cambie
una clase que no tenga relación con las demás. Esto requerirá un proceso innecesa-
rio de integración y prueba. Por ello, sólo deben incluirse en un mismo paquete las
clases que se reutilizarán juntas.

11.2.2 Líneas genera le s d e diseño a l nivel d e c o m p o n e n t e s

Además de los principios anal izados en la sección 11.2.1, es posible aplicar un con-
junto pragmático de líneas generales de diseño a medida que avanza el d iseño al ni-

TM

PDF Editor

326 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

T :
J l í ¿Qué se

debe tomar

en cuento cuando

se nombran los

componentes?

vel de componentes . Estas líneas generales se aplican a componentes , sus in te - :
ees y las características de dependencia y herencias que impactan el diseño re s -
tante. Ambler [AMB02] sugiere las siguientes líneas generales:

C o m p o n e n t e s . Deben definirse convenciones de asignación de nombres para
componentes especificados como parte del modelo arquitectónico, y luego refin;--:1

y elaborarse como parte del diseño al nivel de componentes . Los nombres del -
délo arquitectónico deben extraerse del dominio del problema y tener algún sig-
cado para los participantes que ven el modelo arquitectónico. Por ejemplo, el
bre de clase P lanoCasa tiene significado para quienes lo leen, sin importar sus
tecedentes técnicos. Por otra parte, los componentes de infraestructura o las
e laboradas al nivel de componentes deben tener un nombre que refleje el sign
do específico de la implementación. Si se habrá de manejar una lista vinculada
mo parte de la implementación de PlanoCasa, la operación manejarLista()
apropiada, aunque una persona sin conocimientos técnicos podría malinterp:

También vale la pena usar estereotipos para ayudar a identificar la n a t u r a l e s
los componentes al nivel de diseño detallado. Por ejemplo, «infraestructura»
usarse para identificar un componente de infraestructura; «basededatos» podría i
se para identificar una base de datos que sirve a una o m á s clases del diseño c ¿
do el sistema; « t a b l a » se usaría para identificar una tabla dentro de una base ce
tos.

Interfaces . Las interfaces proporcionan información importante acerca de i
municación y la colaboración (además de ayudar a lograr el PAC). Sin embarg :
representación libre de las interfaces tiende a complicar los diagramas del cc
nente. Ambler [AMB02] recomienda que 1) cuando los d iagramas se vuelvar
complejos se use la representación de línea y círculo para una interfaz, en lugi* .

Cohesión de
capa. Panel de control

Detector Teléfono

Modem

T-com

2 Es improbable que una persona de marcadotecnia o de la organización del cliente (un tipo ¡
tecedentes técnicos) examine el detalle de la información de diseño

TM

PDF Editor

C A P I T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 327

[CONSEJO.

(tsulta instruc-
i ampiensión de

s grados de
.esmósim-

i estar cons-
i » ' concepto
is medida que

i componen-
í tcrténgase lo

r cohesión posi-

enfoque más formal del recuadro UML y la flecha con línea de guiones; 2) por razo-
nes de consistencia, las interfaces deben fluir desde la izquierda del recuadro del
componente; 3) sólo deben mostrarse las interfaces relevantes del componente en
cuestión, aunque estén disponibles otras. Estas recomendaciones pretenden simpli-
ficar la naturaleza visual de los diagramas de componentes UML.

Dependencias y herencia. Para mejorar la legibilidad es buena idea modelar las
dependencias de izquierda a derecha y la herencia de abajo (clases derivadas) hacia
arriba (clases principales). Además, las interdependencias entre los componentes
deben representarse mediante interfaces, en lugar de hacerlo mediante la represen-
tación de una dependencia de componente a componente. Siguiendo la filosofía del
PAC, esto ayudará a mejorar las opciones de mantenimiento del sistema.

11.2.3 Cohesión

En el capítulo 9 se describió la cohesión como la "función única" de un componen-
te. En el contexto del diseño al nivel de componentes para sistemas orientados a ob-
jetos, la cohesión implica que un componente o una clase sólo encapsula atributos y
operaciones relacionadas estrechamente entre sí y con la clase del propio compo-
nente. Lethbridge y Laganiére [LET01] definen varios tipos diferentes de cohesión
(que aparecen en la lista ordenados según su grado de cohesión):3

Funcional. Exhibido principalmente para operaciones, este grado de cohesión se
presenta cuando un módulo realiza un solo cálculo y luego devuelve un resultado.

De capa. Exhibido para paquetes, componentes y clases, este tipo de cohesión
ocurre cuando una capa superior tiene acceso a los servicios de una inferior, pero
ésta no tiene acceso a aquélla. Piénsese, por ejemplo, en la necesidad de que la fun-
ción de seguridad de HogarSeguro haga una llamada telefónica al exterior si se dis-
para una alarma. Sería posible definir un conjunto de paquetes en capas como se
muestra en la figura 11.5. Los paquetes con pantalla gris contienen componentes de
infraestructura. El acceso se tiene del paquete del panel de control hacia abajo.

De comunicación. Todas las operaciones con acceso a los mismos datos se de-
finen dentro de una clase. En general, esa clase sólo se concentra en los datos en
cuestión, accesándolos y almacenándolos.

Resulta relativamente fácil implementar, probar y mantener las clases y los com-
ponentes que muestran cohesión funcional, de capa y de comunicación. El diseña-
dor debe luchar por alcanzar estos grados de cohesión. Sin embargo, hay muchos
casos en que se encuentran los siguientes niveles inferiores de cohesión:

Secuencial . Los componentes o las operaciones están agrupados de manera que
el primero permita la entrada al siguiente, y así sucesivamente. El objetivo es imple-
mentar una secuencia de operaciones.

3 En general, mientras mayor sea el grado de cohesión, más fácil será implementar, probar y mante-
ner el componente.

TM

PDF Editor

328 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Procedimenta l . Las componen tes o las operaciones están agolpados de man;
ra que permiten la invocación de uno inmediatamente después de que s e invoque e
anterior, aunque no se hayan pasado da tos entre ellos.

Temporal . Las operaciones que se realizan reflejan un comportamiento o e s U :
específico, como una operación que se realiza al principio o todas las operaciones
realizadas cuando se detecta un error.

Utilitaria. Se han agrupado componentes , clases u operaciones que existen de-
t ro de la misma categoría, pero que no tienen otra relación. Por ejemplo, una clase
llamada Estadíst ica muestra cohesión utilitaria si contiene todos los atributos y .=
operaciones necesarios para calcular seis medidas estadísticas simples.

Estos grados de cohesión son menos deseables y deben evitarse cuando existe»
ot ras opciones de diseño. Sin embargo, es importante tomar en cuenta que a veres
los temas pragmáticos de diseño e implementación obligan al diseñador a optar por ka .
grados inferiores de cohesión.

HOGARSEGURO

Cohesión en acción

' S U J L ' I J B H J ! El e s c e n a r i o : Cubículo de jamie.

Los p e r s o n a j e s : Jamie y Ed, integrantes del equipo de
ingeniería del software que t rabajan en la función de vi-
gilancia.

La conversación:
Ed: Tengo un diseño preliminar del componente de cámara.

J a m i e : ¿Puedo hacerle una rápida revisión?

Ed : Supongo que s í . p e r o en realidad quisiera tu opi-
nión sobre algo.

(Jamie le hace un gesto para que siga hablando.)

Ed: Originalmente definimos cinco operaciones pa ra cá-
mara. Mira. . . {muestra la lista a Jamie].

determinarTípol I me dice el tipo de cómara.

traduárUbicacionf I me permite mover la cámara por
et plano de la caso

desplegarlo(j obtiene el ID de la cámara y lo muestra
¡unto al icono d e ésta

desplegarVstal) me muestra gráficamente el campo
de vista de la cámara

aesplegarZooml I me muestra gráficamente la am-
pliación de la cámara .

Ed : He diseñado cada uno por separado, y son opere
clones muy simples. De modo que sería buena idea c o _

binar todas las operaciones de despliegue en una soic
que se llamara desplegarCámaral); mostraría el ID, la
visto y el zoom. ¿Qué te parece?

J a m i e (h a c i e n d o u n a m u e c a) : N o estoy segura c :
que sea una buena idea.

Ed (f r u n c i e n d o e l c e ñ o) : ¿Por qué? Todas estas pe
quenas operaciones pueden causar dolores d e cabeza

J a m i e : El problema d e combinarlos es que perdemos
cohesión. Tú sabes, la operación desplegarCámaral I nd
tendría una sola función.

Ed (u n p o c o e x a s p e r a d o) : ¿Y eso qué? Todo este
tendrá más d e cien líneas de código. Creo que será fó;
implementarlo.

J a m i e : ¿Y qué pasar ía si mercadotecnia decide cam-
biar la manera en que representamos el campo de vis*r

Ed : Simplemente me meto en la operación desplegarC:-
mara() y elaboro el módulo.

J a m i e : ¿Y qué pasa con los efectos colaterales?

Ed: ¿A qué te refieres?

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 3 2 9

z: Bueno, digamos que haces el cambio pero, sin
cuenta, creas un problema con el despliegue del ID.

No sería tan descuidado.

: Tal vez no, pero qué pasaría si una persona de
tiene que hacer el módulo dentro de dos años,

tz no comprenda la operación tan bien como tú y,
sabe, podría ser descuidado.

Ed: ¿De modo que estás en contra de él?

J a m i e : Tú eres el diseñador.. . es tu decisión... sólo ase-
gúrate de comprender las consecuencias de una ba ja co-
hesión.

Ed (pensándolo por un momento): Tal vez
mos ir con diferentes operaciones de despliegue.

J a m i e : Buena decisión.

E • #
i que se ero-

h r e iseño de codo
de sofl-

atención se
al diseño de

m c u c s de dalos
syalosdi-

E jücedimentales
m imputar las es-

tile datos. Sin
D, no deben

_ _ _ M la orquitectu-
I u¡óebe albergar
b moonentes o los

globales
que pueden

muchos corn-

il.2.4 A c o p l a m i e n t o

En exposiciones precedentes del análisis y el diseño se observó que la comunicación
y la colaboración son elementos esenciales de cualquier sistema orientado a obje-
tos. Sin embargo, hay un lado oscuro en esta importante (y necesaria) característi-
ca. A medida que aumenta la cantidad de comunicación y colaboración (es decir, a
medida que crece el grado de "conectividad" entre las clases), también aumenta la
complejidad del sistema. Y a medida que ésta aumenta, la dificulta de implementar,
probar y mantener el software también lo hace.

El a c o p l a m i e n t o es una medida cualitativa del grado al que las clases se conectan
entre sí. A medida que las clases (y los componentes) se vuelven más interdepen-
dientes, el acoplamiento aumenta. Un objetivo importante en el diseño al nivel de
componentes consiste en mantener el acoplamiento lo más bajo posible.

El acoplamiento de clase se manifiesta de varias maneras. Lethbridge y Laganié-
re [LET01] definen las siguientes categorías de acoplamiento:

Acoplamiento del contenido. Ocurre cuando un componente "modifica su-
brepticiamente datos internos de otro" [LET01]. Esto viola la ocultación de la infor-
mación, que es un concepto básico del diseño.

Acoplamiento común. Ocurre cuando varios componentes usan una variable
global. Aunque esto es necesario en algunas ocasiones (por ejemplo, para estable-
cer valores predeterminados en toda una aplicación), el acoplamiento común puede
llevar a la propagación incontrolable de errores y a efectos colaterales imprevisibles
cuando se hacen cambios.

Acoplamiento de control. Se presenta cuando la o p e r a c i ó n A () invoca la o p e r a -
c i ó n B () y pasa una marca de control a 8. La marca de control "dirige" entonces el
flujo lógico dentro de 8. El problema con esta forma de acoplamiento es que un cam-
bio no relacionado en 8 puede causar la necesidad de cambiar el significado de la
marca de control que pasa A . Si esto se omite, se presentará un error.

Acoplamiento de es tampa. Ocurre cuando ClaseB se declara como tipo para
un argumento de una operación de ClaseA Debido a que ClaseB ahora es parte de
la definición de ClaseA, la modificación del sistema se vuelve más compleja.

TM

PDF Editor

330 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Acoplamiento d e d a t o s . Ocurre cuando las operaciones pasan cadenas lar£¿.-
de a rgumentos de datos. El "ancho de banda" de la comunicación entre clase; «
componentes crece y la complejidad de la interfaz aumenta . La prueba y el m a r : ;
nimiento son más difíciles.

Acoplamiento d e l lamada a rutina. Ocurre cuando una operación invoca a
otra. Este grado de acoplamiento e s común y, a menudo, muy necesario. Sin eme: -
go, aumenta la conectividad de un sistema.

Acoplamiento d e u s o de tipo. Ocurre cuando el componente A usa un tipc a:
datos definido en el componente B (por ejemplo, esto ocurre cada vez que "una cl¿í¿
declara una variable de instancia o una local como si tuviera otra clase para su t ire '
[LET01]). Si cambia la definición del tipo, también deben cambiar todos los cor r :
nentes que usan la definición.

Acoplamiento d e inc lus ión o importac ión . Ocurre cuando el componen:-: A
importa o incluye un paquete o el contenido del componente B.

Acop lamiento externo . Ocurre cuando un componente se comunica o colar-o-j
ra con componentes de infraestructura (como las funciones del sistema de o p t ' r
ción, la capacidad de la base de datos, las funciones de comunicación). Aunque esrsl
tipo de acoplamiento e s necesario, debe limitarse a un pequeño número de c o r ó -
nente o clases dentro de un sistema.

El sof tware debe comunicarse interna y externamente . Por tanto, el acoplamien: ; *
fundamental . Sin embargo, el diseñador debe trabajar para reducir el acoplam:e~ai
cada vez que sea posible y comprender las ramificaciones de un acoplamiento t e-
vado cuando no pueda evitarse.

Acoplamiento en acción

El e s c e n a r i o : Cubículo de Shakira.

Los a c t o r e s : Vinod y Shakira, integrantes del equipo
de ingeniería del software HogarSeguro que trabajan en
la función de seguridad.

La conversación:
S h a k i r a : Tuve lo que consideraba una estupenda
idea... Luego lo pensé un poco mejor y no me pareció
tan buena. Por último, lo rechacé, pero pensé que sería
conveniente compartirla contigo.

V i n o d : Seguro, ¿cuál es la idea?

S h a k i r a : Bueno, cada uno de los sensores reconoce
una condición de alarma de cada tipo, ¿verdad?

Vinod (sonr iendo) : Por eso los llamamos sensores,
Shakira. Ü ' ' •*

S h a k i r a (e x a s p e r a d a) : No seas sarcóstico, Viro;
Tienes que trabajar en tus habilidades interpersonale:-

V i n o d : ¿Qué me estabas diciendo?

S h a k i r a : Bien, de todas maneras, pensaba... ¿Por que
no crear una operación en cada objeto sensor denor- re
da hacerUamada(} que colaboraría directamente con e:

componente L l a m a d a S a l i e n t e , bueno, con una Ínter
faz al componente L lamadaSa l i en te .

Vinod (pensa t ivo) : ¿En lugar de hacer que esa cc ;
boración ocurra fuera de un componente como P a n e l -
Cont ro l o algo asi?

S h a k i r a : Claro... pero luego me dije, eso significa c.-i
cada objeto sensor estará conectado al componente Ua-
m a d a S a l i e n t e y que eso significa que está indirect;

TM

PDF Editor

CAPÍTULO 11 DISEÑO AL NIVEL DE C O M P O N E N T E 331

copiado al mundo exterior y . . . bueno, sólo pen-
e complicaba un poco las cosas,

: Estoy d e acuerdo. En este caso, es mejor idea
aue la interfaz del sensor p a s e información a P a -

>1 y hacer que inicie la l lamada saliente. Ade-
ciferentes sensores podrían dar diferentes números

telefónicos. N o querrás que el sensor a lmacene e sa infor-
mación porque si cambia

S h a k i r a : N o parece muy adecuado .

V i n o d : El diseño d e la heurística p a r a acoplamiento nos
indica que no es correcto.

S h a k i r a : De todos modos ..

1 1 . 3 C O N D U C C I Ó N DEL P I S E Ñ Q AL NIVEL P E C O M P O N E N T E S

Al principio de este capítulo se observó que el diseño al nivel de componentes es de
naturaleza elaborativa. El diseñador debe transformar la información del análisis y
los modelos arquitectónicos en una representación de diseño que proporcione sufi-
ciente detalle para guiar la actividad de construcción (codificación y prueba). Los si-
guientes pasos representan un conjunto de tareas típicas para el diseño al nivel de
componentes, cuando se aplica a un sistema orientado a objetos.

Paso 1. Identificar todas las c lases de d iseño que corresponden al dominio
del problema. Usando los modelos de análisis y arquitectónico, cada clase de aná-
lisis y componente arquitectónico está elaborado como se describió en la sección
11.1.1.

»
"abajando

: que no
' a ob/'e-

¿meros tres
aocentran

uto de
de dolos y

nenio
(transfor-

deínidos
¡delmode-

Paso 2. Identificar todas las c lases de d iseño que corresponden al domi-
nio d e la infraestructura. Estas clases no se describen en el modelo del análisis y
a menudo faltan en el modelo arquitectónico, pero deben describirse en este punto.
Como ya se ha indicado, entre las clases y los componentes de esta categoría se in-
cluyen componentes de interfaz gráfica de usuario, del sistema operativo, de admi-
nistración de objetos y datos, y otros.

Paso 3. Elaborar todas las c lases de d i seño que n o s e adquieran c o m o
c o m p o n e n t e s reutilizables. La elaboración requiere que se describan de manera
detallada todas las interfases, los atributos y las operaciones necesarios para imple-
mentar la clase. Al realizar esta tarea debe tomarse en cuenta el diseño de la heu-
rística (por ejemplo, la cohesión y el acoplamiento de componentes).

Paso 3a. Especificar los detal les del mensaje cuando las c lases o los c o m -
p o n e n t e s colaboran. El modelo del análisis emplea el diagrama de colaboración
para mostrar la manera en que las clases de análisis colaboran entre sí. A medida
que avanza el diseño al nivel de componentes, a veces es útil mostrar los detalles de
estas colaboraciones al especificar la estructura de mensajes que se pasan entre los
objetos de un sistema. Aunque esta actividad de diseño es opcional, puede usarse
como precursora de la especificación de interfaces que muestran la manera en que
se comunican y colaboran los componentes del sistema.

TM

PDF Editor

332 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Diagrama de
colaboración
con envío de
mensajes.

TrabajoProducción

1: construirTrabajo
(núrneroOT)

2: remitirTrabajo
imeroOT)

En la figura 11.6 se ilustra un diagrama simple de colaboración para el sistema dz
impresión analizado antes. Tres objetos, TrabajoProduccion, OrdenTrabajo •
ColaTrabajo, colaboran para preparar el envío de un trabajo de impresión al i - o
de producción. Los mensa j e s se pasan entre objetos como lo ilustran las flechas s
la figura. Durante el modelado del análisis los mensa jes se especifican comc st
muestra en la figura. Sin embargo, a medida que avanza el diseño, cada mensa -- -
elabora al expandir su sintaxis de la siguiente manera [BEN02],

[condición guardia] expresión de secuencia (valor devueHo): =

nombre del mensaje (lisia de argumentos)

donde una [condición guardia] está escrita en lenguaje de restricción de objeto (CC_
por sus siglas en inglés)4 y especifica cualquier conjunto de condiciones que dehr-
cumplirse an tes de enviar el mensaje ; expresión de secuencia es un valor entero (u ccn
indicador de orden, como 3.1.2) que indica el orden secuencial en que se envía JT
mensaje ; (valor devuelto) es el nombre de la información que devuelve la operación n
vocada por el mensaje; nombre del mensaje identifica la operación que se invoca y '•*-
ta de argumentos) e s la lista de los atributos que se pasan a la operación.

P a s o 3b . Identificar las interfaces apropiadas para c a d a c o m p o n e n t e . E- =
contexto del diseño al nivel de componentes , una interfaz UML e s un "grupo de cce
raciones externamente visibles (es decir, públicas). La interfase no contiene e s t r_
tura interna; no tiene atributos ni asociaciones.. ." [BEB02], Definida de manera r j s
formal, una interfaz es el equivalente a una clase abstracta que proporciona una .
nexión controlada entre las clases de diseño. La elaboración de una interfaz se i -Sj
tra en la figura 11.1. En esencia, las operaciones definidas para la clase de diseño es-
tán ordenadas en una o más clases abstractas. Cada operación dentro de la d¿5e
abstracta (la interfaz) debe tener cohesión; e s decir, debe mostrar procesamie" a>
que se concentra en una función o subfunción limitada.

Tomando como referencia la figura 11.1, podría argumentarse que la interfaz rj»
ciafTrabajo no muestra suficiente cohesión. En realidad, realiza tres subfuncione? :

4 El OCL se analiza brevemente en la sección 11.4 y en el capítulo 28.

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO A l NIVEL DE C O M P O N E N T E S 333

«interfaz»
iniciorTrobojo

pQsarTraboioAProducción(J

Refactorización de definiciones de interfases y clases para ImprimiiTrabajo.

calculorTrobajo .

. . . - , . I ' ImprimirTroboio
i n i c i a r l r a b a j o |

p c i ó n T r a b a j o

ferentes: construir una orden de trabajo, revisar la prioridad del trabajo y pasar un
t rabajo a producción. El d iseño de la interfaz debe refactorizar. Un enfoque seria ree-
xaminar las clases del diseño y definir una nueva clase OrdenTrabajo que s e ocupa-
ría de todas las actividades asociadas con la elaboración de una orden de trabajo. La
operación construirOrdenTrabajo!) s e vuelve una parte de esa clase. De igual manera,
se podría definir una clase FilaTrabajo que incorporaría la operación revisarPrioridadl).
Una clase TrabajoProduccion abarcaría toda la información asociada con un trabajo
de producción que se pasará a la planta de producción. La interfaz iriciarTYabajo to-
maría entonces la forma mostrada en la figura 11.7. Ahora esta interfase es cohesiva,
y se concentra en una sola función. Las interfaces asociadas con TrabajoProduc-
c ion, OrdenTrabajo y FilaTrabajo tienen una sola función.

P a s o 3c . Elaborar atributos y definir l o s t ipos y la s es tructuras d e da tos ne-
c e s a r i o s para implementar los . En general, las estructuras y los tipos de datos con
que se describen atributos se definen dentro del contexto del lenguaje de programa-
ción que habrá de usarse para la implementación. UML define el tipo de datos de un
atributo empleando la siguiente sintaxis:

nombre : tipo-expresión = valor-inicial {propiedad cadena}

donde nombre es nombre del atributo y tipo-expresión es el tipo de datos; valor-inicial es
el valor que toma el atributo cuando se crea un objeto y propiedad cadena define una
propiedad o característica del atributo.

Durante la primera iteración de diseño al nivel de componentes , los atributos sue-
len describirse por nombre. Tomando como referencia una vez más la figura 11.1, la
lista de atributos de Trabajolmprenta sólo incluye los nombres de los atributos; sin
embargo, a medida que avanza la elaboración del diseño, cada atributo se define
empleando el formato de atributos UML indicado. Por ejemplo, Tipo-pesoPapel se de-
fine de la siguiente manera:

Tipo-pesopapel: sfring = "A"{contiene 1 de 4 valores: A, B, C o D}

TM

PDF Editor

334 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

que define Tipo-pesopapel como una variable de cadena variable inicializada con el . i
lor A y que toma uno de cuatro valores del conjunto |A,B,C,D).

Si un atributo aparece varias veces en varias clases de diseño, y tiene una estru:
tura relativamente compleja, es mejor crear una clase separada para acomoda: s
atributo.

P a s o 3-D. Describir d e manera detallada el flujo d e procesamiento dentr:
d e cada operación. Esto se logra empleando un seudocódigo basado en un \t~-
guaje de programación (sección 11.5.5) o el diagrama de actividad UML. Cada c c a -
ponente de software se elabora mediante varias interacciones que aplican el e x -
cepto de refinamiento paso a paso (capítulo 9).

La primera iteración define cada operación como parte de la clase de diseño, z x
cada caso, la operación debe estar caracterizada de manera que asegure una core-
sión elevada; es decir, la operación debe realizar una sola función o sustitución i r
finida. La siguiente iteración hace poco más que expandir el nombre de la operao :r
Por ejemplo, la operación calcularCostoPapel() observada en la figura 11.1 se expar
diría de la siguiente manera:

calcularCostoPapel (peso, tamaño, color): numérico

Esto indica que calcularCostoPapel/) requiere los atributos peso, tamaño y cok*
entrada y devuelve un valor numérico (en realidad un valor en pesos) como sa-ioi

"De hober ten ido m á s t iempo, hobr ia escrito u n o cario m á s cor ta . "

B l a s

(C O N S E J O ^

La elaboración se usa
paso a paso mientras
se refino el diseño del
componente. Siempre
debe preguntarse:
"¿Hay una manera de
simplificar esto mien-
tras sigue arrojando el
mismo resultado?"

Si el algoritmo requerido para implementar calcularCostoPapel() es simple i •
comprende ampliamente, tal vez sea innecesario elaborar diseño adicional. Ei r d
niero de software responsable de la codificación proporcionará el detalle n e c e s a B
para implementar la operación. Sin embargo, si el algoritmo es más comple : a
creto, se requiere mayor elaboración de diseño en esta etapa. En la figura I i •
describe un diagrama de actividad UML para calcularCostoPapel(). Cuando se
plean diagramas de actividad para especificación de diseño al nivel de coi
tes, suelen representarse en un nivel de abstracción un poco más elevado que a a
digo fuente. Más adelante, en este mismo capítulo, se analizará un método
el uso de seudocódigo para especificar el diseño. 1
Paso 4 . Describir fuentes de da tos pers i s tentes (bases d e datos y ;
e identificar las c lases necesar ias para manejarlas. Las bases de datos y - - a
chivos suelen trascender la descripción del diseño de un componente indiv
casi todos los casos estos almacenes de datos persistentes suelen especifica
cialmente como parte del diseño arquitectónico. Sin embargo, a medida que ai
la elaboración del diseño, a veces resulta útil proporcionar detalles adicionales ai
estructura y organización de estas fuentes de datos persistentes.

os y o *
livjcka_fl
f i c a n e f l

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 335

P a s o 5. Desarrol lar y e laborar r e p r e s e n t a c i o n e s del c o m p o r t a m i e n t o d e
una c l a s e o un c o m p o n e n t e . Los d iagramas de es tado UML se usaron como par-
te del modelo de análisis para representar el comportamiento del sistema que se ob-
serva ex ternamente y el comportamiento m á s localizado de clases individuales de
análisis. Durante el diseño al nivel de componentes , suele ser necesario modelar el
comportamiento de una clase de diseño.

Al comportamiento dinámico de un objeto (la instanciación de una clase de dise-
ño mientras se ejecuta el programa) lo afectan eventos externos y el es tado actual
del objeto (modo o comportamiento). Para comprender el comportamiento dinámi-
co de un objeto, el diseñador debe examinar todos los casos de uso relevantes du-

rante el periodo de vida de la clase de diseño. Estos casos de uso proporcionan in-
formación que ayuda al diseñador a delinear los eventos que afectan al objeto y a los
es tados en que reside éste mientras pasa el t iempo y ocurren los eventos. La transi-

Diagrama de actividad UML para calcutarCostoPapeH).

TM

PDF Editor

3 3 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

ción entre es tados (impulsados por los eventos) se representan empleando una g a
fica de es tado UML [BEN02] como se ilustra en la figura 11.9.

La transición de un es tado (representado por un rectángulo con esquinas rec n
deadas) a otro ocurre como consecuencia de un evento que toma esta forma

nombre-evento (lista-parametros) [condicion-guardia] / expresión de acción

donde nombre-evento identifica el evento; lista-parametros incorpora datos a
con el evento; condición-guardia está escrita en lenguaje de restricción de objeto
y especifica una condición que debe cumplirse antes de que pueda ocurrir el
to, y expres ión de a c c i ó n define una acción an tes de que ocurra cuando t i c t
gar la transición.

Tomando como referencia la figura 11.9, cada es tado puede definir acciones
irada/ y salida/ que ocurren mientras se presentan las transiciones de entrada >
lida. En casi todos los casos, es tas acciones corresponden a operaciones rele\
para la clase que se está modelando. El indicador hacer/ proporciona un mecanisr-
ra indicar las actividades que ocurren mientras se encuentra en el estado, y e -.mj
cador incluir/ proporciona un medio para elaborar el comportamiento al i n e r v a
más detalle en la gráfica de estado dentro de la definición de un estado.

.
Fragmento de diagrama de estado para la clase Trabajolmprenta.

entradaDatosIncompletos
1

Comportamiento dentro del
estado construirDatosTraba¡o

construirDatosTrabajo

entrar/leerDatosTiabajof)
salir/desplegarDatosTraba¡o(|
hacer/revisarConsistenciaf)

. incluir/entradoDotos ..
entradaDatosCompletada (todos los elementos de datos T
cons¡stentes)/desplegarOpc¡onesUsuario T

calcula rCostoTrabajo

entrar/caícularTrabaío
solir/guordar costoTotafTrabajo

costoTrabajoAceptado (el cliente está autorizado)
/oblenerFirmaElectronica

formarTrabojo

entrar/construirTrabajo
salir/guardar númeroOT
hacer/

fechaEntregaAceptada (el cliente está autorizado)/
estimadoTrabajolmpresion

remitirTraba¡o

entrar/remitirTrabojo
salir/iniciarTrabajo
hacer/colocar en ColaTrabajo

trabajoRemitido (todas las autorizaciones adquiridas)/
imprimirOrdenTrabajo

TM

PDF Editor

C A P I T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 337

Es importante observar que el modelo de componentes a menudo contiene infor-
mación que no resulta inmediatamente obvia en otros de componentes de diseño.
Por ejemplo, el cuidadoso examen de la gráfica de estado de la figura 11.9 indica que
el comportamiento dinámico de la cláusula Trabajolmprenta depende de dos apro-
baciones del cliente, derivadas de los datos de costos y la calendarización del traba-
jo de impresión. Sin aprobaciones (la condición guardia asegura que el cliente tiene
autorización para aprobar) no se remitirá el trabajo de impresión porque no hay ma-
nera de alcanzar el estado remitiiTrabajo.

Paso 6. Elaborar diagramas de despl iegue para proporcionar detal les de la
implementación adicional. Los diagramas de despliegue (capítulo 9) se usan co-
m o parte del diseño arquitectónico y se representan en forma de descriptor. Así, se
representan las principales funciones del sistema (a menudo representadas como
subsistemas) dentro del contexto del entorno de cómputo que las albergará.

Durante el diseño al nivel de componentes pueden elaborarse diagramas de des-
pliegue para representar la ubicación de paquetes clave de componentes. Sin embar-
go, por lo general los componentes se representan individualmente dentro de un
diagrama de componente. La razón de esto es evitar la complejidad del diagrama.
En algunos casos, los diagramas de despliegue se elaboraron en forma de instancias.
Esto significa que el hardware específico y el o los entornos del sistema operativo
que se usarán son específicos y que se indica la ubicación de los paquetes de com-
ponentes dentro de este entorno.

Paso 7. Factorizar todas las representaciones del d i seño al nivel de compo-
nentes y s iempre deben considerarse alternativas. A lo largo del libro se ha
destacado que el diseño es un proceso iterativo. El primer modelo al nivel de com-
ponentes que se cree no será tan completo, consistente o exacto como la enésima
iteración que aplique al modelo. Es esencial usar la refactorización mientras se rea-
liza el trabajo de diseño.

Además, un diseñador no debe tener una visión estrecha. Siempre hay soluciones
opcionales para el diseño, y los mejores diseñadores toman en cuenta todas (o casi
todas) antes de definir el modelo de diseño final. Desarrollan opciones y examinan
cada una de manera cuidadosa, empleando los principios del diseño y los conceptos
presentados en los capítulos 5, 9 y 11.

La amplia variedad de diagramas disponible como parte de UML proporciona a un
diseñador un rico conjunto de formas de representación para el modelo de diseño.
Sin embargo, las representaciones gráficas no suelen bastar. El diseñador necesita
un mecanismo para representar explícita y formalmente la información que restringe
algún elemento del modelo de diseño. Es posible, por supuesto, describir restriccio-
nes en un lenguaje natural, pero este método lleva invariablemente a la inconsisten-

TM

PDF Editor

338 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

\
CLAVE

El OCL proporciono gra-
mático y sintaxis for-
males paro descfibir los
elementos de diseño ol
nivel de componentes.

cia y la ambigüedad. Por tanto, lo apropiado parece un lenguaje más formal, que la-
me en cuenta la teoría de conjuntos y los lenguajes formales de especificación (ca-
pítulo 28), pero que tenga una cantidad menor de sintaxis matemática que un le~
guaje de programación.

El lenguaje de restricción de objetos (OCL) complementa al UML al permitir que
ingeniero de sof tware use gramática y sintaxis formales para construir instrucción;;
sin ambigüedades relacionadas con varios e lementos del modelo de diseño (p -
ejemplo, clases y objetos, eventos, mensajes , interfaces). En el OCL las instrucciones
se construyen en cuatro partes: 1) un contexto que define la situación limitada
que es válida la instrucción; 2) una propiedad que representan a lgunas caracterís:
cas del contexto (por ejemplo, si el contexto es una clase, una propiedad sería
atributo); 3) una operación (aritmética, orientada a conjuntos) que manipula o cal:
ca u n a p rop iedad , y 4) palabras clave (como ¡f, then, else, and, or, not, ímplíes) con

se especifican expresiones condicionales.
Como ejemplo simple de una expresión OCL, considérese la condición guardia

locada en el evento costoTrabajoAceptado que causa una transición entre los e s '
calcularCostoTrabajo y formarTrabajo dentro del diagrama de gráfica de
para la clase Trabajolmprenta (figura 11.9). En el diagrama, la condición gu
se expresa en lenguaje natural y especifica que la autorización sólo se presentara
el cliente está autorizado para aprobar el costo del trabajo. En el OCL, la expr
tomaría la forma:

cliente

tiene.autoridadAutorización = "si"

donde un atributo booleano, autoridadAutorización, de la clase Cliente (en realidad
instancia específica de la clase) debe tener el valor si para satisfacer la cond :

guardia.
Cuando se crea el modelo de diseño suele haber instancias (consulte la sec

1 1 . 2 . 1) en que deben satisfacerse las condiciones previas y posteriores antes
completar alguna opción especificada en el diseño. El OCL proporciona una
mienta poderosa para especificar condiciones previas y posteriores de manera
mal. Como ejemplo, piense en una extensión al sistema de la imprenta (anal iza; :
lo largo de este capítulo) en que el cliente proporciona un límite de costo sup
para el trabajo de impresión y una fecha de entrega límite, al mismo t iempo que
especifican otras características del trabajo. Si el costo y la entrega estimada
den esos límites, el trabajo no se entregará y debe notificarse al cliente. En el
un conjunto de condiciones previas y posteriores se especificaría de la siguiente
ñera:

context Trabajolmprenta::validate(limiteSuperiorCosto : Integer, reqEnvioCliente :

Integer)

pre: limüeSuperiorCosto > 0

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 3 3 9

and reqEnvioCliente > 0

and tiene.autorizacionTrabajo = "no"

pos t : if tiene.costoTotalTrabajo < = limiteSuperiorCosto

and tiene.fechaEnvio < = reqEnvioCliente

then

tiene.autorizacionTrabajo = "si"

endif

E s t a d e c l a r a c i ó n O C L d e f i n e u n a i n v a r i a n t e (c o n d i c i o n e s q u e d e b e n e x i s t i r a n t e s [pre]

y d e s p u é s [post] d e a l g ú n c o m p o r t a m i e n t o) . Al p r i n c i p i o , ia c o n d i c i ó n p r e v i a e s t a b l e c e

q u e e l c l i e n t e d e b e e s p e c i f i c a r e l c o s t o l í m i t e y la f e c h a d e e n t r e g a , y q u e la a u t o r i z a -

c i ó n d e b e e s t a r e n " n o " . D e s p u é s d e d e t e r m i n a r l o s c o s t o s y la f e c h a d e e n v í o , s e a p l i -

c a la c o n d i c i ó n p o s t e r i o r . T a m b i é n d e b e t o m a r s e e n c u e n t a q u e la e x p r e s i ó n t iene.au-

torízacionTrabajo = "si" n o e s t á a s i g n a n d o e l v a l o r "s í" ; e n c a m b i o , e s t á d e c l a r a n d o q u e

auforizacionTrabajo d e b e t e n e r e l v a l o r "s í " e n e l m o m e n t o e n q u e t e r m i n e la o p e r a c i ó n .

U n a d e s c r i p c i ó n c o m p l e t a d e l O C L e s t á m á s a l l á d e l a l c a n c e d e e s t e l i b r o . 5 L o s

l e c t o r e s i n t e r e s a d o s d e b e n c o n s u l t a r [WAR98] y [O M G O l] p a r a c o n o c e r d e t a l l e s a d i -

c i o n a l e s .

H E R R A M I E N T A S D E S O F T W A R E

UML/OCL
O b j e t i v o : Existe una amplia variedad de he-
rramientas UML pa ra ayudar al diseñador en

las e tapas del diseño. Algunas de estas herramientas
~cionan soporte al OCL.

á n i c a : Las herramientas de esta categoría permiten a
r señador crear todos los diagramas de UML necesa-

para construir un modelo de diseño completo. Lo más
ante es que muchas herramientas proporcionan una
s y una semántica sólidas, verificación y manejo de
de versión y cambios (capítulo 27). Cuando se pro-
a capacidad de OCL, las herramientas permiten

el diseñador cree expresiones OCL y, en algunos ca-
os "compile" para varios tipos de evaluación y

:sis.

H e r r a m i e n t a s r e p r e s e n t a t i v a s 6

ArgoUML, distribuido por Tigress.org (http://argouml.ti-
gris.org/), d a soporte a UML y OCL completo, e inclu-
ye varias herramientas de ayuda pa ra el diseño, que
van más allá de la generación de diagramas UML y ex-
presiones OCL.

Dresden OCL toolkit, desarrollado por Frank Finger en la
Universidad Tecnológica de Dresden (http:/ /dresden-
ocl-sourceforge.net/), es un juego de herramientas ba-
sada en un compilador OCL que abarca varios
módulos que analizan, revisan el tipo y normalizan las
restricciones OCL.

OCL parser, desarrollado por IBM (http://www3.ibm.com-
/ software/ad/l ibrary/standars/OCL-download.html),
está escrito en Java y está disponible gratuitamente pa-
ra la comunidad orientada a objetos con el fin de que
se estimule el uso de OCL con modeladores UML.

5 Sin embargo, e n el capítulo 29 se presentara una exposición m á s amplia del OCL (presentada en el
contexto de los métodos formales).

6 Las herramientas mencionadas aquí representan una muestra de esta categoría. En casi todos los
casos los nombres de las mismas son marcas registradas de sus respectivos desarrolladores

TM

PDF Editor

340 PARTE DOS PRÁCTICA DE LA INGEMERÍA DEL SOFTWARE

\ CLAVE
Lo programación es-
tiucturodo es una técni-
ca de diseño que res-
tringe el flujo de la ló-
gica a tres construccio-
nes: secuencia, condi-
ción y repetición.

Los fundamentos del diseño al nivel de componen tes para componentes convena
nales de software7 se integraron a principios de la década de 1960 y adquirieron s o -
lidez con el t rabajo de Edsgar Dijkstra y sus colegas ([BOH66], [DIJ65], [DIJ76]). A *
nales de esos años, Dijkstra y otros propusieron el u so de un conjunto de constru:
ciones lógicas restringidas, a partir de las cuales se pudiera formar cualquier prog-3
ma. Las construcciones des tacaban el "mantenimiento del dominio funcional"
decir, cada construcción tenía una estructura lógica predecible, a la que se ingresa-
ba en la parte superior y se abandonaba en la inferior, lo que permitía al lector s<
guir con mayor facilidad el flujo del procedimiento.

Las construcciones son secuencia, condición y repetición. Secuencia implemer
los pasos de procesamiento esenciales en la especificación de cualquier a l g o n t -
Condición proporciona las funciones para el procesamiento seleccionado con basr
en algún evento lógico, y repetición permite los bucles. Estas tres construcciones >
fundamenta les para la programación estructurada, que es una importante técnica
diseño al nivel de componentes .

Las construcciones estructuradas se propusieron para restringir el diseño p r c c ^
dimental del software a un número pequeño de operaciones. La complejidad de
métricas (capítulo 15) indica que el u so de las construcciones estructuradas
la complejidad del programa y, por tanto, mejora las opciones de lectura, pruebe
mantenimiento. El uso de un número limitado de construcciones lógicas tar
contribuye a un proceso de comprensión humana que los psicólogos llaman
mentación. Para comprender este proceso, piénsese en la manera en que está le
do esta página. No se leen letras individuales s ino que se reconocen patrones o \
pos de palabras o frases formados por varias letras. Las construcciones estruc
das son grupos lógicos que le permiten a un lector reconocer e lementos pr
menta les de un módulo, en lugar de leer el diseño o código línea por línea. La i
prensión se mejora cuando hay pat rones lógicos fácilmente reconocibles.

11.5.1 Notación gráfica del diseño

Ya se ha anal izado el diagrama de actividad UML en este capítulo y en los capir
7 y 8. El diagrama de actividad permite a un diseñador representar secuencia,
dición y repetición (todos elementos de la programación estructurada) y es el
cendiente de una representación de diseño gráfico anterior (aún usado ampliar
te) l lamado diagrama de flujo.

Un diagrama de flujo, como uno de actividad, e s muy simple gráficamente
diamante representa una condición lógica, y las flechas muestran el flujo de cc

Un componente de sof tware convencional implementa un e lemento de procesamiento que <
una función o subfunción en el dominio del problema, o alguna capacidad en el dominio de ; i
fraestructura. A menudo denominados módulos, procedimientos o subrutinas, los componentesc
vencionales no encapsulan datos de la misma manera que los componentes orientados a ob|r

TM

PDF Editor

C A P I T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 341

d e

Parte si n o (else)

Secuencia

Selección

Parle en tonces (then)

si-entonces-si_no (interfaz-then-else)

Mient ras hace r (do while) Repetir has ta (repea t until)

Repetición

COMSCJO.

En la figura 11.10 se ilustran tres construcciones estructuradas. La secuencia se re-
presenta como dos cajas de procesamiento conectadas por una línea (flecha) de con-
trol. La condición, también llamada si-entonces-si_no, se describe como un diamante
de decisión que, si es verdadero, causa que ocurra la parte-entonces del procesa-
miento, y si es falso, invoca la parte si_no. La repetición s e representa empleando dos
formas ligeramente diferentes. La parte hacer mientras prueba una condición y eje-
cuta una tarea de bucle de manera repetitiva, siempre y cuando la condición siga
siendo verdadera. Una parte repetir hasta ejecuta primero la tarea de bucle, luego
prueba una condición y repite la tarea hasta que la condición falla. La construcción
de selección (o seleccionar-caso) que muestra la figura e s en realidad una extensión de
si-entonces-sLno. Sucesivas decisiones prueban un parámetro hasta que ocurre una
condición verdadera y se ejecuta la ruta de procesamiento de la parte de caso.

En general, el uso dogmático y exclusivo de las construcciones estructuradas in-
troduce ineficiencia cuando se requiere un escape de un conjunto de bucles anida-
dos o de condiciones anidadas. Lo que es más importante, la complicación adicional
de todas las pruebas lógicas junto con la ruta de escape llega a oscurecer el flujo de
control del software, aumenta la posibilidad de error y tiene un impacto negativo en
la legibilidad y la capacidad de mantenimiento. ¿Qué podemos hacer?

Se le dejan dos opciones al diseñador: 1) se rediseña la representación procedi-
mental para que la "rama de escape" no sea necesaria en una ubicación anidada del
flujo de control, o 2) se violan las construcciones estructuradas de una manera con-
trolada; es decir, se diseña una rama restringida fuera del flujo anidado. La opción 1
e s obviamente el enfoque ideal, pero la 2 puede acomodarse sin infringir el espíritu
de la programación estructurada.

TM

PDF Editor

342 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ O N S E J O Í ^

Debe iisorse una tobla
de decisión cuando un
conjunto complejo de
condiciones y acciones
se encuentran dentro
de un componente.

11.5.2 Notación tabular del diseño

En muchas aplicaciones de software tal vez se requiera un módulo para evaluar
combinación compleja de condiciones y seleccionar las acciones apropiadas
das en esas condiciones. Las tablas de decisión [HUR83] proporcionan una n"
que traduce acciones y condiciones (descritas en una narrativa de procesamien:
una forma tabular. Es difícil malinterpretar una tabla, y hasta puede usarse como
trada legible para una máquina a un algoritmo orientado a tablas.

Una tabla de decisión se divide en cuatro cuadrantes. El de la esquina superic
quierda contiene una lista de todas las condiciones. El cuadrante de la esquina :

izquierda contiene una lista de todas las acciones posibles, basada en comb :

nes de condiciones. Los cuadrantes de la derecha forman una matriz que
combinaciones de condición y las acciones correspondientes que ocurrirán para una
binación específica. Por tanto, cada columna de la matriz puede interpretarse
una regla de procesamiento. Los siguientes pasos se aplican para desarrollar u-3
bla de decisión.

1. Presentar una lista de todas las acciones que puedan asociarse con un
dimiento (o módulo) específico.

2. Presentar una lista de todas las condiciones (o decisiones tomadas) du
ejecución de un procedimiento.

3 . Asociar conjuntos específicos con acciones específicas, eliminando c
ciones específicas de condiciones; como opción, desarróllese cada posir s
permutación de las condiciones.

4. Definir reglas al indicar cuáles acciones ocurren para un conjunto de
ciones.

Para ilustrar el uso de una tabla de decisión, piénsese en el siguiente extrac.:
caso de uso informal que se ha propuesto para el sistema de la imprenta:

Tres tipos de clientes están definidos: un cliente regular, uno de plata y uno de or

tipos se asignan según la cantidad de negocios que el cliente realiza con la imprerzi
un periodo de 12 meses). Un cliente regular recibe precios de impresión y fechas de
ga normales. Un cliente de plata obtiene un descuento de 8 por ciento sobre todas : Ü
tizaciones y se coloca adelante de los clientes regulares en la cola de impresión. Ur
de oro obtiene una reducción del 15 por ciento sobre los precios cotizados y se coloca
lante de los clientes regulares y de plata en la cola de trabajo. Es posible aplicar i
cuento especial de x porcenta je adicional a los otros descuentos a la cot iza: r e
cualquier cliente, a discreción de la administración.

En la figura 11.11 se ilustra una representación de una tabla de decisión
nada con el anterior caso de uso informal. Cada una de las seis reglas indica
las seis condiciones viables. Como regla general, la tabla de decisión se u ; ;
ñera efectiva para complementar otras notaciones de diseño procedimenta.

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 3 4 3

R e g l a s

C o n d i c i o n e s 1 2 3 4 5 6

Cliente regular V (T) V (T)

Cliente plata V (T) V (T)

Cliente oro V (T) V (T)

Cliente especial F V (T) F V (T) F V (T)

A c c i o n e s

Sin descuento •
Aplicar 8 por ciento de descuento

Aplicar 15 por ciento de descuento

Aplicar x porcentaje de descuento
adicional

¡dea usar su
de ptoyama-

base pato
osepue-

. un esque-
• código

: con texto
mientras se
el diseño.

11.5.3 Lenguaje de diseño d e programas

El lenguaje de diseño de programas (PDL, por sus siglas en inglés), también denomi-
nado lenguaje común estructurado o seudocódigo, es "un lenguaje rudimentario por-
que utiliza el vocabulario de un idioma (como el inglés) y la sintaxis general de otro
(es decir, un lenguaje estructurado de programación)" [CAI75], En este capítulo, PDL
se usa como referencia genérica para un lenguaje de diseño.

A primera vista, PDL parecería un lenguaje de programación. La diferencia entre
PDL y un lenguaje de programación real radica en el uso de texto narrativo (como el
inglés) incrustado directamente dentro de las instrucciones en PDL. Dado el uso de
texto narrativo incrustado directamente en una estructura sintáctica, no es posible
compilar PDL. Sin embargo, algunas herramientas pueden traducirlo en un "esque-
leto" de lenguaje de programación, en una representación gráfica de diseño, o en
ambas (por ejemplo, un diagrama de flujo). Estas herramientas también producen
mapas de anidamiento, un índice de operación de diseño, tablas de referencia cru-
zada y otra información diversa.

Un lenguaje de diseño de programas puede ser una simple transposición de un
lenguaje como Ada, C o Java. La sintaxis básica de PDL debe incluir construcciones
para definición de componentes, descripción de interfaces, declaración de datos, es-
tructuración de bloques y construcciones de condiciones, de repetición y de entra-
da/salida. Debe tomarse en cuenta que PDL puede extenderse para incluir palabras
clave para multitareas, procesamiento concurrente (o ambas opciones), manejo de
interrupciones, sincronización de interprocesos y muchas otras características. El di-
seño de la aplicación para la que se está usando PDL debe dictar la forma final del
lenguaje de diseño. El formato y la semántica de algunas de estas construcciones de
PDL se presentan en el ejemplo siguiente.Para ilustrar el uso de PDL, consideramos
un diseño procedimental para la función de seguridad HogarSeguro analizada en ca-
pítulos anteriores. El sistema supervisa las alarmas para detectar fuego, humo, robo,

TM

PDF Editor

3 4 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

agua y temperatura (por ejemplo, rompimiento del horno cuando el propietario esu
ausente en el invierno), produce un timbre de alarma y llama a un sistema de mor
tores, generando un mensaje de voz sintetizado. En el PDL siguiente ilustramos a
gunas de las construcciones importantes anotadas en secciones anteriores.

Recuerde que PDL no es un lenguaje de programación. El diseñador puede adar
tarlo como se requiera sin preocuparse por errores de sintaxis. Sin embargo, el dise
ño del software de supervisión tendría que revisarse (¿se observa algún problema'
y refinarse antes de que pueda escribirse el código. El siguiente PDL8 proporcior.
una elaboración del diseño procedimental para una versión anterior de un comp
nente de manejo de alarmas.

c o m p o n e n t e manejoAlarma

El objetivo de e s t e componen te e s manejar los interruptores y las en t radas del panel 3

control a partir de los s enso re s por el t ipo y ac tuar en cualquier condición de alarma a.M

sea encont rado .

es tablecer valores por d e f e c t o para es ta tusSis tema (valor devuelto) , t odos los elemer-

t o s de da tos

inicializar t odos los puer tos del s i s tema y reiniciar t o d o el hardware

revisar interruptoresPanelControl (¡pe)

si ipc = "probar" e n t o n c e s invocar alarma fijar en "encendido"

si ipc = "alarmaApagado" e n t o n c e s invocar alarma fijar en "apagado"

valor por d e f e c t o ipc = ninguno

restablecer todo valoresSeñal e in terruptores

hacer para todos los s enso re s

invocar verificar-Sensor procedimiento regresa valorSeñal

si valorSeñal > límite [tipoAlarma]

e n t o n c e s t e l e fono .mensa je = m e n s a j e [tipoAlarma]

fijar timbreAlarma en "encendido" para alarmaTiempoSegundos

fijar e s t a tus s is tema = "condiciónAlarma"

parempieza

procedimiento alarma con "encendido", alarmaTiempoSegundos

invocar procedimiento te léfono fijar en tipoAlarma, númeroTeléfono

partermina

si no omitir

termina si

termina hacerpara

termina manejoAlarma

8 El nivel de detalle que representa el PDL se define localmente. Algunas personas prefieren ur.;
cripción orientada al lenguaje más natural, mientras que otras prefieren algo más parecido a
digo.

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 3 4 5

Obsérvese que el diseñador del componente de manejo de alarma ha usado las cons-
trucciones parempieza—partermina que especifica un bloque paralelo. Todas las tareas
especificadas en el bloque parempieza se ejecutan en paralelo. En este caso, no se to-
man en cuenta los detalles de implementación.

HERRAMIENTAS DE SOFTWARE
Lenguaje de diseño de programas

O b j e t i v o : Aunque la inmensa mayoría de los
ingenieros de software que usa PDL o seudocó-

oesarrolla una versión que se adapta del lenguaje de
ción que tratan de emplear pa ra la implemento-

existen varias herramientas de PDL.

i ca : En algunos casos, las herramientas aplican
i inversa al código fuente (una triste realidad en
: donde algunos programas no tienen absoluta-

linguna documentación). Otros permiten al diseña-
r-sor PDL con una ayuda automatizada.

¡entas representativas 9

desarrollado por Caine, Farber y Gordon
p://www.cfg.com/pdl81 /Ipd.html), da soporte a la

N

creación de diseños con el uso de una versión definida
de PDL.

DocGen, distribuido por Software Improvment Group
(http://www.software-improvers.com/DocGen.htm),
es una herramienta de ingeniería inversa que genera
documentación parecida a PDL a partir de código
Ada y C.

PowerPDL, desarrollado por Iconix (http://www.iconixsw.
com/SpecSheets/PowerPDL.html), le permite a un dise-
ñador crear PDL basado en diseños y luego traducir el
seudocódigo a formas q u e puedan generar otras re-
presentaciones de diseño.

11.5.4 Comparación entre notaciones d e diseño

La notación de diseño debe llevar a una representación procedimental fácil de com-
prender y revisar. Además, la notación debe mejorar la capacidad de "codificar en" pa-
ra que el código, en realidad, se convierta en un subproducto natural del diseño. Por
último, la representación de diseño debe tener la capacidad de darle mantenimiento
fácilmente para que el diseño siempre represente el programa de manera correcta.

Una pregunta natural que surge en cualquier análisis de la notación de diseño se-
ría: ¿Cuál notación e s realmente mejor, dados los atributos indicados líneas antes?
Cualquier respuesta es subjetiva y está abierta al debate. Sin embargo, parece que el
lenguaje de diseño de programas ofrece la mejor combinación de características. El
PDL puede incrustarse directamente en los listados de código fuente, mejorando la do-
cumentación y facilitando más el mantenimiento del diseño. La edición se hace en
cualquier editor de texto o sistema de procesamiento de palabras, ya existen procesa-
dores automáticos, y la posibilidad de "generación automática de código" es buena.

Sin embargo, de esto no se desprende que cualquier otra notación sea necesaria-
mente inferior a PDL, o que "no sea buena" en atributos específicos. La naturaleza

9 Las herramientas expuestas aquí el autor no las respalda: sólo representan una muestra de las he-
rramientas incluidas en esta categoria. En casi todos los casos, los nombres de las herramientas son
marcas registradas de sus respectivos desarrolladores

TM

PDF Editor

http://www.cfg.com/pdl81
http://www.software-improvers.com/DocGen.htm
http://www.iconixsw

346 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

gráfica de los diagramas de actividad y los de flujo proporciona una perspectiva s
bre el flujo de control que muchos diseñadores prefieren. El contenido tabular pre-
so de las tablas de decisión es una herramienta excelente para aplicaciones orierv:
das a tablas. Y muchas otras representaciones de diseño (por ejemplo, nidos de r :
tri), no presentados en este libro, ofrecen sus propios beneficios únicos. En el a r ;
sis final, la elección de una herramienta de diseño estará relacionada de manera
estrecha con factores humanos que con atributos técnicos.

La acción de diseño al nivel de componentes abarca una secuencia de tareas que
ducen lentamente el grado de abstracción con que se representa el software E
seño al nivel de componentes describe finalmente el software en un grado de
tracción cercano al código.

Es posible tomar dos enfoques distintos de diseño al nivel de componentes, i: .
depende de la naturaleza del software que habrá de desarrollarse. El concepto <
tado a objetos se enfoca en la elaboración de clases de diseño que provienen
del problema como del dominio de la infraestructura. El concepto convenc ión
fina tres tipos principales de componentes o módulos: de control, de domiir :
problema y de infraestructura. En ambos casos se aplican principios básicos de
seño y conceptos que llevan a software de mayor calidad. Cuando se considera
de un punto de vista del proceso, el diseño al nivel de componentes se basa er
ponentes de software reutilizables y en patrones de diseño que son elementos ;
te de la ingeniería de software basada en componentes.

El diseño al nivel de componentes orientado a objetos se basa en clases."
principios y conceptos importantes guían al diseñador a medida que se elabora - J
clases. Principios como el principio abierto-cerrado y el de inversión de la dep
cia, además de conceptos como acoplamiento y cohesión, guían al ingeniero dt :
ware en la construcción de componentes de software susceptibles de probars--.
plementarse y mantenerse. Para realizar diseño al nivel de componentes e~
contexto, las clases se elaboran al especificar detalles de los mensajes, identif
terfaces apropiadas, elaborar atributos y definir estructuras de datos para imp
tarlos, describir el flujo de procesamiento dentro de cada operación y repres
comportamiento en un nivel de clase o componente. En todo caso, la iteraciór
seño es una actividad esencial.

El diseño al nivel de componentes convencional requiere la representación
tructuras de datos, interfaces y algoritmos para un módulo de programa con i
lie suficiente para servir como guía en la generación de código fuente en leng
programación. Para lograr esto, el diseñador usa una de varias notaciones
ño que representan detalles al nivel de componentes en formatos gráficos,
o de texto.

TM

PDF Editor

C A P Í T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 347

La programación estructurada es una filosofía de diseño procedimental que res-
tringe el número y tipo de construcciones lógicas para representar el detalle del al-
goritmo. El objetivo de la programación estructurada es ayudar al diseñador a defi-
nir algoritmos que sean menos complejos y, por tanto, más fáciles de leer, probar y
mantener.

[AMB02] Ambler, S., "UML Component Diagramming Guidelines", disponible en h t tp : / /www.mo-
delingstyle.info/, 2002.

[BEN02] Bennett, S., S., McRobb y R. Farmer, Object-Oriented Analysis and Design, 2a. ed., Mc-
Graw-Hill, 2002.

[BOH661 Bohm, C. y G. Jacopini, "Flow Diagrams, Turing Machines and Languages with Only
Two Formation Rules", en CACM, vol. 9, núm. 5, mayo de 1966, pp. 366-371.

[CAI75] Caine, S. y K. Gordon, "PDL—A Tool for Software Design", en Proc. National Computer
Conference, AF1PS Press, 1975, pp. 271-276.

[DIJ65J Dijkstra, E„ "Programming Considered a s a Human Activity", en Proc. 1965IFIP Congress,
North-Holland Publishing Co., 1965.

[D1J72] Dijkstra, E„ "The Humble Programmer", 1972 ACM Turing Award Lecture, CACM, vol. 15,
núm. 10, octubre de 1972, pp. 859-866.

[DIJ76] Dijkstra, E., "Structured Programming", en Software Engineeríng, Concepts and Techniques
(J. Buxton et al., eds), Van Nostrand-Reinhold, 1976.

[HUR83] Hurley, R. B., Decisión Tables in Software Engineeríng, Van Nostrand-Reinhold, 1983.
[LET01] Lethbridge, T. y R. Laganiere, Object-Oriented Software Engineeríng: Practical Software

Development using UML and Java, McGraw-Hill, 2001.
[LIS88] Liskov, B., "Data Abstraction and Hierarchy", en SIGPLAN Notices, vol. 23, núm. 5, mayo

de 1988.
[MAR00] Martin, R., "Design Principies and Design Patterns", descargado de h t tp : / /www.objec t -

mentor.com, 2000.
[OMGOl] OMG Unifted Modeling Speciftcation, Object Management Group, versión 1.4, septiem-

bre de 2001.
[WAR98] Warmer, J. y A. Klepp, Object Constrainl Language: Precise Modeling with UML, Addison-

Wesley, 1998,

11 .1 . El término componente suele ser difícil de definir. Primero proporciónese una definición
genérica y luego definiciones m á s explícitas para software orientado a objetos y convencional.
Por último, elíjanse tres lenguajes de programación con los que se esté familiarizado e ilústre-
se la manera en que cada uno define un componente .

11 .2 . ¿Por qué son necesarios los componentes de control en el sof tware convencional y no lo
son en el orientado a objetos?

11.3. Descríbase el paradigma orientado a objetos mediante argumentos propios. ¿Por qué es impor
tante crear abstracciones que sirvan como interfaz entre componentes?

11 .4 . Descríbase el DIP mediante a rgumentos propios. ¿Qué pasaría si un d iseñador depende
excesivamente de las concreciones?

11 .5 . Selecciónense tres componen tes que se hayan desarrollado rec ientemente y eva lúense
los tipos de cohesión de cada uno. Si se tuviera que definir el principal beneficio de una cohe-
sión elevada, ¿cuál sería?

11.6 . Selecciónense tres componen t e s que se hayan desarrollado recientemente y evalúense
los t ipos de acoplamiento de cada uno . Si tuviera que definir el principal beneficio de un aco-
plamiento elevado, ¿cuál seria?

TM

PDF Editor

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

11 .7 . ¿Es razonable decir que los componen te s del dominio del problema nunca deben
trar acoplamiento externo? Si se está de acuerdo, ¿cuáles tipos de componente mostrarían esi
tipo de acoplamiento?
11.8. Investigúese y desarról lese una lista de categor ías típicas para los componen te s d ; -
fraestructura.
11.9 . ¿Qué es una condición guardia y cuándo se usa?
1 1 . 1 0 . ¿Cuál es el papel de las in ter faces en un d iseño al nivel de c o m p o n e n t e s basad
clases?
1 1 . 1 1 . Los términos atributos públicos y privados suelen usarse en t rabajo de diseño al ni\ t a
componen te s . ¿Qué significa cada uno y cuá les concep tos de d i seño t ratan de impc-tr"

1 1 . 1 2 . ¿Qué es una fuente de datos persistentes?

11 .13 . Desarróllese 1) una clase de diseño elaborada; 2) descripciones de interfaz; 3) ur.
g r ama de actividad pa ra una de las operac iones dent ro de la clase; 4) un diagrama de g r i ta
de e s t ado detal lado para una de las clases de HogarSeguro que s e han ana l izado en cap - «•
anteriores.
11 .14 . ¿Es lo mismo ref inamiento por pasos que factorización? Si no, ¿cuáles son sus
cias?
1 1 . 1 5 . Investigúese un poco y descríbanse tres o cuatro construcciones OCL u operadores
no se hayan anal izado en la sección 11.4.
1 1 . 1 6 . Selecciónese una pequeña par te de u n p rog rama exis tente (de u n a s 50 a 75 lí;

"

: programación i
construcciones de programación estructurada. De lo contrario, ¿qué nota en los recuadr: J
está dibujando?

O T R A S L E C T U R A S Y F U E N T E S D E I N F O R M A C I Ó N

Los principios de diseño, los conceptos, las líneas generales y las técnicas para clases
ponentes orientados a objetos se revisan en muchos libros sobre ingeniería de software _
lisis y diseño orientados a objetos. Entre las muchas fuentes de información se e n c - c - a J
Bennett y sus colegas [BEN02], Larman (Applying UML and Patlems, Prentice-Hall, 2001) _ á T
ridge y Laganiere [LET01] y Nicola y sus colegas (Streamlined Object ModeUng. Patterr-
and Implementation, Prentice-Hall, 2001), Schach (Object-Oriented and Classical so/twa-; - a
neering, quinta edición, McGraw-Hill, 2001), Dennis y sus colegas (Systems Analysis src a
sign: An Object Oriented Approach with UML, Wiley, 2001), Graham [Object-Oriented fie
Principies and Practice, Addison-Wesley, 2000), Richter (Designing Flexible Object-Oner -- ¡
tems with UML, Macmillan, 1999), Stevens y Pooley (Using UML: Software Engineering i
jects and Components, edición revisada, Addison-Wesley, 1999) y Riel (Object-Orientei:
Heuristics, Addison-Wesley, 1996).

El concepto de diseño por contrato es un útil paradigma de diseño. Libros de Mitche
Kim (Design by Contract by Example, Addison-Wesley, 2001) y Jezequel y sus colegas
Pattems and Contracts, Addison-Wesley, 1999) analizan es te tema en forma detallada '•
(Design Pattems lava Workbook, Addison-Wesley, 2002) y Shalloway y Trott (Design RjGr—
plained: A New Perspective on Object-Oriented Design, Addison-Wesley, 2001) toman er
el impacto de los pat rones en el diseño de componentes de software. La iteración de d_>íri®
esencial para la creación de diseños de alta calidad. Fowler (Refactoring: Improving fe
of Existing Code, Addison-Wesley, 1999) proporciona una guía útil que puede aplicarse : « I
da que evoluciona el diseño.

El t rabajo de ünger , Milis y Witt (Stmctwed Programming—Theory and Practice ' *
Wesley, 1979) sigue siendo un t ratado definitivo sobre el tema. El texto contiene un
además de explicaciones detalladas de las ramificaciones de la programación e

i

TM

PDF Editor

C A P I T U L O 1 1 DISEÑO AL NIVEL DE COMPONENTES 349

Otros libros que se concentran en los t emas de diseño procedimental para sis temas tradiciona-
les son los de Robertson (Simple Program Design, tercera edición, Course Technology, 2000),
Farrell (A Guíele to Programming Logic and Design, Course Technology, 1999), Bentley (Program-
ming Pearls, 2a. edición, Addison-Wesley, ¡999) y Dahl (Structured Programming, Academic
Press, 1997).

Relativamente, pocos libros recientes se han dedicado en exclusiva al diseño al nivel de
componentes . En general, los libros de lenguaje de programación atienden el diseño procedi-
mental con algún detalle, pero siempre en el contexto del lenguaje que se introduce en el libro.
Hay disponibles cientos de títulos.

Una amplia variedad de fuentes de información sobre diseño al nivel de componentes se
encuentra en Internet. Una lista actualizada de referencias en World Wide Web que resultan re-
levantes para el diseño al nivel de componentes se encuentra en el sitio Web de SEPA:
http:/ /www.mhhe.com/pressman

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

1
1

¿i

C O N C E P T O S

C L A V E

accesibilidad . . , .375

anáfisis de
la tarea ..356

análisis del
(lujo de trabaja .364

elaboración de
tarea . .363

facilidad de uso. 35S

funciones de
ayuda . .373

¡nternacionali-
zac¡ón . .376

interfaz354

análisis de . . .354

consistencia . .355

evaluación . . .377

modelos356

pasos de
diseño . .368

patrones371

reglas de oro . .351

D I S E Ñ O DE LA INTERFAZ
DE U S U A R I O

El p l a n o d e u n a c a s a (su d i s e ñ o a r q u i t e c t ó n i c o) n o e s t a d a c o m p l e t o s i n

r e p r e s e n t a c i ó n d e p u e r t a s , v e n t a n a s y c o n e x i o n e s d e a g u a , e l e c t r i c i d a d -

l é f o n o (s in m e n c i o n a r l a t e l e v i s i ó n p o r c a b l e) . L a s " p u e r t a s , v e n t a n a s

n e x i o n e s " d e l s o f t w a r e d e c o m p u t a c i ó n i n t e g r a n e l d i s e ñ o d e l a i n t e r f a T

u s u a r i o .

El d i s e ñ o d e l a i n t e r f a z s e c o n c e n t r a e n t r e s á r e a s : 1) e l d i s e ñ o d e í n t e r ;

e n t r e c o m p o n e n t e s d e s o f t w a r e ; 2) e l d i s e ñ o d e i n t e r f a s e s e n t r e e l s o f t v . a

o t r o s p r o d u c t o r e s y c o n s u m i d o r e s d e i n f o r m a c i ó n q u e n o s o n h u m a n o s (ef

c i r , o t r a s e n t i d a d e s e x t e m a s) , y 3) e l d i s e ñ o d e l a i n t e r f a z e n t r e u n s e r h u r -

l e s d e c i r , e l u s u a r i o) y l a c o m p u t a d o r a . E s t e c a p í t u l o s e c o n c e n t r a r á e x c h ¿

m e n t e e n l a t e r c e r a c a t e g o r í a d e diseño de la in(eifaz: la del usuario.

E n e l p r ó l o g o d e s u l i b r o c l á s i c o a c e r c a d e l d i s e ñ o d e i n t e r f a c e s d e u s u

B e n S h n e í d e r m a n [S H N 9 0] a f i r m a :

La f r u s t r a c i ó n y a n s i e d a d s o n p a r t e d e la vida d ia r ia d e m u c h o s u s u a r i o s d e s i s t e r

d e i n f o r m a c i ó n c o m p u t a r i z a d o s . L u c h a n po r a p r e n d e r el l e n g u a j e d e c o m a n d o s o i

s i s t e m a s d e s e l e c c i ó n d e m e n ú s q u e p r e s u n t a m e n t e d e b e n a y u d a r l e s a r ea l i za r s u

b a j o . A l g u n a s p e r s o n a s s e e n c u e n t r a n c o n c a s o s t an s e r i o s d e c h o q u e d e c o m p u t a :

ra , t e r ro r t e r m i n a l o n e u r o s i s d e red , q u e e v i t a n el e m p l e o d e s i s t e m a s d e cómpu ' .

L o s p r o b l e m a s q u e r e f i e r e S h n e í d e r m a n s o n r e a l e s . E s c i e r t o q u e l a s ¡r.:

e e s g r á f i c a s d e u s u a r i o , l a s v e n t a n a s , l o s i c o n o s y l a s s e l e c c i o n e s h e c h a s ;

r a t ó n h a n e l i m i n a d o g r a n p a r t e d e l o s m á s t e r r i b l e s p r o b l e m a s r e l a c i o n a d :•=

l a s i n t e r f a s e s . P e r o a u n e n u n " m u n d o d e v e n t a n a s " , t o d o m u n d o h a e n c o r :

¿ Q u é e s ? El d i s e ñ o d e la i n t e r f a z d e
u s u a r i o c r e a un m e d i o d e c o m u n i c a -
c ión e fec t iva e n t r e un s e r h u m a n o y
u n a c o m p u t a d o r a . S i g u i e n d o un c o n -
junto d e p r i nc ip io s d e d i s e ñ o d e

i n t e r f a c e s , el d i s e ñ a d o r ident i f ica los o b j e t o s y
l a s a c c i o n e s d e l a i n t e r f a z y l u e g o c r e a un fo r -
m a t o d e p a n t a l l a q u e f o r m a ta b a s e d e un p r o -
to t ipo d e i n t e r f a z d e u s u a r i o .

¿ Q u i é n l o h a c e ? Un i n g e n i e r o d e s o f t w a r e d i s e ñ a
la i n t e r f a z d e u s u a r i o a i a p l i c a r u n p r o c e s o ite-
ra t ivo b a s a d o e n p r i nc ip io s d e d i s e ñ o a m p l i a -
m e n t e a c e p t a d o s .

¿ P o r q u é e s i m p o r t a n t e ? Si el u so del s o f t w a r e es
difícil, si l leva al u s u a r i o a c o m e t e r e r r o r e s o si

f ru s t r a sus e s f u e r z o s p o r a l c a n z a r sus o b j e -
n o le g u s t a r á , sin i m p o r t a r su c a p a c i d a d - i
f u n c i o n e s q u e o f r e z c a . La i n t e r f a z t i ene q . e i
c o r r e c t a p o r q u e m o l d e a l a p e r c e p c i ó n dei
r io a c e r c a del s o f t w a r e .

¿ C u á l e s s o n tes p a s o s ? El d i s e ñ o d e la in te r faz i
u s u a r i o e m p i e z a con la iden t i f i cac ión c-: i
requis i tos d e és te , la t a r e o y el a m b i e n t e
v e z i d e n t i f i c a d a s l a s t a r e a s del u s u a r i o , s e : -
y a n a l i z a n ios e s c e n a r i o s d e é s t e p a r a d e f i -
c o n j u n t o d e o b j e t o s y a c c i o n e s p a r a la int= - r
Esto cons t i tuye la b a s e p a r a la c r e a c i ó n c ~ 4
m a t o s d e p a n t a l l a q u e r e p r e s e n t a n el d i s e ñ : :
f i co y la u b i c a c i ó n d e los i c o n o s ; la d e f i n i c i á r i
t ex to desc r ip t i vo e n p a n t a l l a ; la e s p e c i f i c o :

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 351

a s i g n a c i ó n d e n o m b r e s a las v e n t a n a s , a d e m á s
d e la e spec i f i cac ión d e los e l emen tos p r inc ipa le s
y s e c u n d a r i o s d e los menús . S e r ecu r r e a h e r r a -
r en tas p a r a c r e a r p r o t o t i p o s y f i n a l m e n t e
implementa r el m o d e l o d e d i s e ñ o ; p o r último, s e
e v a l ú a la c a l i d a d de l r esu l t ado .

* C u á l e s e l p r o d u c t o o b t e n i d o ? Se c r e a n los
I e s c e n a r i o s de l u s u a r i o y se g e n e r a el f o r m a t o d e

pan t a l l a . S e de sa r ro l l o un p ro to t ipo d e la inter-
f a z y se mod i f i ca d e m a n e r a interact iva.

¿Cómo p u e d o es tar s e g u r o d e q u e lo h e h e c h o
c o r r e c t a m e n t e ? El u s u a r i o r ea l i z a u n a " p r u e b a
d e m a n e j o " de l p ro to t ipo . La in fo rmac ión q u e
p r o p o r c i o n a es ta p r u e b a se e m p l e a p a r a la
s iguiente modi f i cac ión iterativa del pro to t ipo .

interfases de usuario difíciles de aprender y usar, confusas, poco intuitivas, imperdo-
nables y, en muchos casos, totalmente frustrantes. Sin embargo, alguien dedicó
tiempo y energía a la construcción de tales interfaces, y e s improbable que el cons-
tructor haya generado estos problemas a propósito.

El diseño de la interfaz de usuario requiere el estudio de las personas y el cono-
cimiento tecnológico adecuado. ¿Quién es el usuario? ¿Cómo aprende a interactuar
con un nuevo sistema de cómputo? ¿Cómo interpreta la información que produce el
sistema? ¿Qué espera del sistema? Éstas son sólo algunas de las muchas preguntas
que deben plantearse y responderse como parte del diseño de la interfaz de usuario.

1 2 . 1 L A S R E G L A S D E O R O

En su libro sobre el diseño de interfaces, Theo Mantel [MAN97] acuñó tres "reglas de
oro" para el diseño de la interfaz:

1. Dar el control al usuario.

2. Reducir la carga en la memoria del usuario.

3. Lograr que la interfaz sea consistente.

Estas reglas de oro forman la base de un conjunto de principios de diseño de interfases
de usuario que servirán de guía en esta importante acción de diseño del software.

12.1.1 Dar el control al usuario

Se le preguntó a un usuario clave, durante la sesión de acopio de requisitos para un
nuevo e importante sistema de información, acerca de los atributos de la interfaz
gráfica orientada a ventanas. "Lo que en verdad me gustaría", dijo el usuario solem-
nemente, "es un sistema que me lea la mente. Que sepa lo que quiero hacer antes
de que deba hacerlo y que me permita hacerlo fácilmente. Eso es todo, y nada más".

Mi primera reacción fue mover la cabeza y sonreír, pero me detuve por un mo-
mento. No había absolutamente nada de malo en la solicitud del usuario. Quería un
sistema que reaccionara a sus necesidades y que le ayudara a hacer las cosas. Que-
ría controlar la computadora; no que ésta lo controlara.

La mayor parte de las restricciones y limitaciones que impone el diseñador a la
interfaz pretenden simplificar el modo de interacción. ¿Para quienes? En muchos ca-

TM

PDF Editor

352 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

sos, el diseñador introduce limitaciones y restricciones para simplificar la implerr: -
tación de la interfaz. Así, tal vez se tenga como resultado una interfaz fácil de cc
truir, pero cuyo uso resulta frustrante.

Mandel [MAN97] define varios principios de diseño que permiten al usuario i
tener el control:

Definir los m o d o s de interacción de forma que el usuario n o realice a
nes innecesarias o indeseables . Un modo de interacción es el estado actúa
la interfaz. Por ejemplo, si se elige corrector ortográfico en un menú de un p
dor de palabras, el software pasa a un modo corrector ortográfico. No hay nint
razón para obligar al usuario a que permanezca en este modo si desea editar e!
to. Debe darse al usuario la opción de entrar y salir de él sin esfuerzo.

Proporcionar una interacción flexible. Debido a que diferentes usuarios
distintas preferencias de interacción, deben ofrecerse las opciones correspon
Por ejemplo, tal vez el software le permita al usuario interactuar mediante
miento del ratón, un lápiz digitalizador o comandos seleccionados con el ti
mediante reconocimiento de voz. Pero no todas las acciones son adecuadas pan
dos los mecanismos de interacción. Por ejemplo, imagine la dificultad de utiliza:
mandos seleccionados con el teclado (o entrada de voz) para dibujar una
compleja.

Incluir las o p c i o n e s de interrumpir y deshacer la interacción del
Aunque se encuentre en medio de una secuencia de acciones, un usuario debe
con la opción de interrumpir la secuencia para hacer otra cosa (sin perder el
que haya hecho). También debe contar con la opción de "deshacer" cualquier

Depurar la interacción a medida que aumentan los grados de destreza
permitir que s e personal ice la interacción. Con frecuencia, los usuarios
nan repitiendo la misma secuencia de interacciones. Vale la pena diseñar un
nismo de "macro" que permita a un usuario personalizar la interfaz para fa
interacción.

Oculte al usuario ocas ional los e l e m e n t o s técnicos internos. La inten •
be llevar al usuario al mundo virtual de la aplicación; no es necesario que cc
el sistema operativo, las funciones de administración de archivos u otros secre
la tecnología de cómputo. En esencia, la interfaz nunca debe requerir que el i
interactúe en el nivel "interno" del equipo (por ejemplo, nunca debe pedirse
usuario escriba comandos del sistema operativo desde el interior del sof
aplicación).

Diseñar interacción directa con los objetos que aparecen en la pantalla
usuario siente que tiene el control cuando manipula los objetos necesarios pan 1
lizar una tarea de manera parecida a como lo haría con un objeto material. Por
pío, una interfaz de aplicación que permita al usuario "alargar" un objeto (c
su tamaño) es una implementación de manipulación directa.

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 353

"Siempre h e deseado que mi computadora sea tan fácil de monejor como mi teléfono. Mi (
Ya no sé cómo usar mi teléfono."

Bjarne S t r o n s t r u p (creador d e C++)

12.1.2 Reducir la carga en la memoria del usuario

Cuantas m á s cosas tenga que recordar un usuario, más probabilidades habrá de que
cometa errores al interactuar con el sistema. Por ello, una interfaz de usuario bien
diseñada no dependerá de la memoria de éste. Siempre que sea posible, el sistema
debe "recordar" la información pertinente y ayudar al usuario con un escenario de
interacción que le facilite el uso de la memoria. Mandel [MAN97] define los princi-
pios de diseño que logran que una interfaz reduzca la carga de memoria que recae
en el usuario:

Reducir la d e m a n d a de m e m o r i a a c o r t o plazo. Cuando los usuarios partici-
pan en tareas complejas, la demanda de memoria a corto plazo se torna importan-
te. La interfaz se debe diseñar para que reduzca la necesidad de recordar acciones y
resultados anteriores. Esto se logra al proporcionar pistas visuales que permitan al
usuario reconocer acciones anteriores sin tener que recordarlas.

Definir va lores por d e f e c t o q u e t engan s igni f icado. El conjunto inicial de va-
lores por defecto debe tener un sentido para el usuario promedio, pero también con-
tar con la posibilidad de especificar sus preferencias. Sin embargo, debe disponer de
una opción "restablecer" que le permita volver a definir los valores por defecto ori-
ginales.

Definir a c c e s o s d irec tos intuitivos. Cuando se emplea la mnemotécnica para
aplicar una función del sistema (por ejemplo, alt-1 para solicitar la función de impri-
mir), debe estar unida a una acción de manera tal que resulte fácil de recordar (co-
m o la primera letra de la tarea que se solicita)

El f o r m a t o visual d e la interfaz d e b e b a s a r s e en una metá fora t o m a d a d e la
realidad. Por ejemplo, en un sistema de pago de facturas se debe utilizar la metá-
fora de la chequera y el talonario de cheques para llevar al usuario a recorrer el pro-
ceso del pago de facturas. Esto permite que el usuario dependa de pistas visuales que
comprende bien, en lugar de memorizar una misteriosa secuencia de interacciones.

D e s g l o s a r la in formac ión de manera progres iva . La interfaz debe organizar-
se jerárquicamente. Es decir, la información sobre una tarea, un objeto o algún com-
portamiento debe presentarse primero en un grado alto de abstracción. Después de
que el usuario se interese por seleccionar algo con el ratón, deben presentarse más
detalles. Un ejemplo común en muchas aplicaciones de procesamiento de palabras
es la función de subrayado. Se trata de una entre varias funciones ubicadas en el me-
nú estilo de texto. Sin embargo, no aparecen todas las posibilidades de subrayado. El
usuario debe seleccionar subrayado para que se presenten a continuación todas las
opciones disponibles (como subrayado sencillo, doble, de guiones, etc.).

TM

PDF Editor

3 5 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

H O G A R S E G U R O

Violación de una "regla de oro" de ¡a interfaz de usuario

V i n o d : Eso no es lo importante.. . ¿qué tal si lo olvido'

J a m i e : Oh, podemos proporcionarle una lista de las
cámaras en operación / el lugar en que se encuentran

V i n o d : Eso es posible, pero ¿por qué habría de pedir
una lista?

J a m i e : Muy bien, proporcionemos la lista, la pida o - :

V i n o d : Eso está mejor. Por lo menos no tendrá que
recordar cosas que podemos ciarle.

J a m i e (p e n s a n d o p o r u n m o m e n t o) : Pero o t re
gusta el plano, ¿o no?

V i n o d : A j á .

J a m i e : ¿Cuál crees que le gustaría c mercadotecnia?

V i n o d : Estás bromeando, ¿verdad?

J a m i e : No.

V i n o d : Uh... el que tiene el flash... les encantan lo1,
funciones atractivas en los productos... a ellos no les
interesa cuál es más fácil de construir.

J a m i e (s u s p i r a n d o) : Muy bien, tal vez haré un
prototipo de ambos.

V i n o d : Buena idea.. luego dejaremos que el diente
decida.

La e s c e n a : Cubículo d e Vinod,
cuando empieza el diseño de la interfaz de usuario.

Los a c t o r e s : Vinod y Jamie, integrantes del equipo de
ingeniería de software de HogarSeguro

La c o n v e r s a c i ó n :

J a m i e : He estado pensando en la interfaz de la función
de vigilancia.

V i n o d (s o n r i e n d o) : Pensar es bueno.

J a m i e : Creo que podemos simplificar un poco las
cosas.

V i n o d : Lo que significa que. .

J a m i e : Bueno, ¿qué posaría si eliminamos por completo
el plono d e la caso? Es ostentoso, pero requiere muchos
esfuerzos de desarrollo. En lugar de eso, pidamos al
usuario que especifique la cámara que desea ver y luego
despleguemos el video en una ventana de video.

V i n o d : ¿Cómo recordará el propietario cuántas
cámaras están funcionando y dónde se encuentran?

J a m i e (u n p o c o irr i tada): Él es el dueño, debe
saberlo.

V i n o d : ¿Pero qué pasaria si no?

J a m i e : Debe saberlo.

12.1.3 Logiar que la interfaz sea consistente

La i n t e r f a z d e b e a d q u i r i r y p r e s e n t a r l a i n f o r m a c i ó n d e m a n e r a c o n s i s t e n t e . Es t n

p l i c a q u e 1) t o d a la i n f o r m a c i ó n v i s u a l e s t é o r g a n i z a d a d e a c u e r d o c o n u n e s t a - . :

d e d i s e ñ o q u e s e m a n t e n g a e n t o d a s l a s p r e s e n t a c i o n e s d e p a n t a l l a ; 2) l o s m e c a . '

m o s d e e n t r a d a s e r e s t r i n j a n a u n c o n j u n t o l i m i t a d o q u e s e u t i l i c e d e m a n e r a c c r a

t e n t e e n t o d a la a p l i c a c i ó n , y 3) l o s m e c a n i s m o s p a r a ir d e u n a t a r e a a o t r a s e 1 ; 3

d e f i n i d o e i m p l e m e n t a d o d e m a n e r a c o n s i s t e n t e . M a n d e l [M A N 9 7] d e f i n e u n c o r u

t o d e p r i n c i p i o s d e d i s e ñ o q u e a y u d a n a c o n s t r u i r u n a i n t e r f a z c o n s i s t e n t e :

" L a s c o s a s q u e t i e n e n a s p e c t o s d i f e r e n t e s d e b e n a c t u a r d e m a n e r a d i s t i n t a . Las q u e t i e n e n e l m i s m o a s p e c t o , d e b e -
a c t u a r i g u a l .

Lorry Mari*

P e r m i t i r q u e e l u s u a r i o i n c l u y a l a t a r e a a c t u a l e n u n c o n t e x t o q u e t e n g a a i

g ú n s i g n i f i c a d o . M u c h a s i n t e r f a c e s i m p l e m e n t a n c a p a s c o m p l e j a s d e i n t e r a : z n

n e s c o n d o c e n a s d e i m á g e n e s e n p a n t a l l a . E s i m p o r t a n t e p r o p o r c i o n a r i n d i c a á r s a

(p o r e j e m p l o , t í t u l o s d e v e n t a n a , i c o n o s g r á f i c o s , c ó d i g o s d e c o l o r c o n s i s t e n t e s a s

TM

PDF Editor

C A P I T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 3 5 5

permitan al usuario conocer el contexto del t rabajo que realiza. Además, el usuario
debe tener la capacidad de determinar de dónde viene y cuáles son sus opciones pa-
ra la transición a una nueva tarea.

Mantener la cons i s tenc ia en toda una familia de ap l icac iones . Un conjunto
de aplicaciones (o productos) debe implementar las mismas reglas de diseño para
mantener la consistencia en todas las interacciones.

Si m o d e l o s interact ivos anter iores han g e n e r a d o expecta t ivas e n el usuario,
n o h a c e r c a m b i o s a m e n o s q u e haya r a z o n e s inexcusables . Una vez que una
secuencia interactiva se ha convertido en un estándar de /acto (como el empleo de
alt-G para guardar un archivo), el usuario espera esto en todas las aplicaciones que
encuentre. Un cambio (como el uso de alt-G para solicitar la función cambiar de ta-
maño) crearía confusión.

Los principios del diseño de interfases expuestos aquí y en secciones anteriores
proporcionan una guía para un ingeniero de software. En la siguiente sección se exa-
minará el proceso de diseño de la interfaz.

INFORMACIÓN
Facilidad de uso
En un brillante ensayo sobre la facilidad de

uso, Larry Constantine [CON95] plantea una
que tiene una fuerte relación con el tema: "¿Al

de cuentas, qué quieren los usuarios?" Responde así:
que los usuarios realmente quieren son buenas

ientas. Todos los sistemas de software, desde los
operativos y los lenguajes hasta la entrada de

y las aplicaciones de apoyo a la toma de decisiones,
solo herramientas. Los usuarios finales esperan de las

ientas que construimos pa ra ellos lo mismo que
s esperamos de las herramientas que usamos.

sistemas fáciles de aprender y que les ayuden a
su trabajo. Quieren software que no los detenga,
¡ o confunda, que no les lleve a cometer errores o

: 'cuite la terminación del trabajo".

Constantine argumenta que la facilidad de uso no se
: de mecanismos de interacción estéticos o modernos,
inteligencia integrada en la interfaz. En cambio,
: cuando la arquitectura de la interfaz corresponde a

-•ecesidades de las personas que la usarán,

. n a definición formal de facilidad de uso es elusiva,
ue y sus colegas [DON99] la definen de la siguiente
~: "Facilidad de uso es una medida de la manera en

un sistema de cómputo... facilita el aprendizaje;
a quienes aprenden a recordar lo que han
ido; reduce la posibilidad de errores; les permite ser

tes y los deja satisfechos con el sistema".

La única manera de determinar si existe "facilidad de
uso" dentro de un sistema en construcción consiste en
realizar una evaluación o una prueba de uso. Obsérvese a
los usuarios interactuando con el sistema y respóndanse las
siguientes preguntas [CON95]:

• ¿Es posible usar el sistema sin ayuda ni enseñanza
continua?

• ¿Las reglas de interacción ayudan a un usuario
conocedor a t rabajar con eficiencia?

• ¿Los mecanismos de interacción se vuelven más flexibles
a medida que los usuarios adquieren más
conocimientos?

• ¿El sistema se ha adecuado al entorno físico y social en
que habrá de usarse?

• ¿El usuario está al tanto del estado del sistema? ¿El
usuario sabe dónde se encuentra en c a d a momento?

• ¿La interfaz está estructurada de manera lógica y
consistente?

• ¿Los mecanismos de interacción, iconos y
procedimientos son consistentes en toda la interfaz?

• ¿La interacción anticipa errores y ayuda al usuario a
corregirlos?

• ¿La interfaz tolera los errores que se cometen?

• ¿La interacción es simple?

TM

PDF Editor

356 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Si se responde afirmativamente a cada una de estas
preguntas, es probable que se haya a lcanzado la facilidad
de uso.

Entre los numerosos beneficios mensurables derivados de
un sistema con facilidad de uso se encuentran [DON99]:

\ m a y o r nivel de ventas y satisfacción del usuario, ventaja

competitiva, mejores reseñas en los medios, mejores
recomendaciones de boca en boca, costos de soporte
reducidos, mayor productividad del usuario final, menores
costos de capacitación y documentación, además de
menos probabilidades de que los usuarios insatisfechos
entablen demandas.

1 2 . 2 A N Á L I S I S Y D I S E Ñ O DE LA I N T E R F A Z DE U S U A R I O

El proceso general para analizar y diseñar una interfaz de usuario empieza con :
creación de diferentes modelos de función del sistema (como se percibe desde el e i
tenor). Luego se delinean las tareas orientadas al ser h u m a n o y el equipo que se r ;
quieren para lograr el funcionamiento del sistema; se toman en cuenta los temas
diseño que se aplican a todos los diseños de interfaces; se emplean herramientas p
ra crear prototipos e implantar finalmente el modelo de diseño, y los usuarios fir¿ •
les evalúan la calidad del resultado.

R e f e r e n c i a W e b

Una excelente fuente

8f> www.useit.
com.

^CONSEJO^-

Hasta un usuario
principiante quiere
accesos directos;
hasta los usuarios
esporádicos y con
conocimiento suelen
necesitai una guía.
Hay que darles lo que
necesitan.

12.2.1 Modelos del análisis y diseño de la interfaz

Cuando se analiza y diseña una interfaz de usuario entran en juego cuatro modej -
diferentes. Un ingeniero h u m a n o (o el ingeniero del software) establece un mos-
del usuario-, el ingeniero del sof tware crea un modelo del diseño-, el usuario final y.
sarrolla una imagen mental que suele denominarse modelo mental del usuario o ps
cepción del sistema, y quienes implementan el sistema crean un modelo de la in :
mentación. Por desgracia, e s posible que estos modelos difieran significativame-.
entre sí. El papel del diseñador de la interfaz e s reconciliar es tas diferencias y ct--
var una representación consistente de la interfaz.

"Si hay que usar algún 'truco', la interfaz de usuario no es consistente."
Douglas Anderso»

El modelo del usuario establece el perfil de los usuarios finales del sistema. Paa
construir una interfaz de usuario efectiva, "todo diseño debe empezar por la c:n?i
prensión de quiénes son los usuarios de destino, incluidos sus perfiles de edad <
xo, habilidades físicas, educación, antecedentes culturales o étnicos, mot ivackr '3
objetivos y personalidad" [SCH90]. Además, es posible distribuir a los usuarios er _a
siguientes categorías:

Principiantes. No t ienen conocimientos de la sintaxis' del sistema y cuentan .
escasos conocimientos2 de la semánt ica de la aplicación o del uso de la computaad
ra en general.

1 En este contexto, conocimiento de sintaxis alude a los mecanismos de interacción requeridos
usar la interfaz de manera efectiva.

2 Conocimiento de semántica alude al sentido inherente de la aplicación (una comprensión de la< •
dones que se realizan, el significado de entrada y salida, y las metas y los objetivos del sistc--; I

TM

PDF Editor

http://www.useit

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 357

Usuarios esporádicos y con conocimientos. Tienen conocimientos razonables de
semántica, pero muestran una retención relativamente baja de la información sobre
sintaxis necesaria para utilizar la interfaz.

Usuarios frecuentes y con conocimientos. Cuentan con conocimientos de sintaxis y
semánt ica suficientes para llegar al "síndrome del usuario avanzado" (es decir, indi-
viduos que buscan combinaciones de teclas y métodos abreviados para interactuar).

Un modelo del diseño de todo el sistema incorpora datos, arquitectura, interfaz y
representaciones procedimentales del software. La especificación de requisitos esta-
blece ciertas restricciones que ayudan a definir el usuario del sistema, pero el dise-
ño de la interfaz sólo suele ser incidental en relación con el modelo del diseño.1

El modelo mental del usuario (percepción del sistema) es la imagen del sistema
que los usuarios finales llevan en la mente. Por ejemplo, si se pidiera al usuario de
un sistema determinado de diseño de páginas que describiera la operación, la per-
cepción del sistema determinaría la respuesta. La precisión de la descripción depen-
derá del perfil del usuario (por ejemplo, los principiantes darían cuando mucho una
respuesta incompleta) y de la familiaridad general con el sof tware en el dominio de
la aplicación. Un usuario que comprenda por completo el diseño de páginas, pero
que haya t rabajado con el sistema una sola vez en realidad podría proporcionar una
descripción m á s completa de su funcionamiento que el principiante que ha pasado
semanas t ratando de aprender el sistema.

"[P]reste atención a lo que hocen los usuarios, no a lo que dicen."
J a k o b N i e l s e n

El modelo de la implementación combina la manifestación externa del sistema de
cómputo (la apariencia de la interfaz) y toda la información de ayuda (libros, manua-
les, videocintas, archivos de ayuda) que describe la sintaxis y semánt ica del sistema.
Cuando coinciden el modelo de la implementación y el modelo mental del usuario,
los usuarios suelen sentirse a gusto con el sof tware y lo usan con efectividad. Para
lograr esta "combinación" de los modelos, el modelo del diseño debió desarrollarse
para incluir la información del modelo del usuario, y el modelo de implementación
debe reflejar con exactitud la información sintáctica y semántica de la interfaz.

Los modelos descritos en esta sección son "abstracciones de lo que el usuario es-
tá haciendo o lo que piensa que está haciendo o lo que alguien más piensa que de-
bería estar haciendo cuando usa el sistema interactivo". [MON84]. En esencia, es tos
modelos permiten que el diseñador de la interfaz satisfaga un e lemento clave del
principio más importante del diseño de la interfaz de usuario: Conoce al usuario y sus
tareas.

3 Así no es como deben ser las cosas. En muchos casos, el diseño de la interfaz es tan importante
como el diseño arquitectónico y el nivel de componentes

TM

PDF Editor

358 P A R T E D O S PRÁCTICA DE LA INGENIERIA DEL SOFTWARE

12.2.2 El proceso

El proceso de análisis y diseño de las interfaces de usuario e s iterativo y s e repres: -
ta con un modelo espiral parecido al que se analizó en el capítulo 3. Tomando
referencia la figura 12.1, se observará que el proceso de análisis y diseño de la ir r
faz de usuario abarca cuatro actividades distintas de marco de t rabajo [MAN97]

1. Análisis y modelado de usuarios, tareas y entornos.

2 . Diseño de la interfaz.

3. Construcción (implementación) de la interfaz.

4. Validación de la interfaz.

La espiral que se muestra en la figura 12.1 indica que cada una de es tas tareas
rrirá m á s de una vez, y cada pasada por la espiral representa la elaboración adi : ¡ir-
nal de los requisitos y el diseño resultante. En casi todos los casos, la actividac a
construcción incluye la creación de prototipos (la única manera práctica de v á l e -
lo que se ha diseñado).

El análisis de la interfaz se concentra en el perfil de los usuarios que i n t e r a r -
rán con el sistema. Se registrarán el grado de habilidad, la comprensión del
y la disposición general ante el nuevo sistema; y se definirán diferentes cate
de usuarios.

"Es mejor diseñar b experiencia del usuorio que rectificarla."
Jon

Una vez definidos los requisitos generales se realiza un análisis más detallad: fl
las tareas. Se identifican, describen y elaboran las tareas que el usuario realiza :

El proceso de
diseño de la
interfaz de
usuario.

Validación
de la interfaz

Análisis del usuario,
la tarea y el entorno

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 359

¿<ké
• e t e s i t o

I en torno
i empiece a
r lo in ter faz

o?

alcanzar los objetivos del sistema (sobre un número de pasadas iterativas por la es-
piral). El análisis de tareas se expone de manera más detallada en la sección 12.3.

El análisis del entorno del usuario se concentra en el ambiente físico de trabajo.
Entre las preguntas que deben responderse están las siguientes:

• ¿Dónde se localizará físicamente la interfaz?

• ¿El usuario estará sentado, de pie o realizará otras tareas sin relación con la
interfaz?

• ¿El h a r d w a r e d e la i n t e r f a z t i e n e r e s t r i c c i o n e s d e e s p a c i o o i l u m i n a c i ó n , o l o

a f e c t a el r u i d o ?

• ¿Hay factores humanos especiales determinados por factores ambientales?

La información reunida como parte de la actividad de análisis se utiliza para crear
un modelo del análisis para la interfaz. Tomando este modelo como base, se inicia
la actividad de diseño.

El objetivo del diseño de la interfaz e s definir un conjunto de objetos y acciones
(y sus representaciones en pantalla) que permitan que el usuario realice todas las ta-
reas definidas, de manera tal que cumplan todos los objetivos de facilidad de uso que
define el sistema. El diseño de la interfaz se estudia con mayor detalle en la sección
12.4.

Por lo general, la actividad de construcción empieza al crear un prototipo que per-
mita evaluar los escenarios de uso. A medida que continúa el proceso de diseño ite-
rativo, pueden usarse herramientas de desarrollo de la interfaz de usuario (consulte
el recuadro de la sección 12.4) para completar la construcción de la interfaz.

La validación se concentra en 1) la capacidad de la interfaz para implementar co-
rrectamente todas las tareas del usuario, acomodar todas las variaciones de las ta-
reas y cumplir todos los requisitos generales del usuario; 2) la facilidad del uso y el
aprendizaje de la interfaz, y 3) la aceptación por el usuario de que la interfaz e s una
herramienta útil para su trabajo.

Como ya se ha observado, las actividades descritas en esta sección ocurren de
manera iterativa. Por tanto, es innecesario tratar de especificar cada detalle (para el
modelo de análisis o de diseño) en el primer paso. Los siguientes pasos del proceso
dan lugar al detalle de la tarea, la información del diseño y las características opera-
tivas de la interfaz.

1 2 . 3 D E L A I N T E R F A Z

Un principio clave de todos los modelos de procesos de ingeniería del software re-
za: es mejor comprender el problema antes de tratar de diseñar una solución. En el ca-

4 Resulta razonable argumentar que esta sección debió colocarse en el capítulo 8, porque allí se es-
tudia el análisis de requisitos. Se ha incluido aquí porque el análisis y el diseño de la interfaz están
íntimamente relacionados, y porque el límite entre ambos es muy difuso.

TM

PDF Editor

360 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

¿ C ó m o s é lo
• q u e l o s

u s u a r i o s qu ieren
d e la i n t e r f a z ?

^ C O N S E J O ^

Sobretodo, dediqúese
tiempo a hablar con
las usuarios redes,
pero debe hoceise con
cuidoda. Una ophón
fuerte no necesaria-
mente signUka que la
mayorío de ¡os
usuorios esté de
ocuerdo.

% % CLAVE
¿Cómo aprendemos
sobre la demografía y
las características de
los usuorios finales?

so del diseño de la interfaz de usuario, comprender el problema significa comp-;~
der 1) a las personas (los usuarios finales) que interactuarán con el sistema por r e •]
dio de la interfaz; 2) las tareas que los usuarios finales deben realizar para hace-
trabajo; 3) el contenido que se presenta como parte de la interfaz, y 4) el entorne
que se realizarán es tas tareas. En las secciones siguientes se examinará cada un .
estos e lementos del análisis de la interfaz con el fin de establecer una base
para el diseño de las tareas que siguen.

12.3.1 Análisis del usuario

Ya se ha indicado que cada usuario tiene una imagen mental del software (o]
cíón del sistema) que podría ser diferente de la imagen mental de otros. Adema;
probable que la imagen mental del usuario sea muy diferente del modelo del >
que tiene el ingeniero. El diseñador sólo lograría que coincidan la imagen mer -_a.
el modelo del diseño si trabaja para comprender a los propios usuarios, ademad-
la manera en que ellos usarán el sistema. Es posible usar información de una ;
variedad de fuentes disponible para lograr esto:

Entrevistas c o n e l usuario . Es el enfoque más directo. Representantes de: ¡
po de software se entrevistan con usuarios finales para comprender mejor sus i
sidades, motivaciones, cultura de t rabajo y gran cantidad de t emas adicionales
to se logra mediante reuniones personales o con grupos de enfoque.

Información d e v e n t a s . El personal de ventas se reúne con clientes y i
de manera regular y obtiene información que ayudará al equipo de software a
ficar a los usuarios en categorías y a comprender mejor sus necesidades.

Información de mercadotecnia . El análisis de mercado es invaluable en la
nición de los segmentos del mercado, al tiempo que proporciona una comprer
la manera en que cada segmento usaría el software de manera sutilmente dife

Información proven iente d e sopor te . El personal de soporte habla a
con los clientes. Esto los convierte en la fuente de información más probable
lo que funciona y lo que no, lo que le gusta a los usuarios y lo que les disgusta
características que generan dudas y las que resultan fáciles de usar.

El siguiente grupo de preguntas (adaptado de [HAC98] ayudará al diseñado:
interfaz a comprender mejor a los usuarios de un sistema.

• ¿Los usuarios son profesionales capacitados, técnicos, t rabajadores de i
u obreros?

• ¿Qué grado de educación formal tiene el usuario promedio?

• ¿Los usuarios son capaces de aprender con materiales escritos o expre
su deseo de recibir capacitación en el lugar?

• ¿Los usuarios son expertos para tipear o le tienen fobia al teclado?

• ¿Cuál e s la edad promedio de la comunidad de usuarios?

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 361

• ¿Los usuarios corresponden predominantemente a algún género?

• ¿Qué compensación reciben los usuarios por su trabajo?

• ¿Los usuarios trabajan en horas normales de oficina, o siguen sus labores
hasta que hayan terminado lo que están haciendo?

• ¿El software será una parte integral del trabajo de los usuarios, o se empleará
ocasionalmente?

• ¿Cuál es el idioma materno de los usuarios?

• ¿Cuáles serían las consecuencias si un usuario comete un error mientras usa
el sistema?

• ¿Los usuarios son expertos en el tema que etiende el sistema?

• ¿Los usuarios quieren conocer la tecnología que sustenta la interfaz?

Las respuestas a éstas y otras preguntas similares permitirán que el diseñador com-
prenda quiénes son los usuarios finales, qué los motiva y complace, cómo se agru-
parían en diferentes clases o perfiles de usuarios, cuáles son sus modelos mentales
del sistema, y cómo debe caracterizarse la interfaz de usuario para que satisfaga sus
necesidades.

12.3.2 Análisis y modelado d e tareas

El objetivo del análisis de la tarea es responder las siguientes preguntas:

• ¿Qué trabajo hará el usuario en circunstancias específicas?

• ¿Cuáles tareas y subtareas se realizarán mientras el usuario trabaja?

• ¿Cuáles objetos específicos del dominio del problema manipulará el usuario
mientras se realiza el trabajo?

• ¿En qué secuencia se presentan tareas del trabajo (el flujo de trabajo)?

• ¿Cuál es la jerarquía de las tareas?

Para responder estas preguntas, el ingeniero de software debe basarse en las técni-
cas de análisis expuestas en los capítulos 7 y 8; pero en este caso las técnicas se apli-
can a la interfaz del usuario.

Casos de uso . En capítulos anteriores se indicó que el caso de uso describe cómo
un actor (en el contexto del diseño de la interfaz, un actor siempre es una persona)
interactúa con un sistema. Cuando se usa como parte del análisis de tareas, el caso
de uso se desarrolla para que muestre la manera en que el usuario final realiza al-
guna tarea específica relacionada con el trabajo. Casi siempre, el caso de uso se es-
cribe de manera informal (un solo párrafo) en primera persona. Por ejemplo, supón-
gase que una pequeña empresa de software quiere construir un sistema de diseño
asistido por computadora explícitamente para diseñadores de interiores. Para com-
prender mejor cómo hacen su trabajo, se pide a diseñadores de interiores reales que
describan funciones específicas del diseño. Cuando se les pregunta: "¿cómo decide

TM

PDF Editor

362 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

el lugar en q u e co loca rá un m u e b l e en una habi tación?", un d i s e ñ a d o r d e inter:
escr ibe el s iguiente c a s o de u s o informal:

Empiezo haciendo un borrador del plano de la habitación, las dimensiones y la posicio-
de las ventanas y puertas. Me preocupo por la manera en que entra la luz, por la vista OLC
se tiene a través de las ventanas (si es hermosa, me gustaría llamar la atención hacia ella
por el espacio que las paredes no tapan, por el flujo del movimiento en la habitación. LUÍ
go observo la lista de muebles que mi cliente y yo hemos elegido (mesas, sillas, sillones
vitrinas) y la lista de accesorios (lámparas, alfombras, cuadros, esculturas, plantas, peque
ñas piezas}, y también observo mis notas sobre la manera en que mi cliente desea que se
distribuyan. Luego dibujo cada elemento de mis listas empleando una plantilla que se "ri
dibujado a escala con el plano. Etiqueto cada elemento y uso lápiz porque siempre mué
vo cosas. Considero varias opciones de ubicación y decido cuál es la que me gusta mas.
Luego dibujo una representación (una imagen tridimensional) del cuarto, para dar a ~ |
cliente una idea del aspecto que tendrá.

Este c a s o d e u s o p roporc iona una descr ipc ión e l emen ta l de u n a tarea d e trabai r J
p o r t a n t e p a r a el s i s t ema d e d i s e ñ o as is t ido por c o m p u t a d o r a . A partir de él, el -
n i e ro d e s o f t w a r e ex t rae rá t a r e a s y obje tos , a d e m á s del flujo genera l d e la i n t e n J
ción. Además , t a m b i é n e s pos ib le conceb i r o t r a s carac ter í s t icas del s i s t ema I < I
ag rada r í an al d i s e ñ a d o r de inter iores . Por e jemplo , podr ían t o m a r s e fotografías : qd

tales del p a n o r a m a d e c a d a v e n t a n a . Así, c u a n d o s e h a g a u n a represen tac ión ;T •
i m a g e n d e la habi tac ión s e mos t r a r í a la vista real e n c a d a v e n t a n a .

H O G A R S E G U R O

Casos de uso para el diseño de interfaces de usuario I I i -

La e s c e n a : Cubículo de Vinod,
mientras se continúa con el diseño de le interfaz.

Los a c t o r e s : Vinod y Jamie, integrantes del equipo de
ingeniería dei software d e HogarSeguro.

La conversación:

J a m i e : Fui a ver a mi contacto de mercadotecnia e hice
que escribiera un caso d e uso para la interfaz de vigilancia.

V i n o d : ¿Desde el punto de vista de quién?

J a m i e : Del propietario de la casa , ¿de quién más?

V i n o d : También existe el enfoque del administrador.
Aunque el propietario desempeñe ese papel, tendrá un
punto de vista diferente. El "administrador" habilita el
sistema, configura las cosas, diseña el plano de la casa,
coloca las cámaras . .

J a m i e : Lo que hice fue que mercadotecnia representara
eí papei cíe jn propietario que quiere ver un video.

V i n o d : Eso está bien. Es uno de los principales
comportamientos de la interfaz de la función d e
vigilancia. Pero tendremos que examinar también el
comportamiento del administrador del sistema.
J a m i e (irritada): Tienes razón.
(Jamie sale a buscar a la persona de mercadotecnia
Regresa unas horas más tarde.)

J a m i e : Tuve suerte. Encontré a nuestro contacto de
mercadotecnia y t rabajamos ¡untos el caso del
administrador. Básicamente, definiremos
"administración" como una función aplicable a todas
funciones de HogarSeguro. He aquí lo que hicimos.
(Jamie muestra a Vinod el caso de uso informal.)

C a s o d e u s o informal: Quiero la capacidad de
configurar o editar el formato del sistema en cualquie-
momento. Cuando configure el sistema seleccionaré 1c
función de administración. Me pregunta si quiero de^- r
una nueva configuración. Respondo afirmativamente :

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 363

i una pontana de dibu|0 que me permite
el plano de !a casa en una cuadrícula. Habrá

para paredes, ventanas y puertas que me
•'n el dibujo. Solamente estiro los iconos pa ra que
la dimensión correcta. El sistema desplegará las

pies o metros (puedo seleccionar el sistema
). Tengo la opción de seleccionar sensores y

de una biblioteca y de ubicarlas en el plano,
poner una leyenda a cada una, pero el sistema

lo puede hacer automáticamente. Tengo la
' de definir los parámetros de sensores y

liante menús especiales. Si selecciono editar,
mover los sensores o las cámaras , agregar nuevos

o eliminar los que ya existen, editar el plano de la casa y
los valores de cámaras y sensores. En todos los casos,
espero que el sistema tenga consistencia y me ayude a
no cometer errores.

Vinod (d e s p u é s d e leer el guión): Muy bien. Tai
vez haya algunos patrones de diseño útiles o algunos
componentes reutilizables que podamos usar en las
interfaces gráficas de usuario tomados de algún
programa de diseño. Te apuesto la comida a que, si los
usamos, podemos ¡mplementar parte de la interfaz del
administrador, o casi toda ella.

J a m i e : Estoy de acuerdo, dé jame revisarlo.

<#

se ha
una torea no

que no
maneta de
y que se
•. aplicar
e implemente

de usuario.

Elaboración de la tarea. En el capítulo 9, se analizó la elaboración paso a pa-
so (también denominada descomposición funcional o refinamiento paso a paso) como
mecanismo para refinar las tareas de procesamiento requeridas para que el softwa-
re realice alguna función deseada. El análisis de la tarea para el diseño de la inter-
faz emplea un enfoque elaborativo para apoyar la comprensión de las actividades
humanas a las que debe adecuarse la interfaz de usuario.

El análisis de la tarea se aplica de dos maneras. Como ya lo hemos indicado, un
sistema interactivo, computacional, suele usarse para reemplazar una actividad ma-
nual o semiautomática. Con el fin de comprender las tareas indispensables para al-
canzar el objetivo de la actividad, un ingeniero humano 5 debe comprender las tareas
que las personas realizan actualmente (al usar un método manual) y luego relacio-
narlas con un conjunto similar (pero no necesariamente idéntico) de tareas que se
implementan en el contexto de la interfaz de usuario. Como opción, el ingeniero hu-
mano puede estudiar una especificación existente para una solución computarizada
y derivar un conjunto de tareas de usuario que se adecuarán al modelo de éste, el
modelo del diseño y la percepción del sistema.

Sin importar el enfoque general para el análisis de la tarea, un ingeniero humano
debe definir y clasificar primero las tareas. Ya se ha indicado que un enfoque es la
elaboración paso a paso. Por ejemplo, suponga que una pequeña compañía de soft-
ware pretende construir un sistema de diseño asistido por computadora explícitamen-
te para diseñadores de interiores. Al observar cómo trabaja uno de ellos, el ingeniero
nota que el diseño de interiores abarca varias actividades importantes: distribución del
mobiliario (tome en cuenta el caso de uso que ya analizamos), selección de telas y ma-
teriales, selección de tapices para paredes y cortinas para ventanas, presentación (pa-
ra el cliente), presupuesto y compras. Cada una de estas importantes tareas pueden
desglosarse en subtareas, Por ejemplo, de acuerdo con la información contenida en

5 En muchos casos, un ingeniero de software realiza las tareas descritas en esta sección. Lo ideal es
que esta persona tenga capacitación en ingeniería humana y eri diseño de interfaces de usuario.

TM

PDF Editor

364 P A E T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^CONSEJO^.

Aunque lo elaboración
del objeto sea útil, no
debe usarse como un
enfoque indepen-
diente. Lo voz del
usuario debe tomarse
en cuenta durante el
análisis de la tarea.

el caso de uso, la distribución del mobiliario se retinaría de las siguientes tareas: 1 ;
bujar un plano de la casa tomando como base las dimensiones de la habitación
ubicar las ventanas y puertas en los lugares adecuados; 3a) usar las plantilla;
muebles para dibujar contomos a escala en el plano; 3b) usar las plantillas de ¡
sorios para dibujarlos a escala en el plano; 4) mover los contornos de los mueble;
accesorios para obtener el mejor lugar; 5) rotular todos los contornos de muebles y ¡
cesorios; 6) dibujar las dimensiones para mostrar la ubicación; 7) generar la vista :
dimensinal en perspectiva para el cliente. Un enfoque similar se usaría para
una de las otras tareas importantes.

Es posible retinar aún más de la subtareas I a 7. De la 1 a la 6 se realizarán al:
nipular la información y ejecutar acciones dentro de la interfaz de usuario. Por
parte, el software tiene la capacidad de realizar automáticamente la subtarea
que representaría poca interacción directa del usuario.6 El modelo del diseño or ¡
interfaz debe acomodar cada una de esas tareas para que sea consistente con e.:
délo del usuario (el perfil de un diseñador de interiores "típico") y la percepciór
sistema (lo que el diseñador de interiores espera de un sistema automatizado

Elaboración del objeto. En lugar de concentrarse en las tareas que un
debe realizar, el ingeniero de software examina el caso de uso y otra informador ;
tenida del usuario y obtiene los objetos fisicos que usa el diseñador de interiores
tos objetos pueden ordenarse en clases. Los atributos de cada clase y una
ción de las acciones aplicadas a cada objeto proporcionan al diseñador una hs-u
operaciones. Por ejemplo, la plantilla de muebles se traduce en una clase lia
M u e b l e c o n a t r i b u t o s q u e p o d r í a n inc lu i r tamaño, forma, ubicación y o t r a s . El

dor de interiores seleccionaría el objeto de la clase Mueble, lo movería a una |
en el plano (otro objeto en el contexto), dibujaría el contorno de los muebles, e : :
tareas seleccionar, mover y dibujar son operaciones. El modelo del análisis de .; i
terfaz de usuario no proporcionaría una implementación para cada una de
operaciones. Sin embargo, a medida que se elabore el diseño se definirían los ;
lies de cada operación.

Análisis del flujo de trabajo. Cuando distintos usuarios, cada uno repre
do diferentes papeles, utilizan una interfaz de usuario, a veces es necesario
allá del análisis de la tarea y la elaboración de objetos y aplicar el análisis delj
trabajo. Esta técnica permite que un ingeniero de software comprenda cómo se i
liza un proceso de trabajo cuando se involucran varias personas (y papeles),
en una compañía que pretende automatizar el proceso de prescribir y enviar:
camentos que se venden con receta. Todo el proceso7 girará alrededor de un;

Sin embargo, tal vez éste no sea el caso. Es probable que el diseñador de Interiores quiera i
car la perspectiva del dibujo, el tamaño o el uso del color y otra información. El caso de i
cionado con las representaciones de dibujos en perspectiva proporcionaría la informacic:
necesita atender en esta tarea.
Este ejemplo se ha adaptado de (HAC98],

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 365

cación Web disponible para médicos (o sus asistentes), farmacéuticos y pacientes. El
flujo de trabajo se representa de manera efectiva con un diagrama de linea de flota-
ción UML (una variante del diagrama de actividad).

Sólo se considerará una pequeña parte del proceso de trabajo: la situación que se
presenta cuando un paciente pide que se le resurta una receta. En la figura 12.2 se pre-
senta un diagrama de línea de flotación que indica las tareas y decisiones de cada uno
de los tres papeles citados. Esta información podría obtenerse mediante entrevistas
o casos de estudio escritos por cada actor. Independientemente de esto, el flujo de
los eventos (mostrados en la figura) permite que el diseñador de la interfaz reconoz-
ca tres características clave:

1. Cada usuario implementa diferentes tareas con la interfaz; por tanto, el con-
cepto de la interfaz diseñada para el paciente será diferente del aplicado a los
farmacéuticos o médicos.

2 . El diseño de la interfaz para farmacéuticos y médicos debe tener acceso a la
información de fuentes secundarias (como acceso a inventarios de farmacia y
a la información acerca de medicamentos alternos por parte del médico), ade-
más de desplegar esta información.

3. Es posible elaborar aún más muchas actividades indicadas en el diagrama de
línea de flotación mediante análisis de la tarea, elaboración de objetos, o am-
bas opciones (por ejemplo, prescripción de resurtido podría relacionarse con
una entrega por correo, o una visita a la farmacia o a un centro especial de
distribución de medicamentos).

Representación jerárquica. Cuando se analiza una interfaz ocurre un proceso
de elaboración. Una vez establecido el flujo de trabajo se define una jerarquía de ta-
rea para cada tipo de usuario. La jerarquía se deriva de una elaboración paso a pa-
so de cada tarea que el usuario haya identificado. Por ejemplo, piénsese en la tarea
de usuario solicitar que se resurta una receta. Se desarrolla la siguiente jerarquía de
tareas:

Solicitar que se resurta una receta

• Proporcionar información de identificación

• Especificar nombre

• Especificar identidad de usuario

- Especificar NIPy contraseña

• Especificar número de receta

• Especificar fecha en que se requiere el resurtido

Completar la tarea solicitar que se resurta una receta requiere definir tres subtareas.
Una de ellas, proporcionar información de identificación, incluye tres subtareas adicio-
nales.

TM

PDF Editor

366 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Diagrama de línea de flotación para la función de resurtido de recetas.

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 367

¿ C ó m o s e

> y l o
i del

i c o m o
i d e lo

: d e
a?

"Es mucho mejor adap ta r la tecnología al usuario que obligar o éste a adaptarse a la tecnología."
Larry M a r i n e

12.3.3 Análisis del contenido de la pantalla

Las tareas del usuario identificadas en la sección anterior llevan a la presentación de
diferentes tipos de contenido. En el caso de aplicaciones modernas, el contenido de la
pantalla va de informes basados en caracteres (por ejemplo, hojas de cálculo), pan-
tallas gráficas (por ejemplo, un histograma, un modelo 3-D, la fotografía de una per-
sona) o información especial izada (como archivos de audio o video). Las técnicas
de modelado del análisis estudiadas en el capítulo 8 identifican los objetos de datos de
salida que produce una aplicación. Estos objetos de datos son: 1) generados por com-
ponentes (no relacionados con la interfaz) en otras partes de la aplicación; 2) adquiri-
das de los datos a lmacenados en una base de datos a la que se tiene acceso desde la
aplicación, o 3) transmitida de sistemas externos a la aplicación en cuestión.

En es te paso del análisis de la interfaz se consideran el formato y la estética del
contenido (tal como se despliega en la interfaz). Entre las preguntas que se habrán
de plantear se encuent ran las siguientes:

• ¿Hay diferentes tipos de datos asignados a ubicaciones consistentes en la
pantalla (por ejemplo, las fotos s iempre aparecen en la esquina superior dere-
cha de la pantalla)?

• ¿El usuario puede personalizar la distribución del contenido en la pantalla?

• ¿Se ha as ignado una apropiada identificación en pantalla a todo el contenido?

• ¿Cómo se segmenta un informe largo para facilitar su comprensión?

• ¿Habrá mecanismos disponibles para desplazar directamente al resumen de
información en conjuntos grandes de datos?

• Se cambiará el t amaño de la salida gráfica para que quepa dentro de los lími-
tes de la pantalla o el monitor que habrá de usarse?

• ¿Cómo se usará el color para mejorar la comprensión?

• ¿Cómo se presentarán al usuario los mensa jes de error y los avisos de precau-
ción?

A medida que se responden es tas (y otras) preguntas se establecerán los requisitos
para la presentación del contenido.

12.3.4 Análisis del entorno d e trabajo

Hackos y Redish [HAC981 analizan la importancia del análisis del entorno de traba-
jo cuando afirman:

La gente no trabaja aislada; la afectan la actividad que se realiza a su alrededor, las carac-
terísticas físicas del lugar de trabajo, el tipo de equipo que emplea y sus relaciones de tra-
bajo con los demás. Si los productos que se diseñan no se amoldan al entorno, es posible
que su uso resulte ditícil o frustrante.

TM

PDF Editor

368 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

En algunas aplicaciones la interfaz de usuario para un sistema de cómputo se <
ca en un "lugar amigable para el usuario" (por ejemplo, iluminación apropiada, I
na altura de la pantalla, fácil acceso al teclado), pero en otros (como el piso de i
fábrica o la cabina de un avión), la iluminación es deficiente, el ruido es impor
un teclado o un ratón no son una opción, la colocación del monitor es menos i
ideal. Al diseñador de la interfaz lo limitarán factores que atentan contra la fácil.,
de uso.

Además de los factores del entorno físico, la cultura del lugar de trabajo tar
incide. ¿La interacción del sistema se medirá de alguna manera (por ejemplo,
po por transacción o exactitud de ésta)? ¿Dos o más personas tendrán que cc
tir información antes de que se proporcione una entrada? ¿Cómo se dará sop
los usuarios del sistema? Es necesario responder éstas y muchas otras pregunta; -
lacionadas antes de iniciar el diseño de la interfaz.

Una vez finalizado el análisis de la interfaz, se han identificado con detalle te
tareas (objetos o acciones) que requiere el usuario final, y comenzará la activid
diseño de la interfaz. Esta etapa, como todo el diseño de la ingeniería del
es un proceso iterativo. Cada paso del diseño de la interfaz se da varias veces ¡
cada uno de ellos se elabora y refina información desarrollada en los pasos <
res.

Aunque se han propuesto muchos modelos diferentes para el diseño de la i
faz de usuario (por ejemplo, [NOR86], [NIEOO]), todos sugieren alguna combii
de los siguientes pasos:

1. Con base en la información desarrollada durante el análisis de la infor
(sección 12.3), definir los objetos y las acciones de la interfaz (operacic

2 . Definir eventos (acciones del usuario) que cambiarán el estado de la int
Modelar este comportamiento.

3. Representar cada estado de la interfaz tal como lo verá el usuario final

4 . Indicar cómo interpreta el usuario el estado del sistema a partir de la i
proporcionada mediante la interfaz.

En algunos casos, el diseñador de la interfaz puede empezar con borradores i
da estado de la interfaz (es decir, el aspecto de la interfaz en distintas circur
y luego trabajar hacia atrás para definir objetos, acciones y otra información
tante para el diseño. Independientemente de la secuencia de las tareas del
éste debe 1) seguir siempre las reglas de oro analizadas en la sección 12.1; 2 :
lar la manera en que se implementará la interfaz, y 3) tomar en cuenta el
(por ejemplo, la tecnología de despliegue, el sistema operativo, las herramii
desarrollo) en que habrá de usarse.

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 369

"Ei diseño interortivo [es] uno mezclo integrada de artes gráficas, tecnología y psicología."
Brad Wieners

12.4.1 Aplicación de los pasos del diseño de la interíaz

Un paso importante en el diseño de la interfaz es la definición de los objetos que és-
ta tendrá y las acciones que se les aplicarán. Para realizarlo se analizan los casos de
uso de manera muy parecida a la descrita en el capítulo 8. Es decir, se escribe una
descripción de un caso de uso. Luego se aislan los nombres (objetos) y los verbos
(acciones) para crear una lista de objetos y acciones.

Una vez definidos los objetos y las acciones, que se han elaborado de manera ite-
rativa, se organizan por tipo. Se identifican objetos de destino, origen y aplicación.
Un objeto de origen (como el icono de un informe) se arrastra y coloca en un objeto
de destino (por ejemplo, un icono de impresora). La implicación de esta acción es
crear un informe impreso. Un objeto de aplicación representa datos específicos de la
aplicación que no se manipulan directamente como parte de la interacción con la pan-
talla. Por ejemplo, en una lista de correo se a lmacenan nombres para un envío de
correspondencia. La propia lista podría ordenarse, combinarse o purgarse (acciones
de menú), pero no arrastrarse ni colocarse mediante interacción del usuario.

Una vez que el diseñador queda satisfecho con un objeto importante y que se han
definido las acciones (para una iteración de diseño) se realiza el formato de la pan-
talla. Como otras actividades de diseño de la interfaz, el formato de la pantalla e s un
proceso interactivo; en él se elabora el diseño gráfico y se colocan los iconos, la de-
finición de texto descriptivo en pantalla, la especificación y la asignación de nom-
bres a las ventanas, a d e m á s de la definición de los e lementos primarios y secunda-
rios de los menús. Si una metáfora de la realidad es apropiada para la aplicación, se
especifica en es te momento, y el diseño se organiza de manera tal que satisfaga la
metáfora.

Un breve ejemplo de los pasos del diseño indicados anter iormente se obtiene
imaginando el contexto en que s e sitúa un usuario del sistema HogarSeguro analiza-
do en capítulos anteriores. A continuación se presenta un caso de estudio prelimi-
nar (escrito por el propietario) para la interfaz.

Caso d e uso preliminar. Quiero tener acceso a mi sistema HogarSeguro desde cualquier
lugar remoto vía Internet. Empleando software de navegador que opera en mi notebook
(mientras estoy trabajando o viajando) puedo determinar el estado del sistema de alarmas,
armar o desarmar el sistema, reconfigurar zonas de seguridad y ver diferentes habitacio-
nes de la casa con las cámaras de video preinstaladas.

Para tener acceso a HogarSeguro desde un lugar remoto proporciono una identificación
y una contraseña. Estos elementos definen los niveles de acceso (por ejemplo, no todos
los usuarios pueden reconfigurar el sistema ni proporcionar seguridad). Una vez validado,
puedo revisar el estatus del sistema y cambiarlo al armar o desarmar HogarSeguro. Puedo
reconfigurar el sistema al desplegar un plano de la casa, ver cada uno de los sensores de

TM

PDF Editor

370 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ O N S E J C Í ^

Aunque las
herramientas
automatizadas son
útiles en el desarrollo
de prototipos de
formato, en ocasiones
todo lo que se
necesita es lápiz y
papel.

seguridad, desplegar cada zona configurada actualmente y modificar zonas de acuerd
con las necesidades. Puedo ver el interior de la casa con las cámaras de video colocada?
de manera estratégica. Puedo hacer acercamientos y desplazamientos con las cámarai

para proporcionar diferentes vistas del interior.

Con base en este caso de uso se identifican las tareas del propietario, los objet -
los elementos siguientes:

• tiene acceso al sistema HogarSeguro

• ingresa un ID y una contraseña para acceso remoto

• revisa el es tatus del s i s t ema

• arma o desarma el sistema HogarSeguro

• despliega el plano de la casa y las ubicac iones de los s e n s o r e s

• despliega z o n a s en el plano de la casa

• cambia z o n a s en el plano de la casa

• despliega ubicac iones de las cámaras de v ideo o el p lano de la casa

• selecciona visualmente una cámara de v ideo

• ve imágenes de v ideo

• desplaza o acerca las cámaras de v ideo

Los objetos (en negritas) y las acciones (en cursivas) se extraen de la lista de
del propietario. La mayor parte de los objetos indicados son objetos de la ap
Sin embargo, ubicación de las cámaras de v ideo (un objeto de origen) se
tra y coloca en cámara de v ideo (un objeto de destino) para crear una i
video (una ventana que contiene el despliegue de video).

Se crea un boceto preliminar del formato de la pantalla para el monitoreo
deo (figura 12.3).8 La imagen de video se solicita seleccionando un icono de
ción de las cámaras de video, C, localizado en el plano de la casa despleg:
ventana de monitoreo. En este caso se arrastra la ubicación de una cámara de
en la sala, SA, y se coloca sobre el icono de cámara de video ubicado en la
perior izquierda de la pantalla. Aparecerá la ventana de imagen de video,
do video de flujo continuo proveniente de la cámara ubicada en la sala (SA
troles deslizables de acercamiento y desplazamiento se emplean para cr
ampliación y la dirección de la imagen del video. Para seleccionar una vista
cámara, el usuario simplemente arrastra y coloca un icono de ubicación ck

8 Considérese que esto difiere de la implementación de estas caracteristicas en capítulos
Esto podría considerarse un borrador del primer diseño y representa una opción digna
en cuenta

TM

PDF Editor

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 371

Acceso Configurar Sistema Estatus Ver Supervisar

HogarSeguro

Cámoro de video.

Primer piso

D Detecto: de movimiento frayo mostradoj
C Ubicación de cámaro de video

Acercar

I

| [Z o o m m i | | [\ \ J A I e j a r

Dezplazar

diferente en el icono de la cámara emplazado en la esquina superior izquierda de la
pantalla.

El boceto del formato que se muestra tendría que complementarse con una ex-
pansión de cada elemento de menú dentro de la barra de menús, indicando cuáles
acciones están disponibles para el modo de monitoreo de video (estado). Durante la
etapa de diseño de la interfaz se crearía un conjunto completo de bocetos para ca-
da tarea de propietario anotada en el escenario del usuario.

12.4.2 Patrones de diseño de la interfaz de usuario

Las interfaces gráficas de usuario sofisticadas se han vuelto tan comunes que ha sur-
gido una amplia variedad de patrones de diseño de interfaces de usuario. Como se
observó al principio de este libro, un patrón de diseño es una abstracción que pres-
cribe una solución de diseño a un problema de diseño específico, bien delimitado.
Cada uno de los patrones de ejemplo (y todos los patrones de cada categoría) pre-
sentados en el recuadro siguiente también tendría un diseño completo al nivel de
componentes, incluidos clases, atributos, operaciones e interfaces de diseño.

Un análisis completo de los patrones de interfaz de usuario está más allá del al-
cance de este libro. El lector interesado debe consultar IDUY02J, (BOROl], [WEL011 y
[TID02] para conocer más información.

TM

PDF Editor

372 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

I N F O R M A C I Ó N

Patrones de interfaz de usuario
En las últimas décadas se han propuesto cien-
tos de patrones de interfaz de usuario. Tidwell

[TID02] y Van Welie [WEL01] proporcionan taxonomías9

de los patrones de diseño de interfaz d e usuario que se
han organizado en 10 categorías. En este recuadro se pre-
sentan patrones de ejemplo de cada una de estas catego-
rías.

I n t e r f a z d e u s u a r i o c o m p l e t a . Proporciona líneas
generales de diseño para estructura y navegación de alto
nivel.
P a t r ó n : navegación de alto nivel
Descr ipc ión b r e v e : Proporciona un menú de alto nivel,

a menudo acoplado a un logotipo o una imagen d e
identificación que permite la navegación directa a cual-
quiera de las principales funciones del sistema.

D i s e ñ o d e p á g i n a . Atiende la organización general
de las páginas (para sitios Web) o distintos despliegues de
pantalla (para aplicaciones interactivas).
P a t r ó n : pila de carias
D e s c r i p c i ó n b r e v e : Proporciona el aspecto de una pila

de cartas con pestañas; para seleccionarlas se hace dic
en cada una de ellas, que representa subfunciones es-
pecíficas o categorías de contenido.

F o r m u l a r i o s y e n t r a d a . Toma en cuenta diversas
técnicas de diseño para completar entradas al nivel de for-
mularios.
Patrón: llene los espacios en blanco
Descr ipc ión b r e v e : Permite el ingreso de datos alfanu-

méricos en un "cuadro de texto".

T a b l a s . Proporciona guía de diseño para la creación y
manipulación de todo tipo de datos tabulares.
Patrón: lab/a que permite su ordenación
Descr ipc ión b r e v e : Despliega una larga lista de regis-

tros que se ordenan al seleccionar un mecanismo inte-
rruptor pa ra cualquier etiqueta de la columna.

M a n i p u l a c i ó n d irec ta d e d a t o s . Atiende la edi-
ción, modificación y transformación de datos.

i P a t r ó n : migas de pan

Descr ipc ión b r e v e : Proporciona una ruta completa de
navegación cuando el usuario está trabajando con une
jerarquía completa de páginas o pantallas de despliega

N a v e g a c i ó n . Ayuda al usuario en el recorrido de rre
nús jerárquicos, páginas Web y pantalla de despliegue -
teractivo.
P a t r ó n : edición en el lugar
Descr ipc ión b r e v e : Proporciona la capacidad de e c

ción simple de textos para ciertos tipos de contení de sr
el lugar en que se despliega.

B ú s q u e d a . Permite búsquedas de contenido e s p e d í a
mediante la información mantenida en un sitio Web o zzr-,
tenida en almacenes persistentes de datos que están
sibles para una aplicación interactiva.
P a t r ó n : búsqueda simple
Descr ipc ión b r e v e : Proporciona la capacidad de

car, en un sitio W e b o una fuente de datos persiss
un elemento simple de datos descrito por una cod
alfanumérica.

E l e m e n t o s d e p á g i n a Implemento elementos
eos de un página Web o pantalla de despliegue.
Patrón : asistente
Descr ipc ión b r e v e : Lleva al usuario paso a paso

una tarea compleja, proporcionando guías pare
pletar la tarea mediante una serie de ventanas

C o m e r c i o e l e c t r ó n i c o Específicos de sitios Web
patrones implementan elementos recurrentes de
nes de comercio electrónico.
P a t r ó n : carrito de compras
Descr ipc ión b r e v e : Proporciona una lista de

seleccionados en una compra.

V a r i o s Patrones que no caben fácilmente en las
rías anteriores. En algunos casos, estos patrones
del dominio u ocurren pa ra clases específicas de
Patrón : indicador de programa
D e s c r i p c i ó n b r e v e : Proporciona una indicados

greso cuando se está realizando una operocicr

12.4.3 Temas de diseño

A medida que evoluciona el diseño de una interfaz casi siempre surgen cuatr: i
comunes: t iempo de respuesta del sistema, funciones de ayuda para el
nejo de información de error y rotulado de comandos. Por desgracia, m

9 En [T1D02] y [WEL01] se encontrarán descripciones de pat rones completos (junto cor.

otros patrones).

TM

PDF Editor

C A P I T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 373

fiadores no prestan atención a es tos t emas has ta una etapa relativamente tardía del
proceso de diseño (en ocasiones el primer atisbo de un problema se presenta hasta
que se dispone de un prototipo operacional). Como resultado, a veces se tiene itera-
ción innecesaria, demoras del proyecto y frustración del cliente. Es mucho mejor
abordar cada uno como elemento de diseño y tomarlo en cuenta al principio del di-
seño de software, cuando los cambios son fáciles y el costo e s bajo.

"Un error común que comete lo gente cuando trato de diseñor a lgo o prueba de tontos es subestimar la ingenuidad de
los verdaderamente tontos."

D o u g k s A d a m s

T i e m p o de respues ta . El t iempo de respuesta del sistema es la primera queja so-
bre muchas aplicaciones interactivas. En general, se mide desde el punto en que el
usuario realiza alguna acción de control (como oprimir la tecla Return o hacer clic
con el ratón) hasta que el sof tware responde con la salida o la acción deseada.

El t i e m p o d e r e s p u e s t a del s i s t e m a t iene d o s caracter ís t icas importantes :
duración y variabilidad. Si la respuesta del sistema se demora mucho, la frustra-
ción y el estrés del usuario son inevitables. Variabilidad es la desviación del t iempo
de respuesta promedio y, en muchos sentidos, e s la característica más importante
del t iempo de respuesta. Una baja variabilidad permite que el usuario establezca un
ritmo de interacción, aunque el t iempo de respuesta sea relativamente largo. Por
ejemplo, una respuesta de 1 segundo a un comando a menudo será preferible a una
respuesta que varía de 0.1 a 2.5 segundos. Cuando la variabilidad e s significativa, el
usuario siempre se encontrará fuera de balance, siempre se preguntará si ha ocurri-
do algo "diferente" tras bastidores.

Func iones d e ayuda. Casi todos los usuarios de un sistema de cómputo interac-
tivo necesitan ayuda de vez en cuando. En algunos casos, basta con una simple pre-
gunta dirigida a un colega con experiencia. En otros, tal vez la única opción sea una
investigación detallada en un conjunto de varios volúmenes de "manuales de usua-
rio". Sin embargo, en casi todos los casos el software moderno proporciona funcio-
nes de ayuda en línea que permiten al usuario obtener una respuesta a sus pregun-
tas o resolver un problema sin dejar la interfaz.

Deben a tenderse varios t emas de diseño [RUB88] cuando se toma en cuenta una
opción de ayuda.

• ¿La ayuda estará disponible para todas las funciones del sistema y en todo
m o m e n t o durante la interacción con éste? Entre las opciones se incluye ayuda
sólo para un subconjunto de todas las funciones y acciones o ayuda para to-
das las funciones.

• ¿Cómo necesitará la ayuda el usuario? Entre las opciones se incluyen menú
de ayuda, una tecla especial de función o un comando AYUDA.

TM

PDF Editor

374 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

• ¿Cómo se representará la ayuda? Las opciones son una ventana separada,
una referencia a un documento impreso (menos que ideal) o una sugerencia
de una o dos lineas que aparece en un lugar fijo de la pantalla.

• ¿Cómo regresará el usuario a la interacción normal? Entre las opciones se ir-
cluyen un botón de regreso desplegado en la pantalla, u n a tecla de función :

u n a secuencia de control.

• ¿Cómo se estructurará la información de ayuda? Las opciones son una estro;
tura "plana" en que se tiene acceso a toda la información con el teclado, ur a
jerarquía en capas de información que proporciona detalles crecientes a me
dida que el usuario la recorre, o el uso de hipertexto.

Manejo de errores . Los mensa jes de error y los avisos de precaución son
noticias" que se entregan a los usuarios de sistemas interactivos cuando algo sale i
En el peor de los casos, los mensajes de error y los avisos de precaución ofrece-
formación inútil o que puede malinterpretarse y que sólo sirve para aumentar la
tración del usuario. Algunos usuarios de computadora han encontrado un error 3r i
forma "La aplicación XXX se ha visto forzada a cerrarse porque se ha encontrado un •
del tipo 1023". En algún lugar debe existir una explicación del error 1023; de lo«
rio, ¿por qué habrían asignado los diseñadores ese identificador? Sin e m b a í ; : 4
mensaje de error no proporciona una indicación real de lo que estuvo mal ni de
de buscar la información adicional. Un mensaje de error presentado de esta
no hace nada por aliviar la ansiedad del usuario ni ayuda a corregir el problema

"Lo i n t e r f a z con el infierno: 'Poro corregir este error y seguir adelante, escribo cualquier número primo de 1 1 : :

l o s . . ."
A u t o r a o M

? Q u é
c a r a c t e r í s t i c a s

d e b e t e n e r un
" b u e n " m e n s a j e
d e e r r o r ?

En general, todo mensaje de error o aviso de precaución que produzca un s f l
m a interactivo debe tener las siguientes características:

• El mensa je debe describir el problema en un lenguaje que el usuario er

• El mensa je debe proporcionar consejos constructivos sobre la manera JT -i

cuperarse del error.

• El mensaje debe indicar cualquier consecuencia negativa del error (por e - t r J
la posibilidad de que se corrompan los archivos de datos) para que el USUL-J
asegure que no han ocurrido (o para que los corrija si ya ocurrieron).

• El mensa je debe acompañase de una pista visual o auditiva. Es decir c a J
nerarse un bip junto con el despliegue del mensaje , o éste debe p a r p a c e a r l
momen táneamen te o desplegarse en un color que se reconozca f á c i l i r = * i

como "color de error".

• El mensaje no debe contener juicios. Es decir, la redacción nunca debc . H

al usuario.

TM

PDF Editor

CAPÍTULO 12 DISEÑO DE LA INTERFAZ DE USUARIO 3 7 5

Como a nadie le gustan las malas noticias, a pocos usuarios le gustarán los mensa-

jes de error, sin importar lo bien diseñados que estén. Pero un enfoque adecuado pa-
ra los mensa jes de error hará mucho por mejorar la calidad de un sistema interacti-
vo y reducirá de manera importante la frustración del usuario cuando ocurran ios
problemas.

Rotulac ión de m e n ú s y c o m a n d o s . El comando de texto escrito fue alguna vez

el modo más común de interacción entre los usuarios y el software del sistema y se
usaba en aplicaciones de todo tipo. Hoy el uso de interfaces orientadas a ventanas,
con opción de señalar y elegir, ha reducido la dependencia de los comandos escri-
tos, pero muchos usuarios avanzados aún prefieren este tipo de interacción. Varios
temas de diseño surgen cuando se proporcionan comandos de texto o etiquetas de
menú como modo de interacción:

e sitio
ranfraró l¡

des
www.3.
/ ob l e /

*/
•/ J ¡

• o r s software.

• ¿Cada opción de menú tiene un comando correspondiente?

• ¿Qué forma tendrán los comandos? Entre las opciones se incluyen una se-
cuencia de control (como alt-P), teclas de función o palabras escritas por el
usuario.

• ¿Qué tan difícil será aprender y recordar los comandos? ¿Qué puede hacerse
si se olvida un comando?

• ¿El usuario tiene la opción de personalizar o abreviar los comandos?

• ¿Las etiquetas de los m e n ú s se explican por sí solas dentro del contexto de la
interfaz?

• ¿Los submenús son consistentes con la función indicada en un e lemento prin-
cipal del menú?

Como se indicó al principio de es te capítulo, es necesario definir convenciones para
usar comandos en toda la aplicación. Es confuso para el usuario y a menudo lo lle-
va a cometer errores escribir alt-D cuando desea duplicar un objeto gráfico en una
aplicación y alt-D cuando quiere deshacer una acción en otra. Es obvio que es to pro-
piciará errores.

Accesibi l idad d e la apl icación. A medida que las aplicaciones de computadora
se vuelven ubicuas, los ingenieros de software deben asegurarse de que el diseño de
la interfaz tenga mecanismos que permiten un fácil acceso a quienes tienen necesi-
dades especiales. La accesibilidad es un imperativo moral, legal y comercial para los
usuarios (e ingenieros de software) que t ienen problemas físicos. Diversas líneas ge-
nerales de accesibilidad (por ejemplo, [W3C03]), muchas diseñadas para aplicacio-
nes Web, pero a menudo aplicables a cualquier software, proporcionan sugerencias
detalladas para el diseño de interfaces que alcanzan diferentes grados de accesibili-
dad. Otros (como [APP03], [MIC03]) proporcionan lineas generales específicas para
"tecnología asistencial" que atiende las necesidades de quienes tienen discapacida-
des visuales, auditivas, de movilidad, del habla o de aprendizaje.

TM

PDF Editor

3 7 6 P A S T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Internacionalización. Los ingenieros de software y sus administradores subesti
man invariablemente el esfuerzo y las habilidades necesarias para crear interfases
de usuario que atiendan las necesidades de usuarios de otras localidades o que ha
blan diferentes idiomas. Con demasiada frecuencia, las interfases se diseñan para
una localidad y un idioma y luego se espera que funcionen en otros países. El rete
para los diseños de interfases es crear software "globalizado"; las interfaces de usua
rio deben diseñarse para contener un núcleo genérico de funciones que se entreguer
a todos los usuarios. Características adicionales de localidad permiten a la interfa:
personalizarse para un mercado específico.

Los ingenieros de software cuentan con varias pautas para la internacionaliza
ción (como [IBM03]). Estas pautas atienden amplios problemas de diseño (como la;
diferencias en formato de pantalla en varios mercados) y temas discretos de imple
mentación (por ejemplo, diferentes alfabetos pueden crear rotulación y requisitos de
espacio especiales). El estándar Unicode [UNI03]) se ha desarrollado para atender e
desalentador desafio de manejar docenas de idiomas naturales con cientos de cara;
teres y símbolos.

HERRAMIENTAS DE SOFTWARE

•

Desarrollo de interfases de usuario

O b j e t i v o . Estas herramientas le permiten a un
ingeniero de software crear una sofisticada in-

terfaz gráfica de usuario empleando relativamente escaso
desarrollo de software personalizado. Las herramientas pro-
porcionan acceso a componentes reutilizables y convierte la
creación de una interfaz en una selección entre opciones
predefinidas que se ensamblan mediante la herramienta.

M e c á n i c a . Las interfases de usuario modernas están
construidas con un conjunto de componentes reutilizables
acoplados con algunos componentes personalizados desa-
rrollados para proporcionar funciones especializadas. Ca-
si todas las herramientas de desarrollo de interfases d e
usuario permiten que el ingeniero de software cree una in-
terfaz empleando opciones de "arrastrar y colocar"; es de-
cir, el desarrollador selecciona entre opciones predefinidas
(por ejemplo, constructores de formularios, mecanismos de
interacción, capacidad de procesamiento de comandos) y
coloca esas opciones en el contenido de la interfaz que ha-
brá de crearse.

Herramientas de representación1

Macromedia Authorware, desarrollado por Macromedia
Inc. (www.macromedia.com/software/) , se ha diseña-
do para la creación de interfases y entornos de apren-
dizaje electrónico. Emplea características sofisticadas
de construcción.

Motil Common Desklop Environment, desarrollado por The
Open Group (www.osf.org/tech/desktop/cde/) , es
una interfaz gráfica de usuario integrada para siste-
mas abiertos de computación d e escritorio. Entrega
una interfaz gráfica simple, estándar, pa ra la adminis-
tración de datos, archivos y aplicaciones.

PowerDesigner/PowerBuilder, desarrollado por Sybase
(www.sybase/products/internetappdevtools), es un
conjunto muy completo de herramientas CASE, que in-
cluyen muchas opciones para el diseño y la construc-
ción de interfases gráficas de usuario.

10 Las herramientas expuestas aquí sólo representan una muestra de esta categoría. En casi todos
casos los nombres de las mismas son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.macromedia.com/software/
http://www.osf.org/tech/desktop/cde/
http://www.sybase/products/internetappdevtools

C A P Í T U L O 1 2 DISEÑO DE LA INTERFAZ DE USUARIO 377

1 2 . 5 E V A L U A C I Ó N P E Í , D I S E Ñ O

Una vez que se ha creado un prototipo de interfaz de usuario operacional, debe eva-
luarse y determinar si satisface las necesidades del usuario. La evaluación puede
abarcar un espectro de grados de formalidad que va desde una "prueba de manejo"
informal, en la cual un usuario proporciona retroalimentación informal, hasta un es-
tudio d iseñado formalmente, el cual emplea métodos estadísticos para la evaluación
de cuestionarios que llena una población de usuarios finales.

El ciclo de evaluación de la interfaz de usuario a sume la forma mostrada en la fi-
gura 12.4. Después de completado el diseño se crea un prototipo de primer nivel. A
continuación, el usuario evalúa es te protot ipo" y hace comentar ios directos al dise-
ñador acerca de la eficacia de la interfaz. Además, si se utilizan técnicas formales de
evaluación (por ejemplo, cuestionarios, hojas de evaluación), e s probable que el di-
señador obtenga información de es tos datos (por ejemplo, del 80 al 100 por ciento
de los usuarios rechaza el mecanismo para guardar archivos de datos). Las modifi-
caciones al diseño se hacen basándose en la información que proporciona el usua-
rio, y así se crea un prototipo de segundo nivel. El ciclo de la evaluación continúa
hasta que ya sean innecesarias más modificaciones al diseño de la interfaz.

d e
Són

~'erlqz.

Se realizan
modificaciones

al diseño

Diseño
preliminar

Diseño de interfaz
completo

El diseñador
estudia

la evaluación

11 Es importante notar que los expertos en diseños ergonómomico y de interfaz también pueden diri-
gir revisiones de la interfaz. Dichas funciones se llaman evaluaciones heurísticas o ensayos cogni-
tivos.

TM

PDF Editor

378 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

El enfoque de creación de prototipos resulta eficaz, pero ¿es posible evaluar la ca-
lidad de una interfaz de usuario antes de construir un prototipo? Si se descubren po-
sibles problemas y se corrigen en las primeras etapas, se reducirá el número de bu-
cles en el ciclo de evaluación y se acortará el tiempo de desarrollo. Si se ha cread:
un modelo de diseño de la interfaz, es posible aplicar varios criterios de evaluaciór
[MOR81) en las primeras revisiones del diseño:

1. La longitud y complejidad de la especificación escrita del sistema y su interfaz
indican la cantidad de aprendizaje necesario para los usuarios del sistema.

2 . El número especificado de tareas del usuario y el promedio de acciones por
tarea indican el tiempo de interacción y la eficacia global del sistema.

3. La cantidad de acciones, tareas y estados del sistema que indica el modelo
diseño se relaciona con la carga de memoria que recae en los usuarios del
sistema.

4 . El estilo de la interfaz, las funciones de ayuda y el protocolo de manejo de
errores indican en forma general la complejidad de la interfaz y el grado de
aceptación del usuario.

Una vez construido el primer prototipo, el diseñador puede recopilar diversos dat
cualitativos y cuantitativos que ayudarán a evaluar la interfaz. Para recopilar los
tos cualitativos se pueden distribuir cuestionarios entre los usuarios del prototip:
con preguntas que arrojan: 1) respuesta simple si /no, 2) respuesta numérica, 3) reí
puesta con escala de valoración (subjetiva), 4) escala de Likert (por ejemplo, cor-
pletamente de acuerdo, un poco de acuerdo), 5) respuesta con porcentajes (subje:
va) o 6) respuesta abierta.

Si se desean datos cuantitativos, puede aplicarse una forma de análisis de es: -
dio del tiempo. Se observa a los usuarios durante la interacción y se usan los da::-;
(como el número de tareas completadas correctamente en un periodo estándar, fre
cuencia y secuencia de acciones, tiempo que pasa "mirando" la pantalla, númer
tipo de errores, tiempo de recuperación de errores, tiempo dedicado al uso de la a;
da y cantidad de referencias de ayuda por periodo estándar) como guía para la
dificación de la interfaz.

Un análisis completo de los métodos de evaluación de la interfaz de usuario :
basa el alcance de este libro. Se puede consultar más información en [LEA&íi]
[MAN97] y [HAC98J.

Es posible afirmar que la interfaz de usuario es el elemento más importante de
sistema o producto de cómputo. Si la interfaz está mal diseñada la capacidad
usuario se verá muy reducida para aprovechar las ventajas de una aplicación
efecto, una interfaz débil puede llevar al fracaso una aplicación bien diseñada y <
una implementación sólida.

TM

PDF Editor

CAPÍTULO 12 DISEÑO DE LA INTERFAZ DE USUARIO 379

Tres principios importantes guían el diseño de una interfaz de usuario efectiva: 1)
dar ei control al usuario, 2) reducir la carga en la memoria del usuario, y 3) lograr
que la interfaz sea consistente. Construir una interfaz que cumpla con estos princi-
pios requiere desarrollar un proceso de diseño organizado.

El diseño de la interfaz de usuario comienza con una serie de tareas de análisis.
Entre éstas se encuentra identificación del usuario, tarea y análisis y modificación de
la tarea y el entorno. El análisis del usuario define los perfiles de varios usuarios fi-
nales y aplica información recopilada de diferentes fuentes de negocios y técnicas.
El análisis de tareas define las tareas y acciones del usuario empleando un enfoque
elaborativo u orientado a objetos, aplicando casos de uso, elaboración de tareas y
objetos, análisis de flujo de trabajo y representaciones jerárquicas de tareas para
comprender plenamente la interacción ser humano-computadora. El análisis am-
biental identifica las estructuras física y social en que debe operar la interfaz.

Una vez identificadas las tareas, se crean y analizan los escenarios para definir un
conjunto de objetos y acciones de la interfaz. Esto proporciona la base para la crea-
ción del formato de pantalla, que representa el diseño gráfico y la ubicación de los
iconos, la definición de un texto descriptivo en pantalla, la especificación de las ven-
tanas y la asignación de títulos a éstas, además de la especificación de los elemen-
tos primarios y secundarios del menú. Mientras se refina el modelo de diseño, deben
tomarse en cuenta temas relacionados con el diseño, como tiempo de respuesta, es-
tructura de comandos y acciones, manejo de errores y funciones de ayuda. El usua-
rio dispone de varias herramientas de implementación para construir un prototipo
que él mismo puede evaluar.

IAPP031 Apple Computer, Pcople with Special Needs, 2003, disponible en http:/ /www.apple.com/
disability/.

[BAR01] Borchers,)., A Pattern Approach to Interaction Design, Wiley 2001.
[CON95] Constantine, L. "What DO Users Want? Engineering Usability in Software", en Windows Tech

joumal, diciembre de 1995, disponible en http://www.forUse.com.
1DON99J Donahue, G., S. Weinschenck y J. Nowicki, "Usability is Good Business", Compuware

Corp., julio de 1999, disponible en http:/ /www.compuware.com.
[DUY021 vanDuyne, D., J. Landay y J. Hong, The design of Sites, Addison-Wesley, 2002.
[HAC98] Hackos, J. y J. Redish, User and Task Analysis for Interface Design, Wiley, 1998.
[1BM03] IBM, Overview ofSoftware Glohalization, 2003, disponible en http://oss.software.ibm.com

/icu/userguide/118n.html.
[LEA88] Lea, M., "Evaluating User Interfaces Designs", en User Interface Design for Computer

Systems, Halstead Press (Wiley), 1988.
[MAN97| Mandel, T„ The Elements of User Interface Design, Wiley, 1997.
IMIC03] Microsoft Accesability Technology for Eveiyone, 2003, disponible en ht t : / /www.micro-

sofl .com/enable/ .
[MON84] Monk, A. (ed), Fundamentáis of Human Computer Interaction, Academic Press, 1984.
[MOR811 Moran, T. P., "The Command Language Grammar: A Representation for the User Interfa-

ce of Interactive Computer Systems", en Intl Joumal of Man-Machine Studies, vol. 15, pp. 3-50.
[NIEOO] Nielsen, Designing Web Usability, New Riders Publishing, 2000.
[NOR86| Norman, D. A., "Cognitive Engineering en User Centered Systems Design, Lawrence

Earlbaum Associates, 1986.

TM

PDF Editor

http://www.apple.com/
http://www.forUse.com
http://www.compuware.com
http://oss.software.ibm.com

380 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

[RUB88] Rubin, T.. User Interface Design for Computer Systems, Haldstead Press (Wiley), 1988.
[SHN90] Shneiderman, B.. Designing the User Interface, Addison-Wesley, 3a. ed., 1990.
[TID991 Tidwell,). , "Common Ground A Pattern Language for HC1 Design ", disponible er

http://www.mit.edU/@jtidwell/interaction_pattems.html, mayo de 1999.
[TID02] T i d w e l l , " I U Patterns and Techniques", disponible en http://time.tripper.com/uip.;

terns/index.html, mayo de 2002.
[UN103] Unicode Inc., The Unicode Home Page, 2003, disponible en http:/ /www.unicode.org
IW3C031 World Wide Web Consortium, Web Contení Accesability Guidelines, 2003, disponible e r

http://www.w3.org/TR/2003/Word-WCAG20-20030624/.
[WEL01] vanWelle M., 'Interaction Design Patterns", disponible en ht tp: / /www.welie .com/pi

t e m s / , 2001.

12 .1 . Describir la mejor y la peor interfaz con que se haya trabajado alguna vez y critiquer - -
en relación con los conceptos presentados en este capítulo.
12.2. Desarrollar dos principios de diseño adicionales que "den el control al usuario".
12.3. Desarrollar dos principios de diseño adicionales que "reduzcan la carga en la memor
del usuario".
12 .4 . Desarrollar dos principios de diseño adicionales que "logren una interfaz consisten:-.
12.5. Se ha pedido desarrollar un sistema de banco en casa para Web; desarrollar los mode -i
del usuario, del diseño y mental y la implementación.
12 .6 . Realizar un análisis detallado de tareas para el sistema del problema 12.5. Utilizar
enfoque elaborativo u orientado a objetos.
12 .7 . Agregar por lo menos cinco preguntas adicionales a la lista desarrollada para el anáSsa
de contenido de la sección 12.3.5.
12.8. Siguiendo con el problema 12.6, definir objetos y acciones de interfaz para la apl icao \
Identificar cada tipo de objetos.
12.9. Desarrollar un conjunto de formatos de pantalla con una definición de elementos prir. -
pales y secundarios del menú para el sistema del problema 12.5.
12.10. Desarrollar un conjunto de formatos de pantalla con una definición de los elemer -
principales y secundarios del menú para el sistema HogarSeguro. Es posible aplicar un enfoque (fce-
rente del que se muestra para el formato de pantalla en la figura 15.3.
12 .11. Describir un enfoque propio de las funciones de ayuda del usuario para el análisis
tareas que se hayan realizado como parte del problema 12.5.
12.12. Proporcionar algunos ejemplos que ilustren por qué debe tomarse en cuenta la var -a j
bilidad del tiempo de respuesta.
12.13. Desarrollar un enfoque que integre automát icamente los mensa jes de error y i
función de ayuda para el usuario. Es decir, que el sistema reconozca automáticamente el l
de error y proporcione una ventana de ayuda con sugerencias para corregirlo. Realizar un <
ño de software razonablemente completo que tome en cuenta las estructuras de datos y 1
goritmos apropiados.
12.14. Desarrollar un cuestionario de evaluación de interfaces que contenga 20 pregur
genéricas aplicables a la mayor parte de las interfaces. Pídase que 10 compañeros de cfc
completen el cuestionario para un sistema interactivo que todos usen. Resumir los resultadc -
informar de ellos a su clase.

Aunque su libro no se relaciona específicamente con interfaces ser humano-computadora,
cho de lo que Donald Norman (The Design o/Eveiyday Things, edición reimpresa, Currency/C

TM

PDF Editor

http://www.mit.edU/@jtidwell/interaction_pattems.html
http://time.tripper.com/uip
http://www.unicode.org
http://www.w3.org/TR/2003/Word-WCAG20-20030624/
http://www.welie.com/pi

CAPÍTULO 12 DISEÑO DE LA INTERFAZ DE USUARIO 381

bleday, 1990) tiene que decir sobre la psicología de un diseño efectivo se aplicará a las interfa-
ces de usuario. Es una lectura recomendada para cualquier persona que tome con seriedad el
diseño de interfaces de alia calidad.

Las interfaces gráficas del usuario son ubicuas en el mundo moderno de la computación. Ya
sea empleada por un cajero automático, un teléfono móvil, una PDA, un sitio Web o una apli-
cación de negocios, la interfaz de usuario proporciona una ventana al software. Por ello, abun-
dan los libros sobre el diseño de interfaces. Todos los siguientes libros tratan sobre facilidad de
uso, conceptos de interfaz de usuario, principios y técnicas de diseño, además de que contienen
muchos ejemplos útiles: Galitz (The Essential Guide to User interface Design, Wiley, 2002), Coo-
per (About Face 2.0: The Essentials of User Interface Design, 1DG Books, 2003), Beyer y Holtzblatt
(Contextual Design: A Costumer Centered Approach to Systems Design, Morgan-Kaufmann, 2002),
Raskin (The Human Interface, Addison-Wesley, 2000), Constantine y Lockwood (Softwarefor Use,
ACM Press, 1999) y Mayhew (The Usability Engineering Ufecyctc, Morgan-Kaufmann, 1999).

Johnson (GUI Bloopers: Don'ts and Do's for Software Developers and Web Designers, Morgan-
Kaufmann, 2000) proporciona una guía útil para quienes aprenden mejor al examinar contrae-
jemplos. Un libro que se disfruta, de Cooper (The Inmates Are Running the Asylum, Sams Publis-
hing, 1999), analiza por qué los productos de alta tecnología nos atraen y la manera de diseñar
unos que no lo hagan.

El análisis y modelado de tareas son actividades fundamentales del diseño de interfaces.
Hackos y Redish [HAC98] han escrito un libro dedicado a estos temas y proporcionan un méto-
do detallado para concentrarse en el análisis de tareas. Wood (User Interface Design: Bridging the
Gap from User Requirements to Design, CRC Press, 1997) aborda la actividad de análisis para in-
terfaces y la transición a las tareas de diseño.

La actividad de evaluación se concentra en la facilidad de uso. Los libros de Rubin (Hand-
book of Usability Testing; How to Plan, Design, and Conduct Effective Tests, Wiley, 1994) y Nielsen
(Usability Inspection Methods, Wiley, 1994) abordan el tema con gran detalle.

En un libro único, que podría parecer muy interesante a los diseñadores de producto, Murphy
(Front Panel: Designing Softwarefor Embedded User Interfaces, R&D Books, 1998) ofrece una guía
detallada para el diseño de interfaces destinadas a sistemas incrustados y aborda los peligros
de seguridad inherentes a los controles, el manejo de maquinaria pesada y las inlerfaces para
sistemas médicos o de transporte. El diseño de la interfaz para productos incrustados también
se estudia en el libro de Garrett (Advanced Instrumentation and Computer l/O Design: Real-Time
System Computer Interface Engineering, IEEE, 1994).

En Internet se encuentra una amplia variedad de fuentes de información sobre el diseño de
la interfaz de usuario. Una lista actualizada de referencias en la World Wide Web relevantes pa-
ra el diseño de la interfaz de usuario se encuentra en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

13
L
C O N C E P T O S
CLAVE
cr i te r ios de
f inalización 3 8 9

depurac ión 4 0 9
especif icación
de p r u e b a . 4 0 1

e s t r a t e g i a
c o n v e n c i o n a l . . . 3 8 6

e s t r a t e g i a
o r i e n t a d a
a o b j e t a s . . 4 0 2

GIP . 3 8 6

p rueba
d e h u m o . . 3 9 9

p r u e b a de
in tegrac ión 3 9 4

p r u e b a de
r e g r e s i ó n 3 9 8

p rueba de
unidad 3 9 2

p r u e b a de
val idación 4 0 4

p r u e b a del
s i s t e m a 4 0 6

p r u e b a s a l f a /
. . 4 0 5

VyV . . 3 8 4

ESTRATEGIAS DE PRUEBA

DEL SOFTWARE

Un a es t ra teg ia d e p r u e b a del s o f t w a r e in tegra los m é t o d o s d e d i s e ñ o c :
c a s o de p r u e b a s del s o f t w a r e en una serie bien p l a n e a d a de p a s o s q u e d :
s e m b o c a r á e n la ef icaz cons t rucc ión d e so f tware . La es t ra teg ia propc

c iona u n m a p a q u e descr ibe los p a s o s q u e se d a r á n c o m o p a r t e d e la p r u e t -
indica c u á n d o s e p l a n e a n y c u á n d o s e dan e s t o s pa sos , a d e m á s d e c u á n t o e-
fuerzo, t i e m p o y r ecu r sos c o n s u m i r á n . Por tan to , cua lqu ie r es t ra teg ia d e pruer
debe incorpora r la p l aneac ión de p ruebas , el d i s e ñ o d e c a s o d e p ruebas , la eje
cuc ión d e p r u e b a s y la recolecc ión y eva luac ión de los d a t o s resu l tan tes .

Una es t ra teg ia de p r u e b a del s o f t w a r e d e b e ser lo su f i c i en t emen te flexit :•
c o m o p a r a p r o m o v e r un e n f o q u e pe r sona l i zado . Al m i s m o t iempo, debe ser
a d e c u a d a m e n t e rígido c o m o p a r a p r o m o v e r u n a p l aneac ión r a z o n a b l e y L-I
s egu imien to adminis t ra t ivo del a v a n c e del p royec to . S h o o m a n [SH083] ana!
e s to s t e m a s :

En muchos sentidos, la prueba es un proceso autónomo, y el número de tipos dife-
rentes de pruebas varia tanto como los diferentes enfoques de desarrollo. Durante
muchos años, la única defensa contra los errores de programación fueron el diseño
cuidadoso y la inteligencia natural del programador. Ahora estamos en la era en que
las técnicas modernas de diseño (y las revisiones de las técnicas formales] nos estar,
ayudando a reducir el número de errores iniciales inherentes al código. De manera si-
milar, diferentes métodos de prueba están empezando a apilarse en varios métodos
y filosofías distintos.

Estos " en foques y filosofías" c o n f o r m a n lo q u e s e d e n o m i n a es t ra teg ia . En rl
capí tu lo 14 s e p r e s e n t a r á la tecnología de p rueba del so f tware . Ese capí tu lo s:
c o n c e n t r a r á en la es t ra teg ia d e la p r u e b a del so f tware .

¿Qué es? El software se prueba pa-
ra descubrir errores cometidos sin
darse cuenta al realizar su diseño y
construcción. ¿Pero cómo se realizan
las pruebas? ¿Debe desarrollarse un

plan formal para las pruebas? ¿Debe probarse
el programa como un todo o s ó b deben aplicar-
se pruebas a una parte pequeña? ¿Deben volver
a realizarse las pruebas ejecutadas a medida
que se agregan nuevos componentes a un sistema
de gran tamaño? ¿Cuándo debe pedirse la par-

ticipación del cliente? Éstas y muchas otras pre-
guntas se responderán cuando desarrolle una es-
trategia de prueba del software.

¿ Q u i é n lo h a c e ? El ¡efe de proyecto, los ingenie-
ros de software o b s especialistas en pruebe;
son quienes desarrollan la estrategia para le
prueba del software.

¿ P o r q u é e s i m p o r t a n t e ? Con frecuencia, b
prueba requiere una mayor cantidad del esfue-

zo dedicado al proyecto que cualquier otra act
vidad de ingeniería del software. Si se realizc

3*2

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 383

n un plan, se desperdicia tiempo, se dedica un
esfuerzo innecesario y, aún peor, es posible que
no se detecten errores. Por tanto, lo razonable
sería establecer una estrategia sistemática para
o-obar el software.

"les s o n los p a s o s ? La prueba empieza
oor lo "pequeño" y avanzo hacia lo "grande".
Esto significa que, en las primeras etapas, la
: -ueba se concentra en un s o b componente o
TT un grupo pequeño de componentes relacio-
- xlos y se aplica para descubrir errores en la
:gica de datos y del procesamiento que se ha

encapsulado en el componente. Una vez proba-
: 3S los componentes, deben integrarse hasta
: je todo el sistema se haya construido. En este
: jnto se ejecuta una serie de pruebas de alto ni-
-«I para descubrir errores en la satisfacción de
e s requisitos del cliente. A medida que se des-

cubren. los errores deben diagnosticarse y corre-
girse empleando un proceso llamado depuración.

¿Cuál e s el producto o b t e n i d o ? Una Especi-
ficación de la prueba documenta el enfoque que
aplicó el equipo de software a la prueba al de-
finir un plan que detalla una estrategia general
y un procedimiento que describe los pasos espe-
cíficos que se darán y las pruebas que habrán
de realizarse.

¿ C ó m o p u e d o e s tar s e g u r o d e q u e lo h e
h e c h o c o r r e c t a m e n t e ? Al revisar la Especi-
ficación de la prueba antes de realizarla se eva-
lúa s¡ están completos los casos y las tareas de
prueba. Un plan y un procedimiento de prueba
efectivos llevarán a la construcción ordenada del
software y al descubrimiento de errores en cada
etapa del proceso de construcción.

1 3 . 1 U N E N F O Q U E E S T R A T É G I C O P A R A LA P R U E B A DEL S Q F T W A P F .

La prueba es un conjunto de actividades que se planean con anticipación y se reali-
zan de manera sistemática. Por tanto, se debe definir una plantilla para las pruebas
del software (un conjunto de pasos en que se puedan incluir técnicas y métodos
específicos del diseño de casos de prueba).

Se han propuesto varias estrategias de prueba del sof tware en distintos libros;
todas proporcionan al desarrollador del software una plantilla para pruebas y todas
tienen las siguientes características genéricas:

sitio
«entrarán

s para lo
i aturare:

" . e d u /

• Para realizar pruebas efectivas un equipo de software debe efectuar revi-
siones técnicas formales y efectivas (capítulo 26). Esto eliminará muchos
errores an tes de que empiece la prueba.

• La prueba comienza al nivel de componentes y trabaja "hacia fuera", hacia la
integración de todo el sistema de cómputo.

• Diferentes técnicas de prueba son apropiadas en diferentes momentos .

• La prueba la dirige el desarrollador del sof tware y (en el caso de proyectos
grandes) un grupo independiente de pruebas.

• La prueba y la depuración son actividades diferentes, pero la segunda debe
incluirse en cualquier estrategia de prueba.

Una estrategia para la prueba del software debe incluir pruebas de bajo nivel (nece-
sarias para confirmar la correcta implementación de un pequeño segmento de códi-
go fuente) y de alto nivel (que validen las principales funciones del sistema a partir

TM

PDF Editor

384 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

software. No lo son.
Debe ponetse especio!
cuidado en la calidad
y detección de errores
en todo el proceso de
la ingeniería del
software.

de los requisitos del cliente). Una estrategia debe servir como guía para el p r o í e s •
nal y fijar un conjunto de guías para el jefe de proyecto. Debido a que los pasos | "
la estrategia de prueba son simultáneos, cuando empieza a aumenta r la presicr :<
las fechas límite debe tenerse la opción de medir los avances y buscar que los : r j
b lemas aparezcan lo an tes posible.

13.1.1 Verificación y validación
La prueba del software es un e lemento de un tema más amplio que suele der
narse verificación y validación (VyV). Verificación es el conjunto de actividades - J J
aseguran que el sof tware implemente correctamente una función espe : a i
Validación es un conjunto diferente de actividades que aseguran que el
construido corresponde con los requisitos del cliente.1 Boehm [BOE81] lo e s t a r - ^
de otra manera:

Verificación: "¿Estamos construyendo el producto correctamente?"

Validación: "¿Estamos construyendo el producto correcto?"

sgura i M
tulo 2c

^CONSEJO^.

No se deben tener
descuidos ni
considerar que las
pruebas son una "red
de segundad" que
atropará lodos los
errores que ocurron
debido a la aplicación
de prácticas débiles de

La definición de VyV abarca muchas de las actividades incluidas en el aseg
to de la calidad del software y se analiza de manera detallada en el capítulo.

La verificación y la validación abarcan una amplia lista de actividades de a f o -
ramiento de la calidad del software: revisiones técnicas formales, auditorías de . d
dad y de configuración, monitoreo del desempeño, simulación, factibilidad, r e - . a j
de la documentación y la base de datos, análisis de algoritmos, pruebas de
lio, de facilidad de uso, calificación y de instalación [WAL89]. Aunque las act ivkál
de prueba tienen un papel demasiado importante en VyV, también se ne
muchas otras actividades.

"Probar es la parte inevitable d e cualquier esfuerzo responsable por desarrollar un sistemo de software."
William I

Las pruebas son el último bastión para la evaluación de la calidad y, de n - . a i M
más pragmática, el descubrimiento de errores. Pero las pruebas no deben cor
rarse como una "red de seguridad". Como suele decirse: "No es posible probar la J
dad. Si no está ahí an tes de que empiece la prueba, no estará cuándo se ter
La calidad se incorpora al sof tware en todo el proceso de ingeniería. La aplic
apropiada de métodos y herramientas, las revisiones técnicas formales y efe

Debe indicarse que hay una fuerte divergencia de opinión acerca de los tipos de prueba que c
tuyen una "validación". Algunas personas creen que toda prueba es una verificación, y que L=
dación se realiza cuando el usuario revisa y aprueba los requisitos, y más delante, cuando el •
está en condiciones de operar. Otras personas consideran que la prueba de la unidad y la i
ción (secciones 13.3.1 y 13.3.2) constituyen la verificación y que las pruebas de alto nivel (a
das más adelante en este capitulo) son la validación.

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 385

junto con una administración y una medición sólidas aportan la calidad, que s e con-
firma durante las pruebas.

Miller [MIL77] relaciona la prueba del software con el aseguramiento de la cali-
dad al afirmar: "lo que motiva la prueba de los programas e s la confirmación de la
calidad del sof tware con métodos que se puedan aplicar de manera económica y
efectiva en s is temas grandes y pequeños".

13.1.2 Organización para las pruebas del software
En cualquier proyecto de sof tware se presenta un conflicto de intereses cuando
comienzan las pruebas. Ahora se pide a las personas que han construido el softwa-
re que lo prueben. En sí, es to parece inofensivo; después de todo, ¿quién conoce
mejor un programa que la persona que lo desarrolló? Por desgracia, a esos mismos
desarrolladores les interesa mucho demostrar que el programa está libre de errores,
que funciona de acuerdo con los requisitos del cliente y que se completará a t iempo
y sin rebasar el presupuesto. Cada uno de es tos intereses mina las bondades de la
prueba.

" 0 optimismo es el peligro oíupacionol de lo programación; la prueba, el t ratamiento."
Ken t Beck

Desde un punto de vista psicológico, el análisis y el diseño del software (junto con la
codificación) son tareas constructivas. El ingeniero del sof tware analiza, modela y
luego crea un programa de computadora, junto con su documentación. Como cual-
quier constructor, el ingeniero del sof tware se sentirá orgulloso del edificio que
acaba de construir y mirará con recelo a cualquiera que pretenda echarlo abajo.
Cuando comienza la prueba hay un intento sutil, pero definitivo, de "romper" lo que
ha construido el ingeniero del software. Al ponerse en los zapatos del constructor la
prueba parecerá (psicológicamente) destructiva. De modo que el constructor actua-
rá con cuidado, d iseñando y ejecutando pruebas que demostrarán el buen funciona-
miento del programa en lugar de descubrir errores. Por desgracia, los errores segui-
rán presentes. Y si el ingeniero del software no los encuentra, ¡el cliente sí lo hará!

De las consideraciones precedentes suelen inferirse e r róneamente varias malas
interpretaciones: 1) que el responsable del desarrollo no debería participar en el pro-
ceso de prueba, 2) que el sof tware debe ponerse a salvo de extraños que lo prueben
sin misericordia, y 3) que quienes aplican las pruebas sólo deben participar en el pro-
yecto cuando vayan a darse los primeros pasos de esas pruebas. Todas es tas afir-
maciones son incorrectas.

El desarrollador del sof tware siempre será el responsable de probar las unidades
individuales (componentes) del programa y asegurar que cada una realice la función
o muestre el comportamiento para el que se diseñó. En muchos casos, el desarro-
llador también aplica la prueba de integración (un paso que lleva a la construcción,
y la prueba, de toda la arquitectura del software- Sólo después de que la arquitectu-
ra del sof tware esté completa participará un grupo independiente de prueba.

C & V E
p p o

te de
no tiene el

de
" que
ntan los

zrsfiuctores del

TM

PDF Editor

386 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ O N S E J O ^

Si no existe un GIP
dentro de una
orgonizoción, tendrá
que odoptorse su
punto de visto propio.
Al aplicar lo pruebo se
debe trotar de destruir
el software.

¿Cuál es ID
• e s t r a t eg ia

general pa ra la
prueba del
s o f t w a r e ?

El papel de un grupo independiente de prueba (GIP) consiste en eliminar los p ' :
blemas propios de dejar que el constructor pruebe lo que él mismo ha constru :
La prueba independiente elimina el conflicto de intereses que, de otra manera , e>.- J
ría presente. Después de todo, al personal del GIP se le paga para que encue- -
errores.

Sin embargo, el ingeniero del sof tware no debe simplemente entregar el p r ó j i -
ma al GIP y alejarse. El desarrollador y el GIP deben trabajar unidos en todo el pr:-
yecto de software para asegurar la realización de pruebas exhaustivas. Mier .
és tas se realizan, el desarrollador debe estar disponible para corregir los errores r—r
se descubran.

' El primer error que comete lo gente es pensor que el equipo de pruebos es responsable d e asegurar
Br ian M a r í a

El GIP es parte del equipo del proyecto de desarrollo del software, ya que par>_ •
pa en el análisis y diseño y además sigue participando (al planear y especificar :
cedimientos de prueba) en todos los pasos de un proyecto grande. Sin embarg : - j
muchos casos el GIP informa a la organización de aseguramiento de calidad de! > £•]
ware, por lo que obtiene un grado de independencia que sería imposible si
parte de la organización encargada de la ingeniería del software.

13.1.3. Estrategia de prueba para arquitecturas convencionales
del software

Seria factible considerar que el proceso de ingeniería del sof tware es equiparar
la espiral que se ilustra en la figura 13. i. Al principio, la ingeniería del sistema
ne el papel del software y lleva al análisis de los requisitos de éste, donde se esa- l
blecen el dominio de información, la función, el comportamiento, el desempeñe ,: |
restricciones y los criterios de validación del software. Al desplazarse hacia el r J
rior de la espiral se llega al diseño y, por último, a la codificación. El desarroik •
sof tware de computadora requiere recorrer la espiral hacia dentro, a lo largo de . n a
línea bien definida que disminuye el grado de abstracción tras cada vuelta.

También es posible ver una estrategia para la prueba del sof tware en el c o n t a l
de la espiral (figura 13.1). La prueba de unidad comienza en el vértice de la esp:
se concentra en cada unidad (componente) del software, tal como se implemen:: •
el código fuente. La prueba avanza al desplazarse hacia fuera, a lo largo de la e s a l
ral, has ta llegar a la prueba de integración, donde se atiende el diseño y la con i J
ción de la arquitectura del software. Si se recorre otra vuelta hacia fuera en la e s *
ral, se encuentra la prueba de validación, donde se validan los requisitos establee. J
como parte del análisis de requisitos del software, comparándolos con el sofhi »
que se ha construido. Por último, se llega a la prueba del sistema, donde se p r u e : »
como un todo el sof tware y otros e lementos del sistema. El sof tware de c o m p u t a a B
ra se prueba recorriendo la espiral hacia fuera, por una línea bien definida, de
que en cada vuelta s e ensancha el alcance de la prueba.

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 387

rueba del sistema

de unidad

Código

Diseño
Requisitos

Ingeniería del sistema

sitio
cxfforcn

I i r t e paro
rsean el

Si se considera el proceso desde un punto de vista procedimental, en realidad la
prueba dentro del contexto de la ingeniería del software consiste en una serie de
cuatro pasos que se implementan de manera secuencial. Esos pasos se muestran en
la figura 13.2. Al principio, la prueba se concentra en cada componen te individual,
asegurando que funciona de manera apropiada como unidad (por ello se le denomi-
na prueba de unidad). La prueba de unidad emplea en forma recurrente las técnicas
de prueba que recorren caminos específicos en una estructura de control del com-
ponente, lo que asegura una cobertura completa y una detección máxima de erro-
res. Enseguida deben ensamblarse o integrarse los componentes para formar el
paquete de sof tware completo. La prueba de integración at iende todos los aspectos
asociados con el doble problema de verificación y construcción del programa. Las
técnicas de diseño de casos de prueba que se concentran en ent radas y salidas son

a d e

Pruebas
de alto nivel

d é l a
d e l

a r e . Requisitos

Diseño

Código

"Dirección"
de la prueba

TM

PDF Editor

388 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

\
CLAVE

Como los pruebos
convencionoles, los
orientodos o objetos
empiezon por lo
"pequeño". Sin
emborgo, en casi todos
los cosos, el elemento
más pequeño probado
es una clase o un
paquete de doses que
colaboran entre sí.

más dominantes durante la integración, aunque podrían usarse técnicas que re::--
rren rutas específicas del programa para asegurar la cobertura de los principa e s ;
caminos de control. Después de que se ha integrado (construido) el sof tware se a r : - j
ca un conjunto de pruebas de alto nivel. Se deben evaluar los criterios de valida: od
establecidos durante el análisis de requisitos. La prueba de validación p roporc
un aseguramiento final de que el sof tware cumple con todos los requisitos fúrr>:--
nales, de comportamiento y desempeño.

El último paso de la prueba de alto nivel queda fuera de los límites de la ingentr -I
ría del software, pero dentro de un contexto más amplio de la ingeniería de los s s J
t emas de cómputo. El software, una vez validado, debe combinarse con otros s e -
mentos del sistema (por ejemplo, hardware, personas, bases de datos). La prueba a d j
sistema verifica que todos los e lementos encajen apropiadamente y que se log-t •
función y el desempeño generales del sistema.

13.1.4 Estrategia de prueba del software para arquitecturas
orientadas a objetos

La prueba de sistemas orientados a objetos plantea un conjunto diferente de d ! •
al ingeniero del software. La definición de prueba debe ampliarse para incluir t e r J
cas de descubrimiento de errores (por ejemplo, revisiones técnicas formales) que a
aplican para analizar y diseñar modelos. El grado al que se han completado y la : y*U
sistencia de las representaciones or ientadas a objetos deben evaluarse a medida aufl
se construyen. La prueba de unidad pierde parte de su significado, y las e s t r a t r r a i
de integración cambian de manera importante. En resumen, las estrategias y laí j c i
ticas de prueba (capítulo 14) deben ser responsables de las características únicas J
software orientado a objetos.

La estrategia general para el sof tware orientado a objetos tiene una filosofía i j a l
tica a la que se aplica a las arquitecturas convencionales, pero presenta diferer : jm
en el enfoque. Se empieza "probando lo pequeño" y se trabaja hacia el exterior
bando lo grande". Sin embargo, la atención cambia cuando la prueba es pequera
un módulo individual (el concepto convencional) a una clase que abarca a t r ü x s a
operaciones y que, además , requiere comunicación y colaboración. A medida r i

HOGARSEGURO

Preparación para la prueba

la escena: Oficina de Doug
Miller, mientras continúa el diseño al nivel de
componentes y empieza la construcción de ciertos
componentes.
Los actores: Doug Miller, jefe de ingeniería del
software; Vinod, Jamie, Ed y Shakira, integrantes del
equipo de ingeniería del software de HogarSeguro.

La conversación:

Doug: Me parece que no hemos dedicado el tiempo
suficiente a hablar de las pruebas.

Vinod: Tienes razón, pero todos hemos estado un
atareados. Y además hemos pensado en ello..- en
realidad, hemos hecho más que pensarlo.

TM

PDF Editor

CAPITULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 389

(sonriendo): Lo sé... tenemos exceso de
-. pero aún tenemos que pensar en las cosas

-tes. " • *

Me gusta la idea de diseñar pruebas de
antes de empezar a codificar cualquiera de los

ntes, de modo que eso es lo que hemos tratado
. Tengo un enorme archivo de pruebas que
ejecutar una vez que esté completo el código de

componentes.

"se es el concepto de Programación Extrema (un
ágil de desarrollo de software visto en el capítulo

jno?

Asi es. Aunque no estamos usando, en sí, la
ación Extremo, decidimos que sería una buena

diseñar pruebas de unidad antes de construir el
i (el diseño nos da toda ia información que

os). ' G i l

Jamie: Yo he estado haciendo lo mismo.

Vinod: Y he tomado el papel de integrador, de modo
que cada vez que uno de los muchachos me pase un
componente, lo integraré y ejecutaré una serie de
pruebas de regresión en el programa parcialmente
integrado. He estado trabajando para diseñar un
conjunto de pruebas apropiado para cada función del
sistema.

Doug (a Vinod): ¿Con cuánta frecuencia ejecutarás
las pruebas?
Vinod: Todos los días... hasta que se integre bien el
sistema. O sea, hasta que los incrementos de software
que planeamos entregar queden integrados.

Doug: ¡Muchachos, van adelante de mí!

Vinod (sonriendo): La anticipación lo es todo en el
negocio del software, jefe.

integran clases dentro de una arquitectura orientada a objetos, se ejecuta una serie
de pruebas de regresión para descubrir errores debidos a la comunicación y colabo-
ración entre clases (componentes) y a los efectos colaterales que origina la adición
de nuevas clases (componentes). Por último, se prueba el sistema como un todo para
asegurarse de que se descubran errores en los requisitos.

13.1.5 Criterios para completar la prueba
Cada vez que se analizan las pruebas del sof tware surge una pregunta clásica:
¿cuándo h e m o s terminado las pruebas (cómo sabemos que h e m o s probado lo sufi-
ciente)? Lo lamentable es que no hay una respuesta definitiva, sino que hay algunas
respues tas pragmáticas y algunos intentos iniciales de sentar una guía empírica.

Una respuesta a la pregunta es: "nunca se termina de aplicar una prueba; la carga
s implemente se desplaza de usted (el ingeniero del software) a su cliente. Cada vez
que el cliente, el usuario, o ambos, ejecutan un programa de computadora, éste se
está probando. Este hecho incuestionable subraya la importancia de otras activida-
des del aseguramiento de la calidad del software.

Otra respuesta (un poco cínica, pero correcta) es: "la prueba se termina cuando se
agota el t iempo o el dinero".

Aunque algunos usarán esta respuesta como argumento, un ingeniero del soft-
ware necesita criterios más rigurosos para determinar que las pruebas han sido sufi-
cientes. Musa y Ackerman [MUS89j sugieren una respuesta basada en criterios es ta-
dísticos: "No, no podemos estar comple tamente seguros de que el sof tware nunca
fallará, pero de acuerdo con un modelo estadístico teóricamente sólido y validado en
forma experimental, hemos realizado las pruebas suficientes como para afirmar, con
una confianza del 95%, que las probabilidades de tener mil horas de operaciones del

TM

PDF Editor

390 PARTE D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

a n t e m
s ú t e J

CPU libres de fallas en un entorno definido de forma probabilística es por lo mena
de 0.995." Empleando el modelado estadístico y la teoría de la confiabilidad del
ware , pueden desarrollarse modelos de fallas del sof tware (descubiertas durante a
prueba) como una función del t iempo de ejecución (por ejemplo, consú;
[MUS89], [SIN99] O [IEE01]).

Al recopilar métricas durante la prueba del sof tware y usar modelos existentes
la confiabilidad del software, es posible desarrollar directrices significativas para
ponder la pregunta: ¿Cuándo h e m o s terminado la prueba? Lo indiscutible e s que ¿ ja |
falta mucho trabajo antes de que puedan establecerse reglas cuantitativas p a n 1
prueba, pero los enfoques empíricos existentes son considerablemente mejores OH
la simple intuición.

1 3 . 2 A S P E C T O S E S T R A T É G I C O S

9 ¿C«óles
• ! directrices

llevan o uno

estrategia de

prueba del

software que
tenga éxito?

Más adelante, en este mismo capítulo, se explorará una estrategia sistemática
prueba del software. Pero hasta la mejor estrategia fallara si no atiende una se r e •
aspectos predominantes. Tom Gilb [G1L95] argumenta que deben atenderse los sigireB
tes temas, si se desea implementar con éxito una estrategia de prueba del software I

Especificar los requisitos del producto de manera cuantificable mucho antes ot
empiecen las pruebas. Aunque el objetivo primordial de la prueba e s encontrar - - M
res, una buena estrategia de prueba también evalúa otras características de la c J
dad, como las opciones de llevarla a otra plataforma, además de la facilidad de T J
tenimiento y uso (capítulo 15). Esto debe especificarse de manera tal que p e r ^
medirlo para que los resultados de la prueba no resulten ambiguos.

Establecer explícitamente los objetivos de la prueba. Los objetivos específicos x m
prueba se deben establecer en términos cuantificables. Por ejemplo, dentro de! ~ m
de prueba deben establecerse la efectividad y la cobertura de la prueba, el t : s i J
medio de falla, el costo de encontrar y corregir defectos, la densidad o la f r eo -e i™
de las fallas restantes, y las horas de trabajo por prueba de regresión [GIL95].

Comprender cuáles son los usuarios del software y desarrollar un perfil pare M
categoría de usuario. Los casos de uso que describan el escenario de interacció" J
cada clase de usuario reducen el esfuerzo general de prueba, ya que c o n c e n f a n B
prueba en la utilización real del producto.

Desarrollar un plan de prueba que destaque la "prueba de ciclo rápido". Gilb | G £ »
recomienda que un equipo de ingeniería del sof tware "aprenda a probar en z i f l
rápidos (2% del esfuerzo del proyecto) los incrementos en el mejoramiento de a ifl
cionalidad, la calidad, o ambas, de manera que sean útiles para el cliente y se
dan probar en el campo". La retroalimentación que generan es tas pruebas de s
rápido se utiliza para controlar los grados de calidad y las correspondientes e s c ^
gias de prueba.

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 391

Construir un software •'robusto" diseñado para probarse a sí mismo. El sof tware debe
diseñarse de manera tal que use técnicas antierror (sección 13.3.1). Es decir, el soft-
ware debe tener la capacidad de diagnosticar ciertas clases de errores. Además, el
diseño debe incluir pruebas automat izadas y de regresión.

Usar revisiones técnicas formales y efectivas como filtro previo a la prueba. Las revi-
siones técnicas formales (capítulo 26) llegan a ser tan efectivas como las pruebas
para descubrir errores. Por tanto, las revisiones reducen la cantidad de esfuerzo de
prueba que se requiere para producir sof tware de alta calidad.

Realizar revisiones técnicas formales para evaluar la estrategia de prueba y los pro-
pios casos de prueba. Las revisiones técnicas formales posibilitan descubrir inconsis-
tencias, omisiones y errores evidentes en el enfoque de la prueba. Esto ahorra tiem-
po y también mejora la calidad del producto.

Desarrollar un enfoque de mejora continua para el proceso de prueba. Es necesar io
medir la estrategia de prueba. Las medidas reunidas duran te la prueba deben usar-
se c o m o parte de un enfoque estadístico de control del proceso para la prueba del
software.

"Probar únicamente los requisitos del usuario final es como inspeccionar un edificio considerando únicamente el
t rabajo realizado por el diseñador de interiores, a costa de los cimientos, las vigas y la plomería."

Boris Beizer

1 3 . 3 E S T R A T E G I A S DE P R U E B A P A R A EL S O F T W A R E C O N V E N C I O N A L

En la prueba del sof tware es posible aplicar muchas estrategias. En un extremo, un
equipo de sof tware podría esperar hasta que el sistema esté totalmente construido y
luego aplicar pruebas al sistema general esperando encontrar errores. Este enfoque,
aunque atractivo, s implemente no funciona. Arrojará un sof tware plagado de erro-
res, molesto para el cliente y usuario final. En el otro extremo, un ingeniero de soft-
ware podría aplicar pruebas diariamente, sin importar la parte del sistema que se
construya. Este enfoque, aunque menos atractivo para muchos, es muy efectivo. Por
desgracia, la mayoría de los desarrolladores de sof tware dudan en usarlo. ¿Qué hay
que hacer?

La estrategia de prueba que elige la mayor parte de los equipos de sof tware se
ubica entre estos dos extremos. Toma un enfoque incremental de las pruebas; inicia
con la prueba de unidades individuales del programa, pasa a pruebas diseñadas para
facilitar la integración de las unidades, y culmina con pruebas que realizan sobre el
sistema construido. En las siguientes secciones se expone cada una de es tas clases
de prueba.

•«•«¡a Web
b wwite sitio

Mi ¿ «onlroró uno
•fefeístode

B e pora pruebes:

MroJo.com/

——/V/.

TM

PDF Editor

392 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

13.3.1 Prueba de unidad

7 ¿Cuáles
• errores se

encuentran

comúnmente

durante la prueba

de unidad?

La prueba de unidad se concentra en el esfuerzo de verificación de la unidad mai
pequeña del diseño del software: el componente o módulo de software. Tomanc:
como guía la descripción del diseño al nivel de componentes , se prueban importar
tes caminos de control para descubrir errores dentro de los límites del módulo. El
alcance restringido que se ha determinado para las pruebas de unidad limita la rela-
tiva complejidad de las pruebas y los errores que éstas descubren. Las pruebas de ur
dad se concentran en la lógica del procesamiento interno y en las estructuras de dat
dentro de los límites de un componente . Este tipo de prueba se puede aplicar ea
paralelo a varios componentes .

Consideraciones sobre la prueba de unidad. En la figura 13.3 se ilustran yt
manera esquemática las pruebas que se aplican como parte de la prueba de unidad. _J
interfaz del módulo se prueba para asegurar que la información fluye apropiadamer
hacia dentro y hacia fuera de la unidad de programa sujeta a prueba. Se examinan i
estructuras de datos locales para asegurar que los datos temporales mantienen la ire; -
gridad durante todos los pasos de la ejecución de un algoritmo. Se recorren todos 1 -
caminos independientes (caminos de base) en toda la estructura para asegurar que
todas las instrucciones de un módulo se hayan ejecutado por lo menos una vez Se
prueban las condiciones límite para asegurar que el módulo opera apropiadamer
en los limites establecidos para restringir el procesamiento. Y, por último, se prue-
ban todos los caminos de manejo de errores.

Es necesario probar el flujo de datos en la interfaz del módulo antes de inic^r
cualquier otra prueba. Si los datos no entran ni salen apropiadamente, todas
d e m á s pruebas resultarán inútiles. Además, durante la prueba de unidad deben rec >
rrerse las estructuras de datos locales y evaluarse (si es posible) el impacto loca
sobre los datos globales.

Durante la prueba de unidad, una tarea esencial es la prueba selectiva de las rutas
ejecución. Se deben diseñar casos de prueba para descubrir errores debidos a cál
incorrectos, comparaciones er róneas o flujos de control inapropiados. Entre los e r

Prueba de
unidad. Interfaz

Estructuras d e datos locales
Condiciones límite
Rulos independientes
Rutas d e manejo d e errores

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL S O m V A E E 393

res más comunes en los cálculos se encuentran los siguientes: 1) aplicación inco-
rrecta o mal entendida de la precedencia aritmética, 2) operaciones de modo mez-
cladas, 3) inicialización incorrecta, 4) falta de precisión, y 5) representación simbóli-
ca incorrecta de una expresión. La comparación y el flujo de control están estrecha-
mente acoplados entre sí (es decir, el flujo cambia con frecuencia después de una
comparación). Los casos de prueba deben descubrir errores como: 1) comparaciones
entre diferentes tipos de datos, 2) operadores lógicos o precedencia de éstos aplica-
dos incorrectamente, 3) expectativa de igualdad cuando los errores de precisión
hacen que sea poco probable, 4) comparación incorrecta de variables, 5) termina-
ción inapropiada o inexistente de bucles, 6) falla en la salida cuando se encuentra
una iteración divergente, y 7) variables de bucle modificadas de manera inapropiada.

La prueba de limites es una de las tareas más importantes de la prueba de unidad.
Con frecuencia, el software falla en sus límites. Es decir, a menudo los errores ocu-
rren cuando se procesa el enésimo elemento de una matriz de n dimensiones, cuan-
do se evoca la /-ésima repetición de un bucle con i pasos, cuando se encuentra el
valor máximo o mínimo permisible. Es muy probable descubrir errores en los casos
de prueba que se ejercen sobre la estructura de datos, el flujo de control y los valo-
res de datos ubicados apenas abajo de los máximos o mínimos, sobre éstos y ape-
nas arriba de ellos.

Un buen diseño impone que se prevean las condiciones de error y que se confi-
guren rutas de manejo de errores para modificar la ruta o terminar limpiamente el
procesamiento cuando ocurra un error. Yourdon [YOU75] llama a este enfoque antie-
rror. Por desgracia, existe la tendencia a incorporar el manejo de errores en el soft-
ware y, con ello, a no probarlo nunca. Una historia real servirá como ejemplo:

Un sistema de diseño asistido por computadora se desarrolló bajo contrato . En un mó-
dulo de procesamiento de transacciones, un bromista práctico puso el siguiente mensaje
de manejo de errores después de una serie de pruebas condicionales que invocaban va-
rias ramas del flujo de control: ¡ERROR! NO HAY FORMA DE QUE PUEDA LLEGAR
HASTA AQUl. ¡Este "mensaje de error" lo descubrió un cliente durante la capacitación
del usuario!

Entre los posibles errores que deben probarse cuando se evalúe el manejo de
errores se encuentran los siguientes: 1) la descripción del error es ininteligible, 2) el
error indicado no corresponde al encontrado, 3) la condición de error causa la inter-
vención del sistema operativo antes de que se dispare el manejo de errores, 4) el pro-
cesamiento de la condición de excepción es incorrecto, 5) la descripción del error no
proporciona información suficiente para ayudar a localizar la causa del error.

Procedimientos de prueba de unidad. La prueba de unidad suele considerarse
adyacente al paso de la codificación. El diseño de las pruebas de unidad puede rea-
lizarse antes de que empiece la codificación (un enfoque ágil que suele preferirse) o
después de que se ha generado el código fuente. Una revisión de la información del

TM

PDF Editor

394 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Entorno de
prueba de
unidad.

^ O N S E J O ^

Hoy situaciones en
que no se tendrán los
recursos para hacer
una prueba de unidad
muy completa.
Entonces deben selec-
cionarse módulos
críticos y los que
tengan una elevado
complejidad en ciclos,
y sólo ésos deben
probarse.

diseño proporciona una guía para establecer casos de prueba que probabl
descubrirán errores en cada una de las categorías analizadas. Cada caso de
debe relacionarse con un conjunto de resultados esperados.

Debido a que un componente no es un programa independiente, para cada
ba de unidad se debe desarrollar sof tware controlados de resguardo, o de
tipos. En la figura 13.4 se ilustra el entorno para la prueba de unidad. En casi
las aplicaciones, un controlador no es m á s que un "programa principal" que
los datos del caso de prueba, pasa estos datos al componente (que habrá de
se) e imprime los resultados importantes. Los resguardos sirven para ree
módulos subordinados al componente que habrá de probarse (o l lamados por
Un resguardo o "subprograma simulado" usa la interfaz del módulo subor
realiza una mínima manipulación de datos, proporciona verificación de la en
devuelve el control al módulo de prueba.

Controladores y resguardos representan una sobrecarga de trabajo. Es
resulta necesario escribir ambos tipos de sof tware (sin que suela aplicarse ur
ño formal), pero no se entregan con el producto.de sof tware final. Si se les
ne en un nivel simple, la sobrecarga real es relativamente pequeña. Por d
no es posible aplicar adecuadamente una prueba de unidad a muchos com
con un "simple" sof tware de sobrecarga. En muchos casos es posible p o '
prueba completa hasta el paso de prueba de integración (donde también se
controladores o resguardos).

La prueba de unidad se simplifica cuando se diseña un componente co-
cohesión elevada. Cuando sólo se atiende una función de un componente, el
ro de casos de prueba se reduce y es m á s fácil predecir y corregir los errores.

13.3.2 Prueba de integración
Un neófito en el mundo del software podría plantear una pregunta aparent
legítima, una vez que se haya aplicado una prueba de unidad a todos los m
"Si todo funciona bien individualmente, ¿por qué dudan que funcione cua

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 395

*
nnfoquede

¡'paralo
í e s una

: perezosa
i al fracaso,

irealizorla
i en incre-

s í probar
s se avanza.

une?" El problema, por supuesto, consiste en "unir" (crear la interfaz). En una inter-
faz es posible perder datos, un módulo podría tener un efecto adverso e inadvertido
sobre otro, la combinación de subfunciones tal vez no produzca la función principal
deseada, la imprecisión aceptable en elementos individuales podría ampliarse hasta
grados inaceptables y las estructuras globales de datos podrían presentar problemas.
Es triste, pero la lista sigue y sigue.

La prueba de integración es una técnica sistemática para construir la arquitectu-
ra del software mientras, al mismo tiempo, se aplican las pruebas para descubrir
errores asociados con la interfaz. El objetivo es tomar componentes a los que se
aplicó una prueba de unidad y construir una estructura de programa que determine
el diseño.

A menudo se tiende a intentar una integración que no sea incremental; es decir,
a construir el programa mediante un enfoque de "big bang". Se combinan todos los
componentes por anticipado. Se prueba todo el programa como un todo. ¡Y se pro-
duce el caos! Se encuentra una gran cantidad de errores. La corrección es difícil, por-
que resulta complicado aislar las causas debido a la extensión del programa com-
pleto. Una vez corregidos esos errores, aparecen otros nuevos y el proceso continúa
en un ciclo que parece interminable.

La integración incremental es la antítesis del enfoque del "big bang". El programa
se construye y prueba en pequeños incrementos, en los cuales resulta más fácil ais-
lar y corregir los errores, es más probable que se prueben por completo las interfa-
ces y se vuelve factible la aplicación de un enfoque de prueba sistemática. En los
siguientes párrafos se expondrán varias estrategias diferentes de integración incre-
mental.

* [C O N S E J O

s se desarrolla
ideun

b, tiene que
i la

i en que
i la integración,

i redo que los
tiles estén

s cuando se
ixcesite.

Integración descendente . La prueba de integración descendente es un enfoque
incremental para la construcción de ia arquitectura del software. Los módulos se
integran al descender por la jerarquía de control, empezando con el módulo de con-
trol principal (programa principal). Los módulos subordinados al módulo de control
principal se incorporan en la estructura de una de dos maneras: primero-en-profun-
didad o primero-en-anchura.

Tomando como referencia la figura 13.5, la integración primero - en profundidad
integra todos los módulos de una ruta de control principal de la estructura del pro-
grama. La selección de una ruta principal es un poco arbitraria y depende de las
características específicas de la aplicación. Por ejemplo, si se elige el camino de la
izquierda, se integrarían primero los módulos M,, y M3. A continuación, se inte-
graría Ms o (si es necesario para el adecuado funcionamiento de M2) M(v Enseguida
se construyen las rutas de control central y a la derecha. La integración primero-en
anchura incorpora todos los componentes directamente subordinados en cada nivel,
desplazándose horizontalmente por la estructura En el caso de la figura, se integra-
rían primero los componentes M2, M3 y M.,. Y Ies seguirían M5, M6, etc. El proceso de
integración se realiza en una serie de cinco pasos:

TM

PDF Editor

396 PARTE D O S PRÁCTICA RA LA INGENIERÍA DEL SOFTWARE

Integración M,
descendente.

I
M7

Wm ¿Cuáles son
• P los pasos de

1. El módulo de control principal se utiliza como controlador de prueba, y se
sustituyen los resguardos en todos los componentes directamente subordina
dos al módulo de control principal. la integración des-

cendente?
2. Dependiendo del enfoque de integración seleccionado (es decir, primero-er

profundidad o primero-en-anchura) se van reemplazando los resguardos s i
bordinados, uno por uno, con los componentes reales.

3 . Se aplican pruebas cada que se integra un nuevo módulo.

4 . Al completar cada conjunto de pruebas, se reemplaza otro resguardo con e
módulo real.

5 . Se aplica la prueba de regresión (que se analiza más adelante, en esta misr.2
sección) para asegurarse de que no se han introducido nuevos errores.

El proceso continúa a partir del paso 2 hasta la construcción total de la es t ruc tun
del programa.

La estrategia de integración descendente verifica los principales puntos de carne
trol o decisión al principio del proceso de prueba. En una estructura de prograna
bien elaborada, la toma de decisiones ocurre en los niveles superiores de la jerarcua
y, por tanto, se encuentran primero. Si existen problemas de control importan:^
resulta esencial reconocerlos desde el principio. Si se selecciona la integración p~-
mero-en-profundidad, e s posible implementar y demostrar una función completa j d
software. Por ejemplo, imagínese una estructura de transacción clásica (capítulo I
en que una serie compleja de ent radas interactivas se solicita, adquiere y valida
medio de una ruta de entrada. Tal vez ese camino esté integrado en forma desc¿*
dente. Todo el procesamiento de entrada (para el envío de las siguientes t r a n s a r a *

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 397

i ¿Cuáles pro-
blemas se

irán cuan-

i elija la inte-

i descen-

I ¿Cuáles son
los pasos

0 una integra-
1 ascendente?

CI?AVE
i n e g a c i ó n

ote elimino la
)d de

ecuardos complejos.

nes) podría demostrarse antes de que otros e lementos de la estructura se hayan inte-
grado. La demostración temprana de la capacidad funcional genera confianza en el
desarrollador y en el cliente.

La estrategia descendente no parece muy complicada, pero en la práctica llegan
a surgir problemas de logística. El más común se presenta cuando se requiere pro-
cesamiento en los niveles inferiores de la jerarquía para probar de manera adecua-
da los niveles superiores. Al principio de la prueba descendente s e reemplazan los
módulos de bajo nivel con resguardos; por tanto, no fluirán datos importantes hacia
la parte superior de la estructura del programa. Quien aplica la prueba cuenta con
tres opciones; 1) retrasar muchas de las pruebas hasta que los resguardos sean
reemplazados con los módulos reales, 2) desarrollar resguardos que realicen fun-
ciones limitadas que simulen los módulos reales, o 3) integrar el sof tware de la parte
inferior de la jerarquía hacia arriba.

El primer enfoque (retrasar las pruebas hasta no reemplazar los resguardos con
los módulos reales) hace perder cierto control sobre la correspondencia entre prue-
bas específicas y la incorporación de módulos específicos. Con esto se dificulta
determinar la causa de los errores y se tiende a violar la naturaleza a l tamente res-
tringida del enfoque descendente. Es posible trabajar con el segundo enfoque, pero
puede llevar a un aumen to importante de la sobrecarga de trabajo, a medida que los
resguardos se vuelvan más y más complejos. El tercer enfoque, denominado prueba
ascendente, se expondrá en la siguiente sección.

Integración a s c e n d e n t e . La prueba de integración ascendente, como su nombre lo
indica, empieza la construcción y la prueba con módulos atómicos (es decir, com-
ponentes de los niveles más ba jos de la estructura del programa). Debido a que los
componentes se integran de abajo hacia arriba, siempre está disponible el procesa-
miento requerido para los componen tes subordinados a un determinado nivel y se
elimina la necesidad de resguardos. Una estrategia de integración ascendente se imple-
menta mediante los siguientes pasos:

1. Se combinan los módulos de bajo nivel en grupos (también l lamados cons-
trucciones) que realicen una subfunción específica del software.

2 . Se escribe un controlador (un programa de control para pruebas) con el fin de
coordinar la entrada y la salida de los casos de prueba.

3 . Se prueba el grupo.

4 . Se eliminan los controladores y se combinan los grupos ascendiendo por la
estructura del programa.

La integración sigue el patrón ilustrado en la figura 13.6. Los componen tes se
combinan para formar los grupos 1, 2 y 3. Cada uno de ellos se prueba empleando
un controlador (mostrado como un recuadro con guiones). Los componentes de los
grupos 1 y 2 están subordinados a M„. Los controladores C, y C2 se eliminan y los gru-
pos interaccionan directamente con Ma. De igual manera , se elimina el controlador

TM

PDF Editor

3 9 8 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Integración
ascendente.

y p N S E J O ^

La prueba de
regresión es uno estra-
tegia i m p o M e pora
reducir"electos
colaterales". Deben
aplicarse pruebas de
regresión codo vez
que se boga un
cambia importante al
software (incluida lo
integración de nuevos
componentes).

Cj del grupo 3 antes de la integración con el módulo Mb. Ma y Mh se integrarán fir¿ll
mente con el módulo Mc, y así sucesivamente.

A medida que la integración asciende se reduce la necesidad de controladores Jm
prueba separados. En realidad, si los dos niveles superiores de la estructura del pT>
grama se integran de manera descendente, se reducirá de manera importan:; d
número de controladores y se simplificará enormemente la integración de grupos

Prueba d e regres ión. Cada vez que se agrega un nuevo módulo como par.: aa
una prueba de integración, el software cambia. Se establecen nuevas rutas de - c j
de datos, ocurren nuevas ent radas y salidas y se invoca una nueva lógica de cor.r •
Estos cambios llegan a causar problemas con funciones que antes funcionaban b «
En el contexto de una estrategia de prueba de integración, la aplicación de una p.-j?
ba de regresión consiste en ejecutar nuevamente el mismo subconjunto de prueraJ
que ya se ha aplicado para asegurarse de que los cambios no han propagado e>
tos colaterales indeseables.

En un contexto más amplio, si las pruebas (de cualquier tipo) tienen éxit:
resultado es el descubrimiento de errores, y és tos deben corregirse. Cada vez que -
software se corrige también cambia algún aspecto de la configuración del sof
(el programa, su documentación o los datos de soporte). La prueba de regresiór
una actividad que ayuda a asegurar que los cambios (debidos a la prueba u co-
razones) no introduzcan comportamiento indeseable o errores adicionales.

La prueba de regresión se aplica manualmente , al ejecutar de nueva cuenis
subconjunto de todos los casos de prueba o al emplear herramientas automáticas

Grupo 1

Grupo 3

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 3 9 9

captura, reproducción, o ambas . Las herramientas de captura, reproducción, o de
ambos tipos, permiten al ingeniero del sof tware capturar casos de prueba y resulta-
dos para reproducirlos y compararlos después. El conjunto de pruebas de regresión
(el subconjunto de pruebas que se aplicarán) contiene tres clases diferentes de casos
de prueba:

CÚVVi
i de humo

: caracterizarse
: uno estrategia

o. Se
i el software

r n e v o s

I y se aplica
• raba de humo

i los días.

• Una muestra representativa de pruebas que ejercerán todas las funciones del
software.

• Pruebas adicionales que se concentran en las funciones del sof tware que
probablemente el cambio afectaría.

• Pruebas que se concentran en los componen tes del software que han
cambiado.

A medida que avanza la prueba de integración, la cantidad de pruebas de regresión
llega a volverse muy grande. Por tanto, el conjunto de pruebas de regresión debe
diseñarse para que sólo incluya las que atienden una o más clases de errores en cada
una de las funciones principales del programa. Resulta poco práctico e ineficiente
repetir cada prueba para todas las funciones del programa después de que se ha pre-
sentado un cambio.

Prueba de h u m o . La prueba de humo es un enfoque de prueba de integración que
suele utilizarse mientras se desarrollan productos de software. Está d iseñado como
mecan i smo para marcar el ritmo en proyectos en los cuales el t iempo e s crítico, lo
que permite que el equipo de sof tware evalúe su proyecto con frecuencia. En esen-
cia, el enfoque de la prueba de h u m o abarca las siguientes actividades:

1. Los componentes de sof tware traducidos a código se integran en una "cons-
trucción", la cual incluye todos los archivos de datos, las librerías, los módu-
los reutilizables y los componen tes de ingeniería que se requieren para
implementar una o más funciones del producto.

2 . Se diseña una serie de pruebas para exponer errores que impedirán que la
construcción realice apropiadamente su función. El objetivo es descubrir erro-
res "paralizantes" que tengan la mayor probabilidad de retrasar el proyecto de
software.

3 . La construcción se integra con otras construcciones, y diariamente se aplica
una prueba de h u m o a todo el producto (en su forma actual). El enfoque de la
integración puede ser descendente o ascendente.

La aplicación diaria de una prueba a todo el producto sorprenderá a a lgunos lecto-
res. Sin embargo, las pruebas frecuentes dan a los jefes de proyecto y participantes
una evaluación realista del avance de las pruebas de integración. McConnell
[M C 0 9 6] describe así la prueba de humo:

TM

PDF Editor

4 0 0 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

La prueba de humo debe ejercitar todo el sistema de principio a fin. No debe ser exhaus-
tiva, pero debe tener la capacidad de exponer problemas importantes. La prueba de hume
debe ser tan completa que si la construcción la aprueba, puede suponerse que ésta es
suficientemente estable como para probarla de manera más completa.

La prueba de humo proporciona varios beneficios cuando se aplica en proyectos
ingeniería del sof tware complejos y que dependen en forma crítica del t iempo

• Se minimiza el nesgo en la integración. Debido a que las p ruebas de humo se
aplican diariamente, desde el principio se descubren las incompatibilidad:-:
otros errores paralizantes, por lo que se reduce la probabilidad de que t
un fuerte impacto en el calendario cuando se descubran errores.

• Se mejora la calidad del producto final. Como el enfoque está orientado a la
construcción (integración), es probable que la prueba de humo descubra
errores funcionales, arquitectónicos y al nivel de componentes . Si estos
errores se corrigen desde el principio, se obtendrá una mayor calidad e - ±

producto.

• Se simplifican el diagnóstico y la corrección de errores. Como todos los e
de prueba de integración, es probable que los errores no descubiertos er
prueba de h u m o estén asociados con "nuevos incrementos de software
sof tware que se acaba de añadir a la construcción es una posible causa i r
error recién descubierto).

• El progreso es más fácil de evaluar. Cada día que pasa se integra más
y se demuestra que funciona. Esto mejora la moral del equipo y brinda a ~
jefes de proyecto una buena indicación de que se están logrando avances I

"Trole la construcción diaria como si fuero el corazón del proyedo. Si no tiene corazón, el proyedo está m u é - : '

J i m

O p c i o n e s es tratég icas . Ha habido mucha discusión (por ejemplo, (BElé-¡)
las ventajas y desventajas relativas de las pruebas de integración ascender :; J J
cendente. En general, las ventajas de una estrategia tienden a convertirse e r Í-*
tajas para la otra. La principal desventaja del enfoque descendente es la neo
resguardos y las dificultades de las pruebas asociadas. Los problemas re"~
con los resguardos se compensarían con la ventaja de probar las principales ñ.
nes de control en las pr imeras etapas. La principal desventaja de la in
ascendente es que "el programa, como una entidad, no existe hasta que se tal
dido el último módulo" (MYE79]. Esta desventaja la a tenúa la mayor fácil
diseñar casos de prueba y la falta de resguardos.

La selección de una estrategia de integración depende de las caracte
software y, en ocasiones, del calendario del proyecto. En general, la mejor
un enfoque combinado (a veces denominado prueba sandwich) que usa p

R e f e r e n c i a W e b

Apuntodotes o
comentarios sobre
estrategias de pruebo
se encontrarán en:
www.qal inks .com.

TM

PDF Editor

http://www.qalinks.com

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 4 0 1

cendentes para los niveles superiores de la estructura del programa, junto con prue-
bas ascendentes para los niveles subordinados.

A medida que se realiza la prueba de integración, el responsable debe identificar
módulos críticos. Un módulo crítico tiene una o más de las siguientes características:
1) atiende varios requisitos del software, 2) tiene un alto grado de control (se encuen-
tra en un lugar relativamente alto de la estructura del programa), 3) es complejo o
propenso a errores, o 4) tiene requisitos de desempeño bien definidos. Los módulos
críticos deben probarse lo antes posible. Además, las pruebas de regresión se deben
concentrar en el funcionamiento de los módulos críticos.

Documentac ión de la prueba de integración. Un plan general para la integra-
ción del software y una descripción de pruebas específicas se documentan en la
Especificación déla prueba. Este documento que contiene un plan de prueba, un pro-
cedimiento de prueba, es un producto de trabajo del proceso de software y se vuel-
ve parte de la configuración del software.

El plan de prueba describe la estrategia general de integración. La prueba se divi-
de en fases y construcciones que atienden características específicas del funciona-
miento y el comportamiento del software. Por ejemplo, la prueba de integración para
un sistema de diseño asistido por computadora se dividiría en las siguientes fases de
prueba:

• Interacción del usuario (selección de comandos, creación de dibujos, repre-
sentación del despliegue, procesamiento de errores y representación).

• Manipulación y análisis de datos (creación de símbolos, asignación de dimen-
siones, rotación, cálculo de propiedades físicas).

• Procesamiento y generación de despliegue (despliegues bi y tridimensionales,
imágenes y gráficas).

• Administración de base de datos (acceso, actualización, integridad,
desempeño).

Cada una de estas fases y subfases (denotadas entre paréntesis) delinean una amplia
categoría funcional dentro del software y suelen relacionarse con un dominio espe-
cífico dentro de la arquitectura del software. Por tanto, las construcciones del pro-
grama (grupos de módulos) se crean para que correspondan con cada fase. Los
siguientes criterios y las pruebas correspondientes se aplican para todas las fases de
prueba.

Integridad de la interfaz. Las interfaces internas y externas se prueban a medida
que cada módulo (o grupo) se incorpora en la estructura.

Validez funcional. Se realizan las pruebas diseñadas para descubrir errores fun-
cionales.

Contenido déla información. Se aplican las pruebas diseñadas para descubrir erro-
res asociados con estructuras de datos locales o globales.

¿Ové es un
•ódulo critica

y por qué

identificarse?

TM

PDF Editor

4 0 2 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Desempeño. Se realizan las p ruebas diseñadas para verificar los límites de desem-
peño establecidos durante el diseño del software.

Un calendario para la integración, el desarrollo de software de sobrecarga \
t emas relacionados también se analizan como parte del plan de prueba. Se detc
nan las fechas de inicio y término para cada fase y se definen las "ventanas de
ponibilidad" para los módulos de prueba de unidad. Una breve descripción del
ware de sobrecarga (resguardos y controladores) se concentra en las caracte~
que requieren esfuerzos especiales. Por último, se describen el entorno y los
sos de la prueba. Configuraciones poco comunes de hardware, s imuladores ex
y herramientas especiales de prueba son algunos de los muchos t emas que ta
podrían analizarse.

A continuación se describe el procedimiento detallado de prueba que se r
para completar el plan respectivo. También se detalla el orden de integración
pruebas correspondientes en cada paso de integración. Además, se incluye-
lista de todos los casos de prueba (anotados para referencia posterior) y los
dos esperados.

Una historia de resultados, problemas o peculiaridades de las pruebas rea.r í
registra en el Informe de prueba que puede adjuntarse a la Especificación de
Si s e desea, la información contenida en esta sección será vital durante el
miento del software. También se presentan referencias y apéndices apropiadc

Como todos los demás e lementos de una configuración de software, el
de la especificación de prueba puede amoldarse a las necesidades locales ce
organización de ingeniería del software. Sin embargo, es importante observa
una estrategia de integración (contenida en el plan de prueba) y los detalles de
ba (descritos en el procedimiento de prueba) son ingredientes esenciales y
aparecer.

"El mejor participante de uno pruebo no es el que encuentro más e r ro res . . . sino el que corrige la mayor conlidod de
Cem Kan

1 3 . 4 E S T R A T E G I A S DE PRUEBA P A R A SOFTWARE O R I E N T A D O A Q E .

El objetivo de probar, para definirlo de manera simple, es encontrar la mayor
dad de errores aplicando una cantidad manejable de esfuerzo en un periodo
ta. Aunque es te objetivo fundamental sigue sin cambio para el sof tware orie
objetos, la naturaleza de este sof tware cambia la estrategia y la táctica de las
bas (capítulo 14).

13.4.1 Prueba de unidad en el contexto orientado a objetos
Al pensar en el software orientado a objetos cambia el concepto de unióse
encapsulación orienta la definición de clases. Esto significa que cada clase e ,
cia de una clase (objeto) empaque ta atributos (datos) y las operaciones (fu
que manipulan estos datos. Una clase encapsulada suele ser el eje de las p

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOfT.VAKE 4 0 3

LAVE
] de dase

¡saftwore
a objetos es

a la prueba de
poro software

i No es
probar
de manera

unidad. Sin embargo, las unidades de prueba m á s pequeñas son las operaciones
dentro de la clase. Debido a que u n a clase puede contener varias operaciones dife-
rentes y a que una operación determinada puede existir como parte de varias clases
diferentes, deben cambiar las tácticas aplicadas para la prueba de unidad.

No e s posible probar una sola operación de manera aislada (el concepto conven-
cional de prueba de unidad) sino como parte de una clase. Para ilustrarlo, considé-
rese una jerarquía de clase en que se define una operación X para la superclase y que
heredan varias subclases. Cada una de és tas usa la operación X , pero se aplica den-
tro del contexto de los atributos privados y las operaciones que se han definido para
la subclase. Dado que el contexto en que se emplea la operación X varía en formas
sutiles, e s necesario probar la operación en el contexto de cada una de las subcla-
ses. Esto significa que si se prueba la operación X de manera independiente (el enfo-
que de la prueba de unidad convencional) se podrá usar de manera deficiente en el
contexto orientado a objetos.

La prueba de clase para el sof tware or ientado a objetos e s el equivalente a la
prueba de unidad para el sof tware convencional. A diferencia de ésta, que tiende a
concentrarse en el detalle algorítmico de un módulo y en los datos que fluyen por la
interfaz del módulo, la prueba de clase para el sof tware orientado a objetos se orien-
ta mediante las operaciones que encapsula la clase y en el comportamiento de esta-
do de la clase.

K
C L Á V B

estrategia
para la

de integración
software orientado

n e t o s es la prueba
en
esos. Los
esos son

de clases
i responden a uno

i o un evento.
- 2 pruebas basadas

s e i u s o s e
«¡centran en las

3Eses q u e n o

- 'oboron mucho con
unís clases.

13.4.2 Prueba de integración en el contexto orientado a objetos

Debido a que el software or ientado a objetos no tiene una estrategia obvia de con-
trol jerárquico, tienen poco significado las estrategias de integración descendente y
ascendente tradicionales (sección 13.3.2). Además, integrar las operaciones una por
una en una clase (el enfoque convencional de la integración incrementa!) suele
resultar imposible debido a las "interacciones directas e indirectas de los compo-
nentes que integran la clase" [BER93],

Hay dos estrategias diferentes para la prueba de integración de los s is temas orien-
tados a objetos [BIN94]. La primera, la prueba basada en subprocesos, integra el con-
junto de clases requerido para responder a una entrada o un evento del sistema.
Cada subproceso se integra y prueba individualmente. La prueba de regresión se
aplica para asegurar que no se presenten efectos colaterales. El segundo enfoque de
integración, la prueba basada en el uso, empieza la construcción del sistema con la
prueba de esas clases (llamadas clases independientes) que usan muy pocas clases de
servidor (o ninguna). Después de que se prueban las clases independientes, se prue-
ba la siguiente capa de clases, l lamadas clases dependientes, que usan las clases
independientes. Esta secuencia de capas de prueba de clases dependientes continúa
hasta que se construye todo el sistema.

El uso de controladores y resguardos también cambia cuando se aplican pruebas
de integración a los s is temas orientados a objetos. Con los controladores se prueban
operaciones al nivel más ba jo y grupos completos de clases. Un controlador también

TM

PDF Editor

404 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

se utiliza para reemplazar la interfaz de usuario, de modo que puedan aplicarse
pruebas de funcionalidad del sistema an tes de la implementación de la interfaz.
resguardos s e usan en si tuaciones en que la colaboración entre clases es neces
pero en las cuales aún no se han implementado por completo una o más de las
ses que colaboran.

La prueba de grupo e s un paso en la prueba de integración del sof tware orie
do a objetos. Aquí, un grupo de clases que colaboran entre si (determinadas po-1
examen del CRC y el modelo objeto-relación) s e ejercita al diseñar casos de pr
que tratan de descubrir errores en las colaboraciones.

\ CLAVE
Como todos los demos
pasos de pruebo, en lo
validación se trata de
descubrir errores, pero
el punto central está
en el nivel de los
requisitos (o las cosas
que serón
inmediatamente
evidentes pora el
usuario final).

Las pruebas de validación empiezan tras la culminación de la prueba de integra
cuando se han ejercitado los componen tes individuales, se ha terminado de er
blar el sof tware como paquete y se han descubierto y corregido los errores de
faz. En el nivel de validación o sistema desaparece la distinción entre software <
vencional y orientado a objetos. La prueba se concentra en las acciones visibles;
el usuario y en la salida del sistema que éste puede reconocer.

La validación se define de muchas formas, pero una definición simple (ai
vulgar) es que se alcanza cuando el software funciona de tal manera que satisface i
expectativas razonables del cliente. En este punto, un desarrollador de software t
r imentado protestaría: "¿Qué o quién decide lo que es una expectativa razonaba"

Las expectativas razonables se definen en la Especificación de requisitos deí
ware (un documento que describe los atributos del sof tware visibles para el t
La especificación contiene u n a sección denominada Criterios de validación. La ;
mación contenida en esa sección integra la base del enfoque de la prueba de

dación.

13.5.1 Criterios de la prueba de validación
La validación del software se logra mediante una serie de pruebas que demi
que se cumple con los requisitos. Un plan de prueba delinea la clase de pruebas i
se aplicarán, y un procedimiento de prueba define los casos de prueba espe
Tanto el plan como el procedimiento se diseñan para asegurar que se sat
todos los requisitos funcionales, que se a lcanzan todas las características
portamiento, que se cumple con todos los requisitos de desempeño, que la
mentación es correcta y que se cumple también con todos los requisitos de fa
de uso y otros requisitos especificados (por ejemplo, portabilidad, compatib
recuperación de errores, facilidad de mantenimiento).

Después de que se ha dirigido cada caso de prueba de validación, existirá i
dos condiciones posibles: 1) la característica de funcionamiento o desempeñe
pie con la especificación y se le acepta, o 2) se descubre una desviación de
cificación y se crea una lista de deficiencias. La desviación o el error descubie

TM

PDF Editor

CAPITULO 13 ESTRATEGIAS DE PRUEBA DEL SOTTWASE 4 0 5

esta etapa de un proyecto rara vez se corrige antes de la fecha de entrega. A menu-
do es necesar io negociar con el cliente un método para resolver las deficiencias.

13.5.2 Revisión de la configuración
La revisión de la configuración es un e lemento importante del proceso de validación;
su objetivo es asegurar que todos los e lementos de la configuración del sof tware se
hayan desarrollado apropiadamente, estén catalogados y tengan el detalle suficien-
te para reforzar la fase de soporte del ciclo de vida del software. La revisión de la
configuración, a veces denominada auditoria, se analizará con más detalle en el
capítulo 27.

13.5.3 Pruebas alfa y beta
En la práctica e s imposible que un desarrollador de sof tware prevea cómo utilizará
el usuario realmente el programa. Es posible que se malinterpreten las instrucciones
de uso, que se utilicen con regularidad extrañas combinaciones de datos, que una
salida en apariencia clara para el responsable de las pruebas sea ininteligible para
un usuario en el campo.

Al construir sof tware personal izado para un cliente se aplica una serie de prue-
bas de aceptación que permiten al cliente validar todos los requisitos. El usuario final
conduce, no los ingenieros del software, las pruebas de aceptación, las cuales van
desde una "prueba de manejo" informal hasta una serie de pruebas p laneadas y eje-
cutadas de manera sistemática. En realidad, la prueba de aceptación llega a durar
s e m a n a s o meses , por lo que es posible descubrir errores acumulativos que degra-
dan el sistema.

"Si se recurre a ojos suficientes, todos los errores serón superficiales (por ejemplo, si hay una base lo suficientemente
grande d e personos que realizan las pruebas beta y de codesarrolladores, casi todos los problemas se caracterizarán
rápidamente y la corrección será obvia para alguien)."

I . R o y m o n d

Si el sof tware se desarrolla como un producto que usarán muchos clientes, no e s
práctico realizar pruebas de aceptación formales para cada uno. La mayoría de los
constructores de productos de sof tware emplean procesos l lamados prueba alfa y
prueba beta para descubrir errores que sólo el usuario final podría detectar.

Los usuarios finales son quienes aplican la prueba alfa en el lugar de t rabajo del
desarrollador. El sof tware se utiliza en un entorno natural mientras el desarrollador
"mira sobre el hombro" de los usuarios típicos y registra los errores y los problemas
de uso. Las pruebas alfa se realizan en un entorno controlado.

Las pruebas beta se aplican en el lugar de t rabajo de los usuarios finales. A dife-
rencia de la prueba alfa, por lo general el desarrollador no está. Por tanto, la prueba
beta es una aplicación "en vivo" del sof tware en un entorno que no controla el desa-
rrollador. El usuario final registra todos los problemas (reales o imaginarios) que

TM

PDF Editor

4 0 6 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

e n c u e n t r a d u r a n t e la p rueba y los in fo rma d e m a n e r a regu la r al desar ro l lador . CCTM
resu l tado d e los p r o b l e m a s i n f o r m a d o s d u r a n t e las p r u e b a s be ta , los ingenieros : e |

s o f t w a r e lo modi f ican y luego p r e p a r a n la l iberación del p roduc to d e s o f t w a r e F ^ a J

toda la b a s e de cl ientes.

H O G A R S E G U R O

Preparación para validación

Lo escena: Oficina de Doug
Milter, mientras continúa el diseño al nivel de
componentes y empieza la construcción de ciertos
componentes.
Los actores: Doug Miller, jefe de ingeniería de
software, Vinod, Jamie, Ed y Shokira, integrantes del
equipo de ingeniería del software HogarSeguro.
La conversación:
Doug: El primer incremento estará listo para validación
en... ¿unas tres semanas?
Vinod: Es correcto, la integración va bien. Estamos
realizando pruebas de humo a diario, encontrando
algunos errores, pero nada que no se pueda manejar.
Así que hasta ahora todo va bien.
Doug: Cuéntame un poco de la validación.
Shakira: Bueno, emplearemos todos los casos de uso
como base para el diseño de nuestras pruebas. Aún no
he empezado, pero estaré desarrollando pruebas para
todos los casos de uso de los que soy responsable.
Ed: Lo mismo yo.
Jamie: Yo también, pero tendremos que actuar juntos
para la prueba de aceptación y también para las
pruebas alfa y beta, ¿verdad?

Doug: Sí, en realidad he pensado que podríamos
a un contratista que nos ayude con la validación. Teogc
dinero en el presupuesto... y nos daría una perspecr • ;
fresca.

Vinod: Creo que lo tenemos todo bajo control.

Doug: Estoy seguro de eso, pero un grupo
independiente de prueba nos dará un punto de vista
autónomo sobre el software.

Jamie: Estamos justos de tiempo aquí, Doug. Yo, e- ;
personal, no tengo tiempo para cuidar a nadie que
traigas a hacer el trabajo.

Doug: Lo sé, lo sé. Pero si un GIP trabaja a partir ir a
requisitos y casos de uso, no requerirá mucha ayucc
ustedes.
Vinod: Todavía pienso que lo tenemos todo bajo cc-—ai

Doug: Ya te oí, Vinod, pero me voy a imponer en
Planeemos el encuentro con el representante del Gl- i á
adelante, esta misma semana. Dejemos que empiece y
veamos que nos trae.

Vinod: Muy bien, tal vez aligere un poco la carga

1 3 . 6 P R U E B A D E L S I S T E M A

En el inicio d e es te libro s e d e s t a c ó el h e c h o d e q u e el s o f t w a r e só lo e s u n e l e ®

t o de un s i s t ema de c ó m p u t o m á s g rande . Al final, el s o f t w a r e s e incorpora a ; •
e l e m e n t o s del s i s t ema (como ha rdware , p e r s o n a s , in formación) , y s e realiza a
serie d e p r u e b a s de in tegrac ión del s i s t ema y d e val idación. Es tas p r u e b a s e s t a - n
allá del a l cance del p r o c e s o del s o f t w a r e y n o las rea l izan ú n i c a m e n t e los i r g - a
r o s del so f tware . Sin e m b a r g o , los p a s o s d a d o s d u r a n t e el d i s e ñ o y la p rueba d e a
w a r e m e j o r a r á n en gran med ida la probabi l idad de t ener éx i to en la i n t e g r a c

s o f t w a r e en el s i s t ema mayor .

"Al igual que lo m u e r t e y los impuestos, las p r u e b a s son de sag radab l e s e inevi tables ."
Ed Y

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 407

Un problema clásico de la prueba del sistema es "señalar con el dedo". Esto ocurre
cuando se descubre un error y el desarrollador de cada elemento del sistema culpa a
los demás. En lugar de caer en este absurdo, el ingeniero del software debe anticipar-
se a posibles problemas con la interfaz y 1) diseñar rutas de manejo de errores que
prueben toda la información proveniente de otros elementos del sistema, 2) aplicar
una serie de pruebas que simulen datos incorrectos u otros posibles errores en la inter-
faz del software, 3) registrar los resultados de las pruebas como "evidencia" en el caso
de que se le culpe, y 4) participar en la planeación y el diseño de pruebas del sistema
para asegurar que el software se ha probado adecuadamente.

En realidad, la prueba del sistema abarca una serie de pruebas diferentes cuyo pro-
pósito principal es ejercitar profundamente el sistema de cómputo. Aunque cada
prueba tiene un propósito diferente, todas trabajan para verificar que se hayan inte-
grado adecuadamente todos los elementos del sistema y que realizan las funciones
apropiadas. En las siguientes secciones se examinarán los tipos de pruebas del sis-
tema [BEI84] que valen la pena para sistemas basados en software.

13.6.1 Prueba de recuperación
Muchos sistemas de cómputo deben recuperarse de fallas y reanudar el procesa-
miento en un tiempo determinado. En algunos casos, un sistema debe ser tolerante
con las fallas; es decir, las fallas de procesamiento no deben llevar a la caída del sis-
tema, en general. En otros casos, una falla del sistema debe corregirse dentro de un
periodo específico o se sufrirá un fuerte daño económico.

La prueba de recuperación es una prueba del sistema que obliga al software a
fallar de varias maneras y a verificar que la recuperación se realice apropiadamen-
te. Si la recuperación es automática (la realiza el propio sistema) debe evaluarse que
sean correctos la reinicialización, los mecanismos de respaldo del sistema, la recu-
peración de datos y el nuevo arranque. Si la recuperación requiere intervención
humana, se debe evaluar el tiempo medio de reparación (TMR) para determinar si se
encuentra dentro de límites aceptables.

13.6.2 Prueba de seguridad
Cualquier sistema de cómputo que maneje información confidencial o que desenca-
dene acciones que dañen (o beneficien) inapropiadamente a los individuos es un
blanco para irrupciones impropias o ilegales. La irrupción abarca un amplio rango
de actividades: hackers que tratan de entrar en los sistemas por juego, empleados
disgustados que tratan de irrumpir como forma de venganza, e individuos desho-
nestos que buscan ganancias personales ilícitas.

La prueba de seguridad comprueba que los mecanismos de protección integrados
en el sistema realmente lo protejan de irrupciones inapropiadas. Para citar a Beizer
[BE184J: "Por supuesto que debe probarse la seguridad del sistema para asegurar que
es invulnerable a los ataques frontales, pero también a los perpetrados por los flan-
cos o la retaguardia".

TM

PDF Editor

408 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Durante la prueba de seguridad, quien la aplica desempeña el papel del indivich.
que desea entrar en el sistema. ¡Todo se vale! Debe tratar de obtener contraseña
por cualquier medio externo; podría atacar el sistema con sof tware personalizad
diseñado para burlar cualquier defensa que se haya construido; podría saturar el s t
tema, negando así el servicio a otros; podría producir errores intencionales en el siscr
ma para tratar de tener acceso durante la recuperación; podría revisar datos sin pro-
tección, con la idea de encontrar la clave de acceso al sistema.

Si se dan el t iempo y los recursos suficientes, una buena prueba de seguridad
minará por irrumpir en el sistema. El papel del diseñador del sistema e s que el cc-s»
de la irrupción sea mayor que el valor de la información que habrá de obtenerse

13.6.3 Prueba de resistencia
Los pasos de prueba anal izados antes, en este mismo capítulo, llevan a una evai ,
ción completa de las funciones y el desempeño normales del programa. Las pruer-s l
de resistencia están diseñadas para confrontar los programas con situaciones ar .r-
males. En esencia, la persona que realiza la prueba de resistencia se pregunta-e
"¿Hasta dónde puedo llevar esto antes de que falle?"

La prueba de resistencia ejecuta un sistema de tal manera que requiera una canr-l
dad, una frecuencia o un volumen anormal de recursos. Por ejemplo: 1) se d i s e ñ a
pruebas especiales que generen diez interrupciones por segundo, cuando la u J
promedio es de u n a o dos-, 2) se aumen ta la frecuencia de entrada de datos en JT»
magnitud que permita determinar cómo responderán las funciones de entrada > a t
ejecutan casos de prueba que requieran el máximo de memoria u otros recurs -í
se diseñan casos de prueba que causen problemas de administración de merr
5) se crean casos de prueba que produzcan búsquedas excesivas de datos en el e s e *
En esencia, la persona que aplica la prueba tratará de sobrecargar el programa.

"Si este t rotando d e encontrar verdaderos errores del sistema y no ha sometido su software a una verdadera prueo:
de resistencia, entonces éste es el momento de empezar" .

Boris B c á r i

Una variante de la prueba de resistencia es una técnica denominada p rue r ; •
sensibilidad. En a lgunas si tuaciones (la más común de ellas ocurre con los
mos matemáticos), un rango muy pequeño de datos contendidos dentro de los I B H
tes de los datos válidos para un programa puede causar procesamiento extrema®
incluso erróneo, o una fuerte degradación del desempeño. Las pruebas de s e r = ¿ á H
dad tratan de descubrir combinaciones de datos dentro de las clases de entrada
das que causen inestabilidad o procesamiento inapropiado.

13.6.4 Prueba de desempeño
En sis temas en tiempo real e incrustados es inaceptable el sof tware que prop i o *
na la función requerida pero que no cumple los requisitos de desempeño. La
de desempeño está diseñada para probar el desempeño del sof tware en t i e r r : - g H

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 4 0 9

ejecución dentro del contexto de un sistema integrado. La prueba de desempeño se
aplica en todos los pasos del proceso de la prueba. Incluso al nivel de la unidad, el
desempeño de un módulo individual debe evaluarse mientras s e realizan las pruebas.
Sin embargo, no es sino hasta que se encuentran totalmente integrados todos los ele-
mentos del sistema que es posible asegurar el verdadero desempeño del sistema.

Con frecuencia las pruebas de desempeño se vinculan con pruebas de resistencia
y suelen requerir instrumentación de sof tware y hardware. Es decir, a menudo resul-
ta necesario medir con exactitud la utilización de recursos (por ejemplo, los ciclos de
procesador). Mediante instrumentación externa pueden vigilarse de manera regular
los intervalos de ejecución, los eventos que se registran (como las interrupciones) y
los estados de muestra del equipo. Si se instrumenta un sistema, la persona que aplica la
prueba descubrirá situaciones que lleven a la degradación y posibles fallas del sistema.

HERRAMIENTAS DE SOFTWARE

Planeación y administración
de pruebas
Objetivo: Estas herramientas ayudan al

> de software a planear la estrategia de prueba que
-ó de elegirse y a manejar el proceso de prueba a

i que se aplica.
nica: Las herramientas de esta categoría atienden

ción y el almacenamiento de la prueba, la
listración y el control, el seguimiento de los

s, la integración, el rastreo de errores y la
ción de informes. Los jefes de proyecto las usan

i complementar las herramientas de planeación.
¡ aplican las pruebas usan estas herramientas para
r actividades de prueba y controlar el flujo de
ación a medida que avanza el proceso de prueba.

Herramientas representativas2

OTF (Object Testing Frameworkl, desarrollado por MCG
Software Inc. (www.mcgsoft.com), proporciona un
marco conceptual para la administración de conjuntos
de pruebas para objetos Smalltalk.

QADireclor, desarrollado por Compuware Corp.
(www.compuware.com/qacenter), proporciona un solo
punto de control para administrar todas las fases del
proceso de prueba.

TestWorks, desarrollado por Software Reasearch Inc.
(www.soft.com/Products/index, html), contiene un
conjunto plenamente integrado de herramientas de
prueba, incluidas algunas que sirven para el manejo y
la generación de informes de las pruebas.

La prueba del sof tware e s un proceso que puede planearse y especificarse sistemá-
ticamente. Se diseña el caso de prueba, se define una estrategia y se evalúan los
resultados frente a las expectativas prescritas.

La depuración ocurre como consecuencia de una prueba realizada con éxito. Es
decir, cuando un caso de prueba descubre un error, la depuración es la acción que
lo elimina. Aunque la depuración puede y debe ser un proceso ordenado, sigue sien-
do un arte. Un ingeniero del software, al evaluar los resultados de una prueba, suele

2 Las herramientas expuestas aquí sólo representan una muestra de esta categoría. En casi todos los
casos los nombres de las mismas son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.mcgsoft.com
http://www.compuware.com/qacenter
http://www.soft.com/Products/index

4 1 0 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

enfrentarse con una indicación "sintomática" de un problema de software. Es den-
tal vez la manifestación externa del error y su causa interna no tienen una relac: :ir
obvia. La depuración e s el proceso mental que conecta un síntoma con una causa

"En tuonlo empezomos la programación, descubrimos, pa ra nuestro sorpresa, que no será fácil conseguir el p r o g r a r :
que tenemos en mente. Es necesario descubrir la depuración. Recuerdo el momento exacto en que m e di cuenta de que
iba a gastar gran parte de mi vida, a partir de ese momento, en encontrar los errores de mis propios programas."

Maurice Wilkes, descubre la depuración en 194 ;

El proceso de
depuración.

ú 13.7.1 El proceso de depuración
La depuración no es una prueba, pero siempre ocurre c o m o consecuencia de
Si se toma como referencia la figura 13.7, el proceso de depuración comienza cor.
ejecución de un caso de prueba. Se evalúan los resultados y se encuentra una
de correspondencia entre el desempeño esperado y el real. En muchos casos d
datos que no corresponden son síntoma de una causa que aún no aparece. La deot- l
ración trata de relacionar el síntoma con la causa, lo que conduce a corregir el e m x l

La depuración siempre arroja dos resultados: 1) se encuentra y se corrige la ca-SéJ
o 2) no se localiza la causa. En este último caso, la persona encargada de la d ^ - ^ J
ción debe sospechar la causa, diseñar uno o más casos de prueba que ayuden
validar esa sospecha y avanzar hacia la corrección del error de manera iterativa

Pruebas
de regresión

Correcciones^ Causas
identificadas

Al hacer esta afirmación se toma el concepto más amplio posible de la prueba. ¡No sólo el desam
llador prueba el software antes de la liberación, sino que el cliente, el usuario, o ambos, pr
software cada vez que lo usan!

pruerar |

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA D a SOFTWARE 4 1 1

¿Por qué e s tan difícil la depuración? Con toda probabilidad, la respuesta se rela-
ciona más con la psicología humana (consulte la siguiente sección) que con la tec-
nología del software. Sin embargo, ciertas características de los errores ofrecen
a lgunas pistas:

1. El síntoma y la causa pueden estar separados geográficamente. Es decir,
aquél aparece en una parte del programa mientras ésta se ubica en un sitio
distante. Los componentes con un fuerte acoplamiento (capítulo 11) exacer-
ban esta situación.

2 . Es posible que el síntoma desaparezca (temporalmente) al corregir otro error.

3 . Es probable que el síntoma no lo cause algún error (como en el caso de ine-
xactitudes al redondear cifras).

4 . El síntoma podría deberse a un error h u m a n o difícil de localizar.

5 . El síntoma podría deberse a problemas de tiempo y no de procesamiento.

6 . Tal vez sea difícil reproducir con exactitud las condiciones de entrada (por
ejemplo, una aplicación en t iempo real en que no está definido el orden de
entrada).

7 . El síntoma podría presentarse intermitentemente. Esto suele ser común en
s is temas empotrados que acoplan el hardware y el sof tware de manera inex-
tricable.

8 . Probablemente el síntoma se debe a causas distribuidas entre varias tareas
que se ejecutan en diferentes procesadores [CHE90].

Durante la depuración se encuentran errores que van de medianamente molestos
(como un formato de salida incorrecto) a catastróficos (por ejemplo, el sistema falla
y causa serios d a ñ o s económicos o físicos). A medida que aumentan las consecuen-
cias de un error, también se incrementa la presión para encontrar la causa . A menu-
do, debido a la presión, un desarrollador del sof tware introduce dos errores más al
tratar de corregir uno.

' • • • !
"Todos soben que depurar es dos veces más difícil que escribir el programo. Por tanto, si aplica toda su inteligencia
poro escribirlo, ¿cómo espera siquiera depurarlo?"

Br ian K e r n i g h a n

13.7.2 Consideraciones psicológicas
Por desgracia, hay evidencia de que las destrezas para la depuración son innatas en
el ser humano. Ciertas personas son buenas para ella; o t ras no. Aunque la evidencia
experimental sobre la depuración está abierta a muchas interpretaciones, se han
reportado grandes variaciones en la habilidad para la depuración en programadores
con educación y experiencia similares.

TM

PDF Editor

412 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Al c o m e n t a r los a s p e c t o s h u m a n o s d e la d e p u r a c i ó n , S h n e i d e r m a n [SHN80] i

La depuración es una de las partes m á s frustrantes de la programación. Incluye eleme-
tos de resolución de problemas o de re tos mentales, junto con el molesto reconocimie-:
de que se ha cometido un error. La creciente ansiedad y escasa voluntad de aceptar la e .-
tencia de errores aumentan la dificultad de la tarea. Por fortuna, se presenta un gran al -
vio y la tensión decrece cuando el error finalmente... se corrige.

A u n q u e s e a difícil " a p r e n d e r " a d e p u r a r , s e p r o p o n e n v a r i o s e n f o q u e s p a r a e l :

b l e m a . S e e x a m i n a r á n e n la s i g u i e n t e s e c c i ó n .

HOGARSEGURO
r

Depuración

- , La e s c e n a : Cubículo de Ed
mientras se realizan la codificación y la prueba de unidad.

Los ac tores : Ed y Shakira, integrantes del equipo de
ingeniería del software de HogarSeguro.

La conversac ión:

Shakira (a s o m á n d o s e a ia en trada de l
cubículo): Hey... ¿dónde estabas a la hora del
almuerzo?

Ed: Justo aquí... trabajando.

Shakira: Te ves mal... ¿qué es lo que pasa?

Ed (susp irando con fuerza) : He estado trabajando
en este <bleep> error porque lo descubrí a las 9:30 de la
mañana, y son las 2:45 y aún no tengo una pista.

Shakira: Pensé que estábamos de acuerdo en no
dedicar más de una hora a depurar cosas por nuestra
cuenta. En ese caso, tendríamos que buscar ayuda, ¿o no?

Ed: Sí, pero...

Shakira (entrando e n el cubículo): A ver, ¿cuc =
el problema?

Ed: Es complicado. Y además he estado revisando es-;
durante, ¿cuánto?, cinco horas. No vas a encontrarle

Shakira: Perdóname... ¿cuál es el problema?

(Ed le explica el problema a Shakira, que lo mira durc r*
30 segundos sin hablar.)

Shakira (e m p i e z a a p intarse u n a sonr i sa en
su rostro): Mira, justo aquí, la variable
eslablecerCondicionAlarma. ¿No debería ponerse er
"falso" antes de que inicie el bucle?

(Ed se queda viendo la pantalla sin creerlo, se indine
hacia delante y empieza a golpear su cabeza
gentilmente contra el monitor. Shakira, ahora sonrieno:
ampliamente, se levanta y sale.)

13.7.3 Estrategias de depuración
Sin i m p o r t a r el e n f o q u e q u e s e a d o p t e , la d e p u r a c i ó n t i e n e u n o b j e t i v o p r i m o r á u l

e n c o n t r a r y c o r r e g i r la c a u s a d e u n e r r o r de l s o f t w a r e . El o b j e t i v o s e logra c c n J

n a n d o la e v a l u a c i ó n s i s t e m á t i c a , la i n tu i c ión y la s u e r t e . B r a d l e y [BRA85] des .—ni

a s í el e n f o q u e d e la d e p u r a c i ó n :

La depuración e s una aplicación simple y directa del método científico desarrollado ha : : I
2 500 años. La esencia de la depuración consiste en ubicar la fuente del problema : I
causa) mediante partición binaria, manejando hipótesis de trabajo que predigan n u e \ :
valores que habrán de examinarse.

Tomemos un ejemplo sencillo, sin relación alguna con el software: en mi casa no fur ;

ciona una lámpara. Si n o funciona nada en la casa, la causa debe ser un fusible fundid: I
una falla en el suministro de energía eléctrica. Miro alrededor para ver si hay luz en el v;- I

TM

PDF Editor

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWASE 4 1 3

tun
rejemplo,
.xrael
ise

:: Iralai de
i problema

linMuai
? as eso, ¡es
jbuscar

cindario. Conecto la lámpara bajo sospecha en un enchufe que funcione y un aparato en
buen estado en el enchufe bajo sospecha Y así se siguen alternando hipótesis y pruebas.

En general, se han propuesto tres estrategias de depuración [MYE79I: 1) fuerza
bruta, 2) seguimiento hacia atrás y 3) eliminación de la causa.

"El primer poso poro corregir un programo es hocer que folie repet idamente (en el ejemplo más simple posible),"
T. Duff

• Táct icas de depuración. La categoría de depuración por la fuerza bruta tal vez
sea el método más común y menos eficiente para aislar la causa de un error del soft-
ware. Los métodos de depuración por la fuerza bruta se aplican cuando todo lo
demás falla. Al aplicar una filosofía de "dejemos que la computadora encuentre el
error", se hacen descargas de memoria, se invocan señales en t iempo de ejecución
y se carga el programa con instrucciones de salida. En algún lugar del pan tano de
información que se produce se espera encontrar una pista que pueda conducir a la
causa de un error. Aunque la gran cantidad de información producida conduzca
finalmente al éxito, lo más frecuente es que haga desperdiciar t iempo y esfuerzo.

El rastreo hacia atrás es un enfoque de depuración muy común, que se utiliza con
éxito en pequeños programas. Empezando en el sitio donde se ha descubierto un
síntoma, se recorre hacia a t rás el código fuente (manualmente) hasta hallar el sitio
de la causa. Por desgracia, a medida que aumenta el número de líneas del código, la
cantidad de caminos hacia atrás se vuelve tan grande que resulta inmanejable.

El tercer enfoque para la depuración (eliminación de causas) lo determina la induc-
ción o deducción e introduce el concepto de partición binaria. Los datos relacionados
con el error se organizan para aislar las causas posibles. Se elabora una "hipótesis
de la causa" y se aprovechan los datos ya mencionados para probar o desechar la
hipótesis. Como opción, se elabora una lista de todas las causas posibles y s e apli-
can pruebas para eliminar cada una de ellas. Si las pruebas iniciales indican que
determinada hipótesis de causa e s prometedora, se refinan los datos para tratar de
aislar el error.
Depurac ión automat izada . Cada uno de los enfoques de depuración anteriores
complementan las herramientas de depuración que proporcionan soporte semiauto-
matizado al ingeniero de sof tware mientras se intentan estrategias de depuración.
Hailpern y Santhanam (HAI02j resumen el es tado de es tas herramientas cuando
indican: "...se han propuesto muchos nuevos enfoques y se dispone de muchos
entornos de depuración comerciales. Los en tornos de desarrollo integrado (EDI) pro-
porcionan una manera de capturar algunos de los errores por defecto específicos del
lenguaje (por ejemplo, caracteres faltantes de fin-de-instrucción, variables indefini-
das, etc.) sin requerir compilación." Un área que ha a t rapado la imaginación de la
industria e s la visualización de las construcciones de programación necesar ias como
medio de análisis de programas [BAE971. Se cuenta con una amplia variedad de
compiladores de depuración, ayudas dinámicas para la depuración ("trazadores"),
generadores automáticos de casos de prueba y herramientas de correlación de refe-

TM

PDF Editor

414 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Depuración

Objetivo: Estas herramientas proporcionan
ayuda automatizada a quienes deben depurar

problemas de software. El objetivo es proporcionar
conocimiento difícil de obtener si se afronta el proceso de
depuración manualmente.

Mecánica: Casi todas las herramientas de depuración son
específicas del lenguaje de programación y del entorno.

Herramientas representativas:4

Jprobe ThreodAnalyzer, desarrollado por Sitraka
(www.sitraka.com), ayuda en la evaluación de
problemas de subprocesos: bloqueos, detenciones y
condiciones de carrera que representan serios peligros
para el desempeño en aplicaciones de Java.

C++ Test, desarrollado por Parasoft (www.parasoft.com),
es una herramienta de prueba de unidad que soporta
un amplio rango de pruebas en código C y C++. Las

HERRAMIENTAS DE SOFTWARE

características de depuración ayudan al diagnós-';:
los errores encontrados.

CcdeMedic, desarrollado por NewPlanet Dotware
(www.newplanetsoftw3re.com/medic/), proporciona.
interfaz gráfica para el depurador UNIX estándar, gdfc ?
implemento sus características más importantes. •
gdb da soporte a C/C++, Java, PalmOS, varios sistema
incrustados, lenguaje ensamblador, FORTRAN yMoauc-1

BugCollector Pro, desarrollado por Nesbitt Software Cora
(www.nesbitt.com/), implemento una base de datos
multiusuario que ayuda al equipo de software regisfrc
errores reportados y otras solicitudes de mantenimienc •
administración de flujo de trabajo de depuración.

GNATS, una aplicación freeware
(www.gnu.org/software/gnats/), es un conjunto x
herramientas para registrar informes de error.

r e n d a s c r u z a d a s . Sin e m b a r g o , las h e r r a m i e n t a s n o s o n un sus t i tu to d e la
ción c u i d a d o s a b a s a d a e n un m o d e l o de d i s e ñ o comple to y un cód igo fuen te

El f a c t o r h u m a n o . Ningún anál is is de los e n f o q u e s y las h e r r a m i e n t a s de

ción es tar ía comple to sin m e n c i o n a r un p o d e r o s o aliado: ¡los d e m á s ! Un p
vista f resco, d e s p e j a d o d e h o r a s d e f rus t ración, p u e d e h a c e r maravi l las . 5 Una
ma final p a r a la depu rac ión sería: " ¡Cuando todo lo d e m á s falle, pida ayuda!"

13.7.4 Corrección del error
C u a n d o s e e n c u e n t r a un error debe corregirse . Pero c o m o ya s e ha i n d i c a ; :
corregir un e r ro r p u e d e n int roducirse o t ro s y, po r lo tan to , c a u s a r m á s d a ñ :

so luc ionar el p rob lema . Van Vleck [VAN89] sugiere t r e s p r e g u n t a s s imp les que
ría p l an t ea r s e todo ingen ie ro del s o f t w a r e a n t e s de h a c e r la "corrección" que efe
n e la c a u s a del error:

^ Cuando corri-

• ja un error,

¿qué preguntas

debo hacerme?

I . ¿La causa del error se repite en otra parte del programa? En m u c h a s si tuac
un e r ro r se p r o d u c e e n u n p r o g r a m a deb ido a u n pa t rón e r r ó n e o de lógica
podría repet i rse e n cualquier lugar. La cons ide rac ión explícita del pa t rón :
gico p u e d e llevar al de scub r imien to d e o t ro s er rores .

Las herramientas expuestas aquí representan una muestra de esta categoría. En casi todos ks.-
sos los nombres de las mismas son marcas registradas de sus respectivos desarrolladores
El concepto de programación por pares (recomendada como parte del modelo de proceso cíe
gramación extrema analizado en el capítulo 4) proporciona un mecanismo para la depuración •
tras se diseña y codifica el software

TM

PDF Editor

http://www.sitraka.com
http://www.parasoft.com
http://www.newplanetsoftw3re.com/medic/
http://www.nesbitt.com/
http://www.gnu.org/software/gnats/

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFTWARE 415

2 . ¿Cuál es el "siguiente error" que podría introducirse con la corrección que está a
punto de realizarse? Antes de la corrección se debe evaluar el código fuente (o
mejor aún, el diseño) para evaluar el acoplamiento entre las estructuras lógi-
cas y de datos. Si la corrección se realiza en una sección del programa con un
acoplamiento elevado, debe tenerse mucho cuidado cuando se haga cualquier
cambio.

3 . ¿Qué debió hacerse para evitar este error desde el principio? Esta pregunta es el
primer paso hacia el establecimiento de un enfoque estadístico de asegura-
miento de la calidad del software (capítulo 26). Si se corrige el proceso junto
con el producto, se eliminará el error del programa actual y de todos los pro-
gramas futuros.

La prueba ocupa el mayor porcentaje del esfuerzo técnico en el proceso del softwa-
re. Apenas se empiezan a comprender las sutilezas de la planeación, la ejecución y
el control sistemáticos de las pruebas.

El objetivo de la prueba del software es descubrir errores; se cumple planeando y
ejecutando una serie de pasos (pruebas de unidad, integración, validación y siste-
ma). Las pruebas de unidad e integración se concentran en la verificación funcional
de cada componente y en la incorporación de componentes en la arquitectura del
software. La prueba de validación demuestra el cumplimiento con los requisitos del soft-
ware, y la prueba del sistema valida el software una vez que se ha incorporado a un
sistema mayor.

Cada paso de prueba se completa mediante una serie de técnicas sistemáticas de
prueba que ayudan a diseñar los casos de prueba. Cada paso de prueba ensancha el
grado de abstracción con que se considera el software.

A diferencia de la prueba (una actividad sistemática y planeada), la depuración
debe considerarse un arte. La actividad de depuración empieza con la indicación sin-
tomática de un problema y debe rastrear la causa del error. Entre los muchos recursos
disponibles durante la depuración, el más valioso es el consejo de otros integrantes
del equipo de ingeniería del software.

La necesidad de crear software de la mayor calidad exige un enfoque de prueba
más sistemático. Para citar a Dunn y Ullman [DUN82]:

Lo indispensable es una estrategia general que abarque el espacio de prueba estratégico
con una metodología tan deliberada como lo era el desarrollo sistemático en que se ba-
saban el análisis, el diseño y la codificación.

En este capítulo se ha examinado el espacio de prueba estratégico, tomando en
cuenta los pasos que tienen la mayor probabilidad de conseguir el principal objetivo
de la prueba: encontrar y eliminar errores de manera ordenada y efectiva.

TM

PDF Editor

4 1 6 PARTE DOS P R Á C n C A DE LA INGENIERÍA DEL SOFTWARE

[BAE971 Baecker, R., C. DiGiano y A. Marcus, "Software Visualization of Debugging
Communications of the ACM, vol. 40. núm. 4. abril de 1997 y otros ensayos en la misma t

(BE184] Beizer, B„ Software System Testing and Quality Assurance, Van Nostrand-Reinhold
[BER93] Berard, E„ Essays on Object-Oriented Software Engineering. vol. 1, Addison-Wesle> J

[BIN94] Binder, R., 'Testing Object-Oriented Systems: A Status Report", en American Pro,
vol. 7, núm. 4, abril de 1994. ruta crítica, pp. 23-28.

[BOE81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981, p. 37.
[BRA85] Bradley, J.H., "The science and Art of Debugging", en Computerworld, 19 de ag

1985, pp. 35-38.
[CHE90] Cheung, W. H., J. P. Black y E. Manning, "A Framework for Distributed Debuggir r

IEEE Software, enero de 1990, pp 106-115.
[DUN82] Dunn, R. y R Ullman, Quality Assurance for Computer Software, McGraw-Hill, 1982.:
[GIL951 Gilb, T., "What We Fail To Do In Our Current en Testing Culture", en Testing

Newsletter (edición en linea, ttn@sofl.com), Software Research, Inc., enero de
[HAI02] Hailpem, B. y P. Santhanam, "Software Debugging, Testing and Verification", en H

Systems Joumal, vol. 41, núm. 1,2002, disponible en http://www.research.ibm.com,
joumal/sj /411/hailpem.html.

[IEEO11 Software Reiiabitity Engineering I2th International Symposium, IEEE, 2001.
[MC096] McConnell, S., "Best Practices: Daily Build and Smoke Test", en IEEE Software :

núm. 4, julio de 1996, pp. 143-144.
IMIL77] Miller, E., 'The Philosophy of Testing", en Program Testing Techniques, IEEE Ce

Society Press, 1977, pp. 1-3.
[MUS891 Musa, J. D. y A. F. Ackerman, "Quantifying Software Validation: When to Stop Te

en IEEE Software, mayo de 1989, pp. 19-27.
[MYE79] Myers, G., The Art of Software Testing, Wiley, 1979-
[SH083] Shooman, M. L., Software Engineering, McGraw- Hill, 1983.
(SHN80] Shneiderman, B., Software Psychology, Winthrop Publishers. 1980, p. 28.
[SIN99] Singpurwalla, N. y S. Wilson, Statistical Methods in Software Engineering: Reliab

Risk, Springer-Verlag, 1999.
|VAN891 Van Vleck, T„ 'Three Questions About Each Bug You find", en ACM Software l

Notes, vol. 14, núm. 5. julio de 1989, pp. 62-63.
[WAL89] Wallance, D. R. y R. U. Fujii, "Software Verification and Validation: An Overvie« i

IEEE Software, mayo de 1989, pp. 10-17.
[YOU 75] Yourdon, E., Techniques of Program Structure and Design, Prentice-Hall, 1975.

1 3 . 1 . Con palabras propias, describase la diferencia entre verificación y validación. ¿L
métodos de diseño de casos de prueba y estrategias de prueba?

1 3 . 2 . Elabórese una lista de algunos problemas que pudieran estar asociados con la <
de un grupo independiente de prueba. ¿Lo integran las mismas personas que el gn
aseguramiento de la calidad del software?

1 3 . 3 . ¿Siempre es posible desarrollar una estrategia para probar sof tware que
secuencia de pasos de prueba descrita en la sección 13.1.3? ¿Cuáles son las
complicaciones que podrían surgir para sistemas incrustados?

13.4 . ¿Por qué es difícil aplicar pruebas de unidad a un módulo al tamente acc

13.5 . El concepto de "antierror" (sección 13.3.1) es una manera extremadamente efec
proporcionar depuración integrada cuando se descubre un error:

a) Desarrollar un conjunto de directrices antierror.
b) Analizar las ventajas de usar esta técnica.
c) Analizar las desventajas de usar esta técnica.

TM

PDF Editor

mailto:ttn@sofl.com
http://www.research.ibm.com

CAPÍTULO 13 ESTRATEGIAS DE PRUEBA DEL SOFT.VAKE 417

13.6. ¿Cómo afecta la calendarización la prueba de integración?
13.7. ¿La prueba de unidad es posible (o incluso deseable) en todas las circunstancias?
Proporcionar ejemplos que justifiquen la respuesta.
13 .8 . ¿Quién debe aplicar la prueba de validación: el desarrollador o el usuario del software?
Justifiqúese la respuesta.

13.9. Desarrollar una estrategia de prueba completa para el sistema HogarSeguro analizado
en todo el libro. Documéntese en una Especificación de prueba.
13.10. Como proyecto de clase, desarrollar una Guía de depuración para instalarla. Deben
proporcionarse consejos orientados al lenguaje y al sistema ¡qué se hayan aprendido en la
escuela de la vida! Empezar con una descripción esquemática de los temas que revisarán los
compañeros de clase y el profesor.

Casi todos los libros sobre la prueba del software analizan estrategias junto con métodos para
el diseño de casos de prueba. Todos los siguientes libros analizan los principios, los conceptos,
las estrategias y los métodos de prueba: Craig y Kaskiel (Systematic Software Testing, Artech
House, 2002), Tamres (Introducing Software Testing, Addison-Wesley, 2002), Whittaker (How To
Break Software, Addison-Wesley, 2002), Jorgensen (Software Testing: A Craftman's Approach, CRC
Press, 2002), Splaine y sus colegas (The Web Testing Handbook, Software Quality Engineering
Publishing, 2001), Patton (Software Testing, Sams Publishing, 2000), Kaner y sus colegas (Testing
Computer Software, segunda edición, Wiley, 1999), Black (Managing the Testing Process, Microsoft
Press, 1999) y Perry (Surviving the Top Ten Challenges of Software Testing: A People-Oriented
Approach, Dorset House, 1997) también atienden las estrategias de prueba del software.

Para los lectores interesados en métodos de desarrollo ágil de software, Crispin y House
{Testing Extreme Programming, Addison-Wesley, 2002) y Beck (Test Driven Development: By
Exampie, Addison-Wesley, 2002) presentan estrategias y tácticas de prueba para Programación
Extrema. Kamer y sus colegas (Lessons Learned in Software Testing, Wiley, 2001) presentan una
colección de más de 300 "lecciones" pragmáticas (directrices) que toda persona dedicada a la
prueba de software debe aprender. Watkins (Testing IT: An Off the Shetf Testing Process,
Cambridge University Press, 2001) establece un marco conceptual de prueba efectivo para todos
los tipos de software desarrollado y adquirido.

Lewis (Software Testing and Continuous Quality Improvment, CRC Press, 2000) y Koomen y sus
colegas (Test Process Improvment, Addison-Wesley, 1999) analizan estrategias para la mejora
continua del proceso de prueba.

Sykes y McGregor (Practical Guide to Testing Object-Oriented Software, Addison-Wesley, 2001),
Bashir y Goel (Testing Object-Oriented Software, Springer-Verlag, 2000), Binder, Testing Object
Oriented Systems, Addison-Wesley, 1999), Kung y sus colegas (Testing Object Oriented Software,
1EE Computer Society Press, 1998) y Marick (The Craft of Software Testing, Prentice Hall, 1997)
presentan estrategias y métodos para prueba de sistemas orientados a objetos.

Directrices para la depuración se encuentran en libros de Agans (Debugging: The Nine
Indispensable Rules for Finding Even The Most Elusive Hardware and Software Problems, AM ACON,
2002), Tells y Hsieh (The Science of Debugging, The Coreolis Group, 2001), Robbins (Debugging
Applications, Microsoft Press, 2000) y Dunn (Software Defect Removal, McGraw-Hill, 1984).
Rosenberg (How Debuggers Work, Wiley, 1996) atiende la tecnología de las herramientas de depu-
ración. Younessi (Object-Oriented Defect Management of Software, Prentice-Hall, 2002) presenta téc-
nicas para administrar los defectos que se encuentran en sistemas orientados a objetos. Beizer
[BEI84] presenta una interesante "taxonomía de los errores" que puede llevar a métodos efectivos
para la planeación de pruebas. Ball (Debugging Embedded Microprocessor Systems, Newnes
Publishing, 1998) atiende la naturaleza especial del software incrustado de microprocesador.

En Internet se encuentra una amplia variedad de fuentes de información sobre estrategias de
prueba del software. Una lista actualizada de referencias en la World Wide Web que resultan
relevantes para las estrategias de prueba del software se encuentran en el sitio Web SEPA:
http: / /www.mhhe.com/pressman.

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

T É C N I C A S DE PRUEBA
DEL SOFTWARE

C O N C E P T O S
CLAVE

AVI 4 3 7

complejidad
(¡domática . . . 4 2 6

i ad t idod d e
prueba 4 1 9

gráf icas de
f lujo . 4 2 3

partición
equivalente . . . 4 3 6

pa t rones 4 5 6

p r u e b a s

b a s a d a s en el
escenar io . . . 4 4 4

b a s a d a s en
fa l las 4 4 3

d e b u d e s 4 3 2

de caja blanca . 4 2 3

de caja negra . 4 3 3

de la es t ructura
de c o n t r o l . . . 4 3 0

de nivel de
d o s e 4 4 7

de r u t a básica . 4 2 3

La s p r u e b a s r ep re sen t an un i n t e r e s a n t e r e to para los ingen ie ros de se i
re, q u i e n e s po r n a t u r a l e z a son p e r s o n a s cons t ruc t ivas . Las p r u e b a s re ;B
r en q u e el desa r ro l l ador d e s c a r t e n o c i o n e s p r e c o n c e b i d a s d e lo r _ ;

"correcto" e n el s o f t w a r e y e n t o n c e s d i s e ñ e difíciles c a s o s d e p rueba para
perlo". Beizer [BEI90] desc r ibe b ien e s t a s i tuación c u a n d o a f i rma:

Es un mito que si realmente fuéramos buenos para programar no tendríamos que
purar errores. Si tan sólo pudiéramos concentrarnos, si todos usaran programa: a
estructurada, diseño descendente o tablas de decisión, si los programas se escr.r -s
ran en SQUISH, si tuviéramos las balas plateadas correctas, entonces no habría e— •
res. Ése es el mito. Hay errores, dice el mito, porque somos malos en lo que hace- >
y si somos malos en eso, debemos sentimos culpables. Por tanto, el diseño de rraaj
bas y de casos de prueba es una admisión de la falla, que instila una buena do.- ; _í
culpa. Y el tedio de probar sólo es un castigo por nuestros errores. ¿Castigo por ; - •
¿Por ser seres humanos? ¿Culpables de qué? ¿De no alcanzar una perfección inhura j
na? ¿Por no distinguir entre lo que otro programador piensa y lo que dice? ¿Pe: -1
usar la telepatía? ¿Por no resolver los problemas de las comunicaciones humanas i
han estado presentes., durante cuarenta siglos?

¿Las p r u e b a s d e b e n p r o v o c a r cu lpa? ¿Las p r u e b a s son r e a l m e n t e d e s t r _ : i
La r e spues t a e s ¡no!

En e s t e capi tu lo s e ana l i za rán t écn icas p a r a el d i s e ñ o d e c a s o s d e p n . r : ai

so f tware . Este t ipo d e d i s e ñ o s e c o n c e n t r a en un c o n j u n t o d e técnicas
c reac ión d e c a s o s d e p r u e b a q u e c u m p l a n con obje t ivos gene ra l e s y c o r ^
t r a teg ias de p r u e b a a n a l i z a d a s e n el capí tu lo 13.

a ob je tos . . . 4 4 1

¿ Q u é e s ? Una vez generado e! có-
digo fuente, es necesario probar el
software para descubrir (y corregir) la
mayor cantidad de errores posible
antes de entregado al cliente. Su ob-

jetivo es diseñar una serie d e casos de prueba que
tengan una alta probabilidad de encontrar erro-
res, ¿pero cómo? Aquí es donde entran en escena
las técnicas d e prueba del software. Estas técnicas
proporcionan directrices sistemáticas para prue-

bas de diseño que 1) comprueben la lógica ' * •
na y las interfases de todo componente d e ; r - í
ware y 2) comprueben los dominios de e r r rox f
salida del programa para descubrir errores en m
función, comportamiento y desempeño.

¿ Q u i é n l o h a c e ? Durante las etapas inicióle: J
proceso, un ingeniero de software realiza : :
ias pruebas. Sin embargo, a medida que c a l
za este proceso se irán incorporando espec r I
tas en pruebas.

4IB

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 4 1 9

-_5or qué es importante? C o n las revis iones y
erras a c t i v i d a d e s d e a s e g u r a m i e n t o d e la cali-
d a d del so f tware se p u e d e n y d e b e n descubr i r
er rores , p e r o n o b a s t a con ello. El cliente p r u e b a
d p r o g r a m a c a d a vez q u e lo e j ecu ta . Por tan to ,
se t iene q u e e j ecu ta r el p r o g r a m a an tes d e q u e
fiegue a l cliente, y el objet ivo especí f ico se rá en -
contrar y e l iminar todos los er rores . La localiza-
c ó n d e la m a y o r c a n t i d a d d e e r rores r equ ie re
ap l i ca r p r u e b a s d e m a n e r a s is temática y d i s e ñ a r
casos d e p r u e b a e m p l e a n d o técnicas def in idas .

¿Cuáles son los pasos? En ap l i c ac iones con-
venc iona les el s o f t w a r e se p r u e b a d e s d e d o s
perspec t ivas d i fe rentes : 1) la lógica in terna de l
p r o g r a m a se c o m p r u e b a m e d i a n t e t écn icas d e
d i s e ñ o d e c a s o s d e p r u e b a d e " c a j a b l a n c a " , 2)
los requisi tos de l s o f t w a r e s e c o m p r u e b a n e m -
p l e a n d o técn icas d e d i s e ñ o d e c a s o s d e p r u e b a
d e " c a j a n e g r a " . En el c a s o d e a p l i c a c i o n e s
o r i e n t a d a s a o b j e t o s , la " p r u e b a " e m p i e z a a n t e s
d e la exis tencia del c ó d i g o fuen te , p e r o u n a v e z
g e n e r a d o és te , se d i s e ñ a r á u n a ser ie d e p r u e b a s
p a r a c o m p r o b a r o p e r a c i o n e s con u n a c l a s e y
e x a m i n a r si exis ten e r r o r e s mien t ras u n a c l a s e

c o l a b o r a con o t r a . A m e d i d a q u e las c l a ses s e
in tegran p a r a f o r m a r un subs is tema, se a p l i c a la
p r u e b a d e uso, junto con los e n f o q u e s b a s a d o s
en fa l las , p a r a c o m p r o b a r las c l a ses q u e c o l a b o -
ran. Por último, los casos d e uso a y u d a n a dise-
ñ a r p r u e b a s q u e pe rmi t an descubr i r e r ro re s a l ni-
vel d e va l idac ión del sof tware . En t o d o ca so , el
obje t ivo e s e n c o n t r a r el n ú m e r o m á x i m o d e erro-
res con la mín ima c a n t i d a d d e e s f u e r z o y t iempo.

¿Cuál e s el producto obtenido? Se d i s e ñ a y
d o c u m e n t a un c o n j u n t o d e c a s o s d e p r u e b a di-
s e ñ a d o p a r a c o m p r o b a r la lóg ica in t e rna , las in-
te r faces , las c o l a b o r a c i o n e s en t re c o m p o n e n t e s
y los requis i tos internos; s e d e f i n e n los r e su l t ados
e s p e r a d o s y se reg i s t ran los r e su l t ados rea les .

¿Cómo puedo estar seguro d e que lo he
hecho correctamente? C u a n d o se e m p i e c e
la p r u e b a d e b e c a m b i a r s e d e pun to d e vis ta . ¡El
obje t ivo e s " r o m p e r " el so f tware ! D e b e n d i se -
ñ a r s e c a s o s d e p r u e b a e n f o r m a met icu losa y re-
v i sa r se q u e los c a s o s d e p r u e b a c r e a d o s a b a r -
q u e n t o d o lo d i s e ñ a d o . A d e m á s , e s p rec i so e v a -
luar la c o b e r t u r a d e la p r u e b a y d a r l e segui-
mien to a las ac t iv idades d e de tecc ión d e e r ro re s .

1 1 4 . 1 F U N D A M E N T O S DE I.AS PRUEBAS DEL SOFTWARE

En el capítulo 5 se analizaron los objetivos y principios fundamentales de las prue-
bas. Se recordará que el objetivo de las pruebas es encontrar errores y que una bue-
na prueba es la que tiene una alta probabilidad de encontrar un error. Por tanto,
cuando un ingeniero de software diseñe e implemente un sistema o un producto de
cómputo, debe tener en mente la facilidad de prueba. Al mismo tiempo, las propias
pruebas deben mostrar un conjunto de características para alcanzar el objetivo de
encontrar la mayor cantidad de errores con un mínimo de esfuerzo.

Todo programo hoce algo bien; pero tal vez sea lo que no queremos que haga."

Anónimo

Facilidad de prueba. James Bach1 proporciona la siguiente definición: "La facilidad
de prueba del software indica simplemente si es fácil o no probar (un programa de
computadora)." Las siguientes características propician la creación de software que
tenga facilidad de prueba.

1 Los párrafos siguientes se usan con permiso de James Ba. n copyright, 1994) y se han adaptado del
materia! que originalmente apareció publicado en el grupo de noticias comp.software-eng.

TM

PDF Editor

420 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

¿Cuáles
• s o n la s

c a r a c t e r í s t k a s d e
la facil idad d e
p r u e b a ?

Operatividad. "Cuanto mejor funcione, con mayor eficiencia podrá probarse ¿I
un sistema está diseñado e implementado con la calidad en mente, serán relat -•
mente escasos los errores que bloquearán la ejecución de las pruebas, lo que p e ~ » -
tirá el avance de éstas sin correcciones ni reinicios.

Observabilidad. "Lo que se ve es lo que se prueba." Las entradas proporcic *aj
das como parte de la prueba producen salidas distintas. Los estados y las varia.*'csi
del sistema son visibles y pueden consultarse durante la ejecución. La salida ir .»•
rrecta se identifica fácilmente. Los errores internos se detectan y reportan en f o r r a
automática. El código fuente es accesible.

Controlabilidad. "Cuanto mejor se controle el software, mejor se automat iza . '»
y mejorarán las pruebas." El ingeniero de pruebas controla directamente los estad
las variables de software y hardware. Las pruebas pueden ser convenientemer .; a
pecificadas, automatizadas y reproducidas.

Capacidad para descomponer . Al controlar el alcance de la prueba, se ¿ •
rán los problemas más rápidamente y se aplicarán las pruebas nuevamente cor - J
yor inteligencia. El sistema de software se construye a partir de módulos i n d e r J
dientes que también se prueban independientemente.

Simplicidad. "Cuanto menos haya que probar, más rápido se hará." El p r o g r ^ l
debe mostrar simplicidad Juncional (por ejemplo, el conjunto de características e s M
mínimo necesario para satisfacer los requisitos), simplicidad estructural (la arc_ J
tura aparece en módulos para limitar la propagación de fallas) y simplicidad ck : <•
go (se adapta un estándar de codificación para facilitar la inspección y el m a n »
miento.)

Estabilidad. "Cuantos menos cambios haya, menores alteraciones habrá :T I
prueba." Los cambios ai software son poco frecuentes, se controlan cuando o c - a J
y no invalidan las pruebas existentes. El software se recupera bien de las fallas]

Facilidad de comprensión. "Cuanta mayor información se tenga, con ma;.
teligencia se aplicará la prueba." Se comprenden bien el diseño de la arquitec~_al
las dependencias entre componentes internos, externos y compartidos. Se t i e ' t •
ceso instantáneo a la documentación técnica, está bien organizada, es espe. Sp
detallada y exacta. Los cambios al diseño se comunican a quienes aplican las
bas.
Un ingeniero usará los atributos que sugiere Bach para desarrollar una configura*®
de software (es decir, programas, datos y documentos) que sea sensible a la r ~ J f c

'Los errores son mós comunes en el softwore, tienen más copacidod de expandirse y representan más problemas •
en otras tecnologías."

David

Características de la prueba. ¿Y qué hay con las propias pruebas? Kaner : M
Nguyen [KAN93] sugieren los siguientes atributos para una buena prueba:

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 421

¿0«é es uno 1 • Una buena prueba tiene una elevada probabilidad de encontrar un error. Alcan-
*Wno" zar este objetivo requiere que la persona que aplica la prueba comprenda el

software y trate de desarrollar una imagen mental de la manera en que puede
fallar. Lo ideal es probar los tipos de fallas. Por ejemplo, un tipo de falla posi-
ble en una interfaz gráfica de usuario es la incapacidad de reconocer la posi-
ción correcta del ratón; por tanto, se diseñaría un conjunto de pruebas para
probarlo tratando de evidenciar un error en el reconocimiento de su posición.

2 . Una buena prueba no es redundante. El tiempo y los recursos destinados a las
pruebas son limitados. No hay razón para realizar una prueba que tenga el
mismo propósito que otra. Cada prueba debe tener un propósito diferente
(aunque las diferencias sean sutiles).

3. Una buena prueba debe ser "la mejor de su clase" [KAN93J. En un grupo de
pruebas con un objetivo similar y recursos limitados podría optarse por la eje-
cución de un solo subconjunto de ellas. En este caso, debe usarse la prueba
que tenga la mayor probabilidad de descubrir un tipo completo de errores.

4 . Una buena prueba no debe ser ni muy simple ni demasiado compleja. Aunque a
veces es posible combinar una serie de pruebas en un caso de prueba, los po-
sible efectos colaterales asociados con este enfoque podrían enmascarar erro-
res. En general, cada prueba debe ejecutarse por separado.

HOGARSEGURO

Diseño de pruebas únicas

L a e s c e n a : Cubículo de Vinod.

a c t o r e s : Vinod y Ed, integrantes del equipo de ¡n-
i del software HogarSeguro

c o n v e r s a c i ó n :

: Así que éstos son los casos de prueba que pre-
> ejecutar con la operación validacionConiraseña.

: Sí, cubren muchos de los posibles tipos de contrase-
-c que podría ingresar un usuario.

V i n o d : Déjame ver señalas que la contraseña correc-
to será 8080, ¿verdad?

I d : A j ó .

V i n o d : ¿Y especificas las contraseñas 1234 y 6789 pa-
-a encontrar errores en el reconocimiento de contraseñas
no válidas?

E d : Correcto, y también pruebo contraseñas que son pa-
-ecidas a la correcta, como 8081 y 8180.

Vinod: Está bien, pero no veo mucho caso en ejecutar
los entradas 1234 y 6789. Son redundantes... prueban
lo mismo, ¿o no?

Ed: Bueno, son valores diferentes.

Vinod: Es cierto, pero si 1234 no descubre un error...
en otras palabras... la operación validaáónContraseña
detecta que la contraseña no es válida, así que no es
probable que 6789 nos muestre algo nuevo.

Ed: Ya sé lo que quieres decir.

Vinod: No estoy tratando de ser puntilloso... sólo que
tenemos tiempo limitado para las pruebas, de modo que
es buena idea ejecutar pruebas que tengan una alta pro-
babilidad de encontrar nuevos errores.

Ed: No hay problema... Pensaré un poco más en esto.

TM

PDF Editor

4 2 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

1 4 . 2 P R U E B A S P S C A J A N E S R A Y C A J A B L A N C A « •

\
CLÁVE

Los pruebos de cojo
blanco sólo pueden
diseñarse después del
diseño al nivel de
componentes (o
código fuente), b
necesario que los
detalles lógicos del
programa estén
disponibles.

Hay una de dos maneras de probar cualquier producto construido (y casi cualc- iet
cosa): 1) si se conoce la función específica para la que se diseñó el producto, se ar#- |
can pruebas, que demuestren que cada función es plenamente operacional, miertraa
se buscan los errores de cada función; 2) si se conoce el funcionamiento interne a a
producto, se aplican pruebas para asegurarse de que "todas las piezas encajan -¡
decir, que las operaciones internas se realizan de acuerdo con las especificado-rs± I
y que se han probado todos los componentes internos de manera adecuada. Al rc-l
mer enfoque de prueba se le denomina prueba de caja negra; al segundo, prueba :e |
caja blanca.2

Las pruebas de caja negra son las que se aplican a la interfaz del software
prueba de este tipo examina algún aspecto funcional de un sistema que tiene
relación con la estructura lógica interna del software. La prueba de caja blanca .
software se basa en un examen cercano al detalle procedimental. Se prueban la;1

tas lógicas del software y la colaboración entre componentes, al proporcionar
de prueba que ejerciten conjuntos específicos de condiciones, bucles o ambos

"Sólo hoy una reglo poro diseñar cosos de pruebo: abarcor lodos las funciones, pero no diseñor demasiados caso-.

Tsuneo Yamou

A primera vista, parecería que toda prueba de caja blanca completa llevaría :
programa 100 por ciento correcto. Todo lo que se necesita hacer es identificar
los caminos lógicos, desarrollar casos de prueba para ejercitarlos y evaluar
dos; es decir, generar casos de prueba para comprobar exhaustivamente la 1c
programa. Por desgracia, la prueba exhaustiva presenta ciertos problemas de
tica (consúltese el análisis del recuadro). Sin embargo, la prueba de caja blar : i i

Prueba exhaustiva
*

• Considérese un programa de cien líneas en
lenguaje C. Después de alguna declaración bá-

sica de datos, el programa contiene dos bucles anidados
que se ejecutan de 1 a 20 veces c a d a uno, lo que depende
de la condición especificada en la entrada. Dentro del bu-
cle interno se requieren cuatro construcciones si-entonces-
si_no l¡f-then-else). jEl programa tendrá alrededor de 1 0 u

posibles rutas de ejecución!
Poner este número en perspectiva requiere suponer que

^se ha desarrollado un procesador de prueba mágico ("má-

gico" porque no existe) para aplicar una prueba
va. El procesador desarrolla un caso de prueba, lo
y evalúa los resultados en un milisegundo. Si t r a b a j e -
horas diarias, 365 días al año, necesitaría 3 170 <
ra probar el programa. Esto causaría, indudableme"?
desastre en casi todos los calendarios de desarrollo

Por tanto, es razonable asegurar que resulta i"
aplicar una prueba exhaustiva en sistemas grandes os

2 Los términos prueba funcional y prueba estructurada suelen usarse en lugar de prueba de
y de caja blanca, respectivamente.

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFT.VA3E 423

debe desecharse nunca como impráctica. Es posible seleccionar y comprobar un nú-
mero limitado de rutas lógicas importantes; además de probar la validez de las prin-
cipales estructuras de datos.

1 4 . 3 P R U E B A S P E C A J A B L A N C A

La prueba de caja blanca, en ocasiones l lamada prueba de caja de cristal, es un mé-
todo de diseño que usa la estructura de control descrita c o m o parte del diseño al ni-
vel de componentes para derivar los casos de prueba. Al emplear los métodos de
prueba de caja blanca, el ingeniero del sof tware podrá derivar casos de prueba que
1) garanticen que todos las rutas independientes dentro del módulo se han ejercita-
do por lo menos una vez, 2) ejerciten los lados verdadero y falso de todas las deci-
siones lógicas, 3) ejecuten todos los bucles en sus límites y dentro de sus límites ope-
racionales, y 4) ejerciten estructuras de da tos internos para asegurar su validez.

"Los errores pululan en los rincones y se acumulan en los límites."
Boris Beizer

1 4 . 4 P R U E B A P E LA RUTA B Á S I C A

La prueba de la ruta básica es una técnica de prueba de caja blanca que propuso ini-
cialmente Tom McCabe [MCC76]. El método de la ruta básica permite que el diseñador
de casos de prueba obtenga una medida de complejidad lógica de un diseño procedi-
mental y que use esta medida como guía para definir un conjunto básico de rutas de
ejecución. Los casos de prueba derivados para ejercitar el conjunto básico deben ga-
rantizar que se ejecuta cada instrucción del programa por lo menos una vez duran-
te la prueba.

14.4.1 Notación de gráfica de flujo
Antes de tratar el método de la ruta básica, debe presentarse una notación simple
para la representación del flujo de control, l lamado gráfica de flujo [o gráfica del pro-
grama).3 La gráfica de flujo describe un flujo de control lógico empleando la notación
ilustrada en la figura 14.1. Cada construcción estructurada (capítulo 11) tiene su sím-
bolo correspondiente en la gráfica de flujo.

El uso de una gráfica de flujo se ilustra considerando la representación del dise-
ño procedimental de la figura 14.2a. Aquí se describe la estructura de control del pro-
grama mediante un diagrama de flujo. En la figura 14.2b se correlaciona (o mapea)
el diagrama de flujo con su gráfica de flujo correspondiente (suponiendo que no exis-
ten condiciones compues tas en los d iamantes de decisión del diagrama de flujo). To-

CONSEJO^

xbe dibujarse
jvJiode

cuando la
lógico de

~n te seo
.El

de flujo
trozar

del programa de
más legible.

3 En realidad, el método de la ruta básica se aplica sin el uso de las gráficas de flujo. Sin embargo, sir-
ven como notación útil para comprender el flujo de control e ilustrar el enfoque

TM

PDF Editor

424 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

mando como referencia la figura 14.2b, cada círculo, llamado nodo de gráfica de fk.
jo, representa una o más instrucciones procedimentales. Una secuencia de recu:
dros de proceso y un diamante de decisión se correlaciona con un solo nodo. Las fe
chas en la gráfica de flujo, llamadas aristas o enlaces, representan el flujo de cortr :
y son análogos a las flechas de los diagramas de flujo. Una arista debe terminar ST
un nodo, aunque el nodo no represente ninguna instrucción procedimental (porl
ejemplo, véase el símbolo en la gráfica de flujo para la construcción if-then-else de a
figura 14.1). Las áreas que limitan aristas y nodos se denominan regiones. C u a - : •
se cuentan las regiones se incluyen las áreas ubicadas fuera de la gráfica.4

Notación d e
gráf ica d e
flujo.

Las construcciones estructuradas en forma de gráfica de flujo:

Si Mientras Hasta

Donde cada circulo representa una o más
instrucciónen LDP sin ramificaciones o de código fuente

4 Un análisis más detallado de las gráflcas y su aplicación se presentará en la sección 14.6.1

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 425

Cuando se encuentran condiciones compuestas en un diseño procedimental, la
generación de una gráfica de flujo se vuelve ligeramente más complicada. Una con-
dición compuesta ocurre cuando hay uno o más operadores booleanos (OR, AND,
NAND, ÑOR) en una instrucción condicional. Tomando como referencia la figura
14.3, el segmento en LDP se traduce a la gráfica de flujo mostrada. Obsérvese que se
crea un nodo separado para cada una de las condiciones a y b en la instrucción IF a
OR b. Cada nodo que contiene una condición es un nodo predicado y se caracteriza
porque de él emanan dos o más aristas.

14.4.2 Rutas independientes del programa
Una ruta independiente es cualquier ruta del programa que ingresa por lo menos un
nuevo conjunto de instrucciones de procesamiento o una nueva condición. Cuando
se explica desde el punto de vista de una gráfica de flujo, una ruta independiente de-
be recorrer por lo menos una arista que no se haya recorrido antes. Por ejemplo, a
continuación se presenta un conjunto de rutas independientes en la gráfica de (lujo
de la figura 14.2b:

ruta 1: 1-11

ruta 2: 1-2-3-4-5-10-1-11

ruta 3: 1-2-3-6-8-9-10-1-11

ruta 4: 1-2-3-6-7-9-10-1-11

Obsérvese que cada nuevo camino ingresa una nueva arista. El camino

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11

no se considera una ruta independiente porque se trata simplemente de una combi-
nación de rutas ya especificadas y no recorre ninguna arista nueva.

Los caminos 1, 2, 3 y 4 constituyen un conjunto básico para la gráfica de flujo de
la figura 14.2b. Es decir, si se diseñan pruebas para forzar la ejecución de esas rutas

esta.

IF a OR b
then procedimiento x
else procedimiento y

ENDIF

TM

PDF Editor

4 2 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^CONSEJO^-

lo complejidad
ciclomótica es una
métrica que resulta
útil poro predecir
cuáles módulos tienen
más probabilidad de
contener errores. Se
emplea paro lo plo-
neación de pruebas
además del diseño de
casos de prueba.

f ¿Cómo se
* calcula la

complejidad ciclo-
mótica?

CIJA VE
Lo complejidad
ciclomótica proporciono
el limite superior del
número necesario de
casos de prueba para
garantizar que cada
instrucción del
programo se haya
ejecutado por lo menos
uno vez.

(un conjunto básico), se habrán ejecutado los lados verdadero y falso de cada i r - -
trucción del programa. Debe observarse que un conjunto básico no e s único. En rea
lidad, es posible derivar varios conjuntos básicos diferentes de un diseño proce--
mental determinado.

¿Cómo se sabe cuántas rutas buscar? El cálculo de la complejidad ciclomótica p : ~
porciona la respuesta. La complejidad ciclomática e s una métrica de software quej
proporciona una medida cuantitativa de la complejidad lógica de un p r o g r a - ¡
Cuando se emplea en el contexto del método de prueba de la ruta básica, el vai i
calculado mediante la complejidad ciclomática define el número de rutas inder : - -
dientes en el conjunto básico de un programa, y proporciona un límite superior r ;
ra el número de pruebas que deben aplicarse para asegurar que todas las ins t ruco: - !
nes se hayan ejecutado por lo menos una vez.

La complejidad ciclomática se basa en la teoría gráfica y se calcula de una de r a l
maneras :

1. El número de regiones corresponde a la complejidad ciclomática.

2 . La complejidad ciclomática, V { G) , de una gráfica de flujo, G, se define coir

V (C) = E - N + 2

donde E es el número de aristas, y N, el número de nodos de la gráfica de 3 u |
)°-

3 . La complejidad ciclomática, V(G), de una gráfica de flujo, G, también se de " ' -s i
c o m o

V (G) = P + 1

donde P es el número de nodos predicado incluidos en la gráfica de flujo C

Tomando como referencia una vez más la gráfica de flujo de la figura \42t i.
complejidad ciclomática se calcula empleando cada uno de los algoritmos qut a
acaban de indicar.

1. La gráfica de flujo tiene cuatro regiones.

2 . V(G) = 11 aristas - 9 nodos + 2 = 4

3 . V(G) = 3 nodos predicado + 1 = 4

HOGARSEGURO

Utilización de la complejidad ciclomática

L a e s c e n a : Cubículo de Shakira. L a c o n v e r s a c i ó n :

Los a c t o r e s : Vinod y Shakira, integrantes del equipo
de ingeniería del software HogarSeguro que t rabaja en
la planeación de pruebas pa ra la función de seguridad.

S h a k i r a : Mira.. Sé que debemos aplicar pruebas de
unidad a los componentes de la función de seguridad
pero hay demasiados, y si tomas en cuenta el número
operaciones que deben ejercitarse, no sé.. . tal vez det-e-

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA D A SOFTWARE 427

olvidarnos de la prueba de cajo blanca, integrar to-
? iiciar la ejecución de las pruebas de caja negra.

V i o d : ¿Crees que el tiempo es insuficiente para probar
i ion ponentes, ejercitar las operaciones y luego inte-

? II I
i r a : La fecha límite para el primer incremento está

cerca de lo que pensábamos.,, sí, claro, estoy preo-

: ¿Por qué no ejecutamos por lo menos pruebas
is a blanca en las operaciones más propensas a

«

i r a (e x a s p e r a d a) : ¿Y exactamente cómo sé
son las más propensas a error?

V de G.

i r a : ¿Qué?

V i n o d : La complejidad ciclomática (V de G¡. Sólo calcu
la V(G) para cada operación dentro de cada componen-
te y verás cuáles tienen los valores más elevados. Esos
son los que están más propensos a error.

S h a k i r a : ¿Y cómo calculo V de G?

V i n o d : Es muy fácil. Aquí tienes un libro que describe
cómo hacerlo.

S h a k i r a (h o j e á n d o l o) : Muy bien, no parece difícil.
Lo probaré, las operaciones con la V(G) más elevada se-
rán candidatos para las pruebas de caja blanca.

V i n o d : Sólo recuerda que no hay garantías. Un compo-
nente con una V(G) baja aún puede estar propenso a

' III
S h a k i r a : Muy bien. Pero por lo menos esto me ayudará
a reducir el número de componentes que necesariamente
deben someterse a prueba de caja blanca.

Lo más notable es que el valor de V(G) proporciona el límite superior del número
de rutas independientes que forman el conjunto básico; por implicación, ofrece un
límite superior del número de pruebas que debe diseñarse y ejecutarse para garanti-
zar la cobertura de todas las instrucciones del programa.

14.4.3 Derivación de casos de prueba
El método de prueba de la ruta básica se aplica a un diseño procedimental o al có-
digo fuente. En esta sección se presentará la prueba de la ruta básica como una se-
rie de pasos. Se empleará el procedimiento promedio (descrito en PDL en la figura
14.4) como ejemplo para ilustrar cada paso en el método de diseño de casos de prue-
ba. Obsérvese que promedio, aun en el caso de un algoritmo extremadamente sim-
ple, contiene condiciones compuestas y bucles. Los siguientes pasos se aplican para
derivar el conjunto básico:

1. Utilizando el d i seño o el código c o m o base s e dibuja la gráfica de flu-
jo correspondiente . En la creación de una gráfica de flujo se emplean los
símbolos y las reglas de construcción presentadas en la sección 14.4.1. To-
mando como referencia el PDL para obtener promedio en la figura 14.4, se
crea una gráfica de flujo numerando esas instrucciones en PDL, que se corre-
lacionarán o mapearán en los nodos correspondientes de la gráfica de flujo.
En la figura 14.5 se muestra la gráfica de flujo resultante.

2. Determínese la complejidad ciclomática de la gráfica de flujo resul-
tante. La complejidad ciclomática, V(C), se determina al aplicar el algoritmo
descrito en la sección 14.4.2. Debe indicarse que podría determinarse V(G) sin
desarrollar una gráfica de flujo, si se cuentan todas las instrucciones condicio-

TM

PDF Editor

428 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

P R O C E D I M I E N T O p r o m e d i o :
PDL con
nodos * E 8 Í e f>roce*nier,to caled® el promedio d e 100 o menos

Identificados.
número® que caen entre valores límite; también calcula la
suma y el total de números válidos

INTERFACE RETURN8 promedio, total .entrada, total-valido;
INTERFACE ACCEPT8 valor, minkno. máximo:

TYPE valor{1:100} 18 8CALAR ARRAY:
TYPE prome<fio. total.entrada, total, valido;

mínimo, m a d m o . suma 18 8CALAR;
TYPE i 18 INTEOER: I = 1:

total.entrada = total, vafido = 0 : 2
suma = 0 ; - """

DO WHILE valor [i] < > - 9 9 9 AND total .entrada < 100 3
4 incrementar total .entrada en I ;

IF valorfí] > = mínimo AND valorflj < = máximo 6
/ THEN incrementar total.vafido e n 1:

suma = s suma + valorflj
\ C1 OC !< EL8E omitir

ENDIF
, incrementar i en 1:

9 ENDD0
IF total.valido > 0 10
11 THEN promedio = suma / total.valido;

u E18E promedio = - 9 9 9 :
® ENDIF

END promedio

nales en el PDL (para el procedimiento promedio, las condiciones c o m p u e - s J
cuentan como dos) y se suma 1 al resultado. Tomando como referencia ia í- i
gura 14.5,

V(G) = 6 regiones
V(G) = 17 aristas - 13 nodos + 2 = 6
V(G) = 5 nodos predicado + 1 = 6

"Errar es de humanos, encontrar un error es de dioses.''

Robert D «

3. Determínese un conjunto bás i co de rutas l inealmente i n d e p e n d i e n - .
El valor de V(G) indica el número de rutas linealmente independientes de ai 1
estructura de control del programa. En el caso del procedimiento promec a
espera especificar seis caminos:

ruta 1: 1-2-10-11-13

ruta 2: 1-2-10-12-13

ruta 3: 1-2-3-10-11-13

ruta 4: 1-2-3-4-5-8-9-2-...

ruta 5: 1-2-3-4-5-6-8-9-2-...

ruta 6: 1-2-3-4-5-6-7-8-9-2-...

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 429

Los puntos suspensivos (...) que siguen a las rutas 4, 5 y 6 indican que es
aceptable cualquier ruta que se recorra en el resto de la estructura de control.
A menudo vale la pena identificar nodos predicado como apoyo para derivar
los casos de prueba. En este caso, los nodos 2,3, 5, 6 y 10 son nodos predicado.

4. Prepárense los c a s o s de prueba que forzarán la ejecución de cada ru-
ta en el conjunto bás ico . Es necesario seleccionar los datos de manera tal
que se establezcan apropiadamente las condiciones de los nodos predicado, a
medida que se prueba cada ruta. Cada caso de prueba se ejecuta y compara
con los resultados esperados. Una vez completados todos los casos, la perso-
na que aplica la prueba puede estar segura de que todas las instrucciones del
programa se han ejecutado por lo menos una vez.

Es importante observar que es imposible probar algunas rutas independientes
(como la ruta 1 en nuestro ejemplo) por separado. Es decir, en el flujo normal del
programa no puede obtenerse la combinación de los datos requeridos para recorrer
la ruta. En tales casos, estas rutas se ejercitan como parte de otra prueba del camino.

Gráfica de flujo Matriz de gráfica

TM

PDF Editor

4 3 0

^ ¿Qué e s una
* matriz de

gráfica y cómo se
e x t i e n d e para
usarla en la
prueba?

PARTE DOS PRÁonCA DE LA INGENIERÍA DEL SOFTWARE

14.4.4 Matrices de gráficas
El procedimiento para derivar la gráfica de flujo e incluso determinar un conjunto cc.
rutas básicas es sensible a la mecanización. Una estructura de datos d e n o m i n a n
matriz de gráfica resulta muy útil para desarrollar una herramienta de sof tware cv-1

ayude en la prueba de la ruta básica.
Una matriz de gráfica es una matriz cuadrada cuyo t amaño (es decir, el núrr e

de filas y columnas) es igual al número de nodos en la gráfica de flujo. Cada fila r
columna corresponde a un nodo identificado, y las ent radas de la matriz corresp: *
den a las conexiones (una arista) entre nodos. En la figura 14.6 se muestra un e je- r -
pío simple de una gráfica de flujo y su matriz de gráfica correspondiente [BEI90;

Tomando como referencia la figura, cada nodo en la gráfica está identificado
números , mientras que cada arista se identifica con letras. Una conexión entre
nodos se indica creando u n a entrada de letra en la matriz. Por ejemplo, el nodo 3
conecta al nodo 4 con la arista b.

Hasta este punto, la matriz de gráfica no es m á s que una representación
de una gráfica de flujo. Sin embargo, al agregar un peso de enlace a cada una de
entradas, la matriz de gráfica se convierte en una herramienta poderosa para
luar la estructura de control del programa durante la prueba. El peso de enlace
porciona información adicional acerca del flujo de control. En su forma más
el peso de enlace e s 1 (existe una conexión) o O (no existe una conexión). Perc
pesos de enlace también se le asignan otras propiedades, más interesantes:

• La probabilidad de que se ejecute un enlace (arista).

• El t iempo de procesamiento gas tado durante el recorrido a un enlace.

• La memoria requerida durante el recorrido de un enlace.

• Los recursos requeridos durante el recorrido de un enlace.

Beizer [BEI90] proporciona un tratamiento completo de algoritmos mater
adicionales que son aplicables a una matriz de gráfica. El empleo de es tas té
permite automatizar parcial o totalmente el análisis requerido para diseñar cas-:* i
prueba.

"Un error clósico es prestor más atención a la ejecución de los pruebas que a su diseño."
Brian I

i

1 4 . 5 P R U E B A S DE LA E S T R U C T U R A DE C O N T R O L

La técnica de prueba de la ruta básica descrita en la sección 14.4 es una de
técnicas para la prueba de estructuras de control. Aunque la prueba de la ruta ~ J
ca es simple y efectiva, no es suficiente por sí misma. En esta sección se ar
brevemente variaciones sobre la prueba de estructuras de control. Éstas er
la cobertura de las pruebas y mejoran la calidad de la prueba de caja blanca

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 4 3 1

> lógicas que
: mismo de

mes de

14.5.1 Prueba de condición

La prueba de condición [TAI89] es un método de diseño de casos de prueba que ejer-
:LAVE cita las condiciones lógicas contenidas en un módulo del programa. Una condición

s son mucho simple es una variable booleana o una expresión relacional, tal vez precedida con un
; en las operador NOT (->). Una expresión relacional toma la forma

s de las
£, <operador relacional> E¿

donde E, y E¿ son expresiones aritméticas y <operador relacional> es uno de los si-
guientes: < , < , = , # (desigual), > o a . Una condición compuesta la integran dos o
más condiciones simples, operadores booleanos y paréntesis. Se supone que entre
los operadores booleanos permitidos en una condición compuesta se incluyen OR (I),
AND (&) y NOT (-•). Una condición sin expresiones relaciónales se considera una ex-
presión booleana. Por tanto, los posibles tipos de elementos en una condición inclu-
yen un operador booleano, una variable booleana, un par de paréntesis (que encie-
rran una condición booleana simple o compuesta), un operador relacional o una ex-
presión aritmética.

Si una condición es incorrecta, entonces por lo menos un componente de la con-
dición es incorrecto. Por tanto, entre los tipos de errores en una condición se inclu-
yen los presentes en el operador booleano (operadores booleanos incorrectos/fai-
tantes/adicionales), en la variable booleana, en los paréntesis booleanos, en los
operadores relaciónales y en la expresión aritmética. El método de prueba de condi-
ción se concentra en la prueba de cada condición del programa para asegurar que
no contiene errores.

14.5.2 Prueba del flujo de datos
El método de prueba del flujo de datos selecciona rutas de prueba en un programa de
acuerdo con las ubicaciones de las definiciones y los usos de las variables en el pro-
grama. El enfoque de prueba del flujo de datos se ilustra suponiendo que a cada ins-
trucción de un programa se le asigna un número de instrucción, y que ninguna fun-
ción modifica sus parámetros o variables globales. En el caso de una instrucción con
I como número de instrucción,

DEF(I) = {X I instrucción I contiene una definición de X¡
USO(l) = {XI instrucción I contiene un uso de X)

Si la instrucción / es una instrucción if (si) o loop (bucle), su conjunto DEF está vacío
y su conjunto USO se basa en la condición de la instrucción /. Se dice que la defini-
ción de la variable X en la instrucción / está viva en la instrucción /' si existe una ru-
ta de la instrucción I a la /' que no contiene otra definición de X.

Una cadena definición-uso (DU) de la variable X es de la forma [X, /, /'], donde I e
/ ' son números de instrucción, X está en DEF(I) y USO(I'), y la definición de X en la
instrucción I está viva en la /'.

TM

PDF Editor

432 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

^ C O N S Í J O ^

No es realista
asegurar que la
prueba del flujo de
datos se usarú de
manera extenso
cuando se prueba un
sistemo grande.
Sin embargo, puede
usarse de una manera
orientada a un blonco
en óreos de software
que están bajo
sospecha.

C l a s e s d e
b u c l e s .

Una estrategia simple de prueba de flujo de datos consiste en solicitar que c a a í
cadena DU sea cubierta por lo menos una vez. Esta estrategia se denomina estrBü •
gia de prueba DU. Se ha mostrado que ésta no garantiza la cobertura de todas las •>>]
mas de un programa. Sin embargo, sólo en raras si tuaciones no se garantiza que
rama esté cubierta por una prueba DU, como en las construcciones if-then-else s - j
entonces-si_no) en que la parte then no tiene definición de alguna variable y la w l
te else no existe. En esta situación, la rama else de la instrucción if no está necea -1
r iamente cubierta por la prueba DU. Se han estudiado y comparado varias e s t n c i
gias de prueba de flujo de datos (por ejemplo, [FRA88], [NTA88], [FRA93]). A los i J
tores interesados se les recomienda que consideren consultar e sas referencias •
bliográflcas.

"Los personas que destacan en la aplicación de pruebas son maestras en percibir que 'a
ello."

) es gracioso' y actuar

Brian I
14.5.3 Prueba de bucles

i p k n J Los bucles son la piedra de toque para la gran mayoría de los algoritmos im
tados en software. Y aun así, a menudo se les presta poca atención mientras s¿
lizan pruebas de software.

La prueba de bucles es una técnica de prueba de caja blanca que se c o n c e n t r a ®
elusivamente en la validez de la construcción de bucles. Es posible definir c u a t n f l
ferentes clases de bucles [BEI90J: bucles simples, concatenados, anidados y i ^ i
f racturados (figura 14.7).

Bucles
no estructurados

TM

PDF Editor

C A P I T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 4 3 3

Buc le s s imples . El siguiente conjunto de pruebas se aplica a bucles simples, don
de n es el número máximo de pasos que permite el bucle.

1. Omitir por completo el bucle.

2. Sólo un paso por el bucle.

3 . Dos pasos por el bucle.

4 . m pasos por el bucle, donde m<n.

5 . n = 1, n, n + 1 pasos por el bucle

Buc le s an idados . Si se fuese a extender el enfoque de prueba de los bucles sim-
ples a los anidados, el número de pruebas posibles crecería geométr icamente a me-
dida que a u m e n t e el nivel de anidamiento. Esto generaría un número poco práctico
de pruebas. Beizer [BEI90] sugiere un enfoque que ayudará a reducir el número de
pruebas:

1.

(p O N S E J O ^ .

t oodrá probar
r écocia los bucles

i volver o

iniciar en el bucle más interno. Asignar a todos los bucles los valores míni-
mos.

Aplicar pruebas de bucle simple al más interno mientras se mant ienen los ex-
ternos en los valores mínimos del parámetro de iteración (como el contador
de bucles). Agregar otras pruebas para los valores fuera de rango o excluidos.

Trabajar hacia fuera, conduciendo pruebas para el siguiente bucle, pero man-
teniendo todos los d e m á s bucles externos en valores mínimos y otros bucles
anidados en valores "típicos".

Seguir mientras no se hayan probado todos los bucles.

B u c l e s c o n c a t e n a d o s . Los bucles concatenados se prueban empleando el enfo-
que definido para los bucles simples, si cada uno de los bucles es independiente. Sin
embargo, si dos bucles están concatenados y el contador del bucle I se emplea como
valor inicial para el bucle 2, entonces los bucles no son independientes. Cuando los
bucles no lo son, entonces se recomienda el enfoque aplicado a los bucles anidados.

Buc le s n o es tructurados . Siempre que sea posible, esta clase de bucles debe di-
señarse nuevamente para reflejar el uso de las construcciones de programación es-
tructurada (capítulo 11).

2.

3 .

4 .

< 1 !

Las pruebas de caja negra, también denominadas, pruebas de comportamiento, se
concentran en los requisitos funcionales del software. Es decir, permiten al ingenie-
ro de sof tware derivar conjuntos de condiciones de entrada que ejercitarán por com-
pleto todos los requisitos funcionales de un programa. La prueba de caja negra no
es una opción frente a las técnicas de caja blanca. Es, en cambio, un enfoque com-
plementario que tiene probabilidades de descubrir una clase diferente errores de los
que se descubrirían con los métodos de caja blanca.

TM

PDF Editor

4 3 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

¿ C u á l e s
• ? p r e g u n t a s

r e s p o n d e n l a s
p r u e b a s d e ca ja
n e g r a ?

CLAVE
Una gráfica representa
las relaciones entre los
objetos de datos y los
de programa, lo que
permite derivar casos
de prueba que
busquen errores
asociados con estos
relociones.

Las pruebas de caja negra tratan de encontrar errores en las siguientes cates
rías: 1) funciones incorrectas o faltantes, 2) errores de interfaz, 3) errores en estro:
turas de datos o en acceso a bases de datos externas, 4) errores de comportamier-
to o desempeño, y 5) errores de inicialización y término.

A diferencia de las pruebas de caja blanca, que se realizan al inicio del procese
prueba, las de caja negra tienden a aplicarse durante las últimas etapas de la \
ba (consúltese el capitulo 13). Debido a que éstas desatienden a propósito la estro:
tura de control, la atención se concentra en el dominio de la información. Las ¡
bas están diseñadas para responder las siguientes preguntas:

• ¿Cómo se prueba la validez funcional?

• ¿Cómo se prueban el comportamiento y el desempeño del sistema?

• ¿Cuáles clases de entrada serán buenos casos de prueba?

• ¿El sistema es particularmente sensible a ciertos valores de entrada?

• ¿Cómo se aislan los límites de una clase de datos?

• ¿Cuáles tasas de datos y cuál volumen tolera el sistema?

• ¿Qué efecto tienen combinaciones específicas de datos sobre la operador
sistema?

Al aplicar técnicas de caja negra se deriva un conjunto de casos de prueba que
tisfacen los siguientes criterios [MYE79]: 1) casos de prueba que reducen, m
una cuenta mayor que uno, el número de casos de prueba adicionales que debe- I
señarse para alcanzar una prueba razonable, y 2) casos de prueba que indicar sd
acerca de la presencia o ausencia de clases de errores, en lugar de un error
do sólo con la prueba específica a la mano.

14.6.1 Métodos gráficos de prueba
El primer paso en la prueba de caja negra es comprender los objetos5 modelac s
el software y la relación entre ellos. Una vez que se ha logrado, el siguiente 3
consiste en definir la serie de pruebas que verifican que "todos los objetos t!
relación esperada entre sí" [BEI95J. Explicado de otra manera, la prueba de
re empieza al crear una gráfica de objetos importantes y sus relaciones y luegc a
una serie de pruebas que cubran la gráfica de tal manera que se ejercite cada :n
to y relación y que se descubran los errores.

Para dar estos pasos, el ingeniero de software empieza creando una gráfica
colección de nodos que representan objetos, enlaces que representan la reía
tre objetos, pesos de nodo que describen las propiedades de un nodo (como ur a
de datos o un comportamiento de estado específico) y pesos de enlace que di
algunas características de un enlace.

5 En este caso el término "objetos" se considera en el contexto más amplio posible. Abarca obie: - :
tos, componentes (módulos) tradicionales y elementos orientados a objetos del software de có

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTV/ARI 435

ación
y w

'(tiempo de generación < 1.0 seg)

Permite la edición de
Es representada como Atributos:

Contiene Dimensión inicial: valor o
preferencias

predeterminados
Color de fondo: blanco
Color de texto: color o

' preferencias

En la figura 14.8a se muestra una representación simbólica de una gráfica. Los
nodos se representan como círculos conectados por enlaces que toman un número
diferente de formas. Un enlace directo (representado por una flecha) indica que una
relación se mueve en una sola dirección. Un enlace bidireccional, también denomi-
nado enlace simétrico, indica que la relación se aplica en ambas direcciones. Los en-
laces paralelos se emplean cuando se establece un número diferente de relaciones
entre los nodos de la gráfica.

Como ejemplo simple, considérese una parte de la gráfica para una aplicación de
procesamiento de palabras (figura 14.8b) donde

Objeto ttl = nuevoArchivo (menú selección)
Objeto #2 = ventanaDocumento
Objeto #3 = t ex toDocumento

Si se toma como referencia la figura, una selección del menú en nuevoArchivo ge-
nera una ventana de documento. El peso del nodo de ventanaDocumento propor-
ciona una lista de los atributos de la ventana que se esperaban cuando ésta se ge-
neró. El peso del enlace indica que la ventana debe generarse en menos de 1.0 se-
gundos. Un enlace indirecto establece una relación simétrica entre la selección del
menú nuevoArchivo y t extoDocumento . y los enlaces paralelos indican las rela-
ciones entre ventanaDocumento y t ex toDocumento . En realidad, tendría que ge-
nerarse una gráfica mucho más detallada como precursora del diseño de casos de
prueba. El ingeniero de software deriva entonces los casos de prueba al recorrer la

TM

PDF Editor

4 3 6 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

gráfica y cubrir cada una de las relaciones mostradas. Estos casos de prueba se á
señarán en un intento de encontrar errores en cualquiera de las relaciones.

Beizer [BEI95] describe varios métodos de prueba de comportamiento que

gráficas:

Mode lado del flujo d e transacción. Los nodos representan pasos de alguna tran-
sacción (por ejemplo, los pasos requeridos para hacer una reservación en una
línea empleando un servicio en línea) y los enlaces representan la conexión lí
entre los pasos. El diagrama de flujo de datos (capítulo 8) se utiliza para ayudar
la creación de gráficas de este tipo.

Modelado d e e s t a d o finito. Los nodos representan los diferentes estados que
usuario observa en el sof tware (por ejemplo, cada una de las "pantallas" que ap
cen cuando un empleado toma un pedido por teléfono) y los enlaces representar
transiciones que ocurren para ir de un estado a otro. El diagrama de es tado (
lo 8) ayuda a crear gráficas de este tipo.

Mode lado de l flujo d e datos . Los nodos son objetos de datos, y los enlaces
las t ransformaciones que ocurren para traducir un objeto de datos en otro. Por <
pío, el nodo i m p u e s t o re ten ido por FICA (IRF) se calcula a partir de salario
t o (SN) empleando la relación IRF = 0 . 6 2 x SN.

Mode lado re lac ionado c o n el t i empo . Los nodos son objetos de programa, y 1

enlaces son las conexiones secuenciales entre e sos objetos. Con los pesos de
ce se especifican los t iempos de ejecución requeridos mientras el programa se

cuta.

Un análisis detallado de cada uno de estos métodos gráficos de prueba se en
tra más allá del alcance de este libro. El lector interesado debe consultar IBEI95]
ra tener una cobertura completa.

14.6.2 Partición equivalente
La partición equivalente e s un m é t o d o de prueba de caja negra que divide el
nio de ent rada de un programa en clases de datos a partir de las cuales pueder
rivarse casos de prueba. Un caso de prueba ideal de manejo simple descubre
clase de errores (por ejemplo, procesamiento incorrecto de todos los datos de <

^^ONSEJO^^ teres) que, de otra manera, requeriría la ejecución de muchos casos antes de que
observe el error general. La partición equivalente se esfuerza por definir un cas :
prueba que descubra ciertas clases de errores, reduciendo así el número total de
sos de prueba que deben desarrollarse.

El diseño de casos de prueba para partición equivalente se basa en una ev
ción de las clases de equivalencia para una condición de entrada. Con el uso ce
conceptos introducidos en la sección anterior, si es posible enlazar un conjun::
objetos mediante relaciones simétricas, transitivas y reflexivas, entonces existe
clase de equivalencia [BEI95]. Una clase de equivalencia representa un conjun::
es tados válidos y no válidos para las condiciones de entrada. Por lo general

Las condiciones de en-
trado son conocidos
en una etapa relativa-
mente temprono del
proceso de software.
Por esto, debe empe-
zase a pensar en la
xrtiaón equivalente
« e n t r a s e

TM

PDF Editor

CAPÍTULO 14 TÉCNICAS DE PRUEBA DEL SOFTWARE 437

¿Cómo s e
de f inen la s

; para
p r o b a s ?

\ CLAVE
¿ft extiende I

~trarse en los
de las "aristas"

E una clase de
«ardentía.

¿ C ó m o
p u e d o crear

d e prueba
A V I ?

condición de entrada es un valor numérico específico, un rango de valores, un con-
junto de valores relacionados o una condición booleana. Las clases de equivalencia
se definen de acuerdo con las siguientes directrices:

1. Si una condición de entrada especifica un rango, se definen una clase de equi-
valencia válida y dos no válidas.

2 . Si una condición de entrada requiere un valor específico, se definen una clase
de equivalencia válida y dos no válidas.

3 . Si una condición de entrada especifica un miembro de un conjunto, se definen
una clase de equivalencia válida y otra no válida.

4. Si una condición de entrada e s booleana, s e definen una clase de equivalen-
cia válida y otra no válida.

Al aplicar .estas directrices para la derivación de clases de equivalencia, se desa-
rrollarán y ejecutarán los casos de prueba para cada objeto de los datos del dominio
de entrada. Los casos de prueba se seleccionan de m o d o que el mayor número de
atributos de clase de equivalencia se ejercita una vez.

14.6.3 Análisis de valores límite
Es mayor el número de errores que s e presenta en los límites del dominio de entra-
da que en el "centro"; por ello se ha desarrollado el análisis de valores límite (AVL) co-
mo técnica de prueba. El AVL lleva a una selección de casos que prueba los valores
límite.

El análisis de valores límite es una técnica de diseño de casos de prueba que com-
plementa la partición equivalente. En lugar de seleccionar cualquier e lemento de
una clase de equivalencia, el AVL lleva a la selección de casos de prueba en las "aris-
tas" de la clase. En lugar de concentrase exclusivamente en las condiciones de en -
trada, el AVL también deriva casos de prueba del dominio de salida [MYE79].

Las directrices para el AVL son muy similares a las proporcionadas para la parti-
ción equivalente:

1. Si una condición de entrada especifica un rango limitado por los valores a y b,
los casos de prueba deben diseñarse con esos valores, además de los que se
encuentran apenas arriba y abajo de ellos.

2 . Si una condición de entrada especifica diversos valores, deben desarrollarse
casos de prueba que ejerciten los números máximo y mínimo. También se
prueban los valores ubicados apenas arriba y aba jo de estos máximos y míni-
mos.

3. Aplicar las directrices 1 y 2 a las condiciones de salida. Por ejemplo, supónga-
se que una tabla que compara presión y temperatura se requiere como salida
de un programa de análisis de ingeniería. Los casos de prueba deben diseñar-
se para crear un informe de salida que produzca el número máximo (y míni-
mo) permisible para las ent radas de la tabla.

TM

PDF Editor

438 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

4 . Si la estructura interna de datos del programa tiene límites prescritos (por
ejemplo, una matriz que tiene un límite definido de cien entradas) debe disc
ñarse un caso de prueba para ejercitar los límites de la estructura de datos

La mayoría de los ingenieros de software realizan intuitivamente el AVL, hasta c e a
to grado. Al aplicar estas directrices, la prueba de límites estará más completa
tanto, tendrá una mayor probabilidad de detectar errores.

"El cohete Arione 5 estalló al despegar debido a un simple defecto (error) del software que se relacionaba con la eos
versión de un valor de punto flotante de 64 bits en un entero de 16 bits. El cohete y sus cuatro satélites carecían os
seguro y costaron 500 millones de dólares. Una prueba completa del sistema hubiere encontrado el error, pero f w •*- I
fado por razones de presupuesto."

Informe n o t i ó c
i ™

K % CLAVE
La prueba de toblo
ortogonal permite
diseñar casos de
prueba que
proporcionan la
máxima cobertura de
prueba con un número
razonable de casos de
prueba.

14.6.4 Prueba de tabla ortogonal
Hay muchas aplicaciones en las cuales el dominio de entrada es relativamente r *
tado. Es decir, el número de parámetros es pequeño y los valores que cada p a ~ 3 3 *
tro puede tomar están claramente limitados. Cuando estos números son muy p e o H
ños (por ejemplo, tres parámetros de entrada toman tres valores discretos cada -~ncfl
es posible considerar cada permutación de entrada y probar exhaustivamente e n f l
cesamiento del dominio de entrada. Sin embargo, a medida que crece el n ú m e i B
valores de entrada, junto con el número de valores discretos para cada elemeros I
prueba exhaustiva se vuelve poco práctica o imposible.

La prueba de tabla ortogonal se aplica en problemas en los cuales el d o m r i :
entrada es relativamente pequeño, pero demasiado grande para una prueba e r »
tiva. El método de prueba de tabla ortogonal resulta útil sobre todo para enccr^M
errores asociados con las fallas de región (una categoría de error asociada cor
fectos de la lógica en un componente de software).

Ilustrar la diferencia entre la prueba de tabla ortogonal y los enfoques más
cionales de "un elemento de entrada a la vez" requiere imaginar un sistema C O H ^ H

elementos de entrada, X,YyZ. Cada uno de estos elementos tiene tres valcr ts(^B
cretos asociados. Hay 33 = 27 casos de prueba posibles. Phadke [PHA97] sug>e-^B
concepto geométrico, que se ilustra en la figura 14.9, para los posibles c a s ^ ^ H
prueba asociados con X, Y y Z. Si toma como referencia la figura, sólo un e!e-nd
de entrada podría variar a un mismo tiempo en la secuencia que sigue cada a s
entrada. Esto da como resultado un cobertura relativamente limitada del domin:: «
trada (que representa el cubo de la izquierda de la figura).

Cuando se presenta una prueba de tabla ortogonal se crea una tabla ortogxm
de casos de prueba, la cual tiene una "propiedad de equilibrio" [PHA97]. Es Crr*|
casos de prueba (representados con puntos azules en la figura) están "unifor"
te dispersos por todo el dominio de la prueba", como se ilustra en el cubo de la
de la figura 14.9. La cobertura de prueba en el dominio de entrada es más comnH

TM

PDF Editor

CAPÍTULO 14 TÉCNICAS DE PRUEBA DEL SOFTWARE 439

97],

de

O

Un e l e m e n t o d e e n t r a d a a la v e z Tabla o r t o g o n a l L9

Para ilustrar el uso de la tabla ortogonal L9, considérese la función enviar de una
aplicación de fax. Se pasan cuatro parámetros, Pl, P2, P3 y P4 a la función enviar.
Cada uno toma tres valores discretos. Por ejemplo, Pl toma los valores:

Pl = 1, enviarlo ahora

Pl = 2, enviarlo en una hora

Pl = 3, enviarlo a medianoche

P2, P3 y P4 también podrían tomar los valores 1, 2 y 3, representando otras funcio-
nes de enviar.

Si se eligiera una estrategia de prueba "un elemento de entrada a la vez", se es-
pecificarían las siguientes secuencias de prueba (Pl, P2, P3, P4): (1, 1, 1, 1), (2, 1, 1,
1), (3, I, 1, 1), (1,2, 1, 1), (1, 3, I, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2) y (1, 1, 1, 3).
Phadke [PHA97] evalúa estos casos de prueba al afirmar:

Estos casos de prueba sólo son útiles cuando se está seguro de que los parámetros de
prueba no interactúan. Detectarán fallas de lógica donde un solo valor de parámetro ha-
ce que el sof tware funcione mal. Se trata de fallas de modalidad simple. Este método no de-
tecta fallas de lógica que provoquen un mal funcionamiento cuando dos o más parámetros
toman ciertos valores s imultáneamente; es decir, no detecta interacciones. Por tanto, su
capacidad para detectar fallas está limitada.

Dado el número relativamente pequeño de parámetros de entrada y valores discre-
tos es posible aplicar una prueba exhaustiva. El número de pruebas requeridas es 34 =
81 (grande, pero manejable). Se encontrarían todas las fallas asociadas con permu-
tación de elementos de datos, pero el esfuerzo requerido es relativamente alto.

El enfoque de prueba de tabla ortogonal permite proporcionar buena cobertura de
prueba con un número considerablemente menor de casos de prueba que la estra-
tegia exhaustiva. En la figura 14.10 se muestra una tabla ortogonal L9 para la fun-
ción enviar de fax.

A continuación se presenta la evaluación de Phadke [PHA97] acerca de las prue-
bas aplicadas con la tabla ortogonal:

TM

PDF Editor

440 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Tabla
ortogonal L9.

Caso
de prueba Parámetros de prueba

D e t e c t a y ais la todas la s fal las de modal idad s imple . Una falla de modalidad s r rh
pie es un problema consistente con cualquier nivel de cualquier parámetro simple. ~ -
ejemplo, si todos los casos de prueba del factor Pl = 1 causan una condición de error -r
trata de una falla de modalidad simple. En este ejemplo, las pruebas 1,2 y 3 (figura 14
mostrarán errores. Al analizar la información acerca de cuáles pruebas muestran err:*i i
se identifican cuáles valores de parámetros causan la falla. En este ejemplo, al notar cjí
las pruebas 1,2 y 3 causan errores, se aisla [el procesamiento lógico asociado con "e
lo ahora" (Pl = 1)] como la fuente del error. Este aislamiento de la falla es importante:
ra corregirla.

D e t e c t a todas las fallas d e modal idad doble . Si existe un problema con
cuando se presentan niveles específicos de dos parámetros al mismo tiempo, se le i
mina falla de modalidad doble. Por supuesto, se trata de una indicación de incomp
dad de un par de valores o de interacciones dañinas entre dos parámetros de prueba

Fallas mul t imodales . Las tablas ortogonales (del tipo mostrado) sólo aseguran 1=

tección de fallas de modalidad simple y doble. Sin embargo, es tas pruebas también (
tan muchas fallas multimodales.

Un análisis detallado de las pruebas de tabla ortogonal se encontrará en

H E R R A M I E N T A S DE SOFTWARE
Diseño de casos de prueba

1 ^ 1 Objetivo: Ayudar al equipo de software a de-
sarrollar un conjunto completo de casos de

prueba de caja blanca y negra.

Mecánica: Estas herramientas caen en dos amplias cate-
gorías: pruebas estáticas y dinámicas. Se emplean tres ti-

pos diferentes de herramientas de prueba estática er i
herramientas de prueba basadas en código, lenguc :
prueba especializados y herramientas de prueba i
en requisitos. Las herramientas de prueba basadas <
digo aceptan código fuente como entrada y realizar i
rios análisis que llevan a la generación de casos de

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA D A SOFTWARE 441

. Los lenguajes de prueba especializados (como
i permiten que un ingeniero de software escriba es-

iones detalladas que describen cada caso de
y la logística para su ejecución. Las herramientas

zrjeba basadas en requisitos aislan requisitos específi-
oel usuario y sugieren casos de prueba (o clases de

) que ejercitarán los requisitos. Las herramientas
licas de prueba interactúan con un programa de eje-
; revisando la cobertura del camino, probando las

iones relacionadas con el valor de variables especí-
e instrumentando de otra manera el flujo de ejecución

irograma,

mientas representa t ivas 6

Test, desarrollada por McCabe & Associates
-Avw.mccabe.com), implemento diversas técnicas de

enjeba de la ruta derivadas de una evaluación de la
complejidad ciclomática y de otras métricas de software.

\
Panorama, desarrollada por International Software Auto-

mation, Inc. (www.softwareautomation.com), abarca un
juego completo de herramientas para desarrollar soft-
ware orientado a objetos, incluidas herramientas que
a y u d a n a d i s e ñ a r c a s o s d e p r u e b a y p l a n e a r p r u e b a s .

TestWorks, desarrollada por Software Research Inc. (www.
soft.com/Products), es un juego completo de herramien-
tas automatizadas de prueba que ayudan al diseño de
casos de prueba para software desarrollado en C/C++ y
Java y proporcionan soporte a pruebas de regresión.

T-Vec Test Generation System, desarrollado por T-VEC
Technologies (www.t-vec.com), es un conjunto de herra-
mientas que da soporte a pruebas de unidad, integra-
ción y validación al ayudar en el diseño de casos de
prueba empleando información contenida en una espe-
cificación de requisitos orientada a objetos. J

í®J *5 vilfA ¡FÍ THbSTO$ I íf í fe

La arquitectura del software orientado a objetos genera una serie de subsistemas se-
parados en capas que encapsulan las clases que colaboran entre sí. Cada uno de es-
tos elementos del sistema (subsistemas y clases) realiza funciones que ayudan a
cumplir con los requisitos del sistema. Es necesario probar un sistema orientado a ob-
jetos en diferentes niveles para descubrir errores que podrían ocurrir a medida que
las clases colaboran entre sí y los subsistemas se comunican entre las capas de la
arquitectura.

En el aspecto estratégico, la prueba orientada a objetos es similar a la de los sis-
temas convencionales, pero es diferente en el aspecto táctico. Debido a que los mo-
delos de análisis y diseño orientados a objetos tienen una estructura y un contenido
similares al programa orientado a objetos resultante, la "prueba" podría empezar con
la revisión de estos modelos. Una vez que se ha generado el código, la prueba orien-
tada a objetos real empieza por lo "pequeño", con una serie de pruebas diseñadas
para ejercitar las operaciones de clase y examinar si existen errores a medida que
una clase colabora con otra. Cuando las clases se integran para formar un subsiste-
ma, se aplica la prueba basada en el uso, junto con los enfoques basados en fallas,
para ejercitar plenamente las clases que colaboran entre sí. Por último, se emplean
los casos de uso para descubrir errores al nivel de validación del software.

El diseño convencional de casos de prueba lo determina el concepto entrada-pro-
ceso-salida del software o el detalle algorítmico de módulos individuales. La prueba

6 Las herramientas expuestas aquí sólo representan una muestra de esta categoría. En casi todos los
casos los nombres de las mismas son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.softwareautomation.com
http://www.t-vec.com

4 4 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Uno excelente colec-

cursos sobfe praebos
oiientodos o objetos se
encontrará en
w w w . r b s i . c a m .

orientada a objetos se concentra en el diseño de secuencias apropiadas de o p e r a c m
para ejercitar los estados de una clase.

14.7.1 Implicaciones del concepto orientado a objetos en el diseño
de casos de prueba

A medida que la clase evoluciona mediante los modelos de análisis y diseño se VJ±~
ve un destino para el diseño de casos de prueba. Debido a que los atributos y las :cu-
raciones están encapsulados, las operaciones de prueba fuera de la clase sueler s e
improductivas. Aunque el encapsulamiento es un concepto de diseño esenc:¿
orientación a objetos, representa un obstáculo menor cuando se prueba, como .:
dica Binder [BIN94]: "La prueba debe informar sobre el estado concreto y abs t r^a»
de un objeto". Sin embargo, el encapsulamiento llega a dificultar la adquisicicr. m ¡
esta información. A menos que se proporcionen operaciones integradas para
tar los valores de los atributos de clase, será difícil obtener una instantánea Ge s i
tado de un objeto.

La herencia también plantea desafios adicionales para el diseñador de cas :s
prueba. Ya se ha observado que cada nuevo contexto de uso requiere una nueva m | H
ba, aunque se haya alcanzado la reutilización. Además, la herencia múltiple' : . K M
plica la prueba más allá de aumentar el número de contextos que requierer
prueba [B1N94]. Si las subclases que se convierten en instancias a partir de
perclase se usan dentro del mismo dominio del problema, es posible usar el c c | ^ |
to de casos de prueba derivado de la superclase cuando se prueba la subclase 9 r
embargo, si ésta se emplea en un contexto completamente nuevo, los casos de rrof l
ba de la superclase no serán aplicables y será necesario diseñar un nuevo c o - ' - H l
de pruebas. J 14.7.2 Aplicabilidad de métodos convencionales de diseño de

de prueba
Los métodos de prueba de caja blanca descritos en secciones anteriores puede-
carse a las operaciones definidas para una clase. Las técnicas de flujo de dat os a l
prueba de la ruta básica o de bucle ayudan a asegurar que se han probado t c c a a H
instrucciones de una operación. Sin embargo, la estructura concisa de muchas
raciones de clase hace que algunos argumenten que el esfuerzo aplicado a ¿ 1

ba de caja blanca podría redirigirse mejor para probar un nivel de clase.
Los métodos de prueba de caja negra son tan apropiados para los sistema?

tados a objetos como los sistemas que se desarrollan con métodos conver
de ingeniería de software. Como ya se indicó en este mismo capítulo, los >
uso proporcionan información útil para el diseño de pruebas de caja negra y a
das en el estado [AMB95].

7 Uri concepto de orientación a objetos que debe usarse con extremo cuidado.

TM

PDF Editor

http://www.rbsi.cam

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA D A SOFTWARE 443

14.7.3 Prueba basada en fallas8

KVE
i para lo
loen
3 en crear

s sobre un
i de follas
s y luego ¡deor
s oora probar

i ¿Qué t i p o s
4c f a l l o s s e

ron e n la s
; a opera -

i y en las co-
e s e n t r e

El objetivo de la prueba basada en fallas dentro del sistema orientado a objetos es
diseñar pruebas que tengan una alta probabilidad de descubrir posibles fallas. Debi-
do a que el producto o sistema debe cumplir con los requisitos del cliente, la planea-
ción preliminar requerida para realizar la prueba basada en fallas empieza con el mo-
delo del análisis. La persona que aplica la prueba busca fallas posibles (es decir, as-
pectos de la implementación del sistema que generen defectos). Determinar si exis-
ten estas fallas requiere diseñar casos de prueba que revisen el diseño o el código.

Por supuesto, la efectividad de estas técnicas depende de la manera en que las
personas que aplican las pruebas adviertan una falla posible. Si las fallas reales en
un sistema orientado a objetos se consideran poco posibles, entonces este método
en realidad no es mejor que cualquier técnica de prueba al azar. Sin embargo, si los
modelos de análisis y diseño arrojan luz sobre lo que tal vez esté mal, entonces la
prueba basada en fallas encontrará una cantidad importante de errores con gastos
relativamente mínimos de esfuerzo.

La prueba de integración (cuando se aplica en un contexto orientado a objetos)
busca fallas en llamadas a operación o en conexiones entre mensajes. Tres tipos de
fallas se encuentran en este contexto: resultado inesperado, operación incorrecta/
mensaje empleado, invocación incorrecta. Para determinar las fallas a medida que
se invocan las funciones (operaciones), debe examinarse el comportamiento de la
operación.

La prueba de integración se aplica a los atributos y a las operaciones. Los "com-
portamientos" de un objeto los definen los valores que se asignan a sus atributos. La
prueba debe ejercitar los atributos para determinar si ocurren valores apropiados pa-
ra distintos tipos de comportamiento de objeto.

Es importante observar que las prueba de integración tratan de encontrar errores
en el objeto cliente, no en el servidor. Explicado en términos convencionales, el eje
de la prueba de integración es determinar si existen errores en el código que llama,
no en el código llamado. La llamada a la operación se usa como una pista, una ma-
nera de encontrar los requisitos de prueba que ejercitan el código que llama.

"Si s e quiere y espero que un programo funcione, lo más probable es que se vea un programa funcionando (y que se
pasen por alto las follas)."

Cem Kaner et oL

De la sección 14.7.3 a la 14.7.6 se ha adaptado de un articulo de Brian Marick publicado en el gru-
po de noticias de Internet componente.testing Esta adaptación se incluye con el permiso del au-
tor. Para conocer mayor información sobre estos temas consúltese (MAR94|. Debe observarse que
las técnicas analizadas de las secciones 14.7.3 a 14 7 6 son aplicables al software convencional.

TM

PDF Editor

4 4 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

%
CLAVE

Aunque se hoyo
probodo por completo
uno dose de bose, oún
se tendró que probar
todos los clases
derivados de ello.

CIJA VE
La prueba basado en
escenarios descubrirá
errores que ocurren

) cualquier octor
i con el

14.7.4 Casos de prueba y jerarquía de clase
La herencia no obvia la necesidad de una prueba completa de todas las clases
vadas. En realidad, llega a complicar el proceso de prueba. Imagínese la Siguiente
tuación. Una clase Base contiene las operaciones heredado() y redeJinido(). Una
se Der ivado define redefinidof) para que sirva en un contexto local. Hay pocas
das de que debe probarse Derívado::redefin¡do() porque representa un nuevo d :

un nuevo código. Pero ¿debe probarse de nuevo Derivado: :heredado()?
Si Derivado: :heredado() llama a redefinido() y el comportamiento redefinida ,

cambiado, es posible que Derivado::heredado() maneje erróneamente el nuevo
portamiento. Por tanto, se necesitan nuevas pruebas aunque no hayan cambi
diseño ni el código. Sin embargo, es importante observar que sólo es posible :
zar un subconjunto de todas las pruebas de Derivado: :heredado(). Si parte del i
el código de heredado() no depende de redefinido() (es decir, no lo llama a e.
ningún código que lo llame indirectamente), es innecesario probar de nuevo ese
digo en la clase derivada.

Base.-.-redefinidoU y Derívado::redefinido son operaciones distintas con diferentes
cificaciones e implementaciones. Cada una tendría un conjunto de requisitos
prueba derivados de la especificación y la implementación. Esos requisitos de ;
ba revisan fallas posibles: fallas de integración, de condición, de límites, etc. Sir
bargo, es probable que las operaciones sean similares; sus conjuntos de req
de prueba se superpondrán. Mientras mejor sea el diseño orientado a objetos,
yor será la superposición. Es necesario derivar nuevas pruebas exclusivamente
los requisitos de DeHvado::redefinido() que no se satisfagan con las pruebas de
: :redefinido().

En resumen, las pruebas de Base::redefin¡do() se aplican a objetos de la clase i
vado. Las entradas de prueba son apropiadas para las clases de base y derivada;
ro los resultados esperados podrían diferir en la clase derivada.

14.7.5 Prueba basada en escenarios
La prueba basada en fallas soslaya dos tipos importantes de errores: 1) es
ciones incorrectas y 2) interacciones entre subsistemas. Cuando ocurren errores i
ciados con especificaciones incorrectas, el producto no hace lo que el cliente
re. Podría hacer lo incorrecto, u omitir funcionalidad importante. En cualquier
se merma la calidad (el cumplimiento de los requisitos). Los errores asociadc;
las interacciones entre subsistemas ocurren cuando el comportamiento de ur
sistema crea circunstancias (como eventos o flujo de datos) que causan la ft
otro subsistema.

La prueba basada en escenarios se concentra en lo que hace el usuario, no e.
ducto. Esto significa que se deben capturar las tareas (mediante casos de uso)
usuario tiene que realizar y luego aplicarlas, junto con sus variantes, como p

Los escenarios descubren los errores de interacción. Pero esto se logra si
sos de prueba son más complejos y realistas que las pruebas basadas en falla;

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 445

^CONSEJO^^

¡la prueba
i en escenarios

: méritos, se
? mejores
s por tiempo

a si se revisan
5 de uso cuando

i xsarrollan como
¡del modelo de

pruebas basadas en escenarios tienden a ejercitar varios subsis temas en una sola
prueba (los usuarios no se limitan al uso de un subsistema a la vez).

Como ejemplo, considérese el diseño de pruebas basadas en escenarios para un
editor de texto mediante la revisión de los siguientes casos de uso informales:

Caso de uso: Corregir el borrador final.

Antecedentes: Es común que se imprima el borrador "final", se lea y se descubran algu-
nos errores molestos y confusos en la imagen en pantalla. Este caso de uso describe la se-
cuencia de eventos que se presenta cuando ocurre esto.

1. Se imprime todo el documento.

2. Se recorre el documento, cambiando ciertas páginas.

3. A medida que se hacen cambios, se imprime página por página.

4. A veces se imprime una serie de páginas.

Este escenario describe dos cosas: una prueba y necesidades específicas del usuario.
Las necesidades del usuario son obvias: I) un método para imprimir páginas indivi-
duales, y 2) un método para imprimir un rango de páginas. A medida que se aplica
la prueba, debe probarse la edición después de imprimir (y a la inversa). La persona
que aplica la prueba espera descubrir que la función de impresión causa errores en
la función de edición; es decir, que las dos funciones del software no tienen la inde-
pendencia apropiada.

Caso de uso: Imprimir una nueva copia.

Antecedentes: Alguien pide al usuario una nueva copia del documento. Debe impri-
mirse.

1. Se abre el documento.

2. Se imprime.

3. Se cierra el documento.

Una vez más, el enfoque de la prueba e s relat ivamente obvio, con la excepción de
que es te documento no aparece de la nada. Se creó en una tarea inicial. ¿Aquella ta-
rea afecta a ésta?

En muchos editores modernos , los documentos recuerdan cómo se imprimieron
por última vez. Como opción predeterminada, se imprimen de la misma manera la
siguiente ocasión. Después del escenario Corregir el borrador final, con sólo seleccio-
nar "Imprimir" en el menú y hacer clic en el botón Imprimir del cuadro de diálogo se
imprimirá de nuevo la última versión corregida. De modo que, de acuerdo con el edi-
tor, el escenario correcto debe tener este aspecto:

Caso de uso: Imprimir una nueva copia

1. Se abre el documento.

2. Se selecciona "Imprimir" en el menú.

TM

PDF Editor

446 P A R T E D O S P R Á C T C A DE LA INGENIERÍA DEL SOFTWARE

CLAVE
Lo prueba de
estructura de superficie
es análogo a lo pruebo
de cojo negra. Lo de
estructuro de fondo es
similor a la de cojo
blanco.

3. Se revisa si está imprimiendo un rango de páginas; si es así, se hace clic para

mir todo el documento.

4. Se hace clic en el botón Imprimir.

5. Se cierra el documento.

Pero este escenario indica un posible error de especificación. El editor no hace 1
el usuario espera razonablemente que haga. Los clientes con frecuencia o m r
revisión indicada en el paso 3. Se sentirán molestos cando vayan a la i m p r
encuentren una página cuando querían 100. Los clientes molestos señalarán
de especificación.

Un diseñador de casos de prueba podría pasar por alto esta dependencia al
ñar la prueba, pero es probable que el problema surja durante la prueba. El r
sable de ésta tendría entonces que enfrentarse a la probable respuesta: "¡asi
pone que debía funcionar!"

14.7.6 Estructuras de superficie y de fondo en pruebas
Estructura de superficie es la estructura observable externamente de un p
orientado a objetos. Es decir, la estructura que resulta inmediatamente obvia
usuario final. En lugar de realizar funciones, se le dan objetos determinados al
rio de muchos sistemas orientados a objetos para que los manipule. Pero
ra que sea la interfaz, las pruebas aún se basan en tareas de usuario. La c
estas tareas requiere comprensión, observación y comunicación con usuarios
sentativos (y con todos los usuarios que no lo son que valga la pena tomar en

Seguramente habrá algunas diferencias en los detalles. Por ejemplo, en li-
ma convencional con una interfaz orientada a comandos, el usuario podría
dos los comandos como lista de verificación de una prueba. Si no existen e r
de prueba para ejercitar un comando, es probable que la prueba soslaye al
reas del usuario (o que la interfaz tenga comandos inútiles). En una interfar
tada a objetos el responsable de la prueba podría emplear todos los objetos
una lista de verificación de una prueba.

Las mejores pruebas se derivan cuando el diseñador observa el sistema
manera nueva o poco convencional. Por ejemplo, si el sistema o el product
una interfaz basada en comandos, las pruebas más completas se derivarán
señador del caso de prueba pretende que las operaciones sean independiente;
objetos. Deben plantearse preguntas como: "¿El usuario deseará usar esta
(que sólo se aplica al objeto escáner) mientras trabaja con la impresora?
portar cuál sea el estilo de la interfaz, el diseño de casos de prueba que ej
estructura de superficie debe usar objetos y operaciones como pistas que c
a tareas omitidas.

La estructura a fondo representa los detalles técnicos internos de un
orientado a objetos. Es decir, la estructura que se comprende al examinar ei
el código, o ambos. La prueba de estructura de fondo está diseñada para e je '
pendencias, comportamientos y mecanismos de comunicación que se han

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 447

cido como parte del modelo de diseño (capítulos 9-12) para el sof tware orientado a
objetos.

Los modelos de análisis y diseño son la base de la prueba de estructura de fondo.
Por ejemplo, el d iagrama de colaboración UML o el modelo de despliegue describe
las colaboraciones entre objetos y subsis temas que tal vez no sean visibles externa-
mente. El diseñador de casos de prueba pregunta entonces: ¿hemos capturado (co-
mo prueba) a lgunas tareas que ejercitan la colaboración indicada en el diagrama de
colaboración? Si no e s así, ¿por qué?

"No se overgi lience de los errores ni los convierto en crímenes."
Confucio

1 4 . 8 M É T O D O S DE PRUEBA A P L I C A B L E S AL N I V E L DE C L A S E

En el capítulo 13 se indicó que la prueba del sof tware empieza por lo "pequeño" y
lentamente avanza hacia lo "grande". Se prueba en el pequeño entorno de una sola
clase y los métodos que están encapsulados en la clase. La prueba aleatoria y la par-
tición son métodos que se emplean para ejercitar una clase durante una prueba
orientada a objetos [KIR94].

14.8.1 Prueba aleatoria para clases orientadas a objetos
Para ilustrar brevemente es tos métodos, imagínese una aplicación bancaria en que
una clase C u e n t a tiene las siguientes operaciones: abrirf >, configurar(), depositar(), re-
tiran), saldar(), sumarf), IimiteCredito() y cerrafí) [KIR94]. Cada una de estas opera-
ciones se aplica a C u e n t a , pero hay ciertas restricciones (por ejemplo, la cuenta debe
abrirse antes de aplicar otras operaciones, y debe cerrarse después de que se han com-
pletado todas las operaciones) relacionadas con la naturaleza del problema. Aun con
estas restricciones, hay muchas permutas en las operaciones. El historial de compor-
tamiento mínimo de una instancia de C u e n t a incluye las siguientes operaciones:

abrir • configurar • depositar • retirar • cerrar

Esto representa la secuencia de prueba mínima para C u e n t a . Sin embargo, po-
dría presentarse una amplia variedad de comportamientos distintos dentro de esta
secuencia.

abrir • configurar • depositar • (depositar | retirar | saldar | sumar | limiteCredito]"-retirar "ce-

rrar

Es posible generar al azar varias secuencias diferentes de operaciones. Por ejemplo:

Caso de prueba r¡: abrir «configurar'depositar* depositar» saldar «sumar «retirar'cerrar

Caso de prueba r2: abrir«configurar«depos¡tar«ret¡rar«depositar«saldar*limiteCredi-
to« retirar «cerrar

Éstas y otras pruebas de orden aleatorio se aplican para ejercitar diferentes histo-
riales de instancias de clase.

CONSEJO^

de posibles
en uno

zieatorío llega
se muy
ln eficiencia

meba mejoraría
trizara una

similor o la
de tabla

TM

PDF Editor

4 4 8 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

HOGARSEGURO

Prueba de clase

l a e s c e n a : Cubículo de Shakira.

Los ac tores : Jamie y Shakira, integrantes de! equipo
de ingeniería del software HogarSeguro que están traba-
jando en el diseño de casos de prueba para lo función
de seguridad.

La conversac ión:

Shakira: He desarrollado algunas pruebas para la cla-
se Detector [figura 11.4], ya sabes, la que permite ac-
ceso a todos los objetos de S e n s o r para la función de
seguridad. ¿Estás familiarizada con ella?

J a m i e (sonriendo): Claro, es la que te permite agre-
gar el sensor antiperros".

Shakira: Esa misma. De cualquier manera, tiene una in-
terfaz con cuatro operaciones: leerQ, activar!), desactivarI)
y probarfj. Antes de que un sensor tenga la posibilidad de
leer, debe activarse. Una vez cctivado, puede leerse y pro-
barse. Es posible desactivarte en cualquier momento, a
menos que se haya procesado una condición de alarma.
De modo que definí una secuencia simple de prueba que
ejercitará su historial de comportamiento.

(Muestra a Jamie la siguiente secuencia.)

#1: activar'probar-leer-desactivar

Jamie: Eso funcionará, ¡pero tienes que probar más
que eso! '". .¡r ' '

Shakira: Lo sé, lo sé. He aquí otras secuencias que he
elaborado. ¿ti

(Muestra a Jamie las siguientes secuencias.)

2 : activar «probar* [leer]" «desactivar

3 : Peer]"

4 : activar «desactivar* [probar | leer]

Jamie: Déjame ver si comprendo tu intención. #1 reco-
rre el historial completo, lo que representa una es pe: e
de uso convencional. #2 repite la operación leer n
y ese es un escenario probable. #3 trata de leer e:

antes de que se active... eso debe producir algún • cc
mensaje de error, ¿verdad? #4 activa y desactiva e .-i
sor y luego trata de leerte. ¿No es lo mismo que le
ba 3?

Shakira: En realidad no. En #4 el sensor se ha
do. Lo que realmente pruebo #4 es si la operador- - :
var funciona como debería. Si se presentan ieer¡] o
probar() después de desactivar!), debe generarse
mensaje de error. Si no lo hace, entonces tenemos . -
error en la operación desactivar.

Jamie: Estupendo. Sólo recuerda que las cuatro
bas tienen que aplicarse a cada tipo de sensor,
coda operación puede tener diferencias sutiles,
diendo del tipo de sensor.

Shakira: No te preocupes. Ése es el plan.

^ ¿Cuáles
'•w opc iones de

prueba e s t á n
d i spon ib le s al
n ivel d e c l a s e ?

14.8.2 Prueba de partición al nivel de clase
La prueba de partición reduce el número de casos de prueba requeridos para si
tar la clase de manera muy parecida a la partición equivalente (sección 14.6 j
el software convencional. La entrada y la salida se ordenan en categorías y í-e ;
ñan casos de prueba para ejercitar cada categoría. ¿Cómo se derivan las c a t r ?
de partición?

La partición basada en el estado ordena en categorías las operaciones de
partir de su capacidad para cambiar el estado de la clase. Si se piensa una vez
en la clase Cuenta, las operaciones de estado incluyen depositar() y retiran 1 ni
tras que las que no son de estado incluyen saldar(), sumar() y limiteCrediu• i
pruebas están diseñadas de manera que ejercitan por separado las operado- a
cambian de estado y las que no lo hacen. Por tanto,

Caso de prueba p,: abrir «configurar «depositar «depositar «retirar «retirar «cerrar

Caso de prueba P¿ abrir«configurar«depositar«sumar«limiteCredíto«retirar«cerrar

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 449

El caso de prueba p , cambia de estado, mientras que el caso de prueba p2 e j e r c i t a
operaciones que no cambian de estado (aparte de las que se encuentran en la se-
cuencia de prueba mínima).

La partición basada en atributos ordena en categorías las operaciones de clase ba-
sadas en los atributos que utilizan. En el caso de la clase Cuenta, los atributos sal-
dar y limífeCredifo se emplean para definir particiones. Las operaciones se dividen en
tres particiones: 1) operaciones que usan limiteCredifo, 2) operaciones que modifican
limifeCredito, y 3) operaciones que no usan ni modifican limiteCredito. Entonces se dise-
ñan secuencias de prueba para cada partición.

La partición basada en categorías ordena en categorías las operaciones de clase
con base en la función genérica que cada una realiza. Por ejemplo, las operaciones
de la clase Cuenta se organizan en operaciones de inicialización [abrirf), configu-
rar()], operaciones computacionales \depositar(), retirarf)], consultas Isaldar)), su-
mar(), UmiteCreditof)\ y de terminación (cerrar(j\

El diseño de casos de prueba se vuelve más complicado cuando empieza la integra-
ción del sistema orientado a objetos. En esta etapa debe empezar la prueba de cola-
boración entre clases. Para ilustrar la "generación de casos de prueba de interclase"
[KIR94], se expande el ejemplo del sistema bancario presentado en la sección 14.8
para que incluya las clases y colaboraciones indicadas en la figura 14.11. La direc-
ción de las flechas en la figura indica la dirección de los mensajes. Y las etiquetas in-
dividuales indican las operaciones que se invocan como consecuencia de la colabo-
ración indicada por los mensajes.

Como en la prueba de clases individuales, la prueba de colaboración entre clases
se lleva a cabo al aplicar métodos aleatorios y de partición, además de pruebas ba-
sadas en el escenario y de comportamiento.

14.9.1 Prueba de clases múltiples

Kirani y Tsai [KIR94] sugieren la siguiente secuencia de pasos para generar varios
casos de prueba aleatorios de clases múltiples:

1. En cada clase cliente use la lista de operaciones de clase para generar una se-
rie de secuencias de pruebas aleatorias. Las operaciones enviarán mensajes a
otras clases del servidor.

2 . En cada mensaje generado, determínese la clase colaboradora y la operación
correspondiente en el objeto servidor.

3 . En cada operación del objeto servidor (invocada por los mensajes enviados
desde el objeto cliente) determínense los mensajes que transmite.

4. En cada uno de los mensajes, determínese el siguiente nivel de operaciones
invocadas e incorpórelos en la secuencia de prueba.

TM

PDF Editor

450 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Diagrama d e
colaboración
de c lases
para u n a
ap l i cac ión
bancar ia
(adaptado d e
[KIR94]).

Interfaz de
usuario de

cajero automático

tarjetolnsertada
contraseña
depositar
retirar
estatusCuenta
terminar

verificarCuenta
verilicarNIP
verificarPolitica
solicitarRetiro
solicitarDeposito
infoCuenta

verificarEstatus
estatusDeposito
despocharEfectivo
imprimirEstadoCuenta
leerlnfoTarjeta
obtenerMontoEfectivo

labrirCuenta
depositolniciaí
autorizarTarjeta
desautorizar
cerrarCuenta

limiteCredito
tipoCuenta
saldar
retirar
depositar
cerrar

Cajero Cuenta ln(o
Validación

Como ejemplo [KIR94], considérese una secuencia de operaciones para la
Banco relacionada con una clase CajeroAutomatico (figura 14.11):

verificarCuenta • verificarNIP» [[verificarPolitica • solict udRet iro] | solicitarDeposito |

Cuenta]"

Un caso de prueba aleatoria para la clase Banco sería:

Caso de prueba r3 = verificarCuenta-verificarNIP* solicitarDeposito

Considerar a los colaboradores que participan en la prueba requiere tomar er
ta los mensajes asociados con cada una de las operaciones indicadas en el
prueba r¡. Banco debe colaborar con infoValidacion para ejecutar viriji
veríf¡carNIP(). Banco debe colaborar con Cuenta para ejecutar solicitarDepos: •
tanto, se tiene un nuevo caso de prueba que ejercita estas colaboraciones:

Caso de prueba r4 = verificarCuentaBanco[val¡darCuentalnfoValidac¡on]
verificarNIPBanco* [validarNIPInfovalidacion] • solicitarDeposito • [depositarcuentaj

El enfoque para la prueba de partición de clases múltiples es similar al
empleado para la de clases individuales. Como se analizó en la sección 14.8^
mete a partición una sola clase. Sin embargo, se expande la secuencia de
para incluir las operaciones invocadas mediante mensajes a las clases que ~
ran. Un enfoque alterno lleva a cabo la partición de las pruebas con base i
terfaces de una clase determinada. Si se toma como referencia la figura 14.1:
se Banco recibe mensajes de las clases CajeroAutomatico y Cajero Por!
métodos dentro de Banco se prueban al particionarlas entre las que sirven ;
roAutomatico y a Cajero. La partición basada en el estado (sección 14.8.2
para refinar aún más las particiones.

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 451

14.9.2 Pruebas derivadas de modelos de comportamiento
En el capítulo 8 se analizó el uso del diagrama de estado como modelo para repre-
sentar el comportamiento dinámico de una clase. El diagrama de estado de una cla-
se ayuda a derivar una secuencia de pruebas que revisa el comportamiento dinámi-
co de la clase (y las clases que colaboran con ella). En la figura 14.12 [K1R94] se
muestra un diagrama de estado para la clase Cuenta que ya se analizó. Si se obser-
va, las transiciones iniciales recorren los estados vaciar Cuenta y configurar Cuenta.
Un retiro final y un cierre de la cuenta causan que la clase Cuenta haga transicio-
nes a los estados cuentalnactiva y cuentaMuerta, respectivamente.

Las pruebas que se diseñen deben cubrir todos los estados [KIR94]. Es decir, las
secuencias de operación deben lograr que la clase Cuenta haga una transición a to-
dos los estados permisibles:

Caso de prueba S,: abrir• configurCuenta• depositar(inicial) 'retirar(final) •cerrar

Debe notarse que esta secuencia es idéntica a la secuencia de la prueba mínima tra-
tada en la sección 14.9.1. La secuencia de la prueba adicional se agrega a la suce-
sión mínima,

Caso de prueba S,: abrir• configurarCuenta • depositar(in¡cial) 'depos i ta r • saldar • acre-

ditar • retirar(final) • cerrar

Caso de prueba Sy. abrir • configurarCuenta • depositar (inicial) • depositar • retirar • info-

Cuenta • retirar(final) • cerrar

Es posible derivar aún más casos de prueba para asegurar que todos los comporta-
mientos de la clase se hayan ejercitado adecuadamente. En situaciones en que el
comportamiento de la clase da como resultado la colaboración con una o más cla-
ses, se utilizan varios diagramas de estado para registrar el flujo del comportamien-
to del sistema.

Diagrama d e
es tado para
ia c lase
Cuenta
adaptado d e

nOR94]).

configurar j
Cuenta

saldar
Crédito

infoCuenta

depositar (inicial)

depositar

t r aba jando |
Cuenta

retirar

r
retirar (final)

Cuenta
Cerrar 1 i n a c t i v a

TM

PDF Editor

4 5 2 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

El modelo de es tado puede recorrerse de una manera "p r imero -en -anch- i
[MGR94]. En este contexto, pr imero-en-anchura indica que un caso de prueba
ejercita una transición. Cuando debe probarse una nueva transición sólo s e u
transiciones probadas previamente.

Imagínese que el objeto TarjetaCredito es parte del sistema bancario. El
inicial de TarjetaCredito es indefinido (es decir, no se ha proporcionado un n
ro de tarjeta de crédito). Tras leer la tarjeta durante una venta, el objeto toma un
tado definido-, es decir, se definen los atributos numero, tarjeta y fecha vencimiento
to con los identificadores específicos del banco. La tarjeta de crédito es r
cuando se le envía para autorización, y e s aprobada cuando se recibe la au
ción. La transición de TarjetaCredito de un es tado a otro se prueba derivantí J
sos de prueba que causen la transición. Un método primero-en-anchura para esr.r
de prueba no ejercitaría remitida antes de indefinida o definida. En este caso, usaría
siciones que no se han probado y, por tanto, violaría el criterio primero-en-anch^-i.

^CONSEJO^.

Úsese una estrategia
de prueba similar a la
aleatoria o de
partición (sección
14.8) poro diseñar
pruebas de interfoz de
usuario.

se encontrorfin
información y recursos
ú l f e s p
c íen le /serv idor :

w.csst-

Los métodos de prueba analizados en secciones anteriores suelen aplicarse
dos los entornos, las arquitecturas y las aplicaciones, pero en ocas iones se
cionan directrices y enfoques únicos para las pruebas. En esta sección se a '
las directrices para prueba de los entornos, las arquitecturas y las aplicaciones
cializadas que suelen encontrar los ingenieros de software.

14.10.1 Pruebas de interfaces gráficas de usuario
Las interfaces gráficas de usuario (GUI, por sus siglas en inglés) plantean d
teresantes a los ingenieros de software. Debido a los componentes reutiliza
porcionados como parte de los entornos de desarrollo de la GUI, la creación ce
terfaz de usuario consume menos t iempo y es m á s precisa (capítulo 12). Pero <
mo tiempo ha crecido la complejidad de las GUI, lo que dificulta m á s el di
ejecución de casos de prueba.

Debido a que muchas GUI modernas tienen un aspecto y un modo de uso
res, es posible derivar una serie de pruebas estándar. Las gráficas de mod
estado finito se usan para derivar una serie de p ruebas que ejerciten objetos
fieos de datos y programas que resultan relevantes para la GUI.

Debido al gran número de permutaciones asociadas con las operaciones
GUI, la prueba debe reducirse empleando herramientas automatizadas. En
mos a ñ o s ha aparecido en el mercado una amplia serie de herramientas de
de GUI. Para un mayor análisis al respecto consulte el capítulo 12.

14.10.2 Prueba de arquitecturas cliente/servidor
La arquitectura cliente/servidor representa un importante desafio para q
prueban el software. La naturaleza distribuida de los entornos c l i en te / sen

•

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 4 5 3

aspectos de desempeño relacionados con el proceso de transacción, la posible pre-
sencia de varias plataformas de hardware diferentes, la complejidad de la comuni-
cación en red, la necesidad de servir a varios clientes desde una base de datos cen-
tralizada (o, en algunos casos, distribuida) y los requisitos de coordinación impues-
tos al servidor se combinan para que la prueba de las arquitecturas de software
cliente/servidor resulte considerablemente más difícil que la prueba de aplicaciones
independientes. En realidad, estudios recientes de la industria indican un aumento
importante en el tiempo y costo de la prueba cuando se desarrollan entornos clien-
te/servidor.

"En el temo de los pruebas existe una buena dosis de similitud entre los sistemas tradicional y diente/servidor."

K e l l e y B o u m e

En general, la prueba del software cliente/servidor se presenta en tres niveles di-
ferentes: 1) aplicaciones de cliente individuales se prueban en una modalidad "des-
conectada"; la operación del servidor y la red no se toman en cuenta; 2) el software
de cliente y las aplicaciones asociadas del servidor se prueban en conjunto, pero las
operaciones de red no se ejercitan de manera explícita; 3) se prueba toda la arqui-
tectura cliente/servidor, incluida la operación y el desempeño de la red.

Aunque muchos tipos diferentes de prueba se conducen en cada uno de estos ni-
veles de detalle, los siguientes enfoques de prueba suelen encontrarse para aplica-
ciones cliente/servidor:

• Pruebas de funcionalidad de la aplicación. La funcionalidad de las aplica-
ciones de cliente se prueba empleando los métodos analizados en este capítu-
lo. En esencia, la aplicación se prueba de manera independiente.

• Pruebas de servidor. Se prueban las funciones de coordinación y manejo de
datos del servidor. También se considera el desempeño del servidor (tiempo
de respuesta y procesamiento total de los datos).

• Pruebas de b a s e de datos . Se prueba la exactitud e integridad de los datos
almacenados en el servidor. Se examinan las transacciones que realizaron las
aplicaciones de cliente para asegurar que los datos se almacenan, actualizan
y recuperan apropiadamente. También se prueba la función de archivado.

• Pruebas de transacción. Se crea una serie de pruebas para asegurar que
cada clase de transacciones se procesa de acuerdo con sus requisitos. Las
pruebas se concentran en determinar si es correcto el procesamiento y en as-
pectos del desempeño (por ejemplo, tiempos de procesamiento de las tran-
sacciones y volumen de éstas).

• Pruebas de comunicac iones de red. Con estas pruebas se verifica que la
comunicación entre los nodos de la red ocurre de manera correcta y que el
paso de mensajes, las transacciones y el tráfico de la red relacionado se reali-
za sin errores. También es posible realizar pruebas de seguridad de la red co-
mo parte de estas pruebas.

TM

PDF Editor

454 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Para completar estos enfoques de prueba, Musa [MUS93] recomienda el desarroi
de perfiles operaáonales derivados de escenarios de uso de cliente/servidor.9 Un per •
fil operacional indica la manera en que diferentes tipos de usuarios interoperan ccri
el sistema cliente/servidor. Es decir, los perfiles proporcionan un "patrón de us
aplicable al diseño y ejecución de las pruebas.

14.10.3 Prueba de la documentación y las funciones de ayuda
El término prueba del software evoca imágenes de grandes cantidades de casos ix|
prueba preparados para ejercitar los programas de cómputo y los datos que manir -
ían. Si se recuerda la definición de software presentada en el primer capítulo de es-
te libro, es importante observar que la prueba también debe extenderse al tercer e e
mentó de la configuración del software: la documentación.

Los errores en la documentación son tan devastadores para la aceptación del p r : -
grama como los errores en los datos o el código fuente. Nada es más frustrante
seguir una guía de usuario o una función de ayuda en línea con toda pulcritud >
tener resultados o comportamiento que no coinciden con los descritos en la
mentación. Por eso la prueba de la documentación debe ser una parte signifi
de cualquier plan de prueba del software.

La prueba de la documentación se aborda en dos fases. En la primera, reviste -
inspección (capítulo 26), se examina la claridad editorial del documento. En la
gunda fase, prueba en vivo, se emplea la documentación junto con el programa

M ' I H ' M - I I
• ¿El diseño del documento (formato, tipo de letra, sar-

grías, imágenes) es apropiado para comprender y a
milor rápidamente la información?

• ¿Todos los mensajes de error del software que se d e
pliegan para el usuario están descritos con más
en el documento? ¿Las acciones que deben em-
se como consecuencia de un mensaje de error i
ramente delineadas?

• Si se usan los vínculos de hipertexto, ¿son exactos •
completos?

• Si se usa el hipertexto, ¿el diseño de la navegado1- s
apropiado para la información requerida?

La única manera viable de responder a estas pregu^T.
hacer que un tercero (por ejemplo, algunos usuarios i
donados) pruebe la documentación en el contexto de ,
del programa. Se habrán de indicar todas las discr
cias y definirse las áreas débiles o ambiguas del
to para una posible reescritura.

Prueba de documentación
V, Las siguientes preguntas deben responderse

durante la prueba de documentación, de fun-
ción de ayuda, o ambas:

• ¿La documentación describe con exactitud la manera en
que se realiza cada modalidad de uso?

• ¿Es exacta la descripción de cada secuencia de interac-
ciones?

• ¿Los ejemplos son exactos?

• ¿La terminología, las descripciones de menú y las res-
puestas del sistema son consistentes con el programa
real?

• ¿Es realmente fácil localizar una guía dentro de la do-
cumentación?

• ¿El uso de la documentación facilita la detección y reso-
lución de errores?

• ¿El contenido y el índice del documento son exactos y
completos?

9 Debe observarse que los perfiles operacionales pueden aplicarse para probar todos los tipos
quitecturas del sistema, no sólo la cliente/servidor.

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA D A SOFTWARE 455

¿Cuál e s una
e s t r a t e g i a

i para la
i d e un s i s -

i en t i e m p o

14.10.4 Prueba de sistemas de tiempo real
La naturaleza asincrónica, dependiente del tiempo, de muchas aplicaciones en tiem-
po real agrega un elemento nuevo (y difícil en potencia) a la mezcla de pruebas: el
tiempo. El diseñador del caso de prueba no sólo debe considerar los casos de prue-
ba convencionales, sino también el manejo de eventos (es decir, el procesamiento
de interrupciones), la temporización de los datos y el paralelismo entre las tareas
(procesos) que manejan los datos. En muchas situaciones, los datos de prueba pro-
porcionados cuando el sistema en tiempo real está en un estado producirán un pro-
cesamiento apropiado, mientras que los mismos datos proporcionados cuando el
sistema esté en un estado diferente provocarán un error.

Por ejemplo, el software en tiempo real que controla una nueva fotocopiadora
acepta interrupciones del operador (es decir, el operador del equipo oprime teclas
como RE1NICIAR u OSCURECER) sin error cuando el equipo hace copias (en el esta-
do copiar). Si estas mismas interrupciones del operador se ingresan cuando el equi-
po se encuentra en el estado atasco, se perderá la pantalla de visualización del códi-
go de diagnóstico (indicando la ubicación del atasco), lo que representa un error.

Además, la íntima relación entre el software en tiempo real y su entorno de hard-
ware llegan a causar problemas en la prueba. Las pruebas del software deben con-
siderar el impacto de las fallas del hardware en el procesamiento del software. Re-
sulta extremadamente difícil simular estas fallas de manera realista.

Los métodos exhaustivos de diseño de casos de prueba para sistemas en tiempo
real siguen evolucionando. Sin embargo, es posible proponer una estrategia de cua-
tro pasos:

• Prueba de tareas. El primer paso en la prueba del software en tiempo real
consiste en probar cada tarea de manera independiente. Es decir, se diseñan y
ejecutan pruebas convencionales para cada tarea. (Cada tarea se ejecuta de
manera independiente durante estas pruebas.) La prueba de tareas descubre
errores de lógica y funcionamiento, pero no de tiempo ni de comportamiento.

• Prueba de comportamiento . Con el empleo de modelos del sistema crea-
dos con herramientas automatizadas es posible simular el comportamiento de
un sistema en tiempo real y examinarlo como una consecuencia de eventos ex-
ternos. Estas actividades de análisis sirven como base para el diseño de casos
de prueba que se realizan cuando se ha construido el software en tiempo real.

• Prueba intertareas. Una vez que se hayan aislado los errores en tareas indi-
viduales y en el comportamiento del sistema, la prueba se desplaza hacia los
errores relacionados con el tiempo. Se prueban las tareas asincrónicas de las
cuales se sabe que se comunican entre sí, empleando diferentes tasas de da-
tos y cargas de procesamiento para determinar si ocurrirán errores de sincro-
nización intertareas. Además, se prueban las tareas que se comunican por
medio de la cola de mensajes o el almacén de datos para descubrir errores en
el tamaño de estas áreas de almacenamiento de datos.

TM

PDF Editor

456 P A R T E D O S P R Á c n c A DE LA INGENIERÍA DEL SOFTWARE

* Prueba del s i s tema. El software y el hardware están integrados, de moc
que se aplica un rango completo de pruebas del sistema (capítulo 13) para
tar de descubrir errores en la interfaz software/hardware. Casi todos los
mas en tiempo real procesan interrupciones. Por tanto, resulta esencial la
prueba del manejo de estos eventos booleanos. Por medio del diagrama a s
estado y la especificación de control (capítulo 8), el responsable de la pi
desarrolla una lista de todas las interrupciones posibles y el procesamier '
que ocurre como consecuencia de las interrupciones. Entonces se diseña-
pruebas para evaluar las siguientes características del sistema.

—¿Se han asignado y manejado apropiadamente las propiedades de in
ción?

—¿Se ha manejado correctamente el procesamiento de cada interrupci: -

—¿El desempeño de cada procedimiento de manejo de interrupciones
ejemplo, el tiempo de procesamiento) cumple con los requisitos?

—¿Un elevado volumen de interrupciones que llega en momentos crític:•;
problemas en la función o el desempeño?

Además, deben probarse áreas de datos globales que se emplean para t
información como parte de un procesamiento de interrupciones, con el fin ce
luar la posibilidad de generación de efectos colaterales.

1 4 . 1 1 P A T R O N E S PE PRUEBA
En capítulos anteriores se analizó el uso de patrones como mecanismo para
bir los bloques de construcción del software o situaciones de ingeniería del
Estos bloques de construcción o situaciones se repiten a medida que se co"
diferentes aplicaciones o que se realizan diferentes proyectos. Como sus c*
tes en el análisis y el diseño, los patrones de prueba describen bloques de c
ción o situaciones frecuentes y que los responsables de probar el software
reutilizar al afrontar la prueba de algún sistema nuevo o revisado.

Los patrones de prueba no sólo proporcionan a los ingenieros del software
directriz útil cuando empiezan las actividades de prueba, también p r o p o r c i — -
beneficios adicionales descritos por Marick [MAR02]:

1. Proporcionan una terminología a los encargados de la resolución de los problen^s|
"Hey, ¿sabes?, debemos usar un Objeto Nulo."

2. Concentran la atención en las fuerzas que se encuentran detrás del problema. Esc
mite a los diseñadores |de casos de prueba] comprender mejor cuándo se aplic¿
solución, y por qué.

3. Estimulan el razonamiento iterativo. Cada solución crea un nuevo contexto para
ver nuevos problemas.

Apuntodores • más de
70 pollones de prueba
se encontraún en
wwwj-bsc.com.

\ CLAVE
l o s p o d o n e s de p r u e b o
ayudan o u n e q u i p o d e
s o f t w a r e a
c o m u n i c a r s e m e j o r
s o b r e la p r u e b a y
también a c o m p r e n d e r
m e j o r te f u e r z a s q u e
l e w n o un e n f o q u e
e p e í É c o d e p r u e b a .

TM

PDF Editor

C A P Í T U L O 1 4 TÉCNICAS DE PRUEBA DEL SOFTWARE 457

/

Aunque estos beneficios sean "leves", no deben perderse de vista. Buena parte de la
prueba del software, incluso durante las últimas décadas, ha sido una actividad ad

. efícien- ftoc gj | Q S p a t r o n e s prueba ayudan a un equipo de software a comunicarse de
manera más efectiva, a comprender las fuerzas motivadoras que llevan a un enfo-

encontroiói) que específico de prueba y a considerar el diseño de los casos de prueba como una
.ogts.com/ actividad en evolución, se habrá logrado mucho.

y Los patrones de prueba se describen de manera muy parecida a los de análisis y
/ diseño (capítulos 7 y 9). Se han propuesto docenas de patrones de prueba (por ejem-

plo, [B1N99], [MAR02]). Los siguientes tres patrones (presentados en forma resumi-
da), proporcionan ejemplos representativos:

Nombre del patrón: t e s t igo par

Resumen: Patrón orientado a procesos, t e s t igo par describe una técnica análoga a la pro-
gramación par (capítulo 4), en la cual dos responsables de una pruebas trabajan de mane-
ra conjunta para d iseñary ejecutar una serie de pruebas aplicables a actividades de prueba

de unidad, integración o validación.

Nombre del patrón: interfaz d e prueba separada

Resumen. En s is temas orientados a objetos es necesario probar cada clase, incluidas las
"clases internas" (es decir, las clases que no exponen ninguna interfaz fuera del compo-
nente que las utiliza). El patrón interfaz d e prueba separada describe la manera de
crear "una interfaz de prueba que permita describir pruebas específicas en clases que só-
lo son visibles internamente para un componente" [LANOI].

Nombre del patrón: prueba d e e s c e n a r i o

Resumen: Una vez que se ha aplicado una prueba de unidad o de integración es necesa-

rio determinar si el sof tware se comportará de manera tal que satisfaga al usuario. El pa-
trón prueba d e e s c e n a r i o describe una técnica para ejercitar el sof tware desde el punto

de vista del usuario. Una falla en este nivel indica que el sof tware no satisface los requisi-
tos de un usuario visible [KAN01].

Un análisis completo de los patrones de prueba está más allá del alcance de este li-
bro. El lector interesado debe consultar [BIN99] y [MAR02] para conocer mayor in
formación sobre este importante tema.

1 4 . 1 2 R E S U M E N
El objetivo principal del diseño de casos de prueba consiste en derivar un conjunto
de pruebas que tenga la mayor probabilidad de descubrir errores en el software. Al-
canzar este objetivo requiere emplear dos categorías diferentes de técnicas de dise-
ño de casos de prueba (aplicables a sistemas convencionales y orientados a objetos):
las pruebas de caja negra y de caja blanca.

Las pruebas de caja blanca se concentran en la estructura de control del progra-
ma. Los casos de prueba se derivan para asegurar que todas las instrucciones del
programa se ejecuten por lo menos una vez durante la prueba, y que todas las con-
diciones lógicas se ejerciten. La prueba de la ruta básica, una técnica de caja blan-

TM

PDF Editor

458 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

ca, aprovecha las gráficas de! programa (o matrices de gráficas) para derivar un
junto de pruebas linealmente independientes que aseguren una cobertura. La
ba de condición y de flujo de datos ejercitan aún más la lógica del programa
prueba de bucle complementa otras técnicas de caja blanca al proporcionar un
cedimiento para ejercitar bucles con grados diversos de complejidad.

Las pruebas de caja negra están diseñadas para validar requisitos funcionales
importar el funcionamiento interno de un programa. Estas técnicas de prueba
concentran en el dominio de la información del software, derivando casos de
ba mediante partición de los dominios de entrada y salida de un programa en
tal que proporcione cobertura completa. La partición equivalente divide el d
de entrada en clases de datos que probablemente ejercitarán una función es
del software. El análisis de valores límite prueba la capacidad del programa para
nejar datos en los límites de aceptabilidad. La prueba de tabla ortogonal prc
na un método eficiente y sistemático de probar sistemas con números peque^
parámetros de entrada.

Aunque el objetivo general de la prueba orientada a objetos (encontrar el
ro máximo de errores con una cantidad mínima de esfuerzo) es idéntico al
prueba del software convencional, la táctica para la prueba orientada a objet
fieren un poco. El concepto de prueba se ensancha para incluir la revisión
délo de análisis y diseño. Además, el eje de la prueba se desplaza del comp
procedimental (el módulo) hacia la clase. El diseño de pruebas para una clase
diversos métodos: prueba basada en fallas, aleatoria y de partición. Cada uno
tos métodos ejercita las operaciones encapsuladas por la clase. Las secue -

prueba están diseñadas para asegurar que se ejerciten operaciones relevar,"
examina el estado de la clase, representado por los valores de sus atributos,
terminar si existen errores.

La prueba de integración se realiza mediante una estrategia basada en el
te tipo de prueba construye el sistema en capas, empezando con las clases
usan clase de servidor. Los métodos de diseño de casos de prueba de int"
también pueden emplear pruebas aleatorias y de partición. Además, se utilizar
bas basadas en el escenario y derivadas de modelos de comportamiento para
una clase y sus colaboradores. Una secuencia de prueba da seguimiento al
las operaciones entre las colaboraciones de clases.

Los métodos de prueba especializados abarcan una amplia serie de opc
software y áreas de aplicación. La prueba para interfaces gráficas de usuario,
quitecturas cliente/servidor, de la documentación y funciones de ayuda y de
mas en tiempo real requieren directrices y técnicas especializadas.

Los desarrolladores de software con experiencia suelen decir: "La prueba
termina, sólo se transfiere del ingeniero del software al cliente. Cada vez
usa el programa, está realizando una prueba". Al aplicar el diseño de casos i
ba, el ingeniero de software logra pruebas más completas y, por tanto, d
corrige el mayor número de errores antes de que empiecen las "pruebas del

TM

PDF Editor

CAPÍTULO 14 TÉCNICAS DE PRUEBA DEL SOFTWARE 4 5 9

[AMB95] Ambler, S., "Using Use Cases", en Software Development, julio de 1995, pp. 53-61.
[BE1901 Beizer, B., Software Testing Techniques, s egunda edición, Van Nostrand-Rcinhold, 1990.
[BE195] Beizer, B., Black-Box Testing, Wiley, 1995.
[B1N94] Binder, R. V., "Testing Object-Oriented Systems: A Status Report", en American Program-

mer; vol. 7, núm. 4, abril de 1994, pp. 23-28.
[B1N99] Binder, R., Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley,

1999.
[DEU79] Deutsch, M„ "Verification a n d Validation", en Software Engineering (R. Jensen y C. To-

nies, e d s) , Prentice-Hall, 1979, pp. 329-408.
[FRA88] Frankl, P. G. y E. J. Weyuker, "An Applicable Family of Data Flow Testing Criteria", en

IEEE Trans. Software Engineering, vol. SE-14, núm.10, octubre de 1988, pp. 1483-1498.
(FRA93] Frankl, P. G. y S. Weiss, "An Experimental Comparison of the Effectiveness of Branch

Testing and Data Flow", en IEEE Trans. Software Engineering, vol. SE-19, núm.8, agosto de
1993, pp.770-787.

[KAN93] Kaner, C., J. Falk y H. Q. Nguyen, Testing Computer Software, segunda edición, Van Nos-
trand-Reinhold, 1993.

[KANOi] Kaner, C„ "Pattern: Scenar io Testing" (borrador), 2001, disponible en h t t p : / / w w w . t e s -
t ing .com/ tes t -pa t t ems /pa t t e rns /pa t t em-scenar io - tes t ing-kaner .h tml .

[K1R94] Kirani, S. y W. T. Tsai, "Specification and Verification of Object-Oriented Programs",
Technical Report TR 94-64, Computer Science Depar tment , University of Minnesota, diciem-
bre de 1994.

[LAN0II Lange, M., "It's Testing Time! Pat terns for Testing Software", junio de 2001, disponible
pa ra descarga en h t tp : / /www. tes t ing .com/ tes t -pa t t e rns /pa t t e rns / index .h tml .

[L1N94] Lindland, O. I. eí al., "Understanding Quality in Conceptual Modeling", en IEEE Software,
vol. 11, núm. 4, julio de 1994, pp. 42-49.

[MAR941 Marick, B., The Craft of Software Testing, Prentice-Hall, 1994.
[MAR02] Marick, B., "Software Testing Patterns", 2002, h t tp : / /www. tes t ing .com/ tes t -pa t t ems /

index.html.
[MCC76] McCabe, T., "A Sof tware Complexity Measure", en IEEE Trans. Software Engineering, vol.

SE-2, diciembre de 1976, pp. 308-320.
[MGR94] McGregor, J. D. y T. D. Korson, "Integrated Object-Oriented Testing and Development

Processes", CACM, vol. 37, núm. 9, sept iembre de 1994, pp. 59-77.
[MUS93] M u s a , " O p e r a t i o n a l Profiles in Sof tware Reliability Engineering", en IEEE Software,

m a r z o de 1993, pp. 14-32.
[MYE79J Myers, G., The Art of Software Testing, Wiley, 1979-
[NTA88] Ntafos, S. C., "A Comparison of Some Structural Testing Strategies", en IEEE Trans. Soft-

ware Engineering, vol. SE-14, núm.6, junio de 1988, pp. 868-874.
[PHA89] Phadke, M. S., Quality Engineering Using Robust Design, Prentice-Hall, 1989.
[PHA97] Phadke, M. S., "Planning Efficient Software Tests", Crosstalk, vol. 10, núm. 10, octubre

de 1997, pp. 11-15.
[TA1891 Tai, K. C., "What to Do Beyond Branch T e s t i n g A C M Software Engineering Notes, vol. 14,

núm. 2, abri l de 1989, pp. 58-61.

1 4 . 1 . Myers [MYE79] aplica el s iguiente p rog rama c o m o autoevaluación de la capacidad pro-
pia para especificar p ruebas adecuadas : un programa lee t res valores enteros. Los tres valores
se interpretan c o m o si representaran las longitudes de los lados de un triángulo. El p rograma
imprime un mensa j e que indica si el triángulo es esca leno, isósceles o equilátero. Desarróllese
un conjunto de ca sos de p rueba q u e se considere q u e prueben adecuadamen te es te programa.

1 4 . 2 . Diseñar e implementar el p rograma (con m a n e j o de errores cuando sea apropiado) espe-
cificado en el problema 14.1. Derivar u n a gráfica de flujo para el p rograma y aplicar la p rueba
de la ruta básica para desarrollar casos de prueba que garanticen que se han probado todas las
instrucciones del programa. Ejecutar los c a sos y mos t ra r los resultados.

TM

PDF Editor

http://www.testing.com/test-patterns/patterns/index.html
http://www.testing.com/test-pattems/

460 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

1 4 . 3 . ¿Al lector le es posible p e n s a r en a lguna prueba adicional de característ icas que r.
anal izaron en la sección 14.7?

1 4 . 4 . Seleccionar un componen te de sof tware q u e el lector haya d i señado e implementadc
c ien temente . Diseñar u n conjunto de ca sos de p rueba que aseguren que todas las instrucc
se hayan e jecutado con la p rueba de la ruta básica.

1 4 . 5 . Especificar, diseñar e implementar una her ramienta de sof tware que calcule la c o r
dad ciclomática para el lenguaje de programación que se elija. Aplicar la matr iz de gráfica
m o estructura operat iva de da tos en el diseño.

1 4 . 6 . Léase Beizer [BE195] y de te rmínese la m a n e r a e n q u e el p rograma que se desarro,
el problema 14.5 puede extenderse para acomodar var ios pesos de enlace. Extiéndase la 1
mienta para procesar probabi l idades de ejecución o t iempos de p rocesamien to de enlaces

1 4 . 7 . Diséñese u n a her ramien ta au tomat izada q u e reconozca bucles y los o rdene en ca
rías, c o m o se indica en la sección 14.5.3.

1 4 . 8 . Extiéndase la her ramien ta descrita en el problema 14.7 para generar casos de p r u e r s :
ra cada categoría de bucle, u n a vez encont rada . Será necesar io desarrollar esta función de i
ñe ra interactiva con el enca rgado de la prueba .

1 4 . 9 . Of rézcanse por lo m e n o s tres e jemplos en que la p rueba de caja negra daria la in
de que "todo está bien", mient ras que las p ruebas de ca ja blanca descubrir ían un error
por lo m e n o s tres e jemplos en q u e suceda lo contrario: la p rueba de ca ja blanca daría la i
sión de q u e "todo está bien", mient ras que las p ruebas de ca ja negra descubrirían un errcr

1 4 . 1 0 . ¿La prueba exhaust iva (en ca so de q u e sea posible e n p r o g r a m a s muy pequeños] ¡
tiza que el p rograma es to ta lmente correcto?

1 4 . 1 1 . En pa labras propias, descr íbase por q u é la clase es la m e n o r unidad razonable
prueba dentro de un s is tema or ientado a objetos.

1 4 . 1 2 . ¿Por q u é se t ienen que volver a probar subc lases que crean ins tancias a partir
c lase existente si ésta ya se ha probado por completo? ¿Es posible usar los c a sos de pn
señados para la clase existente?

1 4 . 1 3 . Apliqúense p ruebas aleatorias y de partición a t res clases definidas e n el d iseño
tema HogarSeguro. Prodúzcanse casos de p rueba que indiquen las secuenc ias de opera
se invocarán.

1 4 . 1 4 . Apliqúense pruebas de clase múltiple y p ruébense derivados del mode lo de •
miento para el d iseño HogarSeguro.

1 4 . 1 5 . Pruébese un manua l de usuar io (o una íúnción de ayuda) de una aplicación que i
con frecuencia. Encuéntrese por lo m e n o s u n error e n la documentac ión .

Entre docenas de libros que p resen tan mé todos de diseño de ca sos de p rueba se
Craig y Kaskiel (Systematic Software Testing, Artech House, 2002), Tamres (Introducing :
Testing, Addison-Wesley, 2002), Whittaker (How to Break Software, Addison-Wesley,
gensen (Sof tware Testing: A Craftman's Approach, CRC Press, 2002), Splaine y sus co
Web Testing Handbook, Software Quality Engineering Publishing, 2001), Pat ton (So/fw
S a m s Publishing, 2000), Kaner y sus colegas (Testing Computer Software, segunda i
ley, 1999). Además, Hutcheson (Software Testing Methods and Metrics: The Most Imp
McGraw-Híll, 1997) y Marick (The Craft of Software Testing: Subsyslem Testing Includirj I
Based and Object-Oriented Testing. Prentice-Hall, 1995) p resen tan t ra tamientos de mé
trategias de prueba .

Myers [MYE79] sigue s iendo un texto clásico, que anal iza las técnicas de caja negra
detalle. Beizer [BE 190] proporciona u n a amplia cobertura de las técnicas de ca ja bla

TM

PDF Editor

CAPÍTULO 14 TÉCNICAS DE PRUEBA DEL SOFTWARE 461

duce un nivel de rigor matemát ico que a m e n u d o se omite en o t ros t ra tamien tos de pruebas . Su
último libro [BEI95] presenta un t ra tamiento conciso de métodos importantes . Perry (EJfective
Methods for Software Testing, Wiley-QED, 1995) y Friedman y Voas (Software Assessment: Reliabi-
liy Safety, Testabitity, Wiley, 1995) presentan b u e n a s introducciones a las es t ra tegias y táct icas
de prueba . Mosley (The Handbook of MIS Application Software Testing, Prentice-Hall, 1993) a n a -
liza t emas de prueba para s i s t emas de información grandes, y Marks (Testing Vety Big Systems,
McGraw-Hill, 1992) anal iza los a spec tos especia les q u e deben t o m a r s e en cuenta c u a n d o se
p rueban s i s t emas de programación importantes .

Sykes y McGregor (Practica! Guide for Testing Object Oriented Software, Addison-Wesley,
2001), Bashir y Goel (Testing Object-Oriented Software, Springer-Verlag. 2000), Binder (Testing
Object-Oriented Systems, Addison-Wesley, 1999), Kung y sus colegas (Testing Object-Oriented
Software, IEEE Computer Society Press. 1998), Marick (The Craft ofSofhvare Testing, Prentice-
Hall, 1997) y Siegel y Muller (Object-Oriented Software Testing: A Hicrarchical Approach, wiley,
1996) p resen tan es t ra tegias y métodos para probar s i s temas or ien tados a objetos.

La prueba del sof tware e s una actividad q u e ocupa m u c h o s recursos. Por ello, m u c h a s orga-
nizaciones au tomat i zan par tes del proceso de prueba . Libros de Dustin, Rashka y Poston (Auto-
mated Software Testing: Introduction, Management, and Performance, Addison-Wesley, 1999),
Graham y sus colegas (Software Test Automation, Addison-Wesley, 1999), y Poston (Automating
Specification-Based Software Testing, IEEE Computer Society, 1996) ana l izan her ramientas , es t ra-
tegias y mé todos para p ruebas au tomat izadas .

Varios libros consideran los mé todos y las es t ra tegias de p rueba en á reas de aplicación es -
pecial izadas. Gardiner (Testing Safety-Related Software: A PracticaI Handbook, Springer-Verlag,
1999) ha edi tado un libro que aborda la prueba de s is temas de seguridad crítica. Mosley (Client/
Server Software Testing on the Desk Top and the Web, Prentice-Hall, 1999) anal iza el proceso de
prueba para clientes, servidores y c o m p o n e n t e s de red. Rubin (Handbook of Usability Testing, Wi-
ley, 1994) ha escrito una guía útil para qu ienes deben ejercitar in terfaces humanas .

Binder IBIN991 describe casi 70 patrones de prueba que cubren métodos de prueba, c lases /
grupos, subs is temas , componen te s reutilizables, marcos conceptua les y s is temas, a d e m á s de
automat izac ión de p ruebas y prueba de base de da tos especial izada. Una lista de e s tos patro-
nes se encont rará en www.rbsc .com/pages /Tes tPat te rnLis t .h tm.

Una amplia variedad de fuentes de información sobre los mé todos de diseño de casos de
p rueba está disponible en Internet. Una lista actual izada de referencias en la World Wide Web
q u e t ienen relevancia para las técnicas de prueba se encuent ra en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.rbsc.com/pages/TestPatternList.htm
http://www.mhhe.com/pressman

C A P I T U L O

15
CONCEPTOS
CLAVE
calidad 464
factores
de McCall 464
indicadores... .467
m e d i c i ó n 4 7 1

atributos471
principios 469

medidas 467
de código 493
de mante-

nimiento 496
de modelo

de análisis . .474
de modelo

de diseño . . .479
orientadas

a objetos . . .481
prueba de494

paradigma
OPM 470
puntos
de función474

MÉTRICAS DEL P R O D U C T O
PARA EL SOFTWARE

La medición es un e lemento clave en cualquier proceso de ingeniería
medidas se emplean para comprender mejor los atributos de los mocfc
que se crean y evaluar la calidad de los productos de la ingeniería o de

sistemas que se construyen. Pero a diferencia de ot ras disciplinas de la inge-
ría, la del sof tware n o se basa en las leyes cuantitativas básicas de la física
medidas directas, c o m o el voltaje, la masa, la velocidad o la temperatura r.
comunes en el mundo del software. Debido a que las medidas y métricas
software suelen ser indirectas están expuestas al debate. Fenton [FEN91] a :
este tema cuando afirma:

La medición e s el p roceso median te el cual se as ignan n ú m e r o s o s ímbolos a los c ^

bu to s de en t idades reales para definirlas de acuerdo con reglas c la ramente es tab le : i

das. . . En las ciencias físicas, la medicina y, m á s recientemente , las ciencias s o d a es

ahora p o d e m o s medir a tr ibutos que se cons ide raban imposibles de medir . . Por s -

puesto , e s t a s medic iones n o t ienen el m i s m o ref inamiento que casi todas las de -

ciencias físicas... pero existen [y m u c h a s decis iones importantes se t o m a n con

en ellas]. Sent imos que la obligación de tratar de "medir lo inmedible" para me ; ; -£

nues t ra comprens ión de en t idades part iculares es tan importante e n la ingeniería i

so f tware c o m o en cualquier otra disciplina.

Pero algunos miembros de la comunidad de software siguen argumentanc i
el sof tware "es inmedible", o que deben posponerse los intentos de medir! I
ta que se comprenda mejor el propio sof tware y los atributos que deben ut -
se para describirlo. Esto es un error.

¿ Q u é e s ? Por su naturaleza, la in-
geniería es una disciplina cuantitati-
va. Los ingenieros usan números co-
mo apoyo para el diseño y la evalua-
ción del producto que construirán.

Hasta hace poco, los ingenieros de software con-
taban con escasas guías cuantitativas en su tra-
bajo, pero eso está cambiando. Las métricas del
producto los ayudan a conocer mejor el diseño y
la construcción del software que elaboran. A di-
ferencia de las métricas del proceso y el proyec-
to que se aplican al proyecto (o ai proceso) co-

mo un todo, las métricas del producto se corar- 4
tran en atributos específicos de los productes ti
trabajo de la ingeniería del software y se r e : : : M
lan a medida que se realizan las tareas téc- : •
(análisis, diseño, codificación y prueba).

¿ Q u i é n lo h a c e ? Los ingenieros de software r H
las métricas del producto como apoyo : H
construir software de mayor calidad.

¿ P o r q u é e s i m p o r t a n t e ? Siempre inte
drán elementos cualitativos en la creació-
software. El problema es que no basta a:"
evaluación cualitativa. Un ingeniero de soi

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 6 3

-ecesita criterios objetivos para orientar el dise-
io de los datos, la arquitectura, las interfaces y
tos componentes. El responsable de la prueba
equiere una guía cuantitativa que le ayude a
aleccionar los casos de prueba y sus objetivos.
-Qs métricas del producto proporcionar, una ba-
e para que el análisis, el diseño, la codificación
' la prueba se realicen con mayor objetividad y
se evalúen de manera más cuantitativa.

¿C jó les son los p a s o s ? El primer paso del
oroceso de medición consiste en derivar, a par-
• r del software, las medidas y métricas apropia-
aas para la representación del software que se
está considerando. A continuación se reúnen los
datos para derivar las métricas formuladas. Una
'ez calculadas, se analizan las métricas apro-
piadas con base en directrices preestablecidas y
en datos anteriores. Los resultados del análisis se

interpretan para conocer más acerca dejj la cali-
dad del software; los resultados desembocan en
la modificación de los modelos de análisis y di-
seño, de código fuente o los casos de prueba. En
algunos casos, tal vez se llegue a la modifica-
ción del propio proceso del software.

¿Cuál e s el p roduc to o b t e n i d o ? Las métricas
del producto que se calculan a partir de tos da-
tos recopilados de los modelos de análisis y di
seño, de código fuente y casos de prueba.

¿ C ó m o p u e d o e s t a r s e g u r o d e q u e lo h e
hecho co r r ec t amen te? Deben determinarse
los objetivos de b medición antes de iniciar lo
recopilación de datos, definiendo cada métrica del
producto sin ambigüedades. Defínanse unas
cuantas métricas y luego utilícense para recono-
cer la calidad de un producto de trabajo de la in-
geniería del software.

Aunque las métricas del producto para el software de computadora no suelen ser
absolutas, proporcionan una manera sistemática de evaluar la calidad a partir de un
conjunto de reglas definidas con claridad. También proporcionan al ingeniero de
software información inmediata y en el sitio; no posterior al hecho. Esto permite al
ingeniero descubrir y corregir problemas potenciales antes de que se conviertan en
defectos catastróficos.

En este capítulo se analizarán las mediciones con que se evalúa la calidad del pro-
ducto mientras se diseña o construye. Estas medidas de atributos internos del produc-
to proporcionan al ingeniero de software una indicación en tiempo real de la efica-
cia de los modelos de análisis, diseño y código; también aportan indicativos de la
efectividad de los casos de prueba y la calidad general del software que habrá de cons-
truirse.

1 5 . 1 C A L I D A D g e n e r a l _ _ _ _ _

Hasta los desabolladores de software exhaustos están de acuerdo en que es impor-
tante crear software de alta calidad. Pero, ¿cómo se define la calidad? En el sentido
más amplio, calidad del software es el cumplimiento de los requisitos de funcionalidad

y desempeño explícitamente establecidos, de los estándares de desarrollo explícitamen-
te documentados y de las características implícitas que se esperan de todo software de-
sarrollado profesionalmente.

Es indudable que esta definición podría modificarse o extenderse y debatirse in-
terminablemente. En cuanto a los objetivos de este libro, la definición sirve para des-
tacar tres puntos importantes:

TM

PDF Editor

4 6 4 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

1. Los requisitos del software son la base de las medidas de calidad. La falta J Í I
concordancia con estos requisitos es una falta de calidad.'

2 - Los estándares especificados definen un conjunto de criterios de desarrol !
que guían la ingeniería dei software. Si no se siguen los criterios, el resu l taar !
será, casi seguramente, la falta de calidad.

3 - A menudo se soslaya un conjunto de requisitos implícitos (por ejemplo, e
seo de alcanzar la facilidad de uso). Si el software cumple con sus requisr ~ I
explícitos pero no con los implícitos, la calidad del software estará en duc_. I

La calidad del software es una compleja combinación de factores que variarán í - * J
diferentes aplicaciones y los distintos clientes que las solicitan. En las siguientes s a i
ciones se identifican los factores que afectan la calidad del software y se desc r ioa
las actividades humanas que deben desarrollarse para alcanzarla.

15.1.1 Factores de calidad de McCall
Los factores que afectan la calidad del software se dividen en dos grandes grup i l
los que se miden directamente (por ejemplo, defectos descubiertos durante la
ba), y 2) los que sólo se miden indirectamente (por ejemplo, facilidad de uso > •
mantenimiento). En cada caso debe presentarse una medición. Se debe c o m p a r ^ H
software (programa, datos, documentos) con algún conjunto de datos y o b t e n s H
algún indicio sobre la calidad.

McCall, Richards y Walters [MCC77] propusieron una clasificación útil de los fl
tores que afectan la calidad del software. Estos factores, que se muestran en la «
ra 15.1, se concentran en tres aspectos importantes de un producto de software
características operativas, su capacidad para experimentar cambios y su capa
para adaptarse a nuevos entornos.

Si se toman como referencia los factores indicados en la figura 15.1, McCall •
colegas proporcionan las siguientes descripciones:

Corrección Facilidad de uso Eficiencia
Confiabilidad Integridad

1 Es importante indicar que la calidad se extiende a las características técnicas de los modelos
lisis y diseño, así como a la realización del código fuente de éstos. Modelos de alta calida;
sentido técnico) darán lugar a software de alta calidad, desde el punto de vista del cliente

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 6 5

KVE
¡ observar

i ioctores de
i McCall son
s hoy como

i en lo década
Por tanto, es

¡ afirmar que
s que

: calidad del
s no cambian

i w n p o .

Corrección. El g r a d o e n q u e el p r o g r a m a c u m p l e con su espec i f icac ión y sa t i s face los ob -

je t ivos q u e p r o p u s o el cl iente.

Conflabilidad. El g r a d o e n q u e s e e s p e r a r í a q u e u n p r o g r a m a d e s e m p e ñ e su func ión con la

precis ión requer ida . [Debe o b s e r v a r s e q u e s e h a n p r o p u e s t o o t r a s def in ic iones d e con t ia -

bilidad m á s c o m p l e t a s (consú l tese el capí tulo 26)].

Eficiencia. La can t idad d e código y d e r ecu r sos de c ó m p u t o n e c e s a r i o s pa ra q u e un p rogra -

m a real ice su función .

Integridad. El g r ado d e control s o b r e el a c c e s o al s o f t w a r e o los d a t o s por p a r t e d e las per -

s o n a s n o a u t o r i z a d a s .

Facilidad de uso. El e s f u e r z o n e c e s a r i o pa ra a p r e n d e r , o p e r a r y p r e p a r a r los d a t o s d e e n -

t r ada de u n p r o g r a m a e in te rpre ta r la sal ida.

Facilidad de mantenimiento. El e s f u e r z o n e c e s a r i o pa ra local izar y corregir un e r ro r e n un

p r o g r a m a . (Una def inic ión m u y l imitada.)

Flexibilidad. El e s f u e r z o n e c e s a r i o p a r a modif icar u n p r o g r a m a e n ope rac ión .

Facilidad de prueba. El e s f u e r z o q u e d e m a n d a p r o b a r u n p r o g r a m a c o n el fin d e a s e g u r a r

q u e rea l iza su función .

Portabilidad. El e s f u e r z o n e c e s a r i o pa ra t ransfer i r el p r o g r a m a d e un e n t o r n o d e h a r d w a -

re o s o f t w a r e a otro.

Facilidad de reutilización. El g r a d o e n q u e u n p r o g r a m a (o pa r t e s d e él) p u e d e reut i l izarse

e n o t r a s ap l i cac iones (en re lac ión con el e m p a q u e t a m i e n t o y el a l c a n c e d e las f u n c i o n e s

q u e rea l iza el p r o g r a m a) .

Interoperabilidad. El e s f u e r z o n e c e s a r i o pa ra acop la r u n s i s t ema con o t ro .

[CONSEJO.

? uno listo
r de verificación

) estos
5. Primero

i o codo uno
t mportoncia

¡pora su
Luego

i una grodua-
i poro sus

s de trabajo
i el fin de evaluar

t Édad del software
f se estú constru-

y a calidad de un producto es una función del bien que hace ol mundo."
Totn DeMarco

Es difícil, y en algunos casos imposible, desarrollar medidas directas7 de es tos fac-
tores de la calidad. En realidad, muchas de las métricas que definen McCall et al. só-
lo se miden subjetivamente. Es común que las métricas adquieran la forma de una
lista de comprobación que se emplea para "asignar una graduación" a atributos es-
pecíficos del sof tware [CAV78],

15.1.2 Factores de calidad del estándar ISO 9126
El es tándar ISO 9126 se desarrolló como un intento por identificar los atributos de
calidad para el software de computadora. El es tándar identifica seis atributos clave
de la calidad:

2 Una medida directa indica que sólo e s posible contar un valor que proporciona una indicación di-
recta del atributo que se examina. Por ejemplo, el "tamaño" de un programa se mide directamente
al contar el número de líneas de código

TM

PDF Editor

4 6 6 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

Funcionalidad. El grado en que el sof tware satisface las necesidades que in
los siguientes subatributos: idoneidad, exactitud, interoperabilidad, cumplimier: <
seguridad.

Contabilidad. La cantidad de t iempo en que el sof tware está disponible para
lo según los siguientes subatributos: madurez , tolerancia a fallas y facilidad de
peración.

Facilidad de uso. La facilidad con que se usa el software de acuerdo con te
guientes subatributos: facilidad de comprensión, facilidad de aprendizaje y o]

lidad.

Eficiencia. El grado en que el software emplea en forma óptima los recursos ¿a
sistema, como lo indican los siguientes subatributos: comportamiento en el ti
comportamiento de los recursos.

Facilidad de mantenimiento. La facilidad con que se repara el software de a
con los siguientes subatributos: facilidad de análisis, facilidad de cambio, esta
y facilidad de prueba.

Portabilidad. La facilidad con que se lleva el sof tware de un entorno a otro
los siguientes subatributos: adaptabilidad, facilidad para instalarse, cumpli
facilidad para reemplazarse.

Al igual que otros factores de calidad del software anal izados en el capítulo 9 *
sección 15.1.1, los factores ISO 9126 no necesar iamente se prestan a la medicic - d
recta. Sin embargo, proporcionan una base valiosa para las medidas indirectas \
lista de verificación excelente para evaluar la calidad de un sistema.

"Cualquier actividad se vuelve aeo t iva cuando la persona que hace las cosos los hoce bien, o mejor."
John I
rJ

15.1.3 La transición a un concepto cuantitativo
En las secciones anteriores se anal izó un conjunto de factores cualitativos
"medición" de la calidad del software. El esfuerzo por desarrollar medidas p
de la calidad del sof tware en ocasiones se frustra por la naturaleza subjetiva
actividad. Cavano y McCall [CAV78] analizan esta situación:

La determinación de la calidad es un factor clave en todas las act ividades diarias (c o n a r - 1

sos de ca ta de vinos, competenc ias deport ivas [como la gimnasia), concur sos de t a l e - : fl

etc.). En es t a s s i tuaciones la calidad se juzga de la m a n e r a m á s bás ica y directa: c o r r : r 1

rando objetos que se encuen t ran jun tos e n condic iones idénticas y con concep tos p r e j t I

terminados . El vino se juzga de acuerdo con su claridad, color, bouquet , sabor, etc. S e

embargo, es te tipo de juicios es muy subjetivo; pa ra que tenga algún valor debe haceii-:

un experto.

La subjetividad y la especialización también se aplican para de te rminar la calidad J*'

sof tware. Se necesi ta u n a definición m á s precisa de la calidad del so f tware para resc a

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 467

es te problema, a d e m á s de un medio para derivar medidas cuanti tat ivas, a partir de la ca-
lidad del sof tware , para realizar un análisis objetivo.. .

En las secciones siguientes se examina un conjunto de métricas que se aplican en
la evaluación cuantitativa de la calidad del software. En todos los casos las métricas
representan medidas indirectas; es decir, nunca se mide rea lmente la calidad, sino
alguna manifestación de ésta. El factor que complica las cosas e s la relación precisa
entre la variable que se mide y la calidad del software.

"Así como la medición de la temperatura empieza con un dedo Índ ice . . . y da lugar a escalas, herramientas y técnicas
sofisticadas, asi sucede también con la madurez en la medición del software."

Shan Pfieeger

1 5 . 2 U N M A R C O CONCEPTUAL PARA LAS MÉTRICAS DEL PRODUCTO

Como se indicó en la introducción de es te capítulo, la medición asigna números o
símbolos a atributos de entidades reales. Esto requiere un modelo de medición que
abarque un conjunto consistente de reglas. Aunque la teoría de la medición (por
ejemplo, [KYB84)) y su aplicación al sof tware de computadora (por ejemplo,
[DEM81], [BR196], [ZUS97]) son t emas que rebasan el alcance de este libro, vale la
pena establecer un marco conceptual y un conjunto de principios básicos para la me-
dición de métricas para el producto de software.

15.2.1 Medidas, métricas e indicadores
Aunque medida, medición y métrica son términos que suelen utilizarse de manera in-
tercambiable, e s importante observar las sutiles diferencias entre ellos. En el contex-
to de la ingeniería del sof tware una medida proporciona una indicación cuantitativa
de la extensión, la cantidad, la dimensión, la capacidad o el t a m a ñ o de algún atribu-
to de un producto o proceso. Medición es el acto de determinar una medida. El Glo-
sario de estándares del IEEE [IEE93] define métrica como una "medida cuantitativa del
grado en que un sistema, componen te o proceso posee un atributo determinado".

Cuando se ha recopilado un solo tipo de datos (por ejemplo, el número de errores
descubiertos dentro de un solo componente del software) s e ha establecido una me-
dida. La medición ocurre como resultado de la recopilación de uno o m á s puntos de
datos (por ejemplo, se investigan varias revisiones de componentes y pruebas de uni-
dad para reunir medidas del número de errores encontrados en cada uno). Una métri-
ca de software relaciona de alguna manera las medidas individuales (por ejemplo, el
número promedio de errores encontrados en cada revisión o prueba de unidad).

Un ingeniero de sof tware recopila medidas y desarrolla métricas para obtener los
indicadores. Un indicador e s u n a métrica o una combinación de métricas que pro-
porcionan conocimientos acerca del proceso del software, un proyecto de sof tware
o el propio producto. Un indicador proporciona conocimientos que permiten al jefe

TM

PDF Editor

468 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

de proyecto o los ingenieros de sof tware ajustar el proceso, el proyecto o el proc.c-1
to para que las cosas mejoren.

] "Una t iendo tiene la misma madurez que sus herramientas d e m e d i c i ó n '
Luis P

Horst Zuseho
recopilado gran
cantidod de
informoción sobre
métricas de producto
en irb.cs.tubeHin.
de/~iuse/.

15.2.2 El reto de las métricas del producto

En las últimas tres décadas, muchos investigadores han tratado de desarrolla- J
sola métrica que proporcione u n a medida completa de la complejidad del s o f h r a B
Fenton [FEN94] caracteriza esta investigación como una búsqueda del "santc e n
imposible". Aunque se han propuesto docenas de medidas de complejidad [Z l ' 5 V
cada una tiene un concepto diferente de la complejidad y de los atributos de un
ma que llevan a la complejidad. Por analogía, considérese una métrica para e v a l u a r ®
automóvil atractivo. Algunos observadores destacarían el diseño de la carrocena T ®
tomarían en cuenta características mecánicas y otros más podrían considerar e:
el desempeño, la economía de combustible o la capacidad de reciclarlo cuandc
to sea inservible. Como cualquiera de estas características estaría en desventan
otras, resulta difícil derivar un solo valor de "atractivo". El mismo problema
con el software de computadora .

Pero existe la necesidad de medir y controlar la complejidad del software a f l
difícil derivar un solo valor de esta métrica de calidad, debe tenerse la posibi
desarrollar medidas de diferentes atributos internos del programa (por ejempk: a l
dularidad efectiva, independencia funcional y otros atributos analizados del c a p M B
al 12). Estas medidas y las métricas derivadas de ellas se utilizan como indicac
dependientes de la calidad de los modelos de análisis y diseño. Pero aquí tamt
gen problemas. Fenton [FEN94] observa esto cuando afirma: "El peligro de t r s i ^ H
encontrar medidas que caractericen tantos atributos diferentes es que inevitar
te las medidas tienen que satisfacer objetivos que entran en conflicto entre sí
opone a la teoría de que cada medición debe ser representativa." Aunque la
ción de Fenton e s correcta, muchas personas argumentan que la medición del
realizada durante las primeras e tapas del proceso del software proporciona a 1
genieros un mecanismo consistente y objetivo para evaluar la calidad.

Sin embargo, vale la pena preguntarse sobre la validez de las métricas 3£
ducto. Es decir, ¿qué tanto concuerdan las métricas del producto, la confíat
largo plazo y la calidad de un sistema de cómputo? Fenton [FEN91] aborda t s H
quietud de la siguiente manera:

A pesar de las conexiones intuitivas ent re la estructura interna de los productos de a

w a r e [métricas del producto] y los atr ibutos de su produc to y su proceso externos

lidad s e h a n real izado muy pocos in tentos científicos por establecer relaciones e s p e c á i ^ B

Esto es así por varias razones : la que se cita con m á s f recuencia es que resulta pocc

tico realizar exper imentos relevantes.

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 469

i ¿Csóles son
' t e s posos de

i de
i efettivo?

*

Cada uno de los "retos" indicados aquí debe tomarse con cautela, pero no hay ra-
zón para restarle méritos a las métricas técnicas.3 La medición es esencial si se de-
sea alcanzar la calidad.

15.2.3 Principios de medición

Antes de introducir una serie de métricas del producto que 1) ayuden a evaluar los mo-
delos de análisis y diseño, 2) ofrezcan una indicación de la complejidad de los dise-
ños procedimentales y el código fuente, y 3) faciliten el diseño de pruebas más efec-
tivas, es importante comprender los principios básicos de la medición. Roche
[ROC94] sugiere un proceso de medición al que caracterizan cinco actividades:

• Formulación. La derivación de medidas y métricas apropiadas para la repre-
sentación del software que se considera.

• Recolección. El mecanismo con que se acumulan los datos necesarios para
derivar las métricas formuladas.

• Análisis. El cálculo de las métricas y la aplicación de herramientas matemáticas.

• Interpretación. La evaluación de las métricas en un esfuerzo por conocer me-
jor la calidad de la representación.

• Retroal¡mentación. Recomendaciones derivadas de la interpretación de las mé-
tricas del producto transmitidas al equipo del software.

Las métricas del software sólo serán útiles si están caracterizadas de manera efectiva
y se validan para probar su valor. Los siguientes principios [LET03] son representati-
vos de muchos otros que podrían proponerse para caracterizar y validar las métricas:

• Una métrica debe tener propiedades matemáticas deseables. Es decir, el valor de la
métrica debe estar en un rango significativo (por ejemplo, de cero a uno, donde
cero realmente significa ausencia, uno indica el valor máximo y 0.5 representa
el "punto medio"). Además, una métrica que pretende estar en una escala racio-
nal no debe contar con componentes que sólo se miden en una escala ordinal.

• Cuando una métrica representa una característica de software que aumenta cuando
se presentan rasgos positivos o que disminuye al encontrar rasgos indeseables, el
valor de la métrica debe aumentar o disminuir en el mismo sentido.

• Cada métrica debe validarse empíricamente en una amplia variedad de contextos
antes de publicarse o aplicarse en la toma de decisiones. Una métrica debe me-
dir el factor de interés, independientemente de otros factores. Debe "crecer"
para aplicarse en s is temas grandes y funcionar en diversos lenguajes de pro-
gramación y dominios de sistemas.

3 Aunque la crítica de métricas específicas es común en la bibliografía, muchas de esas criticas se con-
centran en aspectos esotéricos y pierden de vista el principal objetivo de las métricas en la realidad:
ayudar al ingeniero de software a establecer una manera sistemática y objetiva de conocer a fondo
su trabajo y, como resultado, mejorar la calidad de! producto

TM

PDF Editor

470 PARTE DOS PRÁCnCA DE LA INGENIERÍA D A SOFTWARE

il sofaie I
OPM se encontraré en
www.thedacs.
ram/GoldProctices/
proctkes/gqma.
html.

Aunque la formulación, caracterización y validación son críticas, la recopilación 11
análisis son las actividades que dirigen el proceso de medición. Roche [ROC94]
giere las siguientes directrices para es tas actividades: 1) siempre que sea posible
ben automatizarse la recopilación de datos y su análisis; 2) deben aplicarse té
estadísticas válidas para establecer relaciones entre los atributos internos de!
ducto y las características de calidad ex temas (por ejemplo, si el grado de corrr rjÜfl
dad de la arquitectura se correlaciona con el número de defectos informados
aplicarla en producción), y 3) para cada métrica deben establecerse directrices \
comendaciones para la interpretación.

15.2.4 Medición del software orientado a objetivos
Basili y Weiss [BAS84] desarrollaron el paradigma objetivo/pregunta/métrica
como una técnica para identificar métricas significativas aplicables en cualqu
te del proceso del software. El OPM destaca la necesidad de 1) establecer un i
vo de medición explícito que sea específico para la actividad del proceso o las i
terísticas del producto que se está evaluando, 2) definir un conjunto de pregu
deben responderse con el fin de alcanzar el objeto, y 3) identificar métricas I
muladas que ayuden a responder esas preguntas.

Es posible emplear una plantilla de definición de objetivos [BAS94] para >
da objetivo de medición. La plantilla toma esta forma:

A n a l i z a r [el nombre de la actividad o el atributo q u e se medirá] c o n el p r o p ó s i t o <

objetivo general del análisis4] e n r e l a c i ó n c o n (el a spec to de la actividad o atr ibuí : ;

s e en considera] d e s d e e l p u n t o d e v i s t a d e [la gente q u e t iene interés en la i

e n el c o n t e x t o d e [el en to rno en que t iene lugar la medición].

Como ejemplo, considérese una plantilla de definición del objetivo para I
Seguro:

A n a l i z a r la arquitectura del sof tware HogarSeguro c o n e l p r o p ó s i t o d e evaluar I: ; :

ponen tes arqui tectónicos e n r e l a c i ó n c o n la capacidad para lograr que Hogar

m á s extensible d e s d e el p u n t o d e v i s t a d e los ingenieros de sof tware q u e re

t rabajo e n el c o n t e x t o d e la mejora del producto en los s iguientes tres años .

Una vez definido explícitamente el objetivo de la medición, se desarroi:31
junto de preguntas. Las respuestas a és tas ayudan al equipo de software
otros participantes) a determinar si s e ha a lcanzado el objetivo de med
las preguntas que se responden están las siguientes:

P,: ¿Los componentes arquitectónicos están caracterizados de mar
aparecen por separado la función y los datos relacionados?

4 Van Solingen y Berghout [SOL99] sugieren que el objetivo es casi siempre "comprender a
mejorar" la actividad del proceso o el atributo del producto.

TM

PDF Editor

http://www.thedacs

CAPÍTULO 15 M É T R I C A S D A P R O D U C T O P A R A EL S O F T W A R E 471

•
¿Cómo
debemos

riMr la calidad
é i m n métrica
«r*p«esta del
software?

^ C O N S E J Ó ^

j experiencia indico
ue sólo se usoiá uno
' « f f i c o del producto si
* intuitiva y fácil
atufar. Si deben
Kcerse docenas de
'cuentas", es improba-
x que la métrico se
xopte ampliamente.

P / . ¿La complejidad de cada componente se encuentra dentro de los límites que
facilitarán su modificación y extensión?

Cada una de es tas preguntas debe responderse de manera cuantitativa, emplean-
do una o más medidas y métricas. Por ejemplo, una métrica que proporciona una in-
dicación de la cohesión (capítulo 9) de un componente arquitectónico sería útil para
responder P,. La complejidad ciclomática y las métricas anal izadas en la sección
15.4.1 o 15.4.2 proporcionarían conocimientos a fondo para P 2 .

En realidad, tal vez haya diversos objetivos de medición con preguntas y métricas
relacionadas. En cualquier caso, las métricas elegidas (o derivadas) deben cumplir
con los principios de medición anal izados en la sección 15.2.3 y los atributos de me-
dición analizados en la sección 15.2.5. Si se desea obtener mayor información sobre
OPM, el lector interesado debe consultar [SHE98] o [SOL99].

15.2.5 Los atributos de las métricas efectivas del software

Se han propuesto cientos de métricas para el sof tware de computadora, pero no to-
das proporcionan soporte práctico para el ingeniero de software. Algunas exigen
mediciones demasiado complejas; otras son tan esotéricas que pocos profesionales
podrían comprenderlas, y o t ras más violan las nociones intuitivas básicas de lo que
e s el software de alta calidad.

Ejiogu [EJ191] define un conjunto de atributos que toda métrica efectiva del soft-
ware debe abarcar. La métrica derivada y las medidas que llevan a ella deben ser:

• Simples y calculables. Debe ser relativamente fácil aprender a derivar la métrica,
y su cálculo no debe exigir cantidades anormales de tiempo o esfuerzo.

• Empírica e intuitivamente persuasivas. La métrica debe satisfacer las nociones
intuitivas del ingeniero acerca del atributo del producto que se está constru-

yendo.

• Consistentes y objetivas. La métrica siempre debe arrojar resultados que no
permitan ambigüedad alguna.

• Consistentes en el uso de unidades y dimensiones. El cálculo matemático de la
métrica debe emplear medidas que no lleven a combinaciones ext rañas de
unidades.

• Independientes del lenguaje de programación. Las métricas deben basarse en el
modelo de análisis o diseño, o en la estructura del propio programa.

• Mecanismos efectivos para la retroalimentación de alta calidad. Es decir, la mé-
trica debe llevar a un producto final de la más alta calidad.

Aunque casi todas las métricas de software satisfacen estos atributos, algunas mé-
tricas de uso común no cumplen con una o dos de ellas. Un ejemplo e s el punto de
función (el cual se estudia en la sección 15.3.1), que e s una medida de la entrega de
"funcionalidad" por parte del software. Se puede argumentar ' que el atributo consis-

TM

PDF Editor

472 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

tente y objetiva falla porque tal vez un tercero, que sea independiente, no logre den. ir
el mismo valor del punto de función que un colega que utilice la misma informador i
acerca del software. ¿Debemos rechazar entonces la medida de punto de función-
respuesta es ¡por supuesto que no! El punto de función proporciona conocimier -
útiles y, por tanto, valores distintos, aunque no satisfaga algún atributo a la perfecc -

15.2.6 Panorama de las métricas del producto
Aunque se ha propuesto una amplia variedad de taxonomías métricas, el sígu í ~ B
esquema atiende las áreas más importantes de las métricas:

Métricas para el m o d e l o de análisis. Estas métricas atienden varios aspectos oH
modelo de análisis e incluyen:

Funcionalidad entregada: proporciona una medida indirecta de la función
que se empaqueta con el software.

Tamaño del sistema: mide el tamaño general del sistema, definido desde el
de vista de la información disponible como parte del modelo de análisis.

Calidad de la especificación: proporciona una indicación de la especificidac
grado en que se ha completado la especificación de los requisitos.

Métricas para el m o d e l o de diseño. Estas métricas cuantifican los atribu:
diseño de manera tal que le permiten al ingeniero de software evaluar la cal
diseño. La métrica incluye:

Métricas arquitectónicas: proporcionan un indicio de la calidad del diseño a
tónico.

Métricas al nivel de componente: miden la complejidad de los componer.-^ j
software y otras características que impactan la calidad.

Métiicas de diseño de la interfaz-. se concentran principalmente en la facilidad de

Métricas especializadas en diseño orientado a objetos: miden características
ses, además de las correspondientes a comunicación y colaboración.

Métricas para el código fuente. Estas métricas miden el código fuente y se
para evaluar su complejidad, además de la facilidad con que se mantiene y
entre otras características:

Métricas de Halstead: controversiales pero fascinantes, estas métricas p
nan medidas únicas de un programa de cómputo.

Métricas de complejidad: miden la complejidad lógica del código fuente
se consideran métricas de diseño al nivel de componentes).

Métricas de longitud: proporcionan un indicio del t amaño del software.

5 Podría usarse un contraargumento igualmente vigoroso. Ésa es la naturaleza de las
software.

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A A S O F T W A R E 473

Métricas para pruebas. Estas métricas ayudan a diseñar casos de prueba efectivos
y a evaluar la eficacia de las pruebas:

Métricas de cobertura de instrucciones y ramas: lleva al diseño de casos de prueba
que proporcionan cobertura del programa.

Métricas relacionadas con los defectos: se concentran en encontrar defectos y no
en las propias pruebas.

Efectividad de la prueba: proporcionan un indicio en tiempo real de la efectividad
de las pruebas aplicadas.

Métricas en el proceso: métricas relacionadas con el proceso que se determinan a
medida que se aplican las pruebas.

En muchos casos las métricas de un modelo pueden aplicarse en actividades poste-
riores de la ingeniería del software. Por ejemplo, las métricas de diseño se utilizan pa-
ra estimar el esfuerzo requerido para generar código fuente. Además, las métricas de
diseño se aprovechan para planear pruebas y el diseño de casos de prueba.

HOGARSEGURO

Debate sobre métricas del producto

El e scenar io : Cubículo de Vinod.
actores: Vinod, Jamie y Ed, integrantes del equipo

ngeniería del software de H o g a r S e g u r o , que siguen
trabajando con el diseño al nivel dé componentes y de

La conversac ión:
Vinod : Doug [Doug Miller, jefe de ingeniería del
¡cítware] me dijo que todos deberíamos usar métricas del
r'oducto, pero lo hizo de manera vaga. También dijo
; je no presionaría... su uso dependería de nosotros.

J a m i e : Eso está bien, porque no tenemos tiempo para
empezar a medir cosos. Estamos esforzándonos por
cjmplir con el calendario de trabajo.

Ed: Estoy de acuerdo con Jamie. Estamos contra ellas,
:quí... no hoy tiempo.

V inod : Sí, lo sé. pero tal vez por alguna razón sea
importante que las usemos.

J a m i e : No discuto eso, Vinod. Es cosa de tiempo, y y o
-o tengo tanto como para desperdiciarlo

Vinod: ¿Y si las mediciones nos ahorraran tiempo?

Ed: Estás equivocado. Requieren tiempo y, como dice
jamie,;,

Vinod: No, espera... ¿y si nos ahorran tiempo?

Jamie: ¿Cómo?

Vinod: Evitando retrabajar... Si una métrica nos ayuda
a evitar un problema importante o incluso uno
moderado, y eso nos evita retrabajar una parte del
sistema, ahorraremos tiempo, ¿o no?

Ed: Es posible, supongo, pero ¿nos garantizas que
alguna métrica del producto nos ayudará a encontrar un
problema?

Vinod: ¿Y tú me garantizas que no lo hará?

Jamie: Bueno, ¿qué estás proponiendo?

Vinod: Creo que debemos seleccionar unas cuantas
métricas de diseño, tal vez orientadas a clases, y
aplicarlas como parte de nuestro proceso de revisión
para todos los componentes que desarrollemos.

Ed: No estoy muy familiarizado con las métricas
orientadas a objetos.

Vinod: Voy a dedicar un poco de tiempo a revisarlas y
a hacer algunas recomendaciones... ¿están de acuerdo?

(Ed y Jamie asienten sin mucho entusiasmo.)

TM

PDF Editor

4 7 4 P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

1 5 - 3 M É T P I C A S P A R A ET. M O D E L O DE A N Á L I S I S

En los siguientes sitios
Web se encontraré
¡nforoioción abundcnte
y útil acetca lie los
puntos de función:
www.ffpog.
org y www.
functionpoints.tom.

n a o X-,

r|
:aría

Aunque existen en la bibliografía relativamente pocas métricas de análisis y espec
ficación, es posible adaptar métricas que se utilizan en la est imación de proyect : ;
aplicarlas en este contexto. Estas métricas examinan el modelo de análisis con la
tención de predecir el " tamaño" del sistema resultante. El t amaño es, en ocas
(pero no siempre), un indicador de la complejidad del diseño y casi s iempre r~
un indicador de un mayor esfuerzo de codificación, integración y prueba.

15.3.1 Métricas basadas en la función
La métrica de punto de función (PF), propuesta inicialmente por Albretch [ALB79" m
usa de manera efectiva como medio para medir la funcionalidad que entrega ur.
tema.6 Empleando datos históricos, el PF se usa para 1) estimar el costo o el •
zo requerido para diseñar, codificar y probar e l software; 2) predecir el númer : i]
errores que se encontrarán durante la prueba, y 3) pronosticar el número de cc
nentes, de líneas de código proyectadas, o ambas, en el sistema implementac:

Los puntos de función se derivan empleando una relación empírica b a s a ; i d
medidas contables (directas) del dominio de la información del software y las J
luaciones de la complejidad de éste. Los valores del dominio de la información se f
finen de la siguiente manera: 7

Número de entradas ex ternas (EE). Cada entrada extema se origina
usuario o es transmitida desde otra aplicación y proporciona distintos datos
dos a la aplicación o información de control. Las ent radas suelen emplearse
tualizar archivos lógicos internos (AU). Las ent radas deben distinguirse de ia~ l
sultas, que se cuentan por separado.

N ú m e r o d e sa l idas ex ternas (SE). Cada salida extema se deriva en el -
de la aplicación y proporciona información al usuario. En este contexto,
terna alude a informes, pantallas, mensa j e s de error, etc. Los e lementos de
dividuales dentro de un informe no se cuentan por separado.

Número d e c o n s u l t a s ex ternas (CE). Una consulta extema se define : a
entrada en línea que lleva a la generación de alguna respuesta inmediata p>:«r j
del software, en la forma de salida en linea (a menudo recuperada de un

Número de archivos l ó g i c o s internos (ALI). Cada archivo lógico in
agrupamiento lógico de datos que reside dentro de los límites de las apli
que se mant iene mediante ent radas externas.

Desde que Albrecht dio a conocer su trabajo original, se han escrito cientos de libros,
tículos sobre PF. En [IEP03] se encontrará una bibliografía muy valiosa.
En realidad, la definición de los valores del dominio de la información y la manera en c j t •
tan son un poco más complejas. El lector interesado deber consultar [IFP01] para c
talles.

TM

PDF Editor

http://www.ffpog

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 7 5

Valor de l d o m i n i o
d e i n f o r m a c i ó n

Entradas externas (EE)

Salidas externas (SE)

Consultas externas (CE)

Archivos de lógica interna (ALI)

Archivos de interfaz externa (AIE)

Total de conteos

Conteo

a
a
a
a
a

Factor d e p o n d e r a c i ó n
S imple P r o m e d i o C o m p l e j o

4

5
4

1 0

7

6

7

6

15

10

Número de archivos de interfaz externos (AIE). Cada archivo de interfaz ex-
terno es un agrupamiento lógico de datos externo a la aplicación pero que propor-
ciona datos que podrían usarse en ésta.

p Una vez que se han recolectado los datos, se completa la tabla de la figura 15.2 y
se asocia un valor de complejidad con cada conteo. Las organizaciones que usan
métodos de punto de función desarrollan criterios para determinar si una entrada
determinada es simple, promedio o compleja. No obstante, la determinación de la
complejidad es un poco subjetiva.

Para calcular los puntos de función (PF) se usa la siguiente relación:

PF = conteo total x [0.65 + 0.01 x I (F¡)] (15.1)

donde conteo total es la suma de todas las entradas de PF obtenidas de la figura 15.2.
F¡ (j = l a 14) son factores de ajuste de valor basados en las respuestas a las siguien-

tes preguntas [LON02J:

1. ¿El sistema requiere respaldo y recuperación confiables?

2. ¿Se requieren comunicaciones de datos especializadas para transferir infor-
mación a la aplicación, u obtenerla de ella?

3 . ¿Hay funciones distribuidas de procesamiento?

4 . ¿El desempeño es crítico?

5 . ¿El sistema se ejecutará en un entorno existente que tiene un uso pesado de
operaciones?

6. ¿El sistema requiere entrada de datos en linea?

7. ¿La entrada de datos en línea requiere que la transacción de entrada se cons-
truya en varias pantallas u operaciones?

8. ¿Los ALI se actualizan en línea?

9 . ¿Las entradas, las salidas, los archivos o las consultas son complejos?

10. ¿Es complejo el procesamiento interno?

11. ¿El código diseñado será reutilizable?

TM

PDF Editor

476 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

Uno

en kb.cs.
iminragdeburg.
de/sw-eng/
us/jova/fp/.

12. ¿Se incluyen la conversión e instalación en el diseño?

13 . ¿Está d iseñado el sistema para instalaciones múltiples en diferentes o r g a m o -]
ciones?

14. ¿La aplicación está diseñada para facilitar el cambio y para que el usuario 1: j
use fácilmente?

Cada una de es tas preguntas se responde empleando una escala que va de 0 (no
portante o aplicable) a 5 (absolutamente esencial). Los valores constantes de ¿ I
ecuación (15.1) y los factores de peso que se aplican a los conteos del dominio de la r - l
formación se determinan empíricamente.

Para ilustrar el empleo de la métrica del PF en este contexto se ideó la represen^ I
ción simple del modelo de análisis, que se muestra en la figura 15.3. Ahí se repres**!
ta un diagrama de flujo de datos (capítulo 8) dentro del software HogarSeguro. La r j * l
ción maneja la interacción con el usuario aceptando una contraseña de éste para a:- l
tivar o desactivar el sistema, y permite consultas sobre el estado de las zonas de se-l
guridad y varios sensores de seguridad. La función despliega una serie de mensa es r|
envía señales de control apropiadas a varios componentes del sistema de segur,cao.1

Se evalúa el diagrama de flujo de datos para determinar un conjunto de m e d i c a l
clave del dominio de información que se requieren para calcular la métrica del p -^ - l
to de función. En la figura se muestran tres ent radas externas (contraseña, botan;
d e pánico y ac t ivar /desact ivar) junto con dos consul tas externas (consulta je;
z o n a y consul ta d e sensor) . Se muestra un ALI (archivo de conf iguración Asi
s i s t ema) . También están presentes dos salidas de usuarios (mensajes y e s t a o s
del sensor) y cuatro AIE (s e n s o r de prueba, conf iguración de zona , act ivar/-!
desact ivar y alerta d e alarma). En la figura 15.4 se muestran es tos datos, ' - ~ J
con la complejidad apropiada.

El conteo total que se muestra en la figura 15.4 debe ajustarse empleando la e c J
ción (15.1):

PF = conteo total x [0.65 +0 .01 x £ (F,)]

Modelo de flujo
de datos para
el software
HogarSeguro.

Usuario

Sensor de prueba
Contraseña
Consulto de zona / F u n c l o n e ' ^
Consulto de sensor /interacción de'

usuario en

Sensofes

Configuración de zona

Botón de pánico
Activar/desactivar

Contraseña, sensores...

\ Mensajes

J^Eslatus del sensor
Usuario

J^Eslatus del sensor

Activar/desactivar

Alerta
de alarma

_Doto^ l^onf igurac ióndehs i s t em^

Subsistema
t monitoreo

y respuesta

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 7 7

Valor del dominio Factor de ponderación
de información Conteo Simple Promedio Complejo
Entrados externas (EE) a i X <3) 4 6 = U J
Salidas externas (SE) a i X (4) 5 7 =

Consultas externas (CE) a i X (3> 4 6 = [_ 4 J
Archivos de lógica interna (ALI) a i X O 10 15 = 1: .7 1
Archivos de interfaz externa (AIE) a i X 7 10 = [_20J

Total de conteos 1 50 1

donde conteo total es la suma de todas las ent radas de PF obtenidas de la figura 15.4,
y F¡ (;' = 1 a 14) son factores de ajuste de valor. Para los objetivos de es te ejemplo, su-
póngase que I (F¡) e s 46 (un producto moderadamente complejo). Por tanto:

PF = 50 x [0.65 + (0.01 x 46)1 = 56

Con base en el valor proyectado del PF derivado del modelo de análisis, el equi-
po del proyecto puede estimar el t amaño implementado general de la función de in-
teracción del usuario de HogarSeguro. Supóngase que los datos del pasado indican
que un PF se t raduce a 60 líneas de código (se va a usar un lenguaje or ientado a ob-
jetos) y que se producen 12 PF por cada persona-mes de esfuerzo. Estos datos his-
tóricos proporcionan al jefe del proyecto información importante que sirve para la
planeación y que se basa en el modelo de análisis m á s que en est imados prelimina-
res. Supóngase, además, que los proyectos anteriores han encontrado un promedio
de tres errores por punto de función durante las revisiones del análisis y el diseño, y de
cuatro errores por punto de función durante las pruebas de unidad e integración. Es-
tos datos ayudarán a los ingenieros de sof tware a evaluar el grado en el que han
completado sus actividades de revisión y prueba.

Uemura y sus colegas [UEM99] sugieren que los puntos de función también pue-
den calcularse a partir de d iagramas UML de clase y secuencia (capítulos 8 y 10). El
lector interesado debe consultar [UEM99] para conocer m á s detalles.

"En luga r de sólo musitar n t e r t a de cuál 'nuevo métrico' podrio apl icarse . . . de lemos plantearnos la pregunta básica:
'¿qué he remos con las métricos?"'

Michaei Mah y larry Putnam

15.3.2 Métricas para la calidad de la especificación
Davis y sus colegas [DAV93] proponen una lista de características con las cuales
puede evaluarse la calidad del modelo de análisis y la correspondiente especificación

TM

PDF Editor

478

\ CLAVE
Al medir las
características de la
especificación es
posible obtener un
conocimiento
cuantitativo de la
especificidad y el grado
de avance.

P A R T E D O S PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE
de requisitos: especificidad (falta de ambigüedad), grado de avance, corrección, faah
dad de comprensión, facilidad de verificación, consistencia interna y externa, facilkktú
para alcanzar los objetivos, concisión, facilidad para darle seguimiento, facilidad per:
modificarse, precisión y facilidad de reutilización. Además, los autores [DAV93] obse-
van que las especificaciones de alta calidad deben estar a lmacenadas electrónica
mente, ser ejecutables o por lo menos interpretables, estar anotadas por impor tanc i
relativa, ser estables, tener indicada la versión, estar organizadas, incluir re ferenc ia
cruzadas y especificarse con el grado de detalle correcto.

Aunque, al parecer, muchas de es tas características tienen u n a naturaleza CL
tativa, Davis et al. [DAV93] sugieren que cada una puede representarse emplea
una o m á s métricas. Por ejemplo, supóngase que hay n r requisitos en u n a es
cación, de modo que

n r = r i f + Rnf

donde nf e s el número de requisitos funcionales y nnf el de no funcionales (con-: e
desempeño) .

Para determinar la especificidad (falta de ambigüedad) de los requisitos, Dar.í &
al. sugieren una métrica basada en la consistencia de la interpretación de los rev.
res de cada requisito:

Qi = nu/nr

donde nw e s el número de requisitos que todos los revisores interpretaron de la
m a manera . Cuanto más cercano esté el valor de Q a 1, menor será la ambi
de la especificación.

El grado de avance de los requisitos funcionales se determina al calcular la -2

ción

Q2 = n¡/[n, x ns]

donde nu es el número de requisitos de función única; n„ el número de entradas (e
los) definidos o implícitos en la especificación, y ns, el número de estados especi f icad®
La relación Q2 mide el porcentaje de funciones necesarias que se han especificac: f f l
ra un sistema. Sin embargo, no se atienden requisitos que no son funcionales. P ¿ n l l
corporarlos a una métrica general del grado de avance, se debe considerar el g r a a r . ^
validación de los requisitos:

Qj = nc/[nc + n j

donde n: es el número de requisitos que se han validado como correctos, y r
requisitos que aún no se validan.

"Mido lo que seo mensurable, y lo que no lo sea, vuélvalo mensurable."

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A A S O F T W A R E 4 7 9

15.4 EL M Q D E L Q P E P I S E Ñ Q

icos pueden
r discernimiento

¡ los datos
es y la

Idel
i asociados con

l á s t ñ o
nico.

Sería inconcebible que el diseño de un nuevo avión, un nuevo chip de computadora
o un nuevo edificio de oficinas se realizara sin definir las medidas del diseño, sin de-
terminar las métricas de diversos aspectos de la calidad del diseño y sin usarlas pa-
ra guiar la manera en que evoluciona el diseño. Sin embargo, a menudo el diseño de
s is temas de sof tware complejos suele avanzar casi sin medición. La ironía es que se
dispone de métricas de diseño para el software, pero la gran mayoría de los desarro-
lladores siguen ignorando su existencia.

Las métricas de diseño para el sof tware de computadora, como todas las d e m á s
métricas del software, no son perfectas. Sigue abierto el debate sobre su eficacia y
la manera en que deben aplicarse. Muchos expertos argumentan que se necesita
m á s experimentación antes de emplear las mediciones en el diseño. Sin embargo,
un diseño sin medición es inaceptable.

15.4.1 Métricas del diseño arquitectónico
Las métricas de diseño arquitectónico se concentran en las características de la ar-
quitectura del programa (capítulo 10), y se destacan la estructura arquitectónica y la
efectividad de módulos o componentes dentro de la arquitectura. Estas métricas son
de "caja negra", en el sentido de que no requieren ningún conocimiento del funcio-
namiento interno de un componente de sof tware en particular.

Card y Glass |CAR90] definen tres medidas de la complejidad del diseño del soft-

ware: estructural, de datos y del sistema.
En el caso de las arquitecturas jerárquicas (por ejemplo, las arquitecturas de lla-

mada y retorno), la complejidad estructural de un módulo i se define de la siguiente

manera-.

S (i) = / 2 „ u t (í) (15.2)

CÚVVE

donde/ o u t(/) es la dependencia hacia fuera8 del módulo i.
La complejidad de datos proporciona una indicación de la complejidad de la inter-

faze interna de un módulo i y se define como:

£>(/) = v(í)/[/oUt(/) + 1] (15.3)

donde v(/') es el número de variables de entrada y salida que se pasan al módulo i o
se reciben de éste.

Por último, complejidad del sistema se define como la suma de las complejidades
estructural y de datos, especificada como:

C(J) = S(i) 4 D[i) (15.4)

8 Dependencia hacia Juera se define como el número de módulos inmediatamente subordinados al
módulo i; es decir, el número de módulos invocados directamente por i. Lo contrario, dependencia
hacia dentro, seria una variable f,„ que indique el número de módulos que invocan directamente al
módulo i.

TM

PDF Editor

4 8 0 PARTE DOS PRÁCTICA DE LA INGENIERÍA D A SOFTWARE

A medida que aumentan estos valores, la complejidad arquitectónica general del s s j 1
tema también lo hace. Esto lleva a una mayor probabilidad de que aumenten los
fuerzos de integración y prueba.

Fenton [FEN91] sugiere varias métricas simples de morfología (es decir, de forr-¿. I
que permiten la comparación entre diferentes arquitecturas de programas e m p l e a -
do un conjunto de dimensiones directas. Si se toma como referencia la a r q u i t e c t o I
de llamada y retorno de la figura 15.5, se definirán las siguientes métricas:

tamaño = n + a

donde n es el número de nodos y a, el de arcos. En el caso de la arquitectura rr Te-
trada en la figura 15.5,

tamaño = 17 + 18 = 35
profundidad = 4, el camino más largo desde el nodo raíz (superior) a un neo:

hoja.
anchura = 6, número máximo de nodos en cualquier nivel de la arquitectura
relación arco-a-nodo, r = a/n,

que mide la densidad de las conexiones y proporciona una simple indicación ót
acoplamiento de la arquitectura. En el caso de la arquitectura mostrada en la figura
15.5, r = 18/17 = 1.06.

El Comando de Sistemas de la Fuerza Aérea de Estados Unidos [USA87] ha desa-
rrollado varios indicadores de la calidad del software que se basan en las caracterís-
ticas de diseño que pueden medirse en un programa de computadora. Empleanc:
conceptos similares a los propuestos en el IEEE Std. 982.1-1988 [IEE94], la Fuerza
Aérea estadounidense emplea información obtenida del diseño de datos y arquitec-
tónico para derivar un índice de calidad de la estructura de diseño (ICED) que va tíe
0 a 1. El cálculo del ICED requiere determinar los siguientes valores [CHA891.

S, = el número total de módulos definidos en la arquitectura del programa

M/vJo
M é t r i c a s d e
m o r f o l o g í a .

Profundidad

1h 1 1m 11n miq 11 r 1
Ancho

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DHL P R O D U C T O P A R A EL S O F T W A R E 4 8 1

52 = el número de módulos cuya (unción correcta depende de la fuente de en-
trada de datos o que produce datos que se usarán en otro lugar (en gene-
ral, ios módulos de control, entre otros, no se contarían como parte de S2)

5 3 = el número de módulos cuya función correcta depende del procesamiento

anterior
54 = el número de e lementos de base de datos (incluye objetos de datos y to-

dos los atributos que definen objetos)
5 5 = el número total de e lementos únicos de base de datos
5 6 = el número de segmentos de base de datos (registros diferentes u objetos

individuales)
57 = el número de módulos con una sola entrada y salida (con excepción del

procesamiento, no s e considera una salida múltiple)

Una vez que se han determinado los valores del S, al S7 para un programa de compu-
tadora, es posible calcular los siguientes valores intermedios:

Estructura del programa: Du donde D¡ se define como sigue: si el diseño arquitec-
tónico se desarrolló empleando un método distinto (por ejemplo, d iseño orientado al
flujo de datos u objetos), en tonces D, = 1; de lo contrario, D, = 0.

Independencia del módulo. D2 = 1 - (S2/S,)

Módulos no dependientes del procesamiento anterior: D3 = 1 - (S3/S,)

Tamaño de la base de datos: D4 = 1 - (S5/S4)

División en compartimientos de la base de datos: D s = 1 - (S6/S4)

Característica de entrada/salida del módulo: D6 = 1 - (S7/S,)

Una vez determinados los valores intermedios, se calcula el ICED de la siguiente ma-
nera:

ICED=2iV(D¡ (15.5)

donde i = 1 a 6, w¡ e s el peso relativo de la importancia de cada uno de los valores
intermedios, y Y w¡ = 1 (si todo D, tiene pesos iguales, en tonces w, = 0.167).

Se determina el valor de ICED para los diseños anteriores y se compara con un di-
seño que está en desarrollo. Si el ICED e s significativamente menor que el promedio,
lo indicado es realizar trabajo de diseño y revisión adicionales. De igual manera , si se
van a realizar cambios importantes en un diseño existente, podrá calcularse el efec-
to de esos cambios sobre el ICED.

"Es posible considerar que la medición es un desvío. Un desvio necesario, porque la mayoría de los seres humanos no
son capaces de tomor decisiones claras y objetivos (sin apoyo cuantitativo)."

Horst Zuse

15.4.2 Métricas para el diseño orientado a objetos
Gran parte del d iseño orientado a objetos e s subjetivo (un diseñador experimentado
"sabe" cómo caracterizar un s is tema orientado a objetos para que implemente efec-

TM

PDF Editor

4 8 2 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

¿Cuáles
• característi-

cas pueden medir-
se cuando se eva-
lúa un diseño
orientado a obje-
tos?

t ivamente los requisitos del cliente). Pero, a medida que aumenta el t amaño \ -
complejidad del modelo de diseño orientado a objetos, un concepto más objetivo a »
las características del diseño beneficiaría al diseñador exper imentado (que o b t e n d r á
conocimientos adicionales) y al principiante (que obtendría una indicación de la ca-
lidad que de otra manera no estaría disponible).

En un tratamiento detallado de las métricas del software para s is temas orierta •
dos a objetos, Whitmire |WHI97] describe nueve características distintivas y mensu-
rables de un diseño orientado a objetos:

Tamaño. El t amaño se define a partir de cuatro conceptos: población, volurr.e-
longitud y funcionalidad. Población se mide al tomar un conteo estático de entidad—
orientada a objetos como clases u operaciones. Las medidas de volumen son idér :
cas a las de la población, pero se recopilan dinámicamente (en un momento dete-
minado). La longitud es u n a medida de u n a cadena de e lementos de diseño Ínter;
nectados (por ejemplo, la profundidad de un árbol de herencia e s una medida de lor-i
gitud). Las métricas de funcionalidad proporcionan una indicación indirecta del va. : r

entregado al cliente en u n a aplicación orientada a objetos.

Complej idad. Como el t amaño, hay muchos conceptos diferentes de la comp ;
jidad del sof tware [ZUS97]. Whitmire considera la complejidad desde el punto de v ;

ta de las características estructurales, al examinar la manera en que se interrelac -
n a n las clases de un diseño orientado a objetos.

Acoplamiento . Las conexiones físicas entre los e lementos de un diseño orienu
do a objetos (por ejemplo, el número de colaboraciones entre clases o el de mensa
jes pasados entre objetos) representan el acoplamiento dentro de un sistema orier-
tado a objetos.

Sufic iencia . Whitmire define suficiencia como "el grado en que una abstracc;: -
posee las características que se le piden, o el grado en que un componente de díst
ño posee características en su abstracción, desde el punto de vista de la aplicad:*'
actual". Expresado de otra manera , se pregunta: ¿Cuáles propiedades debe tener es-
ta abstracción (clase) para que sea útil? [WH197]. En esencia, un componente de c
seño (por ejemplo, una clase) es suficiente si refleja p lenamente todas las propiec;
des del objeto de dominio de la aplicación que se está modelando (es decir, que :
abstracción, o clase, posee las características que debe tener).

"Muchas de las decisiones para las que tenia que depender del foldore o los mitos puedo tomarlas ahora empleando
datos cuantitativos."

Stott Whitmire

Grado d e a v a n c e . La única diferencia entre el grado de avance y la suficienca
e s "el conjunto de características contra las que comparamos el componente de abs
tracción o diseño" [WHI97]. La suficiencia compara la abstracción desde el punto c :
vista de la aplicación actual. El grado de avance considera varios puntos de vist:

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 8 3

planteando la pregunta: ¿Cuáles propiedades se requieren para representar plena-
mente el objeto del dominio del problema? Debido a que los criterios para el grado
de avance consideran diferentes puntos de vista, indican indirectamente el grado en
que puede reutil izarse el componente de abstracción o diseño.

Cohesión. Como su contraparte en el software convencional, un componente
orientado a objetos debe diseñarse de manera que todas las operaciones trabajen en
combinación para alcanzar un solo propósito, bien definido. El grado de cohesión de
una clase se determina al examinar el grado en que "el conjunto de propiedades que
posee es parte del dominio del problema o el diseño" [WHI97].

Primitivismo. Una característica similar a la simplicidad, el grado de primitivis-
mo (aplicado a operaciones y clases) es el grado en que una operación es atómica
(es decir, la operación no puede construirse a partir de una secuencia de otras ope-
raciones contenidas dentro de una clase). Una clase que muestra un alto grado de
primitivismo sólo encapsula operaciones primitivas.

Similitud. Esta medida indica el grado en que dos o más clases son similares en
cuanto a su estructura, función, comportamiento o propósito.

Volatilidad. Como ya se ha visto en este libro, los cambios de diseño ocurren
cuando los requisitos se modifican o cuando las modificaciones se presentan en otra
parte de una aplicación, lo que produce una adaptación obligatoria del componente
del diseño en cuestión. La volatilidad de un componente de diseño orientado a ob-
jetos mide la probabilidad de que ocurra un cambio.

En realidad, las métricas del producto para sistemas orientados a objetos no sólo
se aplican al modelo de diseño, sino también al de análisis. En las secciones que si-
guen se explorarán las métricas que proporcionan una indicación de la calidad al ni-
vel de clase orientada a objetos y al nivel de operación.

15.4.3 Métricas orientadas a clases: la colección de métricas de CK
La clase es la unidad fundamental de un sistema orientado a objetos. Por tanto, las
medidas y métricas de una clase individual, la jerarquía de clase y las colaboracio-
nes de clase serán invaluables para un ingeniero de software que debe valorar la ca-
lidad del diseño. En capítulos anteriores se vio que la clase encapsula operaciones
(procesamiento) y atributos (datos). La clase suele ser el "predecesor" de las subcla-
ses (a veces denominadas descendientes) que heredan sus atributos y operaciones.
Con frecuencia, la clase colabora con otras clases. Cada una de estas características
se utiliza como base de la medición.9

Chidamber y Kemerer [CHI94] propusieron uno de los conjuntos de métricas de
software orientado a objetos al que se hace referencia con mayor frecuencia. A me-

9 Debe observarse que aún se debate en la bibliografía técnica la validez de algunas de las métricas
analizadas en este capitulo. Quienes defienden la teoria de la medición, exigen un grado de forma-
lismo que algunas métricas orientadas a objetos no proporcionan Sin embargo, es razonable deter
minar que las métricas indicadas proporcionan conocimientos útiles para el ingeniero de software.

TM

PDF Editor

4 8 4 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

CLAVE
El número de métodos
y su complejidad están
directo mente
correlacionados con el
esfuerzo requerido
pora probor una clase.

^ O N S U O ^

Lo herencia es uno
característica
extremadamente
poderoso que puede
cousar problemas si se
empleo sin cuidado.
Úsese el APH y otros
métricas pora obtener
una lectura de lo
complejidad de las
jerarquías de cióse.

nudo denominadas colección de métricas de CK, los autores proponen seis mé t r i c a
de diseño basado en clases para s is temas orientados a objetos.10

M é t o d o s p o n d e r a d o s por c l a s e (MPC). Suponga que n métodos de complej idi :
c¡, c¿...,c„ es tán definidos por la clase C. La métrica de complejidad específica q j t
se elija (por ejemplo, la complejidad ciclomática) debe normalizarse con el fin de que ^
complejidad nominal de un método tome un valor de 1.0.

MPC = I

para i = 1 a n. El número de métodos y su complejidad son indicadores razonabi--
de la cantidad de esfuerzo requerido para implementar y probar una clase. Ademar-
cuanto mayor sea el número de métodos, más complejo será el árbol de he renca
(todas las subclases heredan los métodos de sus predecesores). Por último, confir-
me crece el número de métodos de una clase determinada, es probable que se vu;
va m á s y m á s específica de la aplicación, lo que limita sus posibilidades de reutiliz»-
ción. Por todas las razones mencionadas , MPC debe mantenerse lo m á s ba jo que s r i
posible.

Aunque parezca relat ivamente simple desarrollar un conteo del número de mea-
dos en la clase, en realidad el problema es m á s complejo de lo que parece. Debe o t
sarrollarse un enfoque de conteo consistente para los métodos [CHU95].

Árbol de profundidad d e la herenc ia (APH). Esta métrica e s "la longitud ma--:
ma desde el nodo hasta la raíz del árbol" [CHI94], Si toma como referencia la figuré
15.6, el valor de APH para la jerarquía de clase mostrada es 4. A medida que cre:¿
la APH, es probable que las clases de nivel inferior heredarán muchos métodos Es-

J e r a r q u í a
d e u n a
c l a s e .

10 Chidamber y Kemerer usan el término métodos en lugar de operaciones. La forma en que emplear -
término se refleja en esta sección.

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 8 5

[CONSEJO,

iceptos de
uto y

i se aplican al
i convencional

i orientado o
is. Manténgase

¡ el acoplamiento
7 fe cohesión de
s y operaciones.

to se presta a posibles dificultades cuando se trata de predecir el comportamiento de
una clase. Una jerarquía de clase profunda (su APH es mayor) también se presta a una
mayor complejidad de diseño. Por el lado positivo, valores grandes de APH indican
que se podrían reutilizar muchos métodos.

Número de descendientes (NDD). Un descendiente es una subclase que se en-
cuentra inmediatamente subordinada a otra en la jerarquía de clases. Si se toma co-
mo referencia la figura 15.6, la clase C2 tiene tres descendientes (las subclases C 2 | ,
C22 y C23). A medida que crece el número de descendientes, se incrementa la reuti-
lización, pero podría diluirse la abstracción que representa la clase predecesora si al-
guno de los descendientes no es un miembro apropiado de la clase predecesora. A
medida que aumenta el NDD, también lo hace la cantidad de pruebas (requeridas pa-
ra ejercitar cada descendiente en su contexto operacional).

Acoplamiento entre c la se s de objetos (AECO). El modelo de conjunto de res-
puesta de una clase (CRC), expuesto en el capítulo 8, se emplea para determinar el
valor de AECO. En esencia, AECO es el número de colaboraciones enlistadas, para
una clase, en su tarjeta de índice CRC." A medida que AECO aumenta, es probable
que disminuya la facilidad de reutilización de una clase. Valores elevados de AECO
también complican las modificaciones y la prueba que asegura que esas modifica-
ciones se han hecho. En general, para cada clase deben mantenerse los valores de
AECO en el valor más bajo que sea razonable. Esto es consistente con la directriz
general para reducir el acoplamiento en el software convencional.

Respuesta para una c lase (RPC). El conjunto de respuesta para una clase es un
"conjunto de métodos que tiene la posibilidad de ejecutarse como respuesta a un men-
saje que recibe un objeto de esa clase" [CH194]. La RPC es el número de métodos en
el conjunto de respuesta. A medida que la RPC aumenta, el esfuerzo requerido para
probar también lo hace, debido a que crece la secuencia de prueba (capítulo 14).
También se desprende que, a medida que la RPC aumenta, se incrementa la comple-
jidad del diseño general de la clase.

Falta de cohes ión en m é t o d o s (FCM). Cada método dentro de una ciase, C, tie-
ne acceso a uno o más atributos (también denominados variables de instancia). La
FCM es el número de métodos que acceden a uno o más de los mismos atributos.12

Si ningún método accede a los mismos atributos, entonces FCM = 0. Para ilustrar el
caso donde FCM * 0, imagínese una clase de seis métodos. Cuatro de ellos tienen
uno o más atributos en común (es decir, acceden a atributos comunes). Por tanto,
FCM = 4. Si la FCM es alta, los métodos pueden acoplarse entre sí mediante atribu-
tos. Esto aumenta la complejidad del diseño de clase. Aunque hay casos en que re-

11 Si las tarjetas de Índice CRC se desarrollan manualmente, el grado de avance y la consistencia de-
ben evaluarse antes de determinar el AECO de manera confiable

12 La definición formal es un poco más compleja. Consúltese [CHI94] para conocer más detalles.

TM

PDF Editor

PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

sulta justificable un valor elevado para la FCM. Lo deseable es mantener alta la co-
hesión; es decir, conservar baja la FCM.13

Aplicación de métricas de
El e scenar io : Cubículo de Vinod.

Los actores: Vinod, Shakira y Ed, integrantes del
equipo del software H o g a r S e g u r o , que siguen
trabajando en el diseño al nivel de componentes y de
casos de prueba. -SI 'i ^

t a conversac ión:

V i n o d : ¿Tuvieron oportunidad de leer la descripción de
lo colección de métricas de CK que les envié el miércoles
y de hacer esas mediciones?

Shakira: No fue muy complicado. Regresé a mis
diagramas de clase y de secuencia UML, como sugeriste, y
obtuve conteos elementales de APH, FPC y FCM. No pude
encontrar el modelo CRC, de modo que no conté AECO.

j a m i e (sonriendo): No pudiste encontrar el modelo
CRC porque yo lo tenía.

Shakira: Eso es lo que me encanta de este equipo, la
gran comunicación.

Vinod: Yo hice mis conteos.,, ¿desarrollaron cifras para
las métricas de CK? ¡ | | | j

(Jamie y Ed asienten.)

Jamie: Como tenía las tarjetas CRC, eché un vistazo al
AECO y parecía muy uniforme en casi todas las clases.
Hubo una excepción, y la anoté.

CK
Ed: Hay unas cuantas clases donde la RPC es muy
elevada, comparada con las asociaciones verdaderas...
tal vez debemos echar un vistazo para simplificarlas.

Jamie: Tal vez sí, tal vez no. Todavía estoy preocupada
por el tiempo, y no quiero corregir cosas que realmente
no están mal.

Vinod: Estoy de acuerdo con eso. Tol vez debemos
buscor clases que tengan malos números en al menos do>
o más métricas de CK. Digamos que si le pasan dos
slrikes, hay que modificarlas.

Shakira (m i r a n d o la lista d e c l a s e s d e Ed con
alta RPC): Mira, ¿ves esta clase? Tiene una FCM alto,
además de una RPC alta. ¿Dos s l r i k e s ?

Vinod: Sí, así lo creo... por lo mismo, será difícil de
implementar debido a la complejidad y dificultad de
probar. Tal vez valga la pena diseñar dos clases
separadas para alcanzar el mismo comportamiento.

Jamie: ¿Crees que la modificación nos ahorrará
tiempo?

Vinod: A la larga, sí.

15.4.4 Métricas orientadas a objetos: la colección de métricas para el
diseño orientado a objetos

Harrison, Counsell y Nithi [HAR98] proponen un conjunto de métricas para d isef :
orientado a objetos que proporcionan indicadores cuantitativos para las caracterís-
ticas del diseño orientado a objetos. A continuación se presente una pequeña mues-
tra de estas métricas:

13 La métrica FCM proporciona conocimientos útiles en algunas situaciones, pero puede malinterpr-
tarse en otras. Por ejemplo, mantener el acoplamiento encapsulado dentro de una clase aumenta s
cohesión del sistema como un todo. Por tanto, por lo menos en un sentido importante, un FCM rr¿:
elevado en realidad sugiere que una clase puede tener una mayor cohesión, no una menor.

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 8 7

Método de l factor d e herenc ia (MFH). El grado en que la arquitectura de clases
de un sistema orientado a objetos usa la herencia para métodos (operaciones) y atri-
butos se define como

MFH =IM, (C,)/X Ma{C¡)

donde la sumatoria se presenta desde i = 1 hasta Tc. Tc se define como el número to-
tal de clases en la arquitectura; C, es una clase dentro de la arquitectura y

M„(C,) = MAC,) + M, (Q

donde

Ma(C¡) = el número de métodos que pueden invocarse en asociación con C¡.

MafCj) = el número de métodos declarados en la clase C¡.

M(C¡) = el número de métodos heredados (y no redefinidos) en C,.

El valor de MFH (el atributo de factor de herencia, AFH, se define de manera análo-
ga) es un indicativo del impacto de la herencia en el sof tware orientado a objetos.

"El análisis del software orientado a objetos para evaluar su calidad se está volviendo cada vez m á s importante o
medido que el paradigma [orientado a objetos] sigue ganando popularidad."
;;•! , Rochel Harrison el al.

Factor d e a c o p l a m i e n t o (FA). Al principio de este capítulo se indicó que el aco-
plamiento es una indicación de las conexiones entre elementos de un diseño orien-
tado a objetos. El conjunto de métricas del diseño orientado a objetos define el aco-
plamiento de la siguiente manera:

FA = S, I , es_cliente (C„ q)/{Tc2 - Tc)

donde las sumatorias van desde i = 1 hasta Tc y desde j = 1 hasta Tc. La función

es_diente = 1, si y sólo si existe una relación entre la clase cliente, Cr, y la cla-
se servidor, Cs, y Cc # Cs

= 0, en cualquier otro caso

Aunque muchos factores afectan la complejidad, la facilidad de comprensión y el
mantenimiento del software, resulta razonable concluir que, a medida que aumenta
el valor de FA, también aumentará la complejidad del software orientado a objetos
y, como consecuencia, es posible que resulten afectadas la facilidad de comprensión y
mantenimiento, junto con la posibilidad de reutilización.

Harrison y sus colegas [HAR98] presentan una análisis detallado de MFH y FA,
junto con otras métricas, y examinan su validez para emplearlos en la evaluación de
la calidad del diseño.

TM

PDF Editor

4 8 8 PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

(C O N S E J O ^

Durante lo revisión del
modelo de análisis,
las tarjetas de Índice
CHC proporcionarán
uno indicación
razonable de los
valores esperados
para el tamaño de la
clase. Sise encuentro
una cióse con un
número grande de
responsabilidades,
piénsese en i

15.4.5 Métricas orientadas a objetos propuestas por Lorenz y Kidd
En su libro sobre métricas orientadas a objetos, Lorenz y Kidd [LOR94] dividen las
métricas basadas en clases en cuatro amplias categorías, cada una con un diseño al
nivel de componentes: tamaño, herencia, valores internos y valores externos. Las
métricas orientadas al tamaño aplicadas a una clase de diseño orientado a objetos
se concentran en el conteo de atributos y operaciones de una clase individual, as;
como en valores promedio para el sistema orientado a objetos como un todo. Las
métricas basadas en la herencia se concentran en la manera en que las operaciones
se reutilizan en la jerarquía de clases. Las métricas para los valores internos buscar
cohesión y aspectos orientados al código, y las métricas de valores externos exami
nan el acoplamiento y la reutilización. A continuación se presenta una muestra de
las métricas propuestas por Lorenz y Kidd:

Tamaño d e la c la se (TC). El tamaño general de una clase se determina con las
siguientes medidas:

• El número total de operaciones (de instancia heredada y privada) que están
encapsuladas dentro de la clase.

• El número de atributos (de instancia heredada y privada) que están encapsu
lados por la clase.

La métrica MPC que propusieron Chidambery Kemerer (sección 15.4.3) tambie-
es una medida ponderada de tamaño de clase. Como ya se indicó, los valores gran-
des de TC indican que tal vez una clase tenga demasiada responsabilidad. Esto re-
ducirá la posibilidad de reutilización de la clase y complicará la implementación \ ¿
prueba. En general, debe dársele más peso a las operaciones y los atributos h e r e d a !
dos o públicos para determinar el tamaño de la clase [LOR94]. Las operaciones y ', :<
atributos privados permiten la especialización y están más focalizados en el diser :
También deben calcularse los promedios para el número de atributos y operacior
de clase. Cuanto menores sean los valores promedio para el TC, más probable será
que las clases dentro del sistema puedan reutilizarse ampliamente.

Número de operac iones añadidas por una subc lase (NOA). Las subclases
especializan al agregar operaciones y atributos. A medida que el valor de NOA a.*|
menta, la subclase se aparta de la abstracción implícita en la superclase. En gene
a medida que la profundidad de la jerarquía de clase aumenta (APH se vuelve
yor), debe caer el valor de NOA en los niveles inferiores de la jerarquía.

15.4.6 Métricas de diseño al nivel de componentes
Las métricas de diseño al nivel de componentes del software convencional se c
centran en las características internas de un componente de software e incluyen
didas de cohesión, acoplamiento y complejidad del módulo. Estas medidas ayuda-
un ingeniero de software a juzgar la calidad de un diseño al nivel de component

TM

PDF Editor

CAPITULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 489

Las métricas presentadas en esta sección son de "caja de cristal", en el sentido de
que requieren conocimiento del funcionamiento interno del módulo que se está con-
siderando. Las métricas de diseño al nivel de componentes se aplican una vez que
se ha desarrollado el diseño procedimental. Como opción, pueden demorarse hasta
que el código fuente esté disponible.

Métricas de cohes ión . Bieman y Ott 1B1E94] definen una colección de métricas
que proporcionan una indicación del grado de cohesión (capítulo 9) de un módulo.
Las métricas se definen a partir de cinco conceptos y medidas:

Porción de datos. Definido simplemente, una porción de datos es un recorrido
hacia atrás por un módulo; busca valores de datos que afectan el estado del módu-
lo cuando comienza el recorrido. Debe indicarse que es posible definir las porcio-
nes del programa (que se concentran en instrucciones y condiciones) y las porcio-
nes de datos.

Muestras de datos. Las variables definidas para un módulo se definen como
muestras de datos para el módulo.

Señales de unión. Este conjunto de muestras de datos cae en una o más porcio-
nes de datos.

Señales de superunión. Estas muestras de datos son comunes a todas las porcio-
nes de datos de un módulo.

Capacidad de unión. La capacidad de unión relativa de una señal de unión es di-
rectamente proporcional al número de porciones de datos que une.

Bieman y Ott desarrollan métricas para cohesión funcional fuerte, cohesión funcional
débil y adhesividad (que se relaciona con el grado en que las señales de unión integran
las porciones de datos). Estas métricas se interpretan de la siguiente manera [BIE94]:

Todas es t a s métr icas de cohesión abarcan valores de 0 a 1. Tienen un valor de 0 c u a n d o

un procedimiento cuenta con m á s de una salida y n o muest ra atr ibuto a lguno de cohesión

indicado por una métrica particular. Un procedimiento sin s eña l e s de superun ión (es de-

cir, sin mues t ras c o m u n e s a todas las porc iones de datos), t iene 0 cohesión funcional fuer-

te (no hay mues t r a s de da tos que contr ibuyan a t odas las salidas). Un procedimiento sin

s eña l e s de unión (es decir, sin m u e s t r a s c o m u n e s a m á s de u n a porción de datos , en pro-

cedimientos con m á s de una porción de datos) muest ra 0 cohes ión funcional débil y 0 ad-

hesividad (no hay mues t r a s de da tos q u e contr ibuyan a más de una salida).

La cohesión funcional fuerte y la adhesividad se encuentran cuando las métricas de
Bieman y Ott toman un valor máximo de 1.

Métricas de acoplamiento. El acoplamiento del módulo proporciona una indica-
ción de la "conectividad" de un módulo con otros módulos, con datos globales y con
el entorno exterior. En el capítulo 9 se analizó el acoplamiento desde el punto de vis-
ta cualitativo.

TM

PDF Editor

PARTE DOS PRÁCTICA DE LA INGENIERÍA DEL SOFTWARE

Dhama [DHA95] ha propuesto una métrica para el acoplamiento del módulo que
abarca el acoplamiento de flujo de datos y de control, el global y el de entorno. Lai
medidas necesarias para calcular el acoplamiento del módulo se definen a partir ce |
cada uno de los tres tipos de acoplamiento indicados antes. En el caso del acopla-
miento de flujo de datos y de control,

de = número de parámetros de datos de entrada

ce = número de parámetros de control de entrada

ds = número de parámetros de datos de salida

cs = número de parámetros de control de salida

En el caso del acoplamiento global:

gd = número de variables globales usadas como datos

gc = número de variables globales usadas como control

En el caso del acoplamiento de entorno:

w = número de módulos llamados (dependencia hacia fuera)

r = número de módulos que llaman al módulo en cuestión (dependencia
dentro)

Con estas medidas se define un indicador de acoplamiento del módulo, ma, de la
guiente manera:

m„ = k/M

donde k es una constante de proporcionalidad y

M = dc + (a x ce) + ds + (¿> x cs) + gd+ (c x gc) + w + r (15.

Los valores de k, a, b y c deben derivarse empíricamente.

A medida que el valor de ma aumenta, disminuye el acoplamiento general del
dulo. Para lograr que la métrica de acoplamiento suba a medida que aumenta el
do de acoplamiento, se define una métrica de acoplamiento revisada

C = 1 - ma

donde el grado de acoplamiento aumenta a medida que lo hacen las medidas
ecuación (15.6).

Métricas de complej idad. Es posible calcular diversas métricas del soft
para determinar la complejidad del flujo de control del programa. Muchas de
se basan en la gráfica de flujo. Como se analizó en el capítulo 14, una gráfica
una representación compuesta de nodos y enlaces (también denominados ari
Cuando los enlaces (aristas) están dirigidos, la gráfica de flujo es una gráfica
gida.

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 9 1

:LAVE

McCabe y Watson [MCC94] identifican varios usos importantes para las métricas
de complejidad:

Las mé t r i ca s de comple j idad s e uti l izan pa ra p redec i r la i n fo rmac ión crítica a c e r c a d e la

conf iabi l idad y la facil idad de m a n t e n i m i e n t o d e s i s t e m a s d e s o f t w a r e a par t i r del aná l i s i s

a u t o m á t i c o del cód igo fuen te [o la i n fo rmac ión del d i s e ñ o proccd imcnta l] . Las mé t r i ca s d e

comple j idad t ambién o f r e c e n r e t roa l imen tac ión d u r a n t e el p r o y e c t o d e s o f t w a r e p a r a ayu-

dar a con t ro la r [la ac t iv idad del diseño) . Duran t e las p r u e b a s y el m a n t e n i m i e n t o , o f r ecen

u n a in formac ión de ta l l ada a c e r c a de los m ó d u l o s d e s o f t w a r e p a r a a y u d a r a d e t e c t a r á r e a s

d e pos ib le ines tabi l idad.

La métrica de complejidad cuyo uso es el más extendido (y debatido) para el
software de computadora es la complejidad ciclomática, originalmente desarrolla-
da por Thomas McCabe [MCC761, [MCC89], y que se analizó con todo detalle en el
capítulo 14.

, Cíi„ „ „„„ Zuse ([ZUS90], [ZUS97]) presenta un análisis enciclopédico de no menos de 18] solo GS uno
categorías diferentes de las métricas de complejidad del software. El autor presenta

i de métricas las definiciones básicas de métricas en cada categoría (por ejemplo, hay distintas va-
t ::nplejidad. riaciones de la métrica de complejidad ciclomática) y luego analiza y critica cada

una. El trabajo de Zuse es el más completo publicado a la fecha.

15.4.7 Métricas orientadas a la operación
Debido a que la clase es la unidad dominante en los sistemas orientados a objetos,
se han propuesto pocas métricas para operaciones que residen dentro de la clase.
Churcher y Shepperd [CHU95] analizan esto cuando afirman: "Los resultados de es-
tudios recientes indican que los métodos tienden a ser pequeños en cuanto al núme-
ro de instrucciones y a complejidad lógica [W1L93], lo que sugiere que la estructura
de conectividad de un sistema es más importante que el contenido de los módulos
individuales". Sin embargo, se apreciarán mejor las cosas si se examinan las consul-
tas promedio de métodos (operaciones). Tres métricas simples, propuestas por Lo-
renz y Kidd [LOR94], resultan apropiadas:

Tamaño promedio de operac ión (TOprom). Aunque las líneas de código po-
drían usarse como indicador del tamaño de operación, la medida de líneas de có-
digo adolece de una serie de problemas analizados en el capítulo 22. Por ello, el
número de mensa jes que envía la operación proporciona una opción al tamaño de
operación. A medida que aumenta el número de mensajes enviados por una sola ope-
ración, es probable que las responsabilidades no se hayan asignado bien dentro de
la clase.

Complejidad de la operación (CO). La complejidad de una operación se calcu-
la empleando cualquier métrica de complejidad propuesta para el software conven-
cional [ZUS90], Debido a que las operaciones deben limitarse a una responsabilidad
específica, el diseñador debe esforzarse por mantener la CO lo más baja posible.

TM

PDF Editor

Los métricas de
diseño de lo interfaz
son adecuadas, peco
sobie todo lo demás,
es necesario osegu-
rarse plenamente de
que la Interfaz le
gusto a los usuarios
finales y de que éstos
se sienten cómodos
con los interacciones
requeridas.

PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

Número p r o m e d i o de parámetros d e la o p e r a c i ó n (NPOprom). Mientras ma
yor sea el número de parámet ros de la operación, m á s compleja será la colaboracic-
entre los objetos. En general, el NPOprom debe mantenerse lo más ba jo posible.

15.4.8 Métricas de diseño de la interfaz de usuario
Aunque hay obras importantes que tratan el diseño de interfaces ser humano/máqui r j
(capítulo 12), se ha publicado relativamente poca información sobre métricas que pr>
porcionen conocimientos profundos sobre la calidad y la facilidad de uso de la interfaz.

Sears [SEA93] sugiere que lo apropiado del formato (AF) es una métrica de diseño va-
liosa para interfaces ser humano/máquina . Una GUI común aplica entidades de forma-
to (iconos gráficos, texto, menús, ventanas, etc.) para ayudar al usuario a completar t J
reas. Para realizar una tarea determinada con una GUI, el usuario debe pasar de uca
entidad de presentación a la siguiente. La posición absoluta y relativa de cada entidad
de presentación, la frecuencia con que se emplea y el "costo" de la transición de ui
entidad de formato a la siguiente contribuirán a determinar lo apropiado de la interis*|

"Aprenderá por lo menos un principio del diseño d e interfaces de usuario si echa la ropa en una lavadora. Si pone
demasiada ropa , nado queda rá limpio."

Anóniir:

Kokol y sus colegas [KOK95] definen una métrica de cohesión para las pan ta l l a
de la interfaz de usuario que mide la conexión relativa entre el contenido de u J
pantalla y el de otra. Si los datos (o el contenido adicional) presentados en una paa j
talla pertenecen a un solo objeto importante de datos (como se definió dentro j a
modelo de análisis), la cohesión de la interfaz para esa pantalla será alta. Si se p «
sentan muchos tipos diferentes de datos o contenidos y esos datos se relacionan a a
diferentes objetos de datos, la cohesión de la interfaz de usuario será baja. Los aw
tores proporcionan modelos empíricos para la cohesión [KOK95].

Además, las medidas directas de la interacción con la interfaz de usuario se
centran en la medición del t iempo requerido para a lcanzar un escenario o una
ración específicos, el t iempo requerido para recuperarse de una condición de e r - J
los conteos de operaciones o tareas específicas requeridas para a lcanzar un casc a
uso, el número de objetos de datos o contenido presentados en una pantalla, la fem
sidad y el tamaño del texto y muchos otros. Sin embargo, estas medidas directas denoi
estar organizadas para crear métricas de interfaz de usuario que tengan un sigr a
cado y que lleven a mejorar la calidad, la facilidad de uso, o ambos elementos d¡e a
interfaz de usuario.

Es importante observar que la selección de un diseño de interfaz gráfica de u s J
rio puede determinarse a partir de métricas c o m o AF o la cohesión de pantalla de a
interfaz de usuario, pero el árbitro final debe ser la entrada del usuario basada J
prototipos de interfaz gráfica de usuario. Nielsen y Levy [NIE94] reportan que "se : n
ne una probabilidad razonablemente grande de éxito si s e elige entre las i n t e r f a ^

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 4 9 3

[diseños] basadas exclusivamente en las opiniones de los usuarios. El desempeño
promedio de las tareas de los usuarios y su satisfacción subjetiva con una interfaz
gráfica de usuario tienen una elevada correlación".

: de la interfoz
is, pero

• -odo lo demás,
) asegu-

f Unamente de
r irteríaz le

: 3 los usuarios
¡ Y de que éstos

i cómodos
s interacciones

La teoría de Halstead de la "ciencia del sof tware" [HAL771 propuso las pr imeras "le-
yes" analíticas para el sof tware de computadora.1 4 Halstead asignó leyes cuantitati-
vas al desarrollo de es te sof tware empleando un conjunto de medidas primitivas que
s e derivan después de que se ha generado el código, o se est iman una vez que el di-
seño es té completo. Las medidas son:

n, = el número de operadores distintos que aparecen en un programa.
n 2 = el número de operandos distintos que aparecen en un programa.

= el número total de veces que aparece el operador.
N 2 = el número total de veces que aparece el operando.

Halstead aplica estas medidas primitivas para desarrollar expresiones relacionadas
con la longitud global del programa, el volumen mínimo posible para un algoritmo, el
volumen real (número de bits requeridos para especificar un programa), el nivel del
programa (una medida de la complejidad del software), el nivel del lenguaje (una
constante para un lenguaje determinado) y otras características como esfuerzo de de-
sarrollo, t iempo de desarrollo y hasta el número proyectado de fallas en el software.

Halstead demuestra que la longitud N se puede est imar así:

N = n , log2 n , + n 2 log2 n 2

y que el volumen de programa se puede definir como:

V = N log2 (r?i + n 2)

Se debe observar que V variará de acuerdo con el lenguaje de programación y que re-
presenta el volumen de información (en bits) necesario para especificar un programa.

»rl 1 1 El conjunto de regios que sigue el cerebro hume no Lpara el desarrollo de algoritmos] es mas rígido d e lo q u e suele
pensarse."

Mauríce Halstead

En teoría, debe existir un volumen mínimo para un algoritmo determinado. Hals-
tead define una relación de volumen, L, como la relación entre el volumen de la for-
ma m á s compacta de un programa y el volumen real del programa. En realidad, L
siempre debe ser menor que 1. Desde el punto de vista de las medidas primitivas, la
relación de volumen se expresa como

14 Debe observarse que las "leyes" de Halstead han generado gran controversia, y muchos creen que
la teoría tiene fallas Sin embargo, se ha realizado la verificación experimental de lenguajes de pro-
gramación seleccionados (por ejemplo, [FEL8911

TM

PDF Editor

4 9 4 PARTE DOS PRÁCTICA D E LA INGENIERÍA DEL SOFTWARE

L = 2/n, x n2/N2

El t rabajo de Halstead es sensible a la verificación experimental, y s e ha realiza-
do una gran cantidad de investigación sobre la ciencia del software. Para obtener
más información, consúl tense [ZUS90], [FEN91] y [ZUS97].

<s¡*

CLAVE
Los métricos de pruebo
se agrupan en dos
amplias categorías:
1) las que tratan de
predecli el número
probable de pruebas
que se requieren a
varios niveles de
prueba, y 2) las que
se concentran en la
cobertura de la prueba
para un componente
determinado.

Aunque se ha escrito mucho sobre las métricas del sof tware para pruebas (por ejem-
plo, [HET93]), casi todas las métricas propuestas s e concentran en el proceso de
prueba, no en las características técnicas de las propias pruebas. En general, quie-
nes aplican las pruebas deben depender de las métricas de análisis, diseño y códigc
c o m o guía para el diseño y la ejecución de los casos de prueba.

Las métricas basadas en la función (sección 15.3.1) se aplican para predecir el es-
fuerzo general de la prueba. Es posible recopilar varias características al nivel de.
proyecto (como el es fuerzo y el t iempo para las pruebas, los errores descubiertos, e.
número de casos de prueba producidos) de proyectos anteriores y correlacionarlas
con el número de puntos de función que produce un equipo de proyecto. Este equi-
po tiene la opción posterior de proyectar "valores esperados" de es tas características
para el proyecto actual.

Las métricas del diseño arquitectónico proporcionan información sobre la facili-
dad o la dificultad asociada con la prueba de integración (capítulo 13) y la neces ida:
de contar con sof tware especializado en pruebas (por ejemplo, resguardos y contr ; -
ladores). La complejidad ciclomática (una métrica de diseño al nivel de componer -
tes) cae en el eje de las pruebas de camino básico, un método de diseño de casos de
prueba presentado en el capítulo 14. Además, la complejidad ciclomática se emplea
para determinar los módulos que serán candidatos a pruebas de unidad m á s exter
sas. Los módulos con elevada complejidad ciclomática son más propensos a errcr
que los que tienen una menor complejidad. Por ello, la persona responsable de -a
prueba debe realizar un esfuerzo superior al promedio para descubrir errores en es-
tos módulos an tes de integrarlos en un sistema.

15.6.1 Métricas de Halstead aplicadas a las pruebas
También es posible estimar el esfuerzo que requieren las pruebas mediante métricas
derivadas de las medidas de Halstead (sección 15.5). Si se aplican las definiciones d d i
volumen, V, y el nivel de un programa, NP, el esfuerzo de Halstead, e, se calculaba
así:

NP = l/[(7i,/2) x (N2/n2)]
e = V/NP

(15.7a|
(15.7bJ

El porcentaje del esfuerzo general de prueba que se debe asignar a un k se estima -]
ría con la siguiente relación:

porcentaje de esfuerzo de prueba {k) = e (k) /^e(i) (15.8

donde e(k) se calcula para el módulo k empleando las ecuaciones (15.7), y donde

TM

PDF Editor

CAPÍTULO 15 M É T R I C A S DEL P R O D U C T O P A R A EL S O F T W A R E 495

* [CONSEJO

i orientada a
i a ser

1:37ipiejo. Los
s ayudarán a

ríos recursos
: xuebo a subpro-

, escenarios y
s de closes
'sospe-

s'con base en
s znxterísticos

. Es recomen-
i usados.

sumatoria en el denominador de la ecuación (15.8) es la suma del esfuerzo de Hals-
tead en todos los módulos del sistema.

15.6.2 Métricas para pruebas orientadas a objetos
Las métricas del diseño orientado a objetos expuestas en la sección 15.4 proporcio-
nan una indicación de la calidad del diseño. También proporcionan una indicación
general de la cantidad de esfuerzo necesario en la prueba para ejercitar un sistema
orientado a objetos.

Binder [B1N94] sugiere una amplia serie de métricas de diseño que tienen una in-
fluencia directa sobre la "facilidad de prueba" de un sistema orientado a objetos. Las
métricas toman en cuenta aspectos de encapsulamiento y herencia. A continuación
se presenta una muestra:

Falta de cohesión en métodos (FCM).'5 Mientras mayor sea el valor de FCM, deben
probarse más estados para asegurar que los métodos no generen efectos colaterales.

Porcentaje público y protegido (PYP). Esta métrica indica el porcentaje de atri-
butos de clase que son públicos o están protegidos. Valores elevados de PYP aumen-
tan la probabilidad de efectos colaterales entre clases porque los atributos públicos
o protegidos conllevan una alta probabilidad de acoplamiento (capítulo 9).16 Deben
diseñarse pruebas para asegurar el descubrimiento de estos efectos colaterales.

Integrantes de a c c e s o público a datos (APD). Esta métrica indica el número
de clases (o métodos) al que tienen acceso otros atributos de clase, lo que es una
violación del encapsulamiento. Valores elevados de APD conllevan la posibilidad de
efectos colaterales entre clases. Deben diseñarse pruebas para asegurar el descubri-
miento de estos efectos colaterales.

Número de c la se s raíz (NCR). Esta métrica es un conteo de las distintas jerar-
quías de clase descritas en el modelo de diseño. Deben desarrollarse conjuntos de
prueba para cada clase raíz y para la jerarquía de clases correspondiente. A medida
que aumente el NCR, también aumentará el esfuerzo de la prueba.

Dependencia hacia dentro (FIN). Cuando se aplica en el contexto orientado a
objetos, la dependencia hacia dentro para la jerarquía de herencia es un indicador
de herencia múltiple. FIN > 1 indica que una clase hereda sus atributos y operacio-
nes a partir de una clase raíz. Debe evitarse que FIN > 1 a toda costa.

Número de descendientes (NDD) y árbol de profundidad de herencia (APH).17

Como se analizó en el capítulo 14, es necesario volver a probar los métodos de la
superclase de cada subclase.

15 Consúltese la sección 15.4.3 para conocer una descripción de FCM.
16 Algunas personas promueven diseños en que ninguno de los atributos es público o privado; es decir,

PYP = 0. Esto indica que todos los atributos deben accederse en otras clases por medio de métodos.
17 Consúltese la sección 15.4.3 para conocer una descripción de NDD y APH.

TM

PDF Editor

496 PARTE DOS P R Á C T I C A DE LA INGENIERÍA DEL SOFTWARE

Todas las métricas del software presentadas en este capítulo se aplican también a
desarrollo de nuevo software y al mantenimiento del existente. Sin embargo, se har
propuesto métricas diseñadas explícitamente para actividades de mantenimiento

El IEEE Std. 982.1-1988 [IEE94] sugiere un índice de madurez del software (IMS
que proporciona una indicación de la estabilidad de un producto de software (basa
da en los cambios que ocurren con cada versión del producto). Se determina la s¡
guíente información:

MT = el número de módulos en la versión actual
Fc = el número de módulos cambiados en la versión actual
Fa = el número de módulos añadidos a la versión actual
Fd = el número de módulos de la versión anterior que se eliminaron en la actúa

El índice de madurez del software se calcula de la siguiente manera:

IMS = [MT-(Fa + Fc + Fd)]/ Mr

A medida que el IMS se acerca a 1.0, el producto empieza a estabilizarse. El IMS tam
bién se aplica como métrica para la planeación de actividades de mantenimiento de
software. El tiempo medio para producir una versión de un producto de software
puede correlacionarse con el IMS, y pueden desarrollarse modelos empíricos para e-,
esfuerzo de mantenimiento.

HERRAMIENTAS DE SOFTWARE

Métricas del producto
Objet ivo: Ayudar a los ingenieros de
software en el desarrollo de métricas

significativas que evalúen los productos del trabajo
generados durante el modelado de análisis y diseño, la
generación de código fuente y la prueba.

Mecánica: Las herramientas de esta categoría abarcan
una amplia serie de métricas y se implementan como
aplicaciones independientes o (con mayor frecuencia)
como funcionalidad que existe dentro de las herramientas
para análisis y diseño, codificación o prueba. En la mayor
parte de los casos, la herramienta de métrica analiza una
representación del software (por ejemplo, un modelo UML
o el código fuente) y desarrolla una o más métricas.

Herramientas r e p r e s e n t a t i v a s ' 8

Krakatau Metrics, desarrollada por Power Software
(www.powersoftware.com/products), calcula métricas

de complejidad, Halstead y otras relacionadas para
C/C++ y Java.

Metrics4C, desarrollada por +1 Software Engineering
(www.plus-one.com/Metrics4C-fact_sheet.html), calcula
varias métricas arquitectónicas, de diseño y orientadas
a código, además de otras orientadas a proyecto.

Rationol Rose, desarrollada por Rational Corporation
(www.rational.com), es un conjunto de herramientas
completas para el modelado UML que incorpora varias
características de análisis de métricas.

RSM, desarrollada por M-Squared Technologies
(msquaredtechnologies.com/m2rsm/index.html),
calcula una amplia variedad de métricas orientadas a
configuración para C, C++ y Java.

Understand, desarrollada por Scientific Toolworks, Inc.
(www.scitools.com), calcula las métricas orientadas a
código para diversos lenguajes de programación.

18 Las herramientas expuestas representan una muestra de esta categoría. En casi todos los casos los
nombres de las mismas son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.powersoftware.com/products
http://www.plus-one.com/Metrics4C-fact_sheet.html
http://www.rational.com
http://www.scitools.com

Las métricas del software proporcionan una manera cuantitativa de evaluar la cali-
dad de los atributos internos de un producto, lo que permite que un ingeniero de
software evalúe la calidad antes de construirlo. Las métricas proporcionan los cono-
cimientos necesarios para crear modelos efectivos de análisis y diseño, un código
sólido y pruebas exhaustivas.

Para que resulte útil en la realidad, una métrica del software debe ser simple y cal
culable, persuasiva, consistente y objetiva. Debe ser independiente del lenguaje de
programación y proporcionar retroalimentación efectiva al ingeniero del software.

Las métricas para el modelo de análisis se concentran en la función, los datos y el
comportamiento (los tres componentes del modelo de análisis). Las métricas para el di-
seño consideran los aspectos del diseño de la arquitectura, al nivel de componentes
y de la interfaz. Las métricas del diseño de la arquitectura consideran los aspectos es-
tructurales del modelo de diseño. Las métricas de diseño al nivel de componentes
indican la calidad del módulo al establecer medidas indirectas para la cohesión, el
acoplamiento y la complejidad. Las métricas de diseño de la interfaz de usuario pro-
porcionan un indicio de la facilidad con que se usa la interfaz gráfica del usuario.

Las métricas para los sistemas orientados a objetos se concentran en la medición
que puede aplicarse a las características de clase y diseño (localización, encapsula-
miento, ocultamiento de información, herencia y técnicas de abstracción de objetos)
que convierten a la clase en única.

Halstead proporciona un conjunto interesante de métricas al nivel de código fuen-
te. Empleando el número de operadores y operandos presentes en el código, se de-
sarrolla una variedad de métricas para evaluar la calidad del programa.

Pocas métricas del producto se han propuesto para emplearlas directamente en
las pruebas del software y en el mantenimiento. Sin embargo, muchas otras métri-
cas del producto pueden aplicarse para guiar el proceso de prueba y como mecanis-
mo para evaluar la facilidad de mantenimiento de un programa de cómputo. Una
amplia variedad de métricas orientadas a objetos se ha propuesto para evaluar la fa-
cilidad de prueba de un sistema orientado a objetos.

:#Í l | Í l Í Í l ! | ¡ Í¡Í í | j

[ALB79] Albrecht, A.). , "Measuring Application Development Productivity", en Proc. IBM Appli-
cation Development Symposium, Monterey, CA, octubre de 1979, pp. 83-92.

[ALB83] Albrecht, A. J. y) . E. Gaffney, "Software Function, Source Lines of Code and Develop-
men t Effort Prediction: A Software Science Validation". en IEEE Trans. Software Engineering,
noviembre de 1983, pp. 639-648.

[BAS84] Basili, V. R. y D. M. Weiss, "A Methodology for Collecting Valid Sof tware Engineering
Data", en IEEE Trans. Software Engineering, vol. SE-10. 1984, pp. 728-738.

[BER95) Berard, E., "Metrics for Object-Oriented Sof tware Engineering", publicación de Internet
en comp.sof tware-eng , 28 de enero, 1995

[BIE94] Bieman, J. M. y L. M. Ott, "Measuring Functional Cohesion". en IEEE Trans. Software En
gineering, vol. SE-20, núm. 8, agos to de 1994, p p 308-320.

TM

PDF Editor

4 9 8 PARTE DOS PRÁCTICA DE LA INGENIERÍA D A SOFTWARE

[BIN94] Binder, R. V., "Object-Oriented Sof tware Testing", en CACM, vol. 37, núm. 9, septiembre
de 1994, p. 29.

[BRI96] Briand, L. C„ S. Morasca y V. R. Basili, "Property-Based Sof tware Engineering Measure-
ment", en IEEE Trans. Software Engineering, vol. SE-22, núm. 1, e n e r o de 1996, pp. 68-85.

[CAR90] Card, D. N. y R. L. Glass, Measuring Software Design Quality, Prentice-Hall, 1990.
[CAV78] Cavano, J. P. y J. A. McCall, "A Framework for the Measurement of Sof tware Quality

Proc. ACM Software Quality Assurance Workshop, noviembre de 1978, pp. 133-139.
[CHA891 Charette, R. N., Software Engineering Risk Analysis and Management, McGraw-Hill/Inte--

text, 1989.
[CH194] Chidamber, S. R. y C. F. Kemerer, "A Metrics Suite for Object-Oriented Design", en /

Trans. Software Engineering, vol. SE-20, núm. 6, junio de 1994, pp. 476-493.
[CH198] Chidamber, S. R., D. P. Darcy y C. F. Kemerer, "Management Use of Metrics for Ob jec - :

Oriented Software: An Exploratory Analysis", en IEEE Trans. Software Engineering, vol. SE-2- J
núm. 8, agosto de 1998, pp. 629-639.

[CHU95] Churcher, N. I. y M. J. Shepperd, "Toward a Conceptual Framework for Object-Orie-
Metrics", en ACM Software Engineering Notes, vol. 20, núm. 2, abril de 1995, pp. 69-76.

[CUR80] Curtís, W., "Management a n d Experimentation in Sof tware Engineering", en Proc. I.
vol. 68, núm. 9, sept iembre de 1980.

[DAV93] Davis, A. el al., "Identitying and Measuring Quality in a Sof tware Requirements S~
fication", en Proc. First Intl. Software Metrics Symposium, IEEE, Baltimore, MD, mayo de 1
pp. 141-152.

[DEM8I] DeMillo, R. A. y R. J. Lipton, "Software Project Forecasting", en Software Metrics (A
Perlis, F. G. Sayward y M. Shaw, eds.), MIT Press, 1981, pp. 77-89.

|DEM82j DeMarco, T., Controlling Software Projects, Yourdon Press, 1982.
[DHA95] Dhama, H„ "Quantitative Models of Cohesion and Coupling in Software", en Journal

Systems and Software, vol. 29, núm. 4, abril de 1995.
[EJI91] Ejiogu, L., Software Engineering with Foimal Metrics, QED Publishing, 1991.
[FEL89J Felican, L. y G. Zalateu, "Validating Halstead's Theory for Pascal Programs", en f

Trans. Software Engineering, vol. SE-15, núm. 2, diciembre de 1989, pp. 1630-1632.
[FEN91] Fenton, N., Software Metrics, Chapman and Hall, 1991.
[FEN94] Fenton, N„ "Software Measurement : A Necessary Scientific Basis", en IEEE Trans.

ware Engineering, vol. SE-20, núm. 3, m a r z o de 1994, pp. 199-206.
[GRA87] Grady, R. B. y D. L. Caswell, Software Metrics: Establishing a Company-Wide

Prentice-Hall, 1987.
[HAL77] Halstead, M., Elements of Software Science, North-Holland, 1977.
[HAR98J Harrison, R„ S. J. Counsell y R. V. Nithi, "An Evaluation of the MOOD set of Ob;~

Oriented Sof tware Metrics", en IEEE Trans. Software Engineering, vol. SE-24, núm. 6, junio
1998, pp. 491-496.

[HET93] Hetzel, B., Making Software Measurement Work, QED Publishing, 1993.
[IEE93] IEEE Standard Glossaiy of Software Engineering Terminology, IEEE, 1993.
[IEE94] Software Engineering Standards, edición 1994, IEEE, 1994.
[IFPOl] Function Point Counting Practices Manual, versión 4.1.1, International Function

Users Group, 2001, disponible en h t tp : / /www. i fpug .o rg /pub l i ca t ions /manua l .h tm.
[IFP03] Function Point Bibliography/Reference Library, International Function Point U

Group, 2003, disponible en h t tp : / /www. i fpug .org /about /b ib l iography .h tm.
[KOK95] Kokol, P„ l. Rozman y V. Venuti, "User Interface Metrics", ACM SIGPLAN Notices, vol

núm. 4, abril de 1995, puede descargarse de: h t tp : / / po r t a l . acm.o rg / .
[KYB84J Kyburg, H. E„ Theoiy and Measurement, Cambridge University Press, 1984.
[LET03] Lethbridge, T„ comunicac ión privada sobre métr icas de sof tware , junio de 2003.
ÍLON02] Longstreet, D., "Fundamental of Function Point Analysis", Longstreet Consulting,

2002, disponible en h t t p : / /www. i fpug . com/ fpa fund .h tm.
[LOR94] Lorenz, M. y J. Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1994.
[MCC76] McCabe, T. J„ "A Sof tware Complexity Measure", en IEEE Trans. Software Engin

vol. SE-2, diciembre de 1976, pp. 308-320.
|MCC77) McCall, J., P. Richards y G. Walters, "Factors in Sof tware Quality", t res volúmenes ,

AD-A049-014, 015, 055, noviembre de 1977.

TM

PDF Editor

http://www.ifpug.org/publications/manual.htm
http://www.ifpug.org/about/bibliography.htm
http://portal.acm.org/
http://www.ifpug.com/fpafund.htm

C A P Í T U L O 1 5 MÉTRICAS DEL PRODUCTO PARA EL SOFTWARE 4 9 9

[MCC89I McCabe, T. J. y C. W. Butler, "Design Complexity Measurement and Testing", en CACM,
vol. 32, núm. 12, diciembre de 1989, pp. 1415-1425.

[MCC94] McCabe, T. J. y A. H. Watson, "Software en Complexity", en Crosstalk, vol. 7, núm. 12,
diciembre de 1994, pp. 5-9.

[NIE94] Nielsen, J. y J. Levy, "Measuring Usability: Preference vs. Performance", en CACM, vol. 37,
núm. 4, abril de 1994, pp. 65-75.

[ROC94) Roche, J. M., "Software Metrics and Measurement Principies", e n Software Engineering
Notes, ACM, vol. 19, núm. 1, e n e r o de 1994, pp. 76-85.

[SEA93] Sears, A., "Layout Appropriateness: A Metric for Evaluating User Interface Widget La-
yout", en lEEETTans. Software Engineering, vol. SE-19, núm. 7, julio de 1993, pp. 707-719.

(SHE98) Sheppard, M„ Goal, Question, Metric, 1998, disponible en h t tp : / /dec .bournemouth .ac .uk /
ESERG/mshepperd/SEMGQM .html

ISOL99] Van Solingen, R. y E. Berghout, The Goal/Questíon/Metric Method, McGraw-Hili, 1999.
[UEM99] Uemura, T., S. Kusumoto y K. Inoue, "A Function Point Measurement Tool for UML De-

sign Specifications", en Proc. Of Sixth International Symposium on Software Metrics, IEEE, no-
viembre de 1999, pp. 62-69.

[USA87] Management Quality Insight, AFCSP 800-14 (U.S. Air Forcé), 20 de enero de 1987.
[WHI97] Whitmire, S„ Object Oriented Design Measurement, Wiley, 1997.
[WIL93] Wilde, N. y R. Huitt. "Maintaining Object-Oriented Software", en IEEE Software, e n e r o de

1993, pp. 75-80.
[ZUS90] Zuse, H., Sofhvare Complexity: Measures and Methods, DeGruyter, 1990.
[ZUS97] Zuse, H., A Framework of Software Measurement, DeGruyter, 1997.

1 5 . 1 . La teoría de la medición es un tema avanzado que tiene una fuerte influencia sobre las
métr icas del sof tware . Utilizando [ZUS97], [FEN91], [KYB84) u ot ras fuentes , escribir un breve
ensayo q u e delinee los principales principios de la teoría de la medición. Proyecto individual: de-
sarrollar una presentación sobre el tema y presentar la an te la clase.

1 5 . 2 . Los factores de calidad de McCall se desarrol laron duran te la década de 1970. Casi todos
los a spec tos de la computac ión han cambiado drás t icamente desde q u e se desarrol laron; sin
embargo , los factores de McCall s iguen apl icándose al sof tware moderno . ¿Podría llegarse a al-
g u n a s conclus iones a partir de este hecho?

1 5 . 3 . ¿Por qué n o se puede desarrollar una sola métrica que lo aba rque todo para la compleji-
dad o la calidad de un programa?

1 5 . 4 . Trátese de desarrollar una medida o una métrica tomada de la vida real q u e viole los atri-
bu tos de las métr icas efectivas del sof tware q u e se definieron en la sección 15.2.5

1 5 . 5 . Un s is tema tiene 12 en t radas externas, 24 salidas externas, c a m p o s para 30 consul tas ex-
ternas diferentes, mane j a cuatro archivos lógicos ex ternos y t iene interfaces con seis s i s temas
he redados diferentes (6 A1E). Todos es tos da tos t ienen una complej idad promedio, y el s is tema
general es re la t ivamente simple. Calcúlese el pun to de función para el s is tema.

1 5 . 6 . El sof tware para el Sistema X t iene 24 requisitos funcionales individuales y 14 n o funcio-
nales . ¿Cuál es la especificidad de los requisitos? ¿En qué g rado se ha comple tado?

1 5 . 7 . Un impor tante sistema de información t iene 1140 módulos; 96 módulos realizan funcio-
nes de control y coordinación, y 490 dependen de un procesamiento anterior. El sistema procesa
alrededor de 220 obje tos de datos, cada uno con un promedio de tres atr ibutos. Hay 140 ele-
men tos únicos de la ba se de da tos y 90 s e g m e n t os di ferentes de és ta . Por último, 600 módulos
tienen pun tos únicos de en t rada y salida. Calcúlese el 1CED del s is tema.

1 5 . 8 . Una clase, X, t iene 12 operaciones . Se ha calculado la complej idad ciclomática para to-
das las operac iones del s is tema or ientado a objetos, y el valor p romedio de la complej idad del
módulo es de 4. Para la clase X, la complej idad de la operación 1 a la 12 es 5, 4, 3, 3, 6, 8, 2, 2,
5, 5, 4 y 4, respect ivamente . Calcúlense los mé todos ponde rados por clase.

TM

PDF Editor

http://dec.bournemouth.ac.uk/

Hay un n ú m e r o so rp renden temen te g rande de libros ded icados a las métr icas del sof tware ,
que la mayor parte de ellos se concentra en las métr icas del proceso y el proyecto, por lo
excluyen las métr icas del producto. Kan (Metrics and Models in Software Quality Engineering,
dison-Wesley, segunda edición, 2002), Fenton y Plleeger (Software Metrics: A Rigourous and
tical Approach, Brooks-Cole Publishing, 1998) y Zuse ¡ZUS97] han escrito t ra tamientos co
tos de las métr icas del producto.

Libros de C a r d y Glass 1CAR90], Zuse [ZUS90], Fenton (FEN91], Ejiogu (EJI91], Moel lery
lish (Software Metrics, Chapman y Hall, 1993) y Hetzel [HET93] a t ienden las métr icas del pr~
to con algún detalle. Ornan y Pfleeger (Applyig Software Metrics, IEEE Computer Society "
1997) han edi tado una antología de art ículos importantes sobre las métr icas del sof tware
más , vale la pena examinar los s iguientes libros:

Conté, S. D., H. E. Dunsmore y V. Y. Shen, Software Engineering Metrics and Models,
min-Cummings, 1984.

Grady, R. B„ Practica! Software Metrics for Project Management and Process Improvement,
tice-Hall, 1992. Sheppard, M„ Software Engineering Metrics, McGraw-Hill, 1992.

Denvir, Hermán y Whitty p resen tan la teoría de la medición del so f tware en una col"
edi tada de art ículos (Proceedings of the International BCS-FACS Workshop: Formal Aspects of
surement, Springer-Verlag, 1992). Shepperd (Foundations of Software Measurement, Prer
Hall, 1996) también a t iende con cierto detalle la teoría de la medición. El e s t ado actual de !a
vestigación se presenta en los Proceedings of the Symposium on Software Metrics (IEEE, p
dos anualmente) .

Un r e sumen muy comple to de d o c e n a s de métr icas de so f tware útiles s e p resen ta en [I
En general , un análisis de cada métrica s e ha reducido a los "primitivos" (las medidas) es
les necesar ios para calcular la métrica y las re laciones aprop iadas para realizar el cálculc
apéndice proporciona un análisis y m u c h a s referencias.

Whitmire [WHI97] presen ta el t ra tamien to m á s comple to y ma t emá t i camen te sofistic
las métr icas or ientadas a ob je tos que se haya publ icado a la fecha. L o r e n z y Kidd [LOR94] y
dersen-Sellers (Object-Oriented Metrics: Measures ofComplexity, Prentice-Hall, 1996) o f r c :
único libro adicional dedicado a las métr icas or ien tadas a objetos. Hutcheson (Software Te
Fundamentáis: Methods and Metrics, Wiley, 2003) presen ta una guía útil pa ra la aplicación
u so de mét r icas pa ra la prueba del sof tware .

Una amplia variedad de fuen tes de información sobre mét r icas del sof tware se en
disponible e n Internet. Una lista actual izada de referencias en la World Wide Web relevantes
ra las métr icas del so f tware se encont rará en el sitio Web de SEPA:
h t tp : / /www.mhhe . com/p re s sman .

TM

PDF Editor

http://www.mhhe.com/pressman

Tres
A P L I C A C I Ó N

DE LA INGENIERÍA W E B

En esta parte de Ingeniería del software: un enfoque práctico,
se aprenderán los principios, conceptos y métodos con que
se crean aplicaciones Web de alta calidad. Las siguientes

preguntas se abordan en los capítulos posteriores:

• ¿Las aplicaciones Web (WebApps) son diferentes de otros
tipos de software?

• ¿Qué es la ingeniería Web y qué elementos de la práctica de
la ingeniería del software puede adoptar?

• ¿Cuáles son los elementos de un proceso de ingeniería Web?
• ¿Cómo se formula y planea un proyecto de ingeniería Web?

• ¿Cómo se analizan y modelan los requisitos de las WebApps?
• ¿Qué conceptos y principios guían la práctica en el diseño de

las WebApps?
• ¿Cómo se dirigen la arquitectura, la interfase y el diseño de

navegación de las WebApps?

• ¿Qué técnicas de construcción se pueden aplicar para imple-
mentar el modelo del diseño?

• ¿Qué conceptos, principios y métodos de prueba son aplica-
bles a la ingeniería Web?

Una vez respondidas estas preguntas se estará mejor prepara-
do para realizar la ingeniería de aplicaciones Web de alta calidad.

501

TM

PDF Editor

C A P I T U L O

A

CONCEPTOS
C L A V E

criterios
de calidad 513

ingeniería Web

herramientas .508

métodos 507

proceso 507

marco de trabajo
del proceso509

mejores
prácticas 512

preguntas
básicas SU

WebApps

atributos504

(alegorías . . . 506

INGENIERÍA
W E B

La World Wide Web y la Internet que la alimentan son, posiblemente, los de
sarrollos más importantes en la historia de la computación. Estas tecnolc
gías han llevado a todos (con cientos de millones más que eventualmem

seguirán) a la era de la informática; además, se han convertido en parte integn
de la vida diaria en la primera década del siglo xxi.

Para quienes pueden recordar un mundo sin la Web, el crecimiento caót:;
de la tecnología tiene su origen en otra era: los primeros días del software. Er
una época de poca disciplina pero enorme entusiasmo y creatividad. Eran tierr
pos en que los programadores a menudo ingresaban a sistemas en conjunto, a ve
ees para bien, a veces para mal. La actitud prevaleciente parecía ser: "hazlo ra
pido y entra en el campo; nosotros lo limpiaremos (y mejor entiende qué es i
que realmente se necesita construir) conforme avancemos". ¿Suena familiar -

En una mesa redonda virtual publicada en IEEE Sofhvare [PRE98], mantuv
firme mi posición en relación con la ingeniería Web:

Me parece que cualquier producto o sistema importante vale la pena una ingeniería
Antes de comenzar a construirla es mejor que entienda el problema, diseñe una so-
lución factible, la implemente en una forma sólida y la ponga a prueba ampliamente
Tal vez también tenga que controlar los cambios conforme el trabajo avance y dispo-
ner de algún mecanismo para asegurar la calidad del resultado final. Muchos desa-
rrolladores de Web no están de acuerdo con esto; ellos piensan que su mundo
realmente es diferente y que los enfoques convencionales de ingeniería del software
simplemente no se aplican.

¿ Q u é e s ? Los s i s t emas y ap l i cac io -
nes b a s a d o s e n W e b (W e b A p p s)
o f r e c e n un c o m p l e j o a r r e g l o d e con-
t en ido y f u n c i o n a l i d a d a u n a a m p l i a
pob l ac ión d e u s u a r i o s f inales . La

ingen ie r í a W e b (IWeb) e s el p r o c e s o con el q u e
se c r e a n W e b A p p s d e a l t a c a l i d a d . La ! W e b no
e s un c lon p e r f e c t o d e la i ngen ie r í a de l so f twa-
re, p e r o t o m a p r e s t a d o s m u c h o s c o n c e p t o s y
pr inc ip ios f u n d a m e n t a l e s d e e l la . A d e m á s , el
p r o c e s o I W e b a c e n t ú a a c t i v i d a d e s técn icas y
admin i s t r a t ivas s imilares . Existen sutiles d i fe ren-

cias e n la m a n e r a c o m o s e d i r igen d i chas activi-
d a d e s , p e r o el m é t o d o p r imord ia l d i c t a un en fo -
q u e d i s c ip l i nado p a r a el d e s a r r o l l o d e un siste-
m a b a s a d o en la c o m p u t a d o r a .

¿Quién lo h a c e ? Los ingenieros Web y los desa-
b o l l a d o r e s de l con ten ido q u e n o e s técnico c r e a n
las W e b A p p s .

¿ P o r q u é e s i m p o r t a n t e ? Conforme las Web-
A p p s s e in tegran c a d a v e z m á s en las es t ra te-
g i a s d e n e g o c i o s p a r a p e q u e ñ a s y g r a n d e s
e m p r e s a s (por e j e m p l o , e n el c o m e r c i o electróni-
co) , c r e c e e n i m p o r t a n c i a la n e c e s i d a d d e cons-

TM

PDF Editor

C A P Í T U L O 16 INGENIERÍA WEB 503

ruir sistemas confiables , prácticos y a d a p t a b l e s .
Por tanto, es necesar io un e n f o q u e d isc ip l inado
en cuanto al desar ro l lo d e W e b A p p s .

¿Cuáles son los p a s o s ? Al igual que cualquier
disciplina d e ingenier ía , la I W e b ap l ica un enfo-
q u e genér ico q u e se suaviza med ian te estrate-
gias , tácticas y métodos espec ia l izados . El pro-
ceso IWeb comienza con u n a formulación del
p rob lema q u e se resolverá con la W e b A p p . Se
p l a n e a el p royec to IWeb y se mode lan los requi-
sitos y el d i seño de la W e b A p p El sistema se
construye con tecnologías y her ramientas espe-
c ia l i zadas a s o c i a d a s con la W e b . Entonces se
en t rega a los usuarios f inales y se eva lúa
mediante criterios t an to técnicos c o m o empresa -

riales D a d o q u e las W e b A p p s evolucionan con-
t inuamente, se deben establecer mecanismos
p a r a el control d e conf iguraciones , el a s e g u r a
miento d e la ca l idad y el sopor te continuo.

¿Cuál e s el p roduc to o b t e n i d o ? Se producen
muchos productos d e t r a b a j o IWeb. El resul tado
final es la W e b A p p opera t iva ,

¿Cómo puedo estar seguro de que lo he
hecho correctamente? En ocas iones es difícil
estar seguro, hasta q u e los usuarios finales ejecu-
tan la W e b A p p . Sin e m b a r g o , se aplican prácti-
cas de aseguramiento d e la cal idad del software
p a r a valorar la cal idad d e los modelos IWeb, el
contenido y la función globales del sistema, la
facilidad d e uso, él d e s e m p e ñ o y la segur idad.

Esto conduce a una pregunta clave: ¿se pueden aplicar principios, conceptos y méto-
dos de la ingeniería del software al desarrollo Web? Es posible aprovechar muchos de
ellos, pero su aplicación puede requerir un giro un tanto diferente.

¿Pero qué ocurre si persiste un enfoque sin disciplina respecto al desarrollo Web?
En ausencia de un proceso disciplinado dirigido a desarrollar sistemas basados en
Web, existe una creciente preocupación de que se enfrenten serios problemas en su
desarrollo, despliegue y mantenimiento exitosos. En esencia, la infraestructura de
aplicación que se está creando en la actualidad puede conducir a una "Web enma-
rañada" conforme se adentra más este nuevo siglo. Esta frase entraña un cúmulo de
aplicaciones basadas en Web mal desarrolladas y que tienen muy altas probabilida-
des de fracaso. Peor aún, conforme los sistemas basados en Web crecen con mayor
complejidad, una falla en uno puede propagar y propagará amplios problemas por
medio de muchos. Cuando esto ocurra, la confianza en toda la Internet será sacudi-
da. Peor aún, podría conducir a una regulación gubernamental innecesaria y mal
concebida, lo que provocará un daño irreparable a estas tecnologías únicas.

Para evitar una Web enmarañada y lograr mayor éxito en el desarrollo y la apli-
cación de sistemas basados en Web complejos y a gran escala, existe una apremian-
te necesidad de enfoques disciplinados y nuevos métodos y herramientas con que
desarrollar, desplegar y evaluar los sistemas y aplicaciones basados en Web. Tales
enfoques y técnicas deben considerar las características especiales de los nuevos
medios, los ambientes y escenarios operativos, y la multiplicidad de perfiles de usua-
rio que colocan desafíos adicionales al desarrollo de aplicaciones basadas en Web.

La ingeniería Web (IWeb) aplica "sólidos principios científicos, de ingeniería y de
administración, y enfoques disciplinados y sistemáticos para el desarrollo, desplie-
gue y mantenimiento exitosos de sistemas y aplicaciones basados en Web de alta ca-
lidad" [MUR99J.

TM

PDF Editor

504 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

1 6 . 1 ATRIBUTOS PE LOS SISTEMAS Y APLICACIONES BASADOS EN W E B
En los primeros días de la World Wide Web (área 1990 a 1995) los "sitios Web" con-
sistían en poco más de un conjunto de archivos de hipertexto ligados que presenta-
ban información mediante texto y gráficos limitados. Conforme el tiempo pasó, el
HTML aumentó al desarrollar herramientas (por ejemplo, XML, Java) que permitie-
ron a los ingenieros Web ofrecer capacidades de cálculo junto con información. Na-
cieron los sistemas y aplicaciones1 basados en Web (se les referirá de manera colec-
tiva como WebApps). En la actualidad, las WebApps han evolucionado en sofistica-
das herramientas de computación que no sólo proporcionan función por sí misma;
al usuario final, sino que también se han integrado con bases de datos corporativa;
y aplicaciones de negocios.

"En el momento en que veamos cierto especie de estabilización, la Web se habrá convertido en algo completamente
diferente."

Louis Monie r

^CONSEJO^

Se puede argumenta/
que uno aplicación
tradicional dentro de
cualquiera de los
dominios de software
trotados en el capítulo
1 puede mostrar esta
lista de atributos. Sin
embargo, las
WebApps casi siempre
lo hacen.

Existe poco debate en cuanto a que las WebApps son diferentes a las mucha;
otras categorías de software informático analizadas en el capítulo 1. Powell resuma
las diferencias principales cuando establece que los sistemas basados en Web "inv
lucran una mezcla entre publicación impresa y desarrollo de software, entre marke-
ting e informática, entre comunicaciones internas y relaciones externas, y entre ar-J
te y tecnología" [POW98J. En la gran mayoría de las WebApps se encuentran los se-
guientes atributos.

I n t ens idad d e r e d . Una WebApp reside en una red y debe satisfacer las neces-j
dades de una variada comunidad de clientes. Una WebApp puede residir en la Inte-J
net (y, en consecuencia, permitir una comunicación mundial abierta). Alternativa]
mente, una aplicación puede colocarse en una Intranet (lo que implementa la com
nicación en una organización) o en una Extranet (comunicación inter-red).

Concur renc i a . Un gran número de usuarios puede tener acceso a la WebApp al
mismo tiempo. En muchos casos, los patrones de uso entre los usuarios finales YM
riarán enormemente.

Ca rga impredec ib l e . El número de usuarios de la WebApp puede variar en cr-l
denes de magnitud de día con día. El lunes pueden mostrarse 100 usuarios; el mar!
tes pueden usar el sistema 10 000.

1 En el contexto de este capítulo, el término "aplicación Web" (WebApp) abarca todo, desde una
pie página Web que puede ayudar al consumidor a calcular el pago de arrendamiento de un ssm
móvil, hasta un amplio sitio Web que proporcione servicios de viaje completos para gente I
negocios y vacacionistas. Dentro de esta categoría se incluyen los sitios Web completos, la t u r c a
nalidad especializada dentro de los sitios Web y las aplicaciones de procesamiento de informar-J
que residen en la Internet o en una Intranet o Extranet.

TM

PDF Editor

C A P Í T U L O 1 6 INGENIERÍA WEB 505

D e s e m p e ñ o . Si un usuario de WebApp debe esperar demasiado (para ingresar,
para procesamiento en el lado del servidor, para formateo y despliegue en el lado del
cliente) puede decidir irse a cualquier otra parte.

Disponibi l idad. Aunque la expectativa de una disponibilidad del total es poco ra-
zonable, los usuarios de las WebApps populares con frecuencia demandan acceso
sobre una base de "24/7/365". Los usuarios en Australia o Asia pueden demandar
acceso durante momentos cuando las tradicionales aplicaciones de software domés-
tico en Norteamérica pueden estar fuera de línea por mantenimiento.

G o b e r n a d a p o r lo s d a t o s . La función primordial de muchas WebApps es usar
hipermedia para presentar contenido de texto, gráficos, audio y video al usuario fi-
nal. Además, por lo general, las WebApps se utilizan para tener acceso a informa-
ción que existe en bases de datos que originalmente no eran parte integral del am-
biente basado en Web (por ejemplo, comercio electrónico o aplicaciones financie-
ras).

Sensibi l idad al c o n t e n i d o . La calidad y naturaleza estética del contenido sigue
siendo un importante determinante de la calidad de una WebApp.

Evolución con t i nua . A diferencia del software de aplicación convencional, que
evoluciona a lo largo de una serie de planeadas liberaciones espaciadas cronológi-
camente, las aplicaciones Web evolucionan de manera continua. No es raro que al-
gunas WebApps (específicamente, su contenido) se actualicen sobre una agenda mi-
nuto a minuto, o que el contenido sea calculado de manera independiente para ca-
da solicitud. Algunos argumentan que la evolución continua de las WebApps hace
que el trabajo realizado sobre ellas sea análogo a la jardinería. Lowe [LOW991 co-
menta esto cuando escribe:

La ingeniería trata de adoptar un enfoque consis tente y científico, suavizado por un con-

texto práctico específico, pa ra el desarrollo y comis ionado de s i s t emas o aplicaciones. Con

frecuencia, el desarrollo de sitios Web se relaciona m u c h o con la creación de una infraes-

tructura (sembrar el jardín) y luego con "cultivar" la información que crece y re toña den-

tro de este jardín. A lo largo del t iempo, el jardín (es decir, el sitio Web) cont inuará

evolucionando, cambiando y creciendo. Una buena arquitectura inicial debe permitir que

es te crecimiento ocurra en una forma controlada y consis tente . . .

El cuidado continuo y la alimentación permiten que un sitio Web crezca (en ro-
bustez e importancia). Pero, a diferencia del jardín, las aplicaciones Web deben sa-
tisfacer (y adaptarse a) las necesidades de alguien más que el jardinero.

I n m e d i a t e z . Aunque la inmediatez —la apremiante necesidad de poner software
en el mercado rápidamente— es una característica de muchos dominios de aplica-
ción, las WebApps con frecuencia muestran un tiempo para comercializar que pue-
de ser cuestión de unos cuantos días o semanas.2 Los ingenieros Web deben aplicar

2 Con las herramientas modernas se pueden producir elaboradas páginas Web en cuestión de unas
cuantas horas.

TM

PDF Editor

506 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

métodos de planeación, análisis, diseño, implementación y puesta a prueba que han
sido adaptados a los apretados tiempos requeridos para el desarrollo de WebApps

Segur idad . Puesto que las WebApps están disponibles mediante el acceso a la
red, es difícil, si no imposible, limitar la población de usuarios finales que pueden te-
ner acceso a la aplicación. Con la finalidad de proteger el contenido confidencial y
ofrecer modos seguros de transmisión de datos, se deben implementar fuertes me-
didas de seguridad a lo largo de la infraestructura que sustenta una WebApp y den-
tro de la aplicación misma.

Es té t ica . Una parte innegable de la apariencia de una WebApp es su presenta-
ción y la disposición de sus elementos. Cuando una aplicación se diseña para comer-
cializar o vender productos o ideas, la estética puede tener tanto que ver con el éxí
to como el diseño técnico.

Estos atributos generales se aplican a todas las WebApps, pero con diferentes gra
dos de influencia.

¿Pero qué hay de las WebApps por ellas mismas? ¿Qué problemas abordan? En e
trabajo IWeb es usual encontrar las siguientes categorías de aplicaciones [DAR99].

¿Qué catego- • Informativo: se proporciona contenido de sólo lectura con navegación y enla-
• rías de Web- e e s s i m p l e s .

Apps se encuentran
en el trabajo * D e s c a r § a - u n usuario descarga información del servidor apropiado.

•Web? • Personalizare: el usuario personaliza el contenido según sus necesidades es-
pecíficas.

• Interacción: la comunicación entre una comunidad de usuarios ocurre por me-
dio de cuartos de charla, tableros de anuncios o mensajería instantánea.

• Entrada del usuario: la entrada con base en formularios es el principal meca-
nismo para las necesidades de comunicación.

• Orientada a transacciones: el usuario hace una solicitud (por ejemplo, realiza
un pedido) que ejecuta la WebApp.

• Orientada a servicios: la aplicación proporciona un servicio al usuario; por
ejemplo, lo asesora en la determinación del pago de una hipoteca.

• Portal: la aplicación canaliza al usuario hacia otro contenido o servicios Web
fuera del dominio del portal de la aplicación.

• Acceso a una base de datos: el usuario consulta una gran base de datos y ex-
trae información.

• Almacén de datos: el usuario consulta una colección de grandes bases de da-
tos y extrae información.

Los atributos comentados en esta sección, y las categorías de aplicación destaca-
das líneas arriba, representan importantes hechos de vida para los ingenieros Web
La clave es vivir dentro de las restricciones que imponen dichos atributos y aun as:
producir una WebApp exitosa.

TM

PDF Editor

C A P Í T U L O 1 6 INGENIERÍA WEB 507

Í 6 . 2 E S T R A T O S P E LA I H S E N I E R Í A m W E B A P P

» [C O N S E J O .

ebcon
i es ágil y

¡esincre-
' Sin embargo,

i que el modelo
i k puede elegirse
: c mayoría de los

s de inge-
• m .

El desarrollo de sistemas y aplicaciones basados en Web incorpora modelos de pro-
ceso especializados, métodos de ingeniería del software adaptados a las caracterís-
ticas del desarrollo de WebApps y un conjunto de importantes tecnologías habilita-
doras. Los procesos, métodos y tecnologías (herramientas) proporcionan un enfoque
en estratos de la IWeb que es conceptualmente idéntico a los estratos de la ingenie-
ría del software descritos en la figura 2.1.

"La ingeniería Web trata can enfoques disciplinados y sistemáticos para el desarrollo, despliegue y mantenimiento de
los sistemas y aplicaciones basados en Web."

16.2.1 Proceso
Los modelos de procesos IWeb (que se tratan con detalle en la sección 16.3) adop-
tan la filosofía del desarrollo ágil (capítulo 4). El desarrollo ágil enfatiza un enfoque
de desarrollo riguroso que incorpora rápidos ciclos de desarrollo. Aoyama [AOY98]
describe la motivación para el enfoque ágil en la siguiente forma:

Internet cambió la prioridad principal del desarrol lo de sof tware de qué a cuándo. El redu-

cido t iempo para el m e r c a d o se ha convert ido en el límite competi t ivo por el que luchan

las compañ ías líderes. En consecuencia , reducir el ciclo de desarrol lo es ahora una de las

mis iones m á s impor tan tes de la ingeniería del sof tware .

Aun cuando rápidos ciclos de tiempo dominan la reflexión acerca del desarrollo, es
importante reconocer que el problema todavía debe analizarse, debe desarrollarse
un diseño, la implementación debe proceder en una forma incremental y se debe ini-
ciar un enfoque organizado de prueba. Sin embargo, dichas actividades del marco
de trabajo se deben definir dentro de un proceso que 1) adopte el cambio, 2) aliente
la creatividad y la independencia del equipo de desarrollo y fortalezca la interacción
con los accionistas de la WebApp, 3) construya sistemas que utilicen pequeños equi-
pos de desarrollo, y 4) subraye el desarrollo evolutivo o incremental mediante el uso
de cortos ciclos de desarrollo [MCD01],

16.2.2 Métodos
El panorama de los métodos de IWeb abarca un conjunto de labores técnicas que
permiten al ingeniero Web comprender, caracterizar y luego construir una WebApp
de alta calidad. Los métodos de IWeb (que se tratan con detalle en los capítulos 18
al 20) se pueden categorizar de la siguiente manera:

M é t o d o s d e c o m u n i c a c i ó n : definen el enfoque con que se facilita la comuni-
cación entre ingenieros Web y los demás participantes de la WebApp (por ejemplo,
usuarios finales, clientes de negocios, expertos en problemas de dominio, diseñadores
de contenido, líderes de equipo, gestores de proyecto). Las técnicas de comunicación
son particularmente importantes durante la recolección de requisitos y siempre que
sea evaluado un incremento en la WebApp

TM

PDF Editor

5 0 8 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

^ O N S E J O ^

Es importante notar
que muchos métodos
IWeb se han adoptado
directamente de sus
contrapartes de inge-
niería del software.
Otros están en sus
etapas lormativos.
Algunos de estos
sobrevivirán; otros
serán descartados
conforme se sugieran
mejores enfogues.

Se encuentran
excelentes recutsos
pora tecnología IWeb
en webdeveloper.
lom y en www.
eborcom.com/
webmaker.

M é t o d o s d e aná l i s i s d e r equ i s i t o s : proporcionan una base para comprender
el contenido que entregará una WebApp, la función que proporcionará al usuario fi-
nal y los modos de interacción que cada clase de usuario requerirá mientras ocurra
la navegación por medio de la WebApp.

M é t o d o s d e d i s e ñ o : abarcan una serie de técnicas de diseño que abordan e.
contenido, la aplicación y la arquitectura de información, así como el diseño de in-
terfase y la estructura de navegación de la WebApp.

M é t o d o s d e p r u e b a : incorporan revisiones técnicas formales —tanto del conté- j
nido y el modelo de diseño como de una amplia variedad de técnicas de prueba que
abordan conflictos al nivel de componente y arquitectónicos—, pruebas de la nave-
gación, pruebas de facilidad de uso, pruebas de seguridad y pruebas de configuración, j

Es importante señalar que, aunque los métodos IWeb adoptan muchos de los mis-
mos conceptos y principios subyacentes a los métodos de ingeniería del software
descritos en la parte 2 de este libro, los mecanismos de análisis, diseño y prueba de-
ben adaptarse para acomodar las características especiales de las WebApps.

Además de los métodos técnicos que se han subrayado, es esencial una serie ce
actividades sombrilla (con métodos asociados) para la ingeniería Web exitosa. Ésía
incluye técnicas de gestión de proyecto (por ejemplo, estimación, calendarizacicr \ j
análisis de riesgo), técnicas de gestión de configuración de software y de revisión

16.2.3 Herramientas y tecnología

A lo largo de la década pasada ha evolucionado un amplio conjunto de herramien-
tas y tecnología conforme las WebApps se han vuelto más complejas y extendidas
Dichas tecnologías abarcan un amplio conjunto de descripción de contenido y len-
guajes de modelación (por ejemplo, HTML, VRML, XML), lenguajes de programación
(por ejemplo, Java), recursos de desarrollo basados en componentes (por ejempl:
CORBA, COM, ActiveX, .NET), navegadores, herramientas multimedia, herramientas
de autoría de sitio, herramientas de conectividad de bases de datos, herramientas oe
seguridad, servidores y utilidades de servidor, y herramientas de administración 11
análisis de sitio.

Un tratamiento completo de las herramientas y tecnología para la ingeniería Web s
está más allá del ámbito de este libro. El lector interesado puede visitar uno o mas
de los siguientes sitios Web: Web Developer's Virtual Encyclopedia (www.wdlv.corr.
WebDeveloper (www.webdeveloper.com), Developer Shed (www.devshed.com), Web-1
knowhow.net (www.webknowhow.net) o WebReference (www.webreference.com).

1 6 . 3 E L P R Q C E S Q P E I N G E N I E R Í A W E B

Los atributos de los sistemas y aplicaciones basados en Web tienen una profunda in-
fluencia sobre el proceso de IWeb que se elija. En el capítulo 3 se hizo notar que ual
ingeniero de software elige un modelo de proceso basado en los atributos del soñ-|

TM

PDF Editor

http://www.wdlv.corr
http://www.webdeveloper.com
http://www.devshed.com
http://www.webknowhow.net
http://www.webreference.com

CAPÍTULO 16 INGENIERÍA WEB 5 0 9

ware que habrá de desarrollarse. Esta premisa también es cierta para un ingeniero
Web.

Si la inmediatez y la evolución continua son atributos principales de una WebApp,
un equipo de ingeniería Web debe elegir un modelo de proceso ágil (capítulo 4) que
produzca liberaciones de WebApp a un ritmo vertiginoso. Por otra parte, si una WebApp
será desarrollada durante un largo periodo (por ejemplo, una gran aplicación de co-
mercio electrónico) puede elegirse un modelo de proceso incremental (capítulo 3).

"El desarrollo Web es un adolescente. . . al igual que lo mayoría de los adolescentes, quiere ser aceptado como un
adulto conforme intenta alejarse de sus padres. Si quiere alcanzar todo su potencial, debe tomar unas cuantas leccio-
nes del más experimentado mundo del desarrollo de software."

La intensa naturaleza de las aplicaciones de la red en este dominio sugiere una
diversa población de usuarios (que, por lo tanto, realizan demandas especiales acer-
ca de respuesta y modelado de requisitos) y una arquitectura de aplicación que pue-
de ser altamente especializada (que en consecuencia realiza demandas acerca del
diseño). Puesto que con frecuencia las WebApps son conductoras de contenido, con
énfasis en la estética, es probable que se proyecten actividades de desarrollo para-
lelas dentro del proceso IWeb e involucren un equipo de personal tanto técnico co-
mo lego (por ejemplo, publicistas, diseñadores gráficos).

16.3.1 Definición del marco de trabajo
Cualquiera de los modelos de proceso ágil (por ejemplo, Programación Extrema, De-
sarrollo de Software Adaptativo, SCRUM) presentados en el capítulo 4 se pueden
aplicar de manera exitosa como un proceso IWeb. El marco de trabajo del proceso
que se presenta aquí es una amalgama de los principios e ideas tratados en dicho
capitulo.

La efectividad de cualquier proceso de ingeniería depende de su adaptabilidad.
Esto es, la organización del equipo de proyecto, los modos de comunicación entre
miembros del equipo, las actividades de ingeniería y las tareas que deben realizar-
se, la información que se recolecte y cree, y los métodos empleados para producir un
producto de alta calidad deben estar adaptados a la gente que realiza el trabajo, el
plazo y las restricciones del proyecto, y al problema que se quiere resolver. Antes de
definir un marco de trabajo de proceso para IWeb se debe reconocer que:

V E 1. Las WebApps con frecuencia se entregan de manera incremental. Esto es, las ac-
x proceso tividades del marco de trabajo ocurrirán de manera repetida conforme cada

f p o n e en incremento se someta a ingeniería y se entregue.

Doug Wnlloce el al.

•; entrego
, cambio

y plazos

2. Los cambios ocurrirán frecuentemente Estos cambios pueden ocurrir como re-
sultado de la evaluación de un incremento entregado o como consecuencia
de cambiar las condiciones de los negocios.

TM

PDF Editor

510 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

% CLAVE
El modelo d e proceso
genérico (introducido
en el capitulo 2) e s
aplicable a la
ingeniería Web.

3 . Los plazos son cortos. Esto aminora la creación y revisión de voluminosa do-
cumentación de ingeniería, pero no excluye la simple realidad de que el análi-
sis crítico, el diseño y la prueba deben registrarse en alguna forma.

Además, se deben aplicar los principios definidos como parte del "Manifiesto para el
desarrollo de sof tware ágil" (capítulo 4). Sin embargo, los principios no son los die;
mandamientos . A veces e s razonable adoptar el espíritu de dichos principios sin que
sea necesar io a tenerse a la letra del manifiesto.

Con es tos conflictos en mente s e aborda el proceso de IWeb dentro del proces:
genérico de marco de trabajo presentado en el capítulo 2.

C o m u n i c a c i ó n c o n e l c l i e n t e . Dentro del proceso IWeb la comunicación con e¿
cliente se caracteriza por medio de dos grandes tareas: el análisis del negocio y
formulación. El análisis del negocio define el contexto empresarial-organizativo]
la WebApp. Además, se identifican los participantes, se predicen los potenci
cambios en el ambiente o los requisitos del negocio, y se define la integración en
la WebApp y otras aplicaciones de negocios, bases de datos y funciones. La forrr. -
¡ación e s una actividad de recopilación de requisitos que involucra a todos los p
cipantes. El intento e s describir el problema que la WebApp habrá de resolver (j
con los requisitos básicos para la WebApp) con el aprovechamiento de la mejor
formación disponible. Además, se intenta identificar áreas de incertidumbre y
de ocurrirán cambios potenciales.

P l a n e a c i ó n . Se crea el plan del proyecto para el incremento de la WebApp.
plan consiste de una definición de tareas y un calendario de plazos respecto al
riodo (usualmente medido en semanas) proyectado para el desarrollo del incre
to de la WebApp.

M o d e l a d o . Las labores convencionales de análisis y diseño de ingeniería
software se adaptan al desarrollo de la WebApp, se mezclan y luego se funden en
actividad de modelado IWeb (capítulos 18 y 19). El intento e s desarrollar análisis
pidos" y modelos de diseño que definan requisitos y al mismo tiempo represen
una WebApp que los satisfará.

C o n s t r u c c i ó n . Las herramientas y la tecnología IWeb se aplican para construir
WebApp que se ha modelado. Una vez que se construye el incremento de Web/
se dirige una serie de pruebas rápidas para asegurar que se descubran los errores
el d iseño (es decir: contenido, arquitectura, interfase, navegación). Pruebas adi
nales abordan otras características WebApp.

D e s p l i e g u e . La WebApp se configura para su ambiente operativo, s e entrega
los usuarios finales y luego comienza un periodo de evaluación. La retroalime
ción acerca de la evaluación se presenta al equipo de IWeb y el incremento se
difica conforme se requiera.

Estas cinco actividades del marco de trabajo IWeb se aplican empleando un
de proceso incremental, como se muestra en la figura 16.1.

TM

PDF Editor

C A P Í T U L O 1 6 INGENIERÍA WEB 511

P r u e b a d e a c e p t a c i ó n

U s o d e l c o n s u m i d o r

E v a l u a c i ó n d e l c o n s u m i d o r C o d i f i c a c i ó n
P r u e b a d e c o m p o n e n t e s

L i b e r a c i ó

A n á l i s i s d e l n e g o c i o

F o r m u l a c i ó n
Plan d e i t e r a c i ó n

M o d e l o d e a n á l i s i s

C o n t e n i d o
I terac ión

F u n c i ó n

C o n f i g u r a c i ó n

M o d e l o d e d i s e ñ e
C o n t e n i d o

Arqui tec tura
N a v e g a c i ó n

In ter faz

Ingeniería Web: preguntas básicas
INFORMACIÓN

La ingeniería de cualquier producto involucra suti-
que no advierten inmediatamente quienes carecen de

ia sustancial. Las características de las WebApps
a los ingenieros Web a responder una diversidad

preguntas que deben abordarse durante las primeras
es del marco de trabajo. Las preguntas estratégi-

relacionadas con las necesidades del negocio y los
os del producto, se tratan durante la formulación,

oreguntas acerca de los requisitos, relacionadas con
características y funciones, deben considerarse durante

análisis de modelado. Las preguntas específicas de dise-
base, relacionadas con la arquitectura de la WebApp,
características de la interfaz y los conflictos de navega-
, se consideran conforme evoluciona el modelo de d¡-

tro. Finalmente, un conjunto de conflictos humanos,
r a c i o n a d o s con la forma en la que un usuario realmente
r«ractúa con la WebApp, se abordan en forma continua.

Susan Weinshenk [WEI02] sugiere un conjunto de pregun-
s que se deben considerar conforme progresan el análisis y el

3 seño. Aquí se anota un pequeño subconjunto (adaptado):

¿Cuán importante es la página de inicio (home page)
de un sitio Web? ¿Debe contener información útil o una
simple lista de enlaces que conduzcan al usuario a ma-
yores detalles en niveles inferiores?

¿Cuál es la plantilla de página más efectiva (por ejem-
plo, menú arriba, a la derecha, a la izquierda) y ésta
variará según el tipo de WebApp que se desarrollará?

• ¿Qué opciones de medios audiovisuales tienen más im-
pacto? ¿Los gráficos son más efectivos que el texto? ¿El
video (o el audio) es una opción efectiva? ¿Cuándo se
deben elegir varias opciones de medios audiovisuales?

• ¿Cuánto trabajo se puede esperar que realice un usua-
rio cuando busca información? ¿Cuántos clics desea ha-
cer la gente?

• ¿Cuán importantes son los auxiliares de navegación
cuando las WebApps son complejas?

• ¿Cuán complejas pueden ser las entradas de formulario
antes de que se vuelvan irritantes para el usuario? ¿Có-
mo se pueden expedir las entradas de formulario?

• ¿Cuán importantes son las capacidades de búsqueda?
¿Qué porcentaje de usuarios navega y qué porcentaje
usa búsquedas específicas? ¿Cuán importante es estruc-
turar cada página en una forma que suponga un enlace
desde alguna fuente externa?

• ¿La WebApp se diseñará en una forma que sea accesi-
ble a quienes tengan discapacidades físicas o de algún
otro tipo?

No existen respuestas absolutas a preguntas como éstas, e
incluso<NingurK» deben abordarse conforme avance la
IWeb. En los capítulos 17 al 20 se considerarán respuestas
potenciales.

TM

PDF Editor

5 1 2 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

16.3.2 Refinamiento del marco de trabajo
Ya se ha advertido que el modelo del proceso IWeb debe ser adaptable. Esto es, la
definición de las tareas de ingeniería requeridas para retinar cada actividad del mar-
co de trabajo se dejan a discrecional juicio del equipo de ingeniería Web. En algunos
casos, una actividad del marco de trabajo se dirige de manera informal; en otros, se
definirá una serie de distintas tareas y las dirigirán miembros del equipo. En todo ca-
so, el equipo es responsable de producir un incremento WebApp de alta calidad den-
tro del periodo acordado.

Es importante destacar que las tareas asociadas con las actividades del marco de
trabajo IWeb pueden modificarse, eliminarse o extenderse con base en las caracterís-
ticas del problema, el producto, el proyecto y la gente en el equipo de ingeniería Web

"Existen algunos de nosotros que creen que los mejores prácticas para el desarrollo de software son prácticas y mere-
cen ímplementación. Y luego existen algunos de nosotros que creen que las mejores prácticas son interesantes en ciei
ta formo académica, mas no lo son para el mundo real, muchas gracias."

Warren Keuffel

1 6 . 4 M E J O B E S P R Á C T I C A S EN I N G E N I E R Í A W E B

^CONSEJO^-

Asegúrese de que
alguien hoyo enunciado
ion claridad los nece-
sidades del negocio
pato una WebApp. Si
n es así, el proyecto
élWebestáen

¿Todo desarrollador de WebApp utilizará el marco de trabajo y el conjunto de tareas
del proceso IWeb definido en la sección 16.3? Probablemente no. En ocasiones, las
equipos de ingeniería Web están sometidos a enorme presión respecto del tiempc rj
tratarán de tomar atajos (incluso si éstos son imprudentes e implican más esfuerza
de desarrollo, en lugar de menos). Pero se debe aplicar un conjunto fundamental i r
mejores prácticas —adoptado de las prácticas de ingeniería del software tratadas ¿
lo largo de la Parte 2 de este libro— si se han de construir WebApps con calidad in-
dustrial.

1. Tomar tiempo para entender las necesidades del negocio y los objetivos del pro-
ducto, incluso si los detalles de la WebApp son vagos. Muchos desarrolladores
de WebApps creen erróneamente que los requisitos vagos (que son bastante I
comunes) los liberan de la necesidad de asegurarse de que el sistema que e s - 1
tán a punto de someter a ingeniería tenga un propósito empresarial legítimo
El resultado final es (también con frecuencia) un buen trabajo técnico que c o o l
duce a la construcción del sistema equivocado por las razones equivocadas
para el público equivocado. Si los accionistas no pueden enunciar una neces - 1
dad empresarial para la WebApp, debe procederse con extrema precaución. S I
los accionistas luchan por identificar un conjunto de objetivos claros para el
producto (WebApp), no debe procederse mientras ellos no concluyan.

2. Describir cómo interactuarán los usuarios con la WebApp aplicando un enfoque I
basado en escenarios. Se debe convencer a los accionistas para desarrollar c¿- |
sos de uso (tratados a lo largo de la Parte 2 de este libro) para reflejar cómo |
los diversos actores interactuarán con la WebApp. Entonces se pueden aprc- I

TM

PDF Editor

C A P Í T U L O 16 INGENIERÍA WEB 513

vechar dichos escenarios 1) para la planeación y el rastreo del proyecto, 2) pa-
ra guiar el análisis y el modelado del diseño, y 3) como una entrada importan-
te para el diseño de pruebas.

3 . Desarrollar un plan del proyecto, incluso si es muy breve. El plan debe basarse
en un proceso de marco de trabajo predefinido aceptable para todos los parti-
cipantes. Puesto que los plazos del proyecto son muy cortos, la dosificación
del programa debe ser exacta; es decir, en muchas instancias el proyecto debe
planearse y rastrearse diariamente.

4 . Utilizar algún tiempo para modelar lo que se construirá. Por lo general, el análi-
sis total y los modelos de diseño no se desarrollan durante la ingeniería Web.
Sin embargo, la clase UMLy los diagramas de secuencia, junto con otra nota-
ción UML seleccionada (por ejemplo, diagramas de estado), pueden propor-
cionar una visión invaluable.

5 . Revisar la consistencia y calidad de los modelos. Las revisiones técnicas forma-
les (capítulo 26) se deben dirigir a lo largo del proyecto IWeb. El tiempo em-
pleado en las revisiones paga importantes dividendos porque usualmente
elimina reelaboraciones y resulta en una WebApp que exhibe alta calidad, lo
que aumenta la satisfacción del cliente.

6. Utilizar herramientas y tecnología que permitan construir el sistema con tantos
componentes reutilizables como sea posible. Un amplio conjunto de herramien-
tas WebApp están a disposición virtualmente para cada aspecto de la cons-
trucción WebApp. Muchas de dichas herramientas permiten que un ingeniero
Web construya porciones significativas de la aplicación empleando compo-
nentes reutilizables.

7. No apoyarse en usuarios anteriores para depurar la WebApp; diséñense pruebas
amplias y ejecútense antes de liberar el sistema. Los usuarios de una WebApp
con frecuencia le dan una oportunidad. Si falla en su ejecución se mueven a
cualquiera otra parte: nunca regresan. Por esta razón, el "pruebe primero,
después despliegue" debe ser un sistema primordial, incluso si los plazos se
deben prolongar.

INFORMACIÓN

Criterios de calidad/directrices para WebApps

La IWeb se esfuerzo en la producción de
de alta calidad. Pero, en este contexto, ¿qué es

y qué directrices están disponibles para lograrla?
i artículo acerca de aseguramiento de la calidad en si-

Web, Quibeldey-Cirkel [QUI01] sugiere un amplio
-to de recursos en línea que abordan estos conflictos:

W3C: guía de estilo para hipertexto en línea
www.w3.org/Provider/Style

La Guía Sevioid para el diseño Web
www.sev.com.au/webzone/design/guide.asp

Páginas Web que Apestan
www.webpagestfiatsuck.com/index.html

Y

TM

PDF Editor

http://www.w3.org/Provider/Style
http://www.sev.com.au/webzone/design/guide.asp
http://www.webpagestfiatsuck.com/index.html

514 PARTE TEES APLICACIÓN DE LA INGENIERÍA WEB

Recursos acerca de estilo Web
www.westegg.com/unmaintained/bodpoges

Herramienta de evaluación Web de Gartner
www.gartner.com/ebusiness/website-ings

IBM Corp: directrices Web
www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/572

Facilidad de uso en la World Wide Web
ijhcs.open.ac.uk

Interfaz Salón de la Vergüenza
www.iarchitect.com/mshame.htm

El arte y el zen de los sitios Web
www. tic -systems.com/webtips. shtml

Diseño para la Web: estudios empíricos
www.microsoft.com/usability/webconf.htm

useit.com de Nielsen
www.useit.com

Calidad de experiencia
www.qualityofexperience.org

Creación de sitios Web asesinos
www.killersites.com/core.html

Todas las cosas en la Web
www.pantos.org/atw

Nuevo diseño Web de SUN
www.sun.com/980113/sunonnet

Tognazzini, Bruce: homepage
www.asktog.com

Webmonkey
hotwi red.lycos.com/webmonkey/design/?tw=design

Los mejores sitios Web del mundo
www.worldbestwebsites.com

Yale University: guia de estilo Web de Yale
info.med.yale.edu/caim/manual

>

Es posible argumentar que el impacto de los sistemas y aplicaciones basados en Wer
es el suceso más significativo en la historia de la computación. Conforme la impo:
tancia de las WebApps crece ha comenzado a evolucionar un enfoque IWeb discipl -
nado (adaptado de los principios, conceptos, procesos y métodos de la ingeniería dt
software).

Las WebApps son diferentes de otras categorías de software informático; son em.
nentemente de red, las gobiernan los datos y se encuentran en evolución continua
La inmediatez que dirige su desarrollo, la necesidad apremiante de seguridad en s_
operación y la demanda de estética, así como la entrega de contenido funcional, s e - i
factores diferenciales adicionales. Al igual que otros tipos de software, las WebApp-5
pueden valorarse mediante una diversidad de criterios de calidad que incluyen fac- l
lidad de uso, funcionalidad, confiabilidad, eficiencia, capacidad de mantenimient
seguridad, disponibilidad, escalabilidad y tiempo para comercialización.

La IWeb se describe en tres estratos; proceso, métodos y herramientas/tecnolc~|
gía. El proceso IWeb adopta el enfoque de desarrollo ágil que subraya un punto ce
vista de ingeniería "magro", riguroso, que conduce a la entrega incremental del sis-
tema que será construido. El proceso genérico del marco de trabajo —comunicaciór
planeación, modelado, construcción y despliegue— es aplicable a la IWeb. Dichas
actividades del marco de trabajo se refinan en un conjunto de tareas IWeb que se
adaptan a las necesidades de cada proyecto. A todos los proyectos IWeb se les apli-l
ca un conjunto de actividades sombrilla similar al aplicado durante el trabajo de in-l
geniería del software: SQA, SCM, gestión del proyecto.

TM

PDF Editor

http://www.westegg.com/unmaintained/bodpoges
http://www.gartner.com/ebusiness/website-ings
http://www.iarchitect.com/mshame.htm
http://www.microsoft.com/usability/webconf.htm
http://www.useit.com
http://www.qualityofexperience.org
http://www.killersites.com/core.html
http://www.pantos.org/atw
http://www.sun.com/980113/sunonnet
http://www.asktog.com
http://www.worldbestwebsites.com

C A P Í T U L O 1 6 INGENIERÍA WEB 515

[AOY98] Aoyama, M„ "Web-Based Agile Software Developnient", en IEEE Computer, noviembre-
diciembre, 1998, pp. 56-65.

[DAR99] Dart, s „ "Containing the Web Crisis Using Configuration Management" , en Proc, First
ICSE Workshop on Web Engineering, ACM, Los Ángeles, mayo de 1999. (The Proceedings ofthe
First ¡CSE Workshop on Web Engineering se publican en linea en h t tp : / / f i s t serv .macar thur .
uws.edu.au/san/ icse99-WebE/ lCSE99-WebE-Proc/defaul t .h tm) .

[FOWOl] Fowler, M. y J. Highsmith, "The Agile Manifestó", en Software Development Magazine.
agosto de 2001, h t t p : / / w w w . s d m a g a z i n e . c o m / d o c u m e n t s / s s 8 4 4 / s d m 0 l 0 8 a / 0 l 0 8 a . h t m .

[MCD01) McDonald, A. y R. Welland, Agüe Web Engineering (AWE) Process, Depar tment of Com-
puter Science, University of Glasgow, Technical Report TR-2001-98, 2001, se puede descar-
gar desde h t tp : / /www.dcs .g la .ac .uk /~andrew/TR-200l -98 .pdf .

(MUR99] Murugesan, S., WebE Home Page, h t tp : / / f i s t se rv .macar thur .uws .edu .au / san /WebEHo-
me, julio de 1999.

INOR99] Norton, K., "Applying Cross Functional Evolutionary Methodologies to Web Develop-
ment", en Proc. First ICSE Workshop on Web Engineering, ACM, Los Ángeles, m a y o de 1999.

[POW98] Powell, T. A., Web Site Engineering, Prentice-Hall, 1998.
[PRE98] Pressman, R. S. (moderador), "Can Internet-Based Applications Be Engineered?", IEEE

Software, sept iembre de 1998, pp. 104-110.
[QUI01] Quibeldey-Cirkel, K., "Checklist for Web Site Quality Assurance", en Quality Week Euro-

pe, 2001, se puede descargar desde www.fb i . fh-darmstadt .de /~quibe ldey/Pro jekte /QWE-
2001 /Paper_Quibeldey_Cirkel.pdf.

[WEI02] Weinschenk, S., "Psychology and the Web: Designing for People", 2002, h t t p : / / w w w -
.we inschenk .com/ lea rn / fac t s . a sp .

16 .1 ¿Existen o t ros atributos genéricos que diferencien a las WebApps de las aplicaciones de
sof tware m á s convencionales? Inténtese menc ionar dos o tres.

16 .2 ¿Cómo juzga el lector la "calidad" de un sitio Web? Hágase una lista, en orden descenden-
te de prioridad, de 10 atr ibutos de calidad que consideren los m á s importantes .

1 6 . 3 Realizar un poco de investigación y escribir un articulo de dos a tres páginas que resuma
una de las tecnologías a n o t a d a s en la sección 16.2.3.

16 .4 Empleando un sitio Web real c o m o ejemplo, ilustrar las diferentes mani fes tac iones del
"contenido" de la WebApp.

1 6 . 5 Revisar los procesos de ingeniería del sof tware descri tos en los capítulos 3 y 4. ¿Existe(n)
algún(os) otro(s) proceso(s) -distinto(s) al mode lo de proceso ágil- que pueda(n) ser aplicable(s)
a la ingeniería Web? Si la respues ta es afirmativa, indicar cuál(es) proceso(s) y por qué.

1 6 . 6 Revisar la exposición del "Manifiesto para desarrol lo de sof tware ágil" p re sen tado en el
capítulo 4. ¿Cuál de los 12 principios funcionaría bien para un proyecto de dos a ñ o s (que invo-
lucra a docenas de personas) que construirá un gran s is tema de comerc io electrónico para una
compañía automotr iz? ¿Cuál de los 12 principios funcionaría bien para un proyecto de dos me-
ses que construirá un sitio informativo para una p e q u e ñ a firma de b ienes raíces?

1 6 . 7 Elaborar una lista de "riesgos" que serian probables duran te el desarrollo de una nueva
aplicación de comercio electrónico q u e s e diseña para vender te léfonos celulares y servicios di-
rec tamente por medio de la Web.

TM

PDF Editor

http://fistserv.macarthur
http://www.sdmagazine.com/documents/ss844/sdm0l08a/0l08a.htm
http://www.dcs.gla.ac.uk/~andrew/TR-200l-98.pdf
http://fistserv.macarthur.uws.edu.au/san/WebEHo-
http://www.fbi.fh-darmstadt.de/~quibeldey/Projekte/QWE-

P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

En a ñ o s recientes se han publ icado c ientos de libros que anal izan u n o o m á s t e m a s de ingenie-
ría Web, a u n q u e rela t ivamente pocos abordan todos los a spec tos de la IWeb. Sarukkai (Found-
tions o/Web Technology, Kluwar Academic Publishers, 2002) presen ta una valiosa compilador-
de tecnologías que s e requieren para la IWeb. Murugusan y Deshpande (Wef> Engineering: M;
naging Diversity and Complexity of Web Development, Springer-Verlag, 2001) han edi tado una c:
lección de útiles art ículos acerca de IWeb. Las ac tas de conferenc ias in ternacionales acerca a e
ingeniería Web y de ingeniería de s i s t emas de información Web las publica anua lmen te el IEEE
Computer Society Press.

Flor (Web Business Engineering, Addison-Wesley, 2000) anal iza el análisis de negocios y las
p reocupac iones re lacionadas que permiten al ingeniero Web comprender mejor las necesidades
de los clientes. Bean (Engineering Global E-commerce Sites, Morgan Kaufman, 2003) presenta c
rectrices pa ra el desarrol lo de WebApps globales. Lowe y Hall (Hypermedia and the Web: An
gineering Approach, Wiley, 1999) y Powell [POW98] of recen una cober tura r azonab lemente c
pleta. Umar (Application Re engineering: Building Web-Based Applications and Dealing with Le
Systems, Prentice-Hall, 1997) aborda u n o de los m á s difíciles conflictos en la IWeb: la reinge
ría de los s i s temas h e r e d a d o s para hacer los compat ib les con los s i s t emas b a s a d o s en Web. I
Std. 2001-1999 def ine práct icas bás icas de IWeb.

Erí Internet hay disponible una gran variedad de fuen tes de información acerca de ingei
ría Web. En el sitio Web de SEPA se puede encont ra r una lista actual izada de referencias en
World Wide Web que son relevantes para la ingeniería Web:
h t tp : / /www.mhhe .com/pres sman .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

F O R M U L A C I Ó N Y PLANEACIÓN
PARA INGENIERÍA W E B 17

K 2 8 A S

. .523

. . .526

. . . . 5 3 0

acosa . .533

.520

.536

. .539

-.530

. .519

. .525

..521

530

. .524

Durante la tempestuosa década de 1990, el boom de la Internet generó más
arrogancia que cualquier otro evento en la historia de las computadoras
Los desarrolladores de WebApps en cientos de jóvenes compañías punto-

com argumentaban que había surgido un nuevo paradigma para el desarrollo de
software, que las viejas reglas ya no se aplicarían más, que el tiempo para el mer-
cado dominaba todas las demás preocupaciones. Se rieron de la noción de que la
formulación y la planeación cuidadosas debían ocurrir antes de que comenzara
la construcción. ¿Y quién podía rebatirlos? El dinero estaba en todas partes, los
jóvenes de 24 años se volvieron multimillonarios (al menos en el papel); tal vez
las cosas realmente habían cambiado. Y entonces el suelo se vino abajo.

Conforme comenzaba el siglo xxi empezó a ser dolorosamente evidente que
un enfoque de "construyelo y ellos vendrán" simplemente no funcionaba, que la
formulación del problema es esencial para garantizar que una WebApp en ver-
dad es necesaria, y que la planeación vale el esfuerzo, aun cuando el calendario
de desarrollo sea apretado. Constantine y Lockwood [CONQ2] advierten esta
situación cuando escriben:

A pesa r d e las d e c l a r a c i o n e s rad ica les de q u e la Web r ep re sen t a un n u e v o p a r a d i g m a

def in ido por r eg ia s n u e v a s , los d e s a b o l l a d o r e s p r o f e s i o n a l e s s e e s t á n d a n d o c u e n t a

de q u e las l ecc iones ace rca del desa r ro l lo de so f twa re , a p r e n d i d a s e n los d í a s p rev ios

al Internet , todavía se apl ican. Las p á g i n a s Web son in t e r f aces de usuar io , la p rogra -

m a c i ó n HTML e s p r o g r a m a c i ó n , y las ap l i cac iones d e s p l e g a d a s en el n a v e g a d o r son

s i s t e m a s d e s o f t w a r e q u e p u e d e n benef i c i a r se d e los pr incipios b á s i c o s d e la ingenie -

ría del s o f t w a r e .

Entre los principios fundamentales de la ingeniería de software destaca el de:
comprender el problema antes de comenzar a resolverlo, y estar seguro de que la
solución concebida es aquella que la gente realmente quiere. Esta es la base de la
formulación, la primera gran actividad en la ingeniería Web. Otro principio fun-
damental de la ingeniería de software es: planear el trabajo antes de comenzar a
realizarlo. Este es el enfoque que subyace a la planeación de proyectos.

a ! . Por u n a p a r t e , existe u n a tenden-
c i a a diferir , a e s p e r a r b a s t a q u e
t o d a t e s t é c r u z a d o y t o d a i t e n g a
p u n t o a n t e s d e q u e c o m i e n c e el tra-

b a j o . Por o t r a p a r t e , h a y un d e s e o d e sa l t a r y a ,
d e c o m e n z a r a construir incluso a n t e s d e q u e e n

r e a l i d a d se c o n o z c a q u é s e neces i t a hacer .
A m b o s e n f o q u e s son i n a p r o p i a d o s y p o r e l lo las
d o s p r i m e r a s a c t i v i d a d e s de l m a r c o d e t r a b a j o
d e la i ngen ie r í a W e b d e s t a c a n la fo rmulac ión y
la p l a n e o c i ó n Lo fo rmulac ión v a l o r a la neces i -
d a d s u b y a c e n t e d e la W e b A p p , las caracter ís t i
c a s y func iones g l o b a l e s q u e d e s e a n los u sua r io s

5 1 7

TM

PDF Editor

518 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

y el ámbi to del es fuerzo d e desarrollo. La p lanea-
ción a b o r d o los e lementos q u e d e b e n definirse
p a r a establecer un flujo d e t r a b a j o y un p rog ra -
m a , y a ras t rea r el t r a b a j o conforme a v a n z a el
proyecto .

¿Quién lo h a c e ? Los ingenieros Web, sus admi-
nis t radores y los par t ic ipantes sin funciones téc-
nicas; todos par t ic ipan en la formulación y la
p laneac ión .

¿Por q u é e s i m p o r t a n t e ? Es difícil viajar a un
lugar q u e nunca se h a visitado sin direcciones o
un m a p a . Eventualmente se llega (o tal vez no),
pe ro con segu r idad el v ia je se rá frustrante y
la rgo en f o r m a innecesar ia . La formulación y la
p l aneac ión p r o p o r c i o n a n un m a p a p a r a un
equ ipo d e ingenier ía W e b .

¿Cuáles son los p a s o s a s egu i r ? La formula-
ción c o m i e n z a al es tablecer comunicac ión con et
consumidor (accionista) q u e p lantea las r a z o n e s
p a r a la W e b A p p : ¿cuál es la neces idad del
negoc io , cuáles usuarios finales son el objetivo,
q u é característ icas y funciones se d e s e a n , q u é
sistemas y ba se s d e da tos existentes van a tener
acceso , el concep to es rea l izable , c ó m o se medi-
rá el éxito? La p laneac ión es tablece un p lan de

t r aba jo , desar ro l la es t imaciones p a r a va lorar la
fact ibi l idad d e las fechas d e e n t r e g a d e s e a d a s ,
cons idera r iesgos, def ine un p r o g r a m a y esta-
b lece mecanismos p a r a ras t reo y control,

¿Cuál e s el p roduc to o b t e n i d o ? Puesto que el
t r a b a j o d e ingenier ía W e b con f recuencia a d o p -
ta una filosofía ágil , los productos obtenidos
p a r a la formulación y la p l aneac ión usualmente
son pa rcos , pe ro existen y d e b e n registrarse en
f o r m a escri ta. La recopilación d e información
du ran t e la formulación se registra en un docu-
mento escrito en el cual se b a s a n la p laneac ión
y el m o d e l a d o d e análisis. El p lan del proyecto
ext iende el p r o g r a m a d e éste y presen ta cual-
quier o t ra información q u e sea necesa r io comu-
nicar a los miembros del e q u i p o d e ingeniería
W e b y al pe r sona l externo.

¿Cómo p u e d o e s t a r s e g u r o d e q u e lo he
hecho co r r ec t amen te? Es necesario desa-
rrollar con suficiente detalle p a r a es tablecer un
m a p a sólido, p e r o n o tanto c o m o p a r a q u e d a r
e m p a n t a n a d o . La información d e la formulación
y ta p laneac ión d e b e revisarse con los clientes
p a r a g a r a n t i z a r q u e las inconsistencias y las
omisiones se identifiquen en una e t a p a t emprana .

1 7 . 1 F O R M U L A C I Ó N DE SISTEMAS BASADOS EN W E B

La formulación de sistemas y aplicaciones basados en Web representa una secuen-
cia de acciones de ingeniería Web que comienza con la identificación de las necesi
dades del negocio, se mueve hacia una descripción de los objetivos de la WebApp
define grandes características y funciones y realiza la recopilación de requisitos que
conducen al desarrollo de un modelo de anáfisis. La formulación permite que los
clientes y el equipo de ingeniería Web establezcan un conjunto común de metas \
objetivos para la construcción de la WebApp. También identifica el ámbito de
esfuerzo de desarrollo y proporciona un medio para determinar un resultado éxito
so. El análisis —una actividad técnica que es una continuación de la formulación-
identifica los requisitos funcionales, de comportamiento y de datos para la WebApp

Antes de considerar la formulación con más detalle, es razonable pregunta:
dónde termina la formulación y dónde comienza el análisis de requisitos. No existí
una respuesta sencilla para esta pregunta. La formulación se enfoca sobre el "grar
cuadro": en las necesidades y objetivos del negocio y en la información relacionada
Sin embargo, virtualmente es imposible mantener este grado de abstracción. Los
clientes y los ingenieros Web quieren definir el contenido requerido, discutir la fun

TM

PDF Editor

C A P I T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 519

I (PTONSEJO^

s comienzo la
i del

, inténtese
birlo WebApp
;pretende
uren un solo

fe. Si no es
, no se están

ilas
s globales del

cionalidad específica, enumerar características específicas e identificar la forma en
que los usuarios finales interactuarán con la WebApp. ¿Esto es formulación o reco-
pilación de requisitos? Ambos es la respuesta.

17.1.1 Preguntas de formulación
Powell [POW98] sugiere un conjunto de preguntas que deben formularse y respon-
derse al comienzo de la etapa de formulación:

• ¿Cuál es la principal motivación (necesidades del negocio) para la WebApp?

• ¿Cuáles son los objetivos que debe satisfacer la WebApp?

• ¿Quién usará la WebApp?

La respuesta a cada una de estas simples preguntas debe establecerse tan sucinta-
mente como sea posible. Por ejemplo, supóngase que el fabricante de HogarSe§uro[

ha decidido establecer un sitio Web de comercio electrónico para vender sus pro-
ductos directamente a los consumidores. Un enunciado que describa la motivación
para la WebApp puede ser:

HogarSegurolnc.com permitirá a los consumidores configurar y comprar todos los com-

p o n e n t e s requeridos para instalar un sistema de administración en su hogar o empresa .

Es importante advertir que en este enunciado no se proporcionan detalles. El objeti-
vo aquí es acotar la intención global de la WebApp y colocarla en un contexto
empresarial legítimo.

Después de platicar con varios clientes se establece una respuesta a la segunda
pregunta:

HogarSeguroInc.com nos permitirá vender d i rec tamente a los consumidores , lo que eli-

minará los cos tos de intermediación y mejorará los m á r g e n e s de utilidad. También nos

permitirá a u m e n t a r las ven tas en un proyectado 25 por c iento sobre las ventas anua les ac-

tuales y pene t ra r en regiones geográf icas donde en la actualidad n o t e n e m o s pun tos de

venta .

Finalmente, la compañía define la demografía para la WebApp: "Los usuarios pro-
yectados de HogarSeguroInc.com son los propietarios de viviendas y los dueños de
pequeños negocios."

Las respuestas establecidas líneas arriba implican metas específicas para el sitio
Web de HogarSeguroInc.com. En general, se identifican dos categorías de metas
[GNA99]:

• Metas informativas: indican una intención de proporcionar contenido informa-
ción específicos al usuario final.

• Metas aplicables: indican la habilidad para realizar alguna tarea dentro de la
WebApp.

1 El producto HogarSeguro ya se usó como ejemplo a lo largo de las partes I y 2 de este libro

TM

PDF Editor

5 2 0 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

En el contexto de la WebApp HogarSegurolnc.com, una meta informativa puede ser

El sit io p r o p o r c i o n a r á a los u s u a r i o s e spec i f i cac iones d e p r o d u c t o de ta l l adas , q u e inclui-

rán desc r ipc iones técnicas , ins t rucc iones d e ins ta lación e in fo rmac ión d e prec ios .

El examen de las respuestas a las preguntas planteadas puede conducir al estableci-
miento de una meta aplicable:

HogarSeguro lnc . com consu l t a r á al u s u a r i o a c e r c a de la ins ta lac ión (es decir: c a sa , oficina,

e s p a c i o d e v e n t a al m e n u d e o) q u e se rá p ro teg ida y rea l izará r e c o m e n d a c i o n e s persona l i -

z a d a s a c e r c a del p r o d u c t o y la con f igu rac ión q u e s e ut i l izará.

Una vez identificadas todas las metas informativas y aplicables, se desarrolla un per-
fil de usuario. El perfil de usuario captura "características relevantes relacionadas
con los usuarios potenciales, que incluye sus antecedentes, escolaridad, preferencias
e incluso más" (GNA99]. En el caso de HogarSegurolnc.com, un perfil de usuario
identificaría las características de un comprador típico de sistemas de seguridad
(esta información la suministraría el departamento de mercadotecnia).

t ¿Qué pasos

""Si estás hotkeondo [WebApps], probablemente tu enfoque es 'preparen, fuego, apunten' . Si estás comprometido
ton hacerlas funcionar, debe ser 'preparen, apunten, fuego' ."

Autor desconocido

Una vez que se han desarrollado las metas y perfiles de usuario, la actividad de
formulación se enfoca sobre una afirmación del ámbito para la WebApp. En muchos
casos, las metas ya desarrolladas se integran en la afirmación del ámbito. Además,
es útil, no obstante, indicar el grado de integración esperado de la WebApp. Esto es
con frecuencia es necesario integrar los sistemas de información existentes (por
ejemplo, una aplicación existente de base de datos) con un planteamiento basado en
Web. Los temas de conectividad se consideran en esta etapa.

17.1.2 Recopilación de requisitos para WebApps
Los métodos para la recopilación de requisitos se trataron en el capítulo 7. Aunque
esta actividad puede abreviarse para la ingeniería Web, los objetivos globales de la
recopilación de requisitos propuestos para la ingeniería de software permanecen
inalterados. Adaptados para las WebApp, dichos objetivos se convierten en:

• Identificar requisitos de contenido.

• Identificar requisitos funcionales.

• Definir escenarios de interacción para diferentes clases de usuarios.

Los siguientes pasos de la recopilación de requisitos se dirigen para lograr estos
objetivos:

de recopila- j _ P e d i r a i o s c i i e n t e s que definan las categorías de usuario y describan cada ca-
rió* de requisitos • tegoria. se apicaa para °
I* WebApps? 2 . Comunicarse con los clientes para definir los requisitos básicos de la WebApp.

TM

PDF Editor

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 521

3. Analizar la información recopilada y utilizar la información para realizar un
seguimiento con los clientes.

4. Definir casos de uso (capítulo 8) que describan escenarios de interacción para
cada clase de usuario.

Definición d e las ca tegor ías de usua r io . Se puede argumentar que la comple-
jidad de la WebApp es directamente proporcional al número de categorías de usua-
rio para el sistema. La definición de una categoría de usuario requiere formular un
conjunto de preguntas fundamentales:

• ¿Cuál es el objetivo global del usuario cuando usa la WebApp? Por ejemplo, un
usuario del sitio de comercio electrónico de HogarSeguroInc.com puede estar
interesado en recopilar información acerca de productos de administración del
hogar. Otro usuario tal vez desee comparar precios. Un tercer usuario quiere
comprar el producto HogarSeguro. Cada uno representa una clase o categoría
diferente de usuario; cada uno tendrá diferentes necesidades y navegará a través
de la WebApp de manera diferente. Un cuarto usuario ya posee HogarSeguro y
busca soporte técnico o quiere comprar sensores o accesorios adicionales.

• ¿Cuáles son los antecedentes y la pericia del usuario en relación con el contenido
y la Juncionalidad de la WebApp? Si un usuario tiene un antecedente técnico y
una pericia significativa el contenido o la funcionalidad elementales ofrecerán
poco beneficio. De manera alternativa, un neófito demanda contenido y
funcionalidad elementales y estaría confundido si se perdiese.

• ¿Cómo llegará el usuario a la WebApp? ¿El arribo ocurrirá a través de un enlace
desde otro sitio Web (probablemente hacia contenido o funcionalidad dentro
de la WebApp), o llegará en una forma más controlada?

• ¿Qué características genéricas de la WebApps le gustan o disgustan al usuario?
Diferentes tipos de usuarios pueden tener distintos y predecibles gustos y
aversiones. Vale la pena el intento de determinar si los tienen o no. En
muchas situaciones la respuesta se puede averiguar preguntándoles cuáles
son sus WebApps favorita y menos favorita.

Al aprovechar las respuestas a estas preguntas se debe definir el más pequeño con-
junto razonable de clases de usuario. Conforme se avanza en la recopilación de
requisitos, cada diferente clase de usuario debe encuestarse para obtener datos.

Recopilación de requisitos para WebApps

El e s c e n a r i o : la oficina de Doug Los a c t o r e s : Doug Miiler, gerente del equipo de
ingeniería del software; Vinod Raman, i

TM

PDF Editor

522 P A E T E TRES APLICACIÓN DE LA INGENIERÍA WEB

equipo de ingeniería del software HogarSeguro; más
tarde, tres personas de mercadotecnia.

La conversación:
D o u g : La gerencia ha decidido que construyamos un
sitio de comercio electrónico para vender HogarSeguro.

V i n o d : |Guau, Doug! No tenemos tiempo para hacer
eso... estamos empantanados con el trabajo de software
de producto.

D o u g : lo sé, lo sé... subcontrafaremos el desarrollo con
una compañía especializada en la construcción de sitios
de comercio electrónico. Ellos nos dirán que lo tendrán
listo y corriendo en menos de un mes... muchos
componentes reutilizables.

V i n o d : Mmmmm. Bien... ¿entonces por qué estoy aquí?

D o u g : Para facilitar las cosos: quieren que nos
encarguemos de ta recopilación de requisitos para el
sitio. Quiero que te entrevistes con los diversos clientes
pera comprender, aunque sea en forma mínima, los
requisitos básicos.

Vinod (e x a s p e r a d o) : Doug... no me estás
escuchando... estamos apretados de tiempo y esto...

D o u g (interrumpe): Sólo dale un día de tu tiempo,
Vinod. Entrevístate con los tipos de mercadotecnia y
hazlos que especifiquen el contenido básico, ta función;
tú sabes, el procedimiento usual.

V i n o d (r e s i g n a d o) : Está bien, los llamaré y
concertaré algo para mañana, pero no me facilitas la
vida.

D o u g (sonríe) : Por eso te llevas tas billetes grandes.

V i n o d : Cierto.

(Vinod se entrevista con tres personas de mercadotecnia
al día siguiente.)

V i n o d : Me decían acerca de tas objetivos y
antecedentes de tas usuarios.

P e r s o n a d e m e r c a d o t e c n i a # 1 : Como dije,
pretendemos que el usuario seo capaz de personalizar
todo el sistema HogarSeguro. Tú sabes: escoger
sensores, paneles de control, características y Funciones,
luego obtener una "cuenta de materiales" generada
automáticamente, obtener la cotización y luego comprar
el sistema a través del sitio Web.

P e r s o n a d e m e r c a d o t e c n i a # 2 : Suponemos que el
usuario es propietario de una casa, no un técnico, así
que necesitamos guiarlo a través del proceso paso a
paso.

P e r s o n a d e m e r c a d o t e c n i a # 3 : Yo no soy técnico,
pero me preocupan tas elementos especializados que
necesitamos elaborar además de tas factores básicos de
comercio electrónico.

V i n o d (e n f r e n t a n d o al # 3) : ¿Qué quieres decir?

P e r s o n a d e m e r c a d o t e c n i a # 3 : La parte difícil será
guiar al usuario a través del "proceso de
personalización" en una forma simple y completa. El
asunto del comercio electrónico real es bastante directo.

P e r s o n a d e m e r c a d o t e c n i a # 1 : Tendremos que
ofrecer un número 8 0 0 para tas personas que no estén
dispuestas a realizar ta personalización por sí mismas.

P e r s o n a d e m e r c a d o t e c n i a # 2 : Estoy de acuerdo

V i n o s : Muy bien, tendremos que hablar acerca de
cómo les gustaría exactamente hacer ta personalización
del producto como una actividad de prevenías, pero
dejemos eso por un momento. Tengo otras cuantas
preguntas fundamentales.

Vinod (ve a la persona de mercadotecnia #2):
Dijiste que querías guiar a tas usuarios a través del
proceso. ¿Algún enfoque especial?

P e r s o n a d e m e r c a d o t e c n i a # 2 : Quisiera ver un
proceso paso a paso, con espacios en blanco para
responder preguntas de requisitos básicos, menús
desplegables, ese tipo de cosas. Cada paso es una
ventana, y tas datos de cada ventana se validan antes de
moverse al paso siguiente.

Vinod: ¿Has comprobado eso con usuarios
representativos?

P e r s o n a d e m e r c a d o t e c n i a # 2 : No, pero ta haré

V i n o d : Una cosa más. .. ¿cómo encontrará nuestro sitio
un usuario?

P e r s o n a d e m e r c a d o t e c n i a # 1 : Estamos
trabajando en una campaña publicitaria que colocará
www.HogarSegurolnc.com en anuncios de revistas,
correo dirigido a objetivos, anuncios sensibles a
contenido que aparecen en tas motores de búsqueda, y
tal vez incluso algunos spots de radio y televisión.

V i n o d : Lo que quiero decir es... tas usuarios siempre
entran a través de ta página inicial.

Persona de mercadotecnia #3: Eso es ta que nos
gustaría.

V i n o d : Muy bien, ahora tenemos que ponernos a
trabajar. Exploremos tas detalles de cómo quieren
personalizar tas sistemas en línea.

TM

PDF Editor

http://www.HogarSegurolnc.com

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 5 2 3

i meto-
de

i es
i emplear

[CONSEJO

i demora/la
i de los

; i operaciones
3 mientras

Keel
) del análisis,

•punto es más
? la recopila-

i información,
i ? valuación.

C o m u n i c a c i ó n con los c l i en tes y u s u a r i o s f ina les . La mayoría de las WebApps
tiene una amplia población de usuarios finales. Aunque la creación de categorías o
clases de usuario hace que una evaluación de los requisitos de usuario sea más
manejable, no es recomendable emplear información recopilada sólo de una o dos
personas como la base para la formulación o el análisis. Se deben considerar más per-
sonas (y más opiniones y puntos de vista).

La comunicación se puede lograr aprovechando uno o más de los mecanismos
siguientes |FUC02a]:

• Grupo muestraI tradicional. Un moderador entrenado se reúne con un pequeño
(usualmente menos de 10 personas) grupo representativo de usuarios finales
(o participantes internos que los representan). El propósito es discutir la
WebApp que se desarrollará y, fuera de la discusión, comprender mejor los
requisitos del sistema.

• Grupo muestraI electrónico. Un debate electrónico moderado dirigido con un
grupo de usuarios finales y participantes representativos. El número de parti-
cipantes puede ser mayor. Puesto que todos los usuarios pueden participar al
mismo tiempo, es posible recopilar más información en un periodo más corto.
Dado que todo el debate se basa en texto es automático un registro contem-
poráneo.

• Entrevistas iterativas. Una serie de entrevistas breves, dirigida a usuarios repre-
sentativos y en la que se solicitan respuestas a preguntas especificas acerca de
la WebApp, se dirige a través del sitio Web o mediante correo electrónico. Las
respuestas se analizan y aprovechan para afinar la entrevista siguiente.

• Entrevistas de exploración. Encuesta basada en Web y ligada a una o más
WebApps con usuarios similares a los que usarán la WebApp que se desarro-
llará. Los usuarios se enlazan a la entrevista y responden una serie de
preguntas (usualmente reciben alguna recompensa por participar).

• Construcción de escenarios. A usuarios seleccionados se les pide crear casos
de uso informales que describan interacciones específicas con la WebApp.

Análisis d e la i n fo rmac ión r ecop i l ada . Conforme se recopila información se
categoriza en clase de usuario y tipo de transacción, y luego se valora según su rele-
vancia. El objetivo es desarrollar listas de objetos de contenido, operaciones que se
aplican a los objetos de contenido dentro de una transacción de usuario específica,
funciones (por ejemplo, informativa, computacional, lógica y orientada a la ayuda)
que la WebApp proporciona a los usuarios finales, y otros requisitos no funcionales que
se advierten durante las actividades de comunicación.

Fuccella y Pizzolato [FUC02b] sugieren un método simple (de baja tecnología:
low-tech) para comprender cómo se deben organizar el contenido y la funcionalidad.
Se crea un paquete de "cartas" para los objetos de contenido, las operaciones apli-
cadas a los objetos de contenido, la funciones WebApp y otros requisitos no funcio-

TM

PDF Editor

5 2 4 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

nales. Se barajan las cartas y luego se distribuyen a las personas representativas de
cada categoría de usuario. Se pide a los usuarios que ordenan las cartas en grupos
que reflejan cómo les gustaría que se organizara el contenido y la funcionalidad den-
tro de la WebApp. Luego se solicita a los usuarios que describan cada agrupamien-
to y las razones por las que son importantes para ellos. Una vez que cada usuar.:
realiza este ejercicio, el equipo de ingeniería Web busca agrupamientos comunes
entre diferentes clases de usuarios y otros agrupamientos que sean únicos para ur.i
clase de usuario específica.

El equipo IWeb desarrolla una lista de etiquetas que se usarán para apuntar la
información dentro de cada uno de los agrupamientos derivados con el uso de los paque -
tes de cartas. Entonces, a los diferentes usuarios representativos se les dan los
paquetes de cartas y se les pide ubicar el contenido y la funcionalidad a cada una ¿r
las etiquetas. Aquí el próposito es determinar cuándo las etiquetas (enlaces d e n t r j
de la WebApp real) implican de manera adecuada el acceso al contenido y las fun -
ciones que los usuarios esperan encontrar detrás de la etiqueta. Este paso se apli:=
de manera iterativa hasta que se alcanza el consenso.

^ O N S E J O ^

En lo Paite 2 de este
libio se trataron con
detalle los casos de
uso. Aunque muchos
abogan por el desa-
rrollo de casos de uso
muy largos, incluso
una nairoción informal
proporciona algún
beneficio. Convenza a
los usuarios paro que
escriban cosos de uso.

"Si IB que estos haciendo no lo puedes describir como un proceso, entonces no sabes lo que estás haciendo,"
W. L Deming

D e s a r r o l l o d e c a s o s d e u s o . Los casos de uso2 describen cómo interactuará con]
la WebApp una categoría de usuario especifica (llamada actor) para lograr ur.a
acción específica. La acción puede ser tan simple como adquirir contenido definid: ,¡
o tan compleja como que el usuario realice un análisis detallado de registros selecJ
cionados que se mantienen en una base de datos en línea. Los casos de uso desce-
ben la interacción desde el punto de vista del usuario.

Aunque desarrollarlos y analizarlos toma tiempo, los casos de uso 1) ayudan U
desarrollador a entender cómo perciben los usuarios su interacción con la WebApr J
2) proporcionan el detalle necesario para crear un modelo de análisis efectivo: ;-H
ayudan a dividir en compartimientos el trabajo de IWeb; y 4) ofrecen una guía impc - -I
tante para quienes deben probar la WebApp.

CONJUNTO DE TAREAS

La comunicación con el cliente (Análisis/Formulación)
1. Identifiqúense a los clientes del

negocio. ¿Exactamente quién es el
"cliente" de la WebApp? ¿Qué

personas d e negocios pueden funcionar como
expertos y usuarios finales representativos? ¿Quién
participará como miembro activo del equipo?

2. Formúlese el contexto del negocio. ¿Cómo encaja lo
WebApp en una estrategia de negocios más amplíe '

3. Defínanse las metas y objetivos clave del negocio
para la WebApp. ¿Cómo se medirá el éxito d e la
WebApp, tanto en términos cualitativos como
cuantitativos?

2 En los capítulos 7 y 8 se presentaron con detalle las técnicas para desarrollar los casos de uso

TM

PDF Editor

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 5 2 5

Defínanse las metas informativas y aplicables. ¿Qué
d a s e de contenido se proporcionará a los usuarios
anales? ¿Qué funciones/tareas se lograrán cuando
se use la WebApp?
identifiqúese el problema. ¿Qué problema específico
resuelve la WebApp?

\
6. Recopílense requisitos. ¿Qué tareas del usuario se

lograrán mediante el uso de la WebApp? ¿Qué
contenido se desarrollará? ¿Qué metáfora de
interacción se usará? ¿Qué funciones
computacionales proporcionará la WebApp? ¿Cómo
se configurará la WebApp para su utilización en
red? ¿Qué esquema de navegación se desea?

é proyectos
se puede
una simple

a datos de
' (con la
de uno hoja
' en lugar

UML Esto
¡todos los
del equipo

losrequi-
e¡ contenido

'• entregado
mejor el

ñujode
que ocurrirá.

17.1.3 El puente hacia el modelado de análisis
Como ya se ha señalado en este capítulo, las actividades que conducen a un equipo
de ingeniería Web de la formulación al modelado de análisis representa un continuo.
En esencia, el grado de abstracción considerado durante las primeras etapas de la
formulación es la estrategia del negocio. Sin embargo, conforme la formulación se
lleva a cabo, se analizan los detalles tácticos y se abordan los requisitos específicos
de la WebApp. Finalmente, estos requisitos se modelan (con la utilización de casos de
uso y notación UML).

Los conceptos y principios tratados para el análisis de requisitos de software
(capítulos 7 y 8) se aplican sin revisión para la actividad de análisis de ingeniería
Web. Durante el análisis se elabora el ámbito definido durante la actividad de for-
mulación para crear un modelo de análisis completo para la WebApp. En la IWeb se
realizan cuatro tipos diferentes de análisis: del contenido, de la interacción, de la
función y de la configuración. En el capítulo 18 se exponen las tareas y técnicas de
modelado asociadas con cada uno de estos análisis.

"Al fracasar para preparar, se prepara para el fracaso."
Benjamín Frankfin

1 7 . 2 P L A N E A C I Ó N P E P R O Y E C T O S P E I N G E N I E R Í A W E B

Dada la inmediatez de las WebApps es razonable preguntar: ¿en realidad se necesi-
ta gastar tiempo en la planeación y administración de un esfuerzo WebApp? ¿No sólo
se debería dejar evolucionar naturalmente a la WebApp, con poca o ninguna gestión
explícita? Más de un desarrollador Web optaría por poca o ninguna gestión, ¡pero
eso no hace que estén en lo correcto!

La figura 17.1 presenta un cuadro adaptado de Kulik y Samuelson [KULOO] que
indica cómo los "proyectos electrónicos" (e-projects, su término para los proyectos
WebApp) se comparan con los proyectos de software tradicionales. Al consultar la
figura, los proyectos de software tradicionales y los grandes proyectos electrónicos
tienen similitudes sustanciales. Dado que la gestión del proyecto se indica para los
proyectos tradicionales, parecería razonable argumentar que también estaría indi-
cada para los grandes proyectos electrónicos. Los pequeños proyectos electrónicos
tienen características especiales que los diferencian de los proyectos tradicionales.
Sin embargo, incluso en el caso de los pequeños proyectos electrónicos, la planea-

TM

PDF Editor

P A R T E T R E S APLICACIÓN DE LA INGENIERÍA WEB

Diferenc ias en t re p royec tos t r ad i c iona l e s y e lect rónicos (e-projects) [a d a p t a d o d e KULOO]

Proyectos tradicionales Pequeños proyectos
electrónicos

Grandes proyectos
electrónicos

Recopilación
de requisitos Riguroso Limitada Rigurosa

Especificaciones
técnicas

Robus tas : m o d e l o s ,
e s p e c i f i c a c i o n e s P a n o r a m a desc r ip t ivo Robus ta : m o d e l o s U M l ,

e s p e c i f i c a c i o n e s

Duración del proyecto M e d i d a en m e s e s
o a ñ o s

M e d i a d a e n d i a s ,
s e m a n a s o m e s e s

M e d i d a e n m e s e s
o a ñ o s

Prueba y aseguramiento
de la calidad

E n f o c a d a en l og ra r
b l a n c o s d e c a l i d a d

E n f o c a d a s o b r e contro l
d e r i e s g o

A s e g u r a m i e n t o d e la
c a l i d a d de l s o f t w a r e c o m o
se d e s c r i b e en el c a p i t u l o 2 6

Gestión de riesgos Explícita Inherente Explícita

Vida media
de los entregables 8 m e s e s o m á s

D e 3 a ó m e s e s
o m á s co r to

De 6 a 12 m e s e s
o m á s cor to

Proceso de liberación Riguroso Exped i to Riguroso

Retroalimentación
del cliente después
de la liberación

Requ ie re e s t u e r z o
p r o a c t i v o

S e o b t i e n e
a u t o m á t i c a m e n t e d e la
in te racc ión c o n el u s u a r i o

S e o b t i e n e t a n t o d e
m a n e r a a u t o m á t i c a c o m o
p o r m e d i o d e solicitud
d e r e t r o a l i m e n t a c i ó n

ción se debe realizar, se deben considerar los riesgos, se debe establecer un prog:
ma y se deben definir controles de modo que eviten la confusión, la frustración y
fracaso.

1 7 . 3 E l E Q . U I P Q D E I N G E N I E R Í A W E B i

Un equipo de ingeniería Web exitoso mezcla una amplia variedad de talentos c J !
deben trabajar como equipo en un ambiente de proyecto con alta presión. Los p —I
zos son cortos, los cambios son inexorables y la tecnología continúa cambiando
creación de un equipo que se consolide (véase el capítulo 21) no es asunto sene, a

"En el mundo actual, alimentado por la Web y centrado en lo red, uno necesita saber mucho de muchos temos."
Scot Tilley y Shihoog Huanj

17.3.1 Los actores
La creación de una aplicación Web exitosa demanda un amplio abanico de hábil: ü l
des. Tilley y Huang (TIL99] abordan este tema cuando afirman: "Existen tantos áám
rentes aspectos del software de aplicación [a la Web] que se ha dado el (re)surgimier*
del renacentista, aquel que se siente cómodo trabajando en varias disciplinas . a
Aunque los autores están en lo correcto, los "renacentistas" son re la t ivame-*
pocos, y dadas las demandas asociadas con los grandes proyectos de desarrolle M
WebApps, el conjunto de diversas habilidades requeridas puede ser mejor d i s t r i t o
do entre un equipo de ingeniería Web.

Los equipos de ingeniería Web se pueden organizar, en gran medida, en la m i s r J
forma que los equipos de software tradicionales (capítulo 21). Sin embargo, los a n d

5 2 6

TM

PDF Editor

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 527

res y sus papeles usualmente son bastante diferentes. Entre las muchas habilidades
que se deben distribuir entre los miembros del equipo IWeb se encuentran: ingenie-
ría del software basada en componentes, realización de redes, diseño arquitectóni-
co y de navegación, lenguajes/estándares de Internet, diseño de interfase humana,
diseño gráfico, disposición del contenido y pruebas de las WebApps.

Los siguientes papeles3 se deben distribuir entre los miembros del equipo IWeb:

D e s a r r o l l a d o r e s / p r o v e e d o r e s d e c o n t e n i d o . Dado que el contenido contro-
iesempe- ¡a inherentemente las WebApps, una función del equipo IWeb se debe enfocar en la

generación o recopilación del contenido. Recuérdese que el contenido abarca un
amplio abanico de objetos de datos, por ello los desarrolladores/proveedores de
contenido pueden provenir de diversos ámbitos (no de software).

Ed i to res d e w e b . El variado contenido que generan los respectivos desarrolla-
dores/proveedores se debe organizar para incluirlo en la WebApp. Además, alguien
debe actuar como conexión entre el equipo técnico que diseña la WebApp y los desa-
rrolladores/proveedores de contenido sin conocimientos técnicos. Este papel lo
satisface el editor de Web, quien debe entender tanto el contenido como la tecnolo-
gía de la WebApp.

Ingen ie ro Web. El ingeniero Web se involucra en un amplio rango de activida-
des durante el desarrollo de una WebApp, que incluyen la obtención de requisitos, el
modelado de análisis, el diseño arquitectónico, de navegación y de interfase, la
implementación de la WebApp y las pruebas. El ingeniero Web también debe tener
una sólida comprensión de las tecnologías de componentes, de las arquitecturas
cliente/servidor, de HTML/XML y de tecnologías de bases de datos, y un conoci-
miento práctico de los conceptos multimedia, de las plataformas hardware/softwa-
re, de la seguridad de redes y de cuestiones de apoyo a sitios Web.

Exper tos en d o m i n i o s e m p r e s a r i a l e s . Un experto en dominio empresarial
debe ser capaz de responder todas las preguntas relacionadas con metas, objetivos
y requisitos empresariales relacionados con la WebApp.

Especia l is ta d e s o p o r t e . Este papel se asigna a la persona (personas) que es
(son) responsable(s) del apoyo continuo a la WebApp, Puesto que las WebApps evolu-
cionan continuamente, el especialista de soporte es responsable de las correcciones,
adaptaciones y mejoras al sitio, que incluyen actualizaciones de contenido, imple-
mentación de nuevos procedimientos y formas, y cambios al patrón de navegación.

Admin i s t r ador . Usualmente llamado "web master", esta persona tiene la res-
ponsabilidad de la operación diaria de la WebApp, lo que incluye: desarrollo e imple-
mentación de políticas para la operación de la WebApp, establecimiento de procedi-
mientos de soporte y retroal i mentación, implementación de seguridad y derechos de
acceso, medición y análisis de tráfico del sitio Web, coordinación de los procedi-
mientos de control de cambios (capítulo 27) y coordinación con el especialista de

3 Estos papeles se han adaptado de Hansen y sus colegas |HAN99]

TM

PDF Editor

528 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

^ O H S E J O ^

Estos características
son usuales en los
equipos de colabora-
dores outoorganizodos
que barí adoptado un
enfoque ágil (capitulo
4). Mientras mejor
sea el equipo, mejor
será el producto de
software que se
produzca.

soporte. El administrador también puede estar involucrado en las actividades técni-
cas que realizan los ingenieros Web y los especialistas de soporte.

17.3.2 Construcción del equipo
En el capítulo 21 se tratarán con cierto detalle los lincamientos para la construcción
exitosa de los equipos de ingeniería del software. Pero, ¿estos lincamientos se apli-
can en el apretujado mundo de los proyectos WebApp? La respuesta es sí.

Hace algún tiempo, en su éxito de librería acerca de la industria de la compu-
tación, Tracy Kidder [KIDOO] cuenta la historia del heroico intento de una compañ a
de computación por construir una computadora para enfrentar el reto de un nuevo
producto que fabricó un competidor más grande.4 La historia es una metáfora del equi-
po de trabajo, del liderazgo y del aplastante estrés que todos los tecnólogos encuer
tran cuando los proyectos críticos no avanzan tan suavemente como se planeó.

Un resumen del libro de Kidder difícilmente le hace justicia, pero los siguiente;
puntos clave [PICO 1] tienen particular relevancia cuando una organización cons t r j
ye un equipo de ingeniería Web:

Se d e b e e s t a b l e c e r u n c o n j u n t o d e d i r ec t r i ces d e equ ipo . Dichas directr.-]
ees abarcan lo que se espera de cada persona, cómo se lidiará con los problema;;
qué mecanismos existen para mejorar la efectividad del equipo conforme avanza i
proyecto.

El l i de razgo f u e r t e e s u n a ob l igac ión . El líder del equipo debe guiar mee
te el ejemplo y el contacto. Debe mostrar un grado de entusiasmo que impulse a
otros miembros del equipo "a endosarse" psicológicamente al trabajo que enfrent,

El r e s p e t o hac i a los t a l e n t o s indiv iduales e s crucia l . Nadie es bueno
todo. Los mejores equipos utilizan las fortalezas individuales. Los mejores líderes:
equipo permiten que los individuos tengan libertad para seguir una buena idea.

C a d a m i e m b r o de l e q u i p o s e d e b e c o m p r o m e t e r . El protagonista princ
en el libro de Kidder le llama a esto "endoso".

Es fácil c o m e n z a r , lo difícil e s m a n t e n e r el Ímpetu . Los mejores equipos ni
dejan que un problema "insuperable" los detenga. Los miembros del equipo de
lian una solución "lo suficientemente buena" y proceden, con la esperanza de
ímpetu del progreso pueda conducirlos a una solución todavía mejor en el largo pU

Una vez realizada la formulación y que se han identificado los requisitos básico; i
la WebApp, la empresa debe elegir una de dos opciones de ingeniería Web: 1|
WebApp es subcontratada (outsourced): la ingeniería Web la realiza un tercer prc

4 El libro de Kidder, The Soul of a New Machine, originalmente publicado en 1981, íes una lectura i
tamente recomendable para cualquiera que intente realizar una carrera en la computación y |
quienes ya la tienen!

TM

PDF Editor

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 529

dor con experiencia, talento y recursos con los cuales no cuente la empresa; o 2) la
WebApp la desarrollan en casa ingenieros Web que sean empleados de la empresa.
Una tercera opción (hacer algún trabajo de ingeniería Web en casa y subcontratar
otro trabajo) también e s una posibilidad.

"Como observó Thomns Hobbs en el siglo xvu, lo vido bajo las reglas de las pandillas es solitario, pobre, peligroso,
cruel y corta, l a vida en un proyecto d e software que corre pobremente; es solitario, pobre, peligrosa, cruel y con
dificultad alguna vez es lo suficientemente corta."

Sfsven McConnell

El trabajo que debe realizarse sigue s iendo el mismo sin importar si una WebApp
e s subcontratada, desarrollada en casa o distribuida entre un proveedor externo y el
equipo de casa. No obstante, sí cambian los requisitos de comunicación, la distribu-
ción de actividades técnicas, el grado de interacción entre clientes y desarrolladores,
y una diversidad de otros conflictos crucialmente importantes.

La figura 17.2 ilustra, respecto a las WebApps, la diferencia organizacional entre
subcontratación y desarrollo en casa. Éste (figura 17.2a) integra directamente todos
los miembros del equipo de ingeniería Web (el círculo punteado implica integración).
La comunicación se establece mediante los caminos de la organización. En cuanto
a la subcontratación (figura 17.2b), e s impráctico y desaconsejable que cada ele-
mento de casa (por ejemplo, desarrolladores de contenido, accionistas, ingenieros
Web internos) tenga comunicación directa con el subcontratista sin que exista algún
e lemento de conexión para coordinar y controlar la comunicación. En las secciones
que siguen se examinarán con más detalle las planeaciones para la subcontratación
y el desarrollo en casa .

t e m e r o s

E s p e c i a l i s t a s
d e s o p o r t e ^

I vendedor ¡ D e s a r r o l l a d o r e s '
\ d é c o n t e n i d o /

/ A d m i n i s t r a d o r ;

S u b c o n t r a t i s t a

G e r e n t e s

n e g o c i o s / C l i e n t e s

M e r c a d o t e c n i a
U s u a r i o s

f i n a l e s v e n t a s

I n g e n i e r o s

E s p e c i a l i s t a s
l d e s o p o r t e ^

D e s a r r o l l a d o r e s .

'Administrador^
c o n t e n i d o .

E d i t o r
W e b

G e r e n t e s

n e g o c i o s C l i e n t e s

M e r c a d o t e c n i
U s u a r i o s

f i n a l e s v e n t a s

a s
" v a s

subcon t r a t a -
y desar ro l lo

casa.

a) D e s a r r o l l o e n c a s a b) D e s a r r o l l o s u b c o n t r a t a d o

TM

PDF Editor

530 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

^ O N S t J O ^

No se supongo que,
puesto que se ha
subconliatado una
WebApp, las responsa-
bilidades son
mínimas. De hecho,
es probable que se
requieran más, no
menos, supervisión y
gestión.

17.4.1 Planeación de WebApp: subcontratación
Un porcentaje sustancial de las WebApps se subcontrata con proveedores que
(supuestamente) se especializan en el desarrollo de sistemas y aplicaciones basados
en Web.5 En tales casos, un negocio (el cliente) pide un precio fijo para desarrollar la
WebApp de uno o más proveedores, evalúa los precios competitivos y luego elige un
proveedor para efectuar el trabajo. Pero, ¿qué busca la organización contratante?
¿Cómo se determina la competencia de un proveedor de WebApps? ¿Cómo se sabe
si una cotización es razonable? ¿Qué grado de planeación, programa de trabajo y
valoración de riesgo se pueden esperar conforme una organización (y su subcontra-
tista) se embarca en un esfuerzo por desarrollar una gran WebApp?

"Muchos empresas de Fortune 500 hon descubierto al software como un modelo de servicio [subcontratado] y están
contratando modelos similares interna o externamente."

Nkk Evans

^CONStJO^ .

Algunos personas
argumentan que "el
diseño aproximado"
es innecesario. Véase
como una "primero
oferta" que el
proveedor subcontro-
tisto puede modificar
y mejorar. Al menos
está comunicando sus
ideas acerca de a qué
se debe parecer el
resultado final.

Estas preguntas no siempre son fáciles de contestar, pero vale la pena considerar
algunos lincamientos.

Inicio del p royec to . Si la subcontratación se elegirá como la estrategia para desa-
rrollar la WebApp, la organización debe realizar una serie de tareas antes de
buscar una empresa subcontratista que haga el trabajo:

1. Realizar, internamente, muchas de las labores de análisis tratadas en la sección
17.1.3 (y en el capítulo 18). Se identifica el público para la WebApp; se hace
una lista con los accionistas internos interesados en la WebApp; se definen y
revisan las metas globales para la WebApp; se especifican la información y
servicios que habrá de proporcionar la WebApp; se destacan los sitios Web
competidores; y se identifican las "medidas" cualitativas y cuantitativas de
una WebApp exitosa. Esta información deberá documentarse en una especifi-
cación de producto que se entregará al subcontratista.

2. Desarrollar internamente un diseño aproximado de la WebApp. Obviamente, un
desarrollador Web experto creará un diseño completo, pero es posible ahorrar
tiempo y costo si la visión y el sentido general de la WebApp se identifican
para la empresa subcontratista (esto siempre puede modificarse durante las
etapas preliminares del proyecto). El diseño debe incluir una indicación del
tipo y volumen de contenido que se presentará en la WebApp y los tipos de
procesamiento interactivo (por ejemplo, formatos, entrada de pedidos) que se
llevarán a cabo. Esta información deberá agregarse a la especificación del
producto.

5 Aunque es difícil encontrar datos industriales confiables, puede afirmarse que es te porcentaje es

considerablemente mayor que el que s e observa en el t rabajo de sof tware convencional. En el cap- -I
tulo 23 se ofrece una exposición adicional acerca de la subcontratación.

TM

PDF Editor

C A P I T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 531

3. Elaborar un programa aproximado que incluya no sólo las fechas finales de en-
trega, sino también fechas clave. Las fechas clave se deben adjuntar a las ver-
siones de entrega (incrementos) de la WebApp conforme ésta evolucione.

4. Crear una lista de responsabilidades para la organización interna y el subcontra-
tista. En esencia, esta tarea aborda qué información, contactos y otros recur-
sos se requieren de ambas organizaciones.

5. Identificar el grado de supervisión e interacción de la organización contratante
con el subcontratista. Esto debe incluir el nombre del contacto del vendedor y
la identificación de las responsabilidades y autoridad del contacto, la defini-
ción de los puntos de revisión de calidad conforme avance el desarrollo, y las
responsabilidades del subcontratista en relación con la comunicación entre
las organizaciones.

i l i r e c - Toda la información generada durante estos pasos deberá organizarse en una
deben solicitud de presupuesto que se entrega las empresas candidatas.6

ido se
varios Se lecc ión e n t r e lo s s u b c o n t r a t i s t a s c a n d i d a t o s . En los últimos años han sur-
tas? gido miles de compañías de "diseño Web" dedicadas a ayudar a las empresas que

desean establecer una presencia Web o aventurarse en el comercio electrónico.
Muchas se han vuelto adictas al proceso de IWeb, pero muchas otras son poco más
que hackers (intrusos informáticos). Con la finalidad de elegir desarrolladores Web
candidatos, el contratante debe realizar algunas diligencias obligadas: 1) entrevistar
a los clientes antiguos para determinar el profesionalismo del vendedor Web, así
como su habilidad para cumplir con compromisos de plazos y costos, y su destreza
para comunicarse efectivamente; 2) determinar el nombre del ingeniero(s) Web jefe
de la empresa subcontratista para buscar proyectos anteriores exitosos (y, después,
asegurarse de que esta persona tenga la obligación contractual de estar involucrada
en su proyecto); y 3) examinar cuidadosamente ejemplos del trabajo del subcontra-
tista que sean similares en apariencia y sentido (y área de negocios) a la WebApp que
será contratada. Incluso antes de que se ofrezca una solicitud de presupuesto, una
entrevista personal puede ofrecer un discernimiento sustancial de la "conexión"
entre el contratante y el subcontratista.

"Si pagas cacahuates, obtienes monos."
George Peppard en el papel del coronel John "Hannibol" Smith en The A-Team

(serie televisiva de tos ochenta)

Valoración d e la va l idez d e las co t i z ac iones y la conf íabi l idad d e l a s es t i -
m a c i o n e s . Puesto que existen relativamente pocos datos históricos y que el ámbi-
to de las WebApps es fluido en forma notoria, la estimación es inherentemente ries-

6 Si el t rabajo de desarrollo de la WebApp lo dirigirá un grupo interno, ¡no cambia nada! El proyecto
se inicia de la misma manera .

TM

PDF Editor

532 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

\ CLAVE
En lo gestión del
ámbito se congelo el
trabajo que voyo o
realizarse en un
incremento. Los
cambios se demoran
hasta el siguiente
memento d e la

gosa. Por esta razón, algunos proveedores incorporarán márgenes de seguridad sus-
tanciales en cotizaciones para un proyecto. Esto es comprensible y apropiado. La
pregunta no es si se ha obtenido la mejor solución por la inversión. Más bien, las pre
guntas deben ser:

• ¿La cotización de la WebApp ofrece un rendimiento sobre la inversión, direct :>
o indirecto, que justifique el proyecto?

• ¿La empresa emisora de la cotización tiene el profesionalismo y la expe-
riencia que se requieren?

Si las respuestas a estas preguntas son afirmativas la cotización es justa.

C o m p r e n s i ó n del g r a d o d e ges t ión de l p r o y e c t o q u e p u e d e e s p e r a r o real?
zar . La formalidad asociada con las labores de gestión del proyecto (que realizan d
proveedor y la organización contratante) es directamente proporcional al t a m a r :
costo y complejidad de la WebApp. Respecto a proyectos complejos y grandes
necesario elaborar un programa del proyecto que defina las tareas del trabajo,
puntos de comprobación, el aseguramiento de la calidad del software, los produ
de trabajo de ingeniería, los puntos de revisión del cliente y los hitos importantes,
proveedor y el contratante tendrán que valorar el riesgo conjuntamente y elat
planes para mitigar, monitorear y manejar los riesgos considerados important
Los mecanismos para asegurar la calidad y el control de cambios se deberán def
explícitamente por escrito. Se deberán establecer métodos para la comunica"
efectiva entre el contratante y el proveedor.

Evaluac ión del p r o g r a m a de l p royec to . Dado que los programas de desan-
de WebApps abarcan un periodo relativamente corto (por lo general menos de
o dos meses para que se entregue el incremento), el programa para el desarr
debe tener una dosificación muy precisa. Es decir: las tareas de trabajo y los hi
menores se deben programar en un cronograma diario. Esta dosificación pre '
permite, tanto a la organización contratante como al subcontratista, reconocer
hoja suelta de la agenda antes de que amenace la fecha de finalización.

Ges t ión del á m b i t o . Como es enormemente probable que el ámbito cambiará c
forme avance el proyecto de la WebApp, el modelo de proceso IWeb es adaptable
incremental. Esto permite que el equipo de desarrollo del subcontratista "congele"
ámbito para un incremento, de modo que se pueda crear una liberación operativa
la WebApp. El siguiente incremento puede abordar cambios en el ámbito que
sugerido una revisión del incremento precedente, pero una vez que comience
segundo incremento el ámbito nuevamente se "congela" de manera temporal,
enfoque permite que el equipo de la WebApp trabaje sin tener que acomodar
corriente continua de cambios, pero al mismo tiempo reconoce la evolución co
nua característica de la mayoría de las WebApps.

Los lineamientos sugeridos líneas atrás no intentan ser un recetario a prueba
tontos para la producción a tiempo de WebApps de bajo costo. Sin embargo, a

TM

PDF Editor

CAPÍTULO 17 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 5 3 3

rán tanto a la organización contratante como al subcontratista a iniciar el trabajo de
manera flexible con un mínimo de malas interpretaciones.

Preliminares para la subcontratación

0 escenario: la oficina de Doug Miller.

i Doug Miller (gerente del equipo de
del software HogarSeguro) y Sharon Woods,

e-CommerceSystems, el proveedor
pa ra el sitio Web de comercio electrónico

y gerente del equipo de ingeniería Web
el trabajo.

rsación:
Sharon, qué bueno que por fin nos encontramos.

algo de trabajo que realizar en el
mes, más o menos.

(s o n r í e) : Tenemos, pero parece que ustedes se
debidamente. Vinod ya nos ha d a d o un

de especificaciones pa ra el sitio y también ho
la mayor parte d e los objetos de contenido

y d e la funcionalidad del sitio.

Bien. ¿Qué más necesitan?

La funcionalidad de comercio electrónica es
lo que me preocupa es la fachada el t rabajo

requiere pa ra que los usuarios personalicen el
antes de la compra.

Vinod te dio el procedimiento básico, ¿no es así?

Sí, lo hizo; pe ro quiero validarlo con algunos
Bales. También necesitamos contactar a sus

d e contenido pa ra obtener descripciones
pa ra c a d a sensor, dibujo, lista de precios,

interfase/interconexión, ese tipo de cosas.

¿Vinod tiene tiempo pa ra hacerles un sloryboard
proceso de personalización?

S h a r o n : Está t rabajando en él mientras platicamos. Dijo
que tenía que poner un seguro en el lado del producto.
Sabe que es crucial,.. dijo que me lo enviaría por correo
electrónico mañana en la mañana .

D o u g : Muy bien... mira, me gustaría estar en el
trayecto de este proyecto. Podemos establecer algunas
reglas básicas pa ra supervisar desde nuestra parte. N o
quiero entrometerme en tu camino, pero.. .

S h a r o n : N o hay problema, nos gusta tener
involucrados a nuestros clientes.

D o u g : Yo t rabajaré como contacto para este proyecto.
Toda comunicación vendrá a través mío o de alguien
como Vinod, a quien yo cite. Puesto que estamos en un
calendario apretado, me gustaría establecer una agenda
que tenga una dosificación diaria y hablar contigo o
enviarte correos electrónicos todos los días acerca d e los
logros, los problemas, etcétera. Sé que es mucho, pero
creo que eso es lo adecuado.

S h a r o n : Está bien.

Doug (toma algunas hojas de papel de su
escritorio y las entrega a Sharon): Escribí una
agenda aproximada con fechas límite... ¿qué opinas?

Sharon (luego de estudiar ta agenda):
Mmmmm, no estoy segura d e que esto funcionará pa ra
nosotros. Déjame t rabajar una alternativa y hoy en la
tarde te la envío por correo electrónico.

D o u g : Claro.

17.4.2 Planeación de WebApp: ingeniería Web en casa
Conforme las WebApps se vuelven más extensas y estratégicas para los negocios,
muchas compañías han optado por controlar el desarrollo en casa. No sorprende que
la IWeb en casa se gestione de manera un poco diferente a un esfuerzo de subcon-
tratación.

"¿Qué haces cuando necesitas tener listo un sitio Web paro ayet?"
James lewin

TM

PDF Editor

534 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

^ Ó N S I J O ^

Es importanle
reconoce/que los
pasos analizados en
esto sección se
pueden realizar rápi-
damente. En ningún
coso la planeación
IWeb pora proyectos
de este tamaño tomo
más del 5 por ciento
del esfuerzo del
proyecto global.

La gestión de proyectos IWeb pequeños y de tamaño moderado (es decir: me
de 3-5 meses de duración) requiere un enfoque ágil que quite el énfasis en la ges
del proyecto pero no elimine la necesidad de planear. Todavía se aplican los pri
píos básicos de gestión de proyectos (capítulo 21), pero el enfoque global es
parco y menos formal. Sin embargo, conforme crece el tamaño del proy
WebApp, la gestión del proyecto de ingeniería Web se vuelve más y más como
gestión de proyectos de ingeniería del software (Parte 4 de este libro). Los
siguientes se recomiendan para proyectos IWeb pequeños y de tamaño moderado

E n t e n d e r el á m b i t o , las d i m e n s i o n e s d e c a m b i o y las r e s t r i c c i o n e s del
y e c t o . Ningún proyecto, sin importar cuán apretada sea la restricción del tie.
puede comenzar mientras el equipo del proyecto no entienda qué debe construir
recopilación de requisitos y la comunicación con el cliente son precursores esenci»)
les para la planeación efectiva de la WebApp.

Def in i r u n a e s t r a t e g i a d e p r o y e c t o i n c r e m e n t a l . Ya se ha señalado que '
WebApps evolucionan con el tiempo. Si la evolución es descontrolada y caótica
probabilidad de un resultado exitoso es pequeña. Sin embargo, si el equipo est
ce una estrategia de proyecto que defina incrementos (liberaciones) de WebApp
proporcionen contenido útil y funcionalidad a los usuarios finales, el esfuerzo
ingeniería puede enfocarse con mayor facilidad.

Real izar aná l i s i s d e r i e sgo . En el capítulo 25 se presenta una exposición
liada del análisis de riesgo para proyectos tradicionales de ingeniería del software
Todas las labores de gestión de riesgo se realizan para proyectos IWeb, pero su ení
que se abrevia.

Los riesgos que entrañan el programa y la tecnología dominan la preocupaa»
de la mayoría de los equipos de ingeniería Web. Entre las muchas preguntas reí:
nadas con el riesgo que el equipo debe formular y responder están: ¿Los incremer"
WebApp planeados pueden entregarse en los plazos definidos? ¿Estos incremer:
proporcionarán valor subsecuente para los usuarios finales mientras se realiza
ingeniería de incrementos adicionales? ¿Cómo impactan las fechas de entrega
solicitudes de cambios? ¿El equipo comprende los métodos, tecnologías y
mientas de ingeniería Web requeridos? ¿La tecnología disponible es adecuada para
trabajo? ¿Los cambios probables requieren la introducción de nueva tecnología?

Desa r ro l l a r u n a e s t i m a c i ó n r á p i d a . El eje de la estimación para la mayoría
los proyectos de ingeniería Web lo representan los conflictos macroscópicos, OT
que los microscópicos. El equipo IWeb valora si los incrementos WebApp plan
pueden desarrollarse con los recursos disponibles de acuerdo con las restriccior
del programa definido. Esto se logra considerando el contenido y la función de i

7 Aquellos lectores que no estén familiarizados con la terminología y las prácticas básicas de la
tión de riesgos deberán consultar en este momento el capitulo 25.

TM

PDF Editor

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 5 3 5

incremento como un todo. Normalmente no se realizan rompimientos "microscópi-
cos", funcionales o de trabajo, del incremento que sean seguidos por el cálculo de
estimaciones puntuales de múltiples datos (véase el capítulo 23).

Elegir u n c o n j u n t o d e t a r e a s (descr ipc ión de l p r o c e s o) . Empleando un marco
de trabajo del proceso (capitulo 16) se elige un conjunto de tareas de ingeniería Web
que sean adecuadas para las características del problema, el producto, el proyecto y
la gente en el equipo de ingeniería Web. Reconózcase la posibilidad de adaptar el
conjunto de tareas para que encaje en el desarrollo de cada incremento.

Es t ab l ece r un p r o g r a m a . El programa de un proyecto IWeb tiene una dosifica-
ción relativamente precisa respecto de las tareas que se realizarán en el corto plazo,
y luego una mucho más flexible durante periodos posteriores (cuando vayan a entre-
garse los incrementos adicionales). Esto es, las tareas de ingeniería Web se distribu-
yen a lo largo de la línea de tiempo del proyecto para el incremento que se desarro-
llará. La distribución de tareas para subsecuentes incrementos WebApp se demora
hasta la entrega del incremento programado.

Def in i r m e c a n i s m o s d e r a s t r e o del p royec to . En un ambiente de desarrollo
ágil, la entrega de un incremento operativo de software con frecuencia es la medida
primaria del progreso. Pero mucho antes de que el software liberable esté disponi-
ble, el ingeniero Web enfrentará inevitablemente la pregunta: ¿dónde estamos? En el
trabajo convencional de ingeniería del software el progreso se mide determinando
qué objetivos se han logrado (por ejemplo, la revisión exitosa de un producto de tra-
bajo). Respecto a proyectos de ingeniería Web pequeños y de tamaño moderado, los
objetivos pueden estar menos definidos, y las actividades formales de aseguramien-
to de la calidad pueden perder fuerza. En consecuencia, es posible derivar una res-
puesta si se entrevista al equipo de ingeniería Web para determinar qué actividades
del marco de trabajo se han completado. No obstante, este enfoque puede ser poco
fiable. Otro enfoque es determinar cuántos casos de uso se han implementado y
cuántos (para un incremento dado) permanecen sin implementarse. Esto proporcio-
na una indicación aproximada del grado relativo en que se ha completado el incre-
mento del proyecto.

"El progreso se logro corrigiendo los errores resultantes de lograr el progreso".
Claude Gibb

Es tab lece r un e n f o q u e d e ges t ión del c a m b i o . La gestión del cambio se facili-
ta mediante la estrategia de desarrollo incremental que se recomendó para las
WebApps. Puesto que el tiempo de desarrollo para un incremento es corto, con fre-
cuencia es posible demorar la introducción de un cambio hasta el siguiente incre-
mento, con la consiguiente reducción de los efectos de demora asociados con los
cambios que se deben implementar "al vuelo". En el capítulo 27 se presenta la ges-
tión de la configuración y el contenido para las WebApps.

TM

PDF Editor

536 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

HERRAMIENTAS DE SOFTWARE

•

Gestión de proyectos IWeb
Objet ivo : Auxiliar al equipo de ingeniería
Web en la planeación, gestión, control y rastreo

de proyectos de ingeniería Web.

M e c á n i c a : Las herramientas de gestión de proyectos le
permiten a un equipo IWeb establecer un conjunto de
tareas de trabajo, asignar esfuerzo y especificar
responsabilidad a cada tarea, establecer dependencia de
tareas, definir un programa y rastrear y controlar las
actividades del proyecto. Muchas herramientas en esta
categoría están basadas en Web.

Herramientas representativas8

Business Engine, desarrollado por Business Engine
(www.businessengine.com), es una suite de
herramientas basadas en Web que ofrecen facilidades
de gestión para proyectos completos de IWeb y
proyectos de software convencionales.

Ileamwork, desarrollado por iTeamwork.com
(www.iteamwork.com), "es una aplicación de equipo de

gestión de proyecto gratuita, en línea y basada en
Web, que puede usar con su navegador web".

OurProject, desarrollado por Our Project
(www.ourproject.com), es una suite de herramientas de
gestión de proyecto que son aplicables a la IWeb y a
los proyectos de software convencionales.

Proj-Nel, desarrollado por Ratíonal Concepts, Inc.
(www.rationalconcepts.com), "implementa una oficina
de proyecto virtual (VPO, virtual project office) para
colaboración y comunicación".

StartWright (www.startwright.com/projectl .htm) ha
desarrollado uno de los recursos más completos de la
Web para herramientas e información, tanto para
IWeb como para gestión de proyectos de software
convencional.

Es necesario observar que muchas de las herramientas de
gestión de proyecto convencional (Parte 4 de este libro)
también se pueden aprovechar de manera efectiva en los
proyectos IWeb.

^CONSEJO^-

f n general, elnúmeio
de medidas IWeb que
se debe recopilar, y su
complejidad global,
debe ser directamente
proporcional al
tamaño de la WebApp
que se construirá.

Los ingenieros Web desarrollan s is temas complejos y, al igual que otros tecnología
que realizan esta tarea, deben usar mediciones para mejorar el proceso de ingenie-
ría Web y el producto. En el capítulo 15 se analizaron los usos estratégicos y tácticos
para la medición de software en un contexto de ingeniería del software. Dichos use ;
también se aplican en la ingeniería Web.

En resumen, la medición de sof tware ofrece u n a base para mejorar el proceso de
software, lo que aumenta la precisión de las est imaciones del proyecto, incrementa
el rastreo del proyecto y mejora la calidad del software. La medición de ingeniera
Web, si se caracteriza de manera adecuada, podría lograr todos es tos beneficios y
también mejorar la facilidad de uso, el desempeño de la WebApp y la satisfacción de
usuario.

En el contexto de la ingeniería Web, las mediciones tienen tres metas principales:
1) proporcionar un indicador de la calidad de la WebApp desde el punto de vista téc-
nico, 2) proporcionar una base para la estimación del esfuerzo, y 3) proporcionar ur.¿
indicación del éxito de la WebApp desde el punto de vista empresarial.

8 Las herramientas expuestas sólo representan una muestra de esta categoría. En casi todos los ca-
sos los nombres de las mismas son marcas registradas de sus respectivos desarrolladores.

TM

PDF Editor

http://www.businessengine.com
http://www.iteamwork.com
http://www.ourproject.com
http://www.rationalconcepts.com
http://www.startwright.com/projectl

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 5 3 7

En esta sección se resume un conjunto de mediciones de esfuerzo común y com-
plejidad9 para las WebApps. Este conjunto puede dest inarse al desarrollo de una
base de datos histórica para la estimación del esfuerzo. Además, la medición de la
complejidad puede conducir a final de cuentas a una incapacidad para valorar cuan-
titativamente uno o m á s atributos técnicos de las WebApps discutidos en el capítu-
lo 16.

17.5.1 Mediciones para esfuerzo de ingeniería Web
Los ingenieros Web dedican es fuerzo h u m a n o al realizar una diversidad de tareas de
trabajo conforme evoluciona una WebApp. Mendes y sus colegas |MEN0l] sugieren
a lgunas posibles medidas de esfuerzo para WebApps. Algunas de (o todas) ellas
podría registrarlas un equipo de ingeniería Web y luego aprovecharse en una base
de datos histórica con fines de estimación (capítulo 23).

Aplicación de las tareas de autoría y diseño

Medida sugerida
esfuerzo de estructuración

esfuerzo de intervinculación

planeación de interfaz

construcción de interfaz

esfuerzo de prueba de vínculos

esfuerzo de prueba de los
medios audiovisuales

esfuerzo total

Descripción
tiempo para estructurar la WebApp y / o la arquitectura derivada

tiempo para intervincular páginas y así construir la estructura de las
WebApp

tiempo en que se planea la interfaz de la WebApp

tiempo en que se implemento la interfaz de la WebApp

tiempo en que se prueban todos los vínculos en la WebApp

tiempo en que se prueban todos los medios audiovisuales en la
WebApp

esfuerzo de estructuración + esfuerzo de intervinculación + planeación
de interfase + construcción de interfase + esfuerzo de prueba de víncu-
los + esfuerzo de prueba de los medios audiovisuales

Esfuerzo de autoría

Medida sugerida
esfuerzo de texto

esfuerzo de vinculación
de página

esfuerzo de estructuración
de página

esfuerzo de página total

Descripción
tiempo en que se crea o reutilíza texto en una página

tiempo en que se crean vínculos en la página

tiempo en que se estructura la página

esfuerzo de texto + esfuerzo de vinculación de página + esfuerzo de
estructuración de página

9 Es importante notar que las mediciones IWeb todavía están en su infancia.

TM

PDF Editor

538 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

Autoría de medios audiovisuales

R e f e r e n c i a W e b

Uno excelente referencia
acerco de muchas
materias r e t o ñ a d a s

wnwwjntsriiet.com.

Medida sugerida
esfuerzo d e medio audiovisual

esfuerzo d e digitalización d e
medios audiovisuales

esfuerzo total d e medios
audiovisuales

Descripción
tiempo en que se crean o reutílizan archivos d e medios audiovisuote i

tiempo en que se digitalizan medios audiovisuales

esfuerzo d e medio audiovisual + esfuerzo d e digitalización d e
medios audiovisuales

Autoría de programas

Medida sugerida Descripción
esfuerzo de programación tiempo en que se crean HTML, Java o implementaciones d e leng.'De

relacionado

esfuerzo de reutilización tiempo para reutilizar/modificar la programación existente

17.5.2 Medición del valor de negocios
Es interesante advertir que la gente de negocios ha llegado considerablemente a n t e s
que la ingeniería Web al desarrollo, la recopilación y el empleo de la medición p¿-T|
las WebApps (por ejemplo, [STE02], [NOBOl]). Al entender la demografía de : d
usuarios finales y sus pat rones de uso, una compañía u organización puede des«-l
rrollar la entrada inmediata para más contenido WebApp significativo, ventas •
esfuerzos de mercadotecnia más efectivos, y mejorar la rentabilidad de los negoc: s i

Los mecanismos requeridos con que se recopilan datos valiosos para la empresa!
usualmente los implementa el equipo de ingenien'a Web, pero evaluarlos y las a c a : - l
nes resultantes las realizan ot ros participantes. Por ejemplo, supóngase la posi'r J:-l
dad de determinar el número de vistas de la página para cada visitante único. C e a
base en la medición recopilada, los visitantes que llegan desde el motor de b u s q u e !
da X promedian nueve vistas de página, mientras que los visitantes desde el portal™
sólo dos. Estos promedios los puede emplear el depar tamento de mercadotec- J
para ubicar un anunc io publicitario (banner) donde promueva presupuestos (la p u r f l
cidad en el motor de búsqueda X proporciona mayor exposición, con base en •
medición recolectada, que la publicidad en el portal Y) .

HERRAMIENTAS DE SOFTWARE

Mediciones Web
O b j e t i v o : Valorar la forma en la que se utiliza
una WebApp, las categorías de usuarios y la

facilidad de uso de la WebApp.

M e c á n i c a : La gran mayoría d e las herramientas de

medición Web captura la información de uso una vez q i e
la WebApp está en línea. Dichas herramientas
proporcionan una amplia variedad de datos con los c u d » |
se valora qué elementos de la WebApp se utilizan más,
cómo se utilizan y quién los utiliza.

\

TM

PDF Editor

CAPÍTULO 17 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 5 3 9

lientas representativas10

s, desarrollada por clicktracks.com
/.dicktracks.com), es una herramienta de análisis

; archivos de acceso (log) que muestra el
niento del visitante al sitio W e b directamente

• Dogmas de éste.

e, desarrollada por Coremetrics
w.Coremetrics.com), es representativa de muchas
amientas que recopilan datos con los cuales se

valora el éxito de las WebApps de comercio
electrónico.

Web Mefrics Testbed, desarrollada por NIST
(zing.ncsl.nist.gov/WebTools/), es una suite de
herramientas basadas en Web que valoran la facilidad
de uso d e una WebApp.

WebTrends, desarrollada por netlQ (www.NetlQ.com),
recopila un amplio rango de datos de uso para
W e b A p p s d e t o d o s l o s t i p o s .

Una revisión completa de la recopilación y el empleo de las mediciones con valor
en los negocios (que incluya el debate actual acerca de la privacidad personal) está
más allá del ámbi to de es te libro. El lector interesado deberá examinar [INA02],
[EIS02], [PAT02] O [RIG01],

En ocasiones, la mejor forma de aprender cómo hacer algo correctamente ¡es exa-
minar cómo no hacerlo! Durante la década pasada, muchas WebApps fracasaron
porque 1) un descuido del proyecto y el cambio en los principios de gestión (de cual-
quier manera informales) resultó en un equipo de ingeniería Web que "rebotó en las
paredes"; 2) un enfoque ad hoc para el desarrollo de la WebApp falló y no produjo un
sistema operable; 3) un enfoque desdeñoso hacia la recopilación y análisis de requi-
sitos fracasó en producir un sistema que satisfaciera las necesidades del usuario; 4)
un enfoque incompetente para el diseño f racasó al intentar producir un desarrollo de
la WebApp que fuese utilizable, funcional, extensible (sustentable) y verificable; 5) un
enfoque equivocado para las pruebas fracasó para producir un sistema que funcio-
nase antes de su introducción.

Con es tas s i tuaciones en mente, tal vez valga la pena considerar un conjunto de
las "peores prácticas" en la ingeniería Web, adoptadas de un artículo de Tom Bragg
[BRAOO]. Si su proyecto electrónico muestra cualquiera de ellas, e s necesaria una
acción correctiva inmediata.

Peor práctica # 1: Se tiene una gran idea, así que se puede comenzar a construir
la WebApp ahora. No e s necesario preocuparse en considerar si la WebApp está jus-
tificada por el negocio, si los usuarios realmente querrán usarla, si se comprenden
los requisitos del negocio. El tiempo es corto, tiene que comenzarse .

Realidad: Tómense unas cuantas horas o dias y elabórese un caso de negocios
para la WebApp. Asegúrese de que la idea la apoyan quienes la financiarán y quie-
nes la usarán.

10 Las herramientas expuestas el autor no las respalda, sólo representan una muestra de las herra-
mientas incluidas en esta categoría. En casi todos los casos, los nombres de las herramientas son

marcas registradas de sus respectivos desarrolladores

TM

PDF Editor

http://www.NetlQ.com

540 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

Peor práctica #2: Las cosas cambiarán constantemente, así que no tiene caso tr¿-
tar de comprender los requisitos de la WebApp. Nunca se escriba algo (pérdida de tien
po). El apoyo debe basarse exclusivamente en la palabra oral.

Realidad: Es cierto que los requisitos de la WebApp evolucionan conforme cc
tinúan las actividades de ingeniería Web. También es más rápido y simple obter
información de manera verbal. Sin embargo, un enfoque desdeñoso respecto de
recopilación y el análisis de requisitos es un catalizador para más cambio (innec
sario) todavía.

Peor práctica #3: Los desarrolladores cuya experiencia dominante se relaciona i
el desarrollo de software tradicional pueden desarrollar WebApps inmediatamente. No <
requiere un nuevo entrenamiento. Después de todo, el software es software, ¿o no?

Realidad: Las WebApps son diferentes. Se debe aplicar de manera experta
amplio abanico de métodos, tecnologías y herramientas. El entrenamiento y la ex
r ienda con ellos es esencial."

Peor práctica #4: Burocratizarse. Insista en modelos de proceso pesados, he
rios, muchas e innecesarias reuniones "de progreso" y en líderes de proyecto
nunca han gestionado un proyecto WebApp.

Realidad: Aliente un proceso ágil que resalte la competencia y la creatividad
un equipo de ingeniería Web experimentado. Luego salga de su camino y permit
trabajar. Si se deben recopilar datos relacionados con el proyecto (por razones le
les o el cálculo de la medición), el ingreso/recopilación de datos debe ser tan no i
tructivo y simple como sea posible.

Peor práctica #5: ¿Pruebas? ¿Por qué molestarse? Se le dará a unos cuantos i
rios finales y se dejará que ellos digan qué funciona y qué no.

Realidad: Con el tiempo, los usuarios finales sí realizan "pruebas" exhaustiv
pero están tan enojados por la falta de confiabilidad y el pobre desempeño que
dejan mucho antes de que los problemas sean corregidos (nunca regresan).

En los capítulos que siguen se considerarán los métodos de ingeniería Web
ayudarán a evitar estos errores.

La formulación, una actividad de comunicación con el cliente, define el problema
resolverá una WebApp. Se identifican las necesidades del negocio, la metas y objett
del proyecto, las categorías de usuario final, las funciones y características princip
y el grado de interoperabilidad con otras aplicaciones. Mientras más información <
liada y técnica se adquiera, la formulación se convierte en análisis de requisitos.

11 Muchos grandes proyectos IWeb requieren integración con aplicaciones y bases de datos cc
cionales. En tales casos, los individuos sólo con experiencia convencional pueden y deben ser c

volucrados.

TM

PDF Editor

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEAOÓN PARA INGENIERÍA WEB 5 4 1

El equipo lWeb lo integra un grupo de miembros técnicos y no técnicos organiza-
dos en una forma que les brinda considerable autonomía y flexibilidad. Durante la
ingeniería Web se requiere gestión del proyecto, pero las tareas correspondientes
están abreviadas y son considerablemente menos formales que las aplicadas en los
proyectos convencionales de ingeniería del software. Muchos proyectos WebApp se
subcontratan, pero existe una tendencia creciente hacia el desarrollo de WebApps en
casa. La gestión del proyecto para cada enfoque difiere tanto en estrategia como en
tácticas.

Las mediciones de la ingeniería Web están en desarrollo, pero tienen el potencial
para ofrecer una indicación de la calidad de la WebApp, proporcionar una base para
la estimación del esfuerzo y permitir vislumbrar el éxito de la WebApp desde el punto
de vista de los negocios.

[BRAOO] Bragg, T., "Worst Practices for e-Business Projects: We Have Met the Enemy and He Is
Us!", Cutter IT Journal, vol. 13, núm. 4, abril de 2000, pp. 35-39.

[CON02] Constantine, L. y L. Lockwood, "User-Centered Engineering for Web Applications", en
IEEE Software, vol. 19, núm. 2, marzo-abril de 2002, pp. 42-50.

[EIS02] Eisenberg, B„ "How to Interpret Web Metrics", en ClickZToday, marzo de 2002, dis-
ponible en http://www.clickz.com/sales/traffic/article.php/992351.

[FUC02a] Fucce l l a , J . Pizzolato y J. Franks, "Finding Out What Users Want from your Web
Site", IBM developerWorks, 2002, http://www-l06.ibm.com/developerworks/library-
/moderator-guide/requirements.html.

[FUC02b] Fuccella, J. y J. Pizzolato, "Giving People What They Want: How to Involve Users in
Site Design", IBM developerWorks, 2002, http://www-106.ibm.com/developerworks/
library/design-by-feedback/expectations. htm 1.

[GNA99] Gnado, C. y F. Larcher, "A User-Centered Methodology for Complex and
Customizable Web Applications Engineering", en Proc. First ICSE Workshop in Web
Engineering, ACM, Los Ángeles, mayo de 1999.

[HAN991 Hansen, S„ Y. Deshpande y S. Murugesan, "A Skills Hierarchy for Web
Information System Development", en Proc. First ICSE Workshop on Web Engineering,
ACM, Los Ángeles, mayo de 1999.

[INA02] Inan, H.yM. Kean, Measuring the Success o/Your Web Site, Longman Publishing,
2002.

[KIDOO] Kidder, T., The Soul o/a New Machine, Back Bay Books (edición reimpresa), 2000.
[KUL001 Kulik, P. y R. Samuelsen, "e-Project Management for a New e-Reality", Project

Management Institute, diciembre de 2000, http://www.seeprojects.com/e-Projects/e-
projects.html.

[LOW98] Lowe, D. y W. Hall (eds.), Hypertextand the Web-An Engineering Approach, Wiley,
1998.

[MEN01] Mendes, E., N. Mosley y S. Counsell, "Estimating Design and Authoring Effort",
en IEEE Multimedia, enero-marzo de 2001, pp. 50-57.

[NOBOl] Nobles, R. y K. Grady, Web Site Analysis and Reporting, Premier Press, 2001.
[PAT02] Patton, S., "Web Metrics That Matter", en CIO, 15 de noviembre de 2002, disponi-

ble en http://www.computerworld.com/developmenttopics/websitemgmt/story/
0,10801,76002.00.html.

[PIC01] Pickering, C., "Building an Effective E-Project Team", en E-Project Management
Advisoiy Service, Cutter Consortium, vol. 2, núm. I, 2001, http://www.cutter.com/
consortium.

[POW981 Powell, T A., Web Site Engineering. Prentice Hall, 1998.

L

TM

PDF Editor

http://www.clickz.com/sales/traffic/article.php/992351
http://www-l06.ibm.com/developerworks/library-
http://www-106.ibm.com/developerworks/
http://www.seeprojects.com/e-Projects/e-
http://www.computerworld.com/developmenttopics/websitemgmt/story/
http://www.cutter.com/

542 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

[RIG01] Riggins, F. y S. Mitra, "A Framework for Developing E-Business Metrics Through functic-
nality Interaction", ene ro de 2001, s e puede descargar d e ht tp: / /digi ta lenterprise
o r g / m e t r i c s / m e t r i c s . h t m l .

[STE02] Sterne,)., Web Metrics: Proven Methods for Measuring Web Site Success, Wilev
2002.

1TIL99] Tilley, S. y S. Huang , "On the E m e r g e n c e of the R e n a i s s a n c e S o f t w a r e Engineer
Proc. IstICSE Workshop on Web Engineering, ACM, Los Ángeles, mayo de 1999.

17 .1 . ¿En qué difiere la formulación de la recopilación de requisitos? ¿En qué difiere la forrr u - j
lación del análisis de requisitos y del modelado de análisis?

1 7 . 2 . En la sección 17.1.1 se encuentran tres preguntas fundamentales acerca de la f o r m a ¿ • I
ción. ¿Existen a lgunas otras preguntas que se considere posibles de plantear en este p u n t o ' ¿i]
es así, ¿cuáles son y por qué deberían hacerse?

17 .3 . En el contexto de la recopilación de requisitos, ¿qué es una "categoría de usuario"?
ejemplos de tres categorías de usuario para un vendedor de libros en línea.

17 .4 . Considérese el sitio de comercio electrónico de HogarSeguro tratado en es te capítu.:
¿Qué mecanismo de comunicación con el usuario podría usarse para obtener requisitos del S i -
tema y por qué?

17 .5 . Con palabras propias, exponga cómo se "analiza" la información recopilada durante
comunicación con el cliente y cuál es el resultado de esta actividad.

17 .6 . ¿Qué beneficios se pueden derivar de requerir el desarrollo de casos de uso como para^
de la actividad de recopilación de requisitos?

17.7. Revísese la tabla presentada en la figura 17.1. Agréguense tres hileras más que ulterio
distinguirán los proyectos tradicionales de los electrónicos.

17 .8 . Con palabras propias, describa el papel del editor Web.

17 .9 . Revísense las características de los equipos de desarrollo ágil analizados en el capítulo >
¿Se advierte que una organización en equipo ágil e s apropiada para la IWeb? ¿El lector re
algún cambio a la organización para el desarrollo de la WebApp?

1 7 . 1 0 . Descríbanse cinco riesgos asociados con la subcontratación del desarrollo de WebApps

1 7 . 1 1 . Descríbanse cinco riesgos asociados con el desarrollo en casa de las WebApps.

1 7 . 1 2 . Considérense las mediciones para el esfuerzo de ingeniería Web tratadas en la sec
17.5.1. Inténtese desarrollar cinco o más mediciones adicionales para una o más categorías

17.13. La facilidad de navegación a través de un sitio Web es un indicador importante de la <
de la WebApp. Desarróllense dos o tres mediciones con las cuales pudiera indicarse la facilidad
navegación.

1 7 . 1 4 . Aprovechando una de las referencias sugeridas en la sección 17.5.2, comente cómo
pueden aprovechar las mediciones con valor en los negocios para apoyar la toma de decisi
pragmática en éstos.

Los métodos para la formulación de WebApps y la recopilación de requisitos se pueden a
de análisis de métodos similares para el sof tware de aplicación convencional. Las otras
ras recomendadas en los capítulos 7 y 8 contienen mucha información útil para el ingen
Web.

TM

PDF Editor

http://digitalenterprise

C A P Í T U L O 1 7 FORMULACIÓN Y PLANEACIÓN PARA INGENIERÍA WEB 543

Flor (Web Business Engineering, Addison-Wesley, 2000) aborda el análisis de negocios y las
p reocupac iones re lacionadas que permiten al ingeniero Web comprender mejor las neces idades
del cliente. La facilidad de u so de la WebApp e s un concepto q u e subyace a mucha de la infor-
mación definida c o m o parte de la formulación y la recopilación de requisitos. Krug y Black
(Don't Make me Think: A Common Sense Approach to Web Usabiiity, Que Publishing, 2000) con-
t iene m u c h a s directrices y e jemplos que pueden ayudar al ingeniero Web a traducir los requisi-
tos del usuar io en una WebApp efectiva.

La gest ión de proyecto para los proyectos lWeb parte de m u c h o s de los mismos principios y
concep tos aplicables en proyectos de sof tware convencional . Sin embargo , agilidad e s un lema.
Wallace (Extreme Programmingfor Web Projects, Addison-Wesley, 2003) descr ibe c ó m o se puede
aprovechar el desarrollo ágil para la lWeb y cont iene análisis útiles de conflictos de gestión de
proyectos. Shelford y Remillard (Real Web Project Management, Addison-Wesley, 2003),
O'Connell (How to Run SuccessfuI Projects in Web Time, Arthec House, 2000), Freidlein (Web
Project Management, Morgan Kaufman, 2000) y Gilbert (90 Days to Launch: Internet Projects on
Time and on Budget, Wiley, 2000) t ra tan una amplia variedad de t e m a s de gestión de proyectos
para lWeb. Whitehead (Leading a Software Development Team, Addison-Wesley, 2001) presenta
m u c h o s l incamientos útiles que pueden adaptar los equipos de ingeniería Web.

Las técnicas para usar medic iones Web en la toma de decis iones empresar ia les se presen-
tan en libros c o m o los de Sterne [STE02], Inan [1NA02], Nobles [NOBOU y Menasce y Almeida
(Capacity Planning for Web Services: Metrics, Models and Methods, Prentice-Hall, 2001). Las "peo-
res prácticas" son consideradas por Ferry y Ferry (77 Sure-Fire Ways to Kill a Software Project,
iUniverse.com, 2000).

En Internet está disponible una amplia variedad de fuentes de información acerca de formu-
lación y planeación para ingeniería Web. Una lista actual izada de referencias en la World Wide
Web, re levante para la formulación y la planeación, se encuent ra en el sitio Web de SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

18 M O D E L A D O DE ANÁLISIS PARA
APLICACIONES W E B

C O N C E P T O S

C L A V E

análisis

de navegación .561

análisis

de relación 5 6 0

árbol de da los . 5 5 2

ARN 5 6 0

casos de uso . . . 5 4 7

jerarquía

de usuario546

de análisis 5 4 5

modelo de

configuración . .559

modelo

de contenido . . .551

modelo

de interacción . . 5 5 4

funcional 5 5 7

relaciones de

contenido 5 5 2

A primera vista, existe una aparente contradicción cuando se considera r i
modelado de análisis dentro del contexto de la ingeniería Web. Despu:5
de todo, se ha notado (capítulo 16) que las WebApps tienen una inme-

diatez y una volatilidad contraria al modelado detallado, ya sea en la etapa c e !
análisis o en la del diseño. Y si se realiza algún tipo de modelado, la filosofía á g a
(un modelo de proceso adecuado para muchos proyectos de ingeniería Web) s o l
giere que el modelado del análisis s e minimice en favor del modelado de disef. ca
limitados. Franklin [FRA02] advierte esta situación y escribe:

Los si t ios Web, po r lo genera l , s o n comple jo s y e n o r m e m e n t e d inámicos , Requieren

f a ses de desar ro l ló cor tas con la finalidad d e tener listo el p r o d u c t o y e jecu ta r lo rápi-

d a m e n t e . Con f recuencia , los desa r ro l l adores van directo hac ia la fase d e codificación

sin c o m p r e n d e r q u é e s t á n t r a t ando d e construir o c ó m o quieren construir lo. La cod:

ficación respec to del serv idor con f recuenc ia s e h a c e ad hoc, las tablas de b a s e s de

d a t o s s e a g r e g a n c o n f o r m e se neces i t an y la a rqu i tec tura evoluciona en u n a fo rma a

v e c e s n o intencional . Pero a lguna ingenier ía de so f tware m o d e l a d a y disciplinada lo

g ra rá q u e el p roceso d e desarrol lo d e s o f t w a r e sea m u c h o m á s s u a v e y a segu ra rá que

el s i s t ema Web sea m á s sus t en tab le e n lo fu turo .

¿Es posible tenerlo en las dos formas? ¿Se puede hacer "alguna ingeniería
software modelada y disciplinada" y todavía así trabajar efectivamente er.
mundo donde reinan la inmediatez y la volatilidad? La respuesta es un califi
do sí.

¿ Q u é e s ? El análisis de una poten-
cial aplicación Web se enfoca en tres
preguntas importantes: 1) ¿qué infor-
mación o contenido se presentará o
manipulará?; 2) ¿qué funciones reali-

zará el usuario final?; y 3) ¿qué comportamientos
exhibirá la WebApp conforme presente contenido
y realice funciones? Las respuestas se representan
como parte de un modelo de análisis que abarca
una diversidad de representaciones UML.

¿Quién lo h a c e ? Los ingenieros Web, los desa-
rrolladores de contenido que no son técnicos y
los clientes participan en la creación del modelo
de análisis.

¿Por q u é e s importante? A lo largo de e r ;
libro se ha resaltado la necesidad de compre-
der el problema antes de comenzar a resolverle
El modelado de análisis es importante no porqt e
permita que un equipo de ingeniería Web desa-
rrolle un modelo concreto de requisitos WebAp:
(las cosas cambian muy frecuentemente corr :
para que esto sea una expectativa realista), sir:
que, más bien, permite que un ingeniero We:
defina aspectos fundamentales del problema
elementos cuyo cambio no es probable (en u-
futuro cercano). El diseño y la construcción se
facilitan cuando se comprenden el contenido, :
función y el comportamiento fundamentales.

5 4 4

TM

PDF Editor

C A P Í T U L O 1 8 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 545

s s o n los p a s o s ? El modelado de análi-
ie enfoca en los aspectos fundamentales del

a: contenido, interacción, función y con-
¡ón. El análisis de contenido identifica las

y colaboraciones de contenido. El análisis
¡a interacción describe los elementos básicos
a interacción del usuario, la navegación y los
pcrtamientos del sistema que ocurren. El
.sis de las funciones define las funciones de

WebApp que realizará el usuario y la secuen-
de procesamiento que ocurre como conse-

cuencia. El análisis de la configuración identifica
el ambiente(s) operativo en ei cual reside la
WebApp.

¿Cuál e s el producto o b t e n i d o ? El modelado
de análisis lo integran un conjunto de diagramas
y textos UML que describen el contenido, la inte-
racción, la función y la configuración.

¿Cómo p u e d o e s tar s e g u r o d e q u e l o h e
h e c h o correctamente? los productos obteni-
dos del modelado de análisis se deben revisar para
corregirlos, completarlos y darles consistencia.

Un equipo de ingeniería Web debe emprender el modelado de análisis cuando se
cumplen la mayoría o todas las condiciones siguientes:

• La WebApp que se construirá es grande o compleja.

• El número de clientes e s grande.

• El número de ingenieros Web y otros colaboradores e s grande.

• Las metas y los objetivos (determinados durante la formulación) para la
WebbApp afectarán la línea de referencia del negocio.

• El éxito de la WebApp tendrá una fuerte conexión con el del negocio.

Si es tas condiciones no están presentes , lo que le resta importancia al modelado de
análisis, aprovechar la información obtenida durante la formulación y la recopilación
de requisitos (capítulo 17) sirve c o m o base para la creación de un modelo de diseño
para la WebApp. En tales circunstancias, tal vez se obtenga un modelado de análi-
sis limitado, pero que terminará incluido en el diseño.

1 8 . 1 R E Q U I S I T O S PARA EL ANÁLISIS DE LAS W E B A P P S

El análisis de requisitos para las WebApps abarca tres grandes tareas: formulación,
recopilación de requisitos,1 y modelado de análisis. Durante la formulación se iden-
tifican la motivación (metas) y los objetivos básicos para la WebApp, y también se de-
finen las categorías de usuarios. Cuando comienza la recopilación de requisitos se
intensifica la comunicación entre el equipo de ingeniería Web y los accionistas (por
ejemplo, clientes, usuarios finales). Los requisitos de contenido y funcionales s e en-
listan y se desarrollan los escenarios de interacción (casos de uso) escritos desde el
punto de vista del usuario final. La intención e s establecer una comprensión básica
de por qué se construirá la WebApp, quién la usará y qué problema) resolverá a sus

usuarios.

1 En el capítulo 17 se abordan con detalle la formulación y la recopilación de requisitos.

TM

PDF Editor

P A R T E T R E S APLICACIÓN DE LA INGENIERÍA WEB

"Los pr incipios d e i n g e n i e r í a a c e r c a d e p l a n e a r a n t e s d e d i s e ñ a r y d i s e ñ a r a n t e s d e cons t ru i r h a n res i s t ido c a d a t r a n s i -
ción t ecno lóg ica p r e v i a ; t a m b i é n s o b r e v i v i r á n a e s t a t r a n s i c i ó n . "

W a t t s H u m p h r e y

^ O N S E J O ^ .

f s bueno idea cons-
truir una jerarquía de
usuario. Ofrece una
visión instantáneo de
la población de usua-
rios y uno morca de
verificación que ayu-
darán o asegurar que
se han abordado las
necesidades de cada
usuario.

18.1.1 La jerarquía de usuario

Las categorías de usuarios finales que interactuarán con la WebApp se identifican
como parte de las tareas de formulación y de recopilación de requisitos. En la may : -]
ría de los casos, las categorías de usuario son relativamente limitadas y no neces.- j
tan una representación UML. Sin embargo, cuando crece el número de categorías ae
usuario, a veces es aconsejable desarrollar una jerarquía de usuarios, como se mues-
tra en la figura 18.1. La figura muestra a los usuarios del sitio de comercio electrór -I
co de HogarSeguroInc.com tratada en los capítulos 16 y 17.

Las categorías de usuario (con frecuencia l lamados actores) que se muestran e i]
la figura 18.1 indican la funcionalidad que ofrecerá la WebApp; además, señalan
necesidad de que se desarrollen casos de uso para cada usuario final (actor) anota-]
do en la jerarquía. En la misma figura, el usuar io d e HogarSeguroInc .com en .al
parte superior de la jerarquía representa la clase (categoría) de usuario más generi l l
y se refina niveles abajo. Un v i s i tante e s un usuario que visita el sitio pero no se re J
gistra. Tales usuarios usualmente buscan información general, comparan compras n
de alguna otra forma están interesados en contenido o funcionalidad "gratuitos" 11J
usuario reg is trado dedica t iempo para ofrecer información y se le considera _ J
contacto (junto con otros datos demográficos que solicitan las ent radas de los f e - I
mularios). Las subcategorías para los usuar ios regis trados incluyen:

J e r a r q u í a d e
usua r ios p a r a
HogarSegu-
rolnc.com.

Usuario de
HogarSegurolnc.com

O

X
Visitante Usuario

registrado
Personal

de servicio
al cliente

Cliente
nuevo

Cliente
existente

TM

PDF Editor

C A P Í T U L O 1 8 MODELADO DE A N Á L I S E PARA A P U C A C I O N E S WEB 547

• Cliente nuevo: usuario registrado que quiere personalizar y luego comprar
componentes de HogarSeguro (y, por tanto, debe interactuar con la WebApp
de funcionalidad de comercio electrónico).

• Cliente existente: un usuario que ya posee componentes de HogarSeguro y
usa la WebApp para 1) comprar componentes adicionales; 2) adquirir infor-
mación de soporte técnico; o 3) contactar con el soporte al cliente.

Los miembros del personal de servicio al c l iente son usuarios especiales que
también pueden interactuar con el contenido y la funcionalidad de HogarSegu-
rolnc.com conforme asisten a los clientes que han establecido contacto con el so-
porte al cliente de HogarSeguro.

18.1.2 Desarrollo de casos de uso
Franklin [FRA01] se refiere a los casos de uso como "haces de funcionalidad". Esta
descripción captura la esencia de esta importante técnica de modelado de análisis.2

Los casos de uso se desarrollan para cada categoría de usuario descrita en la jerar-
quía de usuario. En el contexto de la ingeniería Web, el caso de uso en sí mismo es
relativamente informal: un párrafo narrativo que describe una interacción específica
entre un usuario y la WebApp.3

2 Las técnicas para desarrollar casos de uso se analizaron con detalle en capilulos anteriores de este
libro (véanse los capítulos 7 y 8).

3 Aunque es posible desarrollar descripciones más formales de casos de uso, la necesidad de agilidad
para la lWeb con frecuencia excluye este enfoque

1 _L

F u n c t o n o l i d o d c o m e r c i o e l e c t r ó n i c o

TM

PDF Editor

548 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

La figura 18.2 representa un diagrama UML de caso de uso para la categoría de
usuario c l iente nuevo (figura 18.1). Cada óvalo en el diagrama representa un caso
de uso que describe una interacción específica entre el c l iente n u e v o y la WebApp
Por ejemplo, la primera interacción se describe con el caso de uso pedir acceso (log-
ir) a HogarSeguroInc.com. No se requeriría más de un solo párrafo para describir e~
ta interacción común.

La funcionalidad de las grandes WebApp (y los casos de uso relevantes para ella
se anotan adentro de recuadros con líneas punteadas en la figura 18.2. Tales recua
dros se conocen como "paquetes" en UML y representan funcionalidad específica. Se
advierten dos paquetes: personalización y comercio electrónico.

Como ejemplo, considérese el paquete personalización de casos de uso. Un nue-
vo cliente debe describir el ambiente doméstico en el cual se instalará HogarSegur:
Para lograrlo, c l iente n u e v o inicia los casos de uso describir plano de la casa, selec-
cionar componentes HogarSeguro y guardar configuración. Considérense los sigui
tes casos de uso preliminares escritos desde el punto de vista de un c l iente nuevo

^ O N S E J O ^

Contorne crece el
tamaño de una
WebApp, y el
modelado de análisis
se vuelve más
riguroso, los casos de
uso preliminares
presentados aquí
serán expandidos para
ajustarse de manera
más cercana al
formato sugerido en
la sección 8.5 del
capítulo 8.

Caso de uso: describir plano de la casa

La WebApp formulará a lgunas preguntas genera les acerca del ambien te en el cual se pla-

nea instalar HogarSeguro: n ú m e r o de habi taciones y su t amaño , tipo de habitación, núme-

ro de pisos, n ú m e r o de puer tas exteriores y ventanas . La WebApp permitirá construir un

p lano de la casa aprox imado al con jun ta r fo rmas del ineadas de las habi taciones para ca-

da piso. El usuar io será capaz de n o m b r a r al p l a n o de la casa y guardar lo para una refe-

rencia futura (véase ca so de uso: guardar configuración).

Caso de uso: seleccionar componentes HogarSeguro

Entonces la WebApp recomendará c o m p o n e n t e s de producto (por e jemplo: pane les de

control, sensores , cámaras) y o t ras caracter ís t icas (por ejemplo, funcionalidad basada er.

PC implementada en sof tware) para cada habitación y la en t rada exterior. Si el usuar io so-

licita opciones , la WebApp las proporcionará si existen. El usuar io obtendrá i n f o r m a d o "

descriptiva y de precios para cada c o m p o n e n t e de producto. La WebApp creará y mostra-

rá una factura de mater iales conforme se seleccionen varios componen te s . El u s u a r :

también podrá nombra r la factura de mater ia les y guardarla para referencia futura (véas<r

caso de uso: guardar configuración).

Caso de uso: guardar configuración

La WebApp permitirá guardar los da tos de personal ización de m o d o q u e el usuario pue-=

regresar después . Podrá guardar el p lano de la casa y la factura de mater ia les HogarSeg.

ro q u e eligió para él. Lograr es to requiere q u e el usuario proporcione un identificador ú"

co para el p lano de la casa y la factura de materiales. También proporcionará u - =

con t raseña (password) de configuración especial que debe validarse a n t e s de que p u e c s

tener acceso a la información guardada .

TM

PDF Editor

C A P Í T U L O 1 8 M O D E L A D O DE ANÁLISIS PARA APLICACIONES WEB 549

GARSEGURO

Reflnar casos de uso para WebApps

El e s c e n a r i o : Oficina de Doug Sharon: Tiene sentido.

• Doug Miller (gerente del grupo de inge-
software HogarSeguro), Sharon Woods, geren-

: de ingeniería Web del proveedor
sta para el sitio Web de comercio electrónico

-uro, y Sam Chen, gerente de la organiza-
soporte al cliente de HogarSegurolnc.com.

rsación:
Sharon, me da gusto escuchar que las cosas van

bien. ¿El modelado de análisis está casi

(sonríe) : Estamos progresando. El único con-
> de uso que falta por desarrollar de la je-

de usuario [figura 18.1] es la categoría personal
-:o al cliente.

(m i r a n d o a Sam): ¿Sam, ahora tú tienes esos
de uso?

Los tengo. Se los envié por correo electrónico a
. con copia para ti. Aquí está la versión impresa,

a Doug y Sharon unas hojas de papel.)

: Como lo vemos, queremos usar el sitio Web de
rSegurolnc.com como una herramienta de soporte

los clientes ordenen por teléfono. Nuestros repre-
ndientes telefónicos completarán todos los formularios
-e-iesarios, etc., y procesarán el pedido por el cliente,

j : ¿Por qué no sólo remitir al cliente al sitio Web?

i (sonríe): Los técnicos piensan que todos se sien-
i cómodos con la Web. jNo es así! Hay mucha gente a

fc que todavía le gusto el teléfono, así que les tenemos que
:c- esa opción. Pero no queremos construir un sistema de
^•ocesamiento de solicitudes por separado cuando la ma-
jaría de las piezas ya están en el lugar de la Web.

(Todas las partes leen los casos de uso [a continuación se
presenta un ejemplo]):

C a s o d e u s o : describir plano de la casa [note que esto
difiere del caso de uso del mismo nombre para la cate:
g o r í a cliente n u e v o]

S a m : Pediré al cliente [vía telefónica 1 que describo cada
habitación de la casa e ingresaré las dimensiones de la
habitación y otras características en un gran formulario
diseñado específicamente para el personal de soporte al
cliente. Una vez que se hayan ingresada los datos de la
casa podré guardar los datos con el nombre o número
de teléfono del cliente.

Sharon: Sam, has sido un tanto lacónico en tus descrip-
ciones preliminares de caso de uso. Creo que tendremos
que detallarlas un poco.

D o u g (a s i n t i e n d o c o n l a c a b e z a) : Estoy de acuer-
do.

S a m (m a l h u m o r a d o) : ¿Por qué?

S h a r o n : Bueno... mencionas "un gran formulario dise-
ñado específicamente para el personal de soporte al
cliente". Vamos a necesitar más detalles.

S a m : Lo que quise decir fue que no necesitamos llevar a
nuestros representantes por todo el proceso como ustedes
lo hacen para un cliente en línea. Un gran formulario re-
solvería el problema.

Sharon: Bosquejemos cómo se vería el formulario.

Las partes trabajan para proporcionar suficiente detalle
que permita al equipo de Sharon emplear en forma efec-
tiva el caso de uso.

Aunque es posible ofrecer considerablemente más detalle para cada uno de los
casos de uso, la descripción textual informal ofrece una visión útil. Descripciones si-
milares se desarrollarían para cada óvalo en la figura 18.2.

18.1.3 Afinación del modelo de caso de uso
A la par que se crean los d iagramas de caso de uso para cada categoría de usuario,
se desarrolla una vista superior de los requisitos de la WebApp observables de ma-

TM

PDF Editor

550 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

? Cómo s e
• v a l o r a n lo s

p a q u e t e s d e c a s o s
d e u s o a g r u p a d o s
p o r la f u n c i ó n
u s u a r i o ?

ñera externa. Los casos de uso se organizan en paquetes funcionales, y cada paque
te se valora [CONOO] para garantizar que es:

• Comprensible: todos los clientes entienden el propósito del paquete.

• Cohesivo: el paquete aborda funciones relacionadas cercanamente una con
otra.

• Libremente acoplados: las funciones o clases dentro del paquete colaboran
una con otra, pero la colaboración exterior del paquete se mantiene en un mí-
nimo.

• Jerárquicamente superficial: las jerarquías funcionales profundas son difíciles
de navegar y entender para los usuarios; en consecuencia, el número de nive-
les dentro de una jerarquía de casos de uso debe reducirse siempre que sea
posible.

Puesto que el análisis de requisitos y el modelado son actividades iterativas, es p r : -
bable que se sumen nuevos casos de uso a los paquetes que se han definido, que :•&
casos de uso existentes sean refinados y que casos de uso específicos puedan reufcw
carse en paquetes diferentes.

¿ Q u é t i p o s
' • • d e a c t i v i d a -

d e s de a n á l i s i s
o c u r r e n d u r a n t e el
m o d e l a d o d e u n a
W e b A p p ?

El modelado de análisis para una WebApp se basa en la información que conti
los casos de uso desarrollados para la aplicación. Las descripciones de los casos
uso se analizan gramaticalmente para identificar potenciales clases de análisis y i
operaciones y atributos asociados con cada clase. Se identifica el contenido que ;
sentará la WebApp y se extraen las funciones que se desarrollarán a partir de las i
cripciones de caso de uso. Finalmente, los requisitos específicos de la implementa:-^
se deben desarrollar de modo que el ambiente y la infraestructura que apoyan la V. d
Apps puedan construirse.

Cuatro actividades de análisis, cada una con su aporte a la creación de un m o a
lo de análisis completo, son:

• Análisis de contenido: identifica todo el espectro del contenido que ofrece-a I
WebApp. El contenido incluye texto, gráficas e imágenes, así como datos a]
video y audio.

• Análisis de interacción: describe cómo interactúa el usuario con la WebApo

• Análisis de funciones: define las operaciones que se aplicarán al contenió: £
la WebApp y describe otras funciones de procesamiento, independientes j a
contenido pero necesarias para el usuario final.

• Análisis de configuración: describe el ambiente y la infraestructura en la - J
reside la WebApp.

TM

PDF Editor

C A P Í T U L O 1 8 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 551

La información recopilada durante las tareas de estos cuatro análisis se debe re-
visar, modificar cuando se requiera y luego organizarse en un modelo que pueda pa-
sarse a los diseñadores de WebApp.

El modelo en si mismo contiene elementos estructurales y dinámicos. Los elemen-
tos estructurales identifican las clases de análisis y los objetos de contenido que se
requieren para crear una WebApp que satisfaga las necesidades de los clientes. Los
elementos dinámicos del modelo de análisis describen cómo interactúan los e lemen-
tos estructurales, entre ellos y con los usuarios finales.

"[Los WebApps] ex i tosas permi ten que los d i e n t e s s a t i s f agan mejor sus neces idades , m á s ráp ido o m á s b a r a t o por sí
mismos , que el t r a b a j a r a t ravés del e m p l e a d o [d e una c o m p a ñ í a] pa r a los usuar ios f ina les ."

M a r k M c D o n a l d

1 8 . 3 E L M O D E L O DE C O N T E N I D O

El modelo de contenido contiene elementos estructurales que proporcionan una im-
portante visión de los requisitos de contenido para una WebApp. Dichos elementos
estructurales incluyen objetos de contenido (por ejemplo: texto, imágenes gráficas,
fotograñas, imágenes de video, audio) que se presentan como parte de la WebApp.
Además, el modelo de contenido incluye todas las clases de análisis: entidades visi-
bles para el usuario que se crean o manipulan conforme éste interactúa con la WebApp.
Una clase de análisis incluye atributos que la describen, operaciones que afectan el
comportamiento requerido de la clase y colaboraciones que permiten la comunica-
ción de la clase con otras clases.

Al igual que otros elementos del modelo de análisis, el modelo de contenido se
deriva a partir de un examen cuidadoso de los casos de uso desarrollados para la
WebApp. Los casos de uso se analizan gramaticalmente para extraer objetos de con-
tenido y clases de análisis.

18.3.1 Definición de objetos de contenido
Las aplicaciones Web presentan información preexistente —llamada contenido— a
un usuario final. El tipo y forma del contenido abarca un amplio espectro de elabo-
ración y complejidad. El contenido puede desarrollarse an tes de la implementación
de la WebApp, mientras ésta se construye o mucho después de que la WebApp se en-
cuentra en operación. En cada caso, se incorpora por medio de referencias de nave-
gación en la estructura global de la WebApp. Un objeto de contenido puede ser una
descripción textual de un producto, un artículo que describa un evento noticioso,
una fotografía de acción tomada en un cotejo deportivo, una representación anima
da de un logotipo corporativo, un breve video de un discurso o un recubrimiento de
audio para una colección de diapositivas Powerpoint.

Los objetos de contenido se extraen de los casos de uso al examinar la descrip-
ción del escenario para referencias directas e indirectas al contenido. Por ejemplo,
en el caso de uso seleccionar componentes HogarSeguro, se encuentra la oración:

% CLAVE
objeto de contenido
cualquier artículo de

•formación cohesivo
a í se presentará o un
.sjorio final. Usual-
- e n t e , los objetos de
a t e n i d o s e extraen
é los casos de uso.

TM

PDF Editor

552 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

Seré capaz de obtener información descriptiva y de precios para cada componen-
te de producto.

Aunque no existe referencia directa al contenido, está implícita. El ingeniero Wer
podría reunirse con el autor del caso de uso y comprender en forma más detallada
lo que significa "información descriptiva y de precios". En este caso, el autor del caso
de uso puede indicar que "información descriptiva" incluye 1) una descripción gene-
ral del componente en un párrafo; 2) una fotografía del componente; 3) una descrip-
ción técnica del componente en varios párrafos; 4) un diagrama esquemático de-
componente que muestre cómo encaja en un sistema HogarSeguro típico; y 5) un
breve video que muestre cómo instalar el componente en una configuración domés
tica típica.

Es importante advertir que cada uno de estos objetos de contenido debe desarro-
llarse (con frecuencia a través de desabolladores de contenido que no son ingeni;
ros Web) o adquirirse para integrarlo en la arquitectura de la WebApp (analizada er
el capítulo 19).

" l o W e b : t a n t o t o t i f e n i d o , t a n p o c o t i e m p o . "

A n ó n i m o

% CLAVE
Un árbol de dotos
represento uno
jerarquía de ob je tos d e
contenido.

18.3.2 Relaciones y jerarquía de contenido
En muchas instancias, una simple lista de objetos de contenido, pareadas con ur a
breve descripción de cada objeto, es suficiente para definir los requisitos para el con-j
tenido que deben diseñarse e implementarse. Sin embargo, en algunos casos, el mo-
delo de contenido puede contener diagramas de relación de entidades (capítulo 8 v
árboles de datos [SR10I] que bosquejan las relaciones entre los objetos de contenic:
o la jerarquía de éste que mantiene una WebApp.

Considérese el árbol de datos creado para el componente HogarSeguro que
muestra en la figura 18.3. El árbol representa una jerarquía de información con que

Arbol de
datos para un
componente
HogarSeguro.

p a r t e N ú m e r o

p a r t e N o m b r e

c o m p o n e n t e p a r t e T i p o c o m p o n e n t e p a r t e T i p o

d e s c r i p c i ó n

D e s c r i p c i ó n D e M a r k e t i n g

F o t o g r a f í a

D e s c r i p c i ó n T é c n i c a

E s q u e m a

V i d e o

p r e c i o
P r e c i o M a y o r i s t a

P r e c i o M i n o r i s t a

TM

PDF Editor

C A P Í T U L O 1 8 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 5 5 3

se describe el componente (más adelante se verá que, en realidad, un componen te
HogarSeguro es una clase de análisis para esta aplicación). Los artículos de datos
simples o compues tos (uno o m á s valores de datos) se representan como rectángu-
los sin sombreado. Los objetos de contenido se representan c o m o rectángulos som-
breados. En la figura, descr ipc ión se define por medio de cinco objetos de conteni-
do (los rectángulos sombreados). En algunos casos, uno o más de dichos objetos se
retinará más todavía conforme se expanda el árbol de datos.

18.3.3 Clases4 de análisis para WebApps
Como ya se ha señalado, las clases de análisis se derivan al examinar cada caso de
uso. Por ejemplo, considérese el caso de uso preliminar: seleccionar componentes Ho-
garSeguro que se presentó en la sección 18.1.2.

Caso de uso: seleccionar componentes HogarSeguro

Entonces la WebApp r e c o m e n d a r á c o m p o n e n t e s d e p roduc to (por ejemplo: pane l e s d e

control , sensores , cámaras) y o t r a s caracter ís t icas (por e jemplo, funcional idad b a s a d a en

PC implementada en sof tware) pa ra cada habi tación y la en t rada exterior. Si el usuar io so -

licita opciones , la WebApp las p roporc ionará si exis ten. El usuar io ob tendrá información

descriptiva y d e precios para cada c o m p o n e n t e d e producto . La WebApp creará y most ra-

rá una factura d e mater ia les con fo rme se se lecc ionen varios componen te s . El usuar io

también podrá nombra r la factura d e mater ia les y guardarla pa ra referencia futura (véase

caso de uso: guardar configuración).

Un rápido análisis gramatical del caso de uso identifica dos clases candidatas (subra-
yadas): C o m p o n e n t e D e P r o d u c t o y FacturaDeMateriales En la figura 18.4 s e
muestra una primera descripción de cada clase.

La clase C o m p o n e n t e D e P r o d u c t o abarca todos los componen tes de HogarSe-
guro que se pueden comprar para personalizar el producto destinado a una instala-
ción particular. Es una representación general izada de Sensor , Cámara, Panelde-
Control y Caracter í s t icadeSoftware Cada objeto de C o m p o n e n t e D e P r o d u c t o
contiene información que corresponde al árbol de datos que se muestra en la figura
18.3 para la clase. Algunos de estos atributos de clase son artículos de datos senci-
llos o compuestos , y otros son objetos de contenido (véase la figura 18.3). También
se muestran las operaciones relevantes para la clase.

La clase FacturaDeMateriales abarca una lista de componentes que c l i ente
n u e v o ha seleccionado. FacturaDeMater ia les es en realidad un agregado de Ar-
tículoFdM (muchas instancias de ArtículoFdM comprenden una FacturaDeMate-
riales): una clase que construye una lista compuesta de cada componente que se
comprará y de atributos específicos acerca del componente, como se muestra en la
figura 18.4.

4 En el capítulo 8 se presentaron en forma detallada los mecanismos para identificar y representar las
clases de análisis. Si todavía no se ha hecho, el capitulo 8 debe revisarse en este momento.

TM

PDF Editor

5 5 4 P A R T E T R E S APLICACIÓN DE LA INGENIERÍA WEB

C l a s e s d e

a n á l i s i s p a r a

e l c a s o d e

u s o : s e l e c c i o -

n a r c o m -

p o n e n t e s

HogcaSeguro.

C o m p o n e n t e d e P r o d u c t o

par teNúrnero
p o r l e N o m b r e
parfeTipo
descripción
prec io

crearNuevoArt ículoj)
abtenerDescr ipciónQ
ob ten erEspecTócnica ()

S e n s o r C á m a r a P o n e l D o C o til-rol

F a c t u r a D e M a t e r i a l e s

identif icador
precioTotal

agregarEn»rada(}
borrarEntrada()
edí tarEnfrada()
nombre()
gua rda r j)
calcuIarPrecio{)

A r t í c u l o F d M

c a n t i d a d
precio

a g r e g a r a Lista 0
borrardeLista(j

Cada caso de uso identificado para HogarSeguroInc.com se analiza gramatical!
mente para objetos de análisis. Respecto a cada caso se uso se desarrollan mod
de clase similares al descrito en esta sección.

•

^COKSEJO^.

Es posible utilizar las
técnicas asociadas con
el análisis de toreas
(capitulo 12) poto
ayudarse a definir los
modos de interacción
del usuario.

La gran mayoría de las WebApps permite una "conversación" entre un usuario fina
y la funcionalidad, el contenido y el comportamiento de una aplicación. Este motp?!
lo de interacción lo componen cuatro elementos: 1) casos de uso, 2) diagramas de s-r-l
cuencia, 3) diagramas de estado,5 y 4) un prototipo de interfaz de usuario. Ade~
de estas representaciones, la interacción también se representa dentro del conté
del modelo de navegación (sección 18.7).

Casos de uso . Los casos de uso son el elemento dominante del modelo de inieJ
racción para las WebApps. No es raro describir 100 o más casos de uso cuando
analizan, diseñan y construyen grandes y complejas WebApps. Sin embargo, un pcc-j
centaje relativamente bajo de estos casos de uso describe las principales interaca :-f
nes entre las categorías de usuario final (actores) y el sistema. Otros casos de uso r
finan las interacciones y proporcionan el detalle de análisis necesario para guiar
diseño y la construcción.

Diagramas de secuencia . Los diagramas de secuencia UML ofrecen una re
sentación abreviada de la forma en la cual las acciones del usuario (los element:
dinámicos de un sistema que definen los casos de uso) colaboran con las clases

5 C a d a u n o d e é s t o s e s u n a i m p o r t a n t e n o t a c i ó n U M L q u e s e d e s c r i b i ó e n e l c a p i t u l o 8 .

TM

PDF Editor

C A P I T U L O 1 8 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 555

i d e

i e l c a s o

ates

[CONSEJO *

análisis (los elementos estructurales de un sistema que definen los diagramas de cla-
se). Dado que las clases de análisis se extraen de las descripciones de caso de uso,
existe la necesidad de garantizar que hay una forma de realizar un seguimiento en-
tre las clases definidas y los casos de uso que describen la interacción del sistema.

En capítulos anteriores se apreció que los diagramas de secuencia proporcionan
un vínculo entre las acciones descritas en el caso de uso y las clases de análisis (en-
tidades estructurales). Conallen |CONOO] señala esto cuando escribe: "La mezcla de
elementos dinámicos y estructurales del modelo [de análisis] es el vínculo clave en
la capacidad de seguimiento del modelo y se debe considerar muy seriamente."

En la figura 18.5 se muestra un diagrama de secuencia para el caso de uso selec-
cionar componentes HogarSeguro. El eje vertical del diagrama muestra las acciones
que se definen dentro del caso de uso. El eje horizontal identifica las clases de aná-
lisis que se usan conforme procede el caso de uso. Por ejemplo, un cliente nuevo pri-
mero debe describir cada habitación de la casa (el asterisco a continuación de "des-
cribir habitación" indica que la acción es iterativa). Para lograr esto, el cliente nuevo
responde preguntas acerca del tamaño de la habitación, puertas y ventanas, etcéte-
ra. Una vez definida una habitación, se coloca en un plano de la casa. Entonces el
cliente nuevo describe la siguiente habitación o procede a la siguiente acción (guar-
dar la configuración del plano de la planta). El movimiento a través y hacia abajo del
diagrama de secuencia enlaza cada clase de análisis con las acciones del caso de
uso. Si en el diagrama se pierde una acción de caso de uso, el ingeniero Web debe
reevaluar la descripción de las clases de análisis para determinar si una o más cla-
ses se han perdido. Es posible crear diagramas de secuencia para cada caso de uso
una vez que se definen las clases de análisis para el caso de uso.

Diagramas de estado. El diagrama de estado UML (capítulo 8) ofrece otra repre-
sentación del comportamiento dinámico de la WebApp conforme sucede una inter-

TM

PDF Editor

556 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

D i a g r a m a d e e s t a d o p a r c i a l p a r a i n t e r a c c i ó n c o n c l i en te n u e v o .

O

A
C líenlo
nuevo

Se lecc iona r
* o c c e s o "

Val idar m u o r i o

E s t a d o s i s t ema - " e n t r a d a lisio"
Mues t ra m j j - " i n g l e s a r id d e usuar io*
M u e s t r a msj - " ingresar c o n t r a s e ñ a "

e n f r o d o / o c c e s o sol ic i tado
h o c e ; c o r r e r v a l i d a c i ó n d o usua r io
s a l i d a / e s t a b l e c e r interruptor a c c e s o
usua r io

u s u a r i o
v a t . d o d a

c o n t r a s e ñ o vo l idoda

Persona l izac ión c o m p l e t a

S e l e c c i o n a r a c c i ó n u s u a r i o

Es t ado s is tema » "v ínculo l ista"
Mues t ro : " e l e c d o n e s d e n a v e g a r i ó n "

e n t r o d o / u s u a r i o v a l i d o d o
h a c e : vincular c o m o s e solici ta
s a l i d a / a c c i ó n usua r io s e l e c c i o n a d a

S e l e c c i o n a r o t ros (unciones

Se lecc iona r f u n c i o n a l i d a d c o m e r c i o e lec t rón ico (compra!

C
S e l e c c i o n a r f u n c i o n a l i d a d p e r s o n a l i z a c i ó n

PersoooEzor

S igu ien te se lecc ión

Es t ado sistemo - " e n t r a d o lista"
M u e s t r a : instrucciones b ó s i c a s

Se lecc iona r c o n t e n i d o
I descr ip t ivo

e n t r a d a / u s u a r i o v a l i d a d o
h a c e : p r o c e s o se lecc ión u s u a r i o
s a l i d a / p e r s o n a l i z a c i ó n t e r m i n a d a

Definí, h a b í

Se lecc iona r con ten ido
— ^ d e s c r i p t i v o

Estado sistema • " e n t r a d a l i s ta '
M u e s t r a : v e n t a n a def . h a b i t a c i ó n

e n t r a d a / d e f . h a b i t a c i ó n s e l e c c i o n a d o
h a c e : co r ro consu l t a h a b i t a c i ó n
h a c o : a l m a c e n a va r i ab l e s h a b i t a c i ó n
s a l i d a / h a b i t a c i ó n c o m p l e t a d a

•

S e l e c c i o n a r g u a r d a r p l a n o d e la p l a n t a

G u a r d a r p lano d e lo c o s o

Es t ado s is tema - " e n t r a d o lista"
M u e s t r a : i nd i cado r a l m a c e n a m i e n t o

e n t r a d a / g u a r d a r hob i l ac ión
s e l e c c i o n a d a en p l a n o d e la p l a n t a
h o c e , a l m a c e n a p l a n o d o la p lanta
s a l i d o / g u a r d a d o c o m p l e t a d o

Se lecc iona r ingresa r hob i toc ión en p l o n o d e la plonto

Inserción h a b i t a c i ó n c o m p l e t a d a

Construir p l a n o d e b c o s a v̂descr&m
Estado sistema - " e n t r a d a lista*
Mues t ra : ven tana p l a n o d e la p l a n t a

e n t r a d a / p l a n o d e lo c a s a s e l e c c i o n a d o
h a c e : insertar h a b i t a c i ó n en lugar
h a c o : g u a r d a r va r i ab l e s p l a n o d e la p lon to
s a l i d o / i n s e r c i ó n h a b i t a c i ó n c o m p l e t a d a

acción. Al igual que la mayoría de las representaciones de modelado utilizadas i
ingeniería Web (o en la ingeniería del software), el diagrama de es tado puede
sentarse en diferentes grados de abstracción. La figura 18.6 muestra la vista su~
(mayor grado de abstracción) de un diagrama de es tado parcial para la i n t e r
entre un cliente nuevo y la WebApp de HogarSegurolnc.com.

En el diagrama de es tado que se muestra se identifican seis estados obse~
externamente: validar usuario, seleccionar acción del usuario, personalizar, dejir,ir .-
bitación, construir plano de la casa y guardar plano de la casa. El diagrama de
indica las acciones que se requieren para mover al cliente nuevo de un es tado a •
la información que se muestra conforme se ingresa un estado, el procesamiento >
ocurre dentro de un es tado y la condición de salida que provoca una transición
un es tado a otro.

Puesto que los casos de uso, los d iagramas de secuencia y los diagramas de
tado muestran información relacionada, es razonable preguntar por qué son
s a n o s los tres. En algunos casos no lo son. Los casos de uso tal vez sean sufic
en algunas situaciones. Sin embargo, los casos de uso proporcionan una visiór
bien unidimensional de la interacción. Los diagramas de secuencia presentar
segunda dimensión que en esencia es más de procedimiento (dinámica). Los
m a s de es tado proporcionan una tercera dimensión que se refiere más al co
miento y contiene información acerca de los pat rones de navegación pote

TM

PDF Editor

C A P I T U L O 1 8 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 557

que no proporcionan los casos de uso o el diagrama de secuencia. Cuando se usan
las tres dimensiones, las omisiones o inconsistencias que pueden escapar en una di-
mensión se vuelven obvias cuando se examina una segunda (o tercera) dimensión.
Por esta razón, los grandes WebApps complejas pueden beneficiarse de un modelo
de interacción que abarque las tres representaciones.

Prototipo de la interfaz de usuario. La plantilla de la interfaz de usuario, el con-
tenido que presenta, los mecanismos de interacción que implementa y la estética
global de las conexiones usuario-WebApp, tienen mucho q u e ver con la satisfacción
del usuario y la aceptación global de la WebApp. Aunque se puede argumentar que
la creación de un prototipo de interfaz de usuario es una actividad de diseño, es una
buena idea realizarla durante la creación del modelo de análisis. Mientras más rápi-
do se pueda revisar la representación física de una interfaz de usuario, mayor será
la probabilidad de que los usuarios finales obtengan lo que quieren. En el capítulo 12
se aborda el análisis de la interfaz de usuario y su diseño.

Puesto que las herramientas de desarrollo de la WebApp son abundantes, relati-
vamente baratas y funcionalmente poderosas, es mejor crear el prototipo de la inter-
faz mediante tales herramientas. El prototipo debe implementar los principales víncu-
los de navegación y representar la plantilla de pantalla global en gran parte como se-
rá construida.

El modelo funcional aborda dos elementos de procesamiento de la WebApp y cada
uno representa un grado diferente de la abstracción de procedimiento: 1) funciona-
lidad observable respecto al usuario y que entrega al usuario final la WebApp, y 2)
las operaciones dentro de las clases de análisis que implementan comportamientos
asociados con la clase.

La funcionalidad observable para el usuario comprende cualesquiera funciones
de procesamiento que éste inicia directamente. Por ejemplo, un sitio Web financiero
puede implementar una variedad de funciones financieras (como una calculadora
para fondo de matricula universitaria o una calculadora para fondo de retiro). Dichas
funciones en realidad pueden implementarse mediante operaciones dentro de las
clases de análisis, pero, desde el punto de vista del usuario final, la función (más pre-
cisamente, los datos que proporciona la función) es el resultado visible.

En un grado inferior de abstracción procedimental, el modelo de análisis descri-
be el procesamiento que realizarán las operaciones de la clase de análisis. Dichas
operaciones manipulan atributos de la clase y están involucradas como clases que
colaboran entre sí para lograr algún comportamiento requerido.

Sin importar el grado de abstracción procedimental, con el diagrama de actividad
UML se representan detalles de procesamiento. La figura 18.7 muestra un diagrama
de actividad para la operación calcularPreciot < que forma parte de la clase de análi-

TM

PDF Editor

558 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

D i a g r a m a d e
a c t i v i d a d p a -
r a l a ope ra -
ción calculai-
Precio().

N i n g ú n c o m p o n e n t e p e r m a n e c e en l i s taFdM

(co&fol íneo <* |
p r ec io ¥ c a n t i d a d J

f f S u m a r c o i l o U n o a \ _
w V a cos toTota l 1

» > ° / c o a t o T o t o l . \
' \ cosioTotol - d e s c u e n t o !

(impuesto Jo lot - \ ycosloTotol V tosaimpuGsloJ

^ O N S E J O ^

Como alternativa,
también es posible
escribir uno simple
narración del procesa-
miento o representa-
ción en lengua/e de
programación de
diseño (capitulo 11).
Sin embargo, muchas
personas prefieren
una representación
gráfica.

í p rec ioTa ta l
I c o i t o T o ' o
I 4 c o s t o E m b a r q u e

é
sis FacturaDeMateriales6 Como se anotó en el capítulo 8, el diagrama de activi
es similar al diagrama de flujo, el cual ilustra el flujo de procesamiento y las deci-
nes lógicas del flujo. Debe notarse que, dentro del flujo procedimental, se i n v
dos operaciones adicionales: ca!cCostoEmbarque(), que calcula el costo de embar
dependiendo del método que haya elegido el cliente, y determiriarDescuento(), que
termina cualquier descuento especial para los componentes HogarSeguro elegi
para comprar. Los detalles de construcción que indican cómo se solicitan estas
raciones y los detalles de la interfaz para cada operación no se consideran sino
ta que comienza el diseño WebApp.

6 Una revisión de la clase de análisis FacturaDeMateriales puede determinar que, con la Ínter
de cohesionar, la operación calcularPreáo() puede colocarse mejor en una clase Facturas. Esta
gerencia tiene mérito. Sin embargo, permanece dentro de la clase de análisis FacturaDeMat
les para los propósitos de este ejemplo.

TM

PDF Editor

C A P Í T U L O 1 8 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 559

*
fimpor-
rtodos

r r t o l i l i -
r .rizadas,

¡una
ssome-

3 po ra
r:sususuo-

i no a lo
i de un na-

rxnkular.

Las WebApps se deben diseñar e implementar de forma que se acomoden a una di-
versidad de ambientes, tanto en lado del servidor como en el del cliente.7 La WebApp
puede residir en un servidor que proporcione acceso vía Internet, una Intranet o una
Extranet. Se deben especificar el hardware del servidor y el ambiente del sistema
operativo. Además, se deben considerar aspectos de interoperabilidad en el lado del
servidor. Si la WebApp debe tener acceso a una gran base de datos o interoperar con
las aplicaciones corporativas existentes en el lado del servidor, se deben especificar las
interfaces apropiadas, los protocolos de comunicación y la información complemen-
taria necesaria.

El software del lado del cliente proporciona la infraestructura que permite el ac-
ceso a la WebApp desde la ubicación del usuario. En general, el software de nave-
gación se utiliza para entregar el contenido y la funcionalidad de la WebApp que se
descargan del servidor. Aunque existen estándares, cada navegador tiene sus pro-
pias peculiaridades. Por esta razón, la WebApp debe someterse a una amplia prue-
ba en cada configuración de navegador que se especifique como parte del modelo de
configuración.

En algunos casos, el modelo de configuración no es más que una lista de atributos
tanto del lado del servidor como del cliente. Sin embargo, para WebApps más elabo-
radas, varias complejidades de configuración (por ejemplo: distribución de carga en-
tre múltiples servidores, arquitecturas de caché, bases de datos remotas, múltiples ser-
vidores que sirven a varios objetos en la misma página Web) pueden impactar el aná-
lisis y el diseño. Es factible aprovechar el diagrama de despliegue UML (capítulo 10) en
situaciones en las cuales se deban considerar arquitecturas de configuración complejas.

Los elementos del modelo de análisis descritos en las secciones previas identifican
los elementos de contenido y funcionalidad, junto con la forma en que se utilizan para
implementar la interacción con el usuario. Conforme el análisis evoluciona en dise-
ño, dichos elementos se vuelven parte de la arquitectura de la WebApp. En el con-
texto de las aplicaciones Web, cada elemento arquitectónico tiene el potencial de
vincularse con todos los otros elementos arquitectónicos. Pero, conforme aumenta
el número de vínculos, la complejidad de navegación a través de la WebApp también
crece. Entonces, la pregunta es cómo establecer los vínculos apropiados entre los
objetos de contenido y las funciones que proporcionan las capacidades que requie-
re el usuario.

El lado del servidor hospeda la WebApp y todas las características de sistema relacionadas que per-
miten a múltiples usuarios tener acceso a la WebApp vía una red. El lado del cliente proporciona un
ambiente de software (por ejemplo, navegadores) que permite a los usuarios finales interactuar con
la WebApp en el escritorio del usuario.

TM

PDF Editor

560 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

" [La n a v e g a c i ó n] n o só lo e s l a acc ión d e s a l t a r d e p á g i n a a p á g i n a , s ino la i d e a d e m o v e r s e a t r a v é s d e un e s p a c i o d e
i n f o r m a c i ó n . "

A. R e i n a y J . To r r e s

El análisis relación-navegación (ARN) proporciona una serie de pasos de anális.í 1
que luchan por identificar relaciones entre los elementos descubiertos como parte ce I
la creación del modelo de análisis.® Yoo y Bieber [YOOOO] describen un ARN del m< -
do siguiente:

El ARN proporciona a los analistas de s is temas una técnica sistemática para determinar la
estructura de relación de una aplicación, lo que les ayuda a descubrir las relaciones po-
tencialmente útiles en los dominios de la aplicación y que se pueden implementar como
vínculos m á s adelante. El ARN también ayuda a determinar las estructuras de navegación
apropiadas sobre es tos vínculos. El ARN fomenta la comprensión de los desarrolladores
de s is temas en t o m o a los dominios de la aplicación al ampliar y profundizar su modele
conceptual del dominio. Entonces los desarrolladores pueden mejorar su implementación
al incluir vínculos, metainformación y navegación adicionales.

El enfoque ARN se organiza en cinco pasos:

• Análisis de los participantes: identifica las diversas categorías de usuario (co i
mo se describe en la sección 18.1) y establece una apropiada jerarquía de par-I
ticipantes.

• Análisis de elementos: identifica los objetos de contenido y los elementos fur- l
dónales de interés para los usuarios finales (como se describe en las seccio- l
nes 18.3 y 18.5).

• Análisis de relaciones: describe las relaciones entre los elementos WebApp.

• Análisis de navegación: examina cómo los usuarios pueden acceder a ele-
mentos individuales o grupos de elementos.

• Análisis de evaluación: considera temas pragmáticos (por ejemplo: costo/be I
neficio) asociados con la implementación de las relaciones definidas con an-
terioridad.

Los primeros dos pasos en el enfoque ARN se trataron en párrafos anteriores de e - l
te capítulo. En las siguientes secciones se consideran métodos para establecer asi
relaciones entre los objetos de contenido y las funciones.

18.7.1 Análisis de relaciones: preguntas clave
Yoo y Bieber [YOOOO] sugieren una lista de preguntas que un ingeniero Web o an=-l
lista de sistemas deben responder acerca de cada elemento (objeto de contenido •

8 Se debe señalar que el ARN es aplicable a cualquier sistema de información y originalmente se o d
sarrolló para los sistemas hipermedia en general. Sin embargo, es posible adaptarlo muy bien ; | l
ingeniería Web.

TM

PDF Editor

C A P I T U L O 1 8 MODELADO DE ANÁLISIS P A R A APLICACIONES WEB 561

¿ C ó m o s e
c l o r a n lo s

del
fa a n á f i s i s

i r ender

función) identificado dentro del modelo de análisis. La siguiente lista, adaptada pa-
ra WebApps, es representativa [YOOOO]:

• ¿El elemento es miembro de una categoría de elementos más amplia?

. ¿Qué atributos o parámetros se han identificado para el elemento?

• ¿Ya existe información descriptiva acerca del elemento? Si es así, ¿dónde está?

• ¿El elemento aparece en diferentes ubicaciones dentro de la WebApp? Si es
así, ¿dónde?

• ¿El elemento lo componen otros pequeños elementos? Si es así, ¿cuáles son?

. ¿El elemento es miembro de una colección de elementos mayor? Si es así,
¿cuál es y cuál es su estructura?

• ¿Al elemento lo describe una clase de análisis?

• ¿Otros elementos son similares al elemento considerado? Si es así, ¿es posible
que pudieran combinarse en un elemento?

• ¿El elemento se usa en un ordenamiento específico de otros elementos? ¿Su
aparición depende de otros elementos?

• ¿Otro elemento siempre sigue a la aparición del elemento considerado?

• ¿Qué condiciones previas y posteriores se deben satisfacer para utilizar el ele-
mento?

• ¿Categorías de usuario específicas aprovechan al elemento? ¿Las diferentes
categorías de usuario emplean de manera diferente al elemento? Si es así,
¿cómo?

• ¿El elemento puede estar asociado con una meta u objetivo de formulación
específico? ¿Con un requisito WebApp específico?

• ¿Este elemento siempre aparece al mismo tiempo que aparecen otros elemen-
tos? Si es así, ¿cuáles son los otros elementos?

• ¿Este elemento siempre aparece en el mismo lugar (por ejemplo, misma ubi-
cación de la pantalla o página) que otros elementos? Si es así, ¿cuáles son los
otros elementos?

Las respuestas a éstas y otras preguntas ayudan al ingeniero Web a posicionar el ele-
mento en cuestión dentro de la WebApp y a establecer relaciones entre elementos.

Es posible desarrollar una relación taxonómica y categorizar cada relación iden
tificada debido a las preguntas anotadas. El lector interesado debe remitirse a
[YOOOO] para más detalles.

18.7.2 Análisis de navegación
Una vez que entre los elementos se han desarrollado relaciones definidas dentro del
modelo de análisis, el ingeniero Web debe considerar los requisitos que dictan cómo
navegará cada categoría de usuario de un elemento (por ejemplo, objeto de conté-

TM

PDF Editor

562 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

¿ Q u é p r e -
• g u n t a s s e

d e b e n p l a n t e a r
p a r a c o m p r e n d e r
m e ¡ o r l o s r e q u i s i -
t o s d e n a v e g a -
c ión?

^ O N S E J O ^

Mientras se onalizan
los requisitos de nave-
gación, recuérdese
que el usuario siempre
debe saber dónde
estó y o dónde va.
Para lograrlo el
usuario necesito un
"mapa".

nido) a otro. Los mecanismos de navegación se definen como parte del diseño. En
esta etapa, los desarrolladores deben considerar requisitos de navegación globales
Las siguientes preguntas se deben plantear y responder:

• ¿Ciertos elementos deben ser más fáciles de alcanzar (es decir, requieren me-
nos pasos de navegación) que otros? ¿Cuál es la prioridad de presentación?

• ¿Ciertos elementos deben resaltarse para forzar a los usuarios a navegar en
su dirección?

• ¿Cómo se manejarán los errores de navegación?

• ¿La navegación hacia grupos de elementos relacionados debe ser prioritaria
sobre la navegación hacia un elemento específico?

• ¿La navegación se debe lograr por medio de vínculos, de acceso basado en
búsqueda o por otros medios?

• ¿Ciertos elementos se deben presentar a los usuarios con base en el contexto
de acciones de navegación previas?

• ¿El acceso a la navegación debe mantenerse para los usuarios?

• ¿En cada punto de la interacción del usuario debe estar disponible un mapa o
menú de navegación completo (en oposición a un simple vínculo de "retroce-
so" o puntero dirigido)?

• ¿El diseño de la navegación debe nutrirse de los comportamientos de usuario
más comúnmente esperados o mediante la importancia percibida de los ele-
mentos WebApp definidos?

• ¿Un usuario puede "almacenar" su navegación previa a través de la WebApp
para un uso futuro expedito?

• ¿Para qué categoría de usuario se debe diseñar una navegación óptima?

• ¿Cómo se manejarán los vínculos externos a la WebApp? ¿Superponiendo la
ventana de navegador existente? ¿Cómo una nueva ventana de navegador?
¿Cómo un marco separado?

Éstas y muchas otras preguntas se deben plantear y responder como parte del aná-
lisis de navegación.

El equipo de ingeniería Web y sus participantes también deben determinar los re
quisitos globales para la navegación. Por ejemplo, ¿se proporcionará un "mapa de
sitio" para brindar a los usuarios un panorama integral de la estructura de la WebApp"
¿El usuario puede realizar un "recorrido" que subraye los elementos más importan-
tes (objetos de contenido y funciones) disponibles? ¿Un usuario tendrá la capacidac
de acceder a los objetos de contenido o funciones con base en los atributos defini-
dos de dichos elementos (por ejemplo, un usuario tal vez desee acceder a todas la:
fotografías de una construcción específica o a todas las funciones que permitan e!
cálculo del peso)?

TM

PDF Editor

C A P Í T U L O 1 8 MODELADO DE ANÁLISIS PARA APLICACIONES WEB 563

' : '

La formulación, la recopilación de requisitos y el modelado de análisis se llevan a ca-
bo como parte del análisis de requisitos para las WebApps. El propósito de dichas ac-
tividades es 1) describir la motivación básica (metas) y objetivos para la WebApp; 2)
definir las categorías de usuarios; 3) señalar los requisitos de contenido y de función
para la WebApp; y 4) establecer una comprensión básica de por qué se construirá la
WebApp, quien la usará y qué problema(s) les resolverá a los usuarios.

Los casos de uso son los catalizadores para todos los análisis de requisitos y ac-
tividades de modelado. Además, pueden organizarse en paquetes funcionales, y cada
paquete se valora para garantizar que es comprensible, cohesivo, libremente acopla-
do y jerárquicamente superficial.

Cuatro actividades de análisis contribuyen a la creación de un modelo de análisis
completo: el análisis de contenido identifica todo el espectro de contenido que pro-
porcionará la WebApp; el análisis de interacción describe la forma en la que el usua-
rio interactúa con la WebApp; el análisis de funciones define las operaciones que se
aplicarán al contenido de la WebApp y describe otras funciones de procesamiento
independientes del contenido, pero necesarias para el usuario final; y el análisis de
la configuración describe el ambiente de la infraestructura en la que reside la WebApp.

El modelo de contenido describe el espectro de los objetos correspondientes que
serán incorporados en una WebApp. Dichos objetos de contenido se deben desarro-
llar o adquirir para integrarlos en la arquitectura de la WebApp. Es factible utilizar un
árbol de datos para representar la jerarquía de un objeto de contenido. Las clases de
análisis (derivadas de los casos de uso) proporcionan otros medios para representar
los objetos clave que manipulará la WebApp.

El modelo de interacción se construye con casos de uso, diagramas de secuencia
UML y diagramas de estado UML para describir la "conversación" entre el usuario y
la WebApp. Además, se construye un prototipo de la interfaz que auxilie en el desa-
rrollo de la plantilla y los requisitos de navegación.

El modelo funcional describe las funciones observables para el usuario y las ope-
raciones de clase que emplean el diagrama de actividad UML. El modelo de configu-
ración describe el ambiente que requerirá la WebApp, tanto en el lado del servidor
como en el del cliente del sistema.

El análisis de relación-navegación identifica las relaciones entre el contenido y los
elementos funcionales, definidos en el modelo de análisis, y establece requisitos pa-
ra definir vínculos de navegación apropiados a través del sistema. Una serie de pre-
guntas ayudan a establecer relaciones e identificar características que influirán so-
bre el diseño de navegación.

[CONOO] Conallen,) . , Building Web Applications mth UML. Addison-Wesley, 2000.
[F..A01] Franklin, S., "Planning Your Web Site with UML", webReview, disponible en

h t tp : / /www.webreview.com/2001 /05_18/deveIopers/ indexO I shtml.

TM

PDF Editor

http://www.webreview.com/2001

564 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

[SRI01] Sridhar, M. y N. Mandyam, "Effective Use of Data Models in Building Web Applications' '
2001, disponible en h t t p : / / w w w 2 0 0 2 . o r g / C D R O M / a l t e r n a t e / 6 9 8 / .

[Y00991 Yoo, J. y M. Bieber, "A Systematic Relationship Analysis for Modeling Information Do-
mains", 1999, se puede descargar de h t tp : / /c i teseer .n j .nec .com/312025.h tml .

[YOOOO] Yoo, J. y M. Bieber, "Toward a Relationship Navigation Analysis", en Proc. 33rd Hawai
Conf. On System Sciences, vol. 6, IEEE, e n e r o de 2000, se puede descargar de www.cs.njit .e-
du/~bieber /pub/h icss00/ INWEB02.pdf .

18 .1 Con base en el gran abanico de recursos acerca del desarrol lo de so f tware ágil disponible
en la Web, investigúese un p o c o y es tab lézcase un r azonamien to en contra del mode lado de
análisis pa ra las WebApps. ¿Se considera q u e la a rgumentac ión resul tante se aplica en todos los
casos?

18.2 Si fuese forzoso a llevar a c a b o un "modelado de análisis ligero" (es decir, modelado de
análisis minimo), ¿qué representac iones , d iagramas e información se definirían duran te esta ac-
tividad de ingeniería Web?

1 8 . 3 Mediante un d iagrama similar al mos t r ado en la figura 18.1, es tablézcase una jerarquía de
usuario para (a) un sitio Web de servicios financieros o (b) un sitio Web de venta de libros.

1 8 . 4 ¿Qué representa un paque te de ca so de uso?

1 8 . 5 Los ca sos de uso o los p a q u e t e s de ca so de u so s e valoran para garant izar q u e son co.r-
prensibles, cohesivos, libremente acoplados y jerárquicamente superficiales. Describase con pala-
bras propias qué significan e s tos términos.

Elíjase una WebApp que se visite regula rmente de una de las s iguientes categorías: (a) noticias
o deportes , (b) entre tenimiento , (c) comerc io electrónico, (d) juegos, (e) re lacionados con
computac ión , (0 una WebApp q u e recomienden los profesores . Realícense las act ividades ir á
c a d a s en los p rob lemas del 18.6 al 18.12:

18.6 Desarróllense u n o o m á s ca sos de u so que descr iban un compor tamien to de usuario es
pecífico para la WebApp.

1 8 . 7 Represéntese una jerarquía de con ten ido parcial y def ínanse al m e n o s tres c lases de aná-
lisis pa ra la WebApp.

18.8 Desarróllese un d iagrama de secuencia UML y un d iagrama de e s t ado UML que descr
una interacción específica con la WebApp.

1 8 . 9 Considérese la interfaz exis tente de la WebApp. Hágase un prototipo de cambio a la i n t f - j
faz que s e considere suscept ible de mejorar .

1 8 . 1 0 Elíjase una función observable para el usuario que ofrezca la WebApp y modélese i
diante un d iagrama de actividad UML.

18 .11 Elíjase un objeto de contenido o función q u e sea par te de la arquitectura de la Web/
y r e spóndanse las p regun tas relación-navegación menc ionadas en la sección 18.7.1.

18.12 Considérese la WebApp existente y r e spóndanse las p reguntas relación-navegac
menc ionadas en la Sección 18.7.2.

M u c h o s libros dedicados al mode lado de análisis para sof tware convencional (con partic
énfas is en los ca sos de u so y la notación UML) cont ienen mucha información útil susceptible :
adap ta r se fácilmente a la ingeniería Web. Los ca sos de u so forman los cimientos del modei;

TM

PDF Editor

http://www2002.org/CDROM/alternate/698/
http://citeseer.nj.nec.com/312025.html

C A P Í T U L O 1 8 M O D E L A D O DE ANÁLISIS P A R A APLICACIONES WEB 565

de análisis p a r a las WebApps. Los libros de Kulak y sus colegas (Use Cases.- Requírements in Con
text, s egunda edición, Addison-Wesley. 2004). BiUner y Spence (Use Case Modeling, Addison-
Wesley, 2002), Cockburn (Wríting Effective Use Cases, Addison-Wesley, 2001), Armour y Miller
(Advanced Use-Case Modeling: Software Systems, Addison-Wesley, 2000), Rosenberg y Scott (Use
Case Driven Object Modeling with UML: A Practical Approcah, Addison-Wesley, 1999) y Schneider,
Winters y Jacobson (Applying use Cases. A practical Guide, Addison-Wesley, 1998) of recen una
guia valiosa en la creación y empleo de este importante mecan i smo de representación de requi-
sitos. Valiosas discusiones de UML han escrito Arlow y Neustadt (UML and the Unifled Process,
Addison-Wesley, 2002), Schmuller (Teach YourselfUML, Sams Publishing, 2002), Booch y sus co-
legas (The UML User Guide, Addison-Wesley, 1998), y Rumbaugh y sus colegas (The Unified Mo-
deling Language Reference Manual, Addison-Wesley, 1998).

Los libros dedicados al d iseño de sitios Web con frecuencia cont ienen u n o o dos capí tulos
q u e abordan t emas de análisis (aunque usua lmente son discusiones superficiales). Los siguien-
tes libros cont ienen u n o o m á s aspec tos del análisis den t ro del contexto de la ingeniería Web:
Van Duyne y sus colegas (The Design of Sites, Addison-Wesley, 2002), Rosenfeld y Morville (In-
formation Architecturefor the World Wide Web, O'Reilly & Associates, 2002), Wodtke (Information
Architecture, New Riders Publishing, 2002), Garret (The Elements of User Experience: User Cente-
red Design for the Web, New Riders Publishing, 2002), Niederst (Web Design in a Nulshell, O'Reilly
& Associates, 2001), Lowe y Hall (Hypertext and the Web: An Engineeríng Approach, Wilev 1999),
y Powell (Web Site Engineeríng, Prentice-Hall, 1998) of recen una cobertura r azonab lemen te
completa. Norris, West y Watson (Media Engineeríng: A Guide lo Developing Information Products,
Wiley, 1997), Navarro y Khan (Effective Web Design: Master the Essentials, Sybex, 1998) y Fleming
y Koman (Web Navigation: Designing the User Experience, O'Reilly & Associates, 1998) proporcio-
nan guía adicional pa ra análisis y diseño.

En Internet hay disponible una gran variedad de fuentes de información acerca del modela-
d o de análisis para ingeniería Web. Una lista actual izada de referencias en la World Wide Web
se encuen t ra ba jo "sof tware engineer íng resources" en el sitio Web de SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

19 M O D E L A D O DE DISEÑO PARA
APLICACIONES W E B

C O N C E P T O S

C L A V E

arquitectura de

coatenida .586

arquitectura

MVC

atributos

de calidad .569

diseño al nivel d e

componentes . . 5 9 3

diseño

arquitectónico. . 5 8 5

diseño

de c o n t e n i d o . . . 5 8 4

diseño

de la interfaz . . 5 7 3

diseño

de navegación . 5 9 0

diseño estético .582

MDHOO ,595

m é t r i c a s 5 9 8

patrones 5 9 4

En su autorizado libro acerca del diseño Web, Jakob Nielsen [N1E00] afirrr
"En esencia, existen dos enfoques básicos del diseño: el ideal artístico c
expresarse uno mismo y el ideal de ingeniería de resolver un problema p

ra un cliente". Durante la primera década del desarrollo Web, la idea artística fi
el enfoque que eligieron muchos desarrolladores. El d iseño ocurrió en una forir
ad hoc y usualmente era dirigido conforme se generaba el HTML. El d iseño ew
lucionó de una visión artística que en sí misma evolucionó conforme ocurrí >:
construcción de la WebApp.

Incluso en la actualidad, los defensores "radicales" del desarrollo de softwa
ágil (capítulo 4) utilizan las aplicaciones Web como cartel de niños para "dise"
limitado". Argumentan que la inmediatez y la volatilidad de las WebApps 2:
núan el diseño formal, que el d iseño evoluciona conforme se construye (codi
ca) una aplicación y que se debe gastar relativamente poco t iempo en la ere
ción de un modelo de diseño detallado. Este argumento tiene mérito, pero SQ
para WebApps relativamente simples. Cuando el contenido y la función son co«
piejos, cuando el t amaño de la WebApp abarca cientos de objetos de c o n t e n
funciones y clases de análisis, cuando el éxito de la WebApp tendrá un impa:
directo sobre el éxito del negocio, el diseño no puede ni debe ser tomado a la
gera.

Esta realidad conduce al segundo enfoque de Nielsen: "el ideal de ingen:e:
de resolver un problema para un cliente". La ingeniería Web adopta esta filos
fia, y un enfoque más riguroso del diseño WebApp permite a los desar ro l lada
lograrlo.

¿ Q u é e s ? El diseño de WebApps
abarca actividades técnicas y otras
que no (o son. La visión y el sentido
dei contenido se desarrollan como
parte del diseño gráfico; l a p lan t i l l a

estética de la interfaz de usuario se crea como
parte del diseño de la interfaz; y la estructura
técnica de la WebApp se modela como parte del
diseño arquitectónico y de navegación. En toda
instancia se debe crear un modelo de diseño
antes de que comience la construcción, pero un
buen ingeniero Web reconoce que el diseño evo-
lucionará mientras más se conozca acerca de los
requisitos de los participantes conforme se cons-
truya la WebApp.

¿Quién lo h a c e ? tos ingenieros Web, diseñade
res gráficos, desarrolladores de contenido
otros participantes colaboran en la creación c
un modelo de diseño para la ingeniería Web

¿Por q u é e s importante? El diseño permite
un ingeniero Web crear un modelo que pueo
valorarse en calidad y mejorarse antes de que <
generen el contenido y el código, se realice
pruebas y se involucren muchos usuarios finóle
El diseño es el lugar donde se establece la ca
dad de la WebApp.

¿Cuáles s o n los p a s o s ? El diseño WebAf
abarca seis grandes pasos a los cuales alime-
la información obtenida durante el modelado :
análisis.

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 5 6 7

i: : seño de contenido utiliza información conte-
- ;a dentro del modelo de análisis como una
pese para establecer el diseño de los objetos de
|.: - enido y sus relaciones. El diseño estético
I c-ibién llamado diseño gráfico) establece la
i- won y el sentimiento que observa el usuario
• n i . El diseño arquitectónico se enfoca sobre la
¡es-uctura hipermedia global de todos los obje-
1 : de contenido y funciones. El diseño de la
----faz establece la plantilla global y los meca-

nismos de interacción que definen la interfaz del
. oario. El diseño de navegación define cómo
-cvega el usuario final a través de la estructuro
- :ermedia, y el diseño de componentes repre-
s a la estructura interna detallada de los ele-
mentos funcionales de la WebApp.

¿Cuál e s el producto o b t e n i d o ? Un modelo
de diseño que abarque temas de diseño de con-
tenido, estética, arquitectura, interfaz, navega-
ción y al nivel de componente es el producto de
trabajo primario del diseño de ingeniería Web

¿Cómo p u e d o e s tar s eguro d e q u e Jo h e
h e c h o correc tamente? El equipo de inge-
niería Web (y algunos participantes selecciona-
dos) revisa cada elemento del modelo de diseño
con la finalidad de descubrir errores, inconsis-
tencias u omisiones. Además, se consideran
soluciones alternativas, y también se valora el
grado en el que el modelo de diseño actual con-
ducirá a una implementación efectiva.

1 9 . 1 T E M A S DE DISEÑO PARA I N G E N I E R Í A W E B

Cuando se aplica el diseño dentro del contexto de la ingeniería Web, se deben con-
siderar cuest iones tanto genéricas como específicas. Desde un punto de vista gené-
rico, el diseño resulta en un modelo que guía la construcción de la WebApp. El modelo
de diseño, sin importar su forma, debe contener suficiente información para reflejar
cómo habrán de traducirse los requisitos de los participantes (definidos en un mode-
lo de análisis) en contenido y código ejecutable. Pero el diseño también debe ser es-
pecífico. Debe abordar atributos clave de una WebApp en una forma que permita al
ingeniero Web construir y ponerla a prueba de manera efectiva.

19.1.1 Diseño y calidad de una WebApp
En capítulos anteriores se señaló que el diseño es la actividad de ingeniería que con-
duce a un producto de gran calidad. Esto conduce a una pregunta recurrente que se
presenta en toda las disciplinas de ingeniería: ¿qué es calidad? En esta sección se exa-
minará la respuesta en el contexto de la ingeniería Web.

Toda persona que haya navegado en la Web o usado una Intranet corporativa tie-
ne una opinión acerca de lo que hace una "buena" WebApp. Los puntos de vista in-
dividuales varían enormemente . Algunos usuarios disfrutan los gráficos que bailan,
otros quieren texto simple. Algunos solicitan información copiosa, otros desean una
presentación abreviada. A algunos les gustan las herramientas analíticas sofisticadas o
los accesos a las bases de datos, a otros les gustan las cosas simples. De hecho, la per-
cepción del usuario de lo que es "bueno" (y la resultante aceptación o rechazo de la
WebApp como consecuencia) puede ser más importante que cualquier discusión téc-
nica de la calidad de la WebApp.

TM

PDF Editor

568 P A R T E T R E S APLICACIÓN DE LA INGENIERÍA WEB

¿Pero cómo se aprecia la calidad de la WebApp? ¿Qué atributos debe exhibir pa-
ra lograr ser buena a los ojos de los usuarios finales y al mismo tiempo mostrar las
características técnicas de calidad que permitirán a un ingeniero Web corregir, adap-
tar, mejorar y apoyar la aplicación a largo plazo?

En realidad, todas las características generales de la calidad de software tratadas
en los capítulos 9, 15 y 26 se aplican a la WebApps. Sin embargo, las más relevan
tes de dichas características —facilidad de uso, funcionalidad, confiabilidad, eficien-
cia y facilidad de mantenimiento— proporcionan una base útil para valorar la calidac
de los sistemas basados en Web.

"Si los p r o d u c t o s se d i s e ñ a n p o r a e n c a j a r m e j o r e n las t e n d e n c i a s n a t u r a l e s del c o m p o r t a m i e n t o h u m o n o , e n t o n c e s lo
g e n t e e s t a r á m á s s a t i s f e c h a , m á s c o m p l e t a y s e r á m á s p r o d u c t i v a . "

Olsina y sus colegas [OLS99] han preparado un "árbol de requisitos de calidac
que identifica un conjunto de atributos técnicos —facilidad de uso, funcionalidac
confiabilidad, eficiencia y facilidad de mantenimiento— que conducen a WebApps c ;
gran calidad.1 La figura 19.1 resume su trabajo. Los criterios anotados en la figura
son de particular interés para los ingenieros Web que deben diseñar, construí -
mantener las WebApps a largo plazo.

Offutt [OFF02] extiende los cinco principales atributos de calidad anotados en i
figura 19.1 al agregar los atributos siguientes:

S u s a n W e i n s c h e n k

Árbol d e
requis i tos d e
c a l i d a d [OLS9"1 Facilidad de uso - Características de la interfaz y estética

- Características especiales

Comprensibilidad global del sitio
Características de retroalimentación en línea y ayuda

Funcionalidad
Capacidades de búsqueda y recuperación
Características de navegación y visualización
Características de la aplicación relacionadas con el dor - : I

Calidad
de la Confiabilidad

Correcto procesamiento de vínculos
Recuperación de errores
Validación y recuperación de entrada de usuario aplicación Web

Desempeño en tiempo de respuesta
Rapidez de generación de página
Rapidez de generación de gráficos

Fácil de corregir
Adaptabilidad
Extensibilidad

1 Estos atributos de calidad sori muy similares a los que se presentan en los capítulos 9, 15 y 26
lo tanto, se deduce que las características de calidad son universales para todo el software.

TM

PDF Editor

C A P I T U L O 1 9 MODELADO DE DISEÑO P A R A APLICACIONES WEB 5 6 9

Seguridad. Las WebApps se han convertido en una parte integral de las bases de
p r i n c i p a - datos cruciales del gobierno y las empresas. Las aplicaciones de comercio electróni-

co extraen y luego almacenan información confidencial de los clientes. Por éstas y
muchas otras razones, la seguridad de las WebApps es primordial en muchas situa-
ciones. La medida clave de la seguridad es la habilidad de la WebApp y su ambiente
de servidor de rechazar el acceso no autorizado e impedir un franco ataque malévo-
lo. Un análisis detallado de la seguridad WebApp está más allá del alcance de este
libro. El lector interesado debe consultar [MCC01], [NOR02] o [KAL03].

Disponibilidad. Incluso la mejor WebApp no satisfará las necesidades de los
usuarios si no está disponible. En un sentido técnico, la disponibilidad es la medida
del porcentaje del tiempo que una WebApps está disponible para usarla. El usuario
final común espera que las WebApps estén disponibles las 24 horas de todos los días
del año. Algo menos es considerado inaceptable.2 Pero "a tiempo" no es el único in-
dicador de disponibilidad. Offutt [C)FF02j sugiere que "usar características disponi-
bles sólo en un navegador o una plataforma" hace que la WebApp no esté disponi-
ble para quienes tengan una configuración de navegador y plataforma diferente. El
usuario invariablemente se irá a otra parte.

Escalabilidad. ¿La WebApp y su ambiente de servidor pueden escalarse para ma-
nejar 100, 1 000, 10 000 o 100 000 usuarios? ¿La WebApp y los sistemas con los cua-
les está conectada manejan variaciones significativas en el volumen o la capacidad
de respuesta caerá catastróficamente (o cesará por completo)? No es suficiente
construir una WebApp exitosa. Es igualmente importante construir una WebApp que
pueda acomodar el peso del éxito (significativamente más usuarios finales) y volver-
se todavía más exitosa.

Tiempo en el mercado. Aunque en sentido técnico el tiempo en el mercado no
es un verdadero atributo de calidad, es una medida de calidad desde un punto de vis-
ta de los negocios. La primera WebApp en el mercado usualmente captura un núme-
ro desproporcionado de usuarios finales.

Cientos de miles de páginas Web están disponibles para quienes busquen informa-
ción en la World Wide Web. Incluso las búsquedas Web mejor dirigidas resultan en
una avalancha de contenido. Con tantas fuentes de información de las cuales elegir,
¿cómo valora el usuario la calidad (por ejemplo, veracidad, precisión, integridad,
oportunidad) del contenido que se presenta dentro de una WebApp? Tillman |TIL00]
sugiere un conjunto de criterios útil para valorar la calidad del contenido:

• ¿El ámbito y la profundidad del contenido se pueden determinar con facilidad
para asegurar que satisfacen las necesidades del usuario?

2 Desde luego, esta expectativa es irreal Las grandes WebApps deben planificar el "periodo de inac-
tividad" para reparaciones y actualizaciones.

TM

PDF Editor

570 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

INFORMACIÓN
Lista de verificación de la calidad

, La siguiente lista de verificación, adaptada de
la información presentada en Webreference.

com, proporciona un conjunto de preguntas que ayudarán
tanto a los ingenieros Web como a los usuarios finales a
valorar la calidad global de una WebApp:

• ¿El contenido, la función o las opciones de navegación
pueden ajustarse a las preferencias del usuario?

• ¿El contenido o la funcionalidad se pueden personalizar
al ancho de banda en el cual se comunica el usuario?

• ¿Las gráficas y los otros medios que no son textuales se
han usado de manera apropiada? ¿El tamaño de los ar-
chivos gráficos está optimizado para que se desplie-
guen con eficiencia?

del diseño de la WebApp
• ¿Las tablas están organizadas y dimensionadas en una

forma que las hace comprensibles y que se desplieguen
eficientemente?

• ¿El HTML está optimizado para eliminar ineficiencias?

• ¿El diseño global de la página facilita la lectura y la na-
vegación?

• ¿Todos los punteros (vínculos) proporcionan vínculos cor
información interesante para los usuarios?

• ¿Es probable que la mayoría de los vínculos persistan
en la Web?

• ¿La WebApp está instrumentada con utilidades de ges
tíón del sitio que incluyan herramientas para rastrear >.
uso, prueba de vínculos, búsqueda local y seguridad?

/

7 ¿ Q u é s e
w d e b e r í a
c o n s i d e r a r c u a n -
d o s e v a l o r e e l
c o n t e n i d o d e ca-
l i d a d ?

Además de estas preguntas relacionadas con el contenido, se pueden añadir las a
guientes:

• ¿El contenido e s creíble?

• ¿El contenido es único? Esto es, ¿la WebApp proporciona algún beneficio u n
co a quienes la usen?

• ¿El contenido e s valioso para la comunidad de usuarios a que se dirige?

• ¿El contenido está bien organizado? ¿Está en un Índice? ¿Es fácilmente ac:ü»
sible?

La lista de verificación anotada en esta sección sólo representa una pequeña m j d
tra de los asuntos que deben abordarse conforme evolucione el diseño de una WebAjJ
Una meta importante de la ingeniería Web es desarrollar sistemas en los que se r r j
porcionen respuestas afirmativas a todas las preguntas relacionadas con la c a l i i J

"Solo porque puedes, no significo que debes ."

Jean Kásv

• ¿Los antecedentes y la jerarquía de los autores del contenido se pueden iden-
tificar fácilmente?

• ¿Es posible determinar la precisión del contenido, la última actualización y »
que fue actualizado?

• ¿El contenido y su ubicación son estables (es decir, permanecerán en la UR_
de referencia)?

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 571

19.1.2 Metas de diseño
En su columna regular acerca del diseño Web, Jean Kaiser [KAI02] sugiere las si-
guientes metas de diseño, que son aplicables virtualmente a toda WebApp sin im-
portar el dominio, tamaño o complejidad de la aplicación:

Simplicidad. Aunque pueda parecer pasada de moda, la expresión "todo con mo-
deración" se aplica a las WebApps. Existe una tendencia entre algunos diseñadores
a proporcionar al usuario final "demasiado": contenido exhaustivo, efectos visuales
extremos, animación entrometida, enormes páginas Web, la lista es larga. Es mejor
luchar por la moderación y la simplicidad.

Consistencia. Esta meta de diseño se aplica virtualmente a cada elemento del
modelo de diseño. El contenido se debe construir de manera consistente (por ejem-
plo, el formato del texto y los estilos de fuente deben ser los mismos a lo largo de to-
dos los documentos de texto; el arte gráfico debe tener una apariencia consistente,
esquema de color y estilo). El diseño gráfico (estética) debe presentar una aparien-
cia consistente en todas las partes de la WebApp. El diseño arquitectónico debe es-
tablecer plantillas que conduzcan a una estructura hipermedia consistente. El diseño
de interfaz debe definir modos consistentes de interacción, navegación y despliegue
de contenido. Los mecanismos de navegación deben usarse de manera consistente
a través de todos los elementos de la WebApp.

Identidad. La estética, la interfaz y el diseño de navegación de una WebApp de-
ben ser consistentes con el dominio de la aplicación para la cual se va a construir.
Un sitio Web para un grupo hip-hop indudablemente tendrá una apariencia y un sen-
tido diferente al de una WebApp diseñada para una compañía de servicios financie-
ros. La arquitectura de WebApp será completamente diferente, las interfases se
construirán para acomodar diferentes categorías de usuarios, la navegación estará
organizada para lograr diferentes objetivos. Un ingeniero Web (y otros contribuyen-
tes de diseño) deberá trabajar para establecer una identidad para la WebApp por me-
dio del diseño.

Robustez. Con base en la identidad establecida, usualmente una WebApp hace
una "promesa" implícita al usuario. El usuario espera contenido y funciones robus-
tas que sean relevantes para sus necesidades. Si dichos elementos están perdidos o
son insuficientes es probable que la WebApp fracase.

Navegabilidad. Ya se ha señalado que la navegación debe ser simple y consisten-
te. También debe estar diseñada de modo que sea intuitiva y predecible. Esto es, el
usuario debe entender cómo moverse por la WebApp sin tener que buscar vínculos
o instrucciones de navegación.

Apariencia visual. De todas las categorías de software, las aplicaciones Web son
incuestionablemente las más visuales, las más dinámicas y sin duda las más estéti-
cas. Es indudable que la belleza (apariencia visual) está en el ojo del observador, pero
muchas características de diseño (por ejemplo, la apariencia y sentido del contení-

TM

PDF Editor

572 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

do, la plantilla de la interfaz, la coordinación del color, el equilibrio del texto, los gna I
fieos y otros medios audiovisuales, los mecanismos de navegación) sí contribuyen i I
aspecto visual.

Compatibil idad. Una WebApp se utilizará en una diversidad de ambientes (pc*|
ejemplo, diferentes equipos, tipos de conexión a Internet, s is temas operativos, nave-I
gadores) y se debe diseñar para que sea compatible con cada uno.

— — — - - - — " ~

" P o r a a l g u n o s , el d i s e ñ o W e b se e n f o c a e n la a p a r i e n c i a y s e n t i d o v i s u a l e s . . . p o r a o t ros , el d i s e ñ o W e b t r a t a d e la e s
t r u c t u r a c i ó n d e i n f o r m a c i ó n y la n a v e g a c i ó n a t r a v é s del e spoc io d e l d o c u m e n t o . O t r o s inc luso p u e d e n c o n s i d e r a r q u e
e l d i s e ñ o W e b t r a t a a c e r c o d e la t e c n o l o g í a e m p l e a d o p a r a cons t ru i r ap l i cac iones W e b i n t e r a c t i v a s . En r e a l i d a d , el d ise
ñ o inc luye t o d a s e s tos f a c t o r e s y o c a s o m á s . "

T h o m a s P o w e l

1 9 . 2 P I R Á M I D E D E L D I S E Ñ O I W E B

¿Qué es diseño en el contexto de la ingeniería Web? Esta pregunta simple e s más J É
ficil de responder de lo que uno puede creer. El diseño conduce a un modelo q J
contiene la mezcla adecuada de estética, contenido y tecnología. La mezcla varaba
dependiendo de la naturaleza de la WebApp, y, como consecuencia, las a c t i v i d a d
de diseño también variarán.

La figura 19.2 muestra una pirámide de diseño para la ingeniería Web. Cada r va
de la pirámide representa una de las siguientes actividades de diseño.-

• Diseño de la interfaz: describe la estructura y organización de la interfaz de
usuario. Incluye una representación de la plantilla de pantalla, una definid : r
de los modos de interacción y una descripción de los mecanismos de navega-)
ción.

• Diseño estético: también l lamado diseño gráfico, describe la "apariencia y
sentimiento" de la WebApp. Incluye e squemas de color, plantilla geométrica |
t amaño de texto, fuente y ubicación, uso de gráficos y decisiones estéticas ¡ n
lacionadas.

• Diseño de contenido: define la plantilla, la estructura y el bosquejo de todc d
contenido que se presenta como parte de la WebApp. Establece las relacio"<a
entre los objetos de contenido.

• Diseño de navegación: representa el flujo de navegación entre los objetos d a
contenido y para todas las funciones de la WebApp.

• Diseño arquitectónico: identifica la estructura hipermedia global para la I
WebApp.

• Diseño de componentes: desarrolla la lógica de procesamiento detallado c j q
se requiere para implementar componentes funcionales.

En las secciones que siguen se consideran con mayor detalle cada una de
actividades de diseño.

CLAVE
lo IWeb abarca seis
diferentes tipos de
diseño. Cada uno
contribuye o la calidad
global de la WebApp.

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 573

1 9 . 3 D I S E Ñ O PE LA INTERFAZ PE LA W E B A P P 3

Toda interfaz del usuario —ya sea diseñada para una WebApp, una aplicación de
software tradicional, un producto de consumo o un dispositivo industrial— debe pre-
sentar las siguientes características: fácil de usar, fácil de aprender, fácil de navegar,
intuitiva, consistente, eficiente, libre de errores y funcional. Debe ofrecer al usuario
final una experiencia satisfactoria y gratificante. Los conceptos, principios y métodos
de diseño de la interfaz brindan al ingeniero Web las herramientas requeridas para
lograr esta lista de atributos.

En el capítulo 12 se observó que el diseño de la interfaz comienza no con una
consideración de la tecnología, sino más bien con un cuidadoso examen del usuario
final. Durante el modelado de análisis para la ingeniería Web (Capítulo 18), se desa-
rrolla una jerarquía de usuario. Cada categoría de usuario puede tener necesidades
sutilmente diferentes, tal vez quiera interactuar con la WebApp en diferentes formas
y quizá requiera funcionalidad y contenido únicos. Esta información se deriva duran-
te el análisis de requisitos, pero se revisa como el primer paso en el diseño de la in-
terfaz.

"Si u n si t io e s p e r f e c t a m e n t e u t i i izoble p e r o co rece d e un es t i lo d e d i seño e l e g a n t e y a d e c u a d o , f r a c a s a r á . "

Cur t C l o n i n g e r

Dix [DIX99] argumenta que un ingeniero Web debe diseñar una interfaz de modo
que responda tres preguntas primarias para el usuario final:

3 La mayoría de, si no es que todas, las directrices presentadas en el capitulo 12 se aplican igualmen-
te al diseño de interfases WebApp. Si todavía no lee ei capitulo 12, hágalo en este momento.

TM

PDF Editor

574 P A R T E TRES APLICACIÓN DE LA INGENIERÍA WEB

(CONSEJO^

Si es probable que los
usuarios puedon en-
trar a su WebApp en
varios ubicaciones y
niveles en la jerarquía
de contenido, asegú-
rese de diseñar cada
página con caracterís-
ticas de navegación
que conduzcan al
usuario a los otros
puntos de interés.

\
CLAVE

Uno buena interfaz
WebApp es comprensi-
ble e indulgente, y
ofrece al usuario una
sensación de control.

¿Dónde estoy? La interfaz debe 1) ofrecer una indicación de que se ha tenido ac-
ceso a la WebApp4 y 2) informar al usuario de su ubicación en la jerarquía de conte-
nido.

¿Qué puedo hacer ahora? La interfaz siempre debe ayudar al usuario a entender
sus opciones actuales: qué funciones están disponibles, qué vínculos están vivos,
qué contenido es relevante.

¿Dónde he estado, a dónde voy? La interfaz debe facilitar la navegación. En conse-
cuencia, debe proporcionar un "mapa" (implementado en una forma fácil de entender;
de dónde ha estado el usuario y qué rutas puede tomar para moverse a cualquie:
parte dentro de la WebApp.

La interfaz de una WebApp efectiva debe proporcionar respuestas a cada una de es-
tas preguntas conforme el usuario final navega a través del contenido y la funciona-
lidad.

19.3.1 Principios y directrices del diseño de la interfaz
Bruce Tognozzi [TOGOl] define un conjunto de características fundamentales
deben presentar todas las interfaces y, al hacerlo, establece una filosofía que
seguir todo diseñador de interfaz de WebApp:

Las interfaces efectivas son visualmente aparentes e indulgentes, e implantan en sus
usuarios una sensación de control. Los usuarios ven rápidamente la envergadura de sus op-
ciones, comprenden cómo lograr sus metas y hacen su trabajo.

Las interfaces efectivas no preocupan al usuario con los trabajos internos del sistema

El t rabajo se guarda de manera cuidadosa y continua, con la opción total de que el usua-
rio deshaga cualquier actividad en cualquier tiempo.

Las aplicaciones y servicios efectivos realizan un máximo de trabajo mientras deman-
dan un mínimo de información a los usuarios.

Con la finalidad de diseñar interfaces que muestren dichas características, T¡.
nozzi [TOGOl] identifica un conjunto de principios de diseño primordiales:5

Anticipación: una WebApp se debe diseñar de modo que anticipe el siguiente
miento del usuario. Por ejemplo, considere una WebApp de soporte al cliente
rrollada para un fabricante de impresoras para computadora. Un usuario ha solic:
un objeto de contenido que presenta información acerca de un controlador de
presora para un s i s tema operat ivo l anzado rec ientemente . El d iseñador tie
WebApp debe anticipar que el usuario pueda solicitar una descarga del contro

Todas las personas han marcado alguna página de un sitio Web, sólo para volver a visitarla maí
de y no tener que dar indicaciones del sitio Web o del contexto de la página (asi como para
moverse hacia otra ubicación dentro del sitio).
Los principios originales de Tognozzi se han adaptado y extendido con el fin de aprovech
este libro. Véase ¡TOGOl] para mayores detalles acerca de estos principios.

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO d e d e e ñ o p a e a a p l i c a c i o n e s w e b 575

y debe proporcionar facilidades de navegación que permitan hacerlo sin solicitarle al
usuario una búsqueda de esta capacidad.

V E Comunicación: la interfaz debe comunicar el estado de cualquier actividad que haya
de una iniciado el usuario. La comunicación puede ser obvia (por ejemplo, un mensaje de

estar di- texto) o sutil (por ejemplo, una hoja de papel que se mueva a través de una impre-
sora para indicar que la impresión está en camino). La interfaz también debe comu-
nicar el estado del usuario (por ejemplo, la identificación del usuario) y la ubicación
dentro de la jerarquía de contenido de la WebApp.

Consistencia: el uso de los controles de navegación, menús, iconos y estética (por
ejemplo, color, forma, plantilla) deben ser consistentes a través de toda la WebApp. Por
ejemplo, si el texto subrayado de azul implica un vínculo de navegación, el conteni-
do nunca debe incorporar texto subrayado en azul que no implique un vínculo. To-
da característica de la interfaz debe responder en una forma que sea consistente con
las expectativas del usuario.6

Autonomía controlada: la interfaz debe facilitarle al usuario el movimiento a través de
toda la WebApp, pero lo debe hacer en una forma que refuerce las convenciones de na-
vegación establecidas para la aplicación. Por ejemplo, la navegación hacia porciones
seguras de la WebApp se deben controlar con la identificación del usuario y su con-
traseña, y no debe existir mecanismo de navegación que permita al usuario dar la
vuelta a dichos controles.

Eficiencia: el diseño de la WebApp y su interfaz deben optimizar la eficiencia laboral
del usuario, no la eficiencia del ingeniero Web que la diseña y la construye o el ambien-
te cliente-servidor que la ejecuta. Tognozzi [TOGOl] señala esto cuando escribe: "Es-
ta simple verdad es por lo que es importante para todos los involucrados en un pro-
yecto de software el apreciar la importancia de hacer propia la meta de productivi-
dad del usuario y entender la diferencia vital entre construir un sistema eficiente y
fortalecer a un usuario eficiente."

Flexibilidad: la interfaz debe ser lo suficientemente flexible como para permitir que al-
gunos usuarios realicen tareas directamente y otros exploren la WebApp en una forma
un tanto aleatoria. En todo caso, debe permitirle al usuario entender dónde está y
ofrecerle la funcionalidad para que pueda deshacer los errores y volver a trazar las
rutas de navegación mal elegidas.

Enfoque: la interfaz de la WebApp (y el contenido que presenta) debe enfocarse en
la(s) tarea(s) importante(s) para el usuario. En toda hipermedia existe una tendencia
para dirigir al usuario hacia contenido mal relacionado. ¿Por qué? ¡Porque es muy
fácil hacerlo! El problema es que el usuario rápidamente se puede perder en muchas
capas de información de apoyo y perder el sitio del contenido original que quería en
primer lugar.

6 Tognozzi [TOGOl] señala que la única forma de garantizar que las expectativas del usuario se com-
prendan adecuadamente es mediante una amplia prueba ror parte del usuario (capítulo 20)

TM

PDF Editor

576 P A R T E T R E S APLICACIÓN DE LA INGENIERÍA WEB

R e f e r e n c i a W e b

Web d e s a t e ú muchos

API en ¡ a v a . s u i u o m

o COtó, DCOM y

msdn.Microsoft.
caai.

Ley de Fitt: "El tiempo para adquirir un objetivo es una Junción de la distancia a la que
se halla y de su tamaño" [TOGOl). Con base en un estudio realizado en la década de
1950 [F1T54], la ley de Fitt "es un método efectivo de modelar rápidos movimientos
dirigidos, donde un apéndice (como una mano) parte del reposo en una posición de
inicio específica y se mueve hacia el reposo dentro de una área establecida como ob-
jetivo" [ZHA02], Si una tarea del usuario define una secuencia de selecciones o entradas
estandarizadas (con muchas opciones diferentes dentro de la secuencia), la primer;
selección (por ejemplo, selección de ratón) debe estar físicamente cerca de la siguien
te selección. Por ejemplo, considere la interfaz de la página de inicio de una WebApp
en un sitio de comercio electrónico que vende aparatos electrodomésticos.

Cada opción del usuario implica un conjunto de elecciones o acciones de segui-
miento del usuario. Por ejemplo, una opción "comprar un producto" requiere que e
usuario ingrese una categoría de producto seguida por el nombre de éste. La cate-
goría del producto (por ejemplo, equipo de audio, televisores, reproductores de D \ T i |
aparece como un menú desplegable tan pronto como se selecciona "comprar un pro-
ducto". En consecuencia, la siguiente elección es inmediatamente obvia (está cercaij
y el tiempo para adquirir es despreciable. Si, por otra parte, la elección aparece en
un menú ubicado en el otro lado de la pantalla, el tiempo para que el usuario lo s i -
quiera (y luego realice la elección) será demasiado.

Objetos de interfaz humana: Se ha desarrollado una gran librería de objetos de intt'
faz humana reutilizables para WebApps. Úselas. Es posible adquirir, de varias libreras
de objetos, cualquier objeto de interfaz que pueda ser "visto, escuchado, tocado o x
algún otro modo percibido" [TOGOl] por un usuario final.

Reducción de latencia: Más que obligar al usuario a esperar el fin de alguna operj*
ción interna (por ejemplo, descargar una imagen gráfica compleja), la WebApp debe usJ
la multitarea en una forma que permita al usuario proceder con el trabajo como s. ¡
operación hubiese sido completada. Además de reducir la latencia, las demoras debea
reconocerse de modo que el usuario comprenda lo que está ocurriendo. Esto inc. j l
ye 1) proporcionar retroalimentación de audio (por ejemplo, un "clic" o c a m p a n a c J
cuando una selección no genera una acción inmediata de la WebApp; 2) despletaB
un reloj animado o barra de progreso para indicar que el procesamiento está en m a n
cha; 3) ofrecer algún entretenimiento (por ejemplo, una animación o presentación á l
texto) mientras ocurra un procesamiento largo.

] "El m e j o r v i a j e e s el q u e t i e n e e l m e n o r n ú m e r o d e p a s o s . Acorte la d i s t anc ia e n t r e el u s u a r i o y su m e t a . "

Facilidad de aprendizaje: La interfaz de una WebApp se debe diseñar para minirr .: J
el tiempo de aprendizaje y, una vez aprendido, reducir el reaprendizaje requerido cun> |
do se vuelve a visitar la WebApp. En general, la interfaz debe acentuar un diseño s i J
pie e intuitivo que organice el contenido y la funcionalidad en categorías obvias : J
ra el usuario.

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 577

•
i son una

¡poique
r faenando

Sólo
ique

¡queseeli-
lanoádo

usuarios

Metáforas: una interfaz que utilice una metáfora de interacción es más fácil de apren-
der y de usar, en tanto la metáfora sea apropiada para la aplicación y el usuario. Una
metáfora debe llamar imágenes y conceptos de la experiencia del usuario, pero no
necesita ser una reproducción exacta de una experiencia del mundo real. Por ejemplo,
un sitio de comercio electrónico que implementa el pago de cuentas automatizado pa-
ra una institución financiera usa una metáfora de lista de verificación (no de manera
sorprendente) para asistir al usuario en la especificación y la calendarización de los
pagos de cuentas. Sin embargo, cuando un usuario "escribe" un cheque, no necesita
ingresar el nombre completo del pagador sino que puede elegir de una lista de paga-
dores o hacer que el sistema seleccione con base en las primeras letras escritas. La
metáfora permanece intacta, pero el usuario obtiene asistencia de la WebApp.

Mantener la integridad del producto de trabajo. Un producto de trabajo (por ejemplo,
una forma completada por el usuario, una lista especificada por el usuario) debe guardar-
se de manera automática de modo que no se perderá si ocurriese un error. Todo mundo
ha experimentado la frustración asociada con el hecho de completar un gran formu-
lario WebApp sólo para que el contenido se pierda debido a un error (que comete el
usuario, la WebApp o la transmisión de cliente a servidor). Para evitar esto la WebApp
se debe diseñar para autoguardar todos los datos especificados por el usuario.

Legibilidad: toda la información presentada a través de la interfaz debe ser legible pa-
ra jóvenes y viejos. El diseñador de la interfaz debe enfatizar los estilos de letra legi-
ble, t amaños de fuente y opciones de fondo de color que mejoren el contraste.

Estado de rastro: Cuando sea adecuado, el estado de la interacción del usuario debe
rastrearse y almacenarse de modo que un usuario pueda salir y regresar más tarde al lu-
gar de donde salió. En general, las cookies se pueden diseñar para a lmacenar infor-
mación de estado. Sin embargo, las cookies son una tecnología controvertida, y ot ras
soluciones de diseño pueden ser más aceptables para a lgunos usuarios.

Navegación visible: una interfaz de WebApp bien diseñada proporciona "la ilusión de
que los usuarios están en el mismo lugar, y que se les lleva el trabajo hasta sus lugares"
[TOGOl]. Cuando se usa es te enfoque la navegación no es preocupación del usuario.
En lugar de eso, el usuario recupera objetos de contenido y selecciona funciones que
se despliegan y ejecutan por medio de la interfaz.

i a c t o r e s : Doug Miller (gerente del grupo de inge
n en'a del software de HogarSeguro) y Vinod Raman,
-¡embro del equipo de ingeniería del software del pro
wcto HogarSeguro.

La c o n v e r s a c i ó n :
D o u g : Vinod, ¿el equipo y tú tuvieron oportunidad de
reviso' el prototipo de la interfaz de comercio electrónico
de HogorSegurolnc.com?

Vinod: Sí . todos lo experimentamos desde un punto

TM

PDF Editor

5 7 8 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

de vista técnico y yo tengo un montón de notas. Ayer se
los envié por correo electrónico a Sharon [gerente del
equipo de ingeniería Web de lo empresa subcontratista
para el sitio Web de comercio electrónico de HogarSe-
güról- !('• •

D o u g : Sharon y tú se pueden reunir y discutir los peque-
ños detalles.. dame un resumen de los conflictos impor-
tante . • < ' "-V ' ' ¡ I t ó í

V i n o d : En general, hicieron un buen trabajo, nada de
labor profunda, pero es una típica interfaz de comercio
electrónico, estética decente, plantilla razonable. Han
considerado todas las funciones importantes...

Doug (sonríe tristemente): ¿Pero?

V i n o d : Bueno, existen algunas cositas...

D o u g : ¿Como cuáles?

Vinod (muestra a Doug una secuencia de bos-
quejos para el prototipo de la interfaz): Aquí
está el menú de funciones principales que se despliega en
!a página de inicio:

Aprenda acerca de HogarSeguro
Describa su casa
Obtenga recomendaciones de componentes
de HogarSeguro
Compre un sistema HogarSeguro
Obtenga soporte técnico

El problema no es con estas funciones, todas están bien,
pero el nivel de abstracción no es el correcto.

D o u g : Todas son funciones principales, ¿no es así?

Vinod: Lo son, pero este es el punto... tú puedes com-
prar un sistema al ingresar una lista de componentes.,
en realidad no necesitas describir la casa, si no quieres
Yo sugerí sólo cuatro opciones de menú en la página de
inicio:

Aprenda acerca de HogarSeguro
Especifique el sistema HogarSeguro que nece-
sita
Compre un sistema HogarSeguro
Obtenga soporte técnico

Cuando selecciones especifique el sistema Hogar-
Seguro q u e n e c e s i t a , entonces tendrás las Siguiente:-
opciones:

Seleccione componentes HogarSeguro
Obtenga recomendaciones de componentes
de HogarSeguro

Si eres un usuario avanzado, seleccionarás componente:
de un conjunto de menús desplegabies categorizados pe
ra sensores, cámaras, paneles de control, etcétera. Si ne-
cesitas ayuda, pedirás una recomendación y ésta
requerirá que describas tu casa. Creo que es un poco
más lógico.

D o u g : Estoy de acuerdo. ¿Ya hablaste con Sharon acer-
ca de esto?

V i n o d : No, primero quiero discutir esto con los de
mercadotecnia; luego le hablaré por teléfono.

Nielsen y Wagner [NIE96] sugieren unas cuantas directrices pragmáticas en el di
seño de interfases (basados en su rediseño de una gran WebApp) que proporcior a
un buen complemento a los principios sugeridos párrafos a t rás en esta sección:

• La rapidez de lectura en un monitor de computadora e s aproximadamente 25
por ciento más lenta respecto de la lectura en impresos. En consecuencia, no
fuerce al usuario a leer voluminosas cantidades de texto, en particular cuandi
se explica la operación de la WebApp o se ofrece ayuda en la navegación.

• Evite los signos de "en construcción", crean expectativas y provocan un víncu.-:
innecesario que e s seguro para la decepción.

• Los usuarios prefieren no desplazarse. La información importante debe es ta :
dentro de las dimensiones de una ventana típica de navegador.

• Los m e n ú s de navegación y los encabezados deben estar d iseñados de mane
ra consistente y deben estar disponibles en todas las páginas que estén dispe-

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 5 7 9

nibles para el usuario. El diseño no debe descansar en las funciones del nave-
gador para asistir en la navegación.

• La estética nunca debe sustituir la funcionalidad. Por ejemplo, un simple bo-
tón puede ser una mejor opción de navegación que una imagen o un icono
estét icamente placenteros pero vagos, cuya intención no es clara.

• Las opciones de navegación deben ser obvias, incluso para el usuario casual.
El usuario no debe tener que buscar en la pantalla para determinar cómo vin-
cularse con otro contenido o servicio.

Una interfaz bien diseñada mejora la percepción del usuario del contenido o servi-
cios que proporciona el sitio. No necesar iamente tiene que ser ostentosa, sino que
siempre debe estar bien estructurada y ergonómicamente saludable.

"Lo gente tiene muy poco paciencia con los sitios WWW pobremente diseñados"
p¿;-. Jakob Nielsen y Annette Wagner

smos

i ósuonibles
; diseñadores

c?

19.3.2 Mecanismos de control de la interfaz
Los objetivos de la interfaz de una WebApp son 1) establecer una ventana consisten-
te con el contenido y la funcionalidad que proporciona, 2) guiar al usuario a través
de una serie de interacciones con la WebApp, y 3) organizar las opciones de nave-
gación y el contenido disponible para el usuario. Lograr una interfaz consistente re-
quiere que el diseñador use primero el diseño estético (sección 19.4) con el fin de es-
tablecer una "apariencia" coherente para la interfaz. Esto abarca muchas caracterís-
ticas, pero debe subrayar la plantilla y la forma de los mecanismos de navegación.
Para guiar la interacción del usuario, el diseñador de la interfaz puede emplear una
metáfora apropiada7 que permita al usuario adquirir una comprensión intuitiva de la
interfaz. Las opciones de navegación las implementa el diseñador seleccionando de
entre varios mecanismos de interacción:

• Mertús de navegación: menús clave (organizados vertical u horizontalmente)
que mencionan contenido o funcionalidad clave. Dichos menús se pueden im-
plementar de modo que el usuario pueda elegir de una jerarquía de sub temas
que se despliegan cuando se selecciona la opción de menú primario.

• ¡conosgráficos: botón, interruptores e imágenes gráficas similares que permi-
ten al usuario seleccionar alguna propiedad o especificar una decisión.

• Imágenes gráficas: alguna representación gráfica que el usuario pueda selec-
cionar y que implemente un vínculo hacia un objeto de contenido o funciona-
lidad de la WebApp.

7 En este contexto, una metáfora es una representación (extraída de la experiencia del mundo real del
usuario) que puede modelarse dentro del contexto de la interfaz Un ejemplo simple puede ser un
interruptor deslizable con que se controla el volumen auditivo de un archivo ,mp3

TM

PDF Editor

5 8 0 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

Es importante anotar que uno o más de dichos mecanismos de control debe propcF]
cionarse en cada nivel de la jerarquía de contenido.

19.3.3 Flujo de trabajo en el diseño de la interíaz
Aunque un análisis detallado del diseño de la interfaz para WebApps es mejor de ; - l
lo a libros de texto que se dedican a la materia (por ejemplo, [GAL02], [RASOOS
[NIE00]), vale la pena echar un vistazo a las tareas de diseño clave. En el capítulo : J
se señaló que el diseño de la interfaz del usuario comienza con la identificación » :
éste, la tarea y los requisitos ambientales. Una vez que se han identificado las tarí
del usuario, se crean y analizan sus escenarios (casos de uso) para definir un coa}
junto de objetos y acciones de interfaz. Este trabajo se representa como parte
modelo de análisis de la WebApp tratado en el capítulo 18.

Las siguientes tareas representan un flujo de trabajo rudimentario para el di
de la interfaz WebApp.

1. Revisar la i n f o r m a c i ó n c o n t e n i d a en e l m o d e l o d e aná l i s i s y ret inarla
c o n f o r m e s e r e q u i e r a .

2 . Desa r ro l l a r u n b o s q u e j o a p r o x i m a d o d e la plant i l la d e la i n t e r f az de
WebApp. Como parte de la actividad de modelado del análisis se pudo haber
desarrollado un prototipo de la interfaz (que incluya la plantilla). Si ya exis.e
la plantilla, debe revisarse y refinarse conforme se requiera. Si no se ha desa-
rrollado la plantilla de la interfaz, el equipo de ingeniería Web debe trabajar
con los participantes para desarrollarla en este momento. En la figura 19.3 se
muestra una primera versión de un bosquejo de plantilla.

Corre lac ión
d e los objeti-
v o s d e l u sua -
rio e n l a s a c -
c i o n e s d e l a
interíaz.

Lisia de objetivos
del usuario

Objetivo #1

Objetivo #2 N

Objetivo #3

Objetivo #4

Objetivo #5

Objetivo #n

Barra de menú
de funciones principóle: I

/

Menú de
navegación

Gráfico, logotipo y nombre de la compañía

3 !

Gráfico

; Texto de la página inicial •

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO P A R A APLICACIONES WEB 5 8 1

3 . Cor re l ac iona r los ob j e t i vos del u s u a r i o con a c c i o n e s e s p e c í f i c a s d e la
in te r faz . Para la gran mayoría de las WebApps, el usuario tendrá un conjunto
relativamente primario de objetivos primarios (usualmente entre cuatro y sie-
te). Éstos deben correlacionarse con acciones específicas de la interfaz, como
se muestra en la figura 19.3.

4 . Definir u n c o n j u n t o d e t a r e a s d e u s u a r i o q u e e s t é n a s o c i a d a s c o n ca -
da acc ión . Cada acción de la interfaz (por ejemplo, "comprar un producto")
está asociada con un conjunto de tareas de usuario. Dichas tareas se identifi-
caron durante el modelado de análisis. Durante el diseño deben correlacio-
narse interacciones específicas que abarquen asuntos de navegación, objetos
de contenido y funciones WebApp.

5. E labora r b o s q u e j o s c o n i m á g e n e s d e la pan ta l l a p a r a c a d a a c c i ó n d e
la in te r faz . Conforme se considera cada acción, se debe crear una secuencia
de imágenes en bosquejo (imágenes de pantallas) para esbozar cómo responde
la interfaz a la interacción del usuario. Se deben identificar los objetos de con-
tenido (incluso si todavía no se diseñan ni desarrollan), se debe mostrar la
funcionalidad de la WebApp y se deben indicar los vínculos de navegación.

6. Ref ina r la plant i l la d e la in te r faz y lo s b o s q u e j o s con el u s o d e en t r a -
d a s d e s d e el d i s e ñ o e s t é t i c o . La plantilla aproximada y los bosquejos los
completan los ingenieros Web, pero la apariencia y la percepción estética para
un gran sitio comercial con frecuencia los desarrolla un artista, en lugar de
profesionales técnicos.

7. Ident i f icar los o b j e t o s d e la i n t e r f az de l u s u a r i o q u e s e r e q u i e r a n p a r a
i m p l e m e n t a r l a . Esta tarea puede requerir una búsqueda en una librería de
objetos existente para encontrar aquellos objetos reutilizables (clases) apro-
piados para la interfaz de la WebApp. Además, en este momento se especifi-
can cualesquiera clases de personalización.

8 . Desa r ro l l a r una r e p r e s e n t a c i ó n d e p r o c e d i m i e n t o d e la i n t e racc ión
de l u s u a r i o con la in te r faz . Esta labor opcional usa diagramas de secuen-
cia UML o diagramas de actividad (estudiados en el capítulo 18) para esbozar
el flujo de actividades (y decisiones) que ocurren conforme el usuario interac-
túa con la WebApp.

9 . Desa r ro l l a r una r e p r e s e n t a c i ó n del c o m p o r t a m i e n t o d e la in te r faz . Es-
ta tarea opcional utiliza diagramas de estado UML (estudiados en el capítulo
18) para representar las transiciones de estado y los eventos que las causan.
Se definen los mecanismos de control (es decir, los objetos y acciones dispo-
nibles con que el usuario altera el estado de una WebApp).

10. Descr ib i r la planti l la d e la i n t e r f az p a r a c a d a e s t a d o . Con el uso de la
información de diseño desarrollada en las tareas 2 y 5, se asocia una plantilla
específica o imagen de pantalla con cada estado de la WebApp descrito en la
tarea 9.

TM

PDF Editor

5 8 2 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

11. R e f i n a r y r e v i s a r e l m o d e l o d e d i s e ñ o d e la i n t e r f a z . La revisión de la in-
terfaz se debe enfocar en la facilidad de uso (capítulo 12).

Es importante notar que el conjunto de tareas finales que haya elegido un equipo de
ingeniería Web se debe adaptar a los requisitos especiales de la aplicación que se va
a construir.

1 9 . 4 D I S E Ñ O

^ O N S E J O ^ -

No todo ingeniero Web
(o ingeniero efe software)
tiene talento artístico
(estético). Si se está en
esto cotegorio, contrátese
anáseñadorgiúko

estético.

El diseño estético, también l lamado diseño gráfico, e s un esfuerzo artístico que com-
plementa los aspectos técnicos de la ingeniería Web. Sin él, una WebApp puede ser
funcional, pero sin atractivo. Con él, una WebApp lleva a sus usuarios a un munde
que los incluye en un ámbi to tanto emocional como intelectual.

Pero, ¿qué e s estética? Existe un viejo dicho: "la belleza existe en los ojos de quier
la ve". Esto es part icularmente apropiado cuando se considera el diseño estético pa-
ra las WebApps. Para realizar un diseño estético efectivo, de nuevo se regresa a la
jerarquía de usuarios desarrollada como parte del modelo de análisis (capítulo 18> :
s e pregunta quiénes son los usuarios de la WebApp y qué "apariencia" desean.

"Encontramos que la gente rápidamente evalúa un sitio sólo por su diseño visual."
Directrices Stanford para la credibilidad en ta Web

19.4.1 Cuestiones de la plantilla
Toda página Web tiene una cantidad limitada de "bien inmueble" que puede usars-r
para dar soporte a la estética no funcional, características de navegación, contentó:
de información y funcionalidad dirigida al usuario. El "desarrollo" de es te bien in-
mueble se planea durante el diseño estético.

Al igual que las cuest iones estéticas, no existen reglas absolutas cuando se dise- j
ña u n a plantilla de pantalla. Sin embargo, vale la pena considerar algunos linea-i
mientos generales de plantilla:

No temerle al espacio vacío. No es aconsejable rellenar cada centímetro cuadrad: I
de una página Web con información. El amontonamien to resultante dificulta que e:l
usuario identifique la información o características necesarias y crea un caos visua
desagradable.

Resaltar el contenido. Después de todo, ésta es la razón por la cual el usuario es
tá aquí. Nielsen [NIEOO] sugiere que la típica página Web debe ser 80 por ciento cor-
tenido con el resto del bien inmueble dedicado a navegación y ot ras características.

Organizarlos elementos de plantilla de arriba a la izquierda hacia abajo a la derechc
La gran mayoría de los usuarios explorarán una página Web en gran parte de la mis-l
ma forma en que exploran las páginas de un libro: de arriba a la izquierda hacia aba-j

TM

PDF Editor

C A P I T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 5 8 3

jo a la derecha.8 Si los elementos de plantilla tienen prioridades específicas, los ele-
mentos de mayor prioridad deben colocarse en la porción superior izquierda de la
página bien inmueble.

Agrupar navegación, contenido y Junción geográficamente dentro de la página. Los
humanos buscan patrones virtualmente en todas las cosas. Si no existen patrones
discernibles dentro de una página Web, es probable que aumente la frustración del
usuario (debido a la búsqueda innecesaria de la información requerida).

No extender el bien inmueble con la barra de desplazamiento. Aunque con frecuen-
cia el desplazamiento es necesario, la mayoría de los estudios indican que los usua-
rios preferirían no desplazarse. Es mejor reducir el contenido de la página o presen-
tar el contenido necesario en varias páginas.

Considerar la resolución y el tamaño de la ventana de navegador cuando diseñe planti-
llas. En vez de definir tamaños fijos dentro de una plantilla, el diseño debe especificar
todos los artículos de la plantilla como un porcentaje del espacio disponible [N1E00].

19.4.2 Cuestiones de diseño gráfico
El diseño gráfico considera cada aspecto de la presentación y percepción de una
WebApp. El proceso de diseño gráfico comienza con la plantilla (sección 19.4.1) y
procede hacia la consideración de esquemas de color globales, tipos de fuentes, ta-
maños y estilos, el uso de medios audiovisuales complementarios (por ejemplo, au-
dio, video, animación) y todos los demás elementos estéticos de una aplicación. El
lector interesado puede obtener sugerencias y directrices de diseño en muchos sitios
Web que se dedican al tema (por ejemplo, www.graphic-design.com, www.grantas-
ticdesigns.com, www.wpdfd.com) o de una o más fuentes impresas (por ejemplo,
[BAG01], [CLOO1] o [HEI02]).

INFORMACIÓN

Sitios Web bien diseñados
En ocasiones, la mejor forma de comprender el
buen diseño de las WebApps es observar unos

ejemplos. En su artículo "The Top Twenly W e b De-
Tips" (Las mejores 20 sugerencias pa ra el diseño
, Marcelle Toor (http://www.graphic-design.com/

ure/tips.html) sugiere los siguientes sitios Web
ejemplos de buen diseño gráfico:

primo.com: firma de diseño encabezada por Primo
Angelí.

workbook.com: este sitio sirve como apa rador pa ra
el trabajo de ilustradores y diseñadores.

www.pbs.org/riverofsong: serie de televisión para la radio
y la televisión públicas acerca de la música
estadounidense

www.RKDINC.com: firma de diseño con un portafolios en
línea y buenas sugerencias de diseño.

www.commarts.com/career/index.html: revista Communi-
cation Arts, una publicación periódica para diseñado-
res gráficos. Una buena fuente para otros sitios bien
diseñodos.

www.btdnyc.com: firma de diseño encabezada por Beth
Toudreau.

8 Existen excepciones basadas en la cultura y el idioma, pe ro esta regla se aplica a la mayoría de los
usuarios.

TM

PDF Editor

http://www.graphic-design.com
http://www.wpdfd.com
http://www.graphic-design.com/
http://www.pbs.org/riverofsong
http://www.RKDINC.com
http://www.commarts.com/career/index.html
http://www.btdnyc.com

5 8 4 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

1 9 . 5 D I S E Ñ O P E E C O N T E N I D O

El diseño del contenido se enfoca en dos asuntos de diseño diferentes, cada uno :
abordan individuos con distintos conjuntos de habilidades. El diseño del c o n t e n i ó J
desarrolla una representación de diseño para los objetos de contenido y represer al
los mecanismos que se requieren para que establezcan sus relaciones uno con otr: J
Esta actividad de diseño la dirigen los ingenieros Web.

Además, el diseño de contenido se ocupa de la representación de la informacic-J
dentro de un objeto de contenido específico: actividad de diseño que dirigen los r - J
blicistas, los diseñadores gráficos y otros que generan el contenido de una WebAppl

"Los buenos diseñadores pueden crear normalidad a partir del caos; pueden comunicar las ideas con claridad por me-
dio de la organización y el manejo de las palabras y los dibujos."

m -<• " Jeffery Veer

19.5.1 Objetos de contenido
La relación entre objetos de contenido, definida como parte del modelo de a n á i i s J
WebApp (por ejemplo, figura 18.3), y los objetos de diseño que representan con tenn
do es análoga a la relación entre las clases de análisis y los componentes de diseñ*
descritos en el capítulo 11. En el contexto de la ingeniería Web un objeto de coniam
do está al ineado de manera más cercana con un objeto de dato para sof tware c c e l

R e p r e s e n t a c i ó n
d e l d i s e ñ o d e
los objetos d e
c o n t e n i d o .

ComponentedeProducto

par leNúmero
par teNombre
parte Tipo
descripción
precio

crea rN uevo Artíc u lo j)
desplegarDescripc¡ón()
desplegar EspecTécnica

Es parte d e

Sensor Cómora Panel d e Control CaractSoftware

I

1

Descr i pe i óndeCompon ente

0 . 1

n 1 . . * | 0 . . 1 0 . .11 l |

Desc r i pe iónDeMarketi ng Fotografía Esquema Video Descr ipc iónTécrc ;

•color lexto
e s t ib fuente
tamaño fuente
e spac iado línea
tamaño texto uso
color fondo

dimensión horizontal
dimensión vertical
estilo borde

dimensión horizontal
dimensión vertical
estilo bordo

dimensión horizontal
dimensión vertical
estilo borde
volumen audio

color texto
estilo fuente
tamaño fuente
espacíamiento lire=
tamaño texto imoger
color fondo

•color lexto
e s t ib fuente
tamaño fuente
e spac iado línea
tamaño texto uso
color fondo

dimensión horizontal
dimensión vertical
estilo borde
volumen audio

color texto
estilo fuente
tamaño fuente
espacíamiento lire=
tamaño texto imoger
color fondo

•color lexto
e s t ib fuente
tamaño fuente
e spac iado línea
tamaño texto uso
color fondo

color texto
estilo fuente
tamaño fuente
espacíamiento lire=
tamaño texto imoger
color fondo

color texto
estilo fuente
tamaño fuente
espacíamiento lire=
tamaño texto imoger
color fondo

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 585

! tienden o
r el óesplazo-
i *rtkal más

¡que el
tiento hori-

. ívitelos
s de página

vencional. Un objeto de contenido tiene atributos que incluyen información especi-
fica de contenido (normalmente definida durante el modelado de análisis WebApp)
y atributos específicos de implementación que se especifican como parte del diseño.

Como ejemplo, considérese la clase de análisis que se desarrolló para el sistema
de comercio electrónico HogarSeguro llamado C o m p o n e n t e d e P r o d u c t o que se de-
sarrolló en el capítulo 18 y se representa como aparece en la figura 19.4. En el capí-
tulo 18 se mencionó un atributo descr ipc ión que aquí se representa como una clase
de diseño llamada D e s c r i p c i ó n d e C o m p o n e n t e , compuesta de cinco objetos de
contenido: Desc r ipc iónDeMarke t ing , Fo togra f ía , Desc r ipc iónTécn ica , Esque-
m a y Video, que se muestran como objetos sombreados en la figura. La información
que contiene el objeto de contenido se registra como atributos. Por ejemplo, Foto-
graf ía (una imagen .jpg) tiene los atributos d i m e n s i ó n hor izon ta l , d imens ión
ver t ica l y es t i lo d e b o r d e

Mediante una asociación UML y un agregado9 se pueden representar relaciones
entre los objetos de contenido. Por ejemplo, la asociación UML que se muestra en la
figura 19.4 indica que se emplea una D e s c r i p c i ó n d e C o m p o n e n t e para cada ins-
tancia de la clase C o m p o n e n t e d e P r o d u c t o . D e s c r i p c i ó n d e C o m p o n e n t e está
integrado por los cinco objetos de contenido mostrados. Sin embargo, la multiplici-
dad de notación que se muestra indica que E s q u e m a y v ideo son opcionales (es po-
sible que se presenten cero ocurrencias), se requieren una Desc r ipc iónDeMarke -
t ing y Desc r ipc iónTécn ica , y se aplican una o más instancias de Fotograf ía .

19.5.2 Cuestiones del diseño de contenido
Una vez modelados todos los objetos de contenido, la información que cada objeto
entregará debe crearse y luego formatearse para satisfacer mejor las necesidades del
cliente. La creación del contenido es el trabajo de los especialistas que diseñan el ob-
jeto de contenido al proporcionar un esbozo de la información que se entregará y
una indicación de los tipos de los objetos de contenido genéricos (por ejemplo, tex-
to descriptivo, imágenes gráficas, fotografías) mediante los cuales se entregará la in-
formación. También se puede aplicar el diseño estético (sección 19.4) para represen-
tar la apariencia y percepción adecuados para el contenido.

Conforme se diseñan, los objetos de contenido se "despedazan" [POWOO] para
formar páginas de la WebApp. El número de objetos de contenido que se incorporan
en una sola página es en función de las necesidades del usuario, de las restricciones
impuestas por la rapidez de descarga de las conexiones de Internet y debido a las
restricciones que impone la cantidad de desplazamiento que el usuario tolerará.

El diseño arquitectónico está enlazado con las metas establecidas para la WebApp, el
contenido que se presentará, los usuarios que la visitarán y la filosofía de navega-

9 Ambas representaciones se discuten e n el capi tu: : 8

TM

PDF Editor

5 8 6 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

ción que se establezca. El diseñador arquitectónico debe identificar la arquitectura
de contenido y la arquitectura de la WebApp. La arquitectura de contenido10 se cen-
tra en la forma en la que los objetos de contenido (u objetos compuestos como las
páginas Web) se estructuran para su presentación y navegación. La arquitectura de
WebApp aborda la forma en la que la aplicación se estructura para gestionar la inte-
racción del usuario, manejar las tareas de procesamiento internas, efectuar la nave-
gación y presentar el contenido.

"[l]o estructura arquitectónico de un sitio bien diseñado no siempre es aparente para el usuario... ni lo debe ser."
Thomas Powell

l 3

En la mayoría de los casos, el diseño arquitectónico se dirige en paralelo con e
diseño de la interfaz, el estético y el de contenido. Puesto que la arquitectura Web-
App puede tener una fuerte influencia sobre la navegación, las decisiones tomadas
durante esta actividad de diseño influirán en el trabajo dirigido durante el diseño ce
navegación.

19.6.1 Arquitectura de contenido
El diseño de la arquitectura de contenido se centra en la definición de la estructura h> j
permedia global de la WebApp. El diseño se puede elegir de cuatro diferentes estruc-
turas de contenido [POWOO]:

Las estructuras lineales (figura 19.5) se encuentran cuando es común una secuer-
cia predecible de interacciones (con alguna variación o desviación). Un ejemplo cía-1
sico puede ser una presentación tutorial en la que las páginas de información junt :
con gráficos relacionados, videos cortos o audio se presentan sólo después de que
se ha presentado información de prerrequisitos. La secuencia de la presentación ce
contenido está predefinida y, por lo general, es lineal. Otro ejemplo puede ser u n a j
secuencia de ent radas para comprar un producto, en la cual se debe detallar infor- J
mación específica en un orden específico. En tales casos, son apropiadas las estruc- ¡
turas mostradas en la figura 19.5. Conforme el contenido y el procesamiento se vue.-j
ven más complejos, el flujo meramente lineal mostrado a la izquierda de la figura caí ¡
paso a estructuras lineales más complejas en las que se puede llamar contenido a -:
ternativo u ocurre una desviación para adquirir contenido complementario (estruc-
tura mostrada a la derecha de la figura 19.5).

Las estructuras en retícula (figura 19.6) son una opción arquitectónica aplicafc r:
cuando el contenido de la WebApp está organizado categóricamente en dos (o má= i]
dimensiones. Por ejemplo, considérese una situación en la cual un sitio de c o m e r á : !
electrónico vende palos de golf. La dimensión horizontal de la retícula representa r j
tipo de palo que se vende (por ejemplo, madera , hierro, wedges, putters). La dimer

10 El término arquitectura de información también se utiliza para sugerir estructuras que conducen ;
una mejor organización, etiquetado, navegación y búsqueda de objetos de contenido.

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 587

sión vertical representa las ofertas de varios fabricantes de palos de golf. En conse-
cuencia, un usuario puede navegar la retícula horizontalmente para encontrar la co-
lumna putters y luego verticalmente para examinar las ofertas de aquellos fabricantes
que venden putters. Esta arquitectura de WebApp sólo es útil cuando se encuentra
contenido altamente regular [POWOO],

Las estructuras jerárquicas (figura 19.7) son indudablemente las arquitecturas WebApp
más comunes. A diferencia de las jerarquías de software factorizadas —que se estu-
diaron en el capítulo 10—, que alinean el flujo de control sólo a lo largo de las ramas
verticales de la jerarquía, una estructura jerárquica WebApp se puede diseñar en una
forma que permita (vía ramificaciones de hipertexto) el flujo de control horizontal-
mente, a través de las ramas verticales de la estructura. Por lo tanto, el contenido
presentado en la rama de la extrema izquierda de la jerarquía puede tener vínculos

TM

PDF Editor

PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

1 Estructura
jerárquica .

de hipertexto que conduzcan a contenido que existe en la rama de en medio o a
derecha de la estructura. Sin embargo, se debe señalar que, aunque tales ramifica-
ciones permiten la navegación rápida a través del contenido de la WebApp, pue
conducir a confusión en la parte del usuario.

Una estructura en red o "Web pura" (figura 19.8) es similar en muchos sentidos
la arquitectura que evoluciona para los sistemas orientados a objetos. Los compc
nentes arquitectónicos (en este caso, páginas Web) están diseñados de modo
pueden pasar el control (vía vínculos de hipertexto) virtualmente a cualquier
componente en el sistema. Este enfoque permite una considerable flexibilidad en
navegación, pero al mismo tiempo puede ser confusa para el usuario.

Las estructuras arquitectónicas comentadas en los párrafos precedentes se pue-
de combinar para formar estructuras compuestas. La arquitectura global de una W
App puede ser jerárquica, pero parte de la estructura puede mostrar característi
lineales, mientras que otra parte puede estar en red. La meta para el diseñador
quitectónico es emparejar la estructura WebApp con el contenido que se present
y el procesamiento que se llevará a cabo.

19.6.2 Arquitectura de WebApp
La arquitectura de WebApp describe una infraestructura que permite a un sistema
aplicación basados en Web lograr sus objetivos de negocios. Jacyntho y sus colé
[JAC02] describen las características básicas de esta infraestructura en la forma
guíente:

Las ap l i cac iones d e b e n c o n s t r u i r s e c o n el u s o d e c a p a s e n las q u e s e t o m e n e n c u e n t a las

d i fe ren tes p r e o c u p a c i o n e s ; e n par t icular , los d a t o s d e la ap l icac ión s e d e b e n s e p a r a r d e los

c o n t e n i d o s d e la pág ina (n o d o s d e navegac ión) , y d ichos con ten idos , a su vez , d e b e n es-

ta r c l a r a m e n t e s e p a r a d o s d e la apa r ienc ia y la pe rcepc ión d e la in terfaz (páginas).

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 5 8 9

Los autores sugieren una arquitectura de diseño en tres capas que desacople la
interfaz de la navegación y del comportamiento de la aplicación, y argumentan que
mantener la separación de la interfaz, aplicación y navegación simplifica la imple-
mentación y mejora la reutilización.

La arquitectura de modelo vista controlador (MVC) [KRA88]11 es uno de varios mo-
delos de infraestructura WebApp sugeridos para desacoplar la interfaz del usuario de

V E la funcionalidad y el contenido de información de la WebApp. El modelo (a veces 11a-
MC mado "objeto modelo") contiene todo el contenido específico de la aplicación y la ló-
terfaz gica de procesamiento, e incluye todos los objetos de contenido, el acceso a fuentes

de datos/información externas y toda la funcionalidad de procesamiento que son es-
WebApp pecíficos de la aplicación. La vista contiene todas las funciones específicas de la in-

terfaz y habilita la presentación del contenido y la lógica de procesamiento, e inclu-
ye todos los objetos de contenido, acceso a fuentes de datos/información externas
y a toda la funcionalidad de procesamiento requerida por el usuario final. El contro-
lador gestiona el acceso al modelo y a la vista y coordina el flujo de datos entre ellos.
En una WebApp, "la vista la actualiza el controlador con datos provenientes del mo-
delo con base en la entrada del usuario" [WMT02], En la figura 19.9 se muestra una
representación esquemática de la arquitectura MVC.

En referencia a la figura, las solicitudes o datos del usuario se manejan mediante
el controlador. Éste también selecciona el objeto vista que es aplicable con base en
la solicitud del usuario. Una vez que se determina el tipo de solicitud, se transmite
una solicitud de comportamiento al modelo, que implementa la funcionalidad o re-
cupera el contenido requerido para acomodar la solicitud. El objeto modelo puede
tener acceso a datos almacenados en una base de datos corporativa, como parte de

11 Se debe destacar que MVC es en realidad un patrón de diseño arquitectónico desarrollado por el am
biente Smalltalk (véase ht tp: / /www.cetus-l inks.org oc_sm.alltalk html) y se puede usar para cual
quier aplicación interactiva.

TM

PDF Editor

http://www.cetus-links.org

590 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

¡KM La arqui tec tura MVC (a d a p t a d a d e [JAC02]) .

un almacén de datos local o c o m o una colección de archivos independientes
datos que desarrolla el modelo debe formatearlos y organizados el objeto vista a á m
cuado y luego transmitirlo del servidor de la aplicación de vuelta al navegador b a s a
do en el cliente para que se despliegue en la máquina de éste.

En muchos casos, la arquitectura de WebApp se define dentro del contexto
ambiente de desarrollo en el que la aplicación habrá de implementarse (por ejemr-iJ
ASP.net, JWAA o J2EE). El lector interesado debe ver [FOW03] para una e x p o s i a ú i
ulterior acerca de los ambientes de desarrollo modernos y de su papel en el disc-i^
de las arquitecturas de aplicaciones Web.

1 9 . 7 D I S E Ñ O DE N A V E G A C I Ó N

Una vez establecida la arquitectura de WebApp y la identificación de los comporeÉ
tes (páginas, guiones, applets y o t ras funciones de procesamiento), el diseñador de
be definir las rutas de navegación que habiliten para los usuarios el acceso al c
nido y las funciones de la WebApp. Para lograr es to el diseñador debe 1) idenf
la semántica de navegación para diferentes usuarios del sitio y 2) definir la m

ca (sintaxis) que logra la navegación.

"Sólo espera, Gretel, hasta que la luna se eleve, entontes veremos los trozos de pan que he desparramado, ellos nos
mostrarán de nuevo el camino a tasa."

Tomado de Hansel y

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO P A R A APLICACIONES WEB 591

IVE
describe los
de
: paro cada

350. En
.laUSN
cómo un actor
- entre los
3e contenido o

déla

19.7.1 Semántica de navegación
Al igual que muchas actividades de ingeniería Web, el diseño de navegación comien-
za con una consideración de la jerarquía de usuario y los casos de uso relacionados
(capítulo 18) desarrollados para cada categoría de usuario (actor). Cada actor puede
usar la WebApp de manera un poco diferente y, por tanto, tener diferentes requisitos
de navegación. Además, los casos de uso desarrollados para cada actor definirán un
conjunto de clases que abarcan uno o más objetos de contenido o funciones de la
WebApp. Conforme cada usuario interactúa con la WebApp, encuentra una serie de
unidades semánticas de navegación (USN), "un conjunto de estructuras de informa-
ción y navegación relacionadas que colaboran en el cumplimiento de un subconjun-
to de requisitos de usuario relacionados" [CAC02].

Gnaho y Larcher [GNA99] describen la USN en la forma siguiente:

La es t ruc tu ra d e una USN e s t á c o m p u e s t a d e un c o n j u n t o d e s u b e s t r u c t u r a s de n a v e g a -

ción q u e se l l amarán formas de navegación (FdN). Una FdN rep re sen t a la m e j o r fo rma o

ru ta de n a v e g a c i ó n pa ra los u sua r io s con c ie r tos perf i les p a r a lograr su m e t a o s u b m e t a

d e s e a d a . En c o n s e c u e n c i a , el c o n c e p t o d e FdN e s t á a s o c i a d o con el c o n c e p t o de Perfil de

Usuario.

La es t ruc tura de u n a FdN es tá i n t eg rada con un c o n j u n t o de nodos de navegación (NN)

re l evan tes c o n e c t a d o s por vínculos de navegación, q u e en o c a s i o n e s incluyen o t r a s FdN.

Esto significa q u e las FdN p u e d e n , en sí m i s m a s , s e r a g r e g a d a s p a r a fo rmar u n a FdN d e

nivel super ior , o p u e d e n a n i d a r s e e n cua lqu ie r p ro fund idad .

Para i lustrar el desar ro l lo d e una FdN, c o n s i d é r e s e el c a s o d e u s o seleccionar compo-

nentes HogarSeguro descr i to en la secc ión 18.1.2 y q u e s e r e p r o d u c e a con t inuac ión :

C a s o d e u s o : seleccionar componentes HogarSeguro

E n t o n c e s la WebApp r e c o m e n d a r á c o m p o n e n t e s de p r o d u c t o (por e j emplo , p a n e l e s de

control , s e n s o r e s , c á m a r a s) y o t r a s ca rac te r í s t i cas (por e jemplo , func iona l idad b a s a d a e n

PC i m p l e m e n t a d a en so f tware) p a r a c a d a hab i t ac ión y la e n t r a d a exter ior . Si el u sua r io

solicita opc iones , la WebApp las p r o p o r c i o n a r á si ex is ten . El usua r io o b t e n d r á in fo rma-

ción descr ip t iva y de p rec ios pa ra c a d a c o m p o n e n t e de p roduc to . La WebApp c rea rá y

m o s t r a r á u n a fac tura de ma te r i a l e s c o n f o r m e s e se lecc ionen var ios c o m p o n e n t e s . El

u s u a r i o t ambién podrá n o m b r a r la fac tura d e m a t e r i a l e s y gua rda r l a p a r a re fe renc ia fu tu-

ra (véase c a s o de uso: guardar configuración).

Los artículos subrayados en la descripción del caso de uso representan clases y ob-
jetos de contenido que serán incorporados en una o más FdN que permitirán a un
nuevo cliente realizar el escenario descrito en el caso de uso seleccionar componen-
tes HogarSeguro.

La figura 19.10 bosqueja un análisis semántico parcial de la navegación que im-
plica el caso de uso seleccionar componentes HogarSeguro. Con la aplicación de la
terminología introducida anteriormente, la figura también representa una FdN para
la WebApp HogarSegurolnc.com. Se muestran importantes problemas en las clases
de dominio junto con objetos de contenido seleccionados (en este caso, el paquete

TM

PDF Editor

592 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

«vínculo de n a v e g a c i ó n » *—I—
recomendar componenle(s) ComponentedeProducto

Habitación

«vinculo de n a v e g a c i ó n »
\ regresar a Habitación

«vinculo de n a v e g a c i ó n »
comprar ComponentedeProducto inculo de n a v e g a c i ó n »

mostrar descripción FacturaDeMateriales
«v íncu lo de n a v e g a c i ó n »

ver FacturaDeMateriales
DescripciónDeComponente

Descripción DeMarketing

fotografía DescripciónTécnica

esquema

Creación de una USN.
«vínculo de n a v e g a c i ó n »

solicitar alternativa

«v íncu lo de n a v e g a c i ó n »
seleccionar Habitación

«v incu lo de n a v e g a c i ó n »
mostrar ComponentedeProducto

«v íncu lo de n a v e g a c i ó n »
comprar ComponentedeProducto

"El problema de ta navegación en el sitio Web es conceptual, técnico, espacial, filosófico y logístico. Consecuentemente
los soluciones tienden a pedir combinaciones de arte, ciencia y psicología organizacional improvisadas y complejos.'

TimHorgai

19.7.2 Sintaxis de navegación
Conforme el diseño se lleva a cabo se define la mecánica de navegación. Entre ir J
chas posibles opciones están:

• Vínculo de navegación individual: vínculos basados en texto, iconos, botones t j
interruptores, y metáforas gráficas.

de objetos de contenido llamado Desc r ipc iónComp, un atributo de la clase Com-
p o n e n t e d e P r o d u c t o) . Dichos artículos son nodos de navegación. Cada una de las
flechas representa un vínculo de navegación12 y está etiquetado con la acción quel
inicia el uso que causa que el vínculo ocurra.

El diseñador de la WebApp crea una unidad semántica de navegación (USN) paral
cada caso de uso asociado con cada papel de usuario [GNA99]. Por ejemplo, u d
c l ien te n u e v o (figura 18.1) puede tener tres diferentes casos de uso, y todos res j l
tan en acceso a diferente información y funciones de la WebApp. Para cada meta sel
crea una USN.

Durante las etapas iniciales del diseño de navegación se valora la arquitectura d a
contenido de la WebApp para determinar una o más FdN para cada caso de uso. C
mo se anotó anteriormente, una FdN identifica los nodos de navegación (por ejeT-J
pío, contenido) y los vínculos que permiten la navegación entre ellos. Entonces . a l
FdN se organizan en USN.

12 Eri ocasiones, a és tos se les conoce como vínculos semánticos de navegación (VSN) [CAC02]

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA A P U C A C I O N E S WEB 5 9 3

i délas
l ¡frise
5 *

r "mortal
¡no

*

• Barra de navegación horizontal: lista de las principales categorías de conte-
nido o funcionales en una barra que contiene vínculos adecuados. En general,
se mencionan entre cuatro y siete categorías.

• Columna de navegación vertical: 1) lista de las principales categorías de conte-
nido o funcionales, o 2) lista de virtualmente todos los principales objetos de
contenido dentro de la WebApp. Si se elige la segunda opción, tales co lumnas
de navegación se pueden "expandir" para presentar objetos de contenido co-
mo parte de una jerarquía.

• Pestañas: una metáfora que no es más que una variación de la barra o colum-
na de navegación, que representa las categorías de contenido o funcionales
como marcas que se seleccionan cuando se requiere un vínculo.

• Mapas de sitio: proporcionan una tabla de contenido incluyente para la nave-
gación hacia todos los objetos de contenido y funcionalidad contenidos en la
WebApp.

Además de elegir los mecanismos de navegación, el diseñador también debe esta-
blecer convenciones y auxiliares de navegación adecuados. Por ejemplo, iconos y
vínculos gráficos que deben parecer "oprimibles" mediante el biselado de los bordes
para que la imagen tenga una apariencia tridimensional. Debe diseñar retroalimen-
tación visual o de audio para ofrecer al usuario un indicador de que ha elegido una
opción de navegación. En la navegación basada en texto debe usarse color para in-
dicar los vínculos de navegación y proporcionar un indicador de los vínculos ya reco-
rridos. Éstas son sólo algunas de las docenas de convenciones de diseño que hacen la
navegación amigable al usuario.

Las modernas aplicaciones Web entregan funciones de procesamiento cada vez más
elaboradas que 1) realizan procesamiento localizado para generar capacidad de
contenido y navegación en una forma dinámica; 2) ofrecen capacidades de compu-
tación o procesamiento de datos que son adecuadas para el dominio de negocios de
la WebApp; 3) proporcionan cuest ionamientos y acceso sofisticados a bases de da-
tos, 4) establecen interfases de datos con s is temas corporativos externos. Para lograr
es tas (y muchas otras) capacidades, el ingeniero Web debe diseñar y construir com-
ponentes de programa que sean idénticos en forma a los componentes de software
para el sof tware convencional.

En el capítulo 11 se considera con cierto detalle el diseño al nivel de componen-
tes. Los métodos de diseño estudiados en el capítulo 11 se aplican a los componentes
WebApp con poca, si acaso, modificación. El ambiente de implementación, los len-
guajes de programación y los pat rones de reutilización, marcos de t rabajo y sof twa-
re pueden variar un poco, pero el enfoque de diseño global permanece igual.

TM

PDF Editor

5 9 4 PAUTE TRES APLICACIÓN DE LA INGENIERÍA WEB

1 9 . 9 P A T R O N E S DE D I S E Ñ O H I P E R M E D I A

Los pat rones de diseño aplicados en ia ingeniería Web abarcan dos grandes clasesJ
1) patrones de diseño genérico que son aplicables a todos los tipos de software lp:rl
ejemplo, [BUS96] y |GAM95]) y 2) patrones de diseño hipermedia que son específiccsl
de las WebApp. En el capítulo 9 se trataron los pat rones de diseño genérico. A tra-l
vés de Internet se puede tener acceso a varios catálogos y a lmacenes de patrones o d
hipermedia.1 3

"Cada potrón es una regla de tres partes que expresa una relación entre cierto contexto, un problema y una solución
Christopher Alexander

L_— i :• '' " riir; " _3|

Como se apuntó antes en este libro, los patrones de diseño son un enfoque genér -
co para resolver algún pequeño problema de diseño que se puede adaptar a una va-
riedad mucho más amplia de problemas específicos. En el contexto de los sis tema; |
basados en Web, Germán y Cowan [GER001 sugieren las siguientes categorías de pa-1
trones:

P a t r o n e s a r q u i t e c t ó n i c o s . Estos pat rones auxilian en el diseño del contenido y s
arquitectura de la WebApp. Las secciones 19.6.1 y 19.6.2 presentan pat rones arqui-
tectónicos para el contenido y la arquitectura de la WebApp. Además, están disponi-
bles muchos patrones arquitectónicos relacionados (por ejemplo, Java Blueprints e- j
java.sun.com/blueprints/) para los ingenieros Web que deben diseñar WebApps en
una diversidad de dominios de negocios.

P a t r o n e s d e c o n s t r u c c i ó n d e c o m p o n e n t e s . Estos pat rones recomiendan méto-
dos para combinar componen tes WebApp (por ejemplo, objetos de contenido, fur I

*

ciones) en componentes compuestos . Cuando se requiere la funcionalidad de proce-l
Sarniento de datos en una WebApp, son aplicables los pat rones de diseño arquitec-
tónico y al nivel de componen te que proponen [BUS96], 1GAM95] y otros.

P a t r o n e s d e n a v e g a c i ó n . Estos patrones auxilian en el diseño de USN, vínculos tie
navegación y el flujo global de navegación de la WebApp.

P a t r o n e s d e p r e s e n t a c i ó n . Estos pat rones auxilian en la presentación del conte-
nido como se presenta al usuario vía la interfaz correspondiente. Los pat rones en es-
ta categoría abordan cómo organizar las funciones de control de la interfaz del usua-
rio para una mejor facilidad de uso; cómo mostrar la relación entre una acción de la
interfaz y los objetos de contenido que afecta; cómo establecer jerarquías de conte-
nido efectivas; y muchas otras.

P a t r o n e s d e i n t e r a c c i ó n c o m p o r t a m i e n t o / u s u a r i o . Estos pat rones auxilian en
el diseño de la interacción usuario-máquina. Los pa t rones en esta categoría abordan

13 Véase la barra lateral al final de esta sección.

TM

PDF Editor

C A P Í T U L O 1 9 MODELADO DE DISEÑO P A R A APLICACIONES WEB 595

cómo la interfaz informa al usuario de las consecuencias de una acción específica; có-
mo un usuario expande el contenido con base en el contexto de uso y sus deseos;
cómo describir mejor el destino que implica un vínculo; cómo informar al usuario
acerca del estado de una interacción en marcha y otros.

Las fuentes de información acerca de los patrones de diseño hipermedia se han
expandido en forma sustancial en años recientes. Los lectores interesados deben
consultar [GAR97], [PER991 y [GEROO],

HERRAMIENTAS DE SOFTWARE

Almacenes de patrones de diseño hipermedia
El sitio Web lAWiki (http://iowiki.net/Website-
Patterns) es un espacio de discusión conjunto

l nformación de los arquitectos y que contiene muchos
i útiles. Entre ellos están vínculos a varios catálogos

es de patrones hipermedia útiles. Están represen-
¡ ; entos de patrones de diseño:

«én d e patrones de d iseño hipermedia
'www.designpattern.lu.unisi.ch/

lionPatterns d e Tom Erickson
, 'www.pliant.org/personal/Tom__Erickson/lnterac-

ns.html
es d e d iseño W e b d e Martijn vanWelie

'www.welie.com/patterns/

Mejora d e los s i s temas de información W e b
con patrones de navegac ión
http: / /www8.org/w8-papers/5b-hyper1ext-media/ impro-
ving/improving.html
Un patrón de lenguaje HTML 2 . 0
http: / /www.anamorph.com/docs/pat terns/default .html
Terreno común
http://www.mit.edu/~itidwell/interaction_patterns.html
Patrones para sitios W e b persona les
http://www.rdrop.com/--half/Creations/WriHngs/Web.
patterns/index.html
Indice de lenguajes patrón
http://www.es.brown.edu/~rms/lnformationStructures/
Indexing/Overview.html

•DO A OBJETOS (M D H O O)

Durante las pasadas décadas se propusieron varios métodos de diseño para aplica-
ciones Web. A la fecha, ningún método es el dominante. En esta sección se presen-
ta un breve panorama de uno de los métodos de diseño WebApp más ampliamente
analizados: MDHOO.H

El método de diseño hipermedia orientado a objetos (MDHOO) lo propusieron origi-
nalmente Daniel Schwabe y sus colegas [SCH95, SCH98J. El MDHOO está compuesto
de cuatro diferentes actividades de diseño: diseño conceptual, diseño de navegación,
diseño abstracto de la interfaz e implementación. En la figura 19.11 se muestra un
resumen de estas actividades de diseño, y en las secciones que siguen se discuten
brevemente.

19.10.1 Diseño conceptual por el MDHOO
El diseño conceptual mediante el MDHOO crea una representación de los subsiste-
mas, clases y relaciones que definen el dominio de aplicación para la WebApp. Se

14 Koch [KOC99] ha desarrollado una amplia compara; : - de los ciez métodos de diseño hipermedia.

TM

PDF Editor

http://iowiki.net/Website-
http://www.designpattern.lu.unisi.ch/
http://www.pliant.org/personal/Tom__Erickson/lnterac-
http://www.welie.com/patterns/
http://www8.org/w8-papers/5b-hyper1ext-media/impro-
http://www.anamorph.com/docs/patterns/default.html
http://www.mit.edu/~itidwell/interaction_patterns.html
http://www.rdrop.com/--half/Creations/WriHngs/Web
http://www.es.brown.edu/~rms/lnformationStructures/

5 9 6 C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB

R e s u m e n d e l m é t o d o MDHOO (a d a p t a d o d e [SCH95]).

— T ~

— r B

Diseño conceptual Diseño de navegación
Diseño abstracto

d e la interfaz Implementación

Productos de t raba jo
Clases, subsistemas,
relaciones, atributos

Nodos, vínculos,
estructuras
de acceso, contextos
d e navegación,
transformaciones
d e navegación

Objetos abstractos
d e la interfaz, | | -
respuestas a eventos
externos,
transformaciones

WebApp
ejecutable

Mecanismos de diseño

Clasificación,
composición,
agregac ión ,
generalización,
especialización

Correlación entre
objetos conceptúales
y de navegación

Correlación entre
objetos de
navegación
y perceptibles V.

Recurso
proporcionado
por ambiente
objetivo

Preocupaciones de diseño
Modelado d e la
semántica del
dominio
de aplicación

Toma en cuenta
el perfil del usuario
y la tarea . Resalta los
aspectos cognitivos.

Modelado d e los
objetos perceptibles,
implementación d e las
metáforas elegidas.
Descripción de la
interfaz pa ra los
objetos de navegación

Exactitud;
desempeño
d e la ap l icado '
integridad

puede usar15 UML para crear diagramas de clase adecuados, agregados y represen-
taciones de clase compuestas, diagramas de colaboración y otra información que
describe el dominio de la aplicación (véase la Parte 2 de este libro para más detalles-.

Como un ejemplo simple de diseño conceptual del MDHOO, considérese de nue-
vo la aplicación de comercio electrónico de HogarSegurolnc.com. En la figura 19.12
se muestra un "esquema conceptual" parcial para HogarSeguroInc.com. Los diagra-
mas de clase, agregados e información relacionada desarrollados como parte de.
análisis de la WebApp se reutilizan durante el diseño conceptual para representar re-
laciones entre clases.

19.10.2 Diseño de navegación mediante el MDHOO
El diseño de navegación identifica un conjunto de "objetos" que se derivan de las cla-
ses definidas en el diseño conceptual. Se define una serie de "clases de navegación'
o "nodos" para encapsular dichos objetos. Se puede usar UML para crear casos c t
uso adecuados, gráficos de estado y diagramas de secuencia, todos ellos auxilian al
diseñador a comprender mejor los requisitos de navegación. Además, es posib.r
aplicar los patrones de diseño para el diseño de navegación conforme el diseño se
desarrolle. El MDHOO utiliza un conjunto predefinido de clases de navegación: no-

15 El MDHOO no prescribe una notación específica; sin embargo, el uso de UML e s común cuando se
aplica este método.

TM

PDF Editor

p a r t e N ú m e r o
p a r f e N o m b r e
par leTipo
descr ipción
prec io

Fac turaDeMater ia les

¡Identif icado'
ListaFdM
NúmeroArt ícuios
precioTotal Habi tac ión crearNuevoArt icu lo{)

ob tene rDesc r ipc ión()
o b t e n e r E s p e c í é c n i c a

Kabi tac iónNombre
dimensiones
exter iorVentanas
exteriorPuertas

a g r e g a r E n t r a d a j]

nombré{}
calculorPrecio(¡

ArtículoFdM

c a n t i d a d
p a r t e N ú m e r o
p a r t e N a m b r e
par teTípo
prec io

cliente continúa selección
componentes

cliente
solicita compra

a g r e g a r a U t í a l j
b o r r a r d e l i s t a |)
obtenerSiguiente
Ef t f rodol i s ta ()

Sensor C á m a r a Panel Control C a r a c t S o R w a r e

p e d i d o N ú m e r o
ciientelnfo
fac luraDeMater ia les
e m b a r q u e l n f o
c o b r a n zolnfo

C A P Í T U L O 1 9 MODELADO DE DISEÑO PAEA APLICACIONES WEB 5 9 7

E s q u e m a c o n c e p t u a l p a r c i a l p a r a H o g a r S e g u r o I n c . c o m .

cliente selecciona componente

recomendación de componente
solicitada

dos, vínculos, anclas y estructuras de acceso [SCH98]. Las estructuras de acceso son
más elaboradas e incluyen mecanismos como un índice de la WebApp, un mapa de
sitio o un paseo guiado.

Una vez definidas las clases de navegación, el MDHOO "estructura el espacio de
navegación mediante el agrupamiento de los objetos de navegación en conjuntos
llamados contextos" [SCH98], Schwabe describe un contexto en los términos siguien-
tes:

Cada definición de c o n t e x t o incluye, a d e m á s d e los e l e m e n t o s q u e e s t án inc lu idos e n él,

la espec i f icac ión de su e s t ruc tu ra de n a v e g a c i ó n interna, un p u n t o de en t r ada , restriccio-

n e s de a c c e s o e n t é r m i n o s d e c l a ses de u s u a r i o y ope rac iones , y u n a e s t ruc tu ra de a c c e -

s o a soc i ada .

Se desar ro l la u n a plantil la d e con t ex to (aná loga a las t a r j e t a s CRC e s t u d i a d a s e n el ca -

pítulo 8) y se e m p l e a pa ra ras t rea r los requis i tos de n a v e g a c i ó n de c a d a ca tegor ía d e u sua -

rio a t r avés d e var ios c o n t e x t o s def in idos e n el MDHOO. Al h a c e r e s to su rgen r u t a s

espec í f i cas d e n a v e g a c i ó n (que s e l l a m a r o n FdN e n la secc ión 19.7.1).

19.10.3 Diseño abstracto de la interfaz e implementación
La actividad de diseño abstracto de la interfaz especifica los objetos de la interfaz que
el usuario ve conforme interactúa con la WebApp. Un modelo formal de objetos de
la interfaz, llamado visión abstracta de datos (VADi se utiliza para representar la re-

TM

PDF Editor

598 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

Iación entre objetos de la interfaz y objetos de navegación, y las características
comportamiento de los objetos de la interfaz.

El modelo VAD define una "plantilla estática" [SCH98] que representa la metáfo
de la interfaz e incluye una representación de los objetos de navegación dentro i
la interfaz y la especificación de los objetos de la interfaz (por ejemplo, menús,
tones, iconos) que auxilian en la navegación y la interacción. Además, el mode »|
VAD contiene un componente relacionado con el comportamiento (similar al diagr;
ma de estado UML) que indica cómo los eventos externos "disparan la navegación
qué transformaciones de la interfaz ocurren cuando el usuario interactúa con la ap
cación" [SCHOIJ. Una exposición detallada del VAD el lector interesado puede halla-
la en [SCH98] y [SCH01],

La actividad implementación del MDHOO representa una interacción de dis
que es específica al ambiente en el que operará la WebApp. Las clases, la nave
ción y la interfaz son caracterizadas en una forma que puede construirse para el;
biente cliente/servidor, sistemas operativos, software de soporte, lenguajes de
gramación y otras características del entorno relevantes respecto del problema.

Las métricas de diseño se deben caracterizar en una forma que proporcione a lo; :
genieros Web un indicador de calidad en tiempo real. En esencia, un conjunto útil i
medidas y métricas ofrece respuestas cuantitativas a las siguientes preguntas:

• ¿La interfaz del usuario promueve la facilidad de uso?

• ¿La estética de la WebApp es apropiada para el dominio de la aplicación y
confortable para el usuario?

• ¿El contenido está diseñado en una forma que proporciona la mayor informa-1
ción con el menor esfuerzo?

• ¿La navegación es eficiente y directa?

• ¿La arquitectura de la WebApp se ha diseñado para acomodar las metas y <
jetivos especiales de los usuarios de la WebApp, la estructura de contenido y
funcionalidad, y el flujo de navegación requerido para usar el sistema de ma
ñera efectiva?

• ¿Los componentes están diseñados en una forma que reduce la complejidad
de procedimientos y aumenta la exactitud, la confiabilidad y el desempeño '

En la actualidad, cada una de estas preguntas se puede abordar de manera cua¡:
tiva,16 pero todavía no existe un conjunto validado de métricas que ofrezcan
puestas cuantitativas.

16 Véase el capítulo 16 (sección 16.4) y la sección 19.1 l para una exposición cualitativa de la ca
de una WebApp

TM

PDF Editor

C A P I T U L O 1 9 MODELADO DE DISEÑO PAEA APLICACIONES WEB 5 9 9

Las métricas para el diseño de WebApps están en desarrollo y pocas se han vali-
dado ampliamente. El lector interesado debería consultar [IVOOl] y [MENO!] para
una muestra de las métricas propuestas para el diseño de WebApps.

HERRAMIENTAS DE SOFTWARE

Métricas técnicas para WebApps
O b j e t i v o : Apoyar a los ingenieros Web en el
desarrollo de métricas WebApp significativas

ofrezcan una visión acerca de la calidad global de
aplicación.

"iica: Las herramientas mecánicas varían.

-mientas representat ivas 1 7

-hanic Toots, desarrollada por Netmechanic (www.
-etmechanic.com), es una colección d e herramientas
que ayudan a mejorar el desempeño d e un sitio Web;
se enfoca sobre los temas específicos de la implementa-
ción.

í Web Metrics Teslbed, desarrollado por The National
-istitute of Standards and Technology (zing.ncsl.nist.

gov/WebTools/), abarca la siguiente colección de he-
rramientas útiles que están disponibles pa ra descargar-

W e b Slalic Analyzer Tool ¡WebSATj: verifica el HTML de
la página web contra los lineamientos de facilidad de
uso típicos.

Web Colegory Anolysis Tool (WebCAT): permite al inge-
niero de facilidad de uso construir y dirigir un análisis
de categoría Web.

W e b Variable Instrumenter Program (WebVIP): instrumen-
ta un sitio Web para capturar un registro de interac-
ción d e usuario.

Framework for Logging Usability Dala fFLUD): implemen-
to un formateador y anal izador gramatical de archivos
para representar los registros de interacción d e usua-
rio.

VisVIP Tool: produce una visualización tridimensional de
las rutas de navegación del usuario a través de un sitio
Web.

TreeDec: agrega auxiliares de navegación a las páginas
de un sitio Web.

La calidad de una WebApp —definida en términos de facilidad de uso, funcionalidad,
confiabilidad, eficiencia, facilidad de mantenimiento, seguridad, escalabilidad y tiem-
po en el mercado— se introduce durante el diseño. Para lograr dichos atributos de
calidad, un buen diseño WebApp debe posser simplicidad, consistencia, identidad, ro-
bustez, navegabilidad y apariencia visual.

El diseño de la interfaz describe la estructura y organización de la interfaz del
usuario. Incluye una representación de la plantilla de pantalla, una definición de los
modos de interacción y una descripción de los mecanismos de navegación.

El diseño estético, también llamado diseño gráfico, describe la "apariencia y la
percepción" de la WebApp e incluye esquemas de color, plantilla geométrica, tama-
ño de texto, fuente y ubicación, el uso de gráficos y decisiones estéticas relaciona
das. Un conjunto de lineamientos de diseño gráfico proporciona la base para un en-
foque de diseño.

17 Las herramientas anotadas son una muestra de esta categoría

TM

PDF Editor

600 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

El diseño de contenido define la plantilla, la estructura y el subrayado de todo ei
contenido que se presenta como parte de la WebApp; además, establece las relacio-
nes entre objetos de contenido. El diseño de contenido comienza con la representa-
ción de los objetos de contenido, sus asociaciones y relaciones. Un conjunto de cor-
sideraciones elementales establece las bases para el diseño de navegación.

El diseño de arquitectura identifica la estructura hipermedia global para la Web
App y abarca tanto la arquitectura de contenido como la de WebApp. Los estilos ar
quitectónicos para el contenido incluyen estructuras lineal, en retícula, jerárquica >
en red. La arquitectura de la WebApp describe una infraestructura que permite a un
sistema o aplicación basado en Web lograr sus objetivos de negocios.

El diseño de navegación representa el flujo de navegación entre los objetos ce
contenido y para todas las funciones de la WebApp. La navegación se define al des
cribir un conjunto de unidades semánticas de navegación. Cada unidad está coir
puesta de formas de navegación y de vínculos y nodos de navegación. Los mecani-
mos de sintaxis de navegación se aplican para afectar la navegación descrita corr í
parte de la semántica.

El diseño de componentes desarrolla la lógica de procesamiento detallada que se
requiere para implementar los componentes funcionales de la WebApp. Las técnicas
de diseño descritas en el capítulo 11 se aplican a la ingeniería de componentes Web
App.

Los patrones para el diseño de WebApps abarcan patrones de diseño genéric:
que se aplican a todos los tipos de software y patrones hipermedia especialmente re
levantes para las WebApp, Se han propuesto patrones de diseño arquitectónico, de
navegación, de componentes, de presentación y de comportamiento/usuario.

El método de diseño hipermedia orientado a objetos (MDHOO) es uno de varic?
métodos propuestos para el diseño WebApp. El MDHOO sugiere un proceso de dise-
ño que incluye diseño conceptual, diseño de navegación, diseño abstracto de la ir-
terfaz e implementación.

Las métricas de diseño para ingeniería Web están en desarrollo y todavía tienen
que validarse por completo. Sin embargo, se han propuesto varias medidas y métri-
cas para abordar cada una de las actividades de diseño reanalizadas en este capítulo

[AME96] Amento, B. eí al., "Fitt's Law", CS 5724: Models and Theories of Human Computer Inte
ractions, Virginia Tech, 1996, disponible en h t t p : / / e i . c s . v t . e d u / ~ c s 5 7 2 4 / g l / .

[BAG01] Baggerman, L., y S. Bowman, Web Design That Works, Rockport Publishers, 2001.
[BUS96] Buschmann, F. eí al., Pattern-Oriented Software Architecture, Wiley, 1996.
(CAC02] Cachero, C. et al., "Conceptual Navigation Analysis: a Device and Platform Independen!

Navigation Specification", Proc. 2nd Intl. Workshop on Web-Oríented Technology, junio de
2002, s e p u e d e descargar de www.ds i c .upv .e s / -wes t / iwwos t02 /pape r s / cache ro .pd f .

[CLOOl] Cloninger, C., Fresh Styles for Web Designers, New Riders Publishing, 2001.
[D1X99] Dix, A., "Design of User Interfaces for the Web", Proc. OfUser Interfaces to Data Systems Con-

ference, septiembre de 1999, se puede descargar de h t tp : / /www.comp. lancs .ac .uk/comput ing/
u s e r s / d i x a / t o p i c s / w e b a r c h / .

TM

PDF Editor

http://ei.cs.vt.edu/~cs5724/gl/
http://www.dsic.upv.es/-west/iwwost02/papers/cachero.pdf
http://www.comp.lancs.ac.uk/computing/

C A P Í T U L O 1 9 MODELADO DE DISEÑO P A E A APLICACIONES WEB 601

(FIT54] Fitts, P., "The Information Capacity of the Human Motor System in Controlling the Am-
piitude of Movement", en Journal of Experimental Psychology, vol. 47, 1954, pp. 381-391.

[FOW03] Fowler, M. et al., Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.
[GAL02) Galitz, W., The Essential Guide to User Interface Design, Wiley, 2002.
1GAM95] Gamma, E. etal., Design Pattems, Addison-Wesley, 1995.
[GAR97] Garrido, A., G. Rossi y D. Schwabe, "Pa t tems Systems for Hypermedia", 1997, se puede

descargar de www. inf .puc- r io .b r / - schwabe /papers /P loP97 .pdf .
[GEROO] Germán, D. y D. Cowan, "Toward a Unified Catalog of Hypermedia Design Pat tems",

Proc. 33rd Hawaii Intl. Conf. on System Sciences, IEEE, vol. 6, Maui, Hawaii, junio de 2000, se
puede descargar de www. tur ingmachine .org / - -dmg/research /papers /dmg_hicss2000.pdf .

[GNA99] Gnaho, C. y F. Larcher, "A User-Centered Methodology for Complex and Customizable
Web Engineering", Proc. Ist ICSE Workshop on Web Engineering, ACM, Los Angeles, mayo de
1999.

[HEI02] Heinicke, E„ Layout: Fast Solutions for Hands-On Design, Rockport Publishers, 2002.
[IVOOl] Ivory, M., R. Sinha y M. Hearst, "Empirically Validated Web Page Design Metrics", ACM

S1GCHI '01, Seattle, WA, abril de 2001, disponible en h t tp : / /www.rashmis inha .com/ar t i c les /
WebTangoCHIOl .html.

[IAC02] Jacyntho, D., D. Schwabe y G. Rossi, "An Architecture for Structuring Complex Web Ap-
plications", 2002, disponible en h t t p : / / w w w 2 0 0 2 . o r g / C D R O M / a l t e m a t e / 4 7 8 / .

[KAI02] Kaiser, J., "Elementó of Effective Web Design", About, Inc., 2002, disponible en h t t p : / /web-
des ign .about .com/ l ib ra ry /weekly /aa091998 .h tm.

[KAL03] Kalman, S., Web Security Field Guide, Cisco Press, 2003.
[KOC99] Koch, N., "A Comparat ive Study of Methods for Hypermedia Development", Technical

Report 9905, Ludwig-Maximilians Universitat, Munich, Alemania, 1999, se puede descargar
de h t t p : / / w w w . d s i c . u p v . e s / ~ w e s t 2 0 0 1 / i w w o s t 0 l / f i l e s / c o n t r i b u t i o n s / N o r a K o c h / h y p -
dev.pdf.

[KRA88] Krasner, G. y S. Pope, "A Cookbook for Using the Model-View Controller User Interfa-
ce Paradigm in Smalltalk-80", Journal of Object-Oriented Programming, vol. I, núm. 3, agos-
to-sept iembre de 1988, pp.26-49.

[LOW981 Lowe, D., y W. Hall (eds.), Hypertext and the Web—An Engineering Approach, John Wiley
& Sons, 1998.

[MCC01] McClure, S.]. Scambray y G. Kurtz, Hacking Exposed, McGraw-Hil l /Osbome, 2001.
[MEN01) Mendes, E„ N. Mosley y S. Counsell, "Eslimating Design and Authoring Effort", en IEEE

Multimedia, e n e r o - m a r z o de 2001, pp. 50-57.
[MILOO] Miller, E., "The Website Quality Challenge", Sof tware Research, Inc., 2000, h t t p : / / w w w .

sof t .com/eVal id/Technology/White .Papers /websi te .qual i ty .chal lenge.html .
[NIE96] Nielsen, J. y A. Wagner, "User Interface Design for the WWW", Proc. CHI '96 Conf. On Hu-

man Factors in Computing Systems, ACM Press, 1996, pp. 330-331.
[NIEOO] Nielsen, J., Designing Web Usability, New Riders Publishing, 2000.
[NOR02J Northcutt, S. y J. Novak, Network Intrusión Detection, New Riders Publishing, 2002.
[OFF02) Offutt, J., "Quality Attributes of Web Software Applications", en IEEE Software, marzo -

abril de 2002, pp. 25-32.
[OLS98] Olsina, L„ "Building a Web-Based Information System Applying the Hypermedia Flexi-

ble Process Modeling Strategy", Proc. Ist Intl. Workshop on Hypermedia Development, 1998.
[OLS99] Olsina, L. et al., "Specifying Quality Characterist ics and Attributes for Web Sites", Proc.

Ist ICSE Workshop on Web Engineering, ACM, Los Ángeles, m a y o de 1999.
[PER99] Perzel, K. y D. Kane, "Usability Pa t t ems for Applications on the World Wide Web", 1999,

se puede descargar de h t tp : / / j e r ry . c s .u iuc . edu / -p lop /p lop99 /p roceed ings /Kane /pe rze l_
kane.pdf.

[POWOO] Powell, T„ Web Design, McGraw-Hil l /Osbome, 2000.
(RASOO] Raskin, J„ The Humane Interface, Addison-Wesley, 2000.
[RH098] Rho, Y. y T. Gedeon, "Surface Structures in Browsing the Web", Proc. Australasian Com

puter Human Interaction Conference, IEEE, diciembre de 1998.
[SCH95] Schwabe, D. y G. Rossi, "The Object-Oriented Hypermedia Design Model", en CACM, vol.

38, núm. 8, agos to de 1995, PP. 45-46.

TM

PDF Editor

http://www.inf.puc-rio.br/-schwabe/papers/PloP97.pdf
http://www.turingmachine.org/--dmg/research/papers/dmg_hicss2000.pdf
http://www.rashmisinha.com/articles/
http://www2002.org/CDROM/altemate/478/
http://www.dsic.upv.es/~west2001/iwwost0l/files/contributions/NoraKoch/hyp-
http://www
http://jerry.cs.uiuc.edu/-plop/plop99/proceedings/Kane/perzel_

602 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

[SCH98] Schwabe , D. y G. Rossi, "Developing Hypermedia Applications Using OOHDM", Proc
Workshop on Hypermedia Development Process, Methods and Models, Hypertext '98, 1998, se
p u e d e descargar de h t tp : / / c i t e see r .n j .nec .com/schwabe98deve lop ing .h tml .

1SCH01] Schwabe, D., G. Rossi y S. Barbosa, "Systemalic Hypermedia Application Design Using
OOHDM", 2001, d i sponib le en h t t p : / / w w w - d i . i n i . p u c - r i o . b r / ~ s c h w a b e / H T 9 6 W W W ,
sec t ionl .html.

[TILOO] Tillman, H. N., "Evaluating Quality On the Net", Babson College, 3 0 d e mayo de 2000, dis-
ponible en h t tp : / /www.hope t i l lman .eom/ f indqua l .h tml#2

[TOGOI] Tognozzi, B„ "First Principies", askTOG, 2001, disponible en h t t p : / /www.ask tog . com
basics/f irstPrinciples.hlml.

[WMT02] Web Mapping Testbed TUtorial, 2002, disponible en h t t p : / / w w w . w e b m a p p i n g
o rg /vcgdocumen t s /vcgTu to r i a l / .

[ZI1A02] Zhao, H„ "Fitt's Law: Modeling Movement Time in HC1", Theories in Computer Humar.
Interaction, University of Maryland, octubre de 2002, disponible en h t tp : / /www.cs .umd .edu
c lass / fa l l2002/cmsc838s / t i ch i / f i t t s .h tml .

1 9 . 1 . ¿Por q u é el "ideal artístico" e s una filosofía d e d i seño insuficiente c u a n d o se cons t ruye-
las WebApps m o d e r n a s ? ¿Existe un c a s o en el q u e el ideal artístico sea la filosofía q u e debe se
guirse?

19 .2 . En e s t e capítulo se ana l izó una amplia variedad d e atr ibutos d e cal idad para las Wer
Apps. Elíjanse las t res q u e se considere c o m o las m á s impor tan tes y e l abórese un a rgumen : :
que expl ique por q u é cada u n o debe resa l tarse en el t raba jo de d i seño d e ingeniería Web.

19 .3 . Agréguense al m e n o s c inco p regun tas adic ionales a la "Lista d e verificación d e la ca l ida :
del d i seño d e la WebApp" p r e sen t ada en una bar ra lateral en la sección 19.1.1.

19 .4 . Revisar los principios de d i seño de la interfaz de Tognozzi t ra tados en la sección 19.3.
Considerar cada principio pa ra una WebApp operat iva con la cual se es té familiarizado. Calir
car la WebApp (úsense cal i f icaciones A, B, C, D o F) en relación con el grado en el cual ha : -
g r ado el principio. Explicar la razón para cada calificación.

1 9 . 5 . Diseñar una interfaz protot ipo para la WebApp d e HogarSegurolnc.com. Inténtese ser ir
novador pero, al m i smo t iempo, se debe a segura r q u e la interfaz se a jus ta a los principios
el buen d i seño d e la interfaz.

19 .6 . ¿Se han encon t r ado m e c a n i s m o s d e control d e la interfaz q u e sean diferentes a los a
tados en la Sección 19.3.2? Si e s así, descr íbanse b revemente .

1 9 . 7 . El lector e s el d i señador WebApp para una compañía de e n s e ñ a n z a a larga distancia
intención e s implementar un "motor d e aprendiza je" b a s a d o en Internet q u e le permitirá en"
gar con ten ido del cu r so a los es tudiantes . El motor d e aprend iza je o f rece la infraes t ructura
sica para en t regar con ten ido d e aprend iza je de cualquier mater ia (d iseñadores de conten1

prepara rán el con ten ido adecuado) . Desarróllese un d i seño de interfaz protot ipo para el m
d e aprendiza je .

19 .8 . ¿Cuál e s el sitio Web es té t icamente m á s agradable que el lector haya ha visitado y por

19 .9 . Considerar el ob je to d e con ten ido p e d i d o , g e n e r a d o una vez q u e un usuar io de Ho
Segurolnc.com ha comple t ado la selección d e todos los c o m p o n e n t e s y es tá listo para final
su compra . Desarrollar una descripción UML d e p e d i d o jun to con todas las represen tac iones
d i seño apropiadas .

1 9 . 1 0 . ¿Cuál e s la diferencia en t re a rqui tec tura d e con ten ido y arqui tec tura d e WebApp?

1 9 . 1 1 . Reconsidérese el "motor de aprendiza je" descri to en el p rob lema 19.7, se lecciónese
arqui tec tura d e con ten ido q u e sería apropiada para la WebApp. Ccomén te se por qué se hizo
cha elección.

TM

PDF Editor

http://citeseer.nj.nec.com/schwabe98developing.html
http://www-di.ini.puc-rio.br/~schwabe/HT96WWW
http://www.hopetillman.eom/findqual.html%232
http://www.asktog.com
http://www.webmapping
http://www.cs.umd.edu

C A P Í T U L O 1 9 MODELADO DE DISEÑO PARA APLICACIONES WEB 6 0 3

1 9 . 1 2 . Con UML desa r ró l l en se t res o c u a t r o r e p r e s e n t a c i o n e s de d i s e ñ o pa ra ob je to s d e con-
t en ido q u e p o d r í a n e n c o n t r a r s e c o n f o r m e s e d i s e ñ a el "motor de a p r e n d i z a j e " desc r i to e n el p r o -
b l ema 19.7.

1 9 . 1 3 . Hacer u n poco d e inves t igac ión ad ic iona l a c e r c a d e la a rqu i t ec tu ra MVC y decidir si se -
ria u n a a rqu i tec tura WebApp a p r o p i a d a p a r a el "moto r d e a p r e n d i z a j e " m e n c i o n a d o e n el p r o -
b l ema 19.7.

1 9 . 1 4 . ¿Cuál e s la d i ferencia e n t r e s in taxis de n a v e g a c i ó n y s e m á n t i c a de n a v e g a c i ó n ?

1 9 . 1 5 . Definir d o s o t res USN pa ra la WebApp d e HogarSeguroInc .com. Describir c a d a u n a con
c ie r to detal le .

1 9 . 1 6 . Hacer a lguna invest igación y p r e s e n t a r a su c lase d o s o t res p a t r o n e s d e d i s e ñ o hiper-
m e d i a comple to s .

A u n q u e s e h a n escr i to c i en to s d e l ibros a c e r c a del "d i seño Web", m u y p o c o s a b o r d a n a l g u n o s
m é t o d o s técn icos s ignif ica t ivos pa ra rea l izar el t r aba jo de d i seño . C u a n d o m u c h o , s e p r e s e n t a n
var ios l i n c a m i e n t o s úti les pa ra el d i s e ñ o d e la WebApp, e j e m p l o s va l iosos de p á g i n a s Web y s e
m u e s t r a p r o g r a m a c i ó n j ava , y se a n a l i z a n los de ta l l es t écn icos i m p o r t a n t e s pa ra i m p l e m e n t a r
WebApps m o d e r n a s . Entre los m u c h o s q u e s e o f recen e n es ta ca t egor í a , vale la p e n a c o n s i d e -
rar la d iscus ión enc ic lopédica d e Powell [POWOO], Además , los libros de Galitz [GAL02], Heinic-
ke |HE102], Schmit t (Designing CSS Web Pages, N e w Riders Publishing, 2002), Donnel ly (Desig-
ning Easy-toUse Websitcs, Addison-Wesley, 2001) y Nielsen [N1E00] p r o p o r c i o n a n u n a guía útil.

La visión ágil del d i s e ñ o (y o t r o s tópicos) pa ra WebApps la p r e s e n t a n Wal lace y s u s c o l e g a s
{Extreme Programmingfor Web Projects, Addison-Wesley, 2003). Conal len (Building Web Applica
tions with UML, s e g u n d a edic ión , Addison-Wesley, 2002) y Rosenberg y Scott (A p p f y i n g Use Ca
se Driven Object Modeling wilh UML, Addison-Wesley, 2001) p r e s e n t a n e j e m p l o s de t a l l ados d e
WebApps m o d e l a d a s con la ap l icac ión d e UML.

Van Duyne y s u s co legas (The Design of Sites: Pattems, Principies and Processes, Addison-Wes-
ley, 2002) escr ib ieron u n libro exce l en t e q u e c u b r e los a s p e c t o s m á s i m p o r t a n t e s del p r o c e s o d e
d i s e ñ o e n la ingenier ía Web. Se c u b r e n e n de ta l le los m o d e l o s d e p r o c e s o de d i s e ñ o y los pa t ro -
n e s de d i seño . Wodtke [Information Architecture, New Riders Publishing, 2003), Rosenfeld y Mor-
ville (Information Architecturefor the World Wide Web, O'Reilly & Associa tes , 2002), y Reiss (Prac
tical Information Architecture, Addison-Wesley, 2000) a b o r d a n la a rqu i t ec tu ra de c o n t e n i d o y
o t r o s tópicos.

Las t é c n i c a s d e d i s e ñ o t ambién s e m e n c i o n a n e n l ibros esc r i tos a c e r c a d e a m b i e n t e s de de -
sarrol lo específ icos. Los lectores in te resados deben e x a m i n a r libros ace rca de J2EE, Java, ASP.NET,
CSS, XML, Perl y u n a divers idad d e ap l i cac iones de c reac ión d e WebApps (Dreamweaver, Home
Page, Frontpage, GoLive, MacroMedia Flash, etc.) pa ra c o m e n t a r i o s de d i s e ñ o úti les.

En Internet es tá d i sponib le u n a g r an va r i edad d e f u e n t e s d e in formac ión ace rca de d i s e ñ o
pa ra ingenier ía Web. Una lista a c tua l i z ada de r e fe renc ia s e n la World Wide Web s e e n c u e n t r a e n
el si t io Web de SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

C Ó M O PROBAR
APLICACIONES W E B

C O N C E P T O S

C L A V E

característ icas
de e r ror 6 0 6
dimensiones
d e calidad 6 0 5
es t r a t eg ia 6 0 7
pruebas

de base de
datos 6 1 3

de carga 6 3 3
de configuración 6 2 8
de c o n t e n i d o . . 6 1 2
d e desempeño 631
d e facilidad

de uso 6 2 0
de interfaz

de usuario . . 6 1 6
de navegación 6 2 5
de nivel de

componentes 6 2 3
de prueba de com-
patibilidad . . . 6 2 2

de tensión . . . 6 3 3

Existe una urgencia que siempre permea el proceso de ingeniería Web. Con
forme se dirigen la formulación, la planeación, el análisis, ei diseño y i
construcción, los participantes —preocupados acerca de la competencia o

otras WebApps, fustigados por las demandas de los clientes e intranquilos porq _
perderán una ventana en el mercado— presionan para poner la WebApp en lir.-r
Como consecuencia, las actividades técnicas que usualmenle ocurren en las últ
mas etapas del proceso de ingeniería Web, como la prueba de la WebApp, en oc¿
siones reciben poca atención. Esto puede ser un error catastrófico. Para evitar
el equipo de ingeniería Web debe asegurarse de que cada producto de trabajo c
IWeb muestre alta calidad. Wallace y sus colegas [WAL03] advierten esto cuanc
afirman:

Llevar a c a b o la p r u e b a n o d e b e e s p e r a r ha s t a q u e t e rmine el p royec to . C o m i e n c e a

p roba r a n t e s d e escribir una l ínea d e código . P ruebe c o n s t a n t e y e f e c t i v a m e n t e y de-

sa r ro l l a rá un sit io Web m u c h o m á s durab le .

Dado que los modelos de análisis y diseño no pueden ponerse a prueba en ¡
sentido clásico, el equipo de ingeniería Web debe dirigir revisiones técnicas 1c
males (capítulo 26), así como pruebas ejecutables. El objetivo es descubrir y c:
rregir errores antes de que la WebApp se ponga a disposición de sus usuarios f
nales.

¿ Q u é e s ? El proceso de someter o
prueba la WebApp es una suma de ac-
tividades relacionadas con una sola me-
ta: descubrir errores en el contenido, la
función, la facilidad de uso, ¡a navega-

bilidad, el desempeño, la capacidad y la seguridad
de la WebApp. Esto se logra a lo largo de todo el
proceso de ingeniería Web mediante la aplicación
de una estrategia de prueba que abarca tanto revi-
siones como pruebas ejecutables. :

¿Qu ién lo h a c e ? Los ingenieros Web y otros par-
ticipantes del proyecto (gerentes, clientes, usua-
rios finales) toman parte en el proceso de probar
la WebApp.

¿Por q u é e s i m p o r t a n t e ? Si los usuarios fina-
les encuentran errores que afecten su confianza
en la WebApp, se irán a cualquier otra parte

por el contenido y la función que necesitan, y la
WebApp fracasará. Por esta razón, los ingenie-
ros Web deben trabajar para eliminar tantos
errores como sea posible antes de que la Web-
App esté en linea

¿ C u á l e s s o n los p a s o s ? El proceso de prueba
de la WebApp comienza al enfocarse sobre
aquellos aspectos de ésta que son visibles para
el usuario y procede a probar dicha tecnología
e infraestructura. La prueba consta de siete eta-
pas: contenido, interfaz, navegación, compo-
nente, configuración, desempeño y prueba de
seguridad.

¿Cuál es el producto obtenido? En algunos
casos se produce un plan de prueba de la Web-
App. En todos los casos se desarrolla un conjun-
to de casos prueba para cada etapa de la prue-

604

TM

PDF Editor

C A P Í T U L O 2 0 C Ó M O PROBAR APLICACIONES WEB 6 0 5

:c y se conserva un archivo de resultados de
pruebas para uso futuro.
^ r i o p u e d o e s t a r s e g u r o d e q u e lo he
l e c h o co r r ec t amen te? Aunque nunca se
;<jede estar seguro de que han llevado a cabo
: -3s las pruebas que se necesitan, puede tener-

se la seguridad de que la puesta en prueba ha
descubierto errores (y que éstos se han corregi-
do). Además, si se ha establecido un plan de
prueba, puede verificarse para asegurar que se
han realizado todas las pruebas planeadas.

2 0 . 1 PRUEBA DE C O N C E P T O S PARA W E B A P P S

En el capítulo 13 se señaló que la prueba es el proceso de ejercitar al software con
la finalidad de encontrar (y a final de cuentas corregir) errores. Esta filosofía funda-
mental no cambia para las WebApps. De hecho, puesto que los sistemas y aplicaciones
basados en Web residen en una red e interoperan con muchos sistemas operativos
diferentes, navegadores (u otros dispositivos de interfaz como PDA o teléfonos celu-
lares), plataformas de hardware, protocolos de comunicaciones y aplicaciones "de
cuarto trasero", la búsqueda de errores representa un desafío significativo para los
ingenieros Web.

La comprensión de los objetivos de las pruebas dentro de un contexto de ingenie-
ría Web requiere considerar las diversas dimensiones de la calidad WebApp.' En el
contexto de esta exposición se consideran las dimensiones de calidad que son par-
ticularmente relevantes en cualquier debate de las pruebas para el trabajo de inge-
niería Web. También se considera la naturaleza de los errores que se encuentran co-
mo consecuencia de las pruebas, y la estrategia de poner a prueba aplicable para
descubrir dichos errores.

20.1.1 Dimensiones de calidad
La calidad se incorpora en una aplicación Web como consecuencia de un buen dise-
ño. Se evalúa al aplicar una serie de revisiones técnicas que valoran varios elemen-
tos del modelo de diseño y al aplicar un proceso de prueba que se trata a lo largo de
este capítulo. Tanto las revisiones como las pruebas examinan una o más de las si-
guientes dimensiones de calidad [MIL00]:

• El contenido se evalúa tanto en el ámbito sintáctico como semántico. En el
ámbito sintáctico, la ortografía, la puntuación y la gramática se valoran para
los documentos basados en texto. En el ámbito semántico se valoran la exac-
titud (de la información presentada), la consistencia (a través de todos los ob-
jetos de contenido y objetos relacionados) y la falta de ambigüedad.

• La función se prueba para descubrir errores que indiquen que no hay concor-
dancia con los requisitos del cliente. Cada función de la WebApp se valora en

se
la

¿« tro del
de una
y su

1 En el capitulo 19 también se consideró la calidad de ¡a WebApp

TM

PDF Editor

6 0 6 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

cuanto a exactitud, inestabilidad y concordancia general con los es tándares de
implementación apropiados (por ejemplo, estándares de lenguaje Java o XML).

• La estructura se valora para asegurarse de que entrega adecuadamente conte-
nido y función de la WebApp, que es extensible y puede sostenerse conforme
se añade nuevo contenido o funcionalidad.

• La facilidad de uso se prueba para garantizar que a cada categoría de usuario
la soporta la interfaz; puede aprender y aplicar toda la sintaxis y semánt ica de
navegación requerida.

• La navegabiiidad se pone a prueba para garantizar que toda la sintaxis y se-
mántica de navegación se ejercen para descubrir cualquier error de navega-
ción (por ejemplo, vínculos rotos, vínculos inadecuados, vínculos erróneos).

• El desempeño se prueba en una diversidad de condiciones operativas, configt
raciones y cargas para asegurar que el sistema responde a la interacción del
usuario y maneja cargas ext remas sin que haya una degradación operativa
inaceptable.

• La compatibilidad se prueba al ejecutar la WebApp en varias configuraciones
huésped, en los lados tanto del cliente c o m o del servidor. El objetivo e s en-
contrar errores específicos respecto a sólo una configuración huésped.

• La interoperabilidad se prueba para asegurar que la WebApp realiza interfaces
adecuadas con otras aplicaciones o bases de datos.

• La seguridad se prueba al valorar las vulnerabilidades potenciales e intentar
explotar cada una de ellas. Cualquier intento de penetración exitoso se cons.
dera una falla en la seguridad.

En este capítulo se estudian, más adelante, una estrategia y algunas tácticas que «
han desarrollado para poner a prueba cada una de las anteriores características ce
calidad de una WebApp.

"La innovación es un asunto agridulce para quienes ponen a prueba el software. Justo cuando parece que se sabe
cómo probar una tecnología particular, llega una nueva [WebApp] y todas las apuestas se pierden."

James Bach

20.1.2 Errores dentro de un ambiente WebApp
Ya se ha señalado que el intento primario de realizar pruebas en cualquier contexto»
de sof tware e s descubrir errores (y corregirlos). Los errores encontrados como cor-
secuencia de la prueba exitosa de la WebApp tienen varias características únicas

[NGUOOJ:

1. Puesto que muchos tipos de pruebas de WebApp descubren problemas que se
evidencian primero en el lado del cliente (es decir, a través de una interfaz
implementada en un navegador específico, una PDA o un teléfono celular), d I
ingeniero Web ve un síntoma del error, no el error en sí.

TM

PDF Editor

C A P Í T U L O 2 0 C Ó M O PROBAR APLICACIONES WEB 6 0 7

i vil
les de

Isaftware

kVE
i global

i la WebApp
• asumir en

> anotados

2 . Puesto que una WebApp se implementa en varias configuraciones diferentes y
dentro de distintos ambientes, puede ser difícil o imposible reproducir un
error afuera del ambiente en el que el error se encontró originalmente.

3 . Aunque algunos errores son resultado de un diseño incorrecto o una codifica-
ción HTML impropia (o algún otro lenguaje de programación), muchos errores
pueden rastrearse hacia la configuración de la WebApp.

4 . Puesto que las WebApp residen dentro de una arquitectura cliente/servidor, el
rastreo de los errores puede ser difícil a través de las tres capas arquitectóni-
cas: el cliente, el servidor o la red en sí.

5 . Algunos errores se deben al ambiente operativo estático (es decir, la configu-
ración específica en la que se desarrolla la prueba), mientras que otros son
atribuibles al ambiente operativo dinámico (es decir, la carga instantánea de
recursos o los errores relacionados con el tiempo).

Estos cinco atributos de error sugieren que el ambiente desempeña un importante
papel en el diagnóstico de todos los errores descubiertos durante el proceso de in-
geniería Web. En a lgunas si tuaciones (por ejemplo, prueba de contenido), el sitio del
error es obvio, pero en muchos otros tipos de pruebas de WebApp (por ejemplo,
pruebas de navegación, de desempeño, de seguridad) la causa subyacente del error
tal vez sea considerablemente más difícil de determinar.

20.1.3 Estrategias de pruebas
La estrategia para probar una WebApp adopta los principios básicos para todas las
pruebas de sof tware (capítulo 13) y aplica una estrategia y las tácticas que se reco-
mendaron respecto de los s is temas orientados a objetos (capítulo 14). Los siguien-
tes pasos resumen el enfoque:

1. Se revisa el modelo de contenido de la WebApp para descubrir errores.

2 . Se revisa el modelo de la interfaz para asegurarse que todos los casos de uso
pueden acomodarse .

3 . Se revisa el modelo de diseño de la WebApp para descubrir errores de nave-
gación.

4 . Se prueba la interfaz del usuario para descubrir errores en la presentación o
los mecanismos de navegación.

5 . Componentes funcionales seleccionados se prueban en forma individual.

6. Se prueba la navegación a través de toda la arquitectura.

7 . La WebApp se implementa en diversas configuraciones ambientales y se
prueba su compatibilidad con cada configuración.

8. Se realizan pruebas de seguridad con el objetivo de explotar vulnerabilidades
en la WebApp o dentro de su ambiente.

TM

PDF Editor

6 0 8 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

w w w . í l i t k y m i n d s .
com/ t e s t l ng -a sp .

C & V E
El plan d e prueba
identifica un conjunto
de tareas de prueba ,
los productos d e
trabojo que se
desarrollarán y la
f o rma en lo cual los
resultados s e evalúan,
registran y reutilizan.

9 . Se llevan a cabo pruebas de desempeño.

10. La WebApp se prueba en una población controlada y monitoreada de usuan as
finales; los resultados de su interacción con el sistema se evalúan para busca.-]
errores de contenido y navegación, relacionados con la facilidad de uso, cor
la compatibilidad y con la confiabilidad y el desempeño de la WebApp.

Puesto que muchas WebApps evolucionan cont inuamente , la prueba de la W e b A r J
es una actividad de seguimiento que dirige el equipo de soporte Web, que u t n a l
pruebas de regresión derivadas de las pruebas desarrolladas cuando la WebApp s J
sometió a ingeniería por primera ocasión.

20.1.4 Planeación de las pruebas
El empleo de la palabra planeación (en cualquier contexto) es ana tema para algur : J
desabol ladores Web. Como se ano tó en capítulos anteriores, dichos profesiona em
sólo comienzan, pues temen el surgimiento de algún saboteador de WebApps. Un r - |
geniero Web reconoce que la planeación establece un mapa vial para todo el trar.^J
jo que sigue. Vale la pena el esfuerzo.

En su libro acerca de las pruebas de las WebApps, Splaine yjaskiel [SPL01] af i rmad

Excepto por el m á s s imple de los s i t ios Web, r á p i d a m e n t e se vue lve a p a r e n t e q u e e s ne-

cesa r i a cier ta e s p e c i e d e p l a n e a c i ó n d e p r u e b a s . Con d e m a s i a d a f recuenc ia , el n ú m e r o ini-

cial de e r ro re s q u e s e e n c u e n t r a n a par t i r de u n a p r u e b a a d e c u a d a e s lo suf ic ien temente

g r a n d e c o m o pa ra q u e n o todos s e fijen la p r imera vez q u e s e d e t e c t a n . Es to p o n e u n a pre

s ión adic ional s o b r e la g e n t e q u e p r u e b a los sit ios y ap l i cac iones Web. No só lo d e b e n c o r

ju ra r n u e v a s p r u e b a s imagina t ivas , t a m b i é n d e b e n recordar c ó m o s e e j ecu t a ron las

p r u e b a s an t e r io r e s con la finalidad d e volver a p roba r c o n conf iabi l idad el s i t i o / l a aplica

c ión Web, y a s e g u r a r s e d e q u e los e r r o r e s c o n o c i d o s s e h a n r e m o v i d o y q u e n o s e han in-

t roduc ido o t r o s nuevos .

La pregunta para todo ingeniero Web es: ¿cómo "conjuro nuevas pruebas i
nativas" y en qué se deben enfocar dichas pruebas? La respuesta se encuentra
tro de un plan de pruebas.

Un plan de pruebas WebApp identifica 1) un conjunto de tareas2 que se apli
cuando comience la prueba, 2) los productos de trabajo que se generarán coní
se ejecute cada tarea de prueba, y 3) la forma en la que los resultados de las
bas se evalúan, registran y reutilizan cuando se realicen pruebas de regresión. E"-

gunos casos, el plan de pruebas se integra con el plan del proyecto; en otros, el
de pruebas e s un documento separado.

2 Los conjuntos de tareas se estudian en el capítulo 2. En este libro también se ha empleado un
mino relacionado —flujo de trabajo— para describir la serie de tareas necesaria para completa:
actividad de ingeniería del software.

TM

PDF Editor

C A P Í T U L O 2 0 C Ó M O PROBAR APLICACIONES WEB 6 0 9

2 0 . 2 E L P R O C E S O DE P R U E B A : UN P A N O R A M A

Los procesos de prueba para ingeniería Web comienzan con pruebas que ejercitan
el contenido y la funcionalidad de la interfaz que es inmediatamente visible para los
usuarios finales. Conforme se realizan las pruebas, se ejercitan los aspectos de la ar-
quitectura de diseño y la navegación. El usuario puede o no conocer estos elemen-
tos de la WebApp. Finalmente, el foco se cambia a las pruebas que ejercitan las ca-
pacidades tecnológicas que no siempre son aparentes para los usuarios finales: la in-
fraestructura de la WebApp y cuestiones de instalación/implementación.

"£n general, ¡as técnicos de prueba de software [capítulos 13 y 14] que se utilizan con otras i
mismas que las empleadas en las aplicaciones basadas en Web... La diferencia entre los dos tipos de pruebas es que
se multiplican las variables de tecnología en el ambiente Web."

La figura 20.1 yuxtapone el proceso de prueba WebApp con la pirámide de dise-
ño examinada en el capítulo 19. Nótese que, conforme se desarrolló el flujo de prue-
bas, de izquierda a derecha y de arriba abajo, los elementos del diseño WebApp vi-
sibles para el usuario (elementos superiores de la pirámide) se prueban primero, se-
guidos por los elementos de diseño de infraestructura.

Prueba

Prueba d e
la interfaz

usuario
Prueba d e

navegación

Diseño d e
la interfaz

Diseño estético
Prueba de

componentes Diseño de contenido

Diseño de navegación

Diseño arquitectónico

Diseño de componentes

Prueba d e
configuración

tecnología
Prueba d e

desempeño Prueba d e
seguridad

TM

PDF Editor

6 1 0 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

\ CLAVE
Lo estrategia para la
prueba de integración
depende de la
arquitectura de la
WebApp elegido
durante el diseño.

La prueba de contenido (y las revisiones) intentan descubrir errores en el con té -

do. Esta actividad de prueba es similar en muchos aspectos a la copia-edición de
documento escrito. De hecho, un gran sitio Web puede reclutar los servicios de un
rrector de estilo profesional para descubrir errores tipográficos, equívocos grama"
cales, errores en la consistencia del contenido, inexactitudes en las representacicr
gráficas y fallas en las referencias cruzadas. Además de examinar el contenido •
tico en busca de errores, esta etapa de las pruebas también considera el conten :

dinámico derivado de los datos conservados como parte de un sistema de base
datos integrado a la WebApp.

La prueba de la interfaz ejercita los mecanismos de interacción y valida los aspe :
tos estéticos de la interfaz del usuario. El objetivo e s descubrir los errores que re
tan de mecanismos con una pobre implementación de interacción, u omisiones, r
sistencias o ambigüedades que se han introducido a la interfaz en forma inadvertida

La prueba de navegación aplica casos de uso, derivados c o m o parte de la ac t r
dad de análisis, en el diseño de casos de prueba que ejerciten cada escenario de
contra el diseño de navegación.

Los mecanismos de navegación (por ejemplo, barras de menú) implementa
dentro de la plantilla de la interfaz se prueban contra casos de uso y USN (capi
19) para garantizar que los errores que impiden completar un caso de uso se ide
fiquen y corrijan.

La prueba de componentes ejercita el contenido y las unidades funcionales de -

de la WebApp. Cuando se consideran las WebApps, cambia el concepto de un :

(introducido en el capítulo 13). La "unidad" de elección dentro de la arquitectura
contenido (capítulo 19) es la página Web. Cada página Web encapsula conter
vínculos de navegación y e lementos de procesamiento (formatos, guiones, app'
Una "unidad" dentro de la arquitectura WebApp puede ser un componen te funci
definido que proporciona servicio directamente a un usuario final o un compon
de infraestructura que posibilita que la WebApp desarrolle todas sus capacida
Cada componen te funcional se prueba, en gran parte, en la misma forma que
prueba un módulo individual en el sof tware convencional. En la mayoría de los
sos, las pruebas están orientadas a las ca jas negras. Sin embargo, si el procesam
to e s complejo, también se pueden usar pruebas de ca jas blancas.3 Además de
prueba funcional, también se ejercitan las capacidades de bases de datos.

Conforme se construye la arquitectura de la WebApp, las pruebas de la nav-
ción y los componentes s e utilizan como pruebas de integración. La estrategia
la prueba de integración depende del contenido y la arquitectura WebApp que se
ya elegido (capítulo 19). Si la arquitectura de contenido se diseña con estructura
neal, retícula o jerárquica simple, e s posible integrar páginas Web en gran parte
la misma forma c o m o se integran módulos para el sof tware convencional. Sin
bargo, si se usa una estructura de jerarquía mixta o de red (Web), la prueba de i

3 Las técnicas de pruebas de caja negra y caja blanca se examinan en el capítulo 14.

TM

PDF Editor

C A P Í T U L O 2 0 CÓMO PROBAR APLICACIONES WEB 611

gración es similar al enfoque usado para los sistemas OO. Las pruebas basadas en
ligas (capítulo 14) se pueden aprovechar para integrar el conjunto de páginas Web
(se puede usar una USN para definir el conjunto apropiado) requerido para respon-
der a un evento de usuario. Cada liga se integra y pone a prueba individualmente.
Mediante las pruebas de regresión se asegura que no ocurran efectos colaterales.
Las pruebas de agrupamiento integran un conjunto de páginas asociadas (determi-
nadas mediante el examen de los casos de uso y la USN). Los casos de prueba se de-
rivan para descubrir los errores en las colaboraciones.

Cada elemento de la arquitectura WebApp se prueba de manera unitaria en la me-
dida de lo posible. Por ejemplo, en una arquitectura MVC (capítulo 19), los compo-
nentes modelo, vista y controlador se prueban cada uno de manera individual. Des-
pués de la integración, el flujo de control y datos a través de cada uno de estos ele-
mentos se valora en detalle.

Las pruebas de configuración intentan descubrir los errores que son específicos
respecto de un cliente o ambiente de servidor particulares. Se crea una matriz de re-
ferencia cruzada que define todos los probables sistemas operativos, navegadores,4

plataformas de hardware y protocolos de comunicación. Entonces las pruebas se en-
caminan a descubrir los errores asociados con cada posible configuración.

La prueba de seguridad incorpora una serie de pruebas diseñadas para explotar las
vulnerabilidades en la WebApp y su ambiente. El objetivo es demostrar la posibilidad
de una brecha en la seguridad.

La prueba de desempeño abarca una serie de pruebas diseñadas para valorar 1)
cómo afecta el aumento del tráfico de usuarios la respuesta en tiempo y confiabili-
dad de la Web, 2) cuáles componentes de la WebApp son responsables de la degra-
dación del desempeño y qué características de uso provocan que ocurra la degrada-
ción, y 3) cómo la degradación del desempeño impacta los objetivos y requisitos glo-
bales de la WebApp.

CONJUNTO DE TAREAS

Prueba de Ja WebApp
I. Revisar los requisitos de los

participantes. Identificar las metas y
objetivos de los usuarios. Revisar los
casos d e uso respecto de cada
categoría de usuario.

Establecer prioridades pa ra asegurar que cada meta
• objetivo de usuario se probarán de manera
adecuada.

Definir la estrategia de prueba de la WebApp al
describir los tipos de pruebas (sección 20.2) que se
realizarán.
Desarrollar un plan de prueba.

Definir un calendario de pruebas y asignar
responsabilidades a cada prueba.

Especificar herramientas automatizadas pa ra
realizar las pruebas.

y

4 Los navegadores son notables porque implementar sus propios "estándares", suti lmente diferentes
en las interpretaciones de HTML y javascript

TM

PDF Editor

612 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

/ "

5.

Definir criterios de aceptación para cada clase
de prueba.

Especificar mecanismos de rastreo de defectos.

Definir mecanismos de reporte de problemas.

Realizar pruebas "unitarias".

Revisar el contenido para errores de sintaxis
y semántica.

Revisar el contenido para clarificaciones y permisos
adecuados.

Probar los mecanismos de la interfaz para una
operación correcta.

Probar cada componente (por ejemplo, guión) para
asegurar el funcionamiento adecuado,

ó. Realizar pruebas de "integración".
Probar la semántica de la interfaz respecto de los

casos de uso.
Dirigir pruebas de navegación.

7. Realizar pruebas de configuración.
Valorar la compatibilidad de configuración en el

lado del cliente.
Valorar configuraciones en el lado del servidor.

8. Dirigir pruebas de desempeño.
9. Dirigir pruebas de seguridad.

^ C O N S E J O ^

Aunque los revisiones
técnicas formales no
son porte de una
prueba, se deben
llevar a cabo revi-
siones de contenido
para garantizar lo
calidad del contenido.

CLAVE
Los objetivos d e lo
pruebo de contenido
son 1) descubrir errores
sintácticos en el
contenido, 2) descubrir
eirores semánt icos y 3)
encontrar errores
estructurales.

Los errores en el contenido de la WebApp pueden ser tan triviales como errores I
pográficos menores o tan significativos como información incorrecta, organizaci:
impropia o violación de las leyes de propiedad intelectual. La prueba del conter
intenta descubrir éstos y muchos otros problemas an tes de que el usuario los
cuentre.

La prueba del contenido combina tanto revisiones como la generación de casos :
prueba ejecutables. La revisión se aplica para descubrir errores semánticos en el cc
tenido (examinados en la sección 20.3.1). La prueba ejecutable se aprovecha para i
cubrir errores de contenido susceptibles de rastrear hacia contenido dinámicamer
derivado que hayan suministrado los datos adquiridos de una o más bases de datos]

20.3.1 Objetivos de la prueba de contenido
La prueba del contenido tiene tres objetivos importantes: 1) descubrir errores sinta:-
ticos (por ejemplo, errores tipográficos, equívocos gramaticales) en los document
basados en texto, representaciones gráficas y otros medios audiovisuales, 2) des
brir errores semánticos (es decir, errores en la precisión de la información o que i
ta sea incompleta) en cualquier objeto de contenido presentado conforme ocurra !
navegación, y 3) hallar errores en la organización o estructura del contenido que i
presenta al usuario final.

El primer objetivo se logra empleando verificadores de ortografía y gramática i
tomatizados. Sin embargo, muchos errores sintácticos evaden la detección media
te tales herramientas y debe descubrirlos un revisor h u m a n o (examinador). Como j
anotó en la sección anterior, la corrección de estilo es el mejor enfoque para encc
trar errores sintácticos.

La prueba semántica se centra en la información presentada dentro de cada
jeto de contenido. El revisor (examinador) debe responder las siguientes pregunt

• ¿La información realmente es precisa?

• ¿La información e s concisa y exacta?

TM

PDF Editor

CAPÍTULO 20 CÓMO PROBAR APLICACIONES WEB 6 1 3

¿La plantilla del objeto de contenido es fácil de entender para el usuario?

¿La información anidada en un objeto de contenido se encuentra con facilidad?

¿Se han ofrecido referencias adecuadas para toda la información derivada de
otras fuentes?

¿La información presentada es consistente internamente y con la información
que presentan otros objetos de contenido?

¿El contenido es ofensivo, engañoso o abre la puerta a litigios?

¿El contenido infringe derechos de autor o marcas registradas existentes?

¿El contenido contiene vínculos internos que complementan el contenido
existente? ¿Los vínculos son correctos?

¿El estilo estético del contenido entra en conflicto con el estilo estético de la
interfaz?

La obtención de respuestas a cada una de estas preguntas en una WebApp grande
(que contiene cientos de objetos de contenido) puede ser una labor atemorizante.
Sin embargo, el fracaso para descubrir errores semánticos alterará la fe del usuario
en la WebApp y puede conducir a fallas de la aplicación basada en Web.

Los objetos de contenido existen dentro de una arquitectura que tiene un estilo
específico (capítulo 19). Durante la prueba del contenido, la estructura y organiza-
ción de la arquitectura del contenido se prueba para garantizar que el contenido re-
querido se presenta al usuario final en el orden y las relaciones adecuados. Por ejem-
plo, la WebApp HogarSeguroInc.com5 presenta una variedad de información acerca
de sensores que se utilizan como parte de productos de seguridad y vigilancia. Los
objetos de contenido proporcionan información descriptiva, especificaciones técni-
cas, una representación fotográfica e información relacionada. Las pruebas de la ar-
quitectura de contenido de HogarSeguroInc.com se esfuerzan por descubrir errores
en la presentación de esta información (por ejemplo, una descripción del Sensor X
se presenta con una fotografía del Sensor V).

20.3.2 Prueba de las bases de datos
Las modernas aplicaciones Web hacen mucho más que presentar objetos de conte-
nido estáticos. En muchos dominios de aplicación, la interfaz de las WebApps con
bases de datos sofisticados gestionan sistemas y construyen objetos de contenido di-
námicos que se crean en tiempo real aprovechando datos adquiridos de una base de
datos.

Por ejemplo, una WebApp de servicios financieros puede producir compleja infor-
mación basada en texto, tabular y gráfica acerca de una participación accionaria es-
pecífica (por ejemplo, fondos de acciones o de inversión colectiva). El objeto de con-
tenido compuesto que presenta esta información se crea dinámicamente después de

p r e -
itos se
antear y

p a r a
errores

en el
7

5 La WebApp HogarSeguroInc.com se ha utilizado c o m o eiemplo a lo largo de la Parte 3 de es te libro.

TM

PDF Editor

6 1 4 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

®¿ Q u ¿ conf l ic-
t o s compl i can

la p r u e b a d e
b a s e s d e d a t a s
p a r a W e b A p p s ?

que el usuario ha consultado información acerca de una participación accionaria es-
pecífica. Esto se logra mediante los siguientes pasos: 1) se consulta una gran base
de datos de participaciones accionarias, 2) se extraen datos relevantes de la base de
datos, 3) los datos extraídos se deben organizar como un objeto de contenido, y 4
este objeto de contenido (que representa información personalizada solicitada po:
un usuario final) se transmite al ambiente del cliente para su despliegue. Los errores
pueden ocurrir, y de hecho lo hacen, como consecuencia de cada uno de estas eta-
pas. El objetivo de probar la base de datos es descubrir dichos errores.

La prueba de la base de datos para las WebApps es complicada por varios factores

1. La solicitud original de información en el lado del cliente rara vez se presenta en
la forma (por ejemplo, lenguaje de consultas estructurado, [SQL, por sus siglas er.
inglés]) que pueda introducirse en un sistema gestor de bases de datos (DBMS
por sus siglas en inglés). En consecuencia, las pruebas se deben diseñar para
descubrir errores cometidos al traducir la solicitud del usuario en una forma
que puedan procesar dichos DBMS.

2 . La base de datos quizá sea remota al servidor que hospeda la WebApp. Por lo
tanto, se deben desarrollar las pruebas que descubran los errores en la comu-
nicación entre la WebApp y la base de datos remota.6

3 . Los datos brutos adquiridos de la base de datos se deben transmitir al servidor de
la WebApp y formatearse adecuadamente para su transmisión subsecuente al
cliente. En consecuencia, se deben desarrollar pruebas que demuestren la va-
lidez de los datos brutos que recibe el servidor WebApp, y también se deben
crear pruebas adicionales que demuestren la validez de las transformaciones
aplicadas a los datos brutos para crear objetos de contenido válidos.

4. Los objetos de contenido dinámico se deben transmitir al cliente en una forma
que se pueda desplegar al usuario final. Por lo tanto, se debe diseñar una serie
de pruebas para a) descubrir errores en el formato de objeto de contenido, y
b) probar la compatibilidad con diferentes configuraciones de ambiente de
cliente.

Al considerar estos cuatro factores, se deben aplicar los métodos de diseño de ca-
sos de prueba para cada uno de los "estratos de interacción" [NGU01] anotados er
la figura 20.2. Las pruebas deben asegurar que 1) información válida pasa entre e.
cliente y el servidor desde el estrato de la interfaz; 2) la WebApp procese los guiones
correctamente y extraiga o formatee adecuadamente datos del usuario; 3) los dato;
del usuario pasen correctamente a una función de transformación de datos en el la-
do del servidor para formatear consultas apropiadas (por ejemplo, SQL); 4) las con

6 Dichas pruebas se vuelven complejas cuando se encuentran bases de datos distribuidas o cuand:
se requiere el acceso a un almacén de datos (capitulo 10).

TM

PDF Editor

C A P Í T U L O 2 0 C Ó M O PROBAR APLICACIONES WEB 6 1 5

sultas pasen a un estrato de gestión de datos7 que se comunique con rutinas de ac-
ceso a bases de datos (potencialmente ubicadas en otra máquina).

Los estratos de transformación de datos, gestión de datos y acceso a bases de da-
tos, que se muestran en la figura 20.2, usualmente se construyen con componentes
reutilizables que se han validado por separado y como paquete. Si éste es el caso,
las pruebas de la WebApp se centran en el diseño de casos de prueba para ejerci-
tar las interacciones entre el estrato del cliente y los primeros dos estratos del servi-
dor (WebApp y transformación de datos) mostrados en la figura.

El estrato de la interfaz del usuario se prueba para garantizar que los guiones
HTML están construidos de manera adecuada para cada solicitud de usuario y se
transmiten adecuadamente al lado del servidor. La capa WebApp en el lado del ser-
vidor se prueba para asegurar que los datos del usuario se extraen adecuadamente
de guiones HTML y se transmiten de manera adecuada al estrato de transformación de
datos en el lado del servidor.

Las funciones de transformación de datos se prueban para asegurar que se crea
el SQL correcto y que pasa a componentes apropiados de gestión de datos.

Una exposición detallada de la tecnología subyacente que se debe entender para
diseñar apropiadamente dichas pruebas de bases de datos está más allá del alcance
de este libro. El lector interesado debe consultar [SCE02], [NGU01] y [BROOl],

7 La capa de gestión de datos por lo general incorpora una interfase SQL al nivel de llamada (SQL
CL1) como puede ser Microsoft OLE/ADO o ia Conectr. i Jad de Bases de Datos Java (Java Database
Connectivity, JDBC)

TM

PDF Editor

6 1 6 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

"Como clientes electrónicos (ya sea de negocios o consumo) es improbable que tengamos confianza en un sitio Web
que sufre d e frecuentes periodos de inactividad, cuelga a la mitad d e una transacción o tiene un mal sentido de la
facilidad de uso. Las pruebas, por lo tanto, tienen un popel importantísimo en el proceso d e desarrollo global."

'5, ' , • Wing Lam

2 0 . 4 P R U E B A DE LA I N T E R F A Z DEL U S U A R I O

La verificación y validación de la interfaz del usuario de una WebApp ocurre en treí
puntos distintos durante el proceso de ingeniería Web. Durante la formulación y el
análisis de requisitos (capítulos 17 y 18) se revisa el modelo de la interfaz para ga-
rantizar que se ajusta a los requisitos del cliente y a otros e lementos del modelo de
análisis. Durante el diseño (capítulo 19) se revisa el modelo de diseño de la interfaz
para garantizar que se han alcanzado los criterios genéricos de calidad establecidos pa-
ra todas las interfaces de usuario, y que los conflictos en el diseño de la interfaz es-
pecíficos de la aplicación se han abordado adecuadamente. Durante las pruebas, e-
enfoque se cambia a la ejecución de los aspectos específicos de la aplicación de la in-
teracción del usuario según se manifiestan mediante la sintaxis y la semántica de la
interfaz. Además, las pruebas proporcionan una valoración final de la facilidad de use.

20.4.1 Estrategia de prueba de la interfaz
La estrategia global para la prueba de la interfaz es 1) descubrir los errores relacio-
nados con mecanismos específicos de la interfaz (por ejemplo, errores en la ejecu-
ción adecuada de un vínculo de menú o la forma en que los datos ingresan en ur
formulario), y 2) descubrir los errores en la forma en que la interfaz implementa la
semántica de navegación, la funcionalidad de la WebApp o el despliegue de conte-

El cumplimiento de esta estrategia requiere lograr varios objetivos:

Las características de la interfaz se prueban para asegurar que las reglas del dise-
ño, la estética y el contenido visual relacionado están a disposición del usuario sir
error alguno. Las características incluyen tipo de fuentes, u so de color, mar-
cos, imágenes, bordes, tablas y e lementos relacionados que se generan con-
forme procede la ejecución de la WebApp.

Los mecanismos individuales de la interfaz se prueban en una forma análoga a la
prueba unitaria. Por ejemplo, las pruebas están d iseñadas para ejercitar todas
las formas, creación de guiones en el lado del cliente, HTML dinámico, guio-
nes CGI, clasificación por niveles de contenido y mecanismos de interfaz es-
pecíficos de la aplicación (por ejemplo, un carrito de compras para una
aplicación de comercio electrónico). En muchos casos, las pruebas se pueden
enfocar exclusivamente en uno de dichos mecanismos (la "unidad") para ex-
cluir otras características y funciones de la interfaz.

Cada mecanismo de la interfaz se prueba dentro del contexto de un caso de uso o
USN (capítulo 19) para una categoría de usuario específica. Este enfoque de

nido.

^ O N S E J O ^

Con excepción de
especificidades orien-
tados a la WebApp, la
estrategia de la
interfaz anotada oquí
es aplicable a todos
los tipos de software
cliente/servidor.

TM

PDF Editor

CAPÍTULO 20 CÓMO PROBAR APLICACIONES WEB 6 1 7

pruebas es análogo a las pruebas de integración (capítulo 13) en que las prue-
bas se llevan a cabo conforme los mecanismos de la interfaz se integran para
permitir la ejecución de un caso de uso o una USN.

La interfaz completa se prueba frente a los casos de uso y las USN seleccionadas
para descubrir errores en su semántica. Este enfoque de pruebas es análogo a
las pruebas de validación (capítulo 13), ya que el propósito es demostrar con-
formidad con la semántica específica del caso de uso o la USN. En el curso de
esta etapa se lleva a cabo una serie de pruebas de facilidad de uso.

La interfaz se prueba dentro de una diversidad de ambientes (por ejemplo, nave-
gadores) para asegurar que será compatible. En la actualidad, esta serie de
pruebas también se puede considerar como parte de las pruebas de configura-
ción.

[CONSEJO

j de los
sexternos

¡ -ealizorse o lo
Í je roda la vida
r WebApp. Paite

¡debe ser la
¡regular y

i de los

20.4.2 Prueba de mecanismos de la interfaz
Cuando un usuario interactúa con una WebApp, la interacción ocurre por medio de
uno o más mecanismos de la interfaz. En el párrafo siguiente se presenta un breve
panorama de las consideraciones de prueba para cada mecanismo de la interfaz
[SPL01] .

Vínculos . Cada vínculo de navegación se prueba para asegurar que se alcance el
objeto de contenido o función adecuado.8 El ingeniero Web construye una lista de to-
dos los vínculos asociados con la plantilla de la interfaz (por ejemplo, barras de menú,
artículos índice) y luego ejecuta cada uno de manera individual. Además, se deben
ejercitar los vínculos dentro de cada objeto de contenido para descubrir malas URL
o vínculos hacia objetos de contenido o funciones impropios. Finalmente, se deben
probar los vínculos con WebApps externas para tener precisión y también deben eva-
luarse para determinar el riesgo de que se volverán inválidos con el tiempo.

F o r m a t o s . En el ámbito microscópico las pruebas se realizan para garantizar que 1)
las etiquetas identifican correctamente los campos dentro del formato y que los cam-
pos obligatorios están identificados visualmente para el usuario; 2) el servidor recibe
toda la información contenida en el formato y ningún dato se pierde en la transmi-
sión entre cliente y servidor; 3) se usan los valores por defecto adecuados cuando el
usuario no selecciona de un menú desplegable o conjunto de botones; 4) las funcio-
nes del navegador (por ejemplo, la flecha "retroceso") no corrompen los datos ingre-
sados en un formato; y 5) los guiones que realizan verificación de error en los datos
ingresados funcionan de manera adecuada y ofrecen mensajes de error significati-
vos.

En un nivel más dirigido, las pruebas deben garantizar que 1) los campos del for-
mato tienen ancho y tipos de datos adecuados; 2) el formato establece salvaguardas
apropiadas para evitar que el usuario ingrese cadenas de texto más largas que cier-

8 Dichas pruebas se pueden llevar a cabo como ps-te de pruebas o de la interfaz o de navegación

TM

PDF Editor

618 PARTE TRES APLICACIÓN DE LA INGENIERÍA WEB

^ O H S U O ^ -

Los pruebas de
creación de guiones
en el lado del cliente
y las pruebes
asociadas con el
HTML dinámico se
deben repetir siempre
que se libere uno
nuevo versión de un
navegador popular.

to máximo predefinido; 3) todas las opciones apropiadas para menús desplegables
están especificadas y ordenadas en una forma significativa para el usuario final; 4
las características de "autollenado" del navegador no conducen a errores en la en-
trada de datos; 5) la tecla de tabulador (o alguna otra) inicia el movimiento adecua-
do entre campos de formato.

Creac ión d e g u i o n e s en e l l ado de l c l iente . Las pruebas de caja negra se llevar
a cabo para descubrir los errores en el procesamiento conforme se ejecuta el guión
(por ejemplo, Javascript). Dichas pruebas usualmente se acoplan con pruebas de for-
matos, ya que la entrada del guión por lo general se deriva de los datos proporcio-
nados como parte del procesamiento de los formatos. Se debe realizar una prueba
de compatibilidad para garantizar que el lenguaje de guión elegido funcionará ade-
cuadamente en la configuración ambiental que soporta la WebApp. Además de po-
ner a prueba el guión mismo, Splaine y Jaskiel [SPL01] sugieren que "debe asegurarse
que los estándares de su compañía [WebApp] establecen el lenguaje preferido y la
versión del lenguaje de creación de guiones que se usará para la creación de guio-
nes en el lado del cliente (y en el lado del servidor)".

HTML d inámico . Cada página Web que contenga HTML dinámico se ejecuta para
garantizar que el despliegue dinámico es correcto. Además, se debe llevar a cabc
una prueba de compatibilidad para garantizar que el HTML dinámico funciona ade-
cuadamente en la(s) configuración (es) ambiental(es) que soporta la WebApp.

V e n t a n a s pop -up . 9 Una serie de pruebas garantizan que 1) la pop-up está ubicada
de manera adecuada y tiene un tamaño apropiado; 2) la pop-up no cubre la ventana
original de la WebApp; 3) el diseño estético de la pop-up es consistente con el dise-
ño estético de la interfaz; y 4) las barras de desplazamiento y otros mecanismos de
control agregados a la pop-up funcionan, están ubicados adecuadamente y trabajar
como se requiere.

G u i o n e s CGI. Las pruebas de caja negra se dirigen centrándose en la integridad de
los datos (conforme los datos pasan al guión CGI) y en el procesamiento del guiór
una vez que los datos validados se han recibido. Además, se pueden llevar a cabc
pruebas de desempeño para asegurarse de que la configuración del lado del servi-
dor se puede ajustar a las demandas de procesamiento de invocaciones múltiples de
los guiones CGI [SPL01].

Clas i f icación po r n ive les del c o n t e n i d o . Las pruebas deben demostrar que la cía
sificación por niveles de los datos está actualizada, se despliega adecuadamente y se
puede suspender sin error y volver a comenzar sin dificultad.

Cookies. Se requieren pruebas tanto del lado del servidor como del lado del cliente
En el lado del servidor, las pruebas deben garantizar que una cookie está construida
de manera adecuada (contiene datos correctos) y se transmite de modo apropiado al

9 La utilización de las pop-up se ha extendido mucho y son uno de los principales motivos de irrita-
ción para muchos usuarios. Deben usarse juiciosamente o evitarlas por completo.

TM

PDF Editor

CAPÍTULO 2 0 C Ó M O P R O B A R A P L I C A C I O N E S W E B 619

lado del cliente cuando se solicita contenido o funcionalidad específicos. Además, se
prueba la propia persistencia de la cookie para garantizar que su fecha de expiración
es correcta. En el lado del cliente, las pruebas determinan si la WebApp une adecua-
damen te las cookies existentes a una solicitud específica (enviada al servidor).

M e c a n i s m o s de la interfaz e s p e c í ñ c o s a la apl icación. Las pruebas conforman
una lista de verificación de funcionalidad y características que se definen mediante
el mecanismo de la interfaz. Por ejemplo, Splaine y Jaskiel [SPL01] sugieren la si-
guiente lista de verificación para la funcionalidad carrito de compras definido para
una aplicación de comercio electrónico:

• La frontera (capítulo 14) prueba los números mínimo y máximo de artículos
que pueden colocarse en el carrito.

• Probar una solicitud de "verificación" para un carrito vacío.

• Probar el borrado adecuado de un artículo del carrito.

• Determinar mediante prueba si el contenido del carrito se vacía con una com-

pra.

• Determinar mediante prueba la persistencia del contenido del carrito de com-
pras (esto se debe especificar como parte de los requisitos del cliente).

• Determinar mediante prueba si la WebApp puede recuperar el contenido del
carrito en alguna fecha futura (suponiendo que no se ha realizado compra al-
guna) si el usuario solicita que el contenido se guarde.

20.4.3 Prueba de la semántica de la interfaz
Una vez que cada mecanismo de la interfaz se ha probado de manera "unitaria", el
enfoque de la prueba de la interfaz cambia para considerar la semántica de ésta. La
prueba de la semánt ica de la interfaz "evalúa cuán bien el diseño se ocupa de los
usuarios, ofrece dirección clara, entrega retroalimentación y mant iene consistencia
de lenguaje y enfoque" [NGU01].

Una revisión exhaustiva del modelo de diseño de la interfaz puede ofrecer res-
puestas parciales a las preguntas implícitas en el párrafo anterior. Sin embargo, s e
debe probar cada escenario de caso de uso (para cada categoría de usuario) una vez
implementada la WebApp. En esencia, un caso de uso s e convierte en la entrada pa-
ra el diseño de una secuencia de pruebas. La finalidad de la secuencia de pruebas es
descubrir ios errores que le impedirán al usuario lograr el objetivo asociado con el
caso de uso.

Conforme se prueba cada caso de uso, el equipo de ingeniería Web mant iene una
lista de verificación para asegurarse de que todo artículo del menú se ha ejercido al
menos una vez, y que todo vínculo anidado dentro de un objeto de contenido ha si-
do empleado. El objetivo es determinar si la WebApp ofrece un efectivo manejo del

error y recuperación.

TM

PDF Editor

620 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA WEB

probarlo facilidad de
uso se encuentra en
w w w . a h r e f . c o m /
g u i d e s / d e s i g n /
199806/0615$.
h t m l . i

•
¿Qué carac-
te r i s t icas de

facilidad de uso se
vue lven el f o t o d e
las p r u e b a s , y q u é
ob je t ivos especí f i -
cos s e a b o r d a n ?

20.4.4 Prueba de la facilidad de uso
La prueba de la facilidad de uso e s s imilar a la p rueba d e la s e m á n t i c a d e la interfaz
(sección 20.4.3) en el s en t ido d e q u e t a m b i é n eva lúa el g r a d o en el cual los usuar ios

p u e d e n in te rac tuar e f e c t i v a m e n t e con la WebApp, as í c o m o el g r ado e n el cual U
WebApp guía las a c c i o n e s d e los usuar ios , p roporc iona re t roa l imentac ión s ignif ic¿- |

tiva y for ta lece un e n f o q u e d e in teracc ión cons i s ten te . Más q u e e n f o c a r s e fijamer:*
e n la s e m á n t i c a de a lgún obje t ivo interact ivo, las rev i s iones y p r u e b a s d e la facilidad
de u s o s e d i s eñan p a r a d e t e r m i n a r el g r ado en el cual la in ter faz d e la WebApp fac -J
lita la vida del usuar io . 1 0

Las p r u e b a s d e facilidad d e u s o p u e d e d i seña r l a s un e q u i p o d e ingenier ía Wetvl
App, p e r o las p r u e b a s m i s m a s las l levan a c a b o los u sua r io s finales. Se aplica la si-
gu ien te s ecuenc ia d e p a s o s [SPL01]:

1. Definir un c o n j u n t o d e ca t egor í a s d e p rueba de facilidad d e u s o e identificar
las m e t a s para c a d a una .

2. Diseñar p r u e b a s q u e permi t i rán eva luar c a d a m e t a .

3 . Se lecc ionar los pa r t i c ipan tes q u e dirigirán las p ruebas .

4 . In s t rumen ta r la in te racc ión d e los par t i c ipan tes con la WebApp m i e n t r a s se 1

lleva a c a b o la p rueba .

5 . Desarrol lar un m e c a n i s m o para valorar la facilidad d e u s o d e la WebApp.

La p rueba d e la facilidad de u s o p u e d e l levarse a c a b o en va r ios g r a d o s d e abstrác-J

ción: I) s e p u e d e va lora r la facilidad d e u s o d e un m e c a n i s m o d e la in ter faz e s p e c * j
c o (por e jemplo , un formulario); 2) s e p u e d e eva lua r la facilidad d e u s o d e u n a 1

na Web c o m p l e t a (aba rcando m e c a n i s m o s d e la interfaz, ob je tos d e d a t o s y f-
n e s re lac ionadas) ; o 3) s e p u e d e cons ide ra r la facil idad d e u s o d e la WebApp
ple ta .

El p r imer p a s o en la p rueba d e la facil idad de u s o e s identificar un c o n j u n t o de

t egor ias d e facilidad d e u s o y e s t ab lece r obje t ivos d e p rueba p a r a c a d a ca tegor ía f
s igu ien tes obje t ivos y c a t ego r í a s d e p r u e b a (escritos e n f o r m a d e pregunta) il"
e s t e e n f o q u e : "

Irteractividad: ¿los m e c a n i s m o s de in teracc ión (por e jemplo , m e n ú s despleg
bo tones , pun te ros) s o n fáci les d e e n t e n d e r y usar?

Plantilla: ¿los m e c a n i s m o s de navegac ión , c o n t e n i d o y func iones e s t á n col
en una fo rma q u e pe rmi t en al u s u a r i o encon t r a r lo s r á p i d a m e n t e ?

10 En este contexto se ha usado el término "amigable para el usuario". Desde luego, el problema es
la percepción de un usuario de lo que es una interfaz "amigable" puede ser radicalmente di
de la de otras.

11 Para preguntas adicionales acerca de la facilidad de uso, véase "Facilidad de uso" en el capí

TM

PDF Editor

http://www.ahref.com/

CAPÍTULO 20 CÓMO P R O B A R A P L I C A C I O N E S W E B 621

Legibilidad: ¿el texto es tá bien escri to y e s comprensible?1 2 ¿Las representac iones
gráf icas son fáciles de entender?

Estética: ¿ia plantilla, el color, los ca rac te res y las caracterís t icas re lac ionadas
conducen a un u s o m á s sencillo? ¿Los usuar ios "se s ienten cómodos" con la apar ien-
cia y la percepción de la WebApp?

Características de despliegue-, ¿la WebApp utiliza en forma óptima el t a m a ñ o y la
resolución de la pantalla?

Sensibilidad del tiempo: ¿las características, func iones y contenido impor tantes
pueden utilizarse o adquirirse de mane ra opor tuna?

Personalización: ¿la WebApp se a jus ta por sí misma a las neces idades específ icas
de las di ferentes ca tegor ías de usuar io o usuar ios individuales?

Accesibilidad: ¿la WebApp e s accesible a las pe r sonas con discapacidades?

Dentro de cada una de es tas categorías se diseña una serie de pruebas . En a lgunos
casos , la "prueba" puede ser una revisión visual de una página Web. En otros, se
puede ejecutar de nuevo la prueba de semánt ica de la interfaz, pe ro en es ta ocas ión
son m á s impor tantes las p reocupac iones por la facilidad de uso.

Como ejemplo, cons idérese la valoración de la facilidad de uso para la interacción
y los mecan i smos de la interfaz. Constant ine y Lockwood [CC>N03] sugieren que se
revise y pruebe la facilidad de u s o de la siguiente lista de caracterís t icas de la inter-
faz: animación, botones , color, control, diálogos, campos , formularios, marcos, grá-
ficos, e t iquetas , vínculos, menús , mensa jes , navegación, páginas, selectores, texto y
ba r ras de herramientas . Conforme se valora cada característ ica, los usuar ios que
realizan la p rueba la califican en una escala cualitativa. La figura 20.3 muest ra un

12 Se pueden aprovechar el fndice de Legibilidad FOG y otros para proporcionar una valoración cuan-
titativa de la legibilidad. Véase para más detalles http //developer.gnome.org/documents/usability/
usability-readability.html

TM

PDF Editor

622 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA WEB

CLAVE
Los WebApps se
ejecutan dentro de una
variedad de ambientes
en el lado del cliente.
El objetivo de los
pruebas de
compatibilidad es
descubrir errores
asociados con un
ambiente específico
(por ejemplo,
navegador).

posible conjunto de "calificaciones" de valoración que pueden seleccionar los usua-
rios. Estas calificaciones se aplican a cada característica individualmente, a una pa-
gina Web completa o a la WebApp c o m o un todo.

20.4.5 Pruebas de compatibilidad
Las WebApps deben operar dentro de ambientes que difieren u n o de otro. Diferer-
tes computadoras , dispositivos de despliegue, s is temas operativos, navegadores «
velocidad en las conexiones de red t ienen una influencia significativa en las v e l e i -
dades de procesamiento en el lado del cliente, la resolución de despliegue y las vel
cidad de conexión. Las variaciones en el s is tema operativo pueden provocar c o n f l : -
tos en el procesamiento de la WebApp. En ocasiones, los diferentes navegadores
producen resultados l igeramente diferentes, sin importar el grado de estandariza-
ción HTML dentro de la WebApp. Los plug-in requeridos pueden o no ser f ác i lmene
accesibles para una configuración particular.

En a lgunos casos, los pequeños conflictos de compatibilidad no representan pro-
b lemas significativos, pero en otros se pueden encontrar serios errores. Por e j e m p . r j
las velocidades de descarga pueden volverse inaceptables; la falta de un plug-in re-
querido puede hacer que el contenido no sea disponible; la diferencias en cuanto a l
navegador pueden cambiar drást icamente la plantilla de página; los estilos de f u e - J
tes se pueden alterar y volverse ilegibles, o los formatos pueden estar organizad : a l
de mane ra inadecuada. La prueba de compatibilidad se esfuerza para descubrir c - 1
chos problemas an te s de que la WebApp esté en línea.

El primer paso en la prueba de compatibilidad e s definir un conjunto de confie_-
raciones de computadoras "encontrado comúnmente" en el lado del cliente y sus v a l
riantes. En esencia, se crea una estructura de árbol que identifica cada plataforma
de computadora , los dispositivos de despliegue típicos, los s is temas operat ivos s.:-J
por tados en la plataforma, los navegadores disponibles, las probables velocidad-=•
de conexión a Internet e información similar. A continuación, el equipo de ingen:e3
ría Web produce una serie de pruebas de validación de compatibilidad, derivadas
las p ruebas de la interfaz existentes, pruebas de navegación, p ruebas de desem- 'r- i
ño y pruebas de seguridad. La finalidad de estas p ruebas es descubrir errores o p r : - i
b lemas de ejecución que se pueden rastrear has ta las diferencias de configuració". I

Prueba de la WebApp

El e s c e n a r i o : Oficina de Doug

Los actores: Doug Miller (gerente del grupo de ingeniería
del software de HogorSeguro) y Vinod Raman, miembro del
« ¡ J p o de ingeniería del software del producto.

La conversación:

D o u g : ¿Qué piensas de la WebApp VO.O de c
electrónico de HogarSegurolnc.com?

TM

PDF Editor

CAPÍTULO 20 C Ó M O P R O B A R A P L I C A C I O N E S W E B 623

s.bcontrotista hizo un buen trabajo. Sharon
aesarrollo de la empresa] me dicen que la

. mientras tú y yo conversamos.

gastaría que tú y el resto del equipo hicieran
prueba informal del sitio de comercio

m u e c a s) : Creo que tendríamos
jna compañía de prueba para validar la

ccavía nos estamos matando al intentar que
; 'oducto salga a ta callo.

iremos una empresa de prueba para las
desempeño y seguridad, y nuestro
. ya está haciendo pruebas. Sólo creo que

oe .ista sería útil y, además, no gusta
e:- costos en línea, así que...

:ra): ¿Qué buscas?

estar seguro de que la interfaz y toda la
son sólidos.

> que podemos comenzar con los casos
cada una de las principales funciones de la

acerca de HogarSeguro
el sistema HogarSeguro que

Compre un sistema HogarSeguro
Obtenga soporte técnico
D o u g : Bien. Pero sigue las rutas de navegación hasta su
conclusión. >

Vinod (observa los casos de uso en una
computadora portátil): Sí, cuando eliges
Especifique el sistema HogarSeguro que
n e c e s i t a eso te llevará hasta

Seleccione componentes HogarSeguro
Obtenga recomendaciones de componentes
de HogarSeguro
Podemos ejercitar la semántica de cada ruta.

Doug: Mientras estás en eso, verifica el contenido que
aparece en cada nodo de navegación.

V i n o d : Desde luego... y los elementos funcionales
también. ¿Quién está probando la facilidad de uso?

D o u g : Oh. . . la empresa de pruebas coordinará las
pruebas de facilidad de uso. Hemos contratado una
firma de investigación de mercado que reclutará 20
usuarios típicos para el estudio de facilidad de uso, pero
si ustedes descubren algún conflicto al respecto...

Vinod: Ya sé: dénselos a ellos.

D o u g : Gracias, Vinod.

• 5 P R U E B A AL — P E C O M P O N E N T E S

Las pruebas al nivel de componentes, también l lamadas pruebas de función, se enfo-
can sobre un conjunto de pruebas que intentan descubrir errores en las funciones de
la WebApp. Cada función WebApp es un módulo de sof tware (implementado en al-
gún lenguaje de programación o guiones) y se puede probar empleando las técnicas
de caja negra (y, en algunos casos, de caja blanca) examinadas en el capítulo 14.

Los casos de prueba al nivel de componen tes con frecuencia se al imentan con en-
trada al nivel de formularios. Una vez definidos los datos de los formularios, el usua-
rio selecciona un botón u otro mecanismo de control para iniciar la ejecución. Son
comunes los siguientes métodos de diseño de casos de prueba (capítulo 14):

• Partición de equivalencia. El dominio de entrada de la función se divide en ca-
tegorías o clases de entrada a partir de las cuales se derivan los casos de
prueba. La forma de entrada se valora para determinar qué clases de datos
son relevantes para la función. Los casos de prueba para cada clase de entra-
da se derivan y ejecutan mientras otras clases de entrada se mant ienen cons-
tantes. Por ejemplo, una aplicación de comercio electrónico puede
implementar una función que calcule los cargos de embarque. Entre la diver-

TM

PDF Editor

624 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA WEB

sidad de información de emba rque proporcionada med ian te un formulario,
es tá el código postal del usuario. Los casos de prueba se d iseñan con la fin
dad de descubrir errores en el p rocesamien to del código postal al especificar
valores de código postal que puedan descubrir d i ferentes clases de errores
(por ejemplo, un código postal incompleto, un código postal correcto, un c
go postal inexistente, un formato de código postal erróneo).

• Análisis de valores límite. Los da tos de los formularios se p rueban en sus lím:
tes. Por ejemplo, la función de cálculo de emba rque seña lada anter iormente
solicita el n ú m e r o máx imo de días requerido para la ent rega del producto,
el formulario s e ano tan un mínimo de 2 días y un m á x i m o de 14. Sin embaí
go, las p ruebas de valor de límite pueden ingresar va lores de 0, 1 ,2 , 13, 14
15 para determinar c ó m o reacciona la función frente a los da tos en y fuera
los límites de las en t radas válidas.1 3

• Pruebas de ruta. Si la complejidad lógica de la función es al ta, '4 s e p u e d e i
plear la p rueba d e ruta (método caja blanca de d iseño de caso de prueba)
garant izar que se ha ejerci tado toda ruta independiente en el programa.

Además de es tos mé todos de d iseño de casos de prueba, se utiliza una técnica
mada prueba de error forzado [NGU01] para producir casos de prueba que deli
d a m e n t e conducen los c o m p o n e n t e s de la WebApp hacia una condición de error
propósito es descubrir los errores que ocurren durante el m a n e j o de los errores
ejemplo, m e n s a j e s de errores incorrectos o inexistentes, falla de la WebApp
consecuencia del error, salida e r rónea producida por en t rada errónea, efectos c
terales re lacionados con el p rocesamiento del componente) .

Cada caso de prueba al nivel de componen te s especifica todos los valores de
trada y la salida esperada que proporcionará el componen te . La salida real pn
da c o m o consecuencia de la prueba se registra para referencia futura durante el
porte y el manten imiento .

En m u c h a s s i tuaciones la ejecución correcta de la función de una WebApp esta
gada a una interfaz adecuada con una base de datos que puede ser externa a la
App. En consecuencia , la prueba de la b a s e de da tos se vuelve una par te integral
régimen de prueba de componen tes . Hower [HOW97] examina es to cuando esc

Los sitios Web a l imentados con ba se s de da tos pueden involucrar una interacción com

pleja ent re navegadores Web, s i s temas operativos, aplicaciones plug-in, protocolos de co-

13 En este caso, un mejor diseño de entrada puede eliminar errores potenciales. El máximo núm
días se podría seleccionar de un menú desplegable, con lo que se evita que el usuario espec
una entrada fuera de los límites.

14 La complejidad lógica se puede determinar al calcular la complejidad ciclomática del alg
Véase el capítulo 14 para detalles adicionales.

TM

PDF Editor

CAPÍTULO 20 C Ó M O P R O B A R A P L I C A C I O N E S W E B 625

municación, servidores Web, bases de datos, p rogramas [lenguaje de guión]..., mejoras a

¡ j ¿ ! | I la seguridad y cortafuegos.

Tal complejidad imposibilita probar todas las posibles dependencias y todo lo que po-
dría ir mal con un sitio. El típico proyecto de desarrollo de un sitio Web también estará en
un calendario agresivo, de modo que el mejor enfoque de prueba empleará análisis de
riesgo para determinar dónde enfocar los esfuerzos de prueba. Los análisis de riesgo de-
be incluir consideración de cuánto coincidirá el ambiente de prueba con el ambiente de
producción real... Otras consideraciones típicas en el análisis de riesgo incluyen.

• ¿Cuál func iona l idad en el sitio Web e s m á s crucial p a r a su p ropós i to?

• ¿Cuáles á r e a s del sitio requieren la m á s dura interacción con la b a s e de da tos?

• ¿Cuáles a s p e c t o s d e los CGI, apple ts , c o m p o n e n t e s ActiveX, etc., del sitio son

los m á s comple jos?

• ¿Qué t ipos d e p r o b l e m a s causa r í a la mayor ía d e las q u e j a s o la peo r publici-

dad?

• ¿Qué á r e a s del sitio s e r á n las m á s popu la re s?

• ¿Qué a s p e c t o s del sitio t i enen los m a y o r e s r iesgos d e segur idad?

Cada u n o d e los a s u n t o s r e l a c i o n a d o s con el r iesgo q u e e x a m i n a Hower deben c o n -

s ide ra r se c u a n d o s e d i s eñen c a s o s d e p r u e b a p a r a c o m p o n e n t e s WebApp y funcio-

n e s d e b a s e s d e d a t o s re lac ionadas .

2 0 . 6 P R U E B A S HE N A V E G A C I Ó N

Un usuar io viaja a t r avés d e u n a WebApp e n gran medida c o m o lo h a c e un visi tante
al c amina r por una t ienda o un museo . Existen m u c h a s ru t a s q u e s e p u e d e n tomar ,
m u c h a s p a r a d a s que s e pueden realizar, m u c h a s cosa s que ap render y ver, act ividades
por iniciar y dec i s iones po r tomar . C o m o ya s e ha c o m e n t a d o , e s te p r o c e s o d e n a v e -

gac ión e s predecib le en el s en t ido en q u e todo vis i tante t iene un c o n j u n t o d e objet i -
v o s c u a n d o llega. Al m i s m o t iempo, el p roceso de navegac ión p u e d e ser impredecible
p o r q u e el visi tante, influido por a lgo que ve o aprende , p u e d e elegir una ruta o iniciar
una acc ión q u e n o e s típica p a r a el obje t ivo original. El t r aba jo d e probar la n a v e g a -
ción e s 1) ga ran t i za r q u e t odos los m e c a n i s m o s q u e pe rmi t en al u sua r io d e la Web-
App viajar a t r avés d e ella son func iona les , y 2) val idar q u e c a d a un idad s e m á n t i c a d e

navegac ión (USN) p u e d a ser a l c a n z a d a por la categoría de usua r io a d e c u a d a .

"No estamos perdidos. E n f r e n t a m o s un r e t o d e u b i c a c i ó n . "
John M . Ford

20.6.1 Prueba de la sintaxis de navegación
La p r imera f a se d e la p rueba d e navegac ión e n real idad c o m i e n z a d u r a n t e la p rueba
d e la in terfaz . Los m e c a n i s m o s d e navegac ión s e p r u e b a n p a r a a s e g u r a r q u e c a d a

TM

PDF Editor

626 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA W E B

u n o realiza la función que se busca. Splaine y Jaskiel [SPL01] sugieren que se d
probar cada u n o de los mecan i smos de navegación siguientes:

• Vínculos de navegación. Se deben probar los vínculos in ternos dent ro d e la
WebApp, los vínculos ex ternos hacia ot ras WebApps y las anclas den t ro de
una página Web específica para garant izar que se a lcanzarán el conten ido o
la funcionalidad adecuados cuando el vínculo s e elija.

• Redirigir. Dichos vínculos en t ran en juego c u a n d o un usuar io solicita una URL
inexistente o selecciona un vínculo cuyo des t ino se ha removido o cuyo nom-
bre ha cambiado. Se despliega un m e n s a j e al usuar io y la navegación se redi-
rige hacia otra página (por ejemplo, la página de inicio). La redirección se
debe probar al solicitar vínculos in ternos incorrectos o URL externas y valora:
c ó m o mane ja la WebApp dichas solicitudes.

• Bookmarks. Aunque los bookmarks son función del navegador , se debe pro-
bar la WebApp para asegurar que s e puede extraer un título de página signifi-
cat ivo c u a n d o se cree el bookmark.

• Marcos y conjuntos de marcos. Cada m a r c o cont iene el conten ido de una págj-
na Web específica; un con jun to de m a r c o s cont iene múltiples marcos y perm -
te el despliegue de múltiples pág inas Web al mismo tiempo. Puesto que es
posible anidar m a r c o s y con jun tos de m a r c o s u n o dent ro de otro, se deben
probar dichos mecan i smos de navegación y despliegue para un contenido co-
rrecto, plantilla y t a m a ñ o adecuados , d e s e m p e ñ o de descarga y compatibili-
dad de navegador .

• Mapas de sitio. Las en t radas se deben probar pa ra garant izar que el vínculo
lleva al usuar io hacia el contenido o la funcional idad adecuados .

• Motores de búsqueda internos. Las WebApps comple jas usua lmen te cont iener
c ientos o incluso miles de obje tos de contenido. Un motor de búsqueda inter-
n o permite al usuar io realizar una búsqueda por palabra clave dent ro de la
WebApp para encont ra r el conten ido necesar io . La prueba del motor de bús-
queda valida la precisión y qué tan completa es la búsqueda , las propiedades
de m a n e j o de errores del motor de búsqueda y las caracterís t icas de búsqueca
a v a n z a d a (por ejemplo, el uso de operadores boo leanos en el c a m p o de bús-
queda).

Algunas de es tas p ruebas pueden desarrol larse mediante her ramien tas automat iza-]
das (por e jemplo, verificador d e vínculos), mient ras q u e o t ras s e d i señan y ejecutan
de m a n e r a manual . La finalidad de todo esto es asegurar que los e r rores en las me-
cánicas de navegación se encuen t ren an tes de que la WebApp esté en línea.

20.6.2 Prueba de la semántica de navegación
En el capítulo 19 se definió una unidad semánt ica d e navegación (USN) c o m o u n
conjun to de es t ructuras de información y navegac ión re lac ionadas que colaboran en

TM

PDF Editor

CAPÍTULO 20 C Ó M O P R O B A R A P L I C A C I O N E S W E B 627

el cumpl imiento de un subconjun to de requisi tos de usuar io relacionados" [CAC02].
Cada USN se def ine mediante un con jun to de ru tas de navegación (l lamadas "formas
de navegar") que conectan nodos de navegación (por ejemplo, páginas Web, objetos de
conten ido o funcionalidad). Tomada c o m o un todo, cada USN permite al usuar io lo-
grar requisitos específ icos definidos por medio de u n o o m á s casos de u s o para una
categoría de usuario. La prueba de navegac ión ejercita cada USN para asegurar q u e
dichos requisitos son asequibles.

Conforme se prueba cada USN, el equipo de ingeniería Web debe responder las si-
guientes preguntas :

• ¿La USN se logra en su totalidad sin error?

• ¿Todo n o d o de navegación (definido para una USN) es asequible dent ro del
contex to de las rutas de navegación que def ine la USN?

• Si la USN puede a lcanzarse empleando m á s de una ruta de navegación, ¿se
ha probado cada ruta relevante?

• Si la interfaz del usuar io proporciona una guía para ayudar en la navegación,
¿las direcciones son correctas y comprensibles confo rme se realiza la navega-
ción?

• ¿Existe un m e c a n i s m o (distinto a la flecha "retroceso" del navegador) para re-
gresar al n o d o de navegación precedente y hacia el comienzo de la ruta de
navegación?

• ¿Los mecan i smos de navegación den t ro de un gran n o d o de navegación (es
decir, una gran página Web) funcionan adecuadamen te?

• Si una función se ha de ejecutar en un n o d o y el usuar io elige no proporcionar
en t rada , ¿se puede comple tar el resto de la USN?

• Si una función se e jecuta en un nodo y ocurre un error en el p rocesamien to
de la función, ¿se puede comple tar la USN?

• ¿Existe una forma para descont inuar la navegación a n t e s de que se hayan al-
c a n z a d o todos los nodos, pe ro en tonces regresar a d o n d e se descont inuó la
navegación y proceder desde ahí?

• ¿Todo n o d o se a lcanza desde el mapa de sitio? ¿Los n o m b r e s de los n o d o s
son significativos para los usuar ios finales?

• Si un nodo den t ro de una USN se a lcanza desde a lguna fuente externa, ¿es
posible proceder hacia el siguiente n o d o en la ruta de navegación? ¿Es posible
regresar al n o d o previo en la ruta de navegación?

• ¿El usuar io en t iende su ubicación den t ro de la arquitectura de conten ido con-
forme se ejecuta la USN?

La prueba de navegación, c o m o las p ruebas de la interfaz y facilidad de uso, se
debe dirigir en t an tos part icipantes diferentes c o m o sea posible. Las pr imeras e t a p a s

TM

PDF Editor

628 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA WEB

de las p r u e b a s las dirigen los ingen ie ros Web, pe ro e t a p a s u l ter iores las deben <fiñ|
gir o t ros par t i c ipan tes del proyecto , un e q u i p o d e p rueba i ndepend i en t e y, a final x
cuen tas , u sua r io s s in calif icación técnica . La finalidad e s e jerc i tar a m p l i a m e n t e •>
navegac ión d e la WebApp.

2 0 . 7 P R U E B A D E L A C O N F I G U P A C I Ó M

La variabil idad y la inestabi l idad d e la conf igu rac ión son f ac to re s i m p o r t a n t e s qj tff l
h a c e n d e la ingenier ía Web un desa f ío . Hardware , s i s t e m a s opera t ivos , navegado re s ,1
c a p a c i d a d d e a l m a c e n a m i e n t o , r ap idez d e c o m u n i c a c i ó n d e la red y u n a d i v e r s i d a J
d e o t ro s f ac to re s del lado del c l iente son difíciles de p redec i r p a r a c a d a usuar io . A ó e J
m á s , la conf igurac ión p a r a un usua r io d a d o p u e d e c a m b i a r (por e jemplo , ac tua l iz J
c i o n e s d e s i s t ema opera t ivo , n u e v o ISP y r ap idez d e conexión) con regular idad . El ie -J
su l t ado p u e d e ser , e n el l ado del cl iente, un a m b i e n t e procl ive a e r rores , t an to su J
les c o m o signif icat ivos. La impres ión q u e un usua r io t e n g a d e la WebApp y la f o n - a l
en la q u e in te rac túa con ella p u e d e diferir s ign i f ica t ivamente d e la exper ienc ia J
o t ro usua r io , si a m b o s n o t r aba jan d e n t r o d e la m i s m a conf igurac ión del lado G J
cl iente .

La l abor d e p r o b a r la conf igurac ión n o e s e jerc i tar toda posible conf igurac ión « a
lado del c l iente . Más bien, e s p roba r un c o n j u n t o de p robab l e s con f igu rac iones d e I
l ados del c l iente y del servidor p a r a ga ran t i za r q u e la exper ienc ia del u sua r io se rá a l
m i s m a e n t odos el los y p a r a ais lar e r r o r e s q u e p u e d a n s e r e spec í f i cos d e una conñ-1
gurac ión part icular .

20.7.1 Conflictos en el lado del servidor
En el l ado del servidor, los c a s o s d e p r u e b a d e conf igurac ión s e d i s eñan p a r a ver i l -
ea r q u e la conf igurac ión d e serv idor p royec tada (es decir: servidor WebApp, servid c r
d e b a s e d e da tos , s i s t e m a s opera t ivos , s o f t w a r e co r t a fuegos , ap l i cac iones concu-
rrentes) p u e d e n sopo r t a r la WebApp sin error . En e senc ia , la WebApp s e instala den-

tro del a m b i e n t e del l ado del se rv idor y s e p r u e b a con la in tenc ión d e e n c o n t r a r erro-
r e s r e l ac ionados con la conf igurac ión .

C o n f o r m e s e d i s e ñ a n la p r u e b a s d e conf igurac ión del lado del servidor, el inge-
n ie ro Web d e b e c o n s i d e r a r c a d a c o m p o n e n t e d e la conf igurac ión del servidor . Entre
las p r e g u n t a s q u e e s prec iso p l an t ea r y r e s p o n d e r d u r a n t e la p r u e b a d e configura-
ción del l ado del se rv idor s e e n c u e n t r a n :

• ¿La WebApp e s t o t a lmen te compa t ib l e con el s i s t ema opera t ivo del servidor? 1

• ¿Los a r ch ivos d e s i s t ema , d i rec tor ios y d a t o s d e s i s t ema r e l ac ionados s e crear
c o r r e c t a m e n t e c u a n d o la WebApp e s opera t iva?

• ¿Las m e d i d a s d e segur idad del s i s t ema (por e j emplo , c o r t a f u e g o s o encr ip ta -
do) p e r m i t e n a la WebApp e j ecu t a r se y da r servicio a los u s u a r i o s s in interfe-
rencia o m e n o s c a b o del d e s e m p e ñ o ?

•
¿ Q u é pre -
g u n t a s se

deben p l a n t e a r y
r e sponde r confor-
me se lleva a
cabo la p r u e b a d e
configuración en
el lado del s e rv i -
d o r ?

TM

PDF Editor

CAPÍTULO 20 C Ó M O P R O B A R A P L I C A C I O N E S 'ATE 629

• ¿La WebApp s e ha probado con la configuración de servidor distribuido15 (si
existe uno) que se haya elegido?

• ¿La WebApp es tá a d e c u a d a m e n t e integrada con sof tware de b a s e de datos?
¿La WebApp e s sensible a di ferentes vers iones del so f tware de base de datos?

• ¿Los guiones de la WebApp en el lado del servidor se ejecutan adecuadamente?

• ¿Los errores del adminis t rador del s is tema se han examinado para ver su
efecto sobre las operac iones de la WebApp?

• Si se usan servidores proxy, ¿las diferencias en sus configuraciones se han
abordado con pruebas en el sitio?

20.7.2 Conflictos en el lado del cliente
En el lado del cliente las pruebas de configuración se centran principalmente en la
compatibil idad de la WebApp con las conf iguraciones que cont ienen una o m á s per-
mutac iones de los s iguientes c o m p o n e n t e s [NGU01]:

• Hardware. CPU, memor ia , a lmacenamien to y dispositivos de impresión.

• Sistemas operativos. Linux, Macintosh, Microsoft Windows, un sis tema operat i-
vo con b a s e móvil.

• Software de navegación. Internet Explorer, Mozil ia/Netscape, Opera, Safari y
otros.

• Componentes de la interfaz del usuario. ActiveX, applets Java y otros.

• Plug-ins. QuickTime, RealPlayer y m u c h o s otros.

• Conectividad. Cable, DSL, módem regular, TI .

Además de es tos componen tes , o t ras variables incluyen el so f tware de red, las va-
riaciones del ISP y apl icaciones que corren al mismo t iempo.

Al diseñar p r u e b a s de configuración en el lado del cliente el equipo de ingeniería
Web debe reducir el n ú m e r o de variables de configuración hacia un n ú m e r o mane-
jable.16 Por tanto, se valora cada categoría de usuar io para de terminar las probables
conf igurac iones que s e encon t ra rán dent ro de la categoría. Además, se pueden uti-
lizar los da tos compar t idos en el mercado industrial para predecir las combinacio-
n e s m á s probables de componentes . Entonces la WebApp se prueba dent ro de es tos
ambientes .

15 Por ejemplo, se puede usar un servidor de aplicación y uno de base de datos por separado. La co-
municación entre las dos máquinas ocurre por medio de una conexión de red.

16 Ejecutar pruebas en toda posible combinación de componentes de configuración consume dema-
siado tiempo.

TM

PDF Editor

630 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA W E B

2 Q . 8 P R U E B A S P E S E < 5 V R I P A P

La segur idad d e las WebApps e s u n a ma te r i a comple ja q u e d e b e e n t e n d e r s e
c o m p l e t o a n t e s de q u e s e p u e d a lograr una p rueba de segur idad efect iva.1 7 Las V.
Apps y los a m b i e n t e s e n el lado del c l ien te y en el l ado del servidor en los que i

h o s p e d a d a s r ep re sen t an un b l a n c o a t rac t ivo p a r a hackers, e m p l e a d o s d e s c o n t e r d
c o m p e t i d o r e s d e s h o n e s t o s y cua lqu ie ra o t ro q u e d e s e e robar in fo rmac ión se r
modif icar c o n t e n i d o ma l i c io samen te , d isminui r el d e s e m p e ñ o , deshabi l i tar la fur a
na l idad o p o n e r en a p u r o s a u n a p e r s o n a , o rgan izac ión o negocio .

"El Internet es un fugar r iesgoso poro llevar a t o b o negocios o a lmacena r activos. Hackers, crackers , snoops,
s p o o f e r s , . . ladrones , vánda los , l a n z a d o r e s d e virus y p roveedo re s de p r o g r a m a s delictivos se p a s e a n l ibremente

Doro thy y P e t e r D e n á g

^ C O N S E J O ^

Silo WebApp es cru-
cial en el negocio,
conservo datos sensi-
bles o es un probable
blanco de hackers, es
bueno idea subcontra-
tar las pruebas de se-
guridad con una
empresa especializado
en esto labor.

Las p r u e b a s d e segur idad e s t á n d i s e ñ a d a s p a r a p roba r las vulnerabi l idades en
a m b i e n t e del lado del cliente, las c o m u n i c a c i o n e s d e red q u e ocu r r en mien t ras i J
d a t o s p a s a n del c l iente al se rv idor y d e vuel ta , y el a m b i e n t e del l ado del serví
Cada u n o d e e s to s d o m i n i o s p u e d e recibir a t a q u e s , y e s l abor d e qu ien p r u e b a la s e l
gur idad descubr i r las deb i l idades q u e p u e d e n explo tar q u i e n e s t engan la i n t e n o H

d e hacer lo .
En el lado del cl iente, l as vu lne rab i l idades con f r ecuenc ia s e p u e d e n ras t rear h a s l

ta e r r o r e s p r eex i s t en t e s e n los n a v e g a d o r e s , p r o g r a m a s d e c o r r e o e lec t rón ico o s e n
w a r e d e comun icac ión . Nguyen [NGU01] desc r ibe un hoyo d e segur idad típico:

Uno de los errores mencionados comúnmente es el desbordamiento del buffer. Esto per-
mite que un código malicioso se ejecute en la máquina cliente. Por ejemplo, al ingresar
una URL en un navegador que es mucho mayor que el tamaño del buffer alocado para la
URL provocará un error de sobreescritura de memoria (desbordamiento de buffer) si el na-
vegador no tiene código de detección de error para validar la longitud de la URL ingresa-
da. Un hacker estacional puede explotar astutamente este bug al escribir una URL grande
con código ejecutable que puede provocar que el navegador reviente o altere las opciones
de seguridad (de mayor a menor) o, peor aún, corrompa los datos del usuario.

Ot ra vulnerabi l idad potencia l e n el l ado del c l iente e s el a c c e s o n o au to r i zade •
cook ie s co locadas d e n t r o del navegador . Los si t ios Web c r e a d o s con in tenciones
ma l i c iosas p u e d e n adquir i r in fo rmac ión con ten ida d e n t r o d e c o o k i e s legí t imas y usar
es ta in fo rmac ión en f o r m a s q u e p o n e n en j uego la pr ivacidad del usuar io , o peor, es-
t ab lecen el e s c e n a r i o p a r a el r o b o d e ident idad.

Los d a t o s c o m u n i c a d o s en t r e el c l iente y el se rv idor s o n vu lne rab le s a la s imula-

ción (spoofirtg). Ésta o c u r r e c u a n d o un e x t r e m o d e la ru ta d e c o m u n i c a c i ó n lo sub-

17 Los libros de Trivedi [TRE03], McClure y sus colegas [MCC03] y Garfinkel y Spafford [GAR02] ofre-
cen información útil acerca del tema.

TM

PDF Editor

CAPÍTULO 20 C Ó M O P R O B A R A P L I C A C I O N E S W E B 631

IVE
s de seguri-

i estar dise-
5 s o ejercitar

s , autentifi-
! «cr ip todo y

vierte u n a ent idad con in tenc iones maliciosas. Por e jemplo, a un usuar io p u e d e e n g a -
ñarlo un sitio Web malicioso que ac túa c o m o si fuese el legítimo servidor d e la Web-
App (idént icos e n apar ienc ia y percepción) . La in tención e s robar c o n t r a s e ñ a s , infor-

mac ión d e p rop iedad o d a t o s de crédi to.
En el l ado del servidor, l as vu lnerab i l idades incluyen a t a q u e s d e negac ión de se r -

vicio y g u i o n e s mal ic iosos q u e p u e d e n p a s a r al l ado del c l iente o e m p l e a d o s p a r a
deshabi l i tar las o p e r a c i o n e s de l servidor . A d e m á s , s e p u e d e t e n e r acceso , sin au to -
r ización, a b a s e s d e da to s en el l ado del se rv idor (robo d e datos) .

La p ro tecc ión cont ra é s t a s (y m u c h a s otras) vu lnerab i l idades requ ie re i m p l e m e n -

tar u n o o m á s d e los s igu ien tes e l e m e n t o s d e segur idad [NGU01J:

• Cor ta fuegos : m e c a n i s m o d e filtrado —combinac ión d e h a r d w a r e y so f tware—
q u e e x a m i n a c a d a p a q u e t e d e in fo rmac ión e n t r a n t e para ga ran t i za r q u e llega
d e u n a fuen te legí t ima y b loquea cua lqu ie r da to s o s p e c h o s o .

• Autent i f icación: m e c a n i s m o d e verif icación q u e val ida la ident idad d e t odos

los c l ientes y serv idores , y permi te q u e la c o m u n i c a c i ó n ocur ra só lo c u a n d o

a m b o s l ados son ver i f icados .

• Encr ip tado: m e c a n i s m o d e codif icación q u e p ro tege los da to s sens ib les m e -
d ian te su modif icac ión en u n a f o r m a q u e imposibil i ta la lectura d e q u i e n e s
t e n g a n i n t e n c i o n e s mal ic iosas . El e n c r i p t a d o s e for ta lece e m p l e a n d o cert i f ica-
d o s digi tales q u e pe rmi t en al c l iente verif icar el des t ino al cual se t r ansmi t en

los da tos .

• Autor ización: m e c a n i s m o d e filtrado q u e pe rmi t e el a c c e s o al a m b i e n t e del
c l iente o el servidor sólo a aque l lo s individuos con códigos d e au to r izac ión
a p r o p i a d o s (por e j emplo , ident if icación del u sua r io y con t r a seña) .

La finalidad d e las p r u e b a s d e segur idad e s e x p o n e r los h o y o s en d i c h o s e l e m e n -
t o s d e segur idad q u e podr ían exp lo ta r q u i e n e s t engan in t enc iones mal ic iosas . El di-
s e ñ o actual de las p r u e b a s d e segur idad requiere un c o n o c i m i e n t o p r o f u n d o d e los
t r a b a j o s i n t e rnos d e c a d a e l e m e n t o d e segur idad , as í c o m o una e x t e n s a c o m p r e n -

sión d e un ampl io r a n g o d e t ecno log ías d e red. En m u c h o s ca sos , las p r u e b a s d e se -
gur idad s e s u b c o n t r a t a n con firmas que s e espec ia l i zan en d ichas tecnologías .

Nada e s m á s f rus t ran te q u e u n a WebApp que t a rda m i n u t o s e n ca rga r c o n t e n i d o
c u a n d o los si t ios d e la c o m p e t e n c i a d e s c a r g a n con t en ido similar en s e g u n d o s . Nada
e s m á s ag rav ian te q u e el in ten to d e en t ra r en una WebApp y recibir un m e n s a j e d e
"servidor ocupado" , q u e s e a c o m p a ñ a con la sugerenc ia de in tentar lo m á s tarde . Na-
da e s m á s d e s c o n c e r t a n t e que u n a WebApp q u e r e s p o n d e i n s t a n t á n e a m e n t e en al-

g u n a s s i tuac iones , y luego, e n o t r a s oca s iones , p a r e c e irse a un e s t a d o d e e s p e r a in-
finita. Todos e s t o s h e c h o s s u c e d e n en la Web todos los días, y t o d o s e s t á n relacio-

n a d o s con el d e s e m p e ñ o .

TM

PDF Editor

632 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA WEB

Las p ruebas del d e s e m p e ñ o se apl ican para descubrir p rob lemas de d e s e m p e ñ o
que se p resen tan debido a falta de recursos en el lado del servidor, ancho de banda
de red inapropiado, capacidades inadecuadas de base de datos, defec tuosas o débi-
les capac idades del s is tema operativo, funcional idad WebApp mal d iseñada y otros
conflictos de ha rdware o sof tware que pueden conducir a un pobre d e s e m p e ñ o
cliente-servidor. La finalidad es doble: 1) comprender c ó m o responde el s is tema a la
carga (es decir, n ú m e r o de usuarios, n ú m e r o de t ransacc iones o volumen de datos
global), y 2) recolectar métr icas que conducirán a modif icaciones de diseño para me-
jorar el desempeño .

20.9.1 Objetivos de las pruebas del desempeño
Las p ruebas del d e s e m p e ñ o se d iseñan con el fin de simular s i tuaciones de carga de!
m u n d o real. Conforme crece el n ú m e r o de usuar ios s imul táneos de la WebApp, o au
menta el n ú m e r o de t ransacciones en línea, o se incrementa la cant idad de datos
(descargados o cargados), las p ruebas de d e s e m p e ñ o ayudarán a responder las si-
guientes preguntas:

¿El t iempo de respuesta del servidor se reduce has ta un pun to donde es apre-
ciable e inaceptable?

¿En qué p u n t o (en términos de usuarios, t ransacc iones o carga de datos) el
d e s e m p e ñ o se vuelve inaceptable?

¿Qué c o m p o n e n t e s del s is tema son responsables de la reducción del desem-
peño?

¿Cuál es el t iempo de respuesta promedio para los usuarios en una variedad
de condiciones de carga?

¿La reducción del d e s e m p e ñ o t iene impacto sobre la seguridad del s is tema?

¿La confiabilidad o la precisión de la WebApp se afectan confo rme crece la
carga del s is tema?

¿Qué ocurre c u a n d o se aplican ca rgas que rebasan la capacidad máx ima del
servidor?

Para desarrollar respues tas a es tas preguntas , se dirigen dos p ruebas de desem-
peño diferentes:

• Prueba de carga: la carga en el m u n d o real se p rueba en una diversidad de ni-
veles de carga y en una variedad de combinaciones .

• Prueba de tensión: la carga se a u m e n t a hasta el p u n t o de ruptura para deter-
minar cuánta capacidad puede mane ja r el ambien te de la WebApp.

Cada una de es tas es t ra tegias de prueba se considera en las secciones siguientes.

^ O N S E J O ^ -

Algunos aspectos del
desempeño de la Web-
App, al menos como
los peiciben los usua-
rios finales, son difíci-
les de probar, incluso
lo cargo de red, las
variaciones del hard-
ware que establece
uno interfaz con lo red
y tópicos similores.

TM

PDF Editor

CAPÍTULO 20 C Ó M O P R O B A R A P L I C A C I O N E S W E B 633

3 utiliza
¡unidores

reo-

ja se
t e n un

f x muhiser-

kVE
3 de las

•. y¡ tensión es
r mejor có-
i sistema

e se presiona
t ie sus límites

20.9.2 Pruebas de carga
El objetivo de las p ruebas de carga e s de terminar c ó m o la WebApp y su ambien te del
lado del servidor responderán a varias condic iones de carga. Conforme proceden las
pruebas , las pe rmutac iones a las s iguientes variables def inen un conjun to de condi-
ciones de prueba:

N , el n ú m e r o de usuar ios concurrentes
T , el n ú m e r o de t ransacc iones en línea por usuar io por unidad de t iempo
D, la carga de da tos p rocesada por el servidor por t ransacción

En cada caso, es tas variables s e def inen dent ro de los límites operat ivos n o r m a -
les del s is tema. Conforme se corre cada condición de prueba , se recopilan una o m á s
de las s iguientes medidas: la respuesta de usuar io promedio, el t iempo promedio pa-
ra descargar una unidad de da tos es tandar izada o el t iempo promedio para procesar
una t ransacción. El equipo de ingeniería Web examina es tas medidas para determi-
nar si una disminución precipitada en el d e s e m p e ñ o se puede ras t rear has ta una
combinac ión específica de N , T y D .

La prueba de carga también se aplica para valorar la velocidad de conexión reco-
m e n d a d a pa ra los usuar ios de la WebApp. La cant idad de información global proce-
sada en una unidad de tiempo, P, s e calcula de la forma siguiente:

P = N x T x D

Como ejemplo, considérese un popular sitio de noticias deportivas. En un m o m e n -
to dado, 20 000 usuarios concurrentes realizan una solicitud (una t ransacción, T) una
vez cada dos minutos en promedio. Cada t ransacción requiere que la WebApp des-
cargue un nuevo artículo que promedia 3 Kbytes de longitud. En consecuencia , la
cantidad de información procesada en una unidad de t iempo se puede calcular como:

P = [20 000 x 0.5 X 3 K b] / 6 0 = 500 Kbytes /seg
= 4 megabi t s por s e g u n d o

Por lo tanto, la conexión de red para el servidor tendría que sopor tar es ta tasa de
da tos y se debería probar para garant izar que la tiene.

20.9.3 Pruebas de tensión
La prueba de tensión (capítulo 13) es una cont inuación de la prueba de carga, pe ro
en es ta instancia las variables N, T y D se fuerzan para a lcanzar y luego superar los
límites operativos. La finalidad de es tas p ruebas es responder cada una de las pre-
gun tas siguientes:

• ¿El s is tema se degrada "genti lmente" o el servidor se desconecta c u a n d o se
rebasa su capacidad?

• ¿El so f tware del servidor genera m e n s a j e s de "servidor no disponible"? De
m a n e r a m á s general: ¿a los usuar ios se les advierte que n o pueden a lcanzar
el servidor?

TM

PDF Editor

6 3 4 PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA WEB

• ¿El servidor pone en cola las solicitudes de recursos y vacía la cola una vez
que la capacidad demanda disminución?

• ¿Las t ransacciones se pierden conforme se rebasa la capacidad?

• ¿La integridad de los datos se afecta cuando se rebasa la capacidad?

• ¿Qué valores de N, Ty D fuerzan el fallo del ambiente del servidor? ¿Cómo se
manifiesta la falla en sí misma? ¿Las notificaciones automát icas se envían al
equipo de soporte técnico en el sitio del servidor?

• Si el sistema falla, ¿cuánto tardará en es tar en línea de nuevo?

• ¿Ciertas funciones de la WebApp (por ejemplo, calcular funcionalidad inte
capacidades de flujo de datos) se descont inúan cuando la capacidad alcanza
el nivel de 80 o 90 por ciento?

A una variación de la prueba de tensión a veces se le refiere como prueba
rebote [SPLOI]. En este régimen de pruebas la carga se lleva hasta su punto m á r :

de capacidad, luego se baja rápidamente hasta condiciones de operación norm
y luego se sube de nuevo al pico. Al rebotar la carga del sistema un examinador
de determinar cuán bien el servidor puede poner en orden los recursos para sati
cer la demanda muy elevada y luego liberarlos cuando reaparecen las condici
normales (de modo que es tén listas para el siguiente pico).

Taxonomía de herramientas para pruebas de WebApp

HERRAMIENTAS DE SOFTWARE

En su artículo acerca de la prueba de los siste-
mas de comercio electrónico, Lam [LAM01]

presenta una útil taxonomía de las herramientas automati-
zadas que tienen aplicabilidad directa en la realización
de pruebas en un contexto de ingeniería Web. En cada
categoría se indican herramientas representativas.18

Las herramientas de configuración y de gestión
del c o n t e n i d o gestionan la versión y cambian el control
de los objetos de contenido y de los componentes funcio-
nales de la WebApp.

Herramienlalsl representativa(sl:

En www.daveeaton.com/scm/CMTools.html se encuen-
tra una extensa lista.

Las herramientas de desempeño de bases de
d a t o s miden, por ejemplo, el tiempo para realizar con-
sultas a boses de datos seleccionadas. Estas herramientas
facilitan el mejoramiento de la base de datos.

V

Herramienta(s) representativas(s): BMC Software
(www.bmc.com)

Los programas depuradores (debuggers) son herramientas
de programación comunes que encuentran y resuelven de-
fectos de software en el código. Forman parte de la mayo-
ría de los ambientes modernos de desarrollo de aplicacio-
nes.

Herramienlalsl representah'va(s):
Accelerated Technology (www.acceleratedtechnology.com
IBM VisualAge Environment (www.ibm.com)
JDebug Tool (www.debugtools.com)

Los sistemas de gestión de defectos registran los
defectos y rastrean su estatus y resolución. Algunos inclu-
yen herramientas de reporte para ofrecer información de
gestión acerca del defecto esparcido y las tasas de resolu-
ción de defectos.

Herramienlalsl representativa/s):
EXCEL Quickbugs (www.excelsoftware.com)

18 Las herramientas expuestas aquí sólo representan una muestra de esta categoría. Además, los norr -
bres de las mismas son marcas registradas de las compañías mencionadas.

TM

PDF Editor

http://www.daveeaton.com/scm/CMTools.html
http://www.bmc.com
http://www.acceleratedtechnology.com
http://www.ibm.com
http://www.debugtools.com
http://www.excelsoftware.com

CAPÍTULO 2 0 C Ó M O P R O B A R A P L I C A C I O N E S W E B 6 3 5

TRUETrack (www.mccabe.com)
ClearQuest (www.rational.com)

amientas d e s u p e r v i s i ó n d e red vigilan el
tráfico de la red. Son útiles para identificar los

¡ de botella" de la red y probar los vínculos entre
i de entrada y de salida.

ienta(s¡ represenloliva(sj:
.slac.stanford.edu/xorg/nmtf/nmtf-tools.html se

una extensa lista.

a m i e n t a s d e p r u e b a s d e r e g r e s i ó n al-
i casos y datos de prueba y se pueden volver a

• oara casos de prueba después de cambios de soft-
I sjcesivos.

nienta(s) representativa(s):
are QARun (www.compuware.

producís/qacenter/qarun)
VisualTest (www.rational.com)

i Software (www.seque.com)

i herramientas d e s u p e r v i s i ó n d e s i t io vigilan
eño de un sitio, usualmente desde una perspecti-

! usuario. Úsense para compilar estadísticas como el
: de respuesta de extremo a extremo y la cantidad

ación procesada en una unidad de tiempo, así
i cara verificar periódicamente la disponibilidad de

nienta(s) represenlaHva(s):
¡ Systems (www.keynote.com)

i h e r r a m i e n t a s d e t e n s i ó n ayudan a los desarro-
t a explorar el comportamiento del sistema en con-
i de niveles elevados de uso operativo y a encon-

; puntos de quiebre de un sistemo.

nienta(s) representativa/s):
1 Interactive (www.merc-int.com)

i Technologis (www.scapatech.com)

• s i s t e m a s d e s u p e r v i s i ó n d e recursos son par-
! a mayoría de los sistemas operativos de los servido-

res y del software de servidores Web; vigilan los recursos ta
les como el espacio de disco, el uso del CPU y la memoria.

Herramienta(s) representativa(s):
Successful Hosting.com (www.successfulhosting.com)
Quest Software Foglight (www.quest.com)

Las h e r r a m i e n t a s d e g e n e r a c i ó n d e d a t o s d e
p r u e b a auxilian a los usuarios en dicha tarea.

Herramienta(s¡ representativa(s):
En www.softwareqatest.com/qatwebl.html se encuentra
una extensa lista.

Los c o m p a r a d o r e s d e r e s u l t a d o s d e p r u e b a s
ayudan a comparar los resultados de un conjunto de prue-
bas con los de otro conjunto. Úsense para verificar que los
cambios de código no han introducido cambios adversos
en el comportamiento del sistema.

Herramientals/ representativa(s):
En www.aptest.com/resources.html se encuentra una lis-
ta útil.

Los m o n i t o r e s d e t ransacc ión miden el desempeño
de los sistemas de procesamiento de transacciones de alto
volumen.

Herramienta(s¡ representativa/si:
QuotiumPro (www.quotium.com)
Software Research eValid (www.soft.com/eValid/in-
dex.html)

Las h e r r a m i e n t a s d e s e g u r i d a d d e sit ios W e b
ayudan a detectar potenciales problemas de seguridad.
Con frecuencia pueden configurar herramientas de prueba
y supervisión de la seguridad para que corran sobre una
base calendarizada.

Herramienta(s) representativa(s):
En www.timberlinetechnologies.com/products/www.html
se encuentra una extensa lista.

La m e t a d e p r o b a r l a s W e b A p p e s e j e r c i t a r c a d a u n a d e l a s m u c h a s d i m e n s i o n e s d e

la c a l i d a d W e b A p p c o n la finalidad d e e n c o n t r a r e r r o r e s o d e s c u b r i r c o n f l i c t o s q u e

p u d i e r a n c o n d u c i r a f a l l a s e n la c a l i d a d . L a s p r u e b a s s e c e n t r a n e n c o n t e n i d o , f u n -

c i ó n , e s t r u c t u r a , f a c i l i d a d d e u s o , n a v e g a b i l i d a d , d e s e m p e ñ o , c o m p a t i b i l i d a d , i n t e r o -

p e r a b i l i d a d , c a p a c i d a d y s e g u r i d a d . L a s p r u e b a s t a m b i é n i n c o r p o r a n r e v i s i o n e s q u e

o c u r r e n c o n f o r m e s e d i s e ñ a la W e b A p p .

La e s t r a t e g i a d e p r u e b a d e la W e b A p p e j e r c i t a c a d a u n a d e l a s d i m e n s i o n e s d e c a -

l i dad a l e x a m i n a r i n i c i a l m e n t e " u n i d a d e s " d e c o n t e n i d o , f u n c i o n a l i d a d o n a v e g a c i ó n .

U n a v e z q u e l a s u n i d a d e s i n d i v i d u a l e s h a n s i d o v a l i d a d a s , e l e n f o q u e s e c a m b i a a

TM

PDF Editor

http://www.mccabe.com
http://www.rational.com
http://www.compuware
http://www.rational.com
http://www.seque.com
http://www.keynote.com
http://www.merc-int.com
http://www.scapatech.com
http://www.successfulhosting.com
http://www.quest.com
http://www.softwareqatest.com/qatwebl.html
http://www.aptest.com/resources.html
http://www.quotium.com
http://www.soft.com/eValid/in-
http://www.timberlinetechnologies.com/products/www.html

PARTE TRES A P L I C A C I Ó N DE LA INGENIERÍA WEB

pruebas que ejerciten la WebApp como un todo. Esto se logra derivando m u c h a s prue-
bas de las perspect ivas de los usuar ios y se a l imentan con la información contenida
en los c a s o s de uso. Se desarrolla un plan de prueba de ingeniería Web y se identifi-
can los p a s o s de prueba, los productos de t rabajo (por ejemplo, casos de prueba) .
los mecan i smos para la evaluación de los resul tados de prueba. El proceso de prue-
ba abarca siete tipos diferentes de pruebas .

La prueba del conten ido (y las revisiones) se centra en varias categorías de con-
tenido. La finalidad es descubrir e r rores tanto semánt icos c o m o sintáct icos que afec-
ten la precisión del contenido o la forma en la que se presenta al usuar io final. La
prueba de la interfaz ejercita los mecan i smos de interacción que permiten que
usuar io se comunique con la WebApp y valida los a spec tos estét icos de la interfaz
El objetivo es descubrir errores que resulten de mecan i smo s de interacción mal irr.-
p lementados , u omisiones, inconsistencias o ambigüedades en la semánt ica de la ir -
terfaz.

La prueba de navegac ión aplica casos de uso, der ivados como par te de la activ.
dad de análisis, en el d iseño de casos de prueba que ejercitan cada uno de los esce-
nar ios de uso f rente al d iseño de navegación. Los mecan i smos de navegación se
p rueban para garant izar que se identifican y corrigen los errores que impiden e
comple tar un caso de uso. La prueba de c o m p o n e n t e s ejercita las un idades de con-
tenido y funcionales dent ro de la WebApp. Cada página Web encapsula contenidc
vínculos de navegación y e lementos de p rocesamien to que forman una "unidad"
dentro de la arquitectura d e la WebApp. Se deben probar d ichas unidades .

La prueba de configuración intenta descubrir ios errores o los p rob lemas de corr
patibilidad específicos de un ambiente particular de cliente o servidor. Entonces s e
llevan a cabo p ruebas para descubrir los errores asociados con cada posible confi-
guración. La prueba de la seguridad incorpora una serie de p ruebas d i señadas para
explotar las vulnerabil idades en la WebApp y en su ambiente . La finalidad es encor
trar hoyos de seguridad. La prueba de d e s e m p e ñ o abarca una serie de pruebas que
se diseñan para valorar el t iempo de respuesta de la WebApp y la confiabilidad cor -
forme a u m e n t a la d e m a n d a en la capacidad de recursos en el lado del servidor.

[BROOI | Brown, B., Oracle9i Web Development, McGraw-Hill, 2a. ed„ 2001.
[CAC02] Cachero, C. et al., "Conceptual Navigation Analysis: A Device and Platform Inde

pendent Navigation Specification", Proc. 2nd Intl. Workshop on web-oriented technolog?.
junio de 2002, se puede descargar de www.dsic.upv.es/~west/iwwost02/papers
cachero.pdf

[CON03J Constantine, L. y L, Lockwood, Software for Use, Addison-Wesley, 1999; veásr
también ht tp: / /www.foruse.com/.

[GAR02] Garfinkel, S. y G. Spafford, Web Security, Prívacy and Commerce, O'Reilly & Assc-
ciates, 2002.

[HOW97] Hower, Rick, "Beyond Broken Links", Internet Systems, 1997, disponible er
http://www.dbmsmag.com/9707i03.html.

[LAMO 1] Lam, W„ "Testing E-Commerce Systems: A Practical Guide", en IEEE IT Pro, mar-
zo-abril de 2001, pp. 19-28.

TM

PDF Editor

http://www.dsic.upv.es/~west/iwwost02/papers
http://www.foruse.com/
http://www.dbmsmag.com/9707i03.html

CAPÍTULO 2 0 CÓMO PROBAR APiiCACICNtS WtS 6 3 7

[MCC03 | McCIure , S., S. S h a h y S. S h a h . Web Hacking. Attacks and Defense, A d d i s o n - W e s -
ley, 2 0 0 3 .

|MIL00] Miller, E., " W e b S i t e Tes t ing" , 2 0 0 0 , d i s p o n i b l e e n h t t p : / / w w w . s o f l . c o m / e V a l i d /
T e c h n o l o g y / W h i t e . P a p e r s / w e b s i te . t e s t ing . h t m l .

[NGUOO] N g u y e n , H., "Tes t ing W e b - B a s e d App l i ca t i ons " , e n Software Testing and Quality
Engineering, m a y o - j u n i o d e 2 0 0 0 , d i s p o n i b l e e n h t t p : / / w w w . s t q e m a g a z i n e . c o m .

[NGU0I1 N g u y e n , H., Testing Applications on the Web, Wiley, 2 0 0 1 .
[SCE02] S c e p p a , D„ Microsoft ADO.NET, M i c r o s o f t P ress , 2 0 0 2 .
[SPL01] S p l a i n e , S. y S. Jask ie l , The Web Testing Handbook, S T Q E P u b l i s h i n g , 2001 .
[TRE03] Tr ivedi , R„ Professional Web Services Security, W r o x P r e s s , 2 0 0 3 .
[WAL03] W a l l a c e , D., 1. R a g g e t t y J. A u f g a n g , Extreme Programmingfor Web Projects, Addi -

s o n - W e s l e y , 2 0 0 3 .

20.1. ¿Existen a l g u n a s s i t uac iones e n las cua l e s las p r u e b a s d e la WebApp d e b a n ignora r se p o r
c o m p l e t o ?

20.2. Con a r g u m e n t o s propios , c o m é n t e n s e los ob je t ivos d e la rea l ización d e p r u e b a s e n el
con t ex to d e la ingenier ía Web.

20.3. La compat ib i l idad e s u n a impor t an t e d i m e n s i ó n de cal idad. ¿ Q u é d e b e p o n e r s e a p r u e b a
p a r a g a r a n t i z a r q u e ex i s t e compat ib i l idad pa ra una WebApp?

20.4. ¿ Q u é e r ro re s t i enden a s e r m á s ser ios : los e r ro re s del l ado del c l ien te o los e r ro re s del la-
d o del se rv idor? ¿Por qué?

20.5. ¿Qué e l e m e n t o s d e la WebApp p u e d e n "probarse de m a n e r a uni tar ia"? ¿Qué t ipos d e
p r u e b a s s e d e b e n llevar a c a b o só lo d e s p u é s d e q u e e s t án i n t e g r a d o s los e l e m e n t o s de la Web-
App?

20.6. ¿S iempre e s n e c e s a r i o desar ro l la r un plan de p r u e b a escr i to d e m a n e r a fo rmal? Expliqúe-
s e la r e spues t a .

20.7. ¿Es jus to decir q u e la e s t r a t eg ia global de p r u e b a s de la WebApp c o m i e n z a con los e le-
m e n t o s visibles pa ra el u sua r io y s e m u e v e hac ia los e l e m e n t o s d e tecnología? ¿Existen excep-
c i o n e s a es ta e s t r a t eg ia?

20.8. ¿La p r u e b a del c o n t e n i d o realmente e s u n a p r u e b a e n el s e n t i d o convenc iona l del térmi-
n o ? Explicar la r e spues t a .

20.9. Describir los p a s o s a s o c i a d o s c o n la p r u e b a de las b a s e s de d a t o s p a r a u n a WebApp. ¿La
p r u e b a d e las b a s e s d e d a t o s e s u n a act ividad p r e d o m i n a n t e m e n t e del l ado del c l ien te o del la-
d o del se rv idor?

20.10. ¿Cuál e s la d i ferencia e n t r e las p r u e b a s q u e e s t á n a s o c i a d a s con los m e c a n i s m o s de la
in terfaz y las p r u e b a s q u e a b o r d a n la s e m á n t i c a d e la in te r faz?

20.11. Suponer q u e s e es tá e n el desarrollo de una farmacia e n línea (FarmaciadelaEsquina.com)
q u e in ten ta sa t i s face r los d e s e o s de p a c i e n t e s ger iá t r icos . La f a rmac ia p r o p o r c i o n a las func io-
n e s usua les , p e r o t a m b i é n m a n t i e n e u n a b a s e d e d a t o s pa ra c a d a c l ien te de m o d o q u e p u e d e
o f r e c e r i n fo rmac ión de m e d i c a m e n t o s y a d v e r t e n c i a s d e po tenc i a l e s i n t e racc iones r e s p e c t o d e
m e d i c a m e n t o s . C o m e n t a r a l g u n a s p r u e b a s e spec ia l e s d e facil idad d e u s o pa ra e s t a WebApp.

20.12. S u p o n e r q u e s e ha i m p l e m e n t a d o u n a func ión d e verif icación d e in te racc ión d e m e d i -
c a m e n t o s pa ra Fa rmac iade l aEsqu ina . com (prob lema 20.11). E x a m i n e los t ipos p r u e b a s al nivel
d e c o m p o n e n t e q u e t endr ían q u e l levarse a c a b o p a r a g a r a n t i z a r q u e es ta func ión t r aba ja de
m a n e r a a d e c u a d a . [Nota: Se t endr í a q u e u s a r u n a b a s e de d a t o s p a r a i m p l e m e n t a r e s t a función.)

TM

PDF Editor

http://www.sofl.com/eValid/
http://www.stqemagazine.com

6 3 8 PAETE TRES APLICACIÓN DE LA INGENIERÍA WEB

20.13. ¿Cuál e s la d i ferencia e n t r e p r o b a r la s in taxis d e n a v e g a c i ó n y p r o b a r la s e m á n t i c a de
n a v e g a c i ó n ?

20.14. ¿Es pos ible p roba r c a d a conf igurac ión q u e p r o b a b l e m e n t e e n c u e n t r e la WebApp en e. 1
lado del se rv idor? ¿En el lado del c l iente? Si no , ¿ c ó m o u n ingen ie ro Web se lecc iona u n c o n j u r - J
to s ignif icat ivo d e p r u e b a s de conf igurac ión?

20.15. ¿Cuál e s el obje t ivo de las p r u e b a s de segur idad? ¿Quién lleva a c a b o es ta act ividad ¿e \
p r u e b a ?

2 0 . 1 6 . F a r m a c i a d e l a E s q u i n a . c o m (problema 20.11) s e ha vue l to ex i tosa y el n ú m e r o de USLÍ]
rios ha a u m e n t a d o d e m a n e r a significativa e n los p r i m e r o s d o s m e s e s d e ope rac ión . Dibuje i
gráf ica q u e m u e s t r e el t i e m p o de r e s p u e s t a p robab l e c o m o func ión del n ú m e r o d e usua r io s i
ra un c o n j u n t o fijo de r e c u r s o s e n el l a d o del servidor . Rotule la gráf ica p a r a indicar p u n t o s ;
in te rés e n la "curva de respues ta" .

20.17. En r e s p u e s t a a su éxito, Fa rmac iade l aEqu ina . com (prob lema 20.11) h a implementi
un servicio espec ia l exc lu s ivamen te p a r a m a n e j a r el resur t ido de r ece t a s . En p romed io , 1
u sua r io s c o n c u r r e n t e s giran u n a solicitud de resur t ido u n a vez c a d a d o s minu tos . La Web
desca rga un b l o q u e d e d a t o s de 500 bytes c o m o r e spues t a . ¿Cuál e s la can t idad de in formac
a p r o x i m a d a q u e s e neces i t a p r o c e s a r por u n a un idad d e t i empo pa ra e s t e servidor, en mega
por s e g u n d o ?

2 0 . 1 8 . ¿Cuál e s la d i ferencia e n t r e p r u e b a de ca rga y p r u e b a de t ens ión?

La l i teratura p a r a las p r u e b a s de WebApps todav ía es tá e n evolución . Los l ibros de Ash (The i
Testing Companion, Wiley, 2003), Dust in y s u s c o l e g a s (Qualily Web Systems, Addison-We
2002), Nguyen [NGU01| y Splaine y Jaskiel (SPL01) s e e n c u e n t r a n e n t r e los que , pub l i cados I
ta la f echa , p r e s e n t a n los t r a t a m i e n t o s m á s c o m p l e t o s del t e m a . Mosley (Client-Server!
Testing on the Desklop and Ihe Web, Prentice-Hall , 1999) a b o r d a a s u n t o s de p r u e b a t a n t o en •
l ado del c l iente c o m o e n el lado del servidor .

S to t t l emeyer (Aulomated Web Testing Toolkit, Wiley, 2001) p r e s e n t a in formac ión útil ace rca :
los m é t o d o s y e s t r a t eg i a s e n la p r u e b a d e las WebApps , asi c o m o u n val ioso anál is is de las I
r r a m i e n t a s de p r u e b a a u t o m a t i z a d a s . G r a h a m y sus c o l e g a s (So f tware Test Aulomation, Addn
Wesley, 1999) p r e s e n t a n mater ia l adic ional ace rca d e las h e r r a m i e n t a s a u t o m a t i z a d a s .

Nguyen y s u s co legas (Testing Applications for the Web, s e g u n d a edición, Wiley, 2003) i
r rol laron u n a gran ac tua l i zac ión [NGU01] y o f recen u n a guía única p a r a p roba r aplicacic
móvi les . A u n q u e Microsoft (Per formance Testing Microsoft .NET Web Applications, Micr
Press , 2002) s e en foca p r e d o m i n a n t e m e n t e e n su a m b i e n t e .NET, s u s c o m e n t a r i o s a c e r c a de .
p r u e b a s de d e s e m p e ñ o p u e d e n se r úti les p a r a cua lqu ie r i n t e r e s a d o e n la ma te r i a .

Spla ine (Testing Web Security, Wiley, 2002), Klevinsky y sus c o l e g a s (Hack I.T.:
Through Penelration Testing, Addison-Wesley, 2002) , Chirillo (Hack Attacks Revealed, s eg
edic ión , Wiley, 2003) y Skoudis {Counter Hack, Prentice-Hall , 2001) o f r e c e n m u c h a informa
útil pa ra q u i e n e s d e b e n d i seña r p r u e b a s d e segur idad .

En Internet es tá d isponible u n a g r an va r i edad de f u e n t e s d e in fo rmac ión a c e r c a d e las |
b a s pa ra ingenier ía Web. En el sitio Web de SEPA s e e n c u e n t r a una lista ac tua l i zada de referí
c ias en la World Wide Web:
h t tp : / /www.mhhe .com/p res sman

TM

PDF Editor

http://www.mhhe.com/pressman

GESTIÓN DE PROYECTOS

DE SOFTWARE

En esta parte de Ingeniería del software: un enfoque práctico se
consideran las técnicas de gestión necesarias para planear,
organizar, supervisar y controlar los proyectos de software.

En los capítulos que siguen se abordan las siguientes preguntas:

• ¿Cómo se deben gestionar el personal, el proceso y los pro-
blemas durante un proyecto de software?

• ¿Cómo pueden emplearse las métricas de software para ges-
tionar un proyecto de software y el respectivo proceso?

• ¿Cómo se estiman el esfuerzo, el costo y la duración del pro-
yecto?

• ¿Qué técnicas pueden aplicarse para evaluar formalmente los
riesgos que pueden incidir en el éxito del proyecto?

• ¿Cómo selecciona un gestor de proyectos un conjunto de ta-
reas de trabajo de ingeniería del software?

• ¿Cómo se crea el programa cronológico de un proyecto?

• ¿Qué es la gestión de calidad?
• ¿Por qué son tan importantes las revisiones técnicas forma-

les?
• ¿Cómo se gestionan los cambios durante el desarrollo del

software de computadora y después de entregarlo al cliente?

Una vez que se respondan estas preguntas se estará mejor pre-
parado para gestionar proyectos de sortw are en una forma que
conducirá a la entrega puntual de un producto de alta calidad.

639

TM

PDF Editor

C A P I T U L O

~ k .

2 1
L

1
C O N C E P T O S

C L A V E

ámbito del
a f t w a r e . . 6 5 1

coordinación . . . 6 S 0

descomposició n
del problema . . 6 5 2

e q u i p a d .
s o f t w a r e 6 4 5

equipos
ág i les . . 6 4 9

l íderes de
EQUIPO . . 6 4 4

participantes . . 6 4 4

personal . . 6 4 3

prácticas
. . 6 5 8

principio
WSHH . . 6 5 /

proceso 6 5 3

proyecto 6 8 6

C O N C E P T O S DE
GESTIÓN DE PROYECTOS

E n el prefacio de su libro acerca de la gestión de proyectos de software, Me»
ler Page-Jones [PÁG85J hace una afirmación a la que pueden sumarse mu
chos asesores en ingeniería del sof tware:

He vis i tado d o c e n a s d e t i endas comerc ia l e s , t a n t o b u e n a s c o m o ma la s , y h e obser-

v a d o reg is t ros d e g e r e n t e s de p r o c e s a m i e n t o de da tos , d e n u e v o t a n t o b u e n o s comí

m a l o s . Con m u c h a f r ecuenc ia h e vis to c o n hor ro r c o m o d ichos g e r e n t e s l u c h a b a r

inú t i lmente c o n p royec tos d e pesadi l la , s u f r i e n d o p o r f e c h a s l ímites impos ib les o sis-

t e m a s e n t r e g a d o s q u e ind ignaron a s u s u s u a r i o s y d e v o r a r o n e n o r m e s c a n t i d a d e s de

t i empo de m a n t e n i m i e n t o .

Lo que Page-Jones describe son s ín tomas que resultan de una serie de probá
m a s de gestión y técnicos. Sin embargo, si se realizara una autopsia de cac
proyecto, es muy probable que se encontrara un tema consistente: la gestión á
proyecto fue débil.

En este capítulo, y en los seis siguientes, se consideran los conceptos cía i
que conducen a una gestión efectiva de proyectos de software. Este capí:
considera conceptos y principios básicos de gestión de proyectos de sof twa re-
capitulo 22 presenta métr icas del proceso y del proyecto, la base para una e:V
tiva toma de decisiones de gestión. En los capítulos 23 y 24 se analizan las te
nicas con que se est iman, s e define un calendario realista y se establece un r :
efectivo para el proyecto. En el capítulo 25 se presentan las actividades de g e
tión que conducen a una efectiva supervisión, reducción y gestión del riesgo. F
nalmente, en los capítulos 26 y 27 se consideran técnicas para asegurar la c*
dad conforme un proyecto se lleva a cabo y se gest ionan los cambios a lo lar
de la vida de u n a aplicación.

¿ Q u é e s ? Aunque muchos (en sus
momentos más oscuros) toman la
visión de "gestión" de Dilberl, sigue
siendo una actividad muy necesaria
cuando se construyen sistemas y

productos basados en computadoras. La ges-
tión de proyectos involucra la planificación,
supervisión y control del personal, el proceso y
los eventos que ocurren mientras el software
evoluciona desde un concepto preliminar hasta
una implementación operativa.

¿Quién lo h a c e ? Todos "gestionan" en cierta
medida, pero el ámbito de las actividades de

gestión varía entre las personas involucradas
en un proyecto de software. Un ingeniero de
software gestiona sus actividades diarias, y
planifica, supervisa y controla las labores técni
cas. Los gestores de proyecto planifican, super-

; visan y controlan el trabajo de un equipo de
:: ingenieros de software. Los gestores ejecutivos

coordinan la relación entre el negocio y los
profesionales del software.

¿Por q u é e s impor tante? La construcción de
software de computadora es una empresa com
pleja, en particular si involucra a mucha gente
que trabaja durante un tiempo relativamente

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PROYECTOS 641

largo. Por esto los proyectos de software nece-
sitan ser gestionados. | ¡

.Cuáles son los p a s o s ? Comprender las cua-
ro P: personal, producto, proceso y proyecto.

El personal debe estar organizado para reali-
zar el trabajo de software con efectividad. La
comunicación con el cliente y otros participan-
tes debe ocurrir de modo que sean comprensi-
bles el ámbito y los requisitos del producto. Se
debe seleccionar un proceso adecuado para el
personal y el producto. El proyecto se debe
planificar para estimar el esfuerzo y el tiempo
para cumplir las labores del trabajo: definir
productos de trabajo, establecer puntos de con-
trol de calidad e identificar mecanismos para
supervisar y controlar el trabajo definido al
planificar.

¿Cuál e s el producto obtenido? Cuando
comienzan las actividades de gestión se produ-
ce un plan del proyecto. El plan define el pro-
ceso y las labores que se llevarán a cabo, el
personal que hará el trabajo y los mecanismos
para valorar los riesgos, controlar los cambios
y evaluar la calidad.

¿Cómo puedo estar seguro d e que lo he
h e c h o c o r r e c t a m e n t e ? Nunca se está
completamente seguro de que el plan del proyec-
to es correcto hasta que haya entregado un pro-
ducto de alta calidad a tiempo y dentro del presu-
puesto. Sin embargo, un gestor de proyecto hace
lo correcto cuando alienta al personal de software
a trabajar en conjunto como un equipo efectivo, y
enfoca su atención tanto en bs necesidades del
cliente como en b calidad del producto.

2 1 , 1 E L E S P E C T R O DE LA G E S T I Ó N

La gestión eficaz de la gestión de proyectos de sof tware se enfoca sobre las cua t ro
P: personal, producto, proceso y proyecto. El orden n o es arbitrario. El gestor que ol-
vida que el t rabajo de ingeniería del sof tware e s una empresa in tensamente huma-
na nunca tendrá éxito en la gestión de proyectos. Un gestor que fracasa en a lentar
la comunicación amplia con los participantes en e tapas t empranas de la evolución
de un proyecto se arriesga a construir una solución e legante para el problema equi-
vocado. El gestor que presta poca atención al proceso corre el riesgo de colocar mé-
todos y her ramientas técnicos compe ten tes en el vacío. El gestor que se embarca sin
un plan de proyecto sólido arriesga el éxito del producto.

21.1.1 El personal
La formación de personal de sof tware motivado y a l tamente calificado se ha debati-
do desde los años 60 del siglo pasado (por ejemplo, [COU80], [WIT94], [DEM98]). De
hecho, el "factor humano" es tan importante que el Software Engineering Institute ha
desarrollado un modelo de madurez de la capacidad de gestión de personal (MMCGP)
para "aumentar la rapidez con la cual las organizaciones de sof tware acometen las
aplicaciones cada vez m á s complejas al ayudar a atraer, aumentar , motivar, desple-
gar y retener el talento necesar io para mejorar su capacidad de desarrollo de sof twa-
re" [CUR94].

El modelo de madurez de gestión de personal define las siguientes á r eas clave
prácticas para el personal de sof tware reclutamiento, selección, gestión del desem-

TM

PDF Editor

642 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

^ O H S E J O ^

En este contexto, el
término producto se
emplea para ahorcar
cualquier software
que se construye a
solicitud de otros. No
sólo incluye productos
de software estandari-
zado, sino también
sistemas basados en
computadoras, soft-
ware anidado, Web-
Apps y software de
resolución de proble-
mas (por ejemplo,
programas para reso-
lución de problemas
de ingeniería y cientí-
ficos).

^ O N S E J O ^

Quienes se adhieren o
la filosofía del proceso
ógil (capítulo 4) argu-
mentan que sus proce-
sos son más magros
que otros. Esto puede
ser cierto, pero ellos
todavía tienen un pro-
ceso, y la ingeniería
de software ágil toda-
••a requiere disciplino.

peño , en t renamien to , retribución, desarrollo de la carrera, d iseño de la organización
y el t rabajo, y desarrollo de la cultura de equipo. Las organizac iones que logran al-
tos niveles de madurez en el á rea de gestión de personal t ienen una mayor probabi-
lidad de implementar efectivas práct icas de ingeniería del sof tware .

El MMCGP e s c o m p a ñ e r o de la Integración del Modelo de Madurez de la Capaci-
dad de Sof tware (capítulo 2) que guía a las organizaciones en la creación de un p r o
ceso de sof tware maduro. Más adelante en este capítulo se consideran tópicos asocia-
dos con la gestión del personal y la estructura de los proyectos de sof tware .

21.1.2 El producto

Antes de planear un proyecto se deber ían establecer los objetivos y el ámbi to de
producto, considerar soluciones al ternat ivas e identificar las restr icciones técnicas y
de gestión. Sin es ta información es imposible definir es t imaciones razonables (y pre-
cisas) del costo, una valoración efectiva del riesgo, una división realista de las ta rea ;
del proyecto o un calendario de proyecto mane jab le que ofrezca una indicación fia
ble del progreso.

El desarrol lador del sof tware y el cliente se deben reunir para definir los objetivos
y el ámbi to del producto. En m u c h o s casos, esta actividad comienza c o m o par te de
la ingeniería del s is tema o de la ingeniería del proceso de negocio (capítulo 6) y con-
tinúa c o m o el primer paso en la ingeniería de requisi tos de sof tware (capítulo 7). Los
objetivos identifican las me tas globales del producto (desde el pun to de vista de.
cliente) sin considerar c ó m o se lograrán. El ámbi to identifica los da tos primarios, las
func iones y los compor tamien tos que caracter izan al producto y, m á s importante, los
in tentos por enlazar tales caracterís t icas en una forma cuanti tat iva.

Una vez en tendidos los objetivos y el ámbi to del producto se consideran solucio-
nes al ternativas. Aunque se trata re la t ivamente poco detalle, las al ternativas posibi-
litan que los ges tores y pract icantes seleccionen un "mejor" enfoque, cumplan las
restricciones que imponen las fechas límites d e entrega, las restr icciones presupues-
tarias, la disponibilidad del personal , las in terfases técnicas y miles de factores más.

21.1.3 El proceso

Un proceso de sof tware (capítulos 2, 3 y 4) proporciona el marco de t rabajo desde e!
cual se puede establecer un plan detal lado para el desarrollo del sof tware . Un peque-
ño n ú m e r o de actividades del marco de t rabajo e s aplicable a todos los proyectos de
sof tware, sin importar su t a m a ñ o o complej idad. Algunos con jun tos de ta reas dife-
rentes (tareas, hitos, p roduc tos de t rabajo y pun tos de control de calidad) permiten
que las act ividades del marco de t rabajo se adap ten a las caracterís t icas del proyec-
to de software, así como a los requisitos del equipo del proyecto. Finalmente, las activi-
dades protectoras (como el control de calidad del software, la gestión de configuración
del software y la medición) cubren el modelo del proceso. Las actividades protectoras
son independientes de cualquier actividad del m a r c o de t rabajo y ocurren duran te to-
do el proceso.

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PSCYECTOS 643

21.1.4 El proyecto
Los p royec tos d e s o f t w a r e s e rea l izan de m a n e r a p lani f icada y con t ro l ada por u n a
r azón principal: e s la única fo rma conoc ida d e ges t iona r la comple j idad . Incluso los
e s f u e r z o s con t inua rán . En 1998, los d a t o s indus t r ia les indicaron q u e el 2 6 por c ien-
to d e los p royec to s d e s o f t w a r e f r a c a s a r o n por comple to , y q u e el 46 por c ien to re-
b a s a r o n s u s c o s t o s y y t i empos d e en t r ega [REE99]. A u n q u e la tasa d e éx i to para los
p royec tos d e s o f t w a r e h a m e j o r a d o un poco , la t a s a de f r aca so d e p royec tos p e r m a -
n e c e m á s e l evada d e lo q u e debie ra . '

"Un proyec to e s c o m o un v ia je por ca r re te ro . Algunos proyectos son simples y rut inar ios , como conducir hacia la tien-
d a a p leno luz del día. P e r o la mayor ía d e los proyectos que vale la p e n a real izar son m á s parec idos o conducir un ca-
mión «n So ca r re t e ra , en la m o n t a ñ a , d e noche . "

Cent Koner, J o m e s Bach y Bre t Pe t t i chord

Para evi tar el f r a c a s o del proyecto , un ges tor d e p royec to d e s o f t w a r e y los inge-
n ie ros d e s o f t w a r e q u e cons t ruyen el p roduc to d e b e n eludir un c o n j u n t o d e s e ñ a l e s
d e adve r t enc ia c o m u n e s , c o m p r e n d e r los f ac to re s d e éx i to crí t icos q u e c o n d u c e n a
una b u e n a ges t ión del p royec to y desar ro l la r un e n f o q u e d e s e n t i d o c o m ú n p a r a p la -

nificar, supe rv i sa r y con t ro la r el proyecto . Cada u n o d e e s to s tóp icos s e t ra tan en la
secc ión 21.5 y en los capí tu los s igu ien tes .

En un e s t u d i o que publ icó el IEEE [CUR88] s e les p r e g u n t ó a los v i cepres iden tes d e
ingenier ía d e t r e s g r a n d e s c o m p a ñ í a s t ecno lóg icas cuál era el con t r ibuyen te m á s im-
p o r t a n t e p a r a un p royec to d e s o f t w a r e exi toso . Respond ie ron d e la s igu ien te f o r m a :

VP I: Supongo que si tienes que escoger alguna cosa que sea la más importante en nues-
tro ambiente, yo diría que no son las herramientas que utilizamos, es la gente.

VP 2: El ingrediente más importante que fue exitoso en este proyecto fue el tener gente
inteligente... en mi opinión, muy pocas cosas importan más... La cosa más importante que
puedes hacer por un proyecto es seleccionar al equipo. .. El éxito de la organización de de-
sarrollo de software está muy asociado con la habilidad de reclutar buen personal

VP 3: La única regla que tengo en la gestión es asegurarme que tengo buen personal, ver-
dadero buen personal, y que hago crecer al buen personal, y que proporciono un ambien-
te en el que el buen personal puede producir

1 Dadas estas estadísticas, es razonable preguntar cómo el impacto de las computadoras continúa
creciendo exponencialmente. El autor considera que parte de la respuesta es que un número sus-
tancial de estos proyectos "fallidos" estuvo, en pnmer lugar, mal concebido Los clientes pierden in-
terés rápidamente (porque el producto solicitado - o tue en realidad tan importante como lo que
pensaron primero) y los proyectos se cancelar

TM

PDF Editor

644 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

De hecho, és te es un testimonio convincente acerca de la importancia del personal
en los procesos de ingeniería del software. Y sin embargo, todos, desde los vicepre-
sidentes de ingeniería hasta el profesional m á s modesto, usualmente no prestan
atención al personal. Los gestores a rgumentan (como lo hace el grupo anterior) que
las personas son lo principal, pero sus acciones con frecuencia contradicen sus pa-
labras. En esta sección se examinan los participantes en el proceso de sof tware y la
forma en que se les organiza para realizar una ingeniería de sof tware efectiva.

21.2.1 Los participantes
El proceso de sof tware (y cualquier proyecto de software) lo integran participantes
que pueden clasificarse dentro en una de cinco categorías:

1. Gestores ejecutivos, que definen los aspectos del negocio que usualmente tie-
nen una influencia significativa en el proyecto.

2. Gestores (técnicos) del proyecto, quienes planifican, motivan, organizan y con-
trolan a los profesionales que realizan el trabajo de software.

3 . Profesionales, quienes proporcionan las habilidades técnicas necesar ias para
realizar la ingeniería de un producto o aplicación.

4 . Clientes, quienes especifican los requisitos para la ingeniería del sof tware y
otros e lementos que tienen un interés mínimo en el resultado.

5 . Usuarios finales, quienes interactúan con el sof tware una vez que se libera pa-
ra su uso productivo.

Todo proyecto de sof tware lo integran personas que se clasifican en esta taxono-
mía.2 Para ser eficaz, el equipo de proyecto debe estar organizado en una forma que
maximice las capacidades y habilidades de cada persona. Y esta e s la labor del líde-
del equipo.

21.2.2 Líderes de equipo
La gestión del proyecto e s una actividad in tensamente humana; por tanto, los profe-
sionales competentes con frecuencia no son buenos líderes de equipo. Simplemente r. :e
tienen la mezcla correcta de habilidades con el personal . Además, c o m o Edgemcnj
afirma: "Desafortunadamente, y con demasiada frecuencia, los individuos simple
mente caen en un papel de gestor de proyecto y se vuelven gestores de proyecto a:-l
cidentales" [EDG95],

En un excelente libro acerca del liderazgo técnico, Jerry Weinberg [WE186] sugie-l
re un modelo MOI de liderazgo:

Motivación. La habilidad para alentar (mediante "empuje o jalón") al perso
técnico para que produzca según su mejor capacidad.

2 Cuando se desarrollan las aplicaciones Web (Parte 3 de este libro), en la creación de contenido
den involucrarse otras personas no técnicas.

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PROYECTOS 645

M buj. Organización. La habilidad para adecuar los procesos existentes (o inventar
D unos nuevos) que permitirán que el concepto inicial sea traducido en un producto fi-

i alguien n a [
ra

¿2 Ideas o innovac ión . La habilidad para alentar a la gente a crear y sentir creati-
vamente , incluso cuando deben trabajar dentro de los límites establecidos por un
producto o aplicación de sof tware particular.

Weinberg sugiere que los líderes de proyecto exitosos aplican un estilo de gestión
de resolución de problemas. Esto es: un gestor de proyecto de sof tware debe con-
centrarse en entender el problema que será resuelto, gestionar el flujo de ideas y, al
mismo tiempo, hacer que todos los que forman el equipo conozcan (con palabras y,
mucho más importante, con acciones) que la calidad es relevante y que no será com-
prometida.

"En los términos más simples, un líder es aquel que sobe odónde quiere ir, y se levanta y va . "
John Erskine

Otra visión [EDG95] de las características que definen un gestor de proyecto efi-
ciente resalta cuatro rasgos clave:

Reso luc ión d e p r o b l e m a s . Un gestor de sof tware eficiente puede diagnosticar
los conflictos técnicos y organizativos más relevantes, estructurar de manera siste-
mática una solución o motivar adecuadamente a otros profesionales para desarro-
llar la solución, aplicar en las nuevas si tuaciones las lecciones aprendidas en proyec-
tos pasados , y mantenerse lo suficientemente flexible como para cambiar de direc-
ción si los intentos iniciales en la solución del problema son infructuosos.

D o t e s d e ges t ión . Un buen gestor de proyecto debe encabezar lo y dirigirlo. De-
be tener la confianza de asumir el control cuando e s necesario y la seguridad para
permitir que los buenos profesionales técnicos sigan sus instintos.

Incent ivos . Para optimizar la productividad de un equipo de proyecto, un gestor
debe recompensar la iniciativa y los logros; además , demostrar con sus propias ac-
ciones que la toma de riesgos controlada no será penalizada.

Influencia y f o m e n t o de la cultura d e equipo. Un gestor de proyecto eficaz
debe ser capaz de "leer" a la gente; de entender las señales verbales y no verbales y
reaccionar a las necesidades de la gente que las envía. El gestor debe mantener el
control en si tuaciones de alta tensión emocional.

21.2.3 El equipo de software
Existen casi tantas estructuras organizacionales de profesionales para el desarrollo
de sof tware como organizaciones que tiene el mismo fin. Para bien o para mal, la
estructura organizacional no puede ser fácilmente modificada. Las preocupaciones
acerca de las consecuencias prácticas y políticas del cambio organizacional no es-

TM

PDF Editor

6 4 6 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

tán d e n t r o del á m b i t o d e responsab i l idad del ges tor del p royec to de so f tware . S " |
e m b a r g o , la o rgan izac ión d e la g e n t e d i r ec t amen te involucrada en u n proyecto o?I
s o f t w a r e es tá den t ro del á m b i t o del ges tor del proyecto .

"No todo grupo es un equipo, y no todo equipo es eficiente."
Glenn Pa rke r

9 ¿ Q u é
w t a c t o r e s se
d e b e n cons idera r
cuando se e l ige la
e s t ruc tu ra d e un
equipo de
s o f t w a r e ?

La "mejor" es t ruc tu ra d e equ ipo d e p e n d e del est i lo d e ges t ión d e c a d a o r g a n i z a !
ción, del n ú m e r o d e p e r s o n a s q u e in tegrarán el equ ipo y de s u s g r a d o s de hab i l i dad l

así c o m o d e la dificultad global del p rob lema . Mantei [MAN81] descr ibe siete f ac t : - l
res d e p royec to q u e debe r í an cons ide ra r se c u a n d o s e planif ica la e s t ruc tu ra d e 1: J
e q u i p o s d e ingenier ía del so f tware :

• La dificultad del p r o b l e m a q u e s e resolverá .

• El " t amaño" del p rograma(s) resul tante(s) en l íneas d e cód igo o p u n t o s d e f u n l
ción (capítulo 22).

• El t i empo q u e el equ ipo e s t a rá j un to (vida del equipo) .

• El g r a do en el q u e el p r o b l e m a p u e d e s e p a r a r s e en módulos .

• La ca l idad y confiabi l idad r eque r idos del s i s t e m a q u e s e cons t ru i rá .

• La rigidez d e la fecha de en t r ega .

• El g r a d o de sociabil idad (comunicación) q u e requ ie re el proyecto .

"Si quiere ser codo vez mejor: seo competitivo. Si quiere ser exponenciolmente mejor: seo cooperativo."
Anónimo

9 ! ¿ 0 « é
• opciones s e

t i enen cuando
se de f ine la
e s t r u c t u r a d e un
equipo d e
s o f t w a r e ?

Cons t an t ine [CON93] sugiere c u a t r o "pa rad igmas o rgan izac iona les" p a r a los e q i i l
p o s d e ingenier ía del so f tware :

1 . Un paradigma cerrado e s t ruc tu ra un equ ipo a lo largo d e u n a je ra rqu ía tradi-
c ional de au tor idad . Estos e q u i p o s p u e d e n t r aba ja r m e j o r c u a n d o p roducen
s o f t w a r e m u y similar a los p royec tos an te r io res , p e r o s e r á m e n o s p robab le
q u e s e a n i n n o v a d o r e s c u a n d o t r aba jen d e n t r o del p a r a d i g m a ce r rado .

2. Un paradigma aleatorio e s t ruc tu ra un equ ipo l ib remente y d e p e n d e d e la ini- I
ciativa individual de los m i e m b r o s del equ ipo . C u a n d o s e requ ie ren innova-
ción o a d e l a n t o s tecnológicos , los equ ipos q u e s iguen el p a r a d i g m a a l e a t o n : I
s e rán exce len tes . Pero e s to s e q u i p o s p u e d e n luchar c u a n d o s e requiere "de-
s e m p e ñ o o rdenado" .

3. Un paradigma abierto in tenta e s t ruc tu ra r un equ ipo e n u n a fo rma q u e logre aC |
g u n o s d e los con t ro l e s a s o c i a d o s con el p a r a d i g m a ce r rado , pe ro t ambién
m u c h a d e la innovac ión q u e ocur re c u a n d o s e apl ica el p a r a d i g m a a lea tor i : I

TM

PDF Editor

CAPITULO 21 C O N C E P T O S DE G E S T I Ó N DE P R O Y E C T O S 647

El t r aba jo s e desarrol la en co laborac ión . La sól ida c o m u n i c a c i ó n y la t o m a d e
dec i s iones b a s a d a en el c o n s e n s o son las m a r c a s ca rac te r í s t i cas d e los equi-
p o s d e p a r a d i g m a abier to. Las e s t ruc tu ra s d e equ ipo d e pa rad igma ab ie r to s e
a d e c ú a n bien a la so luc ión d e p r o b l e m a s comple jos , p e r o n o p u e d e n d e s e m -
p e ñ a r s e d e m a n e r a t an ef ic iente c o m o o t ros equ ipos .

4 . Un paradigma sincrónico s e apoya en la compar t imen ta l i zac ión na tu ra l d e un
prob lema y organiza a los m i e m b r o s del equ ipo p a r a t raba jar en pa r tes del pro-
b lema con p o c a c o m u n i c a c i ó n act iva en t r e ellos.

"Trab ajar con la g ante es difi cil, mas no imposible."
P e l e r Drucker

C o m o n o t a histórica, u n a d e las p r i m e r a s o rgan izac iones d e los equ ipos d e sof t -
w a r e fu e una es t ruc tura d e p a r a d i g m a c e r r a d o o r ig ina lmente l lamada equipo progra-
mador jefe. Esta es t ructura la p r o p u s o or ig ina lmente Harían Mills y la descr ib ió Baker
[BAK72]. El núc leo del equ ipo lo c o m p o n e un ingeniero ejecutivo (el p r o g r a m a d o r je-
fe), quien planifica, coord ina y revisa t odas las ac t iv idades t écn icas del equipo; perso-
nal técnico (por lo genera l , d e d o s a c inco personas) , q u i e n e s dirigen las ac t iv idades

d e anál is is y desarrol lo; y un ingeniero de respaldo, quien apoya al ingeniero ejecut i-
vo en s u s ac t iv idades y p u e d e r eemplaza r lo con mín ima pérdida en la con t inu idad del
proyecto.

Al p r o g r a m a d o r jefe p u e d e n asist ir lo u n o o m á s especialistas (por e j emplo , exper-
tos en t e l ecomunicac iones , d i s e ñ a d o r d e b a s e s d e da tos) , personal de apoyo (por

e jemplo , esc r i to res técnicos , pe r sona l adminis t ra t ivo) y un bibliotecario de software.
C o m o c o n t r a p a r t e a la e s t ruc tu ra de equ ipo p r o g r a m a d o r jefe, el p a r a d i g m a a lea-

torio de Cons t an t ine [CON93] sugiere un e q u i p o de s o f t w a r e con i n d e p e n d e n c i a
creat iva cuyo e n f o q u e p a r a t r aba ja r p u e d e d e n o m i n a r s e m e j o r c o m o anarquía inno-
vadora. Aunque s e ha a p e l a d o al e n f o q u e d e libre espíritu p a r a el t r aba jo d e s o f t w a -
re, la cana l i zac ión de la energ ía creat iva hacia un equ ipo d e a l to r end imien to d e b e
se r una m e t a cent ra l en u n a o rgan izac ión de ingenier ía del s o f t w a r e . Para lograr un
equ ipo d e a l to rend imien to :

• Los m i e m b r o s del e q u i p o d e b e n t ene r se m u t u a c o n f i a n z a .

• La dis t r ibución de las hab i l idades d e b e a d e c u a r s e al p rob lema .

• Tal v e z los d i s iden tes d e b a n se r exc lu idos del e q u i p o si ha d e c o n s e r v a r s e su
cohes ión .

Sin impor ta r la o rgan izac ión del equipo, el obje t ivo d e cua lqu ie r g e r e n t e d e proyec-

t o e s a p o y a r la c reac ión d e un e q u i p o q u e m u e s t r e cohes ión . En su libro, Peoplewa
re, DeMarco y Lister [DEM98] e x a m i n a n es te tópico:

Tendemos a usar la palabra equipo con bastante libertad en el mundo de los negocios, y
llamamos "equipo" a cualquier grupo de personas asignadas a trabajar juntas. Pero mu-
chos de estos grupos no parecen equipos No tienen una definición común de éxito o al-

¿Qué e s un
equipo

"?

TM

PDF Editor

PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

gún espíritu de equipo identificable. Lo que s e ha perdido es un f enómeno que l lamamos
cuajar (jell).

Un equipo cuajado es un grupo de personas tan fuer temente unido que el todo es ma-
yor que la s u m a de las partes.. .

Una vez que un equipo comienza a cuajar, la probabilidad de éxito aumenta . El equi-
po puede volverse imparable, un monstruo destructivo para lograr el éxito... No necesita
ser gest ionado en la forma tradicional, y ciertamente no necesita ser motivado. Tiene ím-
petu.

DeMarco y Lister s o s t i e n e n que los m i e m b r o s d e los e q u i p o s c u a j a d o s son significa-
t ivamente m á s p roduc t ivos y e s t á n m á s m o t i v a d o s q u e el p r o m e d i o . Compar t en una
m e t a c o m ú n , u n a cul tura c o m ú n y, en m u c h o s casos , un " sen t imien to elitista" que
los h a c e ún icos .

Pero n o t odos los equ ipos c u a j a n . De h e c h o , m u c h o s e q u i p o s su f ren de lo que
J a c k m a n [JAC98] d e n o m i n a "toxicidad d e equipo". Ella de f ine c inco fac to res que "fo-
m e n t a n un a m b i e n t e de equ ipo p o t e n c i a l m e n t e tóxico": 1) una a t m ó s f e r a d e traba] :
f renét ica , 2) al ta f rus t rac ión que p rovoca fricción en t r e los m i e m b r o s del equipo, 3)
un p r o c e s o d e s o f t w a r e " f r a g m e n t a d o o p o b r e m e n t e coord inado" , 4) u n a definición

p o c o c lara d e los p a p e l e s del e q u i p o d e so f tware , y 5) "con t inuas y repe t idas expos:
c i o n e s al f racaso" .

Para evi tar un a m b i e n t e d e t r aba jo f renét ico, el ges tor del p royec to d e b e t ener la
ce r t eza d e que el e q u i p o t iene a c c e s o a toda la in fo rmac ión requer ida p a r a realizar
el t r aba jo y q u e las m e t a s y objet ivos, u n a vez def in idos , n o d e b e n modi f ica rse a me-
n o s q u e sea a b s o l u t a m e n t e necesar io . Un equ ipo d e s o f t w a r e p u e d e evitar la frustra-
ción (y el es t rés) si s e le da t an ta responsab i l idad en la t o m a de dec i s iones c o m o sea
posible. Un p roceso i n a d e c u a d o (por e jemplo , t a r ea s d e t r aba jo innecesa r i a s o abru-

m a d o r a s o p roduc to s de t r aba jo m a l elegidos) s e p u e d e evi tar si s e c o m p r e n d e el
p r o d u c t o q u e se cons t ru i rá y al pe r sona l q u e rea l iza el t rabajo , y al permit i r al equi-
p o se lecc ionar su p rop io m o d e l o d e p roceso . El equ ipo d e b e e s t ab lece r po r sí m i s m o
m e c a n i s m o s p a r a su responsabi l idad (revis iones t écn icas f o r m a l e s y la p rog rama-
ción por pa r e s son exce len te s f o r m a s d e lograrlo) y definir u n a serie de e n f o q u e s co-
rrect ivos c u a n d o un m i e m b r o del e q u i p o falle en su d e s e m p e ñ o . Y, finalmente, la cla-

ve p a r a evi tar u n a a t m ó s f e r a d e f r a c a s o e s es tab lecer t écn icas b a s a d a s en el equipo
para la r ea l imentac ión y reso luc ión d e p rob lemas .

"Hacer o n o hacer. No exis te in tentar ."
Y o d a , d e Star Wors

A d e m á s d e las c inco tox inas q u e descr ibe J a c k m a n , un equ ipo d e s o f t w a r e usual-
m e n t e e n f r e n t a los d i f e ren te s r a s g o s h u m a n o s d e s u s m i e m b r o s . Algunos m i e m b r o s
del equ ipo s o n extrover t idos; o t ros , introvert idos. A lgunas p e r s o n a s recopi lan infor-
mac ión in tu i t ivamente ; s e p a r a n los c o n c e p t o s ampl ios d e los h e c h o s d ispara tados .

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PROYECTOS 649

Otros procesan la información Iinealmente, reúnen y organizan detalles minuciosos
d e los da tos proporcionados. Algunos miembros del equipo se s ienten c ó m o d o s al
t omar decis iones sólo c u a n d o se p resen ta un o r d e n a d o a rgumen to lógico. Otros son
intuitivos, por lo q u e desean tomar decis iones con base en el "sentimiento". Algunos
profesionales pref ieren una planificación detal lada que incluya t a reas o rgan izadas
que les permi tan lograr el cierre de algún e l emen to del proyecto. Otros prefieren un
ambien te m á s e spon táneo en el que los t e m a s abier tos son bien vistos. Algunos tra-
ba jan duro pa ra hacer que las c o s a s es tén listas m u c h o a n t e s de una fecha límite, y
por consiguiente evitan la tensión confo rme la fecha se aproxime, mientras que
ot ros se s ienten vigorizados por la prisa de lograrlo en el últ imo minuto del plazo.
Un examen detal lado de la psicología de es tos rasgos y las formas en las cuales el lí-
der exper imentado del equipo puede ayudar a la gen te con rasgos opues to s para tra-
bajar en con jun to está m á s allá del ámbi to de es te libro.3 Sin embargo , es impor tan-
te des tacar que el reconocimiento de las diferencias h u m a n a s es el primer p a s o ha-
cia la creación de equipos que cua jan .

21.2.4 Equipos ágiles
En a ñ o s recientes se ha propues to el desarrollo del so f tware ágil (capítulo 4) c o m o
ant ídoto para m u c h o s de los p rob lemas que perjudican el t rabajo de los proyectos de
sof tware . En síntesis, la filosofía ágil alienta la satisfacción del cliente y la t emprana
entrega incremental de sof tware ; p e q u e ñ o s equipos de t rabajo e n o r m e m e n t e moti-
vados; mé todos informales; mín imos productos de t rabajo de ingeniería del sof twa-
re; y simplicidad global de desarrollo.

El p e q u e ñ o equipo de t rabajo e n o r m e m e n t e motivado, también l lamado equipo
ágil, adopta m u c h a s caracterís t icas de los equipos de proyecto de sof tware exitosos
t ra tados en la sección precedente y evitan m u c h a s de las toxinas que crean proble-
mas. Sin embargo , el en foque ágil subraya la competenc ia individual (miembros del
equipo) en conjunción con la colaboración del grupo c o m o factores de éxito crucia-
les para el equipo. Cockburn y Highsmith [COCOl] des tacan es to c u a n d o escriben:

Si el p e r s o n a l e n el p royec to e s lo s u f i c i e n t e m e n t e b u e n o , p u e d e n usa r casi cua lqu ie r pro-

c e s o y lograr su come t ido . Si n o e s lo s u f i c i e n t e m e n t e b u e n o , n i n g ú n p r o c e s o r epa ra r á su

incapac idad : "pe r sona m a t a p r o c e s o " e s u n a fo rma de decir es to . Sin e m b a r g o , la falta de

a p o y o del u s u a r i o y el e jecu t ivo p u e d e n aniqui lar un proyecto : "política m a t a pe r sona" . El

a p o y o i n a d e c u a d o p u e d e inc luso evi ta r q u e el b u e n persona l logre la t a rea . . .

Para aprovechar en forma eficiente las competenc ias de cada miembro del equi-
p o y fomenta r la colaboración eficaz a lo largo de un proyecto de sof tware , los equi-
p o s ágiles son autoorganizados. Un equipo au toorgan izado no necesa r iamente man-

3 Una excelente introducción a es tos temas, r e l a t a d » por equipos de proyecto de software, se puede
encontrar en [FER98].

TM

PDF Editor

6 5 0 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

t i ene u n a sola es t ruc tu ra d e equipo , s ino q u e m á s bien a p r o v e c h a e l e m e n t o s d e la

p a r a d i g m a s a leator io , ab ier to y s incrón ico d e Cons t an t ine t r a t ados e n la s e c c i c ^
21.2.3.

" t a p rop iedad colectiva n o e s m á s que una partkularización de la ideo de que los productos d e b e n ser a t r ibuibles al
e q u i p o [á g i l] , n o a ios i n d i v i d u o s que integraron el equipo."

Jim Highsmith

CLAVE
Un equipo ágil es un
equipo autoorganizodo
que tiene autonomía
poro ploneor y tomar
decisiones técnicas.

Muchos m o d e l o s d e p r o c e s o ágil (por e jemplo , Serum) b r indan al e q u i p o ágil una
a u t o n o m í a significat iva p a r a rea l izar la ges t ión del p royec to y t o m a r las dec is iones
t écn icas r eque r idas p a r a cumpl i r el t r aba jo . La planif icación s e m a n t i e n e en el mír -
mo, y al equ ipo s e le pe rmi t e se lecc ionar su p rop io e n f o q u e (por e j emplo , proceso
mé todos , he r r amien ta s) , sólo res t r ing ido por los requis i tos del n e g o c i o y los e s t á r -
da re s o rgan izac iona ie s . C o n f o r m e el p royec to a v a n z a el e q u i p o s e a u t o o r g a n i z a pa-
ra e n f o c a r la c o m p e t e n c i a individual en una fo rma q u e sea m á s benéf ica p a r a el pro-

yec to e n un p u n t o d a d o en el t i empo. Para lograrlo, un e q u i p o ágil p u e d e dirigir bre
ves r e u n i o n e s d e e q u i p o diar ias p a r a coord ina r y s inc ron iza r el t r aba jo q u e s e d e t e |
lograr e s e día.

Con b a s e en la in fo rmac ión ob ten ida d u r a n t e e s t a s r eun iones , el equ ipo adap ta
su e n f o q u e d e fo rma tal q u e logra un i n c r e m e n t o de t rabajo . C o n f o r m e p a s a c a a
día, la a u t o o r g a n i z a c i ó n c o n t i n u a y la co laborac ión m u e v e n al e q u i p o hacia la con-
c lus ión de un i n c r e m e n t o d e so f tware .

21.2.5 Conflictos de coordinación y comunicación
Existen m u c h a s r a z o n e s po r las c u a l e s los p royec to s d e s o f t w a r e s e vuelven proble-]
mát icos . La esca la de m u c h o s e s f u e r z o s de desar ro l lo e s g rande , lo q u e conduce a
comple j idad , confus ión y di f icul tades signif icat ivas en la coord inac ión d e los m i e r
b ros del equ ipo . La ince r t idumbre e s c o m ú n , lo q u e g e n e r a u n a cor r ien te cont inua |
d e c a m b i o s q u e m u e v e g r a d u a l m e n t e en una so la dirección al e q u i p o del p royec i :
La in teroperabi l idad s e ha conver t ido en una caracter ís t ica c lave d e m u c h o s siste

mas . El n u e v o s o f t w a r e d e b e c o m u n i c a r s e con el an te r io r y a d e c u a r s e a las restric-
c i o n e s p redef in idas q u e i m p o n e el s i s t e m a o produc to .

Es tas carac ter í s t icas del s o f t w a r e m o d e r n o —escala , ince r t idumbre e in te ropera
bilidad— son a s p e c t o s d e la vida. Para lidiar con el los en fo rma ef icaz, un equ ipo á t
ingenier ía de s o f t w a r e debe e s t ab lece r m é t o d o s ef ic ientes para coord ina r al pe r so
nal q u e rea l iza el t raba jo . Para lograr lo se d e b e n e s t ab lece r m e c a n i s m o s p a r a la c o |
m u n i c a c i ó n fo rmal e informal en t r e los m i e m b r o s del equ ipo y en t r e múl t ip les equ:
pos . La c o m u n i c a c i ó n fo rmal s e logra po r m e d i o d e "escritos, r e u n i o n e s estructura-

d a s y o t ro s c a n a l e s d e c o m u n i c a c i ó n r e l a t ivamen te n o in terac t ivos e impersona le s
[KRA95]. La c o m u n i c a c i ó n informal e s m á s persona l . Los m i e m b r o s d e un equ ipo de
s o f t w a r e c o m p a r t e n ideas sob re u n a b a s e ad hoc, p iden ayuda c u a n d o su rgen pro
b l e m a s e in t e rac túan u n o s con o t ros d i a r i amen te .

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PROYECTOS 6 5 1

EOGARSEGURO

Estructura de equipo

El e s c e n a r i o : La oficina de Doug
el inicio del proyecto de software HogarSe-

res : Doug Miller (gerente del equipo de inge-
B del software HogarSeguro! y Vinod Román, Jamie

f otros miembros del equipo de ingeniería de soft-
I producto.

conversación:
• g : ¿Ustedes han tenido oportunidad de echar un
fcc o la información preliminar de HogarSegvro que
pero mercadotecnia? ' ' l í '

• d ¡afirma con la cabeza y mira a sus
« p a ñ e r o s d e e q u i p o) : Sí. Pero tenemos muchas

• g : Dejemos eso por el momento. Quiero hablar
: ae cómo vamos a estructurar el equipo, quién es

r - s a b l e de qué...

: Yo realmente estoy con la filosofía ágil, Doug
i debemos ser un equipo autoorganizado.

¡ Estoy de acuerdo. Dados el ceñido periodo de
i y algo de ¡ncertidumbre, y al hecho de que todos

; somos competentes [risas], me parece que ese
- el que debemos ir.

D o u g : Está bien por mí, pero ustedes conocen el proce-
dimiento.

Jamie (sonríe y habla como si recitara algo):
Tomamos decisiones tácticas, acerca de quién hace qué y
cuándo, pero es nuestra responsabilidad tener el produc-
to listo a tiempo.

Vinod: V con calidad.

Doug: Exactamente. Pero recuerda que existen restric-
ciones. Mercadotecnia define los incrementos de software
que se producirán... con nuestra asesoría, desde luego.

Jamie: ¿Y?

Doug: Y, vamos a usar UML como nuestro enfoque de
modelado.

Vinod: Pero manten la documentación extraña en un
mínimo absoluto.

D o u g : ¿Quién va a ser mi contacto?

J a m i e : Decidimos que Vinod será el líder técnico. Él tie-
ne más experiencia, así que Vinod es tu contacto, pero
siéntete en libertad de hablar con cualquiera de nosotros.

Doug (ríe): No te preocupes, lo haré.

2 1 , 3 E L P R P P V C T Q

El gestor de un proyecto de sof tware se enfrenta con un dilema desde el principio
mismo de un proyecto de ingeniería del software. Se requieren est imaciones cuanti-
tativas y un plan organizado, pero no se dispone de información sólida. Un análisis
detallado de los requisitos de sof tware proporcionaría la información necesaria pa-
ra las estimaciones, pero, con frecuencia, el análisis toma s e m a n a s o m e s e s en com-
pletarse. Peor aún, los requisitos pueden ser fluidos, y cambian regularmente con-
forme el proyecto avanza . Más todavía, ¡se necesita un plan "ahora"!

En consecuencia, se deben examinar el producto y el problema que se intenta re-
solver al inicio del proyecto. Como mínimo, se debe establecer y acotar el ámbito del
producto.

21.3.1 Ámbito del software
La primera actividad de gestión de un proyecto de sof tware es la determinación del
ámbito del software. El ámbito se define al responder las siguientes preguntas:

TM

PDF Editor

6 5 2 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

(C O N S E J O ^ .

Si no puede acotar
una característica del
software que intenta
construir, anote la ca-
racterística como un
riesgo del proyecto
(capítulo 25).

^ O N S E J O ^

B desarrollo de un
plan de proyecto razo-
nable requiere des-
componer el
problema. Estose
puede lograr emplean-
do una lista de funcio-
nes o de casos de uso
o, en el traba¡o ágil,
historias de usuario.

Contexto . ¿Cómo encaja el sof tware que se desarrollará en un sistema más gr
de, producto o contexto de negocios, y qué restricciones se imponen como resul
do del contexto?

Objet ivos de información. ¿Qué objetos de datos visibles al usuario (capítulo
se producen como resultado del software? ¿Qué objetos de datos se requieren de
trada?

Función y d e s e m p e ñ o . ¿Qué funciones realiza el sof tware para transformar
datos de entrada en salida? ¿Existen algunas características de de sempeño espe
les que deban abordarse?

El ámbi to del proyecto de sof tware no debe ser ambiguo ni incomprensible a niv
de gestión y técnico. Se debe acotar un enunciado del ámbito del software. Esto
se establecen de manera explícita los datos cuantitativos (por ejemplo, número
usuarios simultáneos, t a m a ñ o de la lista de correo, t iempo de respuesta máxi
permitido); se anotan las restricciones o limitaciones (por ejemplo, el costo del
ducto restringe el t a m a ñ o de la memoria) y se describen los factores que red"
riesgos (por ejemplo, los algoritmos deseados se comprenden bien y están dis
bles en C++).

21.3.2 Descomposición del problema
La descomposición del problema, a veces llamada partición o elaboración del p
ma, es una actividad que se asienta en el núcleo del análisis de requisitos de so
re (capítulos 7 y 8). Durante la actividad de fijación del ámbi to no se realiza int
alguno por descomponer completamente el problema. Más bien, la descomposi
se aplica en dos grandes áreas: 1) la funcionalidad que debe entregarse y 2) el
ceso que se empleará para entregarla.

Los seres humanos tienden a aplicar una estrategia de divide y vencerás cu
enfrentan un problema complejo. Dicho con simplicidad, un problema complejo
divide en problemas menores que resultan m á s manejables. Ésta es la estrategia
se aplica cuando comienza la planificación del proyecto. Las funciones de softw
descritas al enunciar el ámbito, se evalúan y refinan para proporcionar m á s de
antes del comienzo de la estimación (capítulo 23), Puesto que las estimaciones
costo y planificación temporal están funcionalmente orientadas, con frecuencia
útil cierto grado de descomposición.

Por ejemplo, considérese un proyecto que construirá un nuevo procesador de
tos. Entre las características únicas del producto están la entrada continua mer
te voz, así c o m o por teclado, funciones muy sofisticadas de "edición automática
copia", capacidad de diseño de página, índice y tabla de contenido automáticos
otras. El gestor del proyecto primero debe establecer un enunciado del ámbito
acote es tas características (así c o m o otras funciones m á s usuales c o m o la edi
la gestión de archivos, la producción de documentos y ot ras parecidas). Por ejem
¿la entrada continua de voz requiere que el usuario del producto lo "entrene"?

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PROYECTOS 6 5 3

cíf icamente, ¿qué capac idades proporcionará la característ ica de edición de copia?
¿Cuán sofist icada será la capacidad de d iseño de página?

Conforme evoluciona el enunc iado del ámbi to ocurre na tura lmente un primer ni-
vel de partición. El equipo del proyecto ap rende que el depa r t amen to de mercado-
tecnia ha hablado con los cl ientes potencia les y encon t ró que las s iguientes funcio-
nes deben integrarse a la edición automát ica de copia: 1) comprobac ión ortográfica,
2) comprobación gramatical , 3) comprobación de referencias para documen tos
g randes (por e jemplo, ¿la referencia a una en t rada bibliográfica se encuen t ra en la
lista de en t radas en la bibliografía?) y 4) validación de referencias de sección y capí-
tulo para documen tos grandes . Cada una de es tas caracterís t icas representa una
subfunción que debe implementarse en el sof tware . Cada una todavía puede refinar-
se m á s si la descomposic ión simplifica la planificación.

*
7 de una

¡ veas" puede
íheiramien-

koción de
s outomalizo-

¡24). La
f :*ga con esti-

Í de requisi-
t tarsos,
¡ie inicio/fin y

spertinen-
tces puede

testo red cor-
i recursos poro

ntoy
t el proyecto.

Las actividades del marco de t rabajo (capítulo 2) que caracter izan al proceso de sof t -
w a r e son aplicables a todos los proyectos de sof tware . El problema e s seleccionar el
mode lo de proceso apropiado para que un equipo de proyecto some ta al so f tware a
ingeniería.

El gestor del proyecto debe decidir cuál mode lo de proceso e s m á s a d e c u a d o pa-
ra 1) los clientes que han solicitado el producto y el personal que hará el trabajo; 2)
las caracterís t icas del p roducto mismo, y 3) el ambiente del proyecto en el que t ra-
baja el equipo de sof tware . Cuando se ha se leccionado un modelo de proceso, en-
tonces el equipo def ine un plan de proyecto preliminar con base en el con jun to de
actividades del marco de t rabajo del proceso. Una vez que se es tablece el plan pre-
liminar, comienza la descomposic ión del proceso. Esto es, se debe crear un plan
completo, que refleje las ta reas de t rabajo requer idas para cubrir las act ividades del
m a r c o de trabajo. Estas actividades se exploran b revemente en las secciones si-
guientes, y en el capítulo 24 se presenta una visión m á s detal lada.

21.4.1 Combinación del producto y el proceso
La planeación del proyecto comienza con la combinación del producto y el proceso.
Cada función que el equipo de sof tware somete rá a ingeniería debe pasar a t ravés
del con jun to de act ividades del m a r c o de t rabajo definidas para una organización de
sof tware . Supóngase que la organización ha adop tado el s iguiente conjun to de acti-
vidades del marco de t rabajo (capítulo 2): comunicaciones , planificación, modelado,
construcción y despliegue.

Los miembros del equipo que t raba jan en una función de producto le aplicarán
cada una de las act ividades del m a r c o de trabajo. En esencia , s e crea una matr iz si-
milar a la mos t rada en la figura 21.1. Cada función de producto principal (en la figu-
ra se ano tan func iones para el sof tware del procesador de textos c o m e n t a d o ante-
riormente) se menc iona en la co lumna izquierda Las actividades del marco de tra-

TM

PDF Editor

654 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Combinación
del problema
y el proceso.

A / / /
ACTIVIDADES C O M U N E S DEL M A R C O / § / ^ / v
DE TRABAIO DEL P R O C E S O / / / ^ / g z // z
Funciones del p roduc to

Entrada d e texto

Edición y f o r m o t e a d o

Edición au tomát ica d e c o p i a

C a p a c i d a d d e plantilla d e p á a i n a

índice y t ab la d e c o n t e n i d o au tomát icos

Ges t ión d e a rch ivos

Producción d e d o c u m e n t o

% CLAVE
El marco de trabajo del
proceso estoblece un
esqueleto poní la ploni-
fkooón del proyecto.
Se odopta al ubicar un
conjunto de táreos ade-
cuodos paro el pro-
yecto.

b a jo se m e n c i o n a n en la hilera super ior . Las labores d e t r aba jo d e ingenier ía del
w a r e (para c a d a actividad del m a r c o d e t rabajo) se ingresar ían en la hilera sigu;~
te.4 El t r a b a j o del ges tor del p royec to (y d e o t ro s m i e m b r o s del equipo) cons i s te

e s t imar los requis i tos de r e c u r s o s p a r a c a d a ce lda d e la mat r iz , f e c h a s d e inicio y
nal p a r a las t a r ea s a s o c i a d a s con c a d a celda, y los p roduc to s d e t r aba jo q u e p r :
eirá c a d a tarea . Dichas ac t iv idades s e cons ide ran en el capí tu lo 24.

21.4.2 Descomposición del proceso
Un e q u i p o de s o f t w a r e d e b e t ener un g r ado significativo d e flexibilidad al elegir
m o d e l o d e p r o c e s o d e s o f t w a r e q u e s e a m e j o r para el p royec to y las t a r ea s de i""
niería del s o f t w a r e q u e in tegren el m o d e l o d e p r o c e s o u n a vez elegido. Un pro"

r e l a t ivamen te p e q u e ñ o similar a o t ros q u e s e h a y a n rea l i zado p u e d e lograrse
si s e utiliza el e n f o q u e secuenc ia l lineal. Si s e i m p o n e n res t r icc iones d e t i empo
ceñ idas y el p rob lema s e p u e d e c o m p a r t i m e n t a l i z a r m u c h o , tal v e z el m o d e l o de
sarrol lo rápido de ap l icac iones (DRA) sea la opc ión correcta . Si la fecha límite e s

ceñ ida q u e la func iona l idad comple t a n o p u e d a a l canza r se , tal vez s ea mejor una
t ra tegia inc rementa l . De igual modo , los p royec tos con o t r a s caracter ís t icas
e j emplo , requ is i tos incier tos , a v a n c e s en la t ecno log ía , c l i en t e s difíciles, s igni
t ivo po tenc ia l d e reut i l ización) c o n d u c i r á n a la se lecc ión de o t ros m o d e l o s de
ceso . 5

Una vez e legido el m o d e l o d e p roceso , el m a r c o d e t r aba jo respect ivo se a

a él. En cua lqu ie r c a s o s e p u e d e apl icar el m a r c o d e t r aba jo gené r i co c o m e n t a d o

4 Se debe destacar que las tareas de trabajo tienen que adaptarse a las necesidades específicas
proyecto.

5 Recuérdese que las características del proyecto también tienen una fuerte influencia en la
ra del equipo de software (sección 21.2.3).

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PROYECTOS 655

viamente: comunicación, planificación, modelado , construcción y despliegue. Fun-
cionará para mode los lineales, iterativos e incrementales , así c o m o evolutivos e in-
c luso para mode los concur ren tes o de ensamble de componen tes . El marco de tra-
bajo del proceso es invariable y sirve c o m o b a s e para todo el t rabajo de sof tware que
realiza una organización de sof tware .

Pero las t a reas de t rabajo real varían. La descomposición del p roceso comienza
c u a n d o el gerente de proyecto pregunta: "¿Cómo logramos esta actividad del m a r c o
de trabajo?". Por e jemplo, un proyecto p e q u e ñ o y re la t ivamente simple puede reque-
rir las s iguientes t a reas d e t raba jo para la actividad de comunicación:

1. Desarrollar una lista de conflictos que deben clarificarse,

2. Reunirse con los clientes para abordar los conflictos que deben clarificarse.

3. Desarrollar en conjun to un enunc iado del ámbito.

4. Revisar el enunc iado del ámbi to con todos los implicados.

5. Modificar el enunc iado del ámbi to según se requiera.

Estos sucesos pueden ocurrir en un periodo menor a 48 horas . Representan un pro-
c e s o de descomposic ión a d e c u a d o para el proyecto p e q u e ñ o y re la t ivamente simple.

Ahora, considérese un proyecto m á s complejo, el cual t iene un ámbi to m á s a m -
plio y un impacto comercial m á s significativo. Este proyecto puede requerir las si-
guientes t a reas de t rabajo para la actividad de comunicación:

1. Revisar la petición del cliente.

2. Planificar y p rogramar una reunión formal con el cliente.

3. Llevar a cabo invest igaciones para especificar la solución propuesta y los en-
foques existentes.

4 . Preparar un "documento d e t rabajo" y una agenda para la reunión formal.

5. Celebrar la reunión.

6. Desarrollar en con jun to miniprospectos que reflejen los datos, función y ca-
racteríst icas de compor tamien to del sof tware . Alternativamente, se desarro-
llan c a s o s de u s o que describen al so f tware desde el pun to de vista del
usuario.

7. Revisar cada miniprospecto o caso de uso para valorar su corrección, consis-
tencia y falta de ambigüedad.

8. Ensamblar los miniprospectos en un documen to m á s amplio.

9- Revisar el documen to m á s amplio o colección de c a s o s de uso con todos los
implicados.

10. Modificar el documen to m á s amplio o c a s o s de uso según se requiera.

Ambos proyectos realizan la actividad del marco de t rabajo que se llama "comu-
nicación", pero el pr imer equipo de proyecto e fec tuó la mitad de las t a reas de t raba-
jo de ingeniería de sof tware que realizó el segundo.

TM

PDF Editor

656 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

2 1 . 5 E L P R O Y E C T O

La ges t ión d e un p royec to d e s o f t w a r e ex i toso requiere e n t e n d e r q u é p u e d e salir rr all
(de m o d o q u e sea factible evitar los p rob lemas) . En un exce l en t e ar t ículo ace rca ó d
p royec tos de so f tware , John Reel [REE99] def ine 10 s e ñ a l e s q u e indican q u e un pr -]
yec to de s i s t e m a s d e información es tá e n peligro:

El persona l d e s o f t w a r e n o en t i ende las n e c e s i d a d e s d e s u s cl ientes.

El á m b i t o del p r o d u c t o es tá m a l def inido.

Los c a m b i o s s e ges t ionan mal.

La tecnología elegida cambia .

Las n e c e s i d a d e s comerc i a l e s c a m b i a n [o e s t á n mal def inidas] .

Los p lazos de en t r ega n o s o n real is tas .

Los u sua r io s s e res is ten.

Se p ierde el pa t roc in io [o n u n c a s e ob tuvo de m a n e r a a d e c u a d a] .

El e q u i p o de p royec to ca rece de pe r sona l con las hab i l idades ap rop iadas .

Los g e s t o r e s [y los p rofes iona les] evi tan las m e j o r e s prác t icas y las lecciones
ap rend idas .

Los p ro fes iona le s indus t r ia les m u y e x p e r i m e n t a d o s con f recuenc ia se ref ieren (rre-J
dio f r ivolamente) a la regla 90-90 c u a n d o e s t u d i a n p royec tos d e s o f t w a r e particular-
m e n t e difíciles. El p r imer 90 por c ien to d e un s i s t ema a b s o r b e el 90 por c ien to del e>-|
f u e r z o y el t i empo a s i g n a d o s . El ú l t imo 10 por c ien to t o m a el o t ro 90 por c iento c a l
e s f u e r z o y el t i empo a s i g n a d o s (ZAH94J. Las c a u s a s q u e c o n d u c e n a la regla del 9 ^ 1

90 es tán c o n t e n i d a s en las s e ñ a l e s a n o t a d a s en la lista p r eceden te .

"No t e n e m o s t i empo p o r o d e t e n e r n o s por combustible, y o vamos t a r d e . "
M . Cle ro '

¡Pero b a s t a de nega t iv idad! ¿Cómo ac túa un ges to r p a r a evi tar los p rob lemas re-j
cién s e ñ a l a d o s ? Reel [REE99] sugiere un e n f o q u e de s e n t i d o c o m ú n de c inco pa r . e s j
p a r a p royec tos d e so f tware :

1. Comience con el pie derecho. Es to s e logra t r a b a j a n d o du ro (muy duro) para

e n t e n d e r el p r o b l e m a q u e será resue l to y e n t o n c e s es tab lecer obje t ivos y ex-
pec ta t ivas rea l i s tas p a r a t odos los que e s t a r á n invo lucrados en el proyecto.
Esto s e r e fue rza m e d i a n t e la cons t rucc ión del equ ipo cor rec to (sección 21.2 3 I
y al dar le al equ ipo la a u t o n o m í a , au tor idad y t ecno log ía n e c e s a r i o s p a r a ha-
cer el t raba jo .

2 . Mantenga el ímpetu. Muchos p royec tos t ienen un b u e n c o m i e n z o y luego len
t a m e n t e s e des in teg ran . Para m a n t e n e r el ímpetu , el ges tor del proyecto debe
p roporc iona r incen t ivos para c o n s e r v a r los r eveses del pe r sona l en un míni-

¿ C u á l e s s o n 1 .
• l a s s e ñ a l e s ^

d e q u e u n
p r o y e c t o d e 3 .
s o f t w a r e e s t á e n ^
p e l i g r o ?

5 .

6.

7 .

8 .

9 .

10.

TM

PDF Editor

C A P Í T U L O 2 1 CONCEPTOS DE GESTIÓN DE PROYECTOS 6 5 7

m o abso lu to ; el e q u i p o d e b e resa l t a r la ca l idad en cada tarea q u e real iza, y los
ges to re s e jecu t ivos d e b e h a c e r todo lo posible po r m a n t e n e r s e fuera del cami-
n o del equipo . 6

3 . Rastree el progreso. En un p royec to d e s o f t w a r e el p r o g r e s o se ras t rea confor -
m e s e e l aboran los p r o d u c t o s d e t r a b a j o (por e jemplo , mode los , cód igo fuen -
te, c o n j u n t o s d e c a s o s d e p rueba) y s e a p r u e b a n (med ian te revis iones t écn icas
formales) c o m o pa r t e d e una act ividad d e a s e g u r a m i e n t o de la calidad. Ade-

más , s e p u e d e n recopi lar y apl icar p r o c e s o s del s o f t w a r e y m e d i d a s del pro-
yec to (capítulo 22) p a r a va lora r el p r o g r e s o con t r a los p r o m e d i o s e s t ab lec idos

po r la o rgan izac ión q u e desarrol la so f tware .

4 . Tome decisiones inteligentes. En esenc ia , l as dec i s iones del ges to r del p royec to
y del equ ipo de s o f t w a r e d e b e n e n c a m i n a r s e a " m a n t e n e r l o simple". S iempre
q u e sea posible, dec ídase a emp lea r s o f t w a r e comerc ia l ya desa r ro l l ado o
c o m p o n e n t e s d e s o f t w a r e exis tentes , dec ídase a evi tar in te r fases pe r sona l i za -

d a s c u a n d o es tén disponibles e n f o q u e s e s t ánda r , dec ídase a identif icar y lue-
g o evi tar r iesgos obvios , y dec ídase a a s igna r m á s t i empo que el q u e
cons ide re necesa r io a las t a r e a s c o m p l e j a s o r i e sgosas (necesi tara cada m i n u -
to).

5 . Realice un análisis de resultados. Es tab lezca un m e c a n i s m o cons i s t en te para
ex t raer lecc iones a p r e n d i d a s po r c a d a proyecto . Evalúe la planif icación real y
la prevista, recolec te y ana l ice mé t r i ca s d e p royec to d e so f tware , ob t enga r ea -

l imentac ión d e los m i e m b r o s del equ ipo y d e los c l ientes , y registre los ha l laz-
gos en fo rma escrita.

W 5 H H

i ¿Cómo se
definen los

« t i t a s
i del

o?

En un exce len te ar t ículo ace rca d e los p r o c e s o s y p royec tos d e so f tware , Barry
B o e h m [BOE96] es tab lece : "Usted neces i t a un principio o rgan i zado r q u e esca le ha -
cia a b a j o para p roporc iona r p l a n e s [de proyecto) s imp les p a r a p royec tos s imples".

B o e h m sugiere un e n f o q u e q u e a b o r d e los obje t ivos del proyecto , los hi tos y planifi-
cac ión , responsab i l idades , ges t ión y e n f o q u e s t écn icos y r ecu r sos requer idos . B o e h m
lo l lama el pr incipio W6HH, en h o n o r a u n a ser ie d e p r e g u n t a s que c o n d u c e n a una
def inición de las carac ter í s t icas c laves del p royec to y al p lan de p royec to resul tante :

¿Por qué se desarrolla el sistema? La r e s p u e s t a a es ta p r e g u n t a permi te a t odas las
p a r t e s eva lua r la val idez d e las r a z o n e s del negoc io p a r a el t r aba jo de so f tware . Di-
c h o de otra forma: ¿el p ropós i to del n e g o c i o justifica el ga s to d e pe rsona l , t i e m p o y

d inero?

6 La implicación de este enunciado es que la burocracia se reduce al mínimo, las reuniones extrañas
se eliminan y la adherencia dogmática a los procesos y reglas del proyecto se eliminan. El equipo
debe ser autoorganizado y autónomo.

TM

PDF Editor

6 5 8 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

¿Qué se hará? La respuesta a esta pregunta es tablece el con jun to de t a reas que i
requerirá para el proyecto.

¿Cuándo se hará? La respues ta a es ta pregunta ayuda al equipo a establecer i
planificación del proyecto al identificar cuándo se realizarán las t a reas del pro>
y c u á n d o se a lcanzarán los objetivos.

¿Quién es el responsable de una Junción? Párrafos a t rás se ano tó que el papel y i
responsabil idad de cada miembro del equipo de sof tware deben es tar definidos,
respues ta a esta pregunta ayuda a lograrlo.

¿Dónde están ubicados en la organización? No todos los papeles y responsabilii
des residen en el equipo de sof tware . El cliente, los usuar ios y ot ros participan!]
también tienen responsabil idades.

¿Cómo se hará el trabajo desde los puntos de vista técnico y de gestión? Una vez i
tablecido el ámbi to del producto se debe definir una estrategia de gest ión y técr
para el proyecto.

¿Cuánto de cada recurso se necesita? La respuesta a esta pregunta se deriva al i
sarrollar es t imaciones (capítulo 23) con base en las respues tas a las p regun tas ar
riores.

El principio WSHH de Boehm se aplica sin importar el t a m a ñ o o la complejidad de ;
proyecto de sof tware . Las preguntas a n o t a d a s proporcionan un excelente linearme
to de planificación para el gestor del proyecto y el equipo de sof tware .

El Airlie Council7 ha e laborado una lista de "prácticas críticas de sof tware para
gestión basada en el desempeño" . Dichas práct icas son "empleadas consistenteme
te por, y cons ideradas críticas por, proyectos de sof tware mu y exitosos y por orga
zac iones cuya 'línea base ' de d e s e m p e ñ o es mucho mejor que los promedios de 1
industria" [AIR99].

Las práct icas críticas8 incluyen: gestión de proyecto basado en métr icas (capítii
22), costo empírico y est imación de la planificación (capítulos 23 y 24), seguimienti
del valor ganado (capítulo 24), gestión del riesgo formal (capítulo 25), seguimiento <
defectos f rente a objet ivos de calidad (capítulo 26) y gest ión al tanto del person
(sección 21.2). Cada una de es tas prácticas criticas se aborda a lo largo de la par te 1

de es te libro.

7 El Airlie Council es un equipo de expertos en ingeniería de software que reclutó el Departamento de |
Defensa de los Estados Unidos de América para ayudar a desarrollar lineamientos para mejores
prácticas en la gestión de proyectos de software y de ingeniería del software.

8 Aquí sólo se anotan las prácticas críticas asociadas con la "integridad del proyecto".

TM

PDF Editor

CAPÍTULO 21 CONCEPTOS DE GESTIÓN DE PROYECTOS 659

HERRAMIENTAS DE SOFTWARE

Herramientas de soítware para gestores de proyectos
Las "herramientas" mencionadas aquí son ge-
néricas y se aplican a un amplio rango de acti-

s que realizan los gestores de proyecto. En los
i capítulos se consideran herramientas de gestión

i específicas (por ejemplo, herramientas de
ción, estimación, de análisis de riesgo).

nientas representativas9

are Program Manager's Network (www.spmn.com)
-c desarrollado una herramienta simple llamada Pro-

r je-:' Control Panel que ofrece a los gestores d e proyec-
l un aviso directo del estado del proyecto. La

herramienta tiene "calibradores" muy parecidos a un
tablero y está implementada con Microsoft Excel. Está
disponible para descarga en ht tp: / /www.spmn.com/
products_software.html.

Ganlbead.com ha desarrollado un conjunto de útiles lisias
de verificación para gestores de proyecto que se puede
descargar de ht tp: / /www.gant thead.com/.

lttoolkit.com (www.ittoolkit.com) ofrece "una colección de
guías de planificación, plantillas de proceso y hojas de
cálculo inteligentes" disponibles en CD-ROM.

La ges t ión de p royec tos d e s o f t w a r e e s una actividad p ro tec to ra d e n t r o de la inge-
niería del so f tware . C o m i e n z a a n t e s d e iniciar cua lqu ie r act ividad técnica y con t inúa
a lo la rgo d e la def inición, el desar ro l lo y el s o p o r t e del s o f t w a r e d e c o m p u t a d o r a .

Las cua t ro P q u e t ienen u n a inf luencia sus tanc ia l e n la ges t ión de p royec tos de
so f tware : pe r sona l , p roduc to , p r o c e s o y proyec to . El pe r sona l d e b e es ta r o r g a n i z a d o

en e q u i p o s ef icientes , m o t i v a d o s p a r a h a c e r un t r aba jo d e s o f t w a r e de al ta cal idad y
c o o r d i n a d o s p a r a lograr u n a c o m u n i c a c i ó n eficaz. Los requis i tos del p r o d u c t o se de-
ben c o m u n i c a r del cl iente al desarro l lador , se r divididos (descompues tos) en s u s
pa r t e s cons t i tu t ivas y distr ibuirse p a r a q u e t r aba je el equ ipo d e so f tware . El p r o c e s o
d e b e a d a p t a r s e al pe r sona l y al p rob lema . Se se lecc iona un m a r c o de t r aba jo d e pro-
c e s o c o m ú n , s e apl ica un p a r a d i g m a de ingenier ía de s o f t w a r e a d e c u a d o y s e elige

u n c o n j u n t o d e t a r e a s d e t r a b a j o para l levar a c a b o el t r aba jo . F ina lmente , el p royec-
t o debe e s t a r o r g a n i z a d o en u n a fo rma q u e pe rmi ta t r iunfar al equ ipo d e so f tware .

El e l e m e n t o cent ra l en t odos los p royec tos d e s o f t w a r e e s el pe r sona l . Los inge-
n ie ros d e s o f t w a r e p u e d e n o r g a n i z a r s e en d i fe ren tes e s t ruc tu ra s de equipo , que v a n
de sde las j e ra rqu ías d e control t rad ic ionales h a s t a los equ ipos d e "pa rad igma abier -
to". Se p u e d e n aplicar var ias t écn icas d e coord inac ión y c o m u n i c a c i ó n p a r a apoya r
el t r a b a j o del equ ipo . En genera l , las rev i s iones fo rma le s y la c o m u n i c a c i ó n informal

d e p e r s o n a a p e r s o n a son las m á s val iosas p a r a los p ro fes iona les .
La act ividad de ges t ión del p royec to a b a r c a m e d i d a s y mét r icas , es t imación y pla-

nif icación, aná l i s i s d e r iesgos, s egu imien to y contro l . Cada u n o d e e s t o s tóp icos s e
cons ide ra en los capí tu los s igu ien tes .

9 Las herramientas registradas aquí son una muestra de esta categoría. En la mayoría de los casos los
nombres de las mismas son marcas registradas pe - sus respectivos desarrolladores.

TM

PDF Editor

http://www.spmn.com
http://www.spmn.com/
http://www.gantthead.com/
http://www.ittoolkit.com

660 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

[AIR99] Airlie Council, "Performance Based Management : The Program Manager ' s Guide Bas
on the 16-Point Plan and Related Metrics", Drañ Report, 8 de marzo , 1999.

[BAK72] Baker, F. T„ "Chief Programmer Team Management of Production Programming", i
IBM Systems Journal, vol. 11, núm. I, 1972, pp. 56-73.

[BOE96] Boehm, B., "Anchoring the Sof tware Process", e n IEEE Sojbvare, vol. 13, núm. 4,
de 1996, pp. 73-82.

[COCO 1] Cockburn, A. y J. Highsmith, "Agile Sof tware Development: The People Factor", en /£
Computer, vol. 34, núm. 11, noviembre de 2001, pp. 131-133.

[CON93] Constant ine, L„ "Work Organizat ion: Paradigms for Project Management and Orga
zation", en CACM, vol. 36, núm. 10, octubre de 1993, pp. 34-43.

[COU8O] Cougar, J. y R. Zawacki, Managing and Motivating Computer Personnel, Wiley, 1980.
[CUR88] Curtís, B. el al., "A Field Study of the Software Design Process for Large Systems",

¡EEETrans. Sojlware Engineering, vol. SE-31, núm. 11, noviembre de 1988, pp. 1268-1287
[CUR94] Curtís, B. el al., People Management Capability Maturity Model, Sof tware Engineering I

titute, 1994.
[DEM98] DeMarco, T. y T. Lister, Peopleware, 2a. ed., Dorset House, 1998.
[EDG95] Edgemon,) . , "Right Stuff: How to Recognize It When Selecting a Project M a n a g e r i

Application Development Trends, vol. 2, núm. 5, m a y o de 1995, pp. 37-42.
[FER98] Ferdinandi, P. L„ "Facilitating Communicat ion", en IEEE Sofhvare, sep t iembre de 1S

pp. 92-96.
UAC98] Jackman, M„ "Homeopathic Remedies for Team Toxicity", en IEEE Sojlware, julio

1998, pp. 43-45.
IKRA95] Kraul, R. y L. Streeter, "Coordination in Sof tware Development", en CACM, vol. 38, nú

3, m a r z o de 1995, pp. 69-81.
[MAN81J Mantei, M„ "The Effect of Programming Team Structures on Programming Tasks" i

CACM, vol. 24, núm. 3, marzo de 1981, pp. 106-113.
[PAG85] Page-Jones, M., Practical Project Management, Dorset House, 1985, p. vii.
[REE99] Reel, J. S., "Critical Success Factors in Sof tware Projects", en IEEE Sojlware, mayo

1999, pp. 18-23.
[WE186] Weinberg, G., On Becoming a Technical Leader, Dorset House, 1986.
[WIT94] Whitaker, K., Managing Sojhvare Maniacs, Wiley, 1994.
[ZAH94] Zahniser, R., "Timeboxing for Top Team Performance", en Sojlware Development, i

z o d e 1994, pp. 35-38.

21.1. Con base en la información contenida en este capitulo y la experiencia propia, desa r
llar "10 mandamien tos" para a lentar el potencial de los ingenieros de sof tware . Esto es: ela
rar una lista de 10 l incamientos q u e conduci rán al personal q u e desarrolla sof tware a ejercer s
potencial completo.

21.2. El mode lo de madurez de la capacidad de gestión de personal (MMCGP) del Software I
gineering Institute realiza un estudio organizado de las "áreas práct icas clave" (APC) que i
va el buen personal de sof tware . El instructor as ignará una APC para anal izar y resumir.

21.3. Describir tres s i tuaciones de la vida real en las cuales el cliente y el usuario final son <
mismo. Describir tres s i tuaciones en las cuales son diferentes.

21.4. Las decis iones que toman los ges to res ejecutivos pueden tener un impacto significati
en la eficacia de un equipo de ingeniería del sof tware . Proporcionar cinco e jemplos q u e ilusti
que es to es cierto.

2 1 . 5 . Repasar el libro de Weinberg [WEI86] y escribir un r e sumen de dos o tres pág inas de
tópicos que deben considerarse al aplicar el mode lo MOI.

TM

PDF Editor

CAPÍTULO 21 C O N C E P T O S D E GEETIC Í Í D - : Í R ; Y B — O S 6 6 1

21.6. Usted ha s ido n o m b r a d o ges to r d e p royec to den t ro d e una o r g a n i z a c i ó n de s i s t e m a s de
in fo rmac ión . Su labor e s cons t ru i r u n a ap l icac ión q u e s e a b a s t a n t e s imilar a o t r a s q u e h a c o n s -
truido su equipo, a u n q u e és ta e s m a y o r y m á s comple ja . El c l iente h a d o c u m e n t a d o a m p l i a m e n -
te los requis i tos . ¿Qué e s t ruc tu ra d e e q u i p o elegiría y por qué? ¿Qué modelo(s) de p r o c e s o de
s o f t w a r e elegiría y p o r qué?

21.7. Usted h a s ido n o m b r a d o ges to r de p royec to e n una p e q u e ñ a c o m p a ñ í a de p r o d u c t o s de
s o f t w a r e . Su labor e s cons t ru i r un p r o d u c t o d e a v a n z a d a q u e c o m b i n e h a r d w a r e d e real idad vir-
tual con s o f t w a r e de ú l t ima g e n e r a c i ó n . Pues to q u e la c o m p e t e n c i a e n el m e r c a d o del en t re te -
n i m i e n t o c a s e r o e s in tensa , exis te u n a pres ión s ignif icat iva pa ra c o m p l e t a r el t r aba jo . ¿Qué es -
t ruc tura d e e q u i p o elegiría y p o r q u é ? ¿Qué modelo(s) de p r o c e s o d e s o f t w a r e elegiría y por qué?

2 1 . 8 . Usted h a s ido n o m b r a d o ges to r d e p royec to e n u n a gran c o m p a ñ í a de p r o d u c t o s de sof t -
ware . Su labor e s g e s t i o n a r el desa r ro l lo de la vers ión de s igu ien te g e n e r a c i ó n d e su s o f t w a r e
d e p r o c e s a m i e n t o d e t ex tos a m p l i a m e n t e ut i l izado. Pues to q u e s e d e b e n g e n e r a r n u e v o s ingre-
sos , s e h a n e s t ab l ec ido y a n u n c i a d o f echas límite prec i sas . ¿Qué es t ruc tura d e equ ipo elegiría y
p o r qué? ¿Qué modelo(s) de p r o c e s o d e s o f t w a r e elegiría y por qué?

21.9. Usted h a s ido n o m b r a d o ges to r de p royec to de s o f t w a r e pa ra una c o m p a ñ í a q u e a t i end e
al m u n d o de la ingenier ía gené t ica . Su labor e s ges t iona r el desar ro l lo de u n n u e v o p r o d u c t o de
s o f t w a r e q u e a c e l e r a r á el r i tmo d e la c lasif icación de genes . El t r aba jo es tá o r i en t ado l+D, p e r o
la m e t a es e l abo ra r u n p r o d u c t o d e n t r o del s igu ien te a ñ o . ¿Qué es t ruc tura de e q u i p o elegiría y
por qué? ¿Qué modelo(s) de p r o c e s o d e s o f t w a r e elegiría y p o r qué?

2 1 . 1 0 . A u s t ed s e le pide desar ro l la r u n a p e q u e ñ a ap l icac ión q u e ana l ice los cu r so q u e o f r e c e
u n a un ivers idad y repor te la cal if icación p r o m e d i o ob ten ida e n el cu r so (para u n pe r iodo deter -
minado) . Escriba u n e n u n c i a d o del á m b i t o q u e a b a r c a e s t e p r o b l e m a .

2 1 . 1 1 . Real ice u n a d e s c o m p o s i c i ó n func iona l de p r imer nivel de la func ión plantil la de p á g i n a
t r a tada b r e v e m e n t e e n la secc ión 21.3.2.

OTRAS L E C T U R A S Y F U E N T E S P E INFORMACIÓN
El Project M a n a g e m e n t Insti tute (Guideto the Project Management Body ofKnowledge, PMI, 20011
cub re t o d o s los a s p e c t o s i m p o r t a n t e s d e la ges t ión d e p royec tos . Murch (Project Management
Best Practicesfor IT Professionals, Prentice-Hall , 2000) e n s e ñ a hab i l idades b á s i c a s y p roporc iona
u n a guía de ta l lada pa ra t o d a s las f a s e s de u n p royec to de TI. Lewis (Project Managers Desk Re

ference, McGraw-Hill, 1999) p r e s e n t a un p r o c e s o d e 16 p a s o s pa ra planif icar , superv i sa r y con-
trolar cua lqu ie r t ipo de proyecto. McConnel l (ProfessionaI Software Development, Addison-Wes-
ley, 2004) o f r e c e c o n s e j o s p r a g m á t i c o s pa ra "lograr p l anes m á s cor tos , p r o d u c t o s de m a y o r ca -
lidad y p royec tos m á s exi tosos" .

Una exce len te ser ie d e cua t ro v o l ú m e n e s esc r i tos por Weinberg (Quality Software Manage-
ment, D o r s e t H o u s e , 1 9 9 2 , 1 9 9 3 , 1 9 9 4 , 1 9 9 6) in t roduce c o n c e p t o s b á s i c o s d e p e n s a m i e n t o y g e s -
tión d e s i s t e m a s ; explica c ó m o u s a r m e d i c i o n e s e f ec t i vamen te ; y abo rda la "acción c o n g r u e n -
te", la habi l idad d e e s t ab lece r "acop lamien to" e n t r e las n e c e s i d a d e s del gestor , las n e c e s i d a d e s
de l equ ipo técnico y las n e c e s i d a d e s del negoc io . El libro b r indará in fo rmac ión útil a los ges to-
res t a n t o n u e v o s c o m o e x p e r i m e n t a d o s . Futrell y s u s c o l e g a s (Quality Software Project Manage
ment, Prentice-Hall , 2002) p r e s e n t a n un v o l u m i n o s o t r a t a m i e n t o d e la ges t ión d e proyectos .

Phillips (IT Project Management: On TTack f,rom Start to Finish, McGraw-Hi l l /Osborne , 2002).
Charva t {Project Management Nation, Wiley, 2002), S c h w a l b e (In format ion Technology Project Ma
nagement, 2a . ed., Cour se Technology, 2001) y Hol tsnider y Jaffe {ITManager's Handbook, Mor-
gan K a u f m a n n Publ ishers , 2000) s o n r ep re sen t a t i vos de los m u c h o s l ibros q u e s e han escr i to
a c e r c a de la ges t ión d e p royec tos d e s o f t w a r e . B rown y s u s co legas (AntiPatterns in Project Ma
nagement, Wiley, 2000) e x a m i n a n q u é n o h a c e r d u r a n t e la ges t ión d e un p royec to d e s o f t w a r e .

Brooks (The Mythical Man-Month, Anniversa ry Edition, Addison-Wesley, 1995) h a ac tua l i za -
d o su libro c lás ico pa ra o f r ece r u n a n u e v a visión e n los t e m a s de p royec to de s o f t w a r e y ges-
t ión. McConnell (Software Project Surviva! Cuide, Microsoft Press, 1997) p r e s e n t a una exce l en t e
guía p r agmá t i ca pa ra q u i e n e s d e b e n ges t iona r p royec tos d e s o f t w a r e . Purba y S h a h (How to Ma-

TM

PDF Editor

662 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

nage a Successful Software Project, 2a. ed., Wiley, 2000) presentan varios casos de estudio que in-
dican por qué algunos proyectos tienen éxito y otros fracasan. Bennatan (On Time Within Bud-
gel, 3a. ed., Wiley, 2000) presenta sugerencias y l incamientos útiles para gestores de proyectos
de software.

Se puede argumentar que el aspecto más importante de la gestión de proyectos de software
es la gestión de personal. Cockburn {Agüe Software Development, Addison-Wesley, 2002) presen-
ta uno de los mejores análisis del personal de software escrito hasta la fecha. DeMarco y Lister
[DEM98] han escrito el libro definitivo acerca del personal de software y los proyectos respecti-
vos Además, en años recientes se han publicado los siguientes libros en esta materia y vale la
pena examinarlos:

Beaudouin-Lafon, M., Computer Supported Cooperative Work, Wiley-Liss, 1999.

Carmel, E., Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall.
1999.

Constantine, L., Peopleware Papers: Notes on the Human Side of Software, Prentice-Hall, 2001

Humphrey, W. S„ Managing Technical People: Innovation, Teamwork and the Software Process.
Addison-Wesley, 1997.

Humphrey, W. S., Introduction to the Team Software Process, Addison-Wesley, 1999.

Jones, P. H„ Handbook ofTeam Design: A Practitioner's Guide to Team Systems Development,
McGraw-Hill, 1997.

Karolak, D. S„ Global Software Development: Managing Virtual Teams and Environments, IEEE
Computer Society, 1998.

Ensworth (The Accidental Project Manager, Wiley, 2001) ofrece profusamente guías útiles a
quienes deben sobrevivir "la transición de técnico a gestor de proyecto". Otro excelente libro ce
Weinberg [WE186] es una lectura obligada para todo gestor de proyecto y todo líder de equipe
Este libro le brindará el conocimiento y la guía que le permitirán hacer su trabajo de manera
más eficiente.

Aun cuando no se relacionan específicamente con el mundo del software, y en ocasiones so-
bresimplifican y generalizan en extremo, los libros de "gestión" más vendidos de Bossidy (£>.e
cution: The Discipline of Getting Things Done, Crown Publishing, 2002), Drucker (Managemer:
Challengesfor the 2lst Century, Harper Business, 1999), Buckingham y Coffman (First, Break.-S
the Rules: What the World's Greatest Managers Do Differently, Simón and Schuster, 1999) y Chris-
tensen (The Innovator's Dilemma, Harvard Business School Press, 1997) resaltan "nuevas reglas1

que define una economía rápidamente cambiante. Los títulos viejos como Who Moved My Chcr
se?, The One-Minule Manager e In Search ofExcelience continúan ofreciendo valiosa información
que pueden ayudarle a gestionar personas y proyectos de manera más eficaz.

En Internet está disponible una amplia variedad de fuentes de información acerca de la ges-
tión de proyectos de software. Una lista actualizada de referencias en la World Wide Web se en-
cuentra en el sitio Web de SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

MÉTRICAS DE PROCESO
Y PROYECTO 22

C E P T O S

STE
. . . . 6 7 7

"o
. . . 679

6 6 7

. . . 6 7 6

. . 6 7 4

. 6 6 7

. 6 7 0

. . 6 7 3

al
. . . 669

. . .666

. . . .666

. . 6 7 4

de

L a medición permite obtener una visión del proceso y el proyecto pues pro-
porciona un mecanismo para lograr una evaluación objetiva. Lord Kelvin
dijo una vez:

. 6 8 4

C u a n d o p u e d e med i r aque l lo d e lo q u e e s t á h a b l a n d o y expresa r lo e n n ú m e r o s s a b e

a l g o a c e r c a de ello; p e r o c u a n d o n o p u e d e medi r , c u a n d o n o p u e d e e x p r e s a r l o en n ú -

m e r o s , su c o n o c i m i e n t o e s e scaso , de f i c ien te p u e d e s e r el c o m i e n z o del c o n o c i m i e n -

to, pe ro , e n s u s p e n s a m i e n t o s , a p e n a s e s t á a v a n z a d o al á m b i t o d e la c iencia .

La comunidad de la ingeniería del sof tware ha tomado en serio las palabras de
lord Kelvin ¡Mas no sin frustración y algo más que un poco de controversia!

La medición se aplica al proceso de software con la finalidad de mejorarlo de
manera continua. La medición se utiliza a lo largo de un proyecto de sof tware
como apoyo en la estimación, el control de calidad, la valoración de la producti-
vidad y el control del proyecto. Finalmente, la medición la aplican los ingenieros
de software como auxiliar en la evaluación de la calidad de los productos de tra-
ba jo y para apoyar la toma de decisiones táctica conforme avanza un proyecto
(capítulo 15).

En su guía acerca de la medición de software, Park, Goethert y Florac [PAR96:
apuntan las r azones por las que se mide: 1) para caracterizaren un esfuerzo por
comprender acerca "de los procesos, productos, recursos y entornos, y para es-
tablecer l íneas b a s e para comparac iones con eva luac iones futuras"; 2) para
evaluar "determinando el es tado con respecto a los planes"; 3) para predecir me-
diante "la comprensión de relaciones entre procesos y productos y construir mo-

¿ Q u é e s ? El proceso de software y
las métricas del proyecto son medi-
das cuantitativas que permiten a los
ingenieros de software obtener una
visión de la eficacia del proceso de

oftware y los proyectos que llevan a cabo utili-
zando e! proceso como marco de trabajo. Se
ecopilan datos básicos de calidad y productivi-

dad. Luego dichos datos se analizan, comparan
:on promedios pasados y valoran para determi-
nar si han ocurrido mejoras en la calidad y la
productividad. Las métricas también se emplean
para marcar las áreas problema de modo que se
ouedan desarrollar remedios y mejorar el proce-
so de software.

¿ Q u i é n lo h o c e ? Los gestores de software anali-
zan y evalúan las métricas del software. Con fre-
cuencia, los ingenieros ele software recopilan las
medidas.

¿ P o r q u é e s i m p o r t a n t e ? Si no se realizan
mediciones el juicio sólo se basa en evaluación
subjetiva. La medición permite- destacar las ten-
dencias (ya sean buenas o malas) y hacer mejo-
res estimaciones, y con el tiempo se puede lograr
una verdadera mejoría.

¿ C u á l e s s o n los p a s o s ? Se comienza definien-
do un conjunto limitado de medidas del proceso
y del proyecto que puedan recopilarse con faci-
lidad Dichas medidas por io general sé norma-
lizan emplenado métricas orientadas al tamaño

6 6 3

TM

PDF Editor

664 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

o la función. El resultado se analiza y compara
con promedios pasados para proyectos simila-
res realizados dentro de la organización. Se
valoran las tendencias y se generan conclusio-
nes H H r a | |

¿Cuál e s el producto o b t e n i d o ? Un conjunto
de métricas del software que proporcionan

amplia visión del proceso y un conocimiento
detallado acerca del proyecto.

¿Cómo p u e d o e s tar s e g u r o d e q u e lo he
h e c h o correctamente? Al aplicar un esque-
ma de medición consistente pero simple con el
cual no se valora, recompensa o castiga el
desempeño individual. «MlllS

délos de dichas relaciones"; y 4) para mejorar al "identificar barricadas, causas raí ; I
ineficiencias y otras oportunidades para mejorar la calidad del producto y el deserr-j
peño del p roceso" .

La medición es una herramienta de gestoría. Si se lleva a cabo adecuadamente
proporciona visión al gestor del proyecto. Y, como resultado, apoya al gestor del pro-l
yecto y al equipo de sof tware a tomar decisiones que conducirán a un proyecto ex.-|
toso.

2 2 . 1 M É T R I C A S EN LOS D O M I N I O S DEL P R O C E S O Y EL P R O Y E C T O

\ CLAVE
Los métricos del
proceso tienen impocto
o largo plazo. Su
objetivo es mejorar el
proceso en sí. Con
frecuencia, las métricas
del proyecto
contribuyen al
desarrollo de métricos
del proceso.

Las métricas del proceso se recopilan en el curso de todos los proyectos y durante !a:-l
gos periodos. Su objetivo es proporcionar un conjunto de indicadores de proceso q u a
conduzcan a la mejora de los procesos de sof tware de largo plazo. Las métricas tiJ
proyecto permiten que un gestor de proyecto de software 1) valore el es tado de - n i
proyecto en curso; 2) rastree los riesgos potenciales; 3) descubra las áreas problema
antes de que se vuelvan "críticas"; 4) ajuste el flujo de trabajo o las tareas, y 5) eva-
lúe la habilidad del equipo del proyecto para controlar la calidad de los productos : a
trabajo del software.

Las medidas que recopila un equipo de proyecto y las que convierte en métricas
para emplearlas durante un proyecto también se pueden transmitir a quienes t ienes!
la responsabilidad de mejorar el proceso de software. Por esta razón, muchas de i d
mismas métricas se usan tanto en el dominio del proceso como en el del proyecto i

22.1.1 Métricas del proceso y mejora del proceso de software
La única forma racional de mejorar cualquier proceso es medir sus atributos e s p e d í
fieos, desarrollar un conjunto de métricas significativas con base en dichos a t r ibu tas
y luego emplear las métricas para ofrecer indicadores que conducirán a una estra:e-j
gia de mejora. Pero an tes de estudiar las métricas de sof tware y su impacto en la rre-l
jora del proceso de sof tware es importante destacar que el proceso sólo es uno ral
varios "factores controlables en la mejora de la calidad del sof tware y el desempe- d
organizacional" [PAU94],

En la figura 22.1 el proceso se asienta en el centro de un triángulo que conecta
tres factores con una profunda influencia en la calidad del sof tware y el d e s e m p e - »
organizacional. La destreza y la motivación del personal [BOE81] se mues t ran co i r :

TM

PDF Editor

CAPITULO 22 M É T R I C A S DE PROCESO Y PROYECTO 6 6 5

" i t e s
la calidad

software y la
'a

acional
ado de
D -

Producto

Carac te r í s t i cas
del cl iente

C o n d i c i o n e s
del n e g o c i o

Personal Tecnología

CLAVE
y

del
de software

el trabajo
factores más

¡ q u e
en la calidad

el factor individual más influyente en la calidad y el desempeño. La complejidad del
producto puede tener un impacto sustancial sobre la calidad y el desempeño del equi-
po. La tecnología (es decir, los métodos y herramientas de la ingeniería del softwa-
re) que reside en el proceso también tiene un impacto.

Además, el triángulo de proceso existe dentro de un círculo de condiciones am-
bientales que incluyen el en torno de desarrollo (por ejemplo, herramientas CASE),
condiciones del negocio (por ejemplo, fechas límite, reglas comerciales) y caracterís-
ticas del cliente (por ejemplo, facilidad de comunicación y colaboración).

La eficacia de un proceso de sof tware se mide indirectamente. Esto es, se deduce
un conjunto de métricas basadas en los resultados que se derivan del proceso. Los
resultados incluyen medidas de errores descubiertos an tes de liberar el software, los
defectos que detectan y reportan los usuarios finales, los productos de trabajo entre-
gados (productividad), el esfuerzo h u m a n o gastado, el t iempo de la planificación
consumido, concordancia con la planificación y otras medidas. También se deducen
métr icas de proceso al medir las características de tareas específicas de ingeniería
del software. Por ejemplo, se mide el esfuerzo y el t iempo utilizados al realizar las
actividades genéricas de la ingeniería del sof tware descritas en el capítulo 2.

"Las métricas de software le permiten conocer cuándo reír y cuándo llorar."

Grady [GRA92] argumenta que existen usos "privados y públicos" para diferentes
tipos de datos de proceso. Como e s natural que los ingenieros de sof tware especia-
les sean sensibles al uso de las métricas recopiladas sobre una base particular, di-

TM

PDF Editor

666 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

7 ¿ C u á l e s
• la diferencia

e n t r e u s o s
p r i v a d o s y
públicos d e las
mé t r i cas d e
s o f t w a r e ?

9 | ¿ Q « é
* l i neamien tos

s e d e b e n aplicar
cuando se
recopilan mé t r i cas
de s o f t w a r e ?

c h o s d a t o s d e b e n se r p r ivados p a r a el individuo y func iona r c o m o un indicador so l :
p a r a él. Los e j emplos d e métricas privadas inc luyen índ ices d e de fec to po r individúe.
índices d e de fec to po r c o m p o n e n t e d e s o f t w a r e y e r r o r e s e n c o n t r a d o s d u r a n t e el de-
sarrol lo.

La filosofía d e "da tos d e p roceso pr ivados" s e a jus ta bien al en foque de p roceso pe-
sonal del so f tware (capítulo 2) q u e p r o p o n e Humphrey [HUM95]. Humphrey reconoce
q u e la mejora en el p roceso d e so f tware p u e d e y debe c o m e n z a r en el nivel individua.
Los da tos d e p roceso pr ivados p u e d e n func ionar c o m o un impor tan te p romoto r para
q u e el t r aba jo individual del ingeniero d e s o f t w a r e mejore .

Algunas mé t r i ca s d e p r o c e s o son p r ivadas para el equ ipo del p royec to d e sof twa-
re, pe ro públ icas para t odos los m i e m b r o s del equ ipo . Los e j emplos incluyen defec-
tos q u e r epor t an las g r a n d e s f u n c i o n e s de s o f t w a r e (las c u a l e s desar ro l la ron vari :<
profes ionales) , e r ro res d e t e c t a d o s d u r a n t e las revis iones t écn icas fo rma le s y líneas

d e código o p u n t o s d e func ión por m ó d u l o o función. 1 Dichos d a t o s los revisa ei
equ ipo p a r a descubr i r ind icadores q u e m e j o r e n su d e s e m p e ñ o .

Las mé t r i ca s públ icas po r lo genera l as imilan in fo rmac ión q u e o r ig ina lmente era
pr ivada p a r a los individuos y equ ipos . Los índices d e defec to al nivel del p royec : :
(que n o s e a t r ibuyen por n ingún mot ivo a un individuo), e s fue rzo , p lanif icación y ca-
tos r e l ac ionados s e recopi lan y eva lúan con la f inal idad d e descubr i r ind icadores que
pueden m e j o r a r el d e s e m p e ñ o del p r o c e s o o rgan izac iona l .

Las mé t r i ca s del p r o c e s o de s o f t w a r e o f r ecen benef ic ios s ignif icat ivos confo rme
u n a o rgan izac ión t r aba ja e n me jo ra r su g r ado global de m a d u r e z del p roceso . S:r
e m b a r g o , c o m o t o d a s las mét r i cas , é s t a s p u e d e n e m p l e a r s e mal y crear m á s proble-

m a s de los que solucionan. Grady [GRA92] sugiere un "conjunto d e reglas de etíqueva
p a r a las mé t r i ca s de sof tware" , a d e c u a d o t an to p a r a ges to re s c o m o p a r a profes iona-
les c o n f o r m e inst i tuyen u n p r o g r a m a d e mét r i cas del p roceso :

• Aplique sen t ido c o m ú n y sensibi l idad o rgan iza t iva c u a n d o in te rpre te da to s
métr icos .

• Of rezca re t roa l imentac ión regular a los individuos y equ ipos que recopi lan
m e d i d a s y mé t r i cas .

• No utilice las mé t r i ca s para eva lua r a los individuos.

• Traba je con los p ro fes iona le s y equ ipos p a r a es tab lecer m e t a s c la ras y las mé-
t r icas q u e se e m p l e a r á n p a r a consegu i r l as .

• Nunca u s e mé t r i ca s para a m e n a z a r a los individuos o equipos .

• Los d a t o s mé t r i cos q u e indican u n a á r e a p r o b l e m a n o d e b e n cons ide ra r se
"negativos". Dichos d a t o s só lo son un indicador d e la me jo ra del p roceso .

• No se o b s e s i o n e con una sola métr ica y excluya o t r a s mé t r i ca s i m p o r t a n t e s

1 Las métricas de lineas de código y punto de función se estudian en las secciones 22.2.1 y 22.2.2

TM

PDF Editor

CAPÍTULO 22 M É T R I C A S DE P R O C E S O Y P R O Y E C T O 667

Conforme una organización se siente m á s cómoda con la recopilación y el empleo
de las métricas de proceso, la deducción de indicadores simples da la pauta para un
enfoque m á s riguroso llamado mejora estadística del proceso de software (MEPS). En
esencia, el MEPS aplica el análisis de falla de software para recopilar información
acerca de todos los errores y defectos2 que se encuentran al desarrollar y utilizar una
aplicación, sistema o producto.

22.1.2 Métricas del proyecto
A diferencia de las métricas del proceso de software que se utilizan con propósitos
estratégicos, las métricas del proyecto de sof tware son tácticas. Es decir, un gerente
de proyecto y un equipo de sof tware emplean las métricas del proyecto y los indica-
dores que se deducen de ellas para adaptar el flujo de trabajo del proyecto y las ac-
tividades técnicas.

La primera aplicación de las métricas del proyecto en la mayoría de los proyectos de
sof tware ocurre durante la estimación. Las métricas recopiladas de los proyectos
previos se aprovechan como base desde la cual se realizan est imaciones de esfuer-
zo y t iempo para el trabajo de sof tware actual. Conforme el proyecto avanza, la me-
didas de esfuerzo y tiempo utilizados se comparan con las est imaciones originales
(y la planificación del proyecto). El gestor del proyecto emplea dichos datos para su-
pervisar y controlar el progreso.

Mientras comienza el trabajo técnico, las otras métricas del proyecto comienzan
a tener significado. Se miden los índices de producción representados en términos
de modelos creados, horas de revisión, puntos de función y líneas fuente entregadas.
Además, se les da seguimiento a los errores descubiertos durante cada tarea de in-
geniería del software. Conforme el software evoluciona desde los requisitos hasta el
diseño, se recopilan métricas técnicas para valorar la calidad del diseño y mejorar
los indicadores que influirán en el enfoque que se adopte para la generación y prue-
ba del código.

Cómo se La finalidad de las métricas del proyecto es doble. Primero, se emplean para mi-
mpleon las nimizar el t iempo de desarrollo haciendo los a justes necesarios para evitar demoras

y reducir los problemas y riesgos potenciales. Segundo, se utilizan para valorar la ca-
lidad del producto sobre una base actual y, cuando es necesario, modificar el enfo-
que técnico para mejorar la calidad.

Conforme la calidad mejora los defectos se minimizan, y mientras es to sucede
también se reduce la cantidad de reelaboración requerida durante el proyecto. Esto
conduce a una reducción en el costo global del proyecto.

durante
o?

2 En este libro, un error se define como algún fallo en un producto de trabajo de ingeniería del soft
ware que se descubre antes de que el software se entregue al usuario final. Un defecto es un fallo
que se descubre después de la entrega al usuario final. Se debe advertir que otros no hacen esta dis-
tinción. En el capítulo 26 se presenta un mayor análisis

TM

PDF Editor

6 6 8 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

H O G A R S E G U R O
e l « f i f i

Establecimiento de un enfoque de métricas

' El e s c e n a r i o : La oficina d e Doug
Miller cuando se está a punto de iniciar el proyecto de
software HogarSeguro.

Los a c t o r e s : Doug Miller (gerente del equipo de inge-
niería del software HogarSeguro} y Vinod Raman y Ja-
mie Lazar, miembros del equipo cié ingeniería de
software del producto.

La conversación:

D o u g : Antes de comenzar a t rabajar en este proyecto
me gustaría que definieran y reunieran un conjunto de
métricas simples. Pora comenzar, tendrán que definir sus
metas.

V i n o d (c e ñ u d o) : Nunca antes hemos hecho eso, y. . .

J a m i e (i n t e r r u m p e) : Y con base en la administración
del tiempo de la que se ha estado hablando, nunca ten-
dremos el tiempo. Además, ¿qué tan buenas son las mé-
tricas?

Doug (eleva las manos para detener el ata-
q u e) : Calma.. . relájense, chicos. El hecho de que nunca
antes lo hayamos hecho es la principal razón pa ra co-
menzar ahora , y el t rabajo de las métricas de las que es-
toy hablando no debería tomar mucho tiempo... de
hecho, puede ahorrarnos tiempo. é

V i n o d : ¿Cómo?

D o u g : Mira, haremos mucha ingeniería de software en
caso conforme nuestro producto se vuelve más inteligen-
te, llegue a estar habilitado en la Web, todo eso.. . y ne-
cesitamos entender el proceso que utilizamos pa ra
construir software.. . y mejorarlo d e modo que construya-

mos mejor software. La única formo de hacer esto es mi-
diendo.

J a m i e : Pero tenemos presión de tiempo, Doug. No es-
toy en favor de más presión de papeleo. . . necesitamos el
tiempo para hacer nuestro trabajo, no recopilar datos.

D o u g (c a l m a d a m e n t e) : Jamie ,e l t rabajo de un inge-
niero involucra recopilar datos, evaluarlos y aprovechar
los resultados pa ra mejorar el producto y el proceso.
¿Me equivoco?

J a m i e : No, pero.. . ¡ 9

D o u g : ¿Qué tal si dejamos el número d e medidas que
deben reunirse en no más d e cinco o seis y nos enfoca-
mos en la calidad?

V i n o d : Nadie puede estar en contra d e la alta cali-
dad . . .

J a m i e : Cierto... pero, no sé, todavía creo que esto no
es necesario.

D o u g : Esta vez les pediré que me complazcan. ¿Cuánto
saben acerca de las métricas d e software?

Jamie (voltea y ve a Vinod): No mucho.

D o u g : Aquí tienen algunas referencias de la Web. . . pe
sen algunas horas organizándose pa ra aumentar la vele
cidad, •

J a m i e (s o n r í e) : Pensé que dijiste que esto no nos to-
maría tiempo.

D o u g : El tiempo que pasan aprendiendo nunca es tiem-
po perdido.. . vayan a hacerlo y luego estableceremos al-
gunas metas, plantearemos algunas preguntas y
definiremos las métricas que necesitamos reunir.

2 2 . 2 MEDICIÓN BEL SOFTWARE

En el capí tu lo 15 se indicó q u e la medic ión d e s o f t w a r e s e clasifica en d o s catego-
rías: 1) medidas directas del p r o c e s o de s o f t w a r e (por e jemplo , cos to y e s f u e r z o apli-
cados) y del p r o d u c t o (por e jemplo , l íneas d e cód igo |LDC] p roduc idas , rap idez de
e jecuc ión y de fec to s r e p o r t a d o s a lo largo de c ier to pe r iodo establecido) y 2) mea:-
das indirectas del p roduc to q u e incluyen func iona l idad , cal idad, comple j idad , eficier

cia, confiabi l idad, facilidad d e m a n t e n i m i e n t o y m u c h a s o t r a s "habi l idades" t r a t a d a
e n el capí tu lo 15.

TM

PDF Editor

CAPÍTULO 22 MÉTRICAS DE PROCESO Y PROYECTO 669

"No todo lo que p u e d e ser contado cuenta , y n o todo o que cuenta pu ide ser contodo."
Alberl E'mstein

muchos
ttel

software,
es métricas

: equipos.

Las mé t r i ca s del p royec to s e conso l idan con el fin d e c r e a r mé t r i ca s del p r o c e s o
q u e s e a n públ icas p a r a la o rgan izac ión d e s o f t w a r e c o m o un todo. Pero, ¿ c ó m o c o m -

bina una o rgan izac ión las mét r i cas p roven i en t e s d e d i f e ren te s individuos o proyec-

tos?
Con fines i lustrat ivos, c o n s i d é r e s e un e j e m p l o s imple . Los i n t e g r a n t e s de d o s di-

f e r en t e s e q u i p o s d e p royec to regis t ran y ca t ego r i zan los e r ro res q u e e n c u e n t r a n du-
ran te el p r o c e s o del so f tware . Luego, las m e d i c i o n e s individuales se c o m b i n a n para
desar ro l la r m e d i d a s d e equipo. El e q u i p o A e n c o n t r ó 342 e r ro res d u r a n t e el p r o c e s o
del s o f t w a r e previo al l anzamien to . El equ ipo B e n c o n t r ó 184 er rores . Si t o d a s las de -
m á s c o s a s s e m a n t i e n e n iguales, ¿qué equ ipo e s m á s ef ic iente al descubr i r e r ro res a
lo largo del p roceso? Pues to q u e n o s e c o n o c e n ni el t a m a ñ o ni la comple j idad d e los
p royec tos , n o s e p u e d e r e sponde r es ta p r egun t a . Sin e m b a r g o , si las med ic iones s e

no rma l i zan , e s pos ib le c rea r mé t r i ca s d e s o f t w a r e q u e posibi l i ten la c o m p a r a c i ó n a
p r o m e d i o s o r g a n i z a c i o n a l e s m á s ampl ios . De es ta fo rma , las mé t r i ca s o r i e n t a d a s
t a n t o al t a m a ñ o c o m o a la func ión es tán n o r m a l i z a d a s .

22.2.1 Métricas orientadas al tamaño
Las mé t r i ca s del s o f t w a r e o r i e n t a d a s al t a m a ñ o p r e c e d e n d e la no rmal i zac ión d e las
m e d i d a s de cal idad o product iv idad c o n s i d e r a n d o el t a m a ñ o del s o f t w a r e q u e s e ha
producido . Si una o rgan izac ión de s o f t w a r e m a n t i e n e reg is t ros s imp les e s factible
c rea r u n a tabla d e m e d i d a s o r i e n t a d a s al t a m a ñ o , c o m o la q u e s e m u e s t r a en la fi-

gura 22.2. En la tabla s e m e n c i o n a c a d a p royec to d e desar ro l lo d e s o f t w a r e q u e s e
ha c o m p l e t a d o en a ñ o s p a s a d o s , así c o m o las m e d i d a s c o r r e s p o n d i e n t e s para d ichos
proyectos . C o m o se advier te en la en t r ada d e tabla (figura 22.2) para el p royec to al-
fa: 12 100 l íneas d e cód igo s e desar ro l la ron con 24 p e r s o n a s - m e s d e e s f u e r z o a un
cos to d e 168 000 dolares . Se debe n o t a r q u e el e s f u e r z o y el cos to reg i s t rados en la
tabla r ep re sen t an t odas las ac t iv idades d e ingenier ía del s o f t w a r e (análisis, d i seño,

cód igo y prueba) , n o só lo codif icación. Información adic ional del p royec to alfa indi-
ca q u e s e desar ro l la ron 3 6 5 p á g i n a s de d o c u m e n t a c i ó n , s e regis t raron 134 e r r o r e s
a n t e s d e q u e el s o f t w a r e fuese l iberado y s e e n c o n t r a r o n 2 9 de fec to s d e s p u é s d e la
l iberación al c l iente d e n t r o del p r imer a ñ o d e ope rac ión . Tres p e r s o n a s t r aba ja ron e n
el desar ro l lo del s o f t w a r e p a r a el p royec to alfa.

El desar ro l lo d e mét r i cas q u e s e as imilen con mé t r i ca s s imi la res p r o c e d e n t e s d e
o t ro s p royec tos requiere elegir líneas de código c o m o valor d e normal i zac ión . A pa r -
tir d e los da to s r u d i m e n t a r i o s d e la tabla s e desar ro l la un c o n j u n t o d e mét r i cas s im-
ples o r i e n t a d a s al t a m a ñ o p a r a c a d a proyec to : e r ro res po r KLDC (miles d e l íneas d e
código) , de fec to s p o r KLDC, c o s t o p o r KLDC. p á g i n a s d e d o c u m e n t a c i ó n por KLDC.
A d e m á s , s e p u e d e n ca lcular o t r a s mé t r i ca s in te resan tes : e r ro res po r p e r s o n a - m e s ,
KLDC por p e r s o n a - m e s , cos to por pág ina d e d o c u m e n t a c i ó n .

TM

PDF Editor

6 7 0 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Métricas
orientadas al
tamaño.

Proyecto L D C Esfuerzo $ (0 0 0) Pag. D<K. Errores Defectos Personal

alfa 12 100 24 168 3 6 5 134 29 3
beta 27 2 0 0 62 4 4 0 1 224 321 86 5
gamma 2 0 2 0 0 4 3 3 1 4 1 0 5 0 2 5 6 6 4 6

I I ! ' « , % l • . • •
• • • • • •
» • • • • . ' •

CLAVE
Las métricas orientadas
al tamaño son
ampliamente
utilizados, pero
continúa el debate
acerca de su valide; y
aplicabilidad.

Las mét r i cas o r i e n t a d a s al t a m a ñ o n o s e a c e p t a n u n i v e r s a l m e n t e c o m o la mejor
fo rma d e med i r el p r o c e s o del s o f t w a r e [JON86]. La mayor pa r t e d e la c o n t r o v e r s a
gira en t o rno al u s o d e l íneas d e cód igo c o m o med ida clave. Los par t idar ios d e la me-

dida LDC a f i r m a n q u e é s t a s son un "ar tefacto" d e t odos los p royec tos d e desar ro : . :
d e s o f t w a r e q u e p u e d e n f ác i lmen te con ta r se , q u e m u c h o s m o d e l o s d e e s t imac ión de
s o f t w a r e ex i s t en tes u s a n LDC o KLDC c o m o e n t r a d a clave, y q u e ya exis te un g ra -
c u e r p o d e bibl iografía y da to s pub l icados para LDC. Por o t ra par te , los de t r ac to re s ar-
g u m e n t a n q u e las m e d i d a s LDC d e p e n d e n del l engua j e d e p rog ramac ión , que, cua r
d o s e cons ide ra la product ividad, cas t igan los p r o g r a m a s bien d i señados , pe ro m a ;
cor tos , q u e n o p u e d e n amo lda r con facilidad l e n g u a j e s q u e n o p rov ienen del proce

s o y cuyo e m p l e o en la e s t imac ión requ ie re un nivel d e detal le q u e ser ía difícil de le-
grar (es decir, el p lani f icador d e b e e s t imar q u e las LDC se produc i rán m u c h o a n t e ;
de q u e el anál is is y el d i s e ñ o s e hayan comple tado) .

22.2.2 Métricas orientadas a la función
Las mé t r i ca s d e s o f t w a r e o r i e n t a d a s a la func ión e m p l e a n c o m o un valor d e norma-
l ización u n a medida d e la func iona l idad q u e e n t r e g a la apl icación. La métr ica or ie -
tada a la func ión ut i l izada con m a y o r ampl i tud e s el punto de Junción (PF). El cálcu-
lo del p u n t o d e func ión s e b a s a én carac te r í s t i cas del d o m i n i o d e in fo rmac ión y 3
comple j idad del s o f t w a r e . La m e c á n i c a del cá lcu lo del PF s e t ra tó e n el Capí tulo 15 1

El p u n t o d e func ión , al igual q u e la med ida LDC, e s cont rovers ia l . Los par t idar io ;
a f i rman q u e el PF e s i ndepend ien te de l l engua je de p rog ramac ión , caracter ís t ica que

lo h a c e ideal p a r a ap l i cac iones q u e uti l izan l e n g u a j e s c o n v e n c i o n a l e s y n o procedí-
men ta l e s , y q u e s e b a s a en d a t o s q u e e s m á s p robab le q u e s e c o n o z c a n t emprano
en la evoluc ión d e un proyecto , lo q u e h a c e al PF m á s a t rac t ivo c o m o e n f o q u e de es-

3 Véase ta sección 15.3.1 para una detallada exposición del cálculo de PF.

TM

PDF Editor

CAPITULO 22 M É T R I C A S DE P R O C E S O Y P R O Y E C T O 671

l imación. Los detractores af i rman q u e el m é t o d o requiere cierta "prestidigitación" en
c u a n t o a que el cálculo se basa en da tos subjet ivos m á s que objetivos, que el con teo
del dominio de información (y ot ras dimensiones) puede ser difícil de recopilar des-
p u é s del hecho, y que el PF no t iene significado físico directo.- e s sólo un número.

22.2.3 Reconciliación de las métricas LDC y PF
La relación en t re l íneas de código y puntos de función depende del lenguaje de pro-
gramación en que se implementan el so f tware y la calidad del diseño. Varios es tu-
dios han in tentado relacionar las medidas de PF y LDC. Por e jemplo Albrecth y Gaff-
ney [ALB83]:

La tesis de este trabajo es que la cantidad de función que se ofrecerá por medio de la apli-
cación (programa) se puede estimar a partir de pormenorizar los grandes componentes4

de datos que se emplearán o proporcionarán. Más aún, esta estimación de la función de-
be estar correlacionada tanto con la cantidad de LDC que se desarrollará como con el es-
fuerzo de desarrollo necesario.

La tabla5 s iguiente [QSM02] ofrece es t imaciones burdas del n ú m e r o promedio de lí-
n e a s de código que se requieren para construir un p u n t o de función en varios len-
gua je s de programación:

Una revisión de es tos d a t o s indica que una LDC de C++ proporciona aproximada-
mente 2.4 veces la "funcionalidad" (en promedio) de una LDC de C. Más aún , una
LDC d e Smalltalk proporciona al m e n o s cua t ro veces la funcionalidad de una LDC de
un lenguaje de programación convencional como Ada, COBOL o C. La utilización de la
información contenida en la tabla permite " tomar c o m o cont rafuego" [ION98] el soft-
w a r e existente para es t imar el n ú m e r o de pun tos de función, una vez que s e conoz-
ca el n ú m e r o total de enunc iados del lenguaje de programación.

Se ha encon t rado que las métr icas b a s a d a s en pun tos de función y LDC son indi-
cadoras re la t ivamente precisos del e s fue rzo y el cos to del desarrollo de sof tware . Sin
embargo , emplear LDC y PF en la est imación (capítulo 23) requiere es tablecer una lí-
nea de referencia histórica de información.

En contex to del proceso y las métr icas del proyecto, la preocupación principal la
gene ran la productividad y la calidad: med idas de la "salida" d e desarrollo de soft-
ware c o m o función del e s fue rzo y el t iempo apl icados y medidas de la "aptitud para
el uso" de los productos de t rabajo obtenidos. Respecto a propósi tos de mejora del
proceso y planeación del proyecto, el interés es histórico. ¿Cuál fue la productividad

4 Es importante notar que "pormenorizar los grandes componentes" se puede interpretar en varias
formas. Los ingenieros de software que trabajan en un entorno de desarrollo orientado a objetos
usan el número de clases u objetos como el tamaño de métrica dominante. Una organización de man
tenimiento puede considerar el tamaño del proyecto en términos del número de pedidos de cambios
de ingeniería (capítulo 27). Una organización de s a e m a s de información quizá vea el número de
procesos comerciales que afecta una aplicación-

5 Utilizado con permiso de Quantitative Sotlv. are Mar,ag-smen: www.qsm.com), copyright 2002

TM

PDF Editor

http://www.qsm.com

672 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

d e d e s a r r o l l o del s o f t w a r e e n lo s p r o y e c t o s p a s a d o s ? ¿Cuál f u e la c a l i d a d de l s o f t w a r e

q u e s e p r o d u j o ? ¿ C ó m o s e p u e d e n e x t r a p o l a r al p r e s e n t e la p r o d u c t i v i d a d y la cali-

d a d p a s a d a s ? ¿ C ó m o p u e d e a y u d a r a m e j o r a r el p r o c e s o y p l an i f i ca r n u e v o s p r o y e c t o s

c o n m a y o r p r e c i s i ó n ?

Lenguaje de
programación LDC por punto de función

Promedio M e d i a n a Bajo Alto

Access 3 5 38 15 4 7
Ada 154 — 104 205
APS 8 6 8 3 2 0 184
ASP 6 9 6 2 — 32 127
Ensamblador 3 3 7 315 91 6 9 4
C 162 109 3 3 7 0 4
C + + 6 6 5 3 2 9 178
Clipper 38 39 2 7 7 0
COBOL 7 7 7 7 14 4 0 0
Cool:Gen/IEF 38 31 10 180
Culpril 51 — — —

DBase IV 52 — — —

Easytrievel 3 3 34 2 5 41
Excel47 4 6 — 31 6 3
Focus 4 3 42 32 5 6
FORTRAN — — —

FoxPro 32 35 2 5 35
Ideal 6 6 52 34 2 0 3
IEF/Cool:Gen 38 31 10 180
Informix 42 31 24 5 7
Java 6 3 5 3 7 7 — 1

JavaScript 58 6 3 4 2 7 5
JCl 91 123 2 6 150
JSP 5 9 — — —

Lotus Notes 21 22 15 25
AAanlis 71 2 7 22 2 5 0
Mapper 118 81 16 245
Natural 6 0 5 2 22 141
Oracle 3 0 35 4 217
PeopleSofl 3 3 32 3 0 4 0
Perl 6 0 — — —

PL/I 78 6 7 22 263
Powerbuilder 32 31 11 105
REXX 6 7 — — —

RPG ll/lll 61 4 9 24 155
SAS 4 0 41 3 3 4 9
Smalltalk 2 6 19 10 5 5
SQL 4 0 37 7 110
VBScript3ó 34 2 7 5 0 —

Visual Basic 4 7 42 16 158

TM

PDF Editor

CAPÍTULO 22 MÉTRICAS DE PROCESO Y PROYECTO 673

•
i te

¡ escenario
tía

1u
líos. En

, tengo
> utilice

t guión.

*
¡pueden

r m o ñ o y
I Por lo

i b pena
rio dosificó-

l a s conteos de
r moño y

22.2.4 Métricas orientadas a objetos
Las métricas de proyectos de software convencionales (LDC o PF) se aplican en la
estimación de proyectos de sof tware or ientados a objetos. Sin embargo, es tas métri-
cas no proporcionan suficiente granularidad para la planificación y los a justes de es-
fuerzo que se requieren conforme se itera a lo largo de un proceso evolutivo o incre-
mental . Lorenz y Kidd [LOR94] sugieren el siguiente conjunto de métr icas para pro-
yectos OO:

N ú m e r o d e g u i o n e s de e s c e n a r i o . Un guión de escenario (análogo a los casos
de uso estudiados a t ravés de las partes 2 y 3 de este libro) es una secuencia deta-
llada de pasos que describen la interacción entre el usuario y la aplicación. El núme-
ro de guiones de escenario está directamente correlacionado con el t amaño de la
aplicación y con el número de casos de prueba que se deben desarrollar para ejerci-
tar el sistema una vez que se construya.

N ú m e r o d e c l a s e s c lave. Las clases clave son los "componentes enormemente in-
dependientes" [LOR94] definidos con antelación en el análisis orientado a objetos
(capítulo 8).6 Puesto que las clases clave son centrales respecto del dominio del pro-
blema, su número indica la cantidad de esfuerzo necesario para desarrollar el soft-
ware. También indican la potencial cantidad de reutilización que se aplicará duran-
te el desarrollo del sistema.

Número d e c l a s e s d e a p o y o . Las clases de apoyo son necesarias en la implemen-
tación del sistema, pero no están inmediatamente relacionadas con el dominio del
problema. Los ejemplos pueden ser las clases 1U, los accesos a bases de datos y las
clases de manipulación y las de cálculo. Además, las clases de apoyo se pueden de-
sarrollar para cada una de las clases clave. El número de clases de apoyo es un in-
dicio de la cantidad de esfuerzo indispensable para desarrollar el software, así como
un indicio de la potencial cantidad de reutilización que se aplicará durante el desa-
rrollo del sistema.

N ú m e r o p r o m e d i o d e c l a s e s de a p o y o por c l a s e c lave . En general, las clases
clave se conocen en e tapas iniciales del proyecto. Las clases de apoyo se definen a
lo largo del curso de éste. Si se conociese el número promedio de clases de apoyo
por clase clave respecto de un dominio de problema dado, la est imación (con base
en el número total de clases) se simplificaría mucho. Lorenz y Kidd sugieren que las
aplicaciones con una GUI tienen entre dos y tres veces el número de clases de apo-
yo que las clases clave. Las aplicaciones sin GUI tienen entre una y dos veces el nú-
mero de clases de apoyo que las clases clave.

Número d e s u b s i s t e m a s . Un subsistema e s un agregado de clases que apoyan
una función visible para el usuario final de un sistema. Una vez identificados los sub-

6 En la parte 2 de este libro a las clases clave se les refino como clases de análisis.

TM

PDF Editor

6 7 4 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

s i s temas e s m á s fácil extender una planificación razonable en la cual s e haya he
la partición del t rabajo entre el equipo del proyecto.

La utilización eficiente en un entorno de ingeniería de sof tware or ientada a o
tos requiere recopilar métr icas similares a las ano t adas l íneas arriba, junto con
didas del proyecto tales c o m o es fue rzo gastado, errores y defectos descubier tos
modelos o páginas de documentac ión producidos. Conforme la b a s e de da tos cr
(después de comple tados varios proyectos), las relaciones entre medidas orienta
a obje tos y medidas de proyecto proporcionarán métr icas que auxilien en la es t i -

ción del proyecto.

22.2.5 Métricas orientadas a casos de uso
Parecería razonable aplicar el caso de uso7 c o m o una medida de normalización
milar a la LDC o PF. Como el PF, el caso de uso se def ine en e tapas t empranas
proceso de software, lo que permite emplearlo en la estimación antes de iniciar las
tividades significativas de modelado y construcción. Los casos de uso describen
m e n o s indirectamente) funciones y características visibles al usuario que son req"
tos básicos para un sistema. El caso de uso es independiente del lenguaje de pi
mación. Además, el número de casos de uso es directamente proporcional al tam
de la aplicación en LDC, así c o m o al número de casos de prueba que tendrán que
señarse para ejercitar comple tamente la aplicación.

Puesto que los casos de uso pueden crearse con g rados de abstracción amp'
mente diferentes, n o existe t a m a ñ o es tándar para ellos. Sin una medida estándar,
aplicación como medida de normalización (por ejemplo, e s fue rzo empleado por
so de uso) es sospechosa . Aunque varios invest igadores (por ejemplo, [SMI99])
intentado obtener métr icas de caso de uso, todavía queda m u c h o t rabajo por ha

22.2.6 Métricas de proyectos de ingeniería Web
El objetivo de todos los proyectos de ingeniería Web (parte 3 de este libro) es c
truir una aplicación Web (WebApp) que propocione una combinación de conté
y funcionalidad al usuar io final. Las medidas y métr icas que se emplean en los
yectos de ingeniería de sof tware tradicionales son difíciles de traducir directame
a la WebApp. Incluso, una organización de ingeniería Web debe desarrollar una '
se de da tos que le permita valorar su productividad y calidad internas a lo largo
varios proyectos. Entre las med idas que se pueden recopilar es tán:

N ú m e r o d e p á g i n a s Web e s t á t i c a s . Las pág inas Web de contenido estático
decir, el usuar io final no controla el contenido desplegado en la página) son las
c o m u n e s de todas las característ icas WebApp. Estas páginas representan una c
plejidad relativa baja y por lo general requieren m e n o s es fue rzo al construir las

7 Los casos de uso se estudian a través de las partes 2 y 3 de este libro.

TM

PDF Editor

CAPÍTULO 22 M É T R I C A S DE P R O C E S O Y P R O Y E C T O 6 7 5

las páginas dinámicas. Esta medida proporciona un indicio del t amaño global de la
aplicación y el esfuerzo que se requiere para desarrollarla.

N ú m e r o d e pág inas Web d inámicas . Las páginas Web de contenido dinámico
(es decir, las acciones del usuario final generan contenido personalizado que se des-
pliega en la página) son esenciales en todas las aplicaciones de comercio electróni-
co, motores de búsqueda, aplicaciones financieras y muchas otras categorías de Web-
App. Estas páginas representan una mayor complejidad relativa y requieren m á s es-
fuerzo al construirlas que las páginas estáticas. Esta medida proporciona un indicio
del t amaño global de la aplicación y el esfuerzo requerido para desarrollarla.

Número de v í n c u l o s in ternos d e página. Los vínculos internos de página son
punteros que ofrecen un hipervínculo hacia alguna otra página Web dentro de la Web-
App. Esta medida proporciona un indicio del grado de acoplamiento arquitectónico
dentro de la WebApp. Conforme aumenta el número de vínculos de la página, tam-
bién lo hace el esfuerzo empleado en el diseño y construcción de la navegación.

Número d e o b j e t o s d e d a t o s pers i s t entes . Una WebApp puede tener acceso
a uno o m á s objetos de datos persistentes (por ejemplo, una base de datos o archi-
vo de datos). Conforme el número de objetos de datos persistentes crece, también lo
hace la complejidad de la WebApp y el es fuerzo para implementarla aumenta pro-

porcionalmente.

Número d e s i s t e m a s e x t e r n o s e n interfaz. Con frecuencia las WebApps de-
ben hacer interfaz con aplicaciones comerciales "de cuarto trasero". Conforme cre-
ce el requisito para hacer interfaz, la complejidad del sistema y el esfuerzo de desa-

rrollo también aumentan .

Número d e o b j e t o s d e c o n t e n i d o e s tá t i co . Los objetos de contenido estático
abarcan información estática basada en texto, gráfica, video, animación y audio que
se incorporan dentro de la WebApp. En una página Web sencilla pueden aparecer
múltiples objetos de contenido estático.

N ú m e r o d e o b j e t o s d e c o n t e n i d o d inámico . Los objetos de contenido diná-
mico se generan con base en las acciones del usuario final y abarcan información
generada internamente basada en texto, gráfica, video, animación y audio que se in-
corporan dentro de la WebApp. En una página Web sencilla pueden aparecer múlti-
ples objetos de contenido dinámico.

Número d e f u n c i o n e s e jecutab les . Una función ejecutable (por ejemplo, un
guión o applet) ofrece cierto servicio computacional al usuario final. Conforme au-
menta el número de funciones ejecutables, también aumentan los esfuerzos de mo-
delado y construcción.

Cada una de es tas medidas s e puede determinar en una etapa relativamente tempra-
na del proceso de ingeniería Web.

Por ejemplo, es posible definir una métrica que refleje el grado de personalización
de usuario final que se requiere para la WebApp y correlacionarla con el esfuerzo

TM

PDF Editor

6 7 6 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

e m p l e a d o e n el p r o y e c t o d e I W e b o l o s e r r o r e s d e s c u b i e r t o s c o n f o r m e s e l l e v a n a ca -

b o r e v i s i o n e s y p r u e b a s . P a r a l o g r a r e s t o , s e d e f i n e

Nsp = n ú m e r o d e p á g i n a s W e b e s t á t i c a s

Ndp = n ú m e r o d e p á g i n a s W e b d i n á m i c a s

E n t o n c e s ,

í n d i c e d e p e r s o n a l i z a c i ó n , C = Ndp/(Ndp + Nsp)

El v a l o r d e C v a r i a d e 0 a 1. C o n f o r m e C c r e c e , e l n i v e l d e p e r s o n a l i z a c i ó n d e la W e b -

A p p s e v u e l v e u n c o n f l i c t o t é c n i c o s i g n i f i c a t i v o .

E s p o s i b l e c a l c u l a r y c o r r e l a c i o n a r m é t r i c a s s i m i l a r e s d e a p l i c a c i o n e s W e b c o r

m e d i d a s d e l p r o y e c t o , t a l e s c o m o e l e s f u e r z o e m p l e a d o , l o s e r r o r e s y d e f e c t o s d e s -

c u b i e r t o s y l o s m o d e l o s o p á g i n a s d e d o c u m e n t a c i ó n p r o d u c i d o s . C o n f o r m e la b a s e

d e d a t o s c r e c e (d e s p u é s d e q u e v a r i o s p r o y e c t o s s e h a n c o m p l e t a d o) , l a s r e l a c i o n e s

e n t r e l a s m e d i d a s W e b A p p y l a s m e d i d a s d e l p r o y e c t o p r o p o r c i o n a r á n i n d i c a d o r e s

q u e a u x i l i e n e n la e s t i m a c i ó n d e l p r o y e c t o .

H E R R A M I E N T A S D E S O F T W A R E

Métricas del proyecto y el proceso

O b j e t i v o : Ayudar en la definición, recopila-
ción, evaluación y reporte de medidas y métri-

cas de software.

M e c á n i c a : Cada herramienta varía en cuanto a su apli-
cación, pero todas ofrecen mecanismos para recopilar y
evaluar datos que conduzcan al cálculo de métricas de
software.

H e r r a m i e n t a s r e p r e s e n t a t i v a s 8

Funclion Point WORKBENCH, desarrollada por Charisma-
tek (www.charismatek.com.au), ofrece una amplia va-
riedad de métricas orientadas a PF.

MetricCenter, desarrollada por Distributive Software
(www.distributive.com), soporta recopilación automati-
z a d a de datos, análisis, formateo de gráficos, genera-
ción de reportes y otras tareas de medición.

PSM Insight, desarrollada por Practical Software and Sys-
tems Measurement (www.psmsc.com), auxilia en la
creación y subsiguiente análisis de una base de datos
de medición del proyecto.

SUM lool sel, desarrollado por QSM (www.qsm.com), pro-
porciona un completo conjunto de métricas y herra-
mientas de estimación.

SPR lool sel, desarrollado por Software Productivity Re-
search (www.spr.com), ofrece una colección detallada
de herramientas orientadas a PF.

TychoMelrics, desarrollado por Predícate Logic, Inc. (www
predicate.com), es una suite de herramientas para ges-
tionar recopilación de métricas y reportes.

L a m e t a p r i m o r d i a l d e la i n g e n i e r í a d e l s o f t w a r e e s p r o d u c i r u n s i s t e m a , a p l i c a d o - !

o p r o d u c t o d e a l t a c a l i d a d d e n t r o d e u n m a r c o t e m p o r a l q u e s a t i s f a g a u n a n e c e s i d a ;

8 Las herramientas ano tadas aquí son una muestra de esta categoría. En la mayoría de los casos tas]
nombres de las mismas son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.charismatek.com.au
http://www.distributive.com
http://www.psmsc.com
http://www.qsm.com
http://www.spr.com

CAPÍTULO 22 M É T R I C A S DE P R O C E S O Y P R O Y E C T O 6 7 7

i oielenle Instile ..
nocen»

c cridad dé. ¡ § g |
¡ y tópicos

5 (incluso
) se encuentro

• www.
prftyworld.com.

del mercado. El logro de esta meta requiere que los ingenieros de sof tware apliquen
métodos eficaces acoplados con herramientas modernas dentro del contexto de un
proceso de sof tware maduro. Además, un buen ingeniero de sof tware (y los buenos
gestores de ingeniería del software) debe medir si se logrará la alta calidad.

Las métricas privadas reunidas por los ingenieros de sof tware individuales se asi-
milan con los resultados ofrecidos en el ámbito del proyecto. Aunque se pueden reu-
nir muchas medidas de calidad, el impulso primario en el ámbito del proyecto es me-
dir los errores y defectos. Las métricas derivadas de es tas medidas proporcionan un
indicio de la efectividad de la garantía de la calidad del sof tware y de las actividades
de control tanto de los individuos como del grupo.

Las métricas como los errores en el producto de trabajo (por ejemplo, requisitos
o diseño) por punto de función, errores descubiertos por hora de revisión, y los erro-
res descubiertos por hora de prueba ofrecen una visión de la eficacia de cada una de
las actividades implicadas en la métrica. Los datos de error también se pueden em-
plear en el cálculo de la eficacia en la eliminación de defectos (EED) para cada activi-
dad del marco de t rabajo del proceso. La EED se estudia en la sección 22.3.2.

22.3.1 Medición de la calidad
Aunque existen muchas medidas de la calidad del software,9 la corrección, la facili-
dad de mantenimiento, la integridad y la facilidad de uso ofrecen indicadores útiles
para el equipo del proyecto. Gilb (GIL88] sugiere definiciones y mediciones para ca-
da una de ellas.

Corrección. Un programa debe operar correctamente o proporcionará poco va-
lor para sus usuarios. La corrección es el grado en que el sof tware desempeña la fun-
ción para la que fue creado. La medida m á s común para la corrección es defectos
por KLDC, donde un defecto se define como una falta comprobada de concordancia
con los requisitos. Cuando se considera la calidad global de un producto de sof twa-
re, los defectos son los problemas que reporta un usuario del programa después de
que éste se liberó para el uso general. Para los propósitos de la evaluación de la ca-
lidad, los defectos se cuentan sobre un periodo estándar, usualmente un año.

Facilidad d e manten imiento . El mantenimiento del sof tware justifica m á s es-
fuerzos que cualquier otra actividad de la ingeniería del software. La facilidad de
mantenimiento es la sencillez con la que un programa puede corregirse si se en-
cuentra un error, adaptarse si su entorno cambia, o mejorar si el cliente desea un
cambio en los requisitos. No existe forma de medir directamente la facilidad de man-
tenimiento; en consecuencia, se deben emplear medidas indirectas. Una simple me-
dida orientada al t iempo es el tiempo medio de cambio (TMC), el t iempo que toma
analizar el cambio solicitado, diseñar u n a modificación apropiada, implementar el

9 En el capitulo 15 se presentó una discusión detallada de los factores que influyen en la calidad del
sof tware y las métr icas que se pueden usar para valorar la calidad del software.

TM

PDF Editor

678 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

cambio, probarlo y distribuir el cambio a todos los usuarios. En promedio, los pro-
gramas susceptibles de mantenimiento tendrán un TMC bajo (para tipos de cambios
equivalentes) que los programas que no lo son.

Integridad. La integridad del sof tware se ha vuelto cada vez m á s importante en
la edad de los ciberterroristas y hackers. Este atributo mide la habilidad de un siste-
ma para resistir a taques (tanto accidentales como intencionales) a su seguridad. Los
a taques se pueden realizar en los tres componentes del software: programas, datos
y documentos.

La medición de la integridad requiere definir dos atributos adicionales: amenaza
y seguridad. Amenaza es la probabilidad (que puede est imarse o deducirse de eviden-
cia empírica) de que un a taque de un tipo específico ocurrirá dentro de un tiempo
dado. Seguridad es la probabilidad (que puede est imarse o deducirse de evidencia
empírica) de que se repela el a taque de un tipo específico. Entonces, la integridad de
un sistema se puede definir como:

integridad = 1 - (amenaza x (1 — seguridad))

Por ejemplo, si la amenaza (la probabilidad de que un a taque ocurrirá) es 0.25 \
la seguridad (la posibilidad de repeler un ataque) es 0.95, la integridad del sistema es
0.99 (muy elevada). Si, por otra parte, la probabilidad de amenaza e s 0.50 y la posi-
bilidad de repeler un a taque es sólo 0.25, la integridad del sistema es 0.63 (inacepta-
blemente baja).

Facilidad de u s o . Con frecuencia, un programa que no es fácil de usar está con-
denado al fracaso, incluso si las funciones que realiza son valiosas. La facilidad de
uso e s un intento por cuantificar la sencillez de la aplicación al utilizarla y se puedr
medir en términos de las características presentadas en el capítulo 12.

Los cuatro factores apenas descritos sólo representan una muestra de los que se
han propuesto como medidas para la calidad del software. El capítulo 15 considera
este tópico con mayor detalle.

22.3.2 Eficacia en la eliminación de defectos
Una métrica de calidad que ofrece beneficios tanto en el ámbito del proyecto como
en el del proceso es la eficacia en la eliminación de defectos (EED). En esencia, la EEI
es una medida de la habilidad de filtrar las actividades de la garantía de cualidad y
de control conforme se aplica a través de todas las actividades del marco de traba;:»
del proceso.

Cuando se considera un proyecto como un todo, la EED se define de la manera
siguiente:

EED = £ / (£ + D)

donde £ es el número de errores encontrados antes de entregar el sof tware al usua-
rio final, y D es el número de defectos encontrados después de la entrega.

TM

PDF Editor

CAPÍTULO 2 2 MÉTRICAS DE PROCESO y PROYECTO 6 7 9

s baja
t avanza en
• el diseño,

imós
mejorarlo

'.se
los revi-

El va lo r ideal d e la EED e s 1. Es to es : n o s e e n c u e n t r a de fec to a l g u n o e n el s o f t w a -
re. En real idad, D se rá m a y o r q u e 0, pe ro el valor de EED todavía p u e d e ace rca r se a
1. C o n f o r m e E a u m e n t a (para un valor d a d o d e D), el valor global de EED c o m i e n z a

a ace rca r se a I. De hecho, c o n f o r m e E a u m e n t a , e s p robab le q u e el valor final d e D
disminuya (los e r ro res s e filtran a n t e s de q u e s e convier tan en defectos) . Si se utili-

za c o m o una métr ica q u e p roporc iona un indicador de la habi l idad d e filtrado d e las
ac t iv idades d e control y a s e g u r a m i e n t o d e la cal idad, EED al ienta a u n e q u i p o d e
p royec to de s o f t w a r e a instituir t é cn icas p a r a e n c o n t r a r t an to s e r ro res c o m o sea po-
sible a n t e s de la en t rega .

La EED t a m b i é n s e p u e d e aplicar en el p royec to para valorar la habi l idad de un
e q u i p o de e n c o n t r a r e r ro res a n t e s d e q u e p a s e n a la s iguiente act ividad del m a r c o d e

t rabajo o a la siguiente tarea en la ingeniería del sof tware . Por ejemplo, la t a rea de aná -
lisis d e requis i tos p roduce un m o d e l o de anál is is que s e revisa para e n c o n t r a r y co-
rregir e r rores . Aquel los e r ro res q u e n o s e e n c u e n t r a n d u r a n t e la revisión del m o d e -
lo d e anál is is p a s a n al d i s e ñ o (donde p u e d e n o n o encon t ra r se) . C u a n d o se aplica e n
e s t e con tex to la EED se redef ine c o m o

EED,- = £ / (£ , + £ / + l)

d o n d e E¡ e s el n ú m e r o d e e r ro res e n c o n t r a d o d u r a n t e la act ividad i d e ingenier ía d e

s o f t w a r e y E ¡ , , e s el n ú m e r o d e e r ro res e n c o n t r a d o d u r a n t e la act ividad / + 1 d e in-
genier ía del s o f t w a r e q u e s e p u e d e seguir p a r a l legar a e r ro res que n o fue ron d e s c u -
b ier tos en la act ividad i d e ingenier ía del so f tware .

Un obje t ivo d e cal idad p a r a u n equ ipo d e s o f t w a r e (o un ingeniero d e s o f t w a r e in-
dividual) e s lograr una EED, q u e s e a c e r q u e a 1. Esto es: los e r ro res d e b e n filtrarse
a n t e s de q u e p a s e n a la s iguiente act ividad.

HOGARSEGURO

Establecimiento de un enfoque de métricas

El e s c e n a r i o : Of ic ina d e Doug

dos d ías d e s p u é s d e la reunión inicial a c e r c a de

-as d e sof tware. ;

e s : D o u g Miller ¡gerente del e q u i p o d e inge-

sof tware d e HogarSeguro) y Vinod Raman y

tozar , miembros del e q u i p o d e ingeniería d e soft-
del producto.

ersación:

¿Ustedes dos tienen opor tun idad de a p r e n d e r un

ace r ca d e métricos del p roceso y el proyecto?

1 y J a m i e : [Ambos asienten con la c a b e z a .]

• Siempre es u n a b u e n a idea establecer metas cuan

a d o p t a n a l g u n a métricas. ¿Cuáles son las suyas?

V i n o d : Nuest ras métricas se d e b e n en foca r en la cali-

d a d . De hecho, nuestra meta global es m a n t e n e r en un

mínimo absolu to el número d e errores q u e pasamos, d e

una act ividad d e ingenier ía del so f tware a la siguiente.

D o u g : Y a segú rense muy bien d e q u e el número d e de-

fectos l iberados con el p roduc to se m a n t e n g a tan ce r ca

d e ce ro c o m o sea posible.

V i n o d (a s i e n t e c o n l a c a b e z a) : Desde luego.

J a m i e : Me gusta la EED c o m o métrica,, y erijo q u e p o -

demos emplea r l a en todo el proyecto. A d e m á s , p o d e m o s

aplicoHa conforme nos m o v a m o s d e u n e act ividad del

m o r c o d e t r a b a d a le siguiente. Eso nos a l en ta ré p a r o

encortror errores en c o d o paso.

TM

PDF Editor

PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Vinod: También me gustaría reunir el número de horas
que pasamos en las revisiones

Jamie: Y el esfuerzo global que pasamos en cada tarea
de ingeniería del software.

Doug: Tú puedes calcular una razón de revisión a desa-
rrollo... podría ser interesante.

Jamie: Me gustaría seguir también algunos datos de ca-
so de-uso, Como la cantidad de esfuerzo requerido para
desarrollar un caso de uso, la cantidad de esfuerzo re-
querido para construir software para implementar un ca-
so de uso y...

D o u g (sonríe): Creo que tendremos que conservar edé
simple.

Vinod: Deberíamos, pero una vez que te metes en e
asunto de las métricas, existen muchas cosas interese •= t
que observar.

Doug: Estoy de acuerdo, pero caminemos antes de cc
rrer, y apeguémonos a nuestra meta. Limiten los datos
que recopilen a cinco o seis elementos, y estamos listo;
para despegar. ^

2 2 . 4 I N T E G R A C I Ó N DE LAS M É T R I C A S DENTRO DEL P R O C E S O DE SOFTV.AI

La mayor ía d e los desa r ro l l adores de s o f t w a r e todavía n o m i d e n y, po r d e s g r a r J
m u c h o s t ienen p o c o d e s e o de c o m e n z a r . C o m o se h a s e ñ a l a d o e n e s t e cap í tu l : M
prob lema e s cultural. El in tento d e recopilar med idas d o n d e nadie lo ha h e c h o en e: J
s a d o con f recuenc ia g e n e r a res is tencia . "¿Por q u é t e n e m o s q u e hace r es to?" p r e r _ r J
ta un ges to r d e p royec to a c o s a d o . "No le veo el caso", s e que ja un profes ional :xm
e x c e s o d e t r aba jo .

En e s t a secc ión s e cons ide ran a l g u n o s a r g u m e n t o s para las mét r i cas d e softv, 2 J
y s e p r e s e n t a un e n f o q u e p a r a insti tuir un p r o g r a m a de recopi lac ión de métr icas
u n a o rgan izac ión de ingenier ía del s o f t w a r e . Pero a n t e s de c o m e n z a r , conviene»
s iderar [GRA87] a l g u n a s p a l a b r a s d e cordura d e Grady y Caswell :

Algunas de las cosas que describimos aquí sonarán bastante sencillas. En realidad, sir
embargo, el establecimiento de un programa de métricas de software exitoso en el á m t
to de la compañía es un trabajo duro. Cuando decimos que se debe esperar al menos tres
años antes de que estén disponibles tendencias organizacionales amplias, se obtiene a
guna idea del ámbito de tal esfuerzo.

Vale la p e n a p re s t a r a t e n c i ó n a la adve r t enc ia q u e sug ie ren e s to s au tores , p e r o J : »
benef ic ios d e la medic ión son t an c o n v i n c e n t e s q u e el t r aba jo du ro vale la p e n a

22.4.1 Argumentos para las métricas del software
¿Por qué e s impor t an te med i r el p r o c e s o d e ingenier ía del s o f t w a r e y el producá»
(sof tware) que e labora? La r e s p u e s t a e s r e l a t ivamen te obvia. Si n o s e mide, n o e x s *
te una fo rma real d e de t e rmina r si s e es tá m e j o r a n d o . Y si n o se me jo ra , s e está pe- '
dido.

Al cues t iona r y eva lua r la product iv idad y las m e d i d a s d e cal idad, un equ ipo
s o f t w a r e (y su gestión) p u e d e es tab lecer m e t a s s ignif icat ivas para m e j o r a r el proce-J
s o del so f tware . En el capí tu lo 1 s e a p u n t ó q u e el s o f t w a r e e s un t e m a comerc ia l e s J

TM

PDF Editor

CAPÍTULO 22 M É T R I C A S D E P R O C E S O Y P S O Y E C T O 681

t r a t ég ico p a r a m u c h a s c o m p a ñ í a s . Si el p r o c e s o con el cual se desar ro l la p u e d e me-
jorarse , s e produci rá un i m p a c t o d i rec to en lo sus tanc ia l . Pero para es tab lecer obje-
t ivos de me jo ra e s prec iso c o m p r e n d e r el e s t a d o ac tua l del desar ro l lo d e s o f t w a r e
Por lo tan to , la medic ión s e e m p l e a p a r a es tab lecer una l ínea b a s e d e p r o c e s o a par-
tir de la cual se e v a l ú a n las me jo ra s .

"Ges t ionamos las cosas m e d i a n t e los n ú m e r o s en muchos aspectos de nues t ras v i d a s . . . Estos n ú m e r o s nos br indan
pa r idad d e juicio y nos a y u d a n a dirigir nues t ras acciones ."

Mfchael M a h y Larry

Los r igores co t id ianos del t r aba jo del p royec to d e s o f t w a r e d e j a n p o c o t i e m p o pa-
ra ejerci tar el p e n s a m i e n t o es t ra tég ico . Los g e s t o r e s d e p royec tos d e s o f t w a r e e s t á n

p r e o c u p a d o s con t e m a s m á s c o n c r e t o s (aunque igua lmen te impor tan tes) : desa r ro -
llar e s t imac iones d e p royec to significativas, producir s i s t e m a s d e al ta calidad, t ener
el p r o d u c t o en circulación a t iempo. Si s e e m p l e a la med ic ión p a r a e s t ab lece r una li-
n e a base del proyecto , c a d a u n o d e d ichos t e m a s s e vuelve m á s m a n e j a b l e . Ya s e ha
m e n c i o n a d o q u e la l ínea b a s e sirve c o m o f u n d a m e n t o para la es t imación . Adicionai-
m e n t e , la recopi lac ión de mé t r i ca s d e cal idad pe rmi t e q u e una o rgan izac ión "s in : :
n ice" su p r o c e s o d e s o f t w a r e p a r a r e m o v e r las c a u s a s "poco vitales" d e los d e f e c t o ;
q u e t ienen el m a y o r impac to sobre el desarro l lo del so f tware . 1 0

22.4.2 Establecimiento de una línea base
I ¿ Q u é e s una Con el e s t ab lec imien to d e una l ínea b a s e de mé t r i ca s s e ob t i enen benef ic ios en los

11*1® á m b i t o s del p roceso , del p royec to y del p roduc to (técnico). Incluso la in fo rmac ión

« l e " 6 q u e S e r e c o P " ' a n o ^ c e s i t a ser f u n d a m e n t a l m e n t e diferente . Las m i s m a s métr icas
irciona a un p u e d e n servir a m u c h o s m a e s t ro s . La l ínea b a s e de mé t r i ca s cons i s t e d e da to s reco-

i d e p i lados en p royec tos prev ios d e desarro l lo d e s o f t w a r e y p u e d e n se r tan s imples co-
Ire- m o la tabla p r e s e n t a d a e n la figura 22.2 o tan c o m p l e j o s c o m o u n a b a s e d e d a t o s de -

tal lada q u e c o n t i e n e d o c e n a s d e m e d i d a s de proyec tos y las m é t r i c a s de r ivadas de
és tos .

Para se r un auxiliar ef icaz en el p r o c e s o de me jo ra o de cos to y es fuerzo , los da to s
d e la l ínea b a s e d e b e n t e n e r los s igu ien tes a t r ibutos : 1) los d a t o s d e b e n se r r azona -
b l e m e n t e precisos: s e d e b e n evi tar las "con je tu ras" ace rca d e los p royec tos p a s a d o s
2) los da to s d e b e n recopi la rse p a r a t a n t o s proyec tos c o m o sea posible; 3) las medi -
d a s deben se r cons i s t en tes , po r e jemplo: una l ínea de código d e b e in te rpre ta r se con -

s i s t e n t e m e n t e a t r avés d e t odos los p royec tos p a r a los q u e s e recopi lan los da tos ; 4)
las ap l i cac iones d e b e n se r s imi la res al t r aba jo que se es t imará : t iene p o c o sen t ido
e m p l e a r u n a l ínea b a s e en un t r aba jo d e s i s t e m a s de in fo rmac ión en b loque p a r a es-
t imar u n a apl icación a n i d a d a en t i e m p o real .

10 En el capitulo 26 se tratan con detalle estas :deas. formalizadas en un enfoque denominado garan-
tía estadística de calidad del software.

TM

PDF Editor

682 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Proceso de
recopilación
de métricas
de software.

d e métricas I Indicadores

\ CLAVE
Los datos de métricos
de lineo base deben
recopilarse de uno gran
muestra representativa
de proyectos de
software previos.

22.4.3 Recopilación, cálculo y evaluación de métricas
En la figura 22 .3 s e i lustra el p r o c e s o con el q u e s e e s t ab l ece u n a l ínea b a s e d e mé-
tricas. De m a n e r a ideal, los d a t o s n e c e s a r i o s p a r a h a c e r l o s e h a n recopi lado confor-

m e s e a v a n z a . Por desgrac ia , e s t o rara v e z e s el c a so . En c o n s e c u e n c i a , la recopila-
ción d e d a t o s requiere u n a invest igación his tór ica d e los p royec tos prev ios p a r a re-
const ru i r los da to s requer idos . Una v e z q u e s e h a n recop i lado las m e d i d a s (incues-
t i o n a b l e m e n t e el p a s o m á s difícil) e s posible calcular las mét r icas . D e p e n d i e n d o de
la ampl i tud d e las m e d i d a s recopi ladas , las mé t r i ca s p u e d e n a b a r c a r u n a ampl ia ga
m a d e mé t r i ca s o r i e n t a d a s a la ap l icac ión (por e jemplo , LDC, PF, o r i e n t a d a a objetos ,

WebApp), así c o m o o t r a s o r i e n t a d a s a la ca l idad y al proyecto . Finalmente , las mé-
tr icas d e b e n eva lua r se y ap l icarse d u r a n t e la e s t imac ión del t r aba jo técnico, el con-
trol del p royec to y la me jo ra del p roceso . La eva luac ión d e las mé t r i ca s s e cent ra er
las r a z o n e s s u b y a c e n t e s d e los r e su l t ados ob t en idos y p r o d u c e u n c o n j u n t o d e indi-

c a d o r e s q u e guían el p royec to o p roceso .

^ O N S f J O ^

Sise estó comen-
zando o recopilar
datos de métricas,
recuérdese mante-
nerlos simples. Silos
dalos abruman los
esfuerzos de métricos
k a / s o t o .

La gran mayor ía d e las o r g a n i z a c i o n e s d e desar ro l lo d e s o f t w a r e t iene m e n o s d e 2C
e m p l e a d o s . Es i rracional , y en la mayor ía d e los c a s o s irreal, e s p e r a r q u e ta les orga-
n i z a c i o n e s desa r ro l l a rán p r o g r a m a s de ta l l ados d e mé t r i ca s d e so f tware . Sin embar-
go, e s r a z o n a b l e suger i r q u e las o r g a n i z a c i o n e s d e s o f t w a r e de t o d o s los t amaños
miden y luego e m p l e a n las mét r i cas r e su l t an te s p a r a ayuda r a m e j o r a r s u s procesos

d e s o f t w a r e loca les y la cal idad y la pun tua l idad d e los p roduc to s q u e e l abo ran .
Un e n f o q u e de sen t ido c o m ú n r e spec to d e la imp lemen tac ión d e cua lqu ie r activi-

dad re lacionada con el p roceso d e so f tware e s man tene r lo simple, personal izar lo para
sa t i s facer las n e c e s i d a d e s loca les y a s e g u r a r s e d e q u e ag rega valor. En los párrafos

TM

PDF Editor

CAPÍTULO 22 MÉTRICAS DE P R O C E S O Y P R O Y E C T O 683

¿Cómo se
te un

de
de s o f t -

* s i m p l e " ?

q u e s iguen se e x a m i n a c ó m o e s t o s l i ncamien tos s e re lac ionan con las mé t r i ca s pa -

ra p e q u e ñ o s n e g o c i o s . "
"Mantener lo s imple" e s u n a directriz q u e func iona r a z o n a b l e m e n t e bien en mu-

c h a s act iv idades . Pero, ¿ c ó m o se d e d u c e un c o n j u n t o "simple" d e mét r i cas de sof t -
w a r e q u e aun así p roporc ione valor, y c ó m o se ga ran t i za que d i c h a s mét r i cas s im-
ples sa t i s fa rán las n e c e s i d a d e s d e u n a o rgan izac ión de s o f t w a r e par t icular? Un buer .
c o m i e n z o cons i s te e n e n f o c a r s e n o sob re las m e d i c i o n e s s ino m á s bien sobre los re-
su l tados . Al g rupo de s o f t w a r e s e le en t rev is ta p a r a definir un obje t ivo senci l lo q u e
requiere mejora . Por e jemplo , "reducir el t i empo p a r a eva luar e i m p l e m e n t a r los
c a m b i o s solici tados". Una o rgan izac ión p e q u e ñ a p u e d e se lecc ionar el s iguiente c o r -

jun to d e m e d i d a s que s e recopi lan con facilidad:

• T i empo (horas o días) t ranscur r ido d e s d e el m o m e n t o en que s e h i zo u n a soli-

citud h a s t a que la eva luac ión es tá comple ta , tcola.

• Es fuerzo (persona-horas) p a r a rea l izar la eva luac ión , Tmal.

• T i empo (horas o días) t ranscur r ido de sde q u e s e c o m p l e t a la eva luac ión has ta

la a s ignac ión del ped ido d e c a m b i o al pe r sona l , £„«/•

• Es fue rzo (pe rsona-horas) requer ido para h a c e r el cambio , Tcamh¡0.

• T iempo requer ido (horas o días) p a r a h a c e r el cambio , tClimhi0.

• Errores de scub ie r to s d u r a n t e el t r aba jo p a r a h a c e r el cambio , Ecambio.

• Defec tos de scub ie r to s d e s p u é s de q u e el c a m b i o e s l iberado a la b a s e de

cl ientes, Dcambio.

Una vez que se h a n recop i lado d ichas m e d i d a s p a r a var ios c a m b i o s sol ic i tados
es posible calcular el t i empo t ranscurr ido total p r o m e d i o de sde que el c a m b i o se soli-

citó has ta la implementac ión del cambio y el porcen ta je del t iempo transcurr ido a b -
sorb ido por la cola d e e spe ra inicial, la eva luac ión y la as ignación y la implementaci xi
del cambio . De igual modo , e s posible de te rminar el porcen ta je del e s fue rzo que re-
quieren la evaluación y la implementac ión . Estas métr icas se eva lúan en el con tex to
de los da to s de calidad, Ecambto y Dcambio. Los porcen ta je s p roporc ionan conocimierít
deta l lado de d ó n d e s e vuelve lento el p roceso de solicitud de c a m b i o y conduce a pa-

s o s de me jo ra del p roceso para reducir Tavl, fmJ/, Tcambi0 o Ecambk>. Además, la ef ica-
cia en la d e el iminación de de fec tos s e p u e d e calcular c o m o

EED = EamMg/(Ecamt,io + Dcarnb¡„)

EED se c o m p a r a con el t i empo t r anscur r ido y el e s f u e r z o total p a r a de t e rmina r el im-
pac to de las ac t iv idades d e a s e g u r a m i e n t o d e la cal idad en el t i empo y el e s f u e r z c

r eque r idos p a r a real izar un cambio .

11 Esta exposición es igualmente relevante para ios equipos de software que han adoptado un proce-
so de desarrollo de software ágil (capitulo 4

TM

PDF Editor

684 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

2 2 . 6 E S T A B L E C I M I E N T O DE U N P R O G R A M A D E M É T R I C A S DE SOFTWAT

AGMefwGoolDtmi
Software Meosviement
se puede descargor de :
w w w . s e i . a n i i . e d u .

CLAVE
l a s mé t r i cas d e
s o f t w a r e q u e s e el i jan
d e b e n es ta r b a s a d o s
en l a s m e t a s d e
negocios y t écn icas
q u e s e d e s e o n lograr.

El S o f t w a r e Engineer ing Inst i tute (SE1) ha e l a b o r a d o u n a guía de ta l lada [PAR96] pa-
ra es tab lecer un p r o g r a m a d e mé t r i ca s d e s o f t w a r e "dirigido por metas" . La guía su-
giere los s igu ien tes pa sos :

1. identif icar los obje t ivos d e la e m p r e s a .

2 . Identificar lo q u e se qu ie re c o n o c e r o ap render .

3 . Identificar los subobje t ivos .

4 . Identificar las en t idades y a t r ibutos re lac ionados con los objet ivos secundar ios .

5 . Formal izar los obje t ivos d e la medic ión .

6. Identificar p r e g u n t a s cuant i f icables y los ind icadores r e l ac ionados q u e s e em-
p lea rán c o m o a p o y o para lograr los obje t ivos d e s u s med ic iones .

7 . Identificar los e l e m e n t o s de da to s q u e s e recopi larán p a r a const ru i r los indi-
c a d o r e s que a y u d a r á n a r e s p o n d e r las p r e g u n t a s .

8 . Definir las m e d i d a s q u e s e e m p l e a r á n y h a c e r q u e e s t a s de f in ic iones s e a n
opera t ivas .

9 . Identificar las acc iones q u e s e t o m a r á n p a r a i m p l e m e n t a r las med idas .

1 0 . P repara r un p lan p a r a i m p l e m e n t a r las med idas .

Una exposic ión deta l lada d e e s t o s p a s o s mejor s e de ja para el l ibro del SEI. Sin em-
bargo , bien vale la p e n a da r un b r eve v is tazo a los p u n t o s clave.

Pues to q u e las f u n c i o n e s comerc i a l e s d e a p o y o del s o f t w a r e d i fe renc ian los siste
m a s o p r o d u c t o s b a s a d o s en c o m p u t a d o r a , o a c t ú a n c o m o u n p roduc to en sí mismo,
las m e t a s def in idas p a r a las e m p r e s a s casi s i empre p u e d e n segu i r se hacia a b a j o h a s
ta m e t a s espec í f icas al nivel d e la ingenier ía del so f tware . Por e jemplo , cons idé rese
una c o m p a ñ í a que fabrica a v a n z a d o s s i s t e m a s de segur idad p a r a el h o g a r q u e t iene
con t en ido d e s o f t w a r e sus tanc ia l . Al t r aba ja r c o m o equipo , la ingenier ía del so f twa-

re y los g e s t o r e s del negoc io p u e d e n confecc iona r u n a lista d e m e t a s pr ior izadas dei
negocio:

1 . Mejorar la sa t i s facción de los c l ientes con los p roduc tos .

2. Hace r q u e los p roduc to s s e a n m á s fáci les d e usar .

3 . Reducir el t i empo q u e t o m a p o n e r un p r o d u c t o e n el m e r c a d o .

4 . Simplificar el sopor t e para los p roduc tos .

5 . Mejorar la ob tenc ión global de ut i l idades.

La o rgan izac ión d e s o f t w a r e e x a m i n a c a d a m e t a d e negoc ios y p r egun ta : ¿Qué acti-
v idades s e ges t ionan o e j ecu tan y q u é s e qu ie re m e j o r a r d e d ichas ac t iv idades? Para
r e s p o n d e r e s t a s p r e g u n t a s el SEI r e c o m i e n d a la c reac ión d e u n a "lista en t idad-pre -
gun ta" e n la q u e s e a n o t e n t odas las c o s a s (entidades) d e n t r o del p r o c e s o de so f twa-

TM

PDF Editor

http://www.sei.anii.edu

CAPÍTULO 22 M É T R I C A S DE PROCESO Y PROYECTO 685

re que s e gestionan o en las que influye la organización de software. Los ejemplos
de ent idades incluyen recursos de desarrollo, productos de trabajo, código fuente,
casos de prueba, solicitudes de cambio, tareas de ingeniería del sof tware y planifica-
ciones. Para cada entidad en la lista el personal de sof tware desarrolla un conjunto
de preguntas que evalúan características cuantitativas de la entidad (por ejemplo, ta-
maño, costo, t iempo de desarrollo). Las preguntas que se derivan de la creación de
una lista entidad-pregunta conducen a la derivación de un conjunto de subobjetivos
que se relacionan directamente con las ent idades creadas y las actividades realiza-
das como parte del proceso del software.

Considérese la cuarta meta: "Simplificar el soporte para los productos". Para esta
meta se puede derivar la siguiente lista de preguntas [PAR96]:

• ¿La solicitud de cambio del cliente contiene la información requerida para
evaluar adecuadamente el cambio y luego implementarlo en una forma opor-
tuna?

• ¿Cuán grande e s el registro de petición de cambio?

• ¿El tiempo de respuesta para fijar los bugs e s aceptable con base en las nece-
sidades del cliente?

• ¿Se sigue el proceso de control de cambios (capítulo 27)?

• ¿Los cambios de alta prioridad se implementan en forma oportuna?

Con base en es tas preguntas la organización de software puede deducir el siguiente
subobjetivo: mejorar el desempeño del proceso de gestión de cambio. Se identifican las
ent idades y los atributos del proceso de sof tware relevantes respecto del subobjeti-
vo, y se delinean las metas de medición asociadas con ambos elementos.

El SEI [PAR96] proporciona una guía detallada para los pasos 6 al 10 de su enfo-
que de medición or ientado a objetivos. En esencia, se aplica un proceso de refina-
miento paso a paso en el que los objetivos s e retinan en preguntas que posterior-
mente se refinan en entidades y atributos que entonces se retinan en métricas.

\
Establecimiento de un programa de métricas
El Software Productivity Center (www.spc.ca) Se definen las tareas asociadas con cada

actividad.
Se anotan las funciones de aseguramiento de la

calidad.
Se hoce una lista con los productos de trabajo

producidos.

sugiere un enfoque de ocho pasos para
r un programa de métricas dentro de una

ización de software y que se puede emplear como
va al enfoque del SEI descrito en la sección 22.ó.

enfoque se resume a continuación.

Entender el proceso de software existente.
Se definen las actividades del marco de trabajo

(capítulo 2).
Se describe la información de entrada para cada

actividad.

2. Definir los objetivos que se lograrán mediante el
establecimiento de un programa de métricas.

Ejemplos: mejorar la precisión de la estimación,
mejorar lo colidod del producto.

y

TM

PDF Editor

http://www.spc.ca

686 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

r 3.

4.

5.

Identificar las métricas requeridas para lograr los
objetivos.

Se definen las preguntas que deben responderse;
por ejemplo, ¿cuántos errores encontrados en
una actividad de marco de trabajo pueden
seguirse hasta la actividad del marco de trabajo
precedente?

Crear medidas y métricas que serán recopiladas y
calculadas.

Identificar las medidas y métricas que serán
recopiladas y calculadas.

Establecer un proceso de recopilación de medidas
respondiendo las siguientes preguntas:

¿Cuál es la fuente de las mediciones?
¿Las herramientas se pueden emplear en la

recopilación de los datos?

¿Quién es responsable de la recopilación de
datos?

¿Cuándo se recopilan y registran los datos?

¿Cómo se almacenan los datos?

¿Qué mecanismos de validación se aplican para
garantizar que los datos sean correctos?

6. Adquirir herramientas adecuadas para apoyar la
recopilación y evaluación.

7. Establecer una base de datos de métricas.
Se establece la complejidad relativa de la base de

datos.
Se explora el empleo de herramientas

relacionadas (por ejemplo, un almacén SCM,
capítulo 27).

Se evalúan los productos de base de datos
existentes.

8. Definir mecanismos de realimentación adecuados.

¿Quién requiere información de métricas en
marcha?

¿Cómo se entregará la información?

¿Cuál es el formato de la información?

Una descripción considerablemente más detallada de esto;
ochos pasos se puede descargar de
http://www.spc.ca/resources/metrics/.

Las medic iones permiten que los gestores y profesionales mejoren el proceso
software; auxilien en la planificación, seguimiento y control de un proyecto de s<
ware; y evalúen la calidad del producto (software) que se produce. Las medidas
atr ibutos específicos del proceso, proyecto y producto se utilizan para calcular i
tricas de sof tware . Dichas métr icas se pueden anal izar para ofrecer indicadores i
guíen las acc iones de gestión y técnica.

Las métr icas del proceso permiten que una organización adop te una visión estr
tégica al proporcionar información detal lada de la eficacia de un proceso de softv
re. Las métr icas de proyecto son tácticas; permiten que un gestor de proyecto ada
te el flujo de trabajo del proyecto y un enfoque técnico realista en términos d e tiemp

Las métr icas o r ien tadas tanto al t a m a ñ o c o m o a la función se aplican a lo lar
de toda la industria. Las métr icas o r ien tadas al t a m a ñ o emplean la l ínea de códi j
c o m o un factor de normalización para ot ras med idas c o m o pe r sona -mes o defecto
El pun to d e función se deduce de las medidas del dominio de la información y de i
valoración subjetiva de la complejidad del problema. Además, se pueden utilizar I
métr icas o r ien tadas a objetos y las métr icas de aplicación Web.

Las métr icas de calidad del sof tware, c o m o las métr icas de productividad, se er
focan sobre el proceso, el proyecto y el producto. Al desarrollar y anal izar una líne

TM

PDF Editor

http://www.spc.ca/resources/metrics/

CAPÍTULO 22 MÉTRICAS DE P R O C E S O Y P R O Y E C T O 687

b a s e d e m é t r i c a s p a r a la c a l i d a d , u n a o r g a n i z a c i ó n p u e d e c o r r e g i r a q u e l l a s á r e a s d e l

p r o c e s o d e s o f t w a r e q u e c a u s a n d e f e c t o s d e s o f t w a r e .

La m e d i c i ó n r e s u l t a e n c a m b i o s c u l t u r a l e s . La r e c o p i l a c i ó n d e d a t o s , e l c á l c u l o y

el a n á l i s i s d e m é t r i c a s s o n l o s t r e s p a s o s q u e p r e c i s o i m p l e m e n t a r p a r a c o m e n z a r u n

p r o g r a m a d e m é t r i c a s . En g e n e r a l , u n e n f o q u e o r i e n t a d o a o b j e t i v o s a y u d a a q u e u n a

o r g a n i z a c i ó n s e e n f o q u e e n l a s m é t r i c a s c o r r e c t a s p a r a s u n e g o c i o . Al c r e a r u n a lí-

n e a b a s e d e m é t r i c a s — u n a b a s e d e d a t o s q u e c o n t i e n e m e d i c i o n e s d e p r o c e s o y

p r o d u c t o — l o s i n g e n i e r o s d e s o f t w a r e y s u s g e s t o r e s p u e d e n c o m p r e n d e r m e j o r el

t r a b a j o q u e h a c e n y el p r o d u c t o q u e e l a b o r a n .

[ALB831 Albrecht, A. J. y J. E. Gaffney, "Software Function, Source Lines of Code and Develop-
ment Effort Prediction. A Sof tware Science Validation", e n IEEE Ttans. Software Ertgirccring,
noviembre de 1983, pp. 639-648.

[BOE81] Boehm, B„ Software Engineering Economics, Prentice-Hall, 1981.
[GRA87| Grady, R. B. y D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,

Prentice-Hall, 1987.
IGRA92] Grady, R. G., Practical Software Metrics for Project Management and Process Improvement,

Prentice-Hall, 1992.
[G1L88] Gilb, T„ Principies of Software Project Management, Addison-Wesley, 1988.
[HET93] Hetzel, W., Making Software Measurement Work, QED Publishing Group, 1993.
[HUM95] Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, 1995.
[1EE93] IEEE Software Engineering Standards, Standard 610.12-1990, pp. 47-48.
[JON86] Jones, C., Programming Productivity, McGraw-Hill, 1986.
[JON9I] Jones, C., Applied Software Measurement, McGraw-Hill, 1991.
UON98] Jones, C., Estimating Software Costs, McGraw-Hill, 1998.
[LOR94] Lorenz, M. y j . Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1994.
[PAR96] Park, R. E., W. B. Goethert y W. A. Florac, Goal Driven Software Measurement—A Guide-

book, CMU/SE1-96-BH-002, Sof tware Engineering Institute, Carnegie Mellon University,
agos to de 1996.

[PAU94] Paulish, D. y A. Carleton, "Case Studies of Sof tware Process Improvement Measure-
ment" , en Computer, vol. 27, núm. 9, sept iembre de 1994, pp. 50-57.

[QSM02] "QSM Function Point Language Gearing Factors", Versión 2.0, Quanti tat ive Sof tware
Management , 2002, h t tp : / /www.qsm.com/FPGear ing .h tml .

IRAG95] Ragland, B„ "Measure, Metric or Indicator: What 's the Difference?", en Crosstalk, vol. 8,
núm. 3, m a r z o de 1995, pp. 29-30.

|SMI99] Smith, J., "The Estimation of Effort Based on Use-Cases", un artículo de Rational Corpo-
rat ion, 1999, se puede descargar de h t t p : / / w w w . r a t i o n a l . c o m / p r o d u c t s / r u p / w h i t e p a -
pers.jsp.

2 2 . 1 . Describir con palabras propias la diferencia ent re métr icas del proceso y del proyecto.

22.2. ¿Por qué a lgunas métr icas de sof tware deben conservarse "privadas"? Ofrecer e jemplos
de tres métr icas q u e deban ser pr ivadas Ofrecer e iemplos de tres métr icas que deban ser públi-
cas .

22.3. ¿Qué es una medida indirecta y por que tales medidas son c o m u n e s en el t rabajo de mé-
tricas del sof tware?

22.4. Grady sugiere un conjunto de reglas de et iqueta r a r a las métr icas de sof tware . ¿El lector
puede agregar t res reglas m á s a las m e n c i o r a - 3 5 e - 2 sección 22.1.1?

TM

PDF Editor

http://www.qsm.com/FPGearing.html
http://www.rational.com/products/rup/whitepa-

688 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

22.5 El equipo A encont ró 342 errores durante el proceso de ingeniería del sof tware previo a
la liberación. El equipo B encontró 184 errores. ¿Qué medidas adicionales tendrían que realizar
los proyectos A y B para determinar cuál de los equipos eliminó los errores de manera m á s efi-
ciente? ¿Qué métricas podrían proponerse para ayudar a realizar la determinación? ¿Qué datos
históricos pueden ser útiles?

22.6. Presentar un a rgumento contra las líneas de código c o m o medida para la productividad
de software. ¿El caso se sost iene cuando se consideran docenas o cientos de proyectos?

22.7. Calcular el valor de punto de función para un proyecto con las siguientes características
de dominio de información:

Número de en t radas externas: 32
Número de salidas ex temas : 60
Número de consultas externas: 24
Número de archivos lógicos internos: 8
Número de archivos de interfaz externos: 2

Suponer que todos los valores de a jus te de complejidad son promedios. Utilizar el algoritmc
anotado en el capitulo 15.

22.8. Emplear la tabla presentada en la sección 22.2.3 para elaborar un a rgumento contra la
utilización del lenguaje ensamblador basado en la funcionalidad entregada por enunciado de
código. Véase de nuevo la tabla y comentar por qué C++ presentaría una mejor alternativa que C

22.9. El sof tware utilizado para controlar u n a fotocopiadora requiere 32 000 LDC de C y 4 20:
líneas de Smalltalk. Estimar el número de puntos de función para el sof tware dentro de la co- I
piadora.

22.10. Un equipo de ingeniería Web ha construido una WebApp de comercio electrónico que
contiene 145 páginas individuales. De es tas páginas 65 son dinámicas: es to es, se generan i r
mane ra interna con base en la entrada del usuario final. ¿Cuál es el índice de personalización
para es ta aplicación?

2 2 . 1 1 . Una WebApp y su en torno de soporte no han sido comple tamente reforzados contra
a taques. Los ingenieros Web est iman que la probabilidad de repeler un a taque sólo es del 30 po r
ciento. El s is tema no cont iene información sensible o controversial, así que la probabilidad de
a m e n a z a es de 25 por ciento. ¿Cuál es la integridad de la WebApp?

2 2 . 1 2 . En la conclusión de un proyecto que utilizó el Proceso Unificado (Capítulo 3) se dete-
minó que 30 errores se encontraron durante la fase de elaboración, y 12 errores hallados dui
te la fase de construcción podían seguirse hasta errores que no fueron descubiertos en la f¡
de elaboración. ¿Cuál es la EED para es tas dos fases?

22.13. Un equipo de sof tware entrega un incremento de sof tware a los usuar ios finales,
descubren ocho defectos durante el primer m e s de uso. Antes de la entrega, el equipo de :
ware encont ró 242 errores durante las revisiones técnicas formales y todas las tareas de pr
ba. ¿Cuál es la EED global para el proyecto?

La mejora del proceso de software (MPS) ha recibido una cantidad significativa de atención i
rante las dos décadas pasadas . Dado que la medición y las métricas de sof tware son clave |
mejorar exi tosamente el p roceso de software, muchos libros acerca de la MPS también tratan
métricas. Las fuentes valiosas de información acerca de las métricas de procesos incluyen:

Burr, A. y M. Owen, Statistical Methods for Software Quaíity, International Thomson Pub
hing, 1996.

El Emam, K. y N. Madhavji (eds.), Elements of Software Process AssessmenC and Impr
IEEE Computer Society, 1999.

TM

PDF Editor

CAPÍTULO 22 M É T R I C A S D E P R O C E S O Y P R O Y E C T O 689

Florac, W. A. y A. D. Carleton, Measuring the Software Process: Statistical Process Control for
Software Process lmprovemenl, Addison-Wesley, 1999.

Garmus, D. y D. Herrón, Measuring the Software Process: A Practícal Cuide to Functional Mea-
surements, Prentice-Hall, 1996.

Humphrey, W„ Introduction to the Team Software Process, Addison-Wesley/Longman, 2000.

Kan, S. H., Metrics and Models in Software Quality Engineering, Addison-Wesley, 1995.

McGarry y sus colegas (Practica! Software Measurement, Addison-Wesley, 2001) presentan con-
sejos a profundidad para valorar el proceso de software. Haug y sus colegas (Software Process
Improvement: Metrics, Measurement, and Process Modeling, Springer-Verlag, 2001) han editado
una colección de artículos valiosos. Florac y Carlton (Measuring the Software Process, Addison-
Wesley, 1999) y Fenton y Pfleeger (Software Metrics: A Rigorous and Practical Approach, revisado,
Brooks/Cole Publishers, 1998) tratan cómo se pueden emplear las métricas de software para
proporcionar los indicadores necesarios para mejorar el proceso de software.

Putnam y Myers (Five Core Metrics, Dorset House, 2003) estudian una base de datos de más
de 6 000 proyectos de software para demostrar cómo cinco métricas centrales —tiempo, esfuer-
zo, tamaño, confiabilidad y productividad de proceso— se pueden emplear para controlar los
proyectos de software. Maxwell (Applied Statistics for Software Managers, Prentice-Hall, 2003)
presenta técnicas para analizar datos del proyecto de software. Munson (Software Engineering
Measurement, Auerbach, 2003) estudia un amplio abanico de temas de medición de ingeniería
del software. Jones (Software Assessments, Benchmarks and Best Pracüces, Addison-Wesley,
2000) describe tanto medidas cuantitativas como factores cualitativos que ayudan a una orga-
nización a valorar sus procesos y prácticas de software. Garmus y Herrón (Function PointAnaly-
sis: Measurement Practices for Successful Software Projects, Addison-Wesley, 2000) examinan las
métricas de proceso con énfasis en el análisis de los puntos de función.

Lorenze y Kidd [LOR94] y DeChampeax (Object-Oriented Development Process and Metrics,
Prentice-Hall, 1996) consideran el proceso OO y describen un conjunto de métricas para valo-
rarlo. Whitmire (Object-Oriented Design Measurement, Wiley, 1997) y Henderson-Seliers (Object-
Oriented Metrics: Measures of Complexity, Prentice-Hall, 1995) se enfocan en las métricas técni-
cas para el trabajo OO, pero también consideran medidas y métricas que se pueden aplicar en
el ámbito del proceso y del producto.

Se ha publicado relativamente poco acerca de las métricas para el trabajo de ingeniería Web.
Sin embargo, Stern (Web Metrics: Proven Methods for Measuring Web Site Success, Wiley, 2002),
Inan y Kean (Measuring the Success ofYour Website, Longman, 2002) y Nobles y Grady (Web Site
Analysis and Reporting, Premier Press, 2001) abordan las métricas Web desde una perspectiva de
negocios y de marketing.

Lo m á s reciente en la investigación en el área de métricas lo resume el IEEE (Symposium on
Software Metrics, publicado anualmente). En Internet está disponible una amplia variedad de
fuentes de información acerca de las métricas de proceso y proyecto. Una lista actualizada de re-
ferencias en la World Wide Web se encuentra en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

23 ESTIMACIÓN PARA
PROYECTOS DE SOFTWARE

C O N C E P T O S

C L A V E

ámbito 6 9 3

complejidad . . . 7 0 3

estimación

basada
en LDC 7 0 0

basada en PF 7 0 2

basada
en procesos 704

casos de uso . 7 0 5

conceptos. . . 698

reconciliación 7 0 8

factibilidad 693

planificación de

proyecto 6 9 2

recursos 694

t a

del so f tware . . 698

La gestión del proyecto de sof tware comienza con un conjunto de activida-
des que en grupo se denominan planificación del proyecto. Antes de que el
proyecto comience el gestor del proyecto y el equipo de sof tware deben e ;

timar el t rabajo que habrá de realizarse, los recursos que se requerirán y el tiempc
que transcurrirá desde el principio hasta el final. Una vez que se completen esta;
actividades, el equipo de software debe establecer un plan del proyecto que de
fina las tareas y fechas clave de la ingeniería del software, que identifique quic-
es responsable de dirigir cada tarea y especifique las dependencias entre tarea;
que pueden ser determinantes en el progreso.

En una excelente guía para "sobrevivir el proyecto de software", Steve McConneE
[MCC98] presenta una visión del mundo real de la planificación del proyecto:

Muchos t raba jadores técnicos preferirán realizar el t rabajo técnico en lugar de pa-

sar el t iempo en la planificación. Muchos gestores técnicos n o t ienen suficiente en-

t renamiento en la gestión técnica para sentirse seguros de q u e su planificación

mejorará el resul tado de un proyecto. Puesto q u e n inguna parte quiere hacer la pla-

nificación, con frecuencia n o se realiza.

Pero las fallas pa ra planificar es u n o de los mayores errores q u e un proyecto pueda

cometer . . . se necesi ta la planificación ef icaz para resolver los p rob lemas corriente

arriba [temprano en ei proyecto] a ba jo costo, m á s que corriente aba jo [tarde en el

proyectol a alto costo. El proyecto p romedio gasta 80 por ciento de su t iempo en ree-

laboración: corr igiendo e r rores que se cometieron en e t apas t empranas del proyecto.

¿ Q u é e s ? Se ha establecido una
necesidad real para el software; los
participantes están a bordo; los inge-
nieros de software están listos para
comenzar; y el proyecto está a punto

de arrancar. Pero, ¿cómo se procederá? La pla-
nificación del proyecto de software abarca cinco
grandes actividades: estimación, programa de
trabajo, análisis de riesgos, planificación de la
gestión de la calidad y planificación de la ges-
tión del cambio. En el contexto de este capítulo
sólo se considera la estimación: su intento por
determinar cuánto dinero, esfuerzo, recursos y
tiempo tomará construir un sistema o producto
específico basado en software.

¿ Q u i é n lo h a c e ? Los gestores de proyecto del
software, con base en la información solicitada

de los participantes e ingenieros de software y
los datos de las métricas de software recopilados
en proyectos previos.

¿ P o r q u é e s i m p o r t a n t e ? ¿Se construiría una
casa sin saber cuánto dinero está a punto de
gastarse, las tareas que se deben realizar y el
tiempo para que ei trabajo se haga? Desde
luego que no, y puesto que la mayoría de los siste-
mas y productos basados en computadora son con-
siderablemente más caros que construir una gran
casa, parecería razonable desarrollar una
estimación antes de comenzar a crear el software.

¿ C u á l e s s o n los p a s o s ? La estimación comien-
za con una descripción del ámbito del producto.
Entonces el problema se descompone en un con-
junto de problemas más pequeños, y cada uno
de éstos se estima empleando datos históricos y

TM

PDF Editor

CAPÍTULO 23 ESTIMACIÓN P A R A PROYECTOS DE SOFTWARE 691

r •perienetet como guías. La complejidad y el
esgo del problema se consideran antes de rea-

izar una estimación final,
•el e s el producto o b t e n i d o ? Se genero
.na simple tabla en la que se delinean las fa-
ros que deben realizarse, las funciones que

- :¡brán de implementarse y el costo, esfuerzo y
• :impo involucrados para cada uno.

r.o p u e d o e s tar s e g u r o d e q u e lo he
hecho correctamente? Eso es difícil, porque

en reclidad no se sabrá sino hasta que el pro-
yecto se haya completado. Sin embargo, si se
tiene experiencia y se sigue un enfoque sistemó
tico, se generan estimaciones empleando datos
históricos sólidos, se crean puntos de datos de
estimación mediante al menos dos métodos dife-
rentes, se establece un calendario realista y con-
tinuamente se adapta conforme el proyecto
avanza, se puede estar seguró de que se está
haciendo lo mejor.

McConell a rgumenta que cualquier proyecto puede encontrar el t iempo para pla-
nificar (y adaptar el plan a lo largo del proyecto) s implemente tomando un pequeño
porcentaje del t iempo que se habría gastado en la reelaboración que ocurre debido
a que no se planificó.

2 3 . 1 O B S E R V A C I O N E S A C E R C A DE LA E S T I M A C I Ó N

La planificación requiere que los gestores técnicos y los miembros del equipo de
sof tware establezcan un compromiso inicial, aun cuando sea probable que este
"compromiso" pruebe estar equivocado. Siempre que se realizan est imaciones se
atisba al futuro y se acepta automát icamente algún grado de incertidumbre. Para
citar a Frederick Brooks (BR075]:

[NJuestras técnicas de estimación están pobremente desarrolladas. Más seriamente, re-
flejan una suposición no expresada que es bastante incierta, es decir: que todo irá bien...
Puesto que no es tamos seguros de nuestras estimaciones, con frecuencia los gestores de
software carecen de la cortés testarudez para hacer que la gente espere un buen producto.

Aunque la est imación es tanto un arte como una ciencia, esta importante actividad
no necesita realizarse en una forma improvisada. Existen técnicas útiles para la esti-
mación de t iempo y esfuerzo. Las métricas del proceso y del proyecto ofrecen la
perspectiva histórica y la energía para la generación de est imaciones cuantitativas.
La experiencia (de toda la gente involucrada) puede auxiliar enormemente conforme
se desarrollan y revisan las estimaciones. Puesto que la estimación coloca los
cimientos para las d e m á s actividades de planificación del proyecto, y ésta propor-
ciona la ruta para la ingeniería del sof tware exitosa, se estaría mal aconsejado si se
embarcara sin ella.

" l o s buenos enfoques d e estimación y los dolos históricos s ó i d o s o f recen io mejor esperanza de que en realidad se
t r iunfará sobre demandas imposibles."

Capers i o n e s

TM

PDF Editor

6 9 2 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

La est imación de recursos, cos to y p rograma de t rabajo para una tarea de inge-
niería de sof tware requiere experiencia, acceso a buena información histórica
(métricas) y el valor para compromete r se con predicciones cuanti tat ivas c u a n d o la
información cualitativa es todo lo que existe. La est imación implica riesgo inheren-
te, 1 y éste conduce a la incertidumbre.

La disponibilidad de información histórica t iene una fuerte influencia en el riesgo
de la est imación. Al mirar en retrospectiva, se pueden emular las cosas que funcio-
naron y mejorar las á reas donde surgieron problemas. Cuando hay disponibles
ampl ias métr icas de sof tware (capítulo 22) de proyectos previos, las es t imaciones se
hacen con mayor seguridad, los p rogramas de t rabajo se pueden establecer pa ra evi-
tar dificultades p a s a d a s y el riesgo global se reduce.

" t a característica d e una mente instruida es descansar satisfecha con el g rado d e precisión q u e la naturaleza del
asunta admite, y no buscar la exactitud cuando sólo es posible una aproximación de la ve rdad . "

Aris tóte les

El riesgo de la es t imación se mide por el grado de incert idumbre en las est ima-
ciones cuanti tat ivas establecidas para recursos, cos tos y p rograma de trabajo. Si el
ámbi to del proyecto se comprende en forma deficiente o los requisitos del proyect :
están suje tos a even tua les cambios , la incer t idumbre y el riesgo de la est imación se
incrementan pel igrosamente. El planificador y, en forma m á s importante, el cliente
deben reconocer que la variabilidad en los requisitos del so f tware significa inestabi-
lidad en costo y p rograma de trabajo.

Sin embargo, un gestor de proyecto no debe obses ionarse con las est imaciones.
Los m o d e r n o s en foques de ingeniería del so f tware (por ejemplo, modelos de proce-
s o incremental) a s u m e n una visión iterativa del desarrollo. En tales en foques es
posible, a u n q u e no s iempre aceptable polí t icamente, r eexaminar las es t imaciones
(cuando se conozca m á s información) y modificarlas cuando el cliente cambia los
requisitos.

2 3 . 2 E L P R O C E S O DE P L A N I F I C A C I Ó N DEL P R O Y E C T O

El objetivo de la planificación del proyecto de sof tware es proporcionar un marco de
t raba jo que permita al ges tor es t imar r a z o n a b l e m e n t e recursos , cos to y programa
de trabajo. Además, las est imaciones deben intentar definir los escenar ios de mejor y
peor caso de m o d o q u e los resul tados del proyecto se puedan acotar. Aunque existí
un grado inherente de incert idumbre, el equipo de sof tware se embarca en un piar
establecido como consecuencia de las tareas de planificación. Por lo tanto, el plan se
debe adap ta r y actualizar conforme a v a n c e el proyecto. En las secciones siguientes
se estudiará cada una de las actividades a soc iadas con la planificación del proyec;
de sof tware .

^ O N S E J O ^ .

Mientras más
conozco, mejor
estimará. En
consecuencia,
actualice sus
estimaciones
conforme avance el
pioyecto.

1 En el capítulo 25 se presentan técnicas sistemáticas para el análisis del riesgo.

TM

PDF Editor

CAPÍTULO 23 E S T I M A C I Ó N P A R A P R O Y E C T O S DE S O F T W A R E 693

C O N J U N T O DE TAREAS

Conjunto de tareas para la planificación del proyecto
1. Establecer el ámbito del proyecto.

2. Determinar la factibilidad.

3. Analizar los riesgos (capítulo 25).

Definir los recursos requeridos.

a . Determinar los recursos humanos requeridos.

b. Definir los recursos de software reutilizables.

c. Identificar los recursos del entorno.

Estimar costo y esfuerzo.

a. Descomponer el problema.

b. Desarrollar dos o más estimaciones empleando
tamaño, puntos de función, tareas de proceso o
casos de uso.

c. Reconciliar las estimaciones.
6. Desarrollar un plan del proyecto (capítulo 24).

a . Establecer un conjunto de tareas significativo.
b. Definir una red de tareas.
c. Usar herramientas de planificación para

desarrollar un cronograma.
d. Definir mecanismos de seguimiento del

programa de trabajo.

2 3 . 3 I R A D E L S O F T W A R E V F A C T I B I L I D A D

CLAVE
d i s t e n
i z o n e s para

i incompleto
> requisitos

El ámbito del software describe las func iones y caracterís t icas que se entregarán a los
usuar ios finales, los da tos que son entrada y salida, el "contenido" que se presenta a
los usuar ios c o m o consecuenc ia de emplear el sof tware , así c o m o el de sempeño , las
restricciones, las interfases y la confiabilidad que acotan el s is tema. El ámbi to se defi-
ne al usar una de las dos técnicas siguientes:

1. Después de una comunicación con todos los part icipantes se desarrolla una
descripción narrativa del ámbi to del software.

2. Los usuar ios finales desarrol lan un con jun to de casos de uso.2

Las func iones descri tas en el enunc iado del ámbi to (o dent ro de los casos de uso) se
evalúan y en a lgunos casos se refinan para proporcionar m á s detal les a n t e s de
comenza r la estimación. Puesto que las es t imaciones de costo y programa de trabajo
es tán funcionalmente orientadas, con frecuencia es útil cierto grado de descompo-
sición. Las consideraciones del d e s e m p e ñ o abarcan los requisitos de p rocesamien to
y t iempo de respuesta . Las restr icciones identifican los límites co locados en el soft-
ware por el ha rdware externo, la memor ia disponible u ot ros s i s temas existentes.

Una vez identif icado el ámbi to (con la participación del cliente) es razonable pre-
guntar : ¿es posible construir so f tware para sat isfacer es te ámbito? ¿El proyecto e s
factible? Con mucha frecuencia los ingenieros de sof tware soslayan es tas p reguntas
(o ges tores o cl ientes impacientes los pres ionan para hacerlo), sólo para verse enre-
dados en un proyecto c o n d e n a d o al fracaso. Putnam y Myers [PUT97a] abordan es te

conflicto c u a n d o escriben:

2 Los casos de uso se discutieron con detalle en las partes 2 y 3 de este libro. Un caso de uso es una
descripción basada en escenario de la interacción del usuario con el software, desde el punto de
vista del usuario.

TM

PDF Editor

6 9 4 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

^ O N S E J O ^

La foctibilidad del
proyecto es impor-
tante, pero uno consi-
deración de los
necesidades del
negocio es incluso
más importante. No
es bueno construir un
sistema o producto de
alto tecnología que
nadie quiere.

|N]o t o d o lo imag inab le e s factible, inc luso ni e n so f tware , t a n e v a n e s c e n t e c o m o p u e d e

pa rece r a los ex t r años . Por el contrar io , la factibilidad del s o f t w a r e t iene c u a t r o d imens io -

n e s sól idas : Tecnología: ¿el p royec to e s t é c n i c a m e n t e factible? ¿Está den t ro del t e r r e n o de

la discipl ina? ¿Los de fec tos se p u e d e n reducir a tal g r a d o q u e s e e m p a r e j e n con las nece -

s i d a d e s d e la ap l icac ión? Finanzas: ¿es f i n a n c i e r a m e n t e factible? ¿Se p u e d e c o m p l e t a r el

desa r ro l lo a u n c o s t o q u e la o rgan izac ión de so f twa re , su cl iente o el m e r c a d o p u e d a n en -

f ren ta r? Tiempo: ¿el p royec to l legará al m e r c a d o a n t e s y v e n c e r á a la c o m p e t e n c i a ? Re-

cursos: ¿la o r g a n i z a c i ó n t iene los r ecu r sos n e c e s a r i o s pa ra t r iunfar?

Putnam y Myers sugieren, acer tadamente , que el ámbito no es suficiente. Una vez
que el ámbito se comprende, el equipo de software y otros deben trabajar para deter-
minar si se puede hacer dentro de las dimensiones anotadas líneas arriba. Ésta es
una parte crucial, aunque con frecuencia ignorada, del proceso de estimación.

Herramientas
i de software.

Número

[Habilidade: Hardware

Personal Entorno
Recursos
d e red

Ubicación

Proyecto

Software
reutilizqble

Componentes
OTS

Nuevos
componentes

Componentes dé1

experiencia
parcial /

Componentes de
experiencia

. completa S

23.4

Recursos del
proyecto.

RECURSOS

La segunda tarea de la planificación e s la estimación de los recursos necesarios para
completar el esfuerzo de desarrollo del software. La figura 23.1 muestra las tres
grandes categorías de los recursos de ingeniería del software: personal, componer
tes de sof tware reutilizables y el entorno de desarrollo (hardware y herramientas de
software). Cada recurso se especifica con cuatro características: descripción de
recurso; un informe de disponibilidad; cuándo se requerirá el recurso; t iempo durar -
te el cual el recurso se aplicará. Las últimas dos características se pueden ver coir o

TM

PDF Editor

CAPÍTULO 23 E S T I M A C I Ó N P A R A P R O Y E C T O S DE S O F T W A R E 695

i olvide que
r varios compo-

! de reutilización
! ser un reto

nte. El
7 de lo inte-

i con frecuencia
iconfórmese

i varios
zryonentes.

una ventana de tiempo. La disponibilidad del recurso para una ventana específica
debe establecerse lo más pronto posible.

23.4.1 Recursos humanos
El planificador comienza evaluando el ámbito del sof tware y seleccionando las habi-
lidades requeridas para completar el desarrollo. Se especifican tanto la posición
organizacional (por ejemplo, gestor, ingeniero de sof tware ejecutivo) como la espe-
cialidad (por ejemplo, telecomunicaciones, base de datos, cliente/servidor). En pro-
yectos relativamente pequeños (unos pocos persona-meses) un solo individuo puede
realizar todas las tareas de ingeniería del sof tware y consultar con especialistas con-
forme se requiera. En proyectos mayores el equipo de sof tware puede estar geográ-
ficamente disperso en varios sitios. Aquí se especifica la ubicación de cada recurso
humano.

El número de personas que requiere un proyecto de sof tware sólo se determina
después de que se ha hecho una estimación del esfuerzo de desarrollo (por ejemplo,
personas-mes). Las técnicas para estimar el esfuerzo se tratarán m á s adelante en
es te capítulo.

23.4.2 Recursos de software reutilizables
La ingeniería del sof tware basada en componen tes (capítulo 30) enfatiza la reutili-
zación; es decir, la creación y reutilización de bloques de construcción de sof tware
[H0091]. Tales bloques, usualmente llamados componentes, deben catalogarse para
consultar los con facilidad, es tandar izarse para facilitar su aplicación y validarse
para integrarlos fácilmente.

Bennatan [BEN92] sugiere cuatro categorías de recursos de sof tware que deben
considerarse conforme avanza la planificación:

Componentes ya desarrollados. El software existente se puede adquirir de un ter-
cero o se desarrolló internamente para un proyecto previo. Los CCYD (componen-
tes comerciales ya desarrollados) se compran de un tercero, están listos para emplear-
los en el proyecto actual y han sido ampl iamente validados.

Componentes experimentados. Especificaciones, diseños, código o datos de prue-
ba existentes que se desarrollaron para proyectos previos son similares al software que
se construirá para el proyecto actual. Los miembros del equipo de sof tware actual ya
t ienen experiencia en el á rea de aplicación que representan dichos componentes . En
consecuencia, las modificaciones que requieran los componen tes exper imentados
serán relativamente de ba jo riesgo.

Componentes de experiencia parcial. Especificaciones, diseños, código o datos de
prueba existentes que se desarrollaron para proyectos previos están relacionados
con el sof tware que se construirá para el proyecto actual pero requerirán modifica-
c iones sustanciales. Los miembros del equipo de sof tware actual sólo tienen expe-
riencia limitada en el á rea de aplicación que representan dichos componentes . Por

TM

PDF Editor

696 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

lo tanto, las modificaciones que requieren los componen tes de experiencia p a r a ; i
tienen un grado considerable de riesgo.

Componentes nuevos. El equipo de sof tware debe construir los componentes c ; J
sof tware específicamente para las necesidades del proyecto actual.

Irónicamente, con frecuencia los componen tes de sof tware reutilizables son despre- ¡
ciados durante la planificación, sólo para convertirse en una preocupación impc:
tante durante la fase de desarrollo del proceso de software. Es mejor especifica."!
cuanto an tes los requisitos de recursos de software. De esta forma se puede llevar a I
cabo la evaluación técnica de las alternativas y puede ocurrir la adquisición oportuna '

23.4.3 Recursos del entorno
El entorno que soporta un proyecto de software, con frecuencia denominado e/i to/roj
de ingeniería del software (E1S), incorpora hardware y software. El hardware propor-
ciona una plataforma que soporta las herramientas (software) con que se prodúce-
los productos de trabajo basados en una buena práctica de la ingeniería del softwa-
re.3 Puesto que la mayor parte de las organizaciones de sof tware tienen múltiple;, i
consti tuyentes que requieren acceso al EIS, el planificador de proyecto debe prescr -
bir la ventana de t iempo requerida por el hardware y el software, y verificar que es:os;
recursos es tarán disponibles.

Cuando un sistema basado en computadora (que incorpora hardware y softwa-r
especializados) se someterá a ingeniería, el equipo de sof tware quizá requiera acce-
so a e lementos de hardware que están desarrollando otros equipos de ingeniería
Por ejemplo, el sof tware de un contador numérico (CN) utilizado en un tipo ce
máquinas-herramienta tal vez requiera una máquina-herramienta específica (per]
ejemplo, un CN de torno) como parte del paso de prueba de validación; un proyecr i
de sof tware para plantilla de página avanzada quizá necesite una impresora de a t ia j
calidad en algún punto durante el desarrollo. El planificador del proyecto de softwa-
re debe especificar cada e lemento de hardware.

2 3 . 5 E S T I M A C I Ó N DE P R O Y E C T O S DE S O F T W A R E

El sof tware e s el e lemento más caro de virtualmente todos los s is temas basados en
computadora . En s is temas complejos, personalizados, un gran error en la estima
ción del costo puede hacer la diferencia entre beneficio y pérdida. Rebasar el eos: :•
puede ser desastroso para el desarrollador.

"En unn ero de subcontrotación y competencia creciente, lo habilidad para estimar con mayor precis ión. . . ha surgido
como un factor d e éxito crucial paro muchos grupos de TI."

Rob Thofflsett

3 Otro hardware —el entorno objetivo— es la computadora en la que el software se ejecutará cuar»; >
haya sido liberado al usuario final.

TM

PDF Editor

CAPÍTULO 23 E S T I M A C I Ó N P A R A P R O Y E C T O S DE S O F T W A R E 6 9 7

La estimación del costo y el esfuerzo nunca será una ciencia exacta.4 Demasiadas
variables —humanas , técnicas, ambientales, políticas— pueden afectar el costo final

é del sof tware y el esfuerzo aplicado a desarrollarlo. Sin embargo, la estimación del
proyecto de software se puede transformar de una práctica oscura en una serie de
pasos sistemáticos que proporcionan est imaciones con riesgo aceptable. Para lograr
est imaciones confiables de costo y esfuerzo se tienen varias opciones:

1. Demorar la estimación hasta más tarde en el proyecto (obviamente, ¡se puede
lograr 100 por ciento de est imaciones precisas después de que el proyecto
esté terminado!)

2. Basar las est imaciones en proyectos similares que ya hayan sido completados.

3 . Emplear técnicas de descomposición relativamente simples para generar esti-
maciones de costo y esfuerzo del proyecto.

4 . Utilizar uno o más modelos empíricos en la estimación de costo y esfuerzo.

Desgraciadamente, la primera opción, aunque atractiva, no es práctica. Las est ima-
ciones de costos se tienen que proporcionar "por adelantado". No obstante, se debe
reconocer que, mientras m á s se espere más se conocerá, y mientras más se conoz-
ca menos probable es que se cometan serios errores en las estimaciones.

La segunda opción puede funcionar razonablemente bien si el proyecto en curso
es muy similar a los previos y a o t ras influencias del proyecto (por ejemplo, el equi-
po de software, el cliente, las condiciones del mercado, el EIS, las fechas limite) son
aproximadamente equivalentes. Por desgracia, la experiencia no siempre ha sido un
buen indicador de los resultados futuros.

Las opciones restantes son enfoques viables para la estimación del proyecto de
software. Idealmente, las técnicas mencionadas para cada opción deben aplicarse
juntas, cada una empleada como una marca de verificación para la otra. Las técni-
cas de descomposición asumen un enfoque de "divide y vencerás" respecto de la
estimación del proyecto de software. Al descomponer un proyecto en funciones prin-
cipales y actividades de ingeniería del sof tware relacionadas, las est imaciones de
costo y esfuerzo se pueden realizar en forma escalonada. Los modelos de estima-
ción empírica son útiles para complementar las técnicas de descomposición y ofre-
cer un enfoque de estimación potencialmente valioso por su propio derecho. Estos
modelos se estudian en la sección 23.7.

Cada una de las opciones viables de estimación de costo del sof tware será tan
buena como lo sean los datos históricos en que se basa la estimación. Si no existen
datos históricos, la est imación del costo se basa rá en un fundamen to muy tamba-
leante. En el capítulo 22 se examinan las características de algunas de las métricas
de sof tware que proporcionan la base para los datos históricos de estimación.

4 Bennatan [BEN03] reporta que 40 por ciento de los desarrolladores de software continúan luchando
con las estimaciones y que el tamaño del software y el t empo de desarrollo son muy dificiles de es-
timar con precisión.

TM

PDF Editor

6 9 8 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

CLAVE
El "tamaño" del
software que se
construirá puede
estimorse empleando
uno medido directo,
LDC, o uno indirecta,
PE.

•
¿Cómo se
mide el

tamaño del
s o f t w a r e que se
planea construir?

La estimación del proyecto de sof tware es una forma de resolver problemas; en la
mayoría de los casos, el problema que debe resolverse (es decir, el desarrollo de una
estimación de costo y esfuerzo para un proyecto de software) e s muy complejo comc
para considerarlo una sola pieza. Por esta razón se descompone el problema, reca-
racterizándolo como un conjunto de problemas m á s pequeños (y, esperanzadora-
mente, más manejable).

En el capítulo 21 se examinó el enfoque de descomposición desde dos diferente;
puntos de vista: descomposición del problema y descomposición del proceso. L¿
estimación emplea una o ambas formas de partición. Pero antes de que pueda rea-
lizarse una estimación, el planificador del proyecto debe entender el ámbi to del soft-
ware que se construirá y generar una estimación de su "tamaño".

23.6.1 Tamaño del software
La precisión de la estimación de un proyecto de software se manifiesta en varios fac-
tores: 1) el grado con el cual el planificador ha est imado adecuadamente el tamaf . :
del producto que se construirá; 2) la habilidad para traducir la estimación del tama-
ño en esfuerzo humano, programa de trabajo y dinero (una función de la disponibi-
lidad de las métricas de sof tware confiables a partir de proyectos previos); 3) el grac:
en el cual el plan del proyecto refleja las habilidades del equipo de software; y 4) .a
estabilidad de los requisitos del producto y el entorno que soporta el esfuerzo de
ingeniería del software.

En esta sección se considera el problema del tamaño del software. Puesto que
estimación de un proyecto sólo es tan buena como la estimación del t amaño del
ba jo para realizarlo, el t amaño representa el primer gran desafio del planificador
proyecto. En el contexto de la planificación del proyecto, tamaño se refiere a
resultado cuantificable del proyecto de software. Si se asume un enfoque directo,
t amaño se puede medir en líneas de código (LDC). Si se elige un enfoque indir
el t amaño se representa como puntos de función (PF).

Putnam y Myers [PUT92] sugieren cuatro diferentes enfoques al problema
tamaño:

• Tamaño de "lógica dijusa". La aplicación de es te enfoque requiere que el piar:
ficador identifique el tipo de aplicación, establezca su magnitud en una e
cualitativa y luego retine la magnitud dentro del rango original.

• Tamaño de punto de función. El planificador desarrolla est imaciones de las
características del dominio de la información t ratadas en el capítulo 15.

• Tamaño de componentes estándar. El software se compone de varios "cpmpc -
nentes estándar", los cuales son diferentes y genéricos de una área particular
de la aplicación. Por ejemplo, los componen tes es tándar de un sistema de
información son subsistemas, módulos, pantallas, reportes, programas inter-

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 6 9 9

i ¿Qué tienen
en común las

es
¡ en LDC y

f cONSEJO^-

; recopile
¡cas de product.t
ti para proyectos,

i de esto-
t una taxonomía

. £sto le
) calcular
s específicos

i dominio, lo que
¡ realizar estt

| lociones más
jRásas.

activos, programas por lotes, archivos, LDC e instrucciones al nivel de objeto.
El planificado!" del proyecto estima el número de ocurrencias de cada compo-
nente es tándar y luego aplica datos de proyectos históricos para determinar el
t amaño de entrega por componente estándar.

• Tamaño del cambio. Este enfoque se aplica cuando un proyecto incluye la utili-
zación de sof tware existente que debe modificarse en cierta forma como parte
de un proyecto. El planificador estima el número y tipo (por ejemplo, reutiliza-
ción, código de adición, código de cambio, código de borrado) de las modifi-
caciones que se deben lograr.

Putnam y Myers sugieren que los resultados de cada uno de estos enfoques de tama-
ño se combinen estadíst icamente para crear una estimación de tres puntos o del valor
esperado. Esto se logra desarrollando valores optimistas (bajos), más probables y
pesimistas (altos) para el t amaño y combinándolos con la ecuación (23-1) descrita
en la siguiente sección.

23.6.2 Estimación basada en el problema
En el capítulo 22, las líneas de código y los puntos de función se describieron como
medidas a partir de las cuales se calculan las métricas de productividad. Los datos
de las LDC y los PF se utilizan en dos formas al estimar el proyecto de software: I)
como una variable de la estimación para el " tamaño" de cada e lemento del softwa-
re, y 2) como métricas de línea base recolectadas a partir de proyectos previos y uti-
lizados en conjunción con variables de estimación para desarrollar proyecciones de
costo y esfuerzo.

Las est imaciones de LDC y PF son distintas técnicas de estimación, aunque ambas
tienen varias características en común. El planificador del proyecto comienza con un
enfoque acotado del ámbito del software y a partir de ahí intenta descomponer el
sof tware en funciones problema que puedan est imarse individualmente. Entonces se
est iman las LDC o PF (las variables de estimación) para cada función. De manera
alternativa, el planificador puede elegir otro componente para tamaño, como clases
u objetos, cambios o procesos de negocios afectados.

Entonces se aplican las métricas de la línea base de productividad (por ejemplo,
LDC/pm o PF/pm5) a la variable de estimación apropiada, y se deriva el costo o esfuer-
zo de la función. Las estimaciones de función se combinan para producir una estima-
ción global del proyecto completo.

Sin embargo, es importante notar que con frecuencia existe una dispersión sus-
tancial en las métricas de productividad de una organización, lo que hace sospe-
choso el uso de una sola métrica de línea base de productividad. En general, el dominio
del proyecto debe calcular los promedios de LDC/pm o PF/pm. Es decir, los proyec-
tos deben agruparse por t amaño de equipo, área de aplicación, complejidad y otros

5 Las siglas pm significan persona-mes de esfuerzo

TM

PDF Editor

700 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

\
C L A V E

En las est imaciones PF
la descomposición se
enfoca sobre las
característicos del
dominio de
información.

7 ¿Córao s e
• calcula el

"valor esperado"
para el tamaño de
sof tware?

parámetros relevantes. Luego se t ienen que calcular los promedios de dominio local.
Cuando se estima un nuevo proyecto primero debe ubicarse en un dominio, y luegc
aplicar el promedio del dominio apropiado para la productividad y así generar la esti-
mación.

Las técnicas de estimación LDC y PF difieren en en cuanto al detalle requeridc
para descomposición y el objetivo de la partición. Al emplear LDC como variable de
estimación la descomposición es absolutamente esencial y con frecuencia se lleva £
grados considerables de detalle. Mientras mayor sea el grado de partición es más
probable que se desarrolle una estimación razonablemente precisa de LDC.

En las est imaciones de PF la descomposición funciona de manera diferente. Más
que enfocarse sobre la función, se estima cada una de las cinco características de
dominio de información, así como los 14 valores de ajuste de complejidad estudia-
dos en el capítulo 15. Entonces se pueden utilizar las est imaciones resultantes par£
derivar un valor de PF que se pueda ligar a datos previos y empleados para generar
una estimación.

Sin importar la variable de estimación que se utilice, el planificado!- del proyect;
comienza es t imando una gama de valores para cada función o valor de dominio de
información. Al emplear datos históricos o (cuando todo lo demás falla) intuición, e:
planificador estima un valor de t amaño optimista, m á s probable, y pesimista para
cada función o cuenta para cada valor de dominio de información. Cuando se espe-
cifica un rango de valores se proporciona un indicio implícito del grado de incerti-
dumbre.

Entonces se puede calcular un valor de tres puntos o uno esperado. El valor espe
rado para la variable de estimación (tamaño), S, se calcula c o m o un promedio pon-
derado de las est imaciones optimista (Sop,), más probable (Sm) y pesimista (Spes). Po-
ejemplo,

S — (S0p[+ 4Sm + SpesJ/6 (23-1)

brinda la credibilidad m á s fuerte a la estimación "más probable" y sigue una distri-
bución de probabilidad beta. Se supone que existe una probabilidad muy pequeña de
que el t amaño real resultante se ubique fuera de los valores optimista y pesimista.

Una vez determinado el valor esperado para la variable de estimación se aplicar,
los datos de productividad histórica de LDC o PF. ¿Son correctas las estimaciones?
La única respuesta razonable a esta pregunta es: no se puede estar seguro. Cualquier
técnica de estimación, no importa cuán sofisticada sea, debe contrastarse con otro
enfoque. Incluso entonces deben prevalecer el sent ido común y la experiencia.

23.6.3 Un ejemplo de estimación basada en LDC
Como ejemplo de técnicas de estimación de LDC y PF basadas en el problema, con-
sidérese un paquete de software que será entregado para una aplicación de diseño
asistido por computadora (CAD, por sus siglas en inglés) dest inado a componentes
mecánicos. El sof tware se ejecutará en una estación de trabajo de ingeniería y debe

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 701

* CONSEJO

aplicaciones
residen en

red o son parte
i arquitectura

ir. Por lo
asegúrese de

sus estimaciones
i el esfuerzo
: pora desa-

soltware de

^ O N S E J O ^

suambaala
i de utilizar

<esultodo como la
idesu

. Usted debe
otro resultado
un enfoque

tener interfaz con varios periféricos que incluyen ratón, digitalizador, monitor de
color de alta resolución e impresora láser. Se puede elaborar una descripción preli-
minar del ámbito del software:

El sof tware CAD mecánico aceptará del ingeniero datos geométricos de dos y tres dimen-
siones. El ingeniero interactuará y controlará el sistema CAD a través de una interfaz del
usuario que exhibirá características de buen diseño de interfaz humano-máquina . Todos
los da tos geométricos y otra información de soporte se conservarán en una base de datos
CAD. Se desarrollarán módulos de análisis de diseño para producir la salida requerida, la
cual se desplegará en una diversidad de dispositivos gráficos. El sof tware s e diseñará para
controlar e interactuar con dispositivos periféricos que incluyen ratón, digitalizador, im-
presora láser y plotter.

Esta descripción del ámbito es preliminar, no está acotada. Se tendría que expandir
cada oración para ofrecer detalle concreto y acotación cuantitativa. Por ejemplo,
antes de que comience la estimación, el planificador debe determinar qué significa
"características de buen diseño de interfaz humano-máquina" o cuáles serán el
tamaño y la complejidad de la "base de datos CAD".

En cuanto a los propósitos actuales, se supone que se ha llevado a cabo más refi-
namiento y que están identificadas las grandes funciones de software mencionadas
en la figura 23.2. Al continuar con la técnica de descomposición para LDC se elabo-
ra una tabla de estimación, la cual se muestra en la figura 23.2. En cada función se
desarrolla un rango de estimaciones LDC. Por ejemplo, el rango de las estimaciones
LDC para la función de análisis geométrico 3D es: optimista, 4 600 LDC; más proba-
ble, 6 900 LDC; y pesimista, 8 600 LDC. Al aplicar la ecuación 23-1 el valor esperado
para la función de análisis geométrico 3D es 6 800 LDC. Otras estimaciones se deri-
van en forma similar. Al sumar verticalmente en la columna de LDC estimadas, se
establece una estimación de 33 200 líneas de código para el sistema CAD.

Tabla d e
estimación
para métodos
LDC.

Función LDC e s t i m a d a s

Facilidades de interfaz del usuario y control (FIUC) 2 300
Análisis geométrico bidímensional (AG2D) 5 300
Análisis geométrico tridimensional (AG3D) ó 800
Gestión de base de datos (GBDj 3 350
Facilidades de presentación gráfica de 4 9 5 0

computadora (FPGC)
Función de control perilér co -CP 2 100
Módulos de análisis de a se-o Z 8 4 0 0

Líneas de código estimabas 33 200

TM

PDF Editor

702 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

Una revisión de los datos históricos indica que el promedio organizacional de prc-
ductividad para sistemas de este tipo es de 620 LDC/pm. Con base en una tana
laboral de 8 000 dólares por mes, el costo por línea de código es aproximadamer.::
de 13 dólares. Con base en la estimación de LDC y los datos históricos de producti-
vidad, el costo total estimado del proyecto es de 431 000 dólares y el esfuerzo es::
mado es de 54 personas-mes.6

HOGARSEGURO

Estimación

Vinod (as ienta con la c a b e z a) : Muy bien, pero no
hemos definido ningún incremento todavía.

Doug: Cierto, pero es por eso por lo que necesitamos
estimar. |

Jamie (m a l h u m o r a d a) : ¿Quieres saber cuánto nos
tomará? ' /.,

Ooug: He aquí lo que necesito. Primero, necesitamos
descomponer funcionalmente el software de
HogarSeguro... a un nivel elevado... luego tenemos que
estimar el número de lineas de código que tomará cada
función... luego...

£1 e scenar io : t a oficina de Doug
Miller cuando comienza la planificación del proyecto,

l o s actores: Doug Miller (gerente del equipo de
ingeniería del software de HogarSeguro) y Vinod Raman,
Jamie lazar y otros miembros del equipo de ingeniería
de software del producto.

La conversac ión :

Ooug: Necesitamos desarrollar una estimación del
esfuerzo para el proyecto, y luego tenemos que definir un
microprograma de trabajo pora el primer incremento y
un macroprograma de trabajo para los incrementos

Jamie: ¡Vaya! ¿Cómo se supone que lo haremos?

Vinod: Yo lo he hecho en proyectos previos. Utilizas
casos de uso, determinas la funcionalidad requerida
para implementar cada uno, supones el conteo de LDC
para cada pieza de la función. La mejor aproximación e:
que cada uno lo haga de manera independiente y luego
comparamos los resultados.

Doug: O puedes hacer una descomposición funcional
de todo el proyecto.

Jamie: Pero eso tomará toda la vida, y ya tenemos que
comenzar.

Vinod: No.., se puede hacer en pocas horas... esto
mañana, de hecho.

Doug: Estoy de acuerdo... no podemos esperar
exactitud, sólo una idea aproximado de cuál será el
tamaño de HogarSeguro.

Jamie: Creo que sólo debemos estimar el esfuerzo...
eso es todo.

Doug: También haremos eso. Luego usaremos ambas
estimaciones como comprobación mutua.

Vinod: Vamos a hacerlo...

23.6.4 Un ejemplo de estimación basada en PF
La descomposición de la estimación basada en PF se centra en los valores de dominio
de información más que en las funciones de software. Al consultar la tabla presen-
tada en la figura 23.3 el planificador del proyecto estima entradas externas, salidas
externas, consultas externas, archivos lógicos internos y archivos de interfaz exter-
nos para el software CAD. Los PF se calculan usando la técnica estudiada en el capi-

6 Las estimaciones están redondeadas a 1 000 dólares y a la persona-mes más cercanos. Mayor pre-
cisión es innecesaria e irreal, dadas las limitaciones de precisión de la estimación.

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 703

Estimación d e valores d e dominio d e información.

Valor de dominio de Conteo Conteo
información Optim. Probable Pesim. estim. Peso PF

Número de entradas externas 2 0 24 30 24 4 9 7

Número de salidas externas 12 15 22 16 5 78

Número de preguntas externas 16 22 28 22 5 88

Número de archivos lógicos internos 4 4 5 4 10
- i'í--

42

Número de archivos de iriterfase externos 2 2 3 15

Conteo total i i i í l W l i i 320

tulo 15. En cuanto a los propósitos de esta estimación se supone que el factor pon-
derado de complejidad es el promedio. La figura 23.3 presenta los resultados de esta
estimación.

Se estima cada uno de los factores ponderados de complejidad y el valor del fac-
tor ajustado se calculan como se describe en el capítulo 15:

Factor V a l o r

1. Respaldo y recuperación 4

2. Comunicaciones de datos 2

3. Procesamiento distribuido 0

4. Desempeño crítico 4

5. Entorno operativo existenle 3
6. Entrada de datos en línea 4
7. Transacción de entrada sobre pantallas múltiples 5
8. ILF actuolizado en línea 3
9. Complejo de valores de dominio de información 5

10. Complejo de procesamiento interno 5
11. Código diseñado para reutilización 4
12. Con versión/instalación en diseño 3
13. Instalaciones múltiples 5
14. Aplicación diseñada para cambio 5

Factor d e a jus te d e va lor 1 . 1 7

Finalmente, se deriva el número estimado de PF:

P F e s t i m a d o = C O n t e O t o t a l X [0 . 6 5 + 0 . 0 1 X X (F .)]

PFesUmado = 375

La productividad organizacional promedio para sistemas de este tipo es 6.5 PF/pm.
Con base en una escala salarial de 8 000 c . .ares por mes, el costo por PF es aproxi-
madamente I 230 dólares. Con base en ia estimación de PF y los datos de producti-

TM

PDF Editor

704 PASTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

vidad históricos, el costo total estimado del proyecto es de 461 000 dólares, y el
esfuerzo estimado es de 58 personas-mes.

23.6.5 Estimación basada en el proceso
La técnica más común para estimar un proyecto es basar la estimación en el proce-
so que se empleará. Esto es, el proceso se descompone en un conjunto relativa-
mente pequeño de tareas y se estima el esfuerzo requerido para lograr cada tarea

Al igual que las técnicas basadas en el problema, la estimación basada en el pro-
ceso comienza con un bosquejo de las funciones del software obtenidas a partir de
ámbito del proyecto. Cada función requiere realizar una serie de actividades del maree
de trabajo. Las funciones y actividades7 del marco de trabajo relacionadas se pre
sentan como parte de una tabla similar a la presentada en la figura 23.4.

T a b l a d e
e s t i m a c i ó n

CC O U m f i f - . c i A n r lanmcatiori
d e r iesgo Ingeniería

construcción EC Totales

T a r e a - » - Análisis Diseñol C ó d i g o P r u e b a

Función
Y M

FIUC 0 . 5 0 2 . 5 0 0 . 4 0 5 . 0 0 n / a 8 . 4 0
A G 2 D 0 . 7 5 4 . 0 0 0 . 6 0 2 . 0 0 n / a 7 . 3 5
A G 3 D 0 . 5 0 4 . 0 0 1 . 0 0 3 , 0 0 n / a 8 . 5 0
FPGC 0 . 5 0 3 . 0 0 1 . 0 0 1 . 5 0 n / a 6 . 0 0
GBD 0 . 5 0 3 . 0 0 0 . 7 5 1 . 5 0 n / a 5 . 7 5
FCP 0 . 2 5 2 . 0 0 0 . 5 0 1 . 5 0 n / a 4 . 2 5

MAD 0 . 5 0 2 . 0 0 0 . 5 0 2 . 0 0 n / a 5 . 0 0

Totales 0 . 2 5 0 . 2 5 0 . 2 5 3 . 5 0 2 0 . 5 0 4 . 7 5 1 6 . 5 0 4 6 . 0 0

% e s f u e r z o 0 . 5 % 0 . 5 % 0 . 5 % 8 % 4 5 % 1 0 % 3 6 %

C C = comunicac ión del cl iente EC • eva luac ión del cl iente

Una vez que se combinan las funciones del problema y las actividades del proce-
so, el planificador estima el esfuerzo (por ejemplo, personas-mes) que se requerir;
para lograr cada actividad del proceso de software en cada función. Estos dato;
constituyen la matriz central de la tabla en la figura 23.4. Entonces se aplican laí
tasas de trabajo promedio (es decir, costo/unidad de esfuerzo) al esfuerzo estimac:
para cada actividad del proceso. Es muy probable que la tasa de trabajo varíe er
cada tarea. El equipo veterano está enormemente involucrado en las actividadef

^CONSEJcff i

Si el tiempo lo
peimile, use la grana-
laridad fina cuando
especifique las tareas
en la figura 23.4. Por
ejemplo, divida el
análisis en sus toreas
principales y estime
cada una por
separado.

7 Las actividades del marco de trabajo que se eligen para este proyecto difieren un poco de la activ
dades genéricas t ratadas en el capítulo 2, que son la comunicación con el cliente (CC), la planifica-
ción, el análisis de riesgos, la ingeniería y la construcción-liberación.

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 705

t empranas del marco de trabajo y generalmente es más costoso que el equipo menos
exper imentado involucrado en la construcción y liberación.

Los costos y el esfuerzo para cada función y actividad del marco de t rabajo se cal-
culan c o m o el último paso. Si la estimación basada en el proceso se realiza inde-
pendientemente de la estimación de LDC o PF, ahora se tienen dos o tres estimacio-
nes para costo y es fuerzo que se pueden comparar y armonizar . Si ambos conjuntos
de est imaciones mues t ran una concordancia razonable, existe una buena razón
para creer que las est imaciones son confiables. Si, por otra parte, los resultados de
dichas técnicas de descomposición muestran poca concordancia, se debe llevar a
cabo mayor investigación y análisis.

"Es mejor comprender el trasfondo de uno estimación antes de utilizarlo."
Barry Boehm y Richard Fairley

23.6.6 Un ejemplo de estimación basada en el proceso
Para ilustrar el u so de la estimación basada en el proceso considérese de nuevo el
sof tware CAD introducido en la sección 23.6.3. La configuración del sistema y las
funciones del sof tware permanecen invariables y las indica el ámbito del proyecto.

En la tabla basada en el proceso que se muestra en la figura 23.4 las estimacio-
nes del esfuerzo (en personas-mes) para cada actividad de ingeniería del sof tware s e
proporcionan para cada función del sof tware CAD (abreviadas para mayor rapidez).
Las actividades de ingeniería y de liberación de construcción se subdividen en las
principales tareas de ingeniería del sof tware que se muestran. Las primeras estima-
ciones de esfuerzo corresponden a comunicación con el cliente, planificación y aná-
lisis de riesgos, las cuales se registran en la hilera total al final de la tabla. Los totales
horizontal y vertical ofrecen un indicio del esfuerzo es t imado que se requiere para
análisis, diseño, código y prueba. Se debe señalar que 53 por ciento del es fuerzo se
emplea en las tareas de ingeniería del sistema de salida (análisis de requisitos y dise-
ño), lo que indica la importancia relativa de es te trabajo.

Con base en la escala salarial promedio de 8 000 dólares por mes, el costo total
est imado del proyecto e s de 368 000 dólares , y el esfuerzo est imado es de 46 perso-
nas-mes. Si se desea, los promedios de trabajo pueden asociarse con cada actividad
del marco de trabajo o tarea de ingeniería del software y calcularse por separado.

23.6.7 Estimación con casos de uso
Como se ha señalado a lo largo de las par tes 2 y 3 de este libro, los casos de uso per-
miten que un equipo de sof tware comprenda el ámbito del sof tware y los requisitos.
Sin embargo, desarrollar un enfoque de estimación con casos de uso e s problemáti-
co por las siguientes razones [SM199]:

• Los casos de uso se describen empleando muchos formatos y estilos dife-
rentes; no existe un formato es tándar

^ ¿Por qué es
• difícil deso-

lar uno técnica
i t estimación con
• s o s de uso?

TM

PDF Editor

706 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

• Los casos de uso representan una visión externa (la visión del usuario) del
software y con frecuencia están escritos con diferentes grados de abstracción.

• Los casos de uso no abordan la complejidad de las funciones ni de las carac-
terísticas que se describen.

• Los casos de uso no describen el comportamiento complejo (por ejemplo,
interacciones) que involucran muchas funciones y características,

A diferencia de las LDC o un punto de función, el "caso de uso" de una persona ta
vez requiera meses de esfuerzo mientras que el de otra quizá se implemente en lu-
dia o dos.

Aunque varios investigadores han considerado los casos de uso como una entra-
da a la estimación, a la fecha no ha surgido ningún método de estimación probad:
Smith [SMI99] sugiere el empleo de los casos de uso en la estimación, pero sólo s
se consideran dentro del contexto de la "jerarquía estructural" que los casos de us :
describen.

Smith argumenta que cualquier nivel de esta jerarquía estructural se describe cor
no más de 10 casos de uso. Cada uno de éstos abarcaría no más de 30 escenarios
distintos. Obviamente, los casos de uso que describen un sistema grande están escr
tos con un grado mucho mayor de abstracción (y representan considerablemente
más esfuerzo de desarrollo) que aquellos que describen un solo subsistema. En con-
secuencia, antes de que los casos de uso se empleen en la estimación, se establece
el nivel en la estructura jerárquica, se determina la longitud promedio (en páginas
de cada caso de uso, se define el tipo de software (por ejemplo, tiempo real, de negc
cios, de ingeniería/científico, anidado) y se considera una arquitectura común del
sistema. Una vez establecidas dichas características, los datos empíricos se aprove-
chan para establecer el número estimado de LDC o de PF por caso de uso (para caca
nivel de la jerarquía). Entonces se utilizan los datos históricos para calcular el esfuer-
zo necesario para desarrollar el sistema.

Enseguida se ilustra cómo realizar este cálculo; por tanto, considérese la siguier
te relación:8

LDC estimada = Nx LDCprom + [(S„/Sh - 1) + {P„/Ph - 1)] x LDCa|uslc (23-2)

donde

N = número real de casos de uso
LDCprom = promedio histórico de LDC por caso de uso para este tipo de subsis-

tema

8 Es importante señalar que la expresión (23-2) se emplea sólo con propósitos ilustrativos. Al igual
que todos los modelos de estimación, debe validarse localmente antes de que se le pueda utiliza-
con seguridad.

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 7 0 7

LDCajUSte = representa un ajuste con base en n por ciento de LDCprom donde n
se define [ocalmente y representa la diferencia entre este proyecto
y los proyectos "promedio"

Sa = escenarios reales por caso de uso
Sh = escenarios promedio por caso de uso para este tipo de subsistema
Pa = páginas reales por caso de uso
Ph = página promedio por caso de uso para este tipo de subsistema

Con la expresión (23-2) se desarrolla una estimación común del número de LDC con
base en el número real de casos de uso ajustado mediante el número de escenarios
y la longitud de la página de los casos de uso. El ajuste representa hasta n por cien-
to del promedio histórico de las LDC por caso de uso.

23.6.8 Un ejemplo de estimación basada en casos de uso
El software CAD presentado en la sección 23.6.3 está compuesto de tres grupos de
subsistemas:

• Subsistema de interfaz del usuario (incluye FIUC).

• Grupo de subsistema de ingeniería (incluye el subsistema AG2D, subsistema
AG3D y el subsistema MAD).

• Grupo de subsistema de infraestructura (incluye el subsistema FPCG y el
subsistema FCP).

Seis casos de uso describen el subsistema de interfaz del usuario. Cada caso de uso
lo describen no más de 10 escenarios y tiene una longitud promedio de seis páginas.
El grupo de subsistema de ingeniería lo describen 10 casos de uso (considerados en
un nivel más alto de la jerarquía estructural). Cada uno de los casos de uso no tiene
más de 20 escenarios asociados y tiene una longitud promedio de ocho páginas.
Finalmente, el grupo de subsistema de infraestructura lo describen cinco casos de uso
con un promedio de sólo seis escenarios y una longitud promedio de cinco páginas.

Con la relación anotada en la expresión (23-2) y n = 30 por ciento se elabora la
tabla de la figura 23.5. Si se considera la primera hilera de la tabla, los datos históri-
cos indican que el software IU requiere un promedio de 800 LDC por caso de uso
cuando éste no tiene más de 12 escenarios y está descrito en menos de cinco pági-

E s t i m a c i ó n d e c a s o d e u s o .

Subsistema de interfaz del usuario
Grupo de subsistema de ingeniería
Grupo de subsistema de infraestructura

Total LDC estimadas

casos
de uso

6
10
5

escenarios páginas
1 0 6 12 5 5 6 0 3 3 6 6

2 0 8 8 3100 3 1 2 3 3

6 5 6 1650 7 9 7 0

4 2 5 6 8

LDC LDC estimadas

TM

PDF Editor

708 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

ñas. Estos datos se a jus tan razonablemente bien para el sistema CAD. Así pues, la
estimación de LDC para el subsistema de interfaz del usuario se calcula mediante la
expresión (23-2), Si se aplica el mismo enfoque, se realizan est imaciones para los
grupos de subsis temas de ingeniería e infraestructura. La figura 23.5 resume las esti-
maciones e indica que el t amaño global del sof tware CAD se estima en 42 500 LDC

Si se utilizan 620 LDC/pm como la productividad promedio en los s is temas de
este tipo y una escala salarial de 8 000 dólares por mes, el costo por línea de código
es aproximadamente de 13 dólares. Con base en la est imación de caso de uso y lo?
datos históricos de productividad, el costo total est imado del proyecto es de 552 OOC
dólares, y el esfuerzo est imado es de 68 personas-mes.

23.6.9 Reconciliación de estimaciones
Las técnicas de estimación estudiadas en las secciones precedentes dan por resultado
múltiples est imaciones que deben reconciliarse para producir una sola est imador,
de esfuerzo, duración del proyecto o costo. Este procedimiento de reconciliación se
ilustra considerando de nuevo el sof tware CAD presentado en la sección 23.6.3.

"Tai vez los mé todos complicados no produzcan u n a est imación m á s precisa, pa r t i cu la rmente cuando los
d e s a b o l l a d o r e s p u e d e n incorporar su propia intuición en la es t imación." ;í

Philip Johnson el al.

El esfuerzo est imado total para el software CAD varía desde un ba jo de 46 persc-
nas -mes (obtenido empleando el enfoque de la estimación basada en el proces:
hasta un alto de 68 personas-mes (derivado con la estimación de caso de uso). L¿
estimación promedio (que utiliza los cuatro enfoques) es de 56 personas-mes. La varia-
ción de la estimación promedio es aproximadamente 18 por ciento en el lado baj :
y de 21 por ciento en el lado alto.

¿Qué ocurre cuando la concordancia entre las est imaciones es insuficiente-
Responder esta pregunta requiere reevaluar la información con que se hicieron las
estimaciones. Las est imaciones ampliamente divergentes con frecuencia puede-
rastrearse has ta una de dos causas:

1. El planificador no ha comprendido adecuadamente o ha malinterpretado el
ámbito del proyecto.

2 . Los datos de productividad que utilizan las técnicas de estimación basadas er
el problema son ¡napropiados para la aplicación, obsoletos (pues ya no refle-
jan con precisión la organización de ingeniería de software) o se han aplicad ;
mal.

El planificador debe determinar la causa de la divergencia y luego reconciliar las
estimaciones.

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 709

INFORMACIÓN

Técnicas de estimación automatizada para proyectos de software \
Las herramientas de estimación automatizadas

permiten que planificador estime costo y
y realice análisis "si... entonces" respecto de

ntes variables del proyecto, como la fecha de
o la plantilla de personal. Aunque existen muchas

lientas de estimación automatizada (véase el
Iro más adelante en este capítulo), todas presentan

mismas características generales y realizan las
tes seis funciones genéricas [JON96]:

Tamaño de los entregables del proyecto. Se estima el
"tamaño" de uno o más productos de trabajo del
software. Los productos de trabajo incluyen la
representación externa del software (por ejemplo,
pantallas, reportes), el software en sí mismo (por
ejemplo, KLDC), funcionalidad entregada (por
ejemplo, puntos de función) e información descriptiva
(por ejemplo, documentos).

2. Selección de las actividades del proyecto. Se
selecciona el marco de trabajo del proceso
adecuado y se especifica el conjunto de tareas de
ingeniería del software.

3. Predicción de los niveles del personal. Se especifica el
número de personas que estará disponible para realizar
el trabajo. Puesto que la relación entre el personal
disponible y el trabajo (esfuerzo predicho) es
enormemente no lineal, ésta es una entrada importante.

4 . Predicción dei esfuerzo de software. L a s

herramientas de estimación emplean uno o más
modelos (sección 23.7) que relacionan el tamaño de
los entregables del proyecto con el esfuerzo
requerido para producirlos.

5. Predicción del costo del software. Dados los
resultados del paso 4, los costos se calculan
relacionando los índices de trabajo con las
actividades del proyecto anotadas en el paso 2.

6. Predicción del programa de trabajo del software.
Cuando se conocen el esfuerzo, el nivel del personal
y las actividades del proyecto es posible producir un
anteproyecto de programa al ubicar el trabajo a
través de las actividades de ingeniería del software
con base en los modelos recomendados para la
distribución del esfuerzo estudiados en el capítulo 24.

La aplicación de diferentes herramientas de estimación a
los mismos datos de proyecto permite encontrar una
variación relativamente grande en los resultados
estimados. Más importante todavía, en ocasiones los
valores predichos son significativamente diferentes de los
valores reales. Esto refuerza la noción de que las salidas
de las herramientas de estimación se deben emplear como
un "punto de datos" a partir del cual se derivan las
estimaciones, no como la única fuente para una
estimación.

\
C L A V E

fc mode lo de
s t i m a c i ó n refleja la
x ó l a c i ó a de proyectos
: e sde la q u e se ha
jerivado. Por lo t an to ,
ú modelo e s sensible
d dominio.

Un modelo de estimación para software de computadora utiliza fórmulas obtenidas
empíricamente para predecir el esfuerzo como una función de LDC o PF.9 Los valo-
res de LDC o PF se estiman mediante el enfoque descrito en las secciones 23.6.3 y
23.6.4. Pero, en lugar de emplear las tablas descritas en dichas secciones, los valo-
res resultantes para LDC o PF se colocan en el modelo de estimación.

Los datos empíricos que apoyan la mayoría de los modelos de estimación proce-
den de una muestra limitada de proyectos. Por esta razón, ningún modelo de esti-
mación es apropiado para todas las clases de software ni en todos los entornos de
desarrollo. En consecuencia, los resultados obtenidos a partir de tales modelos se
deben emplear juiciosamente.

9 En la sección 23.6.7 se sugiere un modelo empírico que utiliza casos de uso como la variable inde-
pendiente. Sin embargo, a la fecha han aparecido relativamente pocos en la respectiva bibliografía.

TM

PDF Editor

710 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

(C O N S E J O ^

Ninguno de estos
modelos se debe
emplear sin uno coli-
bración cuidadosa a
su enlomo.

En sunset.ust.
edu/reseoré /
C 0 C 0 M 0 I I / -
cocomo-moin.html
se puede obtener |
cíomtodón detolloda

acerca de COCOMO' II,
j ñ d u s o s o f t w m e

Un modelo de estimación debe calibrarse para reflejar las condiciones locales,
modelo debe probarse mediante la aplicación de los datos recopilados a partir
proyectos completados, colocar los datos en el modelo y luego comparar los r~
taos reales con los predichos. Si la concordancia e s insuficiente, el modelo debe
narse y ponerse a prueba nuevamente an tes de que se pueda utilizar.

23.7.1 La estructura de los modelos de estimación
Un modelo de estimación típico se deriva mediante el análisis de regresión de
datos recopilados de proyectos de sof tware previos. La estructura global de
modelos toma la forma [MAT94]

E = A + B x (ev)c (23-3»

donde A , B y C son constantes obtenidas empíricamente, E es el esfuerzo en pers:-
na -mes y ev e s la variable de estimación (ya sea LDC o PF). Además de la relación
anotada en la ecuación (23-3), la mayoría de los modelos de estimación tiene algu-
na forma de componente de ajuste del proyecto que permite ajustar £ por
características del proyecto (por ejemplo, complejidad del problema, experiencia
personal, entorno de desarrollo). Entre los muchos modelos de estimación orienta-
dos a LDC propuestos en la bibliografía se encuent ran

E = 5.2 x (KLDC)09'
E = 5.5 + 0.73 x (LDC)116

E = 3.2 x (KLDC)105

E = 5.288 x (KLDC)10457

modelo Walston-Felix
modelo Bailey-Basili
modelo simple de Boehm
modelo Doty para KLDC > 9

También se han propuesto modelos or ientados a PF. Entre és tos se incluyen:

E = - 9 1 . 4 + 0.355 PF
E = - 3 7 + 0.96 PF
E = - 1 2 . 8 8 + 0.405 PF

modelo de Albrecht y Gaffney
modelo de Kemerer
modelo de regresión para proyecto pequeño

Un rápido examen de es tos modelos indica que cada uno producirá un resultad:»
diferente para los mismos valores de LDC o PF. La implicación es clara. ¡Los mode-
los de estimación deben calibrarse para las necesidades locales!

23.7.2 El modelo COCOMO II
En su libro clásico acerca de "economía de la ingeniería del software", Barry Boehm
[BOE81] introduce una jerarquía de modelos de estimación de sof tware que lleva rl
nombre de COCOMO, por COnstructive COst MOdel (Modelo Constructivo de Costo;
El modelo COCOMO original se volvió uno de los más ampliamente utilizados y estu-
diados modelos de estimación de costo de sof tware en la industria. Además, ha evo-
lucionado a un modelo de estimación más amplio, l lamado COCOMO II [BOE9f.
BOEOO]. Al igual que su predecesor, COCOMO II es en realidad una jerarquía de
modelos de estimación que aborda las áreas siguientes:

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 711

• Modelo de composición de la aplicación. Se emplea durante las pr imeras e tapas
de la ingeniería del software, cuando son primordiales la elaboración de
prototipos de las interfases de usuario, la consideración de la interacción del
sof tware y el sistema, la valoración del desempeño y la evaluación de la
madurez de la tecnología.

• Modelo de etapa de diseño temprano. Se utiliza una vez que se han estabili-
zado los requisitos y se ha establecido la arquitectura básica del software.

• Modelo de etapa posterior a la arquitectura. Se emplea durante la construcción
del software.

Al igual que los modelos de estimación del software, los modelos COCOMOII requie-
ren información de tamaño. Como parte de la jerarquía del modelo hay disponibles
tres opciones diferentes de tamaño: puntos objeto, puntos de función y líneas de
código fuente.

El modelo COCOMO II de composición de la aplicación emplea puntos objeto, una
medida indirecta de sof tware que s e calcula mediante conteos del número de 1) pan-
tallas (en la interfaz del usuario), 2) reportes y 3) componen tes que probablemente
se requieran para construir la aplicación. Cada instancia de objeto (por ejemplo, una
pantalla o reporte) se clasifica en uno de tres niveles de complejidad (es decir, sim-
ple, medio o difícil) aplicando criterios sugeridos por Boehm [BOE96]. En esencia, la
complejidad es una función del número y origen de las tablas de datos del cliente y
el servidor que se requieren para generar la pantalla o reporte, y el número de vis-
tas o secciones presentadas como parte de la pantalla o el informe.

¿Qué es Una vez que se ha determinado la complejidad, el número de pantallas, informes
M punto y componentes se pondera de acuerdo con la tabla ilustrada en la figura 23.6.

Entonces se determina la cuenta de puntos objeto al multiplicar el número original
de instancias de objeto por el factor de ponderación en la figura y se suma para obte-
ner una cuenta total de puntos objeto. Al aplicar el desarrollo basado en compo-
nen tes o la reutilización general de software se estima el porcentaje de reutilización
(%reut) y se ajusta la cuenta de puntos objeto:

NPO = (puntos objeto) x [(100 - %reut)/100]

donde NPO se define como nuevos puntos objeto.
Para obtener una estimación del esfuerzo con base en el valor NPO calculado, se
debe calcular una "tasa de productividad". La figura 23.7 presenta la tasa de produc-
tividad

PROD = NPO/persona-mes

para diferentes niveles de experiencia del desarrollador y madurez del entorno de
desarrollo. Una vez determinada la tasa de productividad se puede obtener una esti-
mación del esfuerzo del proyecto del modo siguiente:

esfuerzo es t imado = NPO/PROD

TM

PDF Editor

712 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

Ponderación d e
complej idad
p a t a tipos d e
objeto [BOE96].

Tipo d e
o b j e t o

P e s o d e c o m p l e j i d a d Tipo d e
o b j e t o Simple M e d i o Difícil

P a n t a l l a 1 2 3

R e p o r t e 2 5 8

C o m p o n e n t e 3 G L 1 0

Tasa d e productividad por puntos objeto [BOE96],

Experiencia/capacidad del
desarrollador

Muy
baja

Boja Nominal Alta Muy
alta

Madurez/capacidad del entorno Muy
baja

Baja Nominal Alta Muy
alta

TASA PRODUCTIVIDAD (PROD) 4 7 13 2 5 5 0

9 w w w . q s m . c o g i

infamación ocer tode
Miramientos de
estimación de costo de
software que hon
evolucionado a poitir
de lo ecuación
softwoie.

En modelos COCOMO II más avanzados1 0 se requieren varios factores de esca a.
controladores de costo y procedimientos de ajuste. El lector interesado debe leer
[BOEOO] o visitar el sitio Web de COCOMO II.

23.7.3 La e c u a c i ó n de l sof tware

La ecuación de software [PUT92] es un modelo multivariable que supone una distr
bución específica del esfuerzo a lo largo de la vida de un proyecto de desarrollo ce
software. El modelo procede de datos de productividad recopilados de casi 4 OC>:
proyectos de software contemporáneos. Con base en estos datos, un modelo de esv
mación de la forma

E = [LDC x B° " 3 /P j 3 x (1/í4) (2 3 - 4 i

donde

E = esfuerzo en personas-mes o personas-año
t = duración del proyecto en meses o años
B = "factor especial de habilidades"1 '

10 Como se anotó anteriormente, estos modelos utilizan conteos de PFy KLDC para la variable tamaft:
11 B aumenta lentamente conforme "crecen la necesidad de integración, las pruebas, la garantía de ca-

lidad, la documentación y las habilidades de gestión" [PUT92]. Para programas pequeños (KLDC
a 15), B = 0.16. Para programas más grandes que 70 KLDC, B = 0.39.

TM

PDF Editor

http://www.qsm.cogi

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 713

P = "parámetro de productividad" que refleja: madurez global del proceso y
prácticas de gestión, la medida en la que se emplean las buenas prácticas
de ingeniería del software, el nivel de los lenguajes de programación utili-
zados, el estado del entorno del software, las habilidades y experiencias
del equipo de software, y la complejidad de la aplicación.

Los valores típicos pueden ser P = 2 000 para desarrollo del software anidado de
tiempo real; P = 10 000 para software de telecomunicaciones y sistemas; P = 28 000
para aplicaciones de sistemas de negocios. El parámetro de productividad se puede
calcular para condiciones locales si se emplean datos históricos recopilados de
esfuerzos de desarrollo previos.

Es importante notar que la ecuación del software tiene dos parámetros indepen-
dientes: 1) una estimación del tamaño (en LDC) y 2) una estimación de la duración
del proyecto en meses o años calendario.

Putnam y Myers [PUT92] sugieren un conjunto de ecuaciones derivadas de la
ecuación del software para simplificar el proceso de estimación y emplear una forma
más común para su modelo de estimación. El tiempo mínimo de desarrollo se defi-
ne como

tmjn = 8.14(LDC/P)043 en meses para tmin > 6 meses (23-5a)
E = 180Bí3 en personas-mes para E > 20 personas-mes (23-5b)

Nótese que t se representa en años en la ecuación (23-5b).
Al utilizar las ecuaciones (23-5) con P = 12 000 (el valor recomendado para soft-

ware científico) para el software CAD estudiado previamente en este capítulo,

£mln = 8.14(33 200/12 000)"43

tmin = 12.6 meses calendario
£ = 180 X 0.28 X (1.05)3

E = 58 personas-mes

Los resultados de la ecuación del software corresponden favorablemente con las
estimaciones desarrolladas en la sección 23.6. Al igual que el modelo COCOMO
señalado en la sección precedente, la ecuación del software ha evolucionado duran-
te la década pasada. En [PUT97b] se puede encontrar una detallada exposición de
una versión extendida de este enfoque de estimación.

Vale la pena complementar los métodos convencionales de estimación de costo del
software con un enfoque diseñado explícitamente para software OO. Lorenz y Kidd
[LOR94] sugieren el enfoque siguiente

1. Desarrollar estimaciones aplicando la descomposición de esfuerzo, análisis de
PF y cualquier otro método que sea aplicable en aplicaciones convencionales.

TM

PDF Editor

714 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

2. Aplicar el modelado de análisis orientado a objetos (capítulo 8), desarrollar
casos de uso y determinar un conteo. Reconocer que el número de casos de
uso puede cambiar conforme avance el proyecto.

3 . A partir del modelo de análisis, determinar el número de clases clave (llama-
das clases de análisis en el capítulo 8).

4 . Categorizar el tipo de interfaz para la aplicación y desarrollar un multiplicad
para las clases de soporte:

Tipo d e interfaz

Sin IUG
Interfaz del usuario basada en texto
IUG
IUG com pleia

Multiplicador

2 .0
2 .25
2 .25
3.0

5.

6.

Multiplicar el número de clases clave (paso 3) por el multiplicador para obte-
ner una estimación del número de clases de soporte.

Multiplicar el número total de clases (clave + soporte) por el número prome-
dio de unidades de trabajo por clase. Lorenz y Kidd sugieren de 15 a 20 persc-
nas-día por clase.

Comprobar de manera cruzada la estimación basada en clase al multiplicar e
número promedio de unidades de trabajo por caso de uso.

Las técnicas de estimación estudiadas en las secciones 23.6, 23.7 y 23.8 se pue
aplicar en cualquier proyecto de software. Sin embargo, cuando un equipo de :
ware encuentra una duración de proyecto extremadamente corta (semanas más que 1
meses) —que probablemente tengan una continua corriente de cambios— la piar
cación del proyecto en general y la estimación en particular se deben abreviar.12 Ea |
las secciones siguientes se examinan dos técnicas de estimación especializadas.

23.9.1 Estimación para desarrollo ágil
Puesto que los requerimientos para un proyecto ágil (capítulo 4) se definen como un]
conjunto de escenarios de usuario (por ejemplo, "historias" en programación extre-
ma) es posible desarrollar un enfoque de estimación informal, aunque razonaba
mente disciplinado y significativo dentro del contexto de la planificación del proye:-
to para cada incremento de software.

La estimación para los proyectos ágiles aplica un enfoque de descomposición que ¡
abarca los pasos siguientes:

12 "Abreviar" no significa eliminar. Incluso los proyectos de corta duración deben planificarse, y la e s - |
limación es el fundamento de la planificación sólida.

TM

PDF Editor

C A P I T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 7 1 5

¿Cómo se
' desarrollan

iciones
i se aplica

i ágil?

[CONSEJO

I -riexlo de lo
i paro un

> ¥ .
' e s una
7 del

: global de un
i usuario

r.oPf.

1. Cada escenario de usuario (el equivalente de un minicaso de uso creado en el
comienzo mismo de un proyecto por los usuarios finales u otros participantes)
se considera por separado respecto de propósitos de estimación.

2 . El escenario se descompone en el conjunto de funciones y las tareas de inge-
niería del sof tware que se requerirán para desarrollarlo.

3a . Cada tarea se estima por separado. Nota: la est imación se puede basar en da-
tos históricos, en un modelo empírico o en la "experiencia".

3 b . Alternativamente, el "volumen" (tamaño) del escenario se puede estimar en
LDC, PF o alguna otra medida orientada a volumen (por ejemplo, puntos ob-
jeto).

4 a . Las est imaciones de cada tarea se suman para crear una estimación para el
escenario.

4 b . Alternativamente, el volumen es t imado para el escenario se traduce en es-
fuerzo mediante la aplicación de datos históricos.

5 . Las est imaciones de es fuerzo acerca de todos los escenarios que se imple-
mentarán para un incremento de software dado se suman con el fin de desa-
rrollar el esfuerzo est imado para el incremento.

Puesto que la duración del proyecto requerido para el desarrollo de un incremento
de software es bas tante corta (usualmente de 3-6 semanas) , este enfoque de esti-
mación tiene dos propósitos: 1) asegurar que el número de escenarios que se inclui-
rán en el incremento se integra con los recursos disponibles, y 2) establecer una base
para ubicar el es fuerzo conforme se desarrolla el incremento.

23.9.2 Estimación para proyectos de ingeniería Web
Como se asentó en el capítulo 16, los proyectos de ingeniería Web con frecuencia
adoptan el modelo de proceso ágil. Es factible emplear una medición de punto de
función modificada, en conjunto con los pasos subrayados en la sección 23.9.1, con
el fin de desarrollar una estimación para la WebApp.

Roetzheim (ROEOOj sugiere los siguientes valores de dominio de información
cuando se adaptan puntos de función (capítulos 15 y 22) para la estimación WebApp:

• Entradas son cada pantalla o formato de entrada (por ejemplo, CGI o Java),
cada pantalla de mantenimiento y, si en alguna parte utiliza una etiqueta de
metáfora de cuaderno, cada etiqueta.

• Salidas son cada página Web estática, cada guión de página Web dinámica
(por ejemplo, ASP, ISAPI u otro guión DHTML) y cada reporte (ya sea que es té
basado en Web o sea del todo administrativo).

• Tablas son cada tabla lógica en la base de datos más, si emplea XML para
a lmacenar datos en un archivo, cada objeto XML (o colección de atributos
XML).

TM

PDF Editor

716 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

• Las interfaces retienen su definición como archivos lógicos (por ejemplo,
formatos de registro únicos) en las fronteras exteriores del sistema.

• Consultas son cada interfaz publicada externamente o utiliza una interfaz
orientada al mensaje. Un ejemplo típico son las referencias externas DCOM o
COM.

Los puntos de función (calculados empleando los valores de dominio de información
anotados) son un indicador razonable del volumen para una WebApp.

Mendesy sus colegas [MEN011 sugieren que el volumen de una WebApp se deter-
mina mejor mediante la recopilación de medidas (llamadas "variables predictoras
asociadas con la aplicación (por ejemplo, conteo de página, conteo de medios
audiovisuales, conteo de función), las características de su página Web (por ejemplo,
complejidad de página, complejidad de vinculación, complejidad gráfica), sus carac-
terísticas de medios audiovisuales (por ejemplo, duración de los clips) y característi-
cas funcionales (por ejemplo, longitud de código, longitud de código reutilizado)
Dichas medidas se pueden emplear en el desarrollo de modelos de estimación emp:-

HERRAMIENTAS DE SOFTWARE

•

Estimación de esfuerzo y costo
Objet ivo: El objetivo de las herramientas de
estimación de esfuerzo y costo es proporcionar

al equipo del proyecto una estimación del esfuerzo
requerido, de la duración del proyecto y del costo en una
forma que aborde las características específicas del
proyecto inmediato y el entorno en el que se construirá.

Mecánica: En general, las herramientas de estimación de
costo utilizan una base de datos histórica procedente de
proyectos locales, datos recopilados a través de la
industria y un modelo empírico (por ejemplo, COCOMO II)
que se emplea para calcular estimaciones de esfuerzo,
duración y costo, tas características del proyecto y el
entorno de desarrollo son entradas, y la herramienta
proporciona un rango de estimación de salidas.

Herramientas represen ta t ivas 1 3

Costar, desarrollado por Softstar Systems
(www.softstarsystems.com), emplea el modelo
COCOMO II para desarrollar estimaciones de
software.

Cost Xpert, desarrollado por Cost Xpert Group, Inc.
(www.costxpert.com), integra modelos de estimación

. múltiples y una base de datos histórica de proyectos,

Estímate Professional, desarrollado por el Software
Productivity Center, Inc. (www.spc.com), está basado en
COCOMO II y en el Modelo SUM.

Knowledge Plan, desarrollado por Software Productivity
Research (www.spr.com), utiliza la entrada de punto de
función como el controlador primario para un paquete
de estimación completo.

Price 5, desarrollado por Price Systems
(www.pricesystems.com), es una de las herramientas
más viejas y ampliamente utilizadas en proyectos de
desarrollo de software a gran escala.

SEER/SEM, desarrollado por Galorath Inc.
(www.galorath.com), proporciona una capacidad de
estimación completa, análisis de sensibilidad,
valoración de riesgo y otras características.

SUM-Estimate, desarrollado por QSM (www.qsm.com),
echa mano de "bases de conocimiento industrial"
detalladas para ofrecer una "verificación sanitaria" de
las estimaciones obtenidas empleando datos locales.

13 Las herramientas anotadas aquí son una muestra de esta categoría. En la mayoría de los casos
nombres de las mismas son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.softstarsystems.com
http://www.costxpert.com
http://www.spc.com
http://www.spr.com
http://www.pricesystems.com
http://www.galorath.com
http://www.qsm.com

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 717

rica para esfuerzos de proyecto total, de creación de página, de creación de medios
audiovisuales y de creación de guiones. Sin embargo, todavía falta realizar más tra-
ba jo an tes de que tales modelos puedan emplearse con confianza.

2 3 . 1 0 L A D E C I S I Ó N D E S A R R O L L A R - C O M P R A R

A menudo, en muchas áreas de aplicación de sof tware es más rentable adquirir que
desarrollar sof tware de computadora . Los gestores de ingeniería del software
enfrentan una decisión de desarrollar-comprar que tal vez se complique aún más por
varias opciones de adquisición: 1) el sof tware se puede comprar (o adquirir la licen-
cia) ya desarrollado, 2) los componen tes de software de "experiencia completa" o
"experiencia parcial" (véase la sección 23.4.2) se pueden adquirir y luego modificar
e integrar para satisfacer necesidades específicas, o 3) el sof tware se puede construir
de manera personalizada por medio de un contratista externo para satisfacer las
necesidades del comprador.

Los pasos involucrados en la adquisición los definen lo crucial de! software que
se comprará y el costo final. En el análisis final, la decisión desarrollar-comprar se
realiza basándose en las siguientes condiciones: 1) ¿El producto de sof tware estará
disponible an tes que el software desarrollado de manera interna? 2) ¿El costo de
adquisición más el costo de personalización será menor que el costo de desarrollar
el software de manera interna? 3) ¿El costo del soporte externo (por ejemplo, un con-
trato de mantenimiento) será menor que el costo del soporte interno? Estas condi-
ciones se aplican a cada una de las opciones de adquisición.

23.10.1 Creación de un árbol de decisión
Los pasos recién descritos se pueden aumenta r mediante técnicas estadísticas tales
c o m o el análisis del árbol de decisión [BOE89]. Por ejemplo, la figura 23.8 bosqueja un
árbol de decisión para un sistema basado en software, X. En este caso, la organiza-
ción de ingeniería del software puede 1) construir el sistema X desde cero, 2) reuti-
lizar componentes existentes de "experiencia parcial" para construir el sistema, 3)
comprar un producto de software disponible y modificarlo para satisfacer las nece-
sidades locales, o 4) contratar el desarrollo de software con una empresa externa.

Si el sistema se construirá desde cero existe un 70 por ciento de probabilidad de
que el trabajo sea difícil. Al emplear las técnicas de estimación estudiadas antes en
este capítulo, el planificador del proyecto estima que un esfuerzo de desarrollo difí-
cil costará 450 000 dólares. Un esfuerzo de desarrollo "simple" se estima que costará
380 000 dólares. El valor esperado para el costo, calculado a lo largo de cualquier
rama del árbol de decisión, e s

¿Existe una
forma

¡(a de
las

con la

ollar-
7

costo esperado = I (probabilidad de la ruta x (costo es t imado de la ruta),

donde i es la trayectoria del árbol de decisión. Para la trayectoria de construcción,

costo esperadocons t ru l I = 0.30(380K c .areí - 0.70(450K dólares) = 429K dólares

TM

PDF Editor

718 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

Arbol d e decis ión
para apoyar la
decis ión
desarrollar-
comprar.

Simple (0 . 3 0) 3 8 0 0 0 0 d o l o r e s

4 5 0 0 0 0 d ó l a r e s

2 7 5 0 0 0 d ó l a r e s

3 1 0 0 0 0 d ó l a r e s

4 9 0 0 0 0 d ó l a r e s

2 1 0 0 0 0 d ó l a r e s

4 0 0 0 0 0 d ó l a r e s

3 5 0 0 0 0 d ó l a r e s

5 0 0 0 0 0 d ó l a r e s

Al seguir otras trayectorias del árbol de decisión también se muestran, en una
diversidad de circunstancias, los costos proyectados para reutilización, compra y
contratación. Los costos esperados para dichas trayectorias son

costo esperadoIeuli|¡zar = 0.40(275K dólares) = 0.60(0.20(310K dólares) + 0.80(490K

costo esperadOcomprar = 0.70(210K dólares) + 0.30(400Kdólares) = 267K dólares
costo esperadomn, ra la r = 0.60(350K dólares) + 0.40(500K dólares) = 410K dólares

Con base en la probabilidad y los costos proyectos que se han anotado en la figura
23.8, el costo esperado más bajo es la opción "comprar".

Sin embargo, es importante señalar que se deben considerar muchos criterios —no
sólo costo— durante el proceso de toma de decisión. Disponibilidad, experiencia del
desarrollador-vendedor-contratista, concordancia con los requisitos, "políticas"
locales y la probabilidad de cambiar son sólo algunos de los criterios que pueden
incidir en la decisión final de construir, reutilizar, comprar o contratar.

23.10.2 Subcontratación
Tarde o temprano, cualquier compañía que desarrolla software de computadora se
plantea una pregunta fundamental: ¿existe una forma de conseguir los sistemas y
software necesarios a un precio más bajo? La respuesta no es tan simple, y los deba-
tes emocionales que genera la pregunta siempre conducen a una sola palabra: sub-
contratación.

Como concepto, la subcontratación es extremadamente simple. Las actividades
de ingeniería del software se contratan con una tercera parte que realiza el trabajo

dólares)] = 382K dólares

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 719

a un costo más ba jo y, así se espera, mayor calidad. El trabajo de sof tware llevado a
cabo dentro de una compañía se reduce a una actividad de gestión de contratos.1 4

" C o m o reg l a , l a s u b c o n t r a t a c i ó n r e q u i e r e i n d u s o m á s ges t ión e x p e r t a q u e el d e s a r r o l l o e n c a s a . "

Steve McCannell

La decisión de subcontratar puede ser estratégica o táctica. En el ámbito estraté-
gico, los gestores comerciales consideran si una porción significativa de todo el tra-
ba jo de sof tware se puede contratar con otros. En el p lano táctico, un gestor de pro-
yecto determina si parte o todo un proyecto puede lograrse mejor al subcontratar el
trabajo de software.

Sin importar la amplitud de la visión, la decisión de subcontratar usualmente es
financiera. Una exposición detallada del análisis financiero de la subcontratación
está más allá del ámbi to de este libro y mejor se deja a otros (por ejemplo, [MIN95]).
Sin embargo, vale la pena una breve revisión de los pros y contras de la decisión.

En el lado positivo, usualmente es factible ahorrar en el costo reduciendo el
número de personal de software y las instalaciones (por ejemplo, computadoras ,
infraestructura) que los soportan. En el lado negativo, una compañía pierde cierto
control sobre el sof tware que necesita. Dado que el sof tware es una tecnología que
diferencia sus sistemas, servicios y productos, una compañía corre el riesgo de poner
el destino de su competitividad en las manos de una tercera parte.

HOGARSEGURO

- S A I IP

Subcontratación

El e scenar io : Sala de juntas de

actores: Mal Golden, gerente ejecutivo, desarrollo
producto; lee Warren, gerente de ingeniería; Joe

VP ejecutivo, desarrollo comercial; Doug
. gerente de proyecto, ingeniería de software,

conversac ión:

Joe: Estamos considerando subcontratar la porción de
del software del producto HogarSeguro.

(impres ionado) : ¿Cuándo sucedió esto?

Lee: Obtuvimos un presupuesto de un desarrollador
= tierno. Presupuesta un 30 por ciento por debajo de lo

que tu grupo parece creer que costará. Aquí. [Extiende el
presupuesto a Doug, quien lo lee.]

Mal: Como sabes, Doug, estamos tratando de mantener
los costos bajos, y 30 por ciento es 30 por ciento.
Además, estas personas vienen muy bien recomendadas.

Doug (t o m a un respiro e intenta recuperar la
calma): Me tomaron por sorpresa, pero antes de que
tomen una decisión final, ¿algunos comentarios?

J o e (as ienta con la c a b e z a) : Seguro, adelante

Doug: No hemos trabajado con esta empresa
subcontratista antes, ¿cierto?

Mal: Cierto, pero ..

14 La subcontratación se puede considerar, der r .a re ' í —ás general, como cualquier actividad que con-
duce a la adquisición de software o algunos de sus componentes con una fuente externa a la orga-
nización de ingeniería del software.

TM

PDF Editor

7 2 0 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

D o u g : Y ellos anotan que cualquier cambio a las
especificaciones será cobrado a una tasa adicional,
jcierto2 ¿

Joe (frunce e l entrecejo); Cierto, pero esperamos
que las cosas serán razonablemente estables.

D o u g : Una mala suposición, Joe.

Joe! B u e n o " 1 > 1 <

Doug: Es probable que liberemos nuevas versiones de
este producto durante algunos años. Y es razonable
suponer que el software proporcionará muchas de las
nuevas características, ¿cierto?

[Todos afirman con la cabeza.]

D o u g : ¿Alguna vez hemos coordinado un proyecto
internacional?

Lee (se v e p r e o c u p a d o) : No, pero me dijeron...

D o u g (intenta suprimir s u enojo): Ásf que lo que
me estáft diciendo es: 1) estamos a punto de trabajar con
una empresa desconocida, 2) los costos para hacer esto
no son tan bajos cómo parecen, 3) de facto nos estamos
comprometiendo a trabajar con ellos durante muchas

liberaciones de producto, sin importar qué hagan en la
primera, y 4) aprenderemos en e) camino lo relativo a un
proyecto internacional.

[Todos guardan silencio.]

Doug: Muchachos... creo qué"esto es un error, y me
gustaría que tomaran un día para reconsiderar.
Tendremos más control si hacemos el trabajo en casa.
Tenemos la experiencia y puedo garantizar que no nos
costará mucho más... el riesgo será más bajo y yo sé que
todos tienen aversión por el riesgo, como yo.

J o e (ceñudo): Has anotado buenos puntos, pero tú
tienes un interés personal en mantener este proyecto en
CaSa, \ 'í;íf i.:;: '
Doug: Es cierto, pero eso no cambia los hechos.

J o e (con un suspiro): Muy bien, pospongamos esto
un día o dos, pensemos en ello un poco más y
reunámonos de nuevo para una decisión final. Doug,
¿puedo hablar contigo en privado?

D o u g : Claro... Realmente quiero estar seguro de que
hacemos las cosas correctas.

2 3 . 1 1 RESUMEN 2 ?I
El planificador del proyecto de software debe estimar tres factores antes de que un
proyecto comience: cuánto tiempo tomará, cuánto esfuerzo requerirá y cuánto pe:
sonal estará involucrado. Además, el planificador debe predecir los recursos (har:
ware y software) que se requerirán y el riesgo involucrado.

La descripción del ámbito ayuda al planificador a desarrollar estimaciones emplear -
do una o más técnicas que se clasifican en dos amplias categorías: descomposicicn
y modelado empírico.

Las técnicas de descomposición requieren un bosquejo de las principales funci:
nes del software, seguido por estimaciones de 1) el número de LDC, 2) valores selec-
cionados dentro del dominio de información, 3) el número de casos de uso, 4) el
número de personas-mes requerido para implementar cada función, o 5) el númer:
de personas-mes requerido para cada actividad de ingeniería del software. Las téc-
nicas empíricas usan expresiones para esfuerzo y tiempo obtenidas empíricamen:;
para predecir estas cantidades del proyecto. Se pueden utilizar herramientas a u t o
matizadas para implementar un modelo empírico específico.

Por lo general, las estimaciones precisas de proyecto emplean al menos dos de
las tres técnicas anotadas. Al comparar y reconciliar las estimaciones obtenidas cor
la aplicación de diferentes técnicas, el planificador tiene más probabilidad de calcu-

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PROYECTOS DE SOFTWARE 721

lar una estimación precisa. La estimación del proyecto de software nunca será una
ciencia exacta, pero una combinación de buenos datos históricos y técnicas siste-
máticas puede mejorar la precisión de la estimación.

R E F E R E N C I A S

[BEN92] Bennatan, E. M., software Project Management: A Practiüoner's Approach, McGraw-Hill,
1992.

[BEN03] Bennatan, E. M„ "So What is the State of Software Estimation?" en The CutterEdge (hoja
informativa en línea), 11 de febrero de 2002, disponible en ht tp: / /www.cut ter .com.

[BOE81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.
[BOE89] Boehm, B., Risk Management, IEEE Computer Society Press, 1989.
1BOE96J Boehm, B., "Anchoring the Software Process", en IEEE Software, vol. 13, núm. 4, julio

de 1996, pp. 73-82.
[BOEOO] Boehm, B. et al., Software Cost Estimation in COCOMO II, Prentice-Hall, 2000.
[BR0751 Brooks, F„ The Mythical Man-Month, Addison-Wesley, 1975.
[GAU89I Gause, D. C. y G. M. Weinberg, Exploring Requirements: Quality Before Design, Dorset

House, 1989.
|H00911 Hooper, J. y R. O. Chester, Software Reuse Guidelines and Methods, Plenum Press, 1991.
[JON96] Jones, C., "How Software Estimation Tools Work", en American Programmer, vol. 9, núm.

7, julio de 1996, pp. 19-27.
[LOR94] Lorenz, M. y j . Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1994.
[MAT94] Matson, J., B. Barrett y J. Mellichamp, "Software Development Cost Estimation Using

Function Points", en IEEE Trans. Software Engineering, vol. SE-20, núm. 4, abril de 1994, pp.
275-287.

[MCC98] McConnell, S„ Software Project Surviva! Guide, Microsoft Press, 1998.
[MEN01] Mendes, E., N. Mosley y S. Counsell, "Web Metrics-Estimating Design and Authoring

Effort", IEEE Multimedia, enero-marzo de 2001, pp. 50-57.
[MIN95] Minoli, D., Anafyzing Outsourcing, McGraw-Hill, 1995.
[PHI98] Phillips, D„ The Software Project Manager's Handbook, IEEE Computer Society Press,

1998.
[PUT78] Putnam, L., "A General Empirical Solution to the Macro Software Sizing and Estimation

Problem", en IEEE Trans. Software Engineering, vol. SE-4, núm. 4, julio de 1978, pp. 345-361.
[PUT92] Putnam, L. y W. Myers, Measures for Excellence, Yourdon Press, 1992.
[PUT97a] Putnam, L. y W. Myers, "How Solved Is the Cost Estimation Problem?", en IEEE

Software, noviembre de 1997, pp. 105-107.
[PUT97b] Putnam, L. y W. Myers, Industrial Strength Software: Effective Management Using

Measurement, en IEEE Computer Society Press, 1997.
[ROEOO] Roetzheim, W., "Estimating Internet Development", en Software Development, agosto de

2000, disponible en ht tp: / /www.sdmagazine.com/documents /s=741/sdm0008d/0008d.htm.
¡SMI99] Smith,). , "The Estimation of Effort Based on Use Cases", Rational Software Corp., 1999,

se puede descargar de h t t p : / / w w w rational.com/media/whitepapers/finalTP171.PDF.

P R O B L E M A S Y P U N T O S A C P N S I P E R A R ,

2 3 . 1 . Suponga que es el gestor de proyecto de una compañía que construye sof tware para
robots caseros. Se le ha contratado para construir el sof tware destinado a un robot que corta el
pasto. Describa por escrito el ámbito del sof tware. Asegúrese de que la descripción del ámbito
es té acotada. Si no está familiarizado con los robots, investigue un poco antes de comenzar a
escribir. Además, es tablezca s u s supos ic iones acerca del ha rdware que se requerirá.
Alternativa: sustituya el robot que corta el pas to por otro problema robótico que le interese.

2 3 . 2 . La complejidad del proyecto de sof tware influye en la precisión de la estimación.
Desarrollar una lista de características de software <j»r ejemplo, operación concurrente, salida
gráfica) que afecten la complejidad de un provee: : l>:ar¡ecer prioridades en la lista.

TM

PDF Editor

http://www.cutter.com
http://www.sdmagazine.com/documents/s=741/sdm0008d/0008d.htm
http://www

7 2 2 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

2 3 . 3 . El d e s e m p e ñ o es una consideración importante duran te la planificación. Comenta r c
se puede interpretar de m a n e r a diferente el desempeño , dependiendo del á rea de aplicación
software.

2 3 . 4 . Haga una descomposición funcional del sof tware robótico que describió en el probl
23.1. Estime el t a m a ñ o de cada función en LDC. Suponga que su organización produce
LDC/pm con una escala salarial de 7 000 dólares por pe r sona -mes . Estime el e s fue rzo y c
requeridos para construir el sof tware e m p l e a n d o la técnica de est imación basada en LDC
crita en este capítulo.

2 3 . 5 . Emplear el modelo COCOMO II en la estimación del esfuerzo que requiere la constru
del sof tware para una simple ATM que produce 12 pantallas, 10 reportes y requerirá aproxim
mente 80 componen tes de software. Suponer complejidad promedio y madurez desarrol '
en torno promedio. Emplear el mode lo de composición de aplicación con puntos objeto.

2 3 . 6 . Utilizar la ecuación del sof tware para es t imar el sof tware del robot que corta pasto
problema 23.1. Suponer que las ecuac iones (23-5) son aplicables y q u e P = 8000.

2 3 . 7 . Comparar las es t imaciones de es fuerzo obtenidas en los p rob lemas 23.4 y 23.6. ¿Cuál es
la desviación e s t ánda r y c ó m o afecta el g rado de cer t idumbre acerca de la est imación?

2 3 . 8 . Utilizar los resul tados obtenidos en el p rob lema 23.7 para determinar si e s r azona r í
esperar que el sof tware se construya den t ro de los s iguientes seis m e s e s y cuán to personal ¿e
tendría q u e emplea r para realizar el t rabajo.

2 3 . 9 . Desarrollar un mode lo de hojas de cálculo que implemente una o m á s de las técnicas
es t imación descri tas en este capitulo. Alternat ivamente, adquirir de fuen tes b a s a d a s en v .e :
u n o o m á s mode los en línea para la est imación de proyectos de sof tware .

2 3 . 1 0 . Para un equipo de proyecto, desarrollar una her ramien ta de sof tware que implemer. i í
cada una de las técnicas de est imación desarrol ladas en este capítulo.

2 3 . 1 1 . Parece ext raño q u e las es t imaciones de costo y p rog rama de t raba jo se desarrol le-
duran te la planificación del proyecto de software, an t e s de que se haya llevado a cabo un dise-
ño o un análisis detal lado de los requisitos de sof tware . ¿Por qué c ree que se haga esto? ¿Existe-
circunstancias en las cuales n o se deba hacer?

2 3 . 1 2 . Vuelva a calcular los valores ano tados para el árbol de decisión en la figura 23 :
Suponga que cada rama tiene u n a probabilidad de 50-50. ¿Esto cambiar ía su decisión final?

La mayoría de los libros de gestión de proyectos de sof tware incluyen análisis de la es t imacícr
de proyectos. El Project Management Institute (PMBOK Guide, PMI, 2001), Wysoki y sus colegas
(.Effective Project Management, Wiley, 2000), Lewis (Project Planning Scheduling and Control, ter-
cera edición, McGraw-Hill, 2000), Bennatan (On Time, Within Budget: Software Pro/e":
Management Practices and Techniques, tercera edición, Wiley, 2000) y Phillips [PHI98] ofrecen u:
les directrices de est imación.

Jones (EStimating Software Costs, McGraw-Hill, 1998) ha escrito u n o de los t ra tamientos mas
comple tos de la mater ia publ icados a la fecha. Su libro cont iene mode los y da tos aplicables a
es t imaciones de sof tware en cualquier dominio de aplicación. Coombs (IT Project Estimatic-
Cambridge University Press, 2002), Roetzheim y Beasley (Software Project Cost and Schedu *
Estimating: Best Practices, Prentice-Hall, 1997) y Wellman (Software Costing, Prentice-Hall, 1992
presentan m u c h o s mode los útiles y sugieren directrices p a s o a p a s o para generar las mejores
es t imaciones posibles.

El detal lado t ra tamiento de Putnam y Myers de la est imación de cos to del sof tware ([PUT91
y [PUT97b]) y los libros de Boehm acerca de economía de ingeniería del sof tware ([BOE811 y
COCOMO II [BOEOO]) descr iben modelos de est imación empíricos. Estos libros proporcionan un
análisis detal lado de da tos derivados de c ientos de proyectos de sof tware . Un libro excelente de

TM

PDF Editor

C A P Í T U L O 2 3 ESTIMACIÓN PARA PRO YE ~ O S DE SOFTWARE 723

DeMarco (Controlling Software Projects, Yourdon Press, 1982) ofrece un valiosa visión de gestión,
medición y estimación de proyectos de software. Lorenz y Kidd (Object-Oriented Software
Metrics, Prentice-Hall, 1994) y Cockbum (Survhing Object-Oriented Projects, Addison-Wesley,
1998) consideran la estimación para sis temas orientados a objetos.

En Internet hay disponible una amplia variedad de fuentes de información acerca de esti-
mación de software. Una lista actualizada de referencias en la World Wide Web se encuentra en
el sitio Web de SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

24
C O N C E P T O S

C L A V E

anáfisis

del trabajo 7 3 7

c r o n o g r a m a s . . . 7 3 8

curvoPNR 7 3 0

demora 7 2 5

distribución de

esfuerzo 732

personal y

esfuerzo 7 2 9

principios

básicos 7 2 8

red d e ta reas . . 7 3 5

refinamiento de

to reas 734

seguimiento . . . 7 3 9

time-boxing .. .740

• a d o . 7 4 2

C A L E N D A R I Z A C I Ó N
DE P R O Y E C T O S DE SOFTWARE

Afínales de los de los años 60, un joven y brillante ingeniero fue elegidc
para "escribir" un programa de computadora para una aplicación indus
trial automat izada. La razón por la cual se le eligió fue simple: era la ún:

ca persona en el grupo técriico que había asistido a un seminario de programa
ción de computadoras. Él conocía las ent radas y salidas del lenguaje ensambla
dor y de FORTRAN, pero nada acerca de ingeniería del software, e incluso me
nos acerca de calendarización y seguimiento de proyectos.

Su jefe le dio los manuales apropiados y una descripción verbal de lo que te
nía que hacer. Se le informó que el proyecto debía terminarse en dos meses.

El ingeniero leyó los manuales , consideró su enfoque y comenzó a escribir e
código. Después de dos semanas , el jefe lo llamó a su oficina y le preguntó có
m o iban las COSaS. - : '£•

"Realmente bien", dijo el joven ingeniero con entus iasmo juvenil. "Esto fu-
mucho m á s simple de lo que pensé. Probablemente he terminado cerca del 7;
por ciento."

El jefe sonrió y alentó al joven ingeniero a seguir t rabajando bien. Planeare-
reunirse de nuevo en una semana .

Una semana después, el jefe llamó al ingeniero a su oficina y le pregunu
"¿Dónde estamos?".

'Todo marcha bien", dijo el joven, "pero me he encontrado con algunos pequr
ños obstáculos. Los solucionaré y regresaré al ritmo de trabajo muy pronto."

"¿Cómo ves la fecha límite?", preguntó el jefe.

¿ Q u é e s ? Usted seleccionó un
modelo de proceso apropiado; ic
tíficó las tareas de ingeniería del
software que es preciso realizar;
estimó la cantidad de trabajo y el

número de personas; conoce la fecha límite;
incluso consideró los riesgos. Ahora es tiempo
de unir los puntos. Esto es, tiene que crear una
red de tareas de ingeniería del software que le
permitirán tener el trabajo Üsto a tiempo. Una
vez creada la red, tiene que asignar responsa-
bilidades a cada tarea, asegurarse de que se
realice y adaptar la red conforme los riesgos se
vuelvan realidad. En resumen, esto es la calen-
darización y el seguimiento del proyecto de
software.

¿Quién lo h a c e ? En el ámbito del proyecto los
gestores del proyecto de software emplean la
información solicitada a los ingenieros de soft-
ware. En el plano individual, los mismos inge-
nieros de software

¿Por q u é e s importante? En la construcción
de un sistema complejo muchas tareas de inge-
niería del software ocurren en paralelo, y el
resultado del trabajo realizado durante una
tarea puede tener un profundo efecto en el tra-
bajo llevado a cabo en otra tarea. ¡Estas inter-
dependencias son muy difíciles de comprender
sin una calendarización. También es virtual-
mente imposible evaluar el progreso de un pro-
yecto de software moderado y grande sin una
calendarización detallada.

7 2 4

TM

PDF Editor

C A P Í T U L O 2 4 CALENDAREACIÓN DE PROYECTOS DE SOFTWARE 725

¿Cuáles s o n l o s p a s o s ? Las Jareas de inge-
niería del software que dicta el modelo de pro-
ceso de software se refinan para la funcionali-
dad que se construirá. A cada tarea se le asig-
nan esfuerzo y duración, y se crea una red de
tareas (también llamada una "red de activi-
dad") de tal forma que permita al equipo de
software cumplir con la fecha límite de entrega
establecida.

..Cuál e s el producto obtenido? La calendari-
zactán del proyecto y la información relacionada.

¿Cómo m e p u e d o a s e g u r a r q u e lo he
h e c h o correctamente? La calendariza-
ción adecuada requiere que 1} todas las tareas
aparezcan en la red, 2) el esfuerzo y el tiempo
estén asignados de manera inteligente en cada
tarea, 3) las interdependencias entre tareas
estén indicadas adecuadamente, 4) los recursos
estén asignados para el trabajo que se realiza-
ra y 5) los Hitos estén espaciados de modo cer-
cano para que se pueda seguir el progreso.

"No hay problema", dijo el ingeniero. "Estoy cerca de terminar el 90 por ciento."
Si se ha trabajado en el mundo del sof tware durante unos cuantos a ñ o s se e s ca-

paz de terminar la historia. No será sorpresa que el joven ingeniero1 haya permane-
cido en el 90 por ciento durante todo el proyecto y terminado (con la ayuda de otros)
un mes después.

Esta historia se ha repetido decenas de miles de veces con desarrolladores de
sof tware durante las pasadas cuatro décadas. La gran pregunta es por qué.

2 4 . 1 C O N C E P T O S B Á S I C O S —

Aunque existen muchas razones por las cuales el sof tware s e entrega con retraso, la
mayoría se encuadra en una o más de las siguientes causas:

• Una fecha límite irrealizable establecida por alguien externo al grupo de inge-
niería del sof tware e impuesta a los gestores y profesionales del grupo.

• Cambio en los requisitos del cliente que no se reflejan en modificaciones a la
calendarización.

• Una subestimación razonable de la cantidad de esfuerzo o de recursos que se
requerirán para realizar el trabajo.

• Riesgos predecibles o impredecibles que no se consideraron cuando comenzó
el proyecto.

• Dificultades técnicas que no pudieron preverse.

• Dificultades h u m a n a s imprevisibles.

• Falta de comunicación entre el personal del proyecto, lo que genera demoras.

• Una falla en la gestión del proyecto porque no reconoció el retraso ni empren-
dió una acción para corregir el problema

1 En caso de que el lector se lo pregunte la histona es autobiográfica.

TM

PDF Editor

726 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

"Los ca lendor izac iones exces ivas o irracionales p r o b a b l e m e n t e son la f u e r z a part icular m á s destructiva en todo el
so f tware . "

Capers Jones

Las fechas límite muy audaces (léase "irrealizables") son un hecho de la vida en e
negocio del software. En tales ocasiones las fechas límite se demandan por razones
legítimas, desde el punto de vista de la persona que las establece. Pero el sentido co-
mún establece que la legitimidad también la deben advertir las personas que hacer,
el trabajo.

Napoleón dijo alguna vez: "Cualquier comandan te en jefe que pretenda llevar a
cabo un plan que considera defectuoso comete un error; debe exponer sus razones
insistir en que el plan debe cambiarse y finalmente presentar su renuncia en luga:
de ser el instrumento de la destrucción de su ejército". Estas son palabras fuertes que
muchos gestores de proyectos de sof tware deben considerar.

Las actividades de estimación estudiadas en el capítulo 23 y las técnicas de calen
darización descritas en éste con frecuencia se implementan atendiendo la restric-
ción de una fecha límite definida. Si las mejores est imaciones indican que la fech;
límite e s irrealizable, un gestor de proyecto competente debe "proteger a su equipo
de la presión excesiva [de la calendarización].. . [y] devolver la presión a quienes i3
originan" [PAG85].

Para ilustrarlo, supóngase que a un equipo de ingeniería del sof tware se le ha pe-
dido construir un controlador en t iempo real para un instrumento de diagnóstico
médico que será introducido al mercado en nueve meses . Después de una estima-
ción y un análisis de riesgo cuidadosos (capítulo 25), el gestor del proyecto llega a la
conclusión de que el software, como se solicitó, requerirá 14 meses para crearlo cor
el personal disponible. ¿Cómo procede el gestor del proyecto?

"Adoro las f echas limite. Me gusto q u e pasan como una exhalac ión cuando s e a l e j an . "
Douglas Adams

Es irreal presentarse en la oficina del cliente (en este caso el probable cliente es
mercadotecnia-ventas) y demandar le que cambie la fecha de entrega. Las presiones
externas del mercado han dictado la fecha, y el producto debe liberarse. Es igual-
mente torpe rechazar el t rabajo (desde el pun to de vista profesional). Así que, ¿que
hacer? En esta situación se recomiendan los siguientes pasos:

1. Realizar una estimación detallada empleando datos históricos de proyectos
previos. Determinar el esfuerzo y la duración est imados para el proyecto.

2 . Aplicar un modelo de proceso incremental (capítulo 3) y desarrollar una estra-
tegia de ingeniería de sof tware que entregará la funcionalidad crítica en la fe-
cha límite impuesta, pero demorará otra. Documente el plan.

TM

PDF Editor

C A P Í T U L O 2 4 CALENDAREACIÓN DE PROYECTOS DE SOFTWARE 727

3 . Reunirse con el cliente y, con la est imación detallada, explicarle por qué la fe-
cha límite impuesta es irrealizable. Asegúrese de señalar que todas las estima-
ciones están basadas sobre el desempeño en proyectos previos. También
asegúrese de indicar el porcentaje de mejoría que se requeriría para lograr la fe-
cha límite vigente.2 Son apropiados los siguientes comentarios:

"Creo que podemos tener un problema con la fecha de entrega para el softwa-
re controlador XYZ. Le he dado a cada uno de us tedes un análisis abreviado de
las tasas de producción en proyectos previos y una estimación que h e m o s he-
cho en a lgunas formas diferentes. Notarán que he supuesto un 20 por ciento de
mejora respecto de ritmos de producción precedentes, pero todavía t enemos
una fecha de entrega que está a 14 m e s e s en lugar de 9."

4 . Ofrezca la estrategia de desarrollo incremental c o m o alternativa:
"Tenemos unas cuantas opciones y me gustaría que tomase una decisión con
base en ellas. Primero, podemos aumen ta r el presupuesto y conseguir recur-
sos adicionales de modo que tendremos mucho éxito en lograr que es te traba-
jo esté hecho en nueve meses. Pero comprenda que esto aumenta rá el riesgo
de una calidad deficiente debido a la apre tada fecha límite.3 Segundo, podemos
remover varias de las funciones y capacidades de sof tware que está solicitan-
do. Esto hará que la versión preliminar del producto sea un poco menos fun-
cional, pero podemos anunciar toda la funcionalidad y luego entregarla en el
periodo de 14 meses. Tercero, podemos prescindir de la realidad y esperar que
el proyecto se complete en nueve meses . Terminaremos con nada que se pue-
da entregar a un cliente. La tercera opción, espero que es té de acuerdo, es ina-
ceptable. La historia y nues t ras mejores est imaciones indican que es irreal y un
boleto hacia el desastre."

Habrá algunos gruñidos, pero si se presentan est imaciones sólidas basadas en
buenos datos históricos es probable que se elegirán versiones negociadas de las op-
c iones 1 o 2. La fecha límite irreal se evapora.

A Fred Brooks, el bien conocido autor de The Mythical Man-Month [BR095], se le pre-
guntó una vez cómo se retrasaban los proyectos de sof tware en la calendarización.
Su respuesta fue tan simple como profunda: "Un día a la vez."

2 Si la mejora requerida es de 10 a 25 por ciento de hecho tal vez sea posible tener listo el trabajo.
Pero, con mayor probabilidad, la mejora requerida en el desempeño del equipo será mayor que el
50 por ciento. Esta es una expectativa irreal

3 También puede agregar que el aumento en t rumero de personas no reduce proporcionalmente
el tiempo.

»¿Qué se
debe hacer

sondo la gestión
M a n d a que se
• • p í a con una
« h a limite que
« i m p o s i b l e ?

TM

PDF Editor

728 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

^ O N S E J O ^ ^

las toreos requeridos
paro lograr el objetivo
de una gestión de
proyecto no se deben
llevar o cabo manual-
mente. Cxisten
muchas excelentes
herramientas de
calendarización.
Úselos.

La realidad de un proyecto técnico (ya sea que involucre la construcción de una
planta hidroeléctrica o el desarrollo de un sistema operativo) es que cientos de pe-
queñas tareas deben realizarse para lograr una meta mayor. Algunas de tales tareas
están fuera de la corriente principal y se pueden completar sin preocuparse acerca
de su impacto sobre la fecha de terminación del proyecto. Otras tareas se encuen-
tran en la "trayectoria critica". Si es tas tareas "criticas" se retrasan en la calendari-
zación, la fecha de terminación del proyecto se pone en riesgo.

El objetivo del gestor e s definir todas las tareas del proyecto, construir una red que
bosqueje sus interdependencias, identificar las tareas cruciales dentro de la red y lue-
go seguir su progreso para garantizar que la demora se reconoce "un día a la vez"
Para lograrlo el gestor debe tener una calendarización que se haya definido en un
grado de resolución que permita supervisar el progreso y controlar el proyecto.

La calendarización del proyecto de software e s una actividad que distribuye estima-
ciones de es fuerzo a través de la duración planificada del proyecto al asignar el es-
fuerzo a tareas específicas de ingeniería del software. Sin embargo, es importante
señalar que la calendarización evoluciona a lo largo del tiempo. Durante las prime
ras e tapas de la planificación del proyecto se desarrolla una calendarización macros-
cópica. Este tipo de calendarización identifica las principales actividades del marco
de t rabajo del proceso y las funciones de producto a las que se aplican. Conforme e;
proyecto transcurre, cada entrada en la calendarización macroscópica se refina er
una calendarización detallada. Aquí se identifican y calendarizan tareas específicas
del sof tware (requeridas para completar una actividad).

" U n a c a l e n d a r i z a c i ó n d e m a s i a d o o p t i m i s t a n o g e n e r a u n a c a l e n d a r i z a c i ó n r e a l m á s c o r t a , s i n o u n a m a y o r . "
Sleve MtConnell

La calendarización para proyectos de ingeniería de software se puede ver desde dos
perspectivas más bien diferentes. En la primera ya se ha establecido (irrevocablemente)
una fecha final para la liberación de un sistema basado en computadora. La organiza-
ción de software está restringida a distribuir esfuerzo dentro del marco temporal pres-
crito. La segunda visión de la calendarización de software supone que se han comentado
límites cronológicos aproximados, pero que la fecha final la establece la organización
de ingeniería del software. El esfuerzo se distribuye para utilizar mejor los recursos y la
fecha final se define después de un análisis cuidadoso del software. Por desgracia, la pri-
mera situación se encuentra con mucha más frecuencia que la segunda.

24.2.1 Principios básicos
Al igual que otras á reas de ingeniería del software, varios principios básicos guían la
calendarización de los proyectos:

Compartimentación. El proyecto debe dividirse en compart imentos en varias acti-
vidades, acciones y tareas manejables. Lograrlo requiere decomponer tanto el pro-
ducto c o m o el proceso.

TM

PDF Editor

C A P Í T U L O 2 4 CALENDAREACIÓN DE PROVECTOS TE SOFTWARE 729

iVE
! desorrolle

izoción,
r t e s e el

f l é t e n s e los
d o s d e

6 , a s ígnense
i y t iempo o

, def ínonse

a h i t o s .

Interdependencia. Se debe determinar la interdependencia de cada actividad, ac-
ción o tarea compartimentada. Algunas tareas deben ocurrir en secuencia mientras
que otras pueden ocurrir en paralelo. Algunas acciones o actividades no pueden co-
menzar mientras no esté disponible el producto de trabajo producido por otros.
Otras acciones o actividades pueden ocurrir de manera independiente.

Asignación de tiempo. A cada tarea por calendarizar se le debe asignar cierto nú-
mero de unidades de trabajo (por ejemplo, personas-día de esfuerzo). Además, a ca-
da tarea se le debe asignar una fecha de inicio y una otra de terminación que sean
función de las interdependencias, y ya sea que el trabajo sea realizado con base en
tiempo completo o parcial.

Validación del esjuerzo. Todo proyecto tiene un número definido de personas en el
equipo de software. Conforme ocurre la asignación de tiempo, el gestor de proyecto
debe asegurarse de que, en un tiempo dado, no se han asignado más que el núme-
ro de personas calendarizadas. Por ejemplo, considere un proyecto que tiene tres in-
genieros de software asignados (por ejemplo, tres personas-día están disponibles
por día de esfuerzo asignado).4 En un día dado se deben completar siete tareas al
mismo tiempo. Cada tarea requiere 0.50 personas-día de esfuerzo. Se ha asignado
más esfuerzo que el número de personas para hacer el trabajo.

Definición de responsabilidades. Toda tarea caiendarizada se le debe asignar a un
miembro específico del equipo.

Definición de resultados. Toda tarea caiendarizada debe tener un resultado defini-
do. En proyectos de software el resultado normalmente es un producto de trabajo
(por ejemplo, el diseño de un módulo) o una parte de él. Los productos de trabajo
usualmente se combinan en los entregables.

Definición de hitos. Cualquier tarea o grupo de tareas debe estar asociado con un
hito del proyecto. Un hito se logra cuando se ha revisado la calidad de uno o más
productos de trabajo (capítulo 26) y se han aprobado.

Cada uno de estos principios se aplica conforme evoluciona la calendarización del
proyecto.

24.2.2 Relación entre el personal y el esfuerzo
En un pequeño proyecto de desarrollo de software una sola persona puede analizar
los requisitos, realizar el diseño, generar el código y dirigir las pruebas. Conforme
aumenta el tamaño de un proyecto, más gente resulta involucrada. (¡Rara vez se
puede dar el lujo de acometer un esfuerzo de 10 personas-año con una persona que
trabaje durante 10 años!)

4 En realidad, hay disponibles menos de tres personas-dia de esfuerzo debido a las reuniones no re-
lacionadas, enfermedades, vacaciones y una diversidad de otras razones. Sin embargo, para los pro-
pósitos del texto, se supone una disponibilidad de X por ciento

TM

PDF Editor

730 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

^ O N S E J c f f i .

Sise deben agregar
personas o un
proyecto rebosado,
asegúrese de que se
les ha asignado
trabajo enormemente
comparlimentado.

Existe un mito común que todavía creen muchos gestores responsables del es-
fuerzo de desarrollo del software: "Si nos retrasamos en la calendarización, siempre
podemos incorporar más programadores y recuperarnos más adelante en el proyec-
to". Desgraciadamente, agregar más personas en etapas tardías de un proyecto con
frecuencia tiene un efecto perturbador sobre éste, lo que provoca que la calendar
zación se desfase aún más. Las personas que se agregan deben aprender el sistema
y la gente que les enseña es la misma que estaba haciendo el trabajo. Durante la en-
señanza no se realiza trabajo y el proyecto experimenta mayores retrasos.

Además del tiempo que tarda en aprender el sistema, más personal aumenta e
número de rutas de comunicación y la complejidad de ésta a lo largo de un proyec-
to. Aunque la comunicación es absolutamente esencial para el éxito del desar ro l :
de software, cada nueva ruta de comunicación requiere un esfuerzo adicional y, pee
lo tanto, tiempo suplementario.

A lo largo de los años, los datos empíricos y el análisis teórico han demostrac:
que las calendarizaciones de proyecto son elásticas. Es decir, es posible comprim -
en cierta medida la fecha de terminación deseada del proyecto (al añadir recursos,
adicionales). También es posible extender la fecha de terminación (al reducir el nu
mero de recursos).

La Curva Putnam-Norden-Rayleigh (PNR)5 proporciona un indicio de la relación er-
tre el esfuerzo aplicado y el tiempo de entrega para un proyecto de software. En =
figura 24.1 se muestra una versión de la curva, que representa el esfuerzo del pro-
yecto como función del tiempo de entrega. La curva indica un valor mínimo, que
indica el tiempo de entrega de menor costo (es decir, el tiempo de entrega que ge-
nerará el menor gasto de esfuerzo). Conforme se mueve a la izquierda de t0 (es de
cir, conforme intenta acelerar la entrega), la curva se eleva en forma no lineal.

Relación entre esíuerzo y t iempo d e entrega.

Costo
d e
e s f u e r z o

' o Tiempo d e desarro l lo
T m i „ - 0 . 7 5 T d

5 En [NQR70] y [PUT78) se puede encontrar investigación original.

TM

PDF Editor

C A P Í T U L O 2 4 CALENDAMZACIÓN DE PROYECTOS DE SOFTWARE 731

\
C L A V E
o entrego p u e d e

orse, la curvo
' indica q u e los

del proyecto se
reducir

ia lmente .

(CONSEJO^.

la lecha
é l proyecto se
codo vez más,

xonza un punto
i que el traba jo
xede completarse

el calendario,
nportarel

; de personas
logan el trabajo,

lo reolidod
una nuevo

de entrega.

Como ejemplo, supóngase que un equipo de proyecto ha est imado un nivel de es-
fuerzo E a que se requerirá para lograr un tiempo de entrega nominal, t d , que es óp-
timo en términos de calendarización y recursos disponibles. Aunque es posible ace-
lerar la entrega, la curva se eleva muy pronunciadamente hacia la izquierda de t d . De
hecho, la curva PNR indica que el tiempo de entrega del proyecto no se puede com-
primir más allá de 0.75 t d . Si se intenta una mayor compresión, el proyecto se mue-
ve hacia "la región imposible" y el riesgo de fracaso se eleva mucho. La curva PNR
también indica que la opción de entrega de menor costo, t„ = 2 t d . La implicación aquí
es que la demora en la entrega del proyecto puede reducir los costos significativa-
mente. Desde luego, esto debe sopesarse frente al costo del negocio asociado con la
demora.

La ecuación del software [PUT92], introducida en el capítulo 23, se obtiene de la
curva PNR y demuestra la relación enormemente lineal entre el tiempo cronológico
para completar un proyecto y el esfuerzo humano aplicado a éste. El número de lí-
neas de código entregadas (enunciados fuente), L, se relaciona con el esfuerzo y el
tiempo de desarrollo mediante la ecuación:

L = P x E W 3 t A / i

donde E e s el esfuerzo de desarrollo en personas-mes; P, un parámetro de producti-
vidad que refleja una diversidad de factores que conducen a trabajo de ingeniería del
software de alta calidad (los valores típicos de P varían entre 2 000 y 12 000); y t , la
duración del proyecto en meses calendario.

Al reordenar esta ecuación del software se puede llegar a una expresión para el
esfuerzo de desarrollo E:

E = LV(P J f) (24-1)

donde E es el esfuerzo utilizado (en personas-año) durante el ciclo de vida para el
desarrollo y mantenimiento de software, y f es el tiempo de desarrollo en años. La
ecuación para el esfuerzo de desarrollo se puede relacionar con el costo del desarro-
llo al incluir un factor de escala salarial (costo/persona-año).

Esto conduce a unos resultados interesantes. Considérese un complejo proyecto
de software de tiempo real est imado en 33 000 LDC, 12 personas-año de esfuerzo.
Si se asignan ocho personas al equipo del proyecto, éste se puede completar en
aproximadamente 1.3 años. Sin embargo, si se extiende la fecha final a 1.75 años,
la naturaleza enormemente no lineal del modelo descrito en la ecuación (24-1) pro-
duce:

E = L 3 / (P 3 f) - 3.8 personas-año

Esto implica que, al extender la fecha final seis meses, ¡se puede reducir el número
de personas de ocho a cuatro! La validez de tales resultados está abierta al debate,
pero la implicación es clara: se pueden obtener beneficios al emplear menos perso-
nal durante un periodo un poco más largo para lograr el mismo objetivo.

TM

PDF Editor

732 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

24.2.3 Distribución del esfuerzo

O ¿Cómo se
• debe distri-

buir el esfuerzo a
lo largo del flujo
de trabajo del
proceso de soft-
ware?

Cada una de las técnicas de estimación de proyectos de sof tware estudiadas en ei
capítulo 23 conduce a est imaciones de unidades de trabajo (por ejemplo, personas-
mes) requeridas para completar el desarrollo del software. Una distribución reco-
mendada del esfuerzo a través del proceso de software con frecuencia se conoce como
la regla 40-20-40. Cuarenta por ciento de todos los esfuerzos se asignan al análisis y
el diseño de s is temas de entrada. Un porcentaje similar se aplica en poner a prueba
los s is temas de salida. Usted puede inferir correctamente que la codificación (20 por
ciento del esfuerzo) no tiene tanto énfasis.

Esta distribución del esfuerzo se debe usar solamente como guía.6 Las caracterís-
ticas de cada proyecto deben dictar la distribución del esfuerzo. El t rabajo realizado
en la planeación del proyecto rara vez explica más de 2-3 por ciento del esfuerzo, a
menos que el plan comprometa a una organización a grandes gastos con alto ries-
go. Los análisis de requisitos pueden comprometer 10-25 por ciento del esfuerzo de.
proyecto. El esfuerzo empleado en el análisis o elaboración de prototipos debe au-
mentar en proporción directa con el t amaño y la complejidad del proyecto. Un inter-
valo del 20 al 25 por ciento de esfuerzo normalmente se aplica al diseño de software
También se debe considerar el t iempo utilizado en la revisión del diseño y la subsi-
guiente iteración.

Debido al esfuerzo aplicado al diseño de software, el código debe seguir con re-
lativamente poca dificultad. Se puede lograr un rango de 15-20 por ciento del esfuer-
zo global. Las pruebas y la subsiguiente depuración explican el 30-40 por ciento de!
esfuerzo de desarrollo del software. El carácter crucial del sof tware con frecuencia
dicta la cantidad de pruebas que se requieren. Si el software se clasifica desde el
punto de vista h u m a n o (es decir, la falla del sof tware puede resultar en pérdida de
vidas), son usuales porcentajes todavía más altos.

En la parte 1 de es te libro se describieron varios modelos de proceso diferentes. Sin
importar si un equipo de software elige un modelo secuencial lineal, un modelo in-
cremental, un modelo evolutivo o alguna combinación, el modelo de proceso está
poblado de un conjunto de tareas que le permiten a un equipo de sof tware definir,
desarrollar y, a final de cuentas, brindar soporte al sof tware de computadora.

Ningún conjunto de tareas es apropiado por sí solo para todos los proyectos. El
conjunto de tareas que sería apropiado para un sistema complejo y grande probable-

6 En la actualidad, la regla 40-20-40 enfrenta una ofensiva. Algunos creen que más del 40 por ciento
del esfuerzo global se debe utilizar durante el análisis y el diseño. Por otra parte, algunos partida-
rios del desarrollo ágil (capítulo 4) argumentan que se debe emplear menos tiempo frontal "directo"
y que un equipo se debe mover rápidamente hacia la construcción.

TM

PDF Editor

C A P Í T U L O 2 4 CALENDARIZACIÓN DE PROYECTOS E S SOFTWARE 733

i lio desmolido un

adaptable (APM, por
¡ussigtOsa

Dnjuntos de toreos
jiro íorios (Moveclos
* sotlwore. Uno
.-•esaiptifa completo

l wwwjspa.
:om/apm.

mente se apreciaría como demasiado destructivo para un producto de software pe-
queño y relativamente simple. En consecuencia, un proceso de software eficaz debe
definir una colección de conjuntos de tareas, cada una diseñada para satisfacer las
necesidades de diferentes tipos de proyectos.

Como se mencionó en el capítulo 2, un conjunto de tareas es una colección de ta-
reas de trabajo de ingeniería del software, hitos y productos de trabajo que se deben
terminar para completar un proyecto particular. El conjunto de tareas debe propor-
cionar suficiente disciplina para lograr alta calidad de software. Pero, al mismo tiem-
po, no debe abrumar al equipo del proyecto con trabajo innecesario.

El desarrollo de una calendarización del proyecto requiere distribuir un conjunto
de tareas a lo largo de la línea de tiempo del proyecto. El conjunto de tareas variará
según el tipo de proyecto y el grado de rigor con el que el equipo de software deci-
de realizar su trabajo. Aunque es difícil desarrollar una taxonomía completa de tipos de
proyecto de software, en la mayoría de las organizaciones del ramo se encuentran
los siguientes proyectos:

1.

2.

Proyectos de desarrollo del concepto, los cuales se inician para explorar algunas
aplicaciones o conceptos de negocios de alguna nueva tecnología.

Proyectos de desarrollo de nuevas aplicaciones, los cuales se llevan a cabo co-
mo consecuencia de una solicitud específica del cliente.

3 . Proyectos de mejora de la aplicación, éstos ocurren cuando el software exis-
tente experimenta grandes modificaciones en la función, el desempeño o las
interfases visibles para el usuario final.

4. Proyectos de mantenimiento de aplicación, los cuales corrigen, adaptan o ex-
tienden el software existente en formas que no sean obvias inmediatamente
para el usuario final.

5 . Proyectos de reingeniería, éstos se llevan a cabo con la finalidad de reconstruir
un sistema existente (heredado), en todo o en parte.

Incluso dentro de un solo tipo de proyecto, muchos factores influyen en la elección
del conjunto de tareas. Por ejemplo [PRE99]: tamaño del proyecto, número de usua-
rios potenciales, lo crucial de la misión, duración de la aplicación, estabilidad de los
requisitos, facilidad de comunicación con el usuario o desarrollador, madurez de la
tecnología aplicable, restricciones del desempeño, características anidadas y no ani-
dadas, equipo del proyecto y factores de reingeniería. Cuando se consideran en con-
junto, estos factores ofrecen un indicio del grado de rigor que se debe aplicar al proceso
de software.

24.3.1 Ejemplo de conjunto de tareas
Cada uno de los tipos de proyecto descritos puede abordarse mediante un modelo de
proceso lineal, secuencial, iterativo (por ejemplo, los modelos de elaboración de pro-
totipo o incrementales) o evolutivo (por ejemplo el modelo espiral). En algunos casos,

TM

PDF Editor

734 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

un tipo de proyecto fluye suavemente hacia el siguiente. Por ejemplo, los proyect
de desarrollo del concepto que triunfan con frecuencia evolucionan en proyectos c t
desarrollo de nuevas aplicaciones. Cuando termina un proyecto de desarrollo de nue-
vas aplicaciones, en ocasiones comienza un proyecto de mejora de una aplicaciór
Esta progresión es tanto natural como predecible y ocurrirá sin importar el mode::
de proceso que adopte la organización. En consecuencia, las principales tareas dt
ingeniería del software descritas en las secciones que siguen son aplicables a todos
los flujos de modelo de proceso. Como ejemplo, considérense las tareas de ingenie-
ría del software para un proyecto de desarrollo del concepto.

Los proyectos de desarrollo del concepto se inician cuando se debe explorar el poten-
cial para alguna nueva tecnología. No existe certeza de que la tecnología será aplicable
pero un cliente (por ejemplo, marketing) cree que existen beneficios potenciales. Los pro -
yectos de desarrollo del concepto se enfocan en aplicar las siguientes tareas principales

1.1 La d e t e r m i n a c i ó n del á m b i t o de l c o n c e p t o precisa el ámbito global del
proyecto.

1.2 La p l a n e a c i ó n p re l iminar del c o n c e p t o establece la habilidad de la orga-
nización para acometer el trabajo que entraña el ámbito del proyecto.

1.3 La va lo rac ión de l r i e sgo d e la t e cno log ía evalúa el riesgo asociado con
la tecnología que se implementará como parte del ámbito del proyecto.

1.4 La p r u e b a de l c o n c e p t o demuestra la viabilidad de una nueva tecnología
en el contexto del software.

1.5 La implementac ión del concep to pone en práctica la representación del con-
cepto en una forma que pueda revisarla un cliente y se utiliza para propósitos de
"mercadotecnia" cuando se debe vender un concepto a otros clientes o gestores.

1.6 La reacc ión del c l iente al concepto solicita realimentación acerca de un con-
cepto de nueva tecnología y se dirige a aplicaciones específicas de los clientes.

Una rápida exploración de estas tareas debe producir pocas sorpresas. De hecho, el
flujo de ingeniería del software para los proyectos de desarrollo del concepto (y tam-
bién para todos los otros tipos de proyectos) es poco más que sentido común.

24.3.2 Refinamiento de las tareas principales
Las tareas principales descritas en la sección precedente se pueden utilizar para de-
finir la calendarización macroscópica de un proyecto. Sin embargo, esta calendari-
zación se debe refinar para crear una calendarización detallada del proyecto. El re-
finamiento comienza al tomar cada tarea principal y descomponerla en un conjunto
de subtareas (con productos de trabajo e hitos relacionados).

Como ejemplo de descomposición de tarea, considérese la tarea 1.1, "determinación
del ámbito del concepto". El refinamiento de la tarea se puede lograr empleando un bos-
quejo de formato, pero en este libro se aplica un enfoque de lenguaje en el diseño del
proceso para ilustrar el flujo de la actividad de determinación del ámbito del concepto.

TM

PDF Editor

C A P Í T U L O 2 4 CALENDARIZACIÓN DE PROYECTOS DE SOFTWARE 735

Definición tarea: Tarea 1.1 Determinación del ámbito del concepto

1.1.1 Identificar necesidades, beneficios y clientes potenciales;

1.1.2 Definir eventos de salida/control y entrada deseados que

impulsen la aplicación;

Comienza Tarea 1.1.2

1.1.2.1 RTF: Revisar la descripoión escrita de la necesidad7

1.1.2.2 Derivar una lista de salidas/entradas visibles al cliente

1.1.2.3 RTF: Revisar salidas/entradas con el cliente y modificar conforme se requiera

fintarea Tarea 1.1.2

1.1.3 Definir la funcionalidad/comportamiento para cada función principal;

Comienza Tarea 1.1.3

1.1.3.1 RTF: Revisar los objetos de datos de salida y entrada derivados en la tarea

1.1.2;

1.1.3.2 Derivar un modelo funciones/comportamientos;

1.1.3.3 RTF: Revisar funciones/comportamientos con el cliente y modificar confor-

me se requiera:

fintarea Tarea 1.1.3

1.1.4 Aislar aquellos elementos de la tecnología que se implementará en el software;

1.1.5 Disponibilidad de investigación del software existente;

1.1.6 Definir factibilidad técnica:

1.1.7 Realizar estimación rápida del tamaño;

1.1.8 Crear una Definición del ámbito;

fintarea definición: Tarea 1.1

Las tareas y subtareas anotadas en el proceso de refinamiento del lenguaje de dise-
ño forman la base de una planeación detallada de la actividad de determinar el
ámbi to del concepto.

2 4 . 4 D E F I N I C I Ó N P E U N A R E P P E TAREAS

Las tareas y subtareas individuales tienen interdependencias basadas en su secuen-
cia. Además, cuando más de una persona está involucrada en un proyecto de inge-

:ÜVVE niería del software, es probable que las actividades y tareas de desarrollo se realicen
e n paralelo. Cuando es to ocurre, las tareas concurrentes deben estar coordinadas [s ta reas es un r

I paro de modo que se completarán cuando las tareas posteriores requieran sus productos de
ríos trabajo.

¡ entre
: . determinar la

Una red de tareas, también denominada red de actividad, es una representación
gráfica del flujo de tareas en un proyecto. En ocasiones se utiliza como el mecanis-
mo mediante el cual la secuencia y dependencias de tareas son la entrada a una he-
rramienta automat izada de calendarizac: :r. del proyecto. En su forma más simple

7 RTF indica que se debe realizar una r eus í>n ; i : : ~ = I capitulo 26)

TM

PDF Editor

736 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

Red d e tareas para desarrollo del concepto.

1.1
Determinación

ámbito
concepto

1.2

Planeación
concepto

J 1.3c
Evolua<
riesgo

1.5c
Implementoción

concepto j 1.6
Reacción

cliente

(empleada cuando se crea una calendarización macroscópica), la red de tareas
muestra las principales tareas de la ingeniería del software. La figura 24.2 muestra
una red de tareas esquemática para un proyecto de desarrollo del concepto.

La naturaleza concurrente de las actividades de ingeniería del software conduce
a varios requisitos importantes de la calendarización. Puesto que las tareas parale-
las ocurren de manera asincrona, el planificador debe determinar dependencias ir.-
tertareas para asegurar el progreso continuo hacia la finalización. Además, el gestor
del proyecto debe estar atento a estas tareas que se encuentran en la ruta crítica. Es-
to es, las tareas que se deben completar en la calendarización si el proyecto como
un todo se debe completar a tiempo. Más adelante en este capítulo se tratan con más
detalle estos temas.

Es importante notar que la red de tareas mostrada en la figura 24.2 es macroscó-
pica. En una red de tareas detallada (un precursor de una calendarización detallada)
cada actividad que muestra la figura se debe expandir. Por ejemplo, la tarea 1.1 se
expandiría para mostrar todas las tareas detalladas en el refinamiento de las tareas
1.1. mostradas en la sección 24.3.2.

La calendarización de un proyecto de software no difiere enormemente de la de
cualquier esfuerzo de ingeniería multitarea. En consecuencia, las técnicas y herra-
mientas generalizadas de calendarización de proyecto se pueden aplicar, poco mo-
dificadas, en proyectos de software.

La técnica de evaluación y revisión de programa (PERT, por sus siglas en inglés) y el
método de ruta crítica (CPM, por sus siglas en inglés) son dos métodos de calendari-
zación de proyecto que se pueden aplicar al desarrollo de software. Ambas técnicas

2 4 . 5 C A L E N D A R I Z A C I Ó N TM

PDF Editor

C A P Í T U L O 2 4 CALENDARIZACIÓN DE PROYECTOS DE SOFTWARE 737

reciben impulso de la información ya desarrollada en actividades tempranas de la

planeación del proyecto:

• Estimación del esfuerzo.

• Descomposición de la función del producto.

• Selección del modelo de proceso y conjunto de tareas apropiados.

• Descomposición de tareas.

Las interdependencias entre las tareas se pueden definir empleando una red de ta-
reas. Las tareas, en ocasiones l lamadas la estructura de análisis del trabajo (EAT, por
sus siglas en inglés), se definen para el producto como un todo o para funciones in-

dividuales.

"Todo lo q u e t e n e m o s q u e decidir e s q u é h a c e r con e l t i e m p o q u e n o s h o n d a d o . "
Gandalf en El señor de los anillos: la hermandad del anillo

— •

Tanto PERT como CPM ofrecen herramientas cuantitativas que permiten al plani-
ficador de sof tware 1) determinar la trayectoria critica: la cadena de tareas que de-
terminan la duración del proyecto; 2) establecer las est imaciones de t iempo "más
probables" para tareas individuales al aplicar modelos estadísticos; y 3) calcular los
"tiempos límite" que definen una "ventana" de tiempo para una tarea particular.

OHM Calendarización de proyectos
Objet ivo: El objetivo de las herramientas de
calendarización de proyectos es permitir que un

gestor defina las tareas de trabajo, establezca sus depen-
dencias, asigne recursos humanos a las tareas y desarrolle
una variedad de gráficas, diagramas y tablas que auxilian
en el seguimiento y el control del proyecto de software.

Mecánica: En general, las herramientas de calendariza-
ción de proyectos requieren la especificación de una es-
tructura de análisis de trabajo o la generación de una red
be tareas. Una vez que se define el análisis de la tarea (un
bosquejo) o red, a cada tarea se ligan fechas de inicio y fin,
•ecursos humanos, fechas límite duras y otros datos. Enton-
ces la herramienta genera una variedad de cronogramas y
otras tablas que le permiten a un gestor valorar el flujo de
«oreas de un proyecto. Dichos datos pueden actualizarse de
-lanera continua conforme el proyecto se lleva a cabo.

HERRAMIENTAS DE SOFTWARE

V

Herramientas representa t ivas 8

AMS Realtime, desarrollada por Advanced Management
Systems (www.amsusa.com), ofrece capacidades de ca-
lendarización para proyectos de todos los tamaños y ti-
pos.

Microsoft Project, desarrollada por Microsoft (www.micro-
soft.com), es la herramienta de calendarización de pro-
yectos basada en PC más ampliamente usada.

Viewpoint, desarrollada por Artemis Internation Solutions
Corp. (www.atemispm.com), soporta todos los aspectos
de la planificación del proyecto, incluso la calendariza-
ción.

Una lista detallada de empresas y productos de software
de gestión de proyectos se puede encontrar en www.in-
fogool .cam/pmc/pmcswr.htm.

8 Las herramientas expuestas representan una rr ¡¿esra 2e esta categoría En casi todos los casos los
nombres de las mismas son marcas registrada? cié -espectivos desarrolladores.

TM

PDF Editor

http://www.amsusa.com
http://www.atemispm.com

738 PAETE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

\
C L Á V E

Un cronogromo
permite determinar
qué toreos se
realizarán en un punto
dado en el t iempo.

24.5.1 Cronogramas
Cuando se crea una calendarización de proyecto del software, el planificador
mienza con un conjunto de tareas (la estructura de análisis del trabajo). Si se
plean herramientas automatizadas , el análisis del trabajo se introduce como una i
de tareas o esbozo de tareas. Entonces se introduce el esfuerzo, la duración y 1
cha de inicio de cada tarea. Además, las tareas se pueden asignar a individuos t
cíficos.

Como consecuencia de esta entrada, se genera un cronograma, también llama
gráfico Gantl. Es posible desarrollar un cronograma para todo el proyecto. De ma
ra alternativa, se pueden desarrollar c ronogramas separados para cada función i
proyecto o para cada individuo que trabaje en él.

La figura 24.3 ilustra el formato de un cronograma. Muestra una parte de la
lendarización de un proyecto de sof tware que resalta la tarea de determinación i
ámbito del concepto para un producto de software procesador de palabra (PP).
das las tareas del proyecto (para la determinación del ámbito del concepto) se citan;
la columna de la izquierda. Las barras horizontales indican la duración de cada

Ejemplo d e cronograma

Semana 1 S e m a n a 2 Semana 3 Semana 4 Semana 5
1.1.1 Ident i f icar n e c e s i d a d e s y b e n e f i c i o s

Reunirse c o n c l i en tes
Ident i f icar n e c e s i d a d e s y res t r i cc iones del p r o y e c t o
E s t a b l e c e r e n u n c i a d o d e l p r o d u c t o
Hito e n u n c í o d o d e l p r o d u c t o d e f i n i d o

I 1 2 Definir s a l i d a s / c o n t r o l / e n t r a d o s |SCE | d e s e a d a s
A l c a n c e d e las f u n c i o n e s d e l t e c l a d o
A l c a n c e d e las f u n c i o n e s d e e n t r a d a d e v o z
A l c a n c e d e lo s m o d o s d e ínter a c c i ó n
A l c a n c e d e l d i a g n ó s t i c o d e d o c u m e n t o s
A l c a n c e d e o t r a s f u n c i o n e s del PP
SCE d e l d o c u m e n t o
RTF Revis ión d e SCE c o n el c l ien te
M o d i f i c a r SCE c o n f o r m e s e r e q u i e r a

Hifo: SCG d e f i n i d a *
1 .1 .3 Definir l a f u n c i ó n / c o m p o r t a m i e n t o

Definir f u n c i o n e s d e t e c l a d o
Definir f u n c i o n e s d e e n t r a d a d e v o z
Descr ib i r m o d o s d e in t e racc ión
Descr ib i r ve r i f i cac ión o r t o g r á f i c a / g r a m a t i c a l
Descr ib i r o t r a s f u n c i o n e s d e l PP
RTF Revisar de f in ic ión SCE c o n eJ d i e n t e
M o d i f i c a r c o n f o r m e s e r e q u i e r a
Hito: d e f i n i c i ó n c o m p l e t a d e SCE

1.1.4 A i s l a m i e n t o d e e l e m e n t o s d e s o f t w a r e
Hito e l e m e n t o s d e s o f t w a r e d e f i n i d o s

1 .1 .5 Inves t igar d i s p o n i b i l i d a d d e s o f t w a r e ex i s t en te
Inves t igar c o m p o n e n t e s d e e d i c i ó n d e texto
Inves t igar c o m p o n e n t e s d e e n t r a d a d e v o z
Inves t igar c o m p o n e n t e s d e a d m i n i s t r a c i ó n d e a r c h i v o s
Inves i igor c o m p o n e n t e s d e ve r i f i c ac ión o r t o g r á f i c a /
g r a m a t i c a l

1.1 ó Hito: iden t i f i ca r c o m p o n e n t e s r eu t i l i zab les
Definir f a c t í b i l i d a d t é c n i c a
Eva lua r e n t r a d a d e v o z
Eva lua r ve r i f i c ac ión g r a m a t i c a l

1 .1 .7 Hito: foc t ib i l idad t é c n i c a v a l o r a d a
1 . 1 8 Es t imac ión r á p i d a d e t a m a ñ o

C r e a r u n a d e f i n i c i ó n d e á m b i t o
Revisar d o c u m e n t o d e á m b i t o c o n el c l ien te
M o d i f i c a r el d o c u m e n t o c o n f o r m e se r e q u i e r a
Hito: d o c u m e n t o d e á m b i t o c o m p l e t o

T =

TM

PDF Editor

CAPÍTULO 24 CALENDARIZACIÓN DE PROYE CTC6 DE SOFTWARE 739

rea. Cuando en el calendario s e presentan al mismo t iempo múltiples barras, se im-
plica la concurrencia de la tarea. Los d iamantes indican hitos.

Una vez ingresada la información necesaria para generar el cronograma, la ma-
yoría de las herramientas de calendarización de proyectos de software producen ta-
blas de proyecto: una lista tabular de todas las tareas del proyecto, sus fechas de inicio
y conclusión, p laneadas y reales, y una variedad de información relacionada (figura
24.4). Si se utilizan en conjunto con el cronograma, las tablas de proyecto permiten
que el gestor del proyecto dé seguimiento al progreso.

24.5.2 Seguimiento de la calendarización
La calendarización del proyecto proporciona un mapa de carreteras al gestor del
proyecto de software. Si se ha desarrollado de manera adecuada, la calendarización
del proyecto define las tareas e hitos que se deben seguir y controlar conforme avan-
ce el proyecto. El seguimiento se puede hacer de diferentes maneras:

• Con la realización periódica de reuniones para valorar el es tado del proyecto
en las cuales cada uno de los miembros del equipo informa del progreso y los
problemas.

• Con la evaluación de los resultados de todas las revisiones realizadas a lo lar-
go del proceso de ingeniería del software.

• Con la determinación de si s e han logrado los hitos formales del proyecto en
la fecha programada (los d iamantes que se muestran en la figura 24.3).

• Al comparar la fecha de inicio real con la fecha de inicio prevista para cada
tarea del proyecto mencionada en la tabla de recursos (figura 24.4).

Ejemplo de tabla de recursos.

Tareas d e t r a b a j o
Inicio

previs to
Inicio
rea l

Terminación
previs ta

Terminación
rea l

Personas
a s i g n a d a s

Esfuerzo
a s i g n a d o

<)en t ¡} ¡ea r n e c e s i d a d e s y b e n e f i c i o s

R e u n i r s e c o n los c l i e n t e s

i d e n t i f i c a r n e c e s i d a d e s y r e s t r i c c i o n e s d e l p r o y e c t o

E s í a b l e c e r e n u n c i a d o d e l p r o d u c t o

H i t o : e n u n c i a d o d e l p r o d u c t o d e f i n i d o

D e f i n i r s a l i d a s / c o n t r o l / e n t r a d a s | S C E) d e s e a d a s

A l c a n c e d e l a s f u n c i o n e s d e l t e c l a d o

A l c a n c e d e l a s f u n c i o n e s d e e n t r a d a d e v o z

A l c a n c e d e lo» m o d o s d e i n t e r a c c i ó n

A l c a n c e d e l d i a g n ó s t i c o d e d o c u m e n t o s
A l c a n c e d e o t r a s f u n c i o n e s d e l P P

D o c u m e n t o S C E f - • ! y

RTF: r e v i s i ó n d e S C E c o n e l c l i e n t e

M o d i f i c a r S C E c o n f o r m e s e r e q u i e r a

H i t o : S C E d e f i n i d a s

D e f i n i r l a f u n c i ó n / c o m p o r t a m i e n t o

s e m 1 , d i

s e m 1, d 2

s e m 1 , d 3

s e m 1 , d 3

s e m I , d 4

s e m I , d 3

s é m 2 , d i

s e m 2 , d i

s e m I , d 4

s e m 2, d i

s e m 2 . d 3

s e m 2 , d 4

s e m 2 , d 5

s e m í , d i

s e m I , d 2

s e m I , d 3

s e m 1 ; d 3

s e m 1, d 4

s e m 1 , d 3

s e m 1 , d 4

s e m I , d 2

s e m I , d 2
s e m I, d 3

s e m 1, d 3

s e m 1 , d 2

s e m 1, d 2

s e m 1, d 3

s e m 1 , d 3

JPP

s e m .

sem:
s e m

s e m

s e m

s e m

s e m

s e m

s e m

2 , d 2

2,<Í2
2 , d 3

2 , d 2

2, d 3

2, d 3

2 . d 3

2 . d 4

2 , d 5

m
MIL

Mli

2p-d
V;P"d

1 . 5 p d

2 p d

1 p<f

1 . 5 p d

2Pd
3 p d

3 p d

3 p d

TM

PDF Editor

740 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

^ O N S i i O ^

El mejor indicador de
piogieso es la termi-
nación y revisión
exitosa de un
producto de trabajo de
software definido.

• Al reunirse de manera informal con los t rabajadores para obtener su evalua-
ción subjetiva del progreso hasta la fecha y los problemas que se vislumbran

• Con el uso del análisis del valor obtenido (sección 24.6) para evaluar el pro-
greso cuanti tat ivamente.

En realidad, todas es tas técnicas de seguimiento las utilizan los gestores de proye;
to experimentados.

"La reglo básico del reporte del estado del software se puede resumir en una sola frase: no hay sorpresas."

El control lo emplea el gestor del proyecto para administrar los recursos del p r c - B
yecto, lidiar con los problemas y dirigir al personal del proyecto. Si las cosas van bien I
(es decir, el proyecto está dentro del calendario y del presupuesto, las revisiones r - I
dican que se está realizando un progreso real y que los hitos se han alcanzado! d I
control es ligero. Pero cuando ocurren problemas, el gestor del proyecto debe ejer- I
cer control para solucionarlos tan pronto como sea posible. Cuando se haya diag- I
nosticado el problema se destinan recursos adicionales al área correspondiente r e . I
bicando personal o redefiniendo la calendarización.

Cuando enfrentan severas presiones por la fecha límite, los gestores de p royeca
experimentados en ocasiones emplean una calendarización de proyecto y técnica c¡t\
control llamada time-boxing (encajonamiento de tiempo) [ZAH95]. Esta estrategia re - I
conoce que el producto completo no podrá entregarse en la fecha límite p r o g r a ~ ; • I
da. Por lo tanto, se elige un paradigma de software incremental (capítulo 3) y se eia- I
bora una calendarización para cada entrega incremental.

Entonces se enca jonan en el t iempo las tareas asociadas con cada incre
Esto significa que la calendarización para cada tarea se ajusta al trabajar haci
desde la fecha de entrega para cada incremento. Se coloca una "caja" alrededor ae
cada tarea. Cuando una tarea se acerca al límite de su caja de tiempo (más o m e - s
10 por ciento), el trabajo se detiene y comienza la siguiente tarea.

La reacción inicial al enfoque del enca jonamiento de t iempo usualmente es ne : ;
tiva: si el trabajo se termina, ¿cómo se procederá? La respuesta se encuentra e r la
forma en se realiza el trabajo. Cuando se llegue al límite de la caja de tiempo, es pro-j
bable que se haya completado9 90 por ciento de la tarea. El restante 10 por cier : iJ
aunque importante, puede 1) demorarse hasta el siguiente incremento o 2) comp ci-
tarse más tarde si se requiere. Más que quedarse "empantanado" en la tarea, el pror
yecto avanza hacia la fecha de entrega.

Capers Jones

9 Un cínico puede recordar el dicho: el 90 por ciento del sistema toma 10 por ciento del tiempo; e¡
tante 10 por ciento del sistema toma 90 por ciento del tiempo.

TM

PDF Editor

CAPÍTULO 24 CALENDARIZACIÓN DE PROYECTOS DE SOFTWARE 741

^ C O N S C I Q ^

Lo depuración y
yueba son simultó-
«os. Con frecuencia,
ti estodo de lo depu-
-xión se evalúo al
considerar el tipo y
número de errores
ibugs) "abiertos".

24.5.3 Seguimiento del progieso en un proyecto OO
Aunque un modelo iterativo es el mejor marco de t rabajo para un proyecto OO, el
paralelismo de las tareas dificulta el seguimiento del proyecto. El gestor del proyec-
to puede tener dificultades al establecer hitos significativos para un proyecto OO de -
bido a varias cosas diferentes que ocurren a la vez. En general, los siguientes hitos
principales se pueden considerar "completados" cuando se a lcanzan los criterios

anotados.

Hitos técnicos: análisis OO completado

• Se han definido y revisado todas las clases y la jerarquía de clase.

• Se han definido y revisado los atributos de clase y las operaciones asociadas

con una clase.

• Se han establecido y revisado las relaciones de clase (capítulo 8).

• Se ha creado y revisado un modelo de comportamiento (capítulo 8).

• Se han anotado las clases reutilizables.
\

Hitos técnicos: diseño OO completado

• Se ha definido y revisado el conjunto de subsistemas (capítulo 9).

• Las clases se han revisado y asignado a los subsistemas.

• Se ha establecido y revisado la asignación de tareas.

• Se han identificado las responsabilidades y colaboraciones (capítulos 8 y 9).

• Se ha creado y revisado el diseño de las clases.

• Se ha creado y revisado el modelo de comunicación.

Hitos técnicos: programación OO completada

• Cada nueva clase se ha implementado en código a partir del modelo de diseño.

• Se han implementado las clases obtenidas (de una librería de reutilización).

• Se ha construido el prototipo o incremento.

Hitos técnicos: prueba OO

• Se han revisado la corrección y que estén completos el análisis OO y los mo-

delos de diseño.

• Se ha desarrollado y revisado una red clase-responsabilidad-colaboración (ca-

pítulo 8).

• Se han diseñado casos de prueba y se han llevado a cabo pruebas al nivel de
clase (capítulo 14) para cada clase.

• Se han diseñado casos de prueba, se han completado pruebas de agrupa-
mientos (capítulo 14) y se han integrado las clases.

• Se han completado las pruebas al nivel de sistema.

TM

PDF Editor

742 PAUTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Recué rdese que el m o d e l o d e p r o c e s o OO e s i terativo, c a d a u n o d e e s t o s hi tos p u r l
d e rev isarse c o n f o r m e d i fe ren tes i n c r e m e n t o s s e e n t r e g u e n al cl iente.

Seguimiento de la calendarización 1
El e scenar io : Oficina de Doug

Miller, ontes del inicio del proyecto de software HogarSe-

gwa- '' ¡,¡ i f e ' ' <" :

Los ac tores : Doug Miller ¡gerente del equipo de inge-
niería del software de HogarSeguro) y Vinod Raman, Ja-
mieLazar y otros miembros del equipo de ingeniería del
software del producto.
La conversación:
Doug {mira una diapositiva PowerPoint): La ca-
lendarización para el primer incremento de HogarSeguro
parece razonable, pero tendremos problemas para darle
seguimiento al progreso.
Vinod {su rostro se nota preocupado): ¿Por qué?
Hemos calendarizado las tareas en una base diaria, lle-
na de productos de trabajo, y nos hemos asegurado que
nos estamos asignando recursos de mós.
Doug: Todo está bien, ¿pero cómo sabemos cuándo es-
tá completo el modelo de análisis para el primer incre-

Jamie : Las cosas son iterativas, por eso es difícil.

Doug: Entiendo eso, pero... bueno, por ejemplo, tome-
mos análisis de clases definido. Tú indicaste esto como u -
hito.

Vinod: Así es. ! H

Doug: ¿Quién hizo esa determinación?

J a m i e (irritada): Están hechas cuando están hechos

Doug: Eso no es suficientemente bueno, Jamie. Tenemos
que calendarízar RTF [revisiones técnicas formales, capi-
tulo 26] y no lo han hecho. La conclusión exitosa de una
revisión en el modelo de análisis, por ejemplo, es un hito
razonable. ¿Entendido?

J a m i e (m a l h u m o r a d a) : Está bien, de vuelta o la me-
sa de dibujo.

D o u g : No les debe tomar mós de una hora hacer las
correcciones. . todos los demás pueden comenzar añore

2 4 . 6 A M Á L Í S I S DEL V A L O R G A M A D O

%
C L Á V E

El valor g a n a d o o f r ece
un indicio cuant i ta t ivo
del p rog re so .

En la secc ión 24.5 s e t r a t a ron a l g u n o s e n f o q u e s cual i ta t ivos e n c u a n t o al seguimien-

to del proyecto . Cada u n o o f r ece al ges tor del p royec to un indicio del progreso , perr-
u n a eva luac ión d e la in fo rmac ión p r o p o r c i o n a d a e s un p o c o subje t iva . Es r azonab .e

p r e g u n t a r si existe u n a técnica cuan t i t a t iva p a r a eva luar el p r o g r e s o c o n f o r m e el
equ ipo d e s o f t w a r e a v a n z a a t r avés d e las t a r ea s d e t r aba jo a s i g n a d a s en la ca len-
da r i zac ión del proyecto . De hecho , exis te u n a técnica p a r a real izar anál is is cuant i ta-
t ivos del p rogreso . Se l lama análisis del valor ganado (AVG). Humphrey [HUM95"
c o m e n t a el valor g a n a d o en la fo rma s iguiente:

El sistema de valor ganado proporciona una escala de valor común para cualquier tarea
[de proyecto de software], sin importar el tipo de trabajo que se realiza. Se estiman las ho-
ras totales para realizar todo el proyecto y a cada tarea se le da un valor ganado con ba-
se en su porcentaje estimado del total.

E n u n c i a d o en una fo rma m á s simple, el valor g a n a d o e s una med ida del p rogreso
Permi te va lora r el "po rcen ta j e rea l izado" de u n p royec to r e e m p l e a n d o el análisis
cuant i ta t ivo e n lugar d e a p o y a r s e en una opin ión pe r sona l . De h e c h o , Fleming y Kop-

TM

PDF Editor

CAPÍTULO 24 CALENDARIZACIÓN DE PROYECTOS DE SOFTWARE 743

¿Cómo se
calcula el
ganado y

i te utiliza
i evaluar el

o?

i vtiriedod de
s ocefco del

|BM)»
•crsoien

».a<q.(
ri/p»/.

pleman [FLE98] argumentan que el análisis del valor ganado "ofrece lecturas preci-
sas y confiables del desempeño desde un momento tan temprano del proyecto co-
mo el 15 por ciento realizado."

Para determinar el valor ganado se realizan los siguientes pasos:

1. Se determina el costo presupuestado para el trabajo calendarizado (CPTC) res-
pecto de cada tarea de t rabajo representada en la calendarización. Durante la
estimación se planifica el trabajo (en personas-hora o personas-día) de cada
tarea de ingenieria. Por lo tanto, CPTC, e s el es fuerzo palnificado para la tarea
de trabajo i. Para determinar el progreso en un punto dado en la calendariza-
ción del proyecto, el valor de CPTC es la suma de los valores CPTC, para todas
la tareas de trabajo que deben estar completadas en dicho punto en el t iempo
en la calendarización del producto.

2 . Los valores CPTC para todas las tareas de trabajo se resumen para obtener el
presupuesto a la terminación, PAT. Por lo tanto,

PAT = I (PTCO para todas las tareas k.

3 . A continuación se calcula el costo presupuestado del trabajo realizado (CPTR).
El valor de CPTR es la suma de los valores CPTC para todas las tareas de tra-
ba jo que en realidad se han completado en un punto en el t iempo en la calen-
darización del proyecto.

Wilkens [WIL99] señala que "la distinción entre CPTC y CPTR e s que la primera re-
presenta el presupuesto de las actividades que s e planearon completar, y la última,
el presupuesto de las actividades que en realidad se comple taron" . Dados los valo-
res de CPTC, PAT y CPTR, se pueden calcular importantes indicadores del progreso:

índice de desempeño en la calendarización, IDCa = CPTR/CPTC
Varianza en la calendarización, VC = CPTR - CPTC

IDCa es un indicador de la eficiencia con la que el proyecto utiliza los recursos ca-
lendarizados. Un valor IDCa cercano a 1.0 indica una ejecución eficiente del proyec-
to calendarizado. VC simplemente es un indicador absoluto de la variación a partir
de la calendarización planeada.

Porcentaje calendarizado para terminación = CPTC/PAT

ofrece un indicador del porcentaje de trabajo que debe estar completado en el tiempo t.

Porcentaje de completado = CPTR/PAT

ofrece una indicación cuantitativa del porcentaje de avance del proyecto en un pun-
to dado en el tiempo, t.

También e s posible calcular el costo real del trabajo realizado, CRTR. El valor para
CRTR e s la suma del esfuerzo realmente utilizado en las tareas de trabajo que se han
completado en un punto en el t iempo en ia calendarización del proyecto. Entonces
es posible calcular

TM

PDF Editor

744 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

índice d e d e s e m p e ñ o del cos to , IDCo = CPTR/CRTR
Var ianza del cos to , VC = CPTR - CRTR

Un valor d e IDCo c e r c a n o a 1.0 o f r ece un fue r t e indicador d e q u e el p royec to esta
d e n t r o d e su p r e s u p u e s t o definido, VC e s un indicador a b s o l u t o del a h o r r o e n cos t i
(contra los c o s t o s p l aneados) o recor tes e n u n a e t a p a par t icular d e un proyecto .

Al igual q u e un r a d a r en el hor izonte , el anál is is del valor g a n a d o i lumina las c:-
ficultades en la ca lendar izac ión a n t e s de q u e p u e d a n adver t i r se d e a lguna o t ra for-
m a . Esto pe rmi t e q u e el ges to r del p royec to d e s o f t w a r e t o m e m e d i d a s correct ivas
a n t e s d e q u e s e desar ro l le u n a crisis en el p royec to .

La ca l enda r i zac ión e s la cu lminac ión d e u n a actividad d e planif icación que e s un
c o m p o n e n t e pr incipal d e la ges t ión del p royec to d e so f tware . C u a n d o s e combi r i
con m é t o d o s de es t imación y análisis d e riesgo, la ca lendar ización es tab lece un mapa
d e ca r r e t e r a s p a r a el ges to r d e proyectos .

La ca l enda r i zac ión c o m i e n z a con el p r o c e s o d e descompos ic ión . Las caracter is t -
c a s del proyecto s e utilizan para adap ta r un con jun to d e t a r ea s a p r o p i a d o al t raba :
q u e s e real izará . Una red d e t a r e a s b o s q u e j a c a d a t a rea d e ingenier ía , su d e p e n d e r
cia d e o t r a s t a r e a s y s u durac ión p royec tada . La red d e t a r e a s s e utiliza p a r a calcu-
lar la t rayectoria crítica, un c r o n o g r a m a y una var iedad d e información del proyect :
Al u sa r la ca l enda r i zac ión c o m o guía, el ges to r del p royec to p u e d e da r segu imien : c
y cont ro la r c a d a p a s o en el p r o c e s o del so f tware .

[BR095] Brooks, M., The Mythical Man -Month, edición de aniversario, Addison-Wesley, 1995
[FLE98] Fleming, Q. W., y J. M. Koppelman, "Earned Valué Project Management", Crosstalk, ve.

11, núm. 7, julio de 1998, p. 19.
[HUM95] Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, 1995.
[NOR70] Norden, P., "Useful Tools for Project Management", en Management ofProduction, M.

Starr (ed.), Penguin Books, 1970.
[PAG85] Page-Jones, M., Practícal Project Management, Dorset House, 1985, pp. 90-91.
[PRE99] Pressman, R. S., Adaptable Process Model, R. S. Pressman & Associates, 1999.
[PUT78] Putnam, L., y W. Myers, Measures for Excellence, Yourdon Press, 1992.
[W1L99] Wilkens, T. T., "Earned Valué, Clear and Simple", Primavera Systems, 1 de abril de 1999, p. 2
[ZAH95] Zahniser, R., "Time-boxing for Top Team Performance", en Software Development, mar

zo de 1995, pp. 34-38.

P R O B L E M A S V P U N T O S A C O N S I D E R A R

2 4 . 1 . Las fechas límite "irracionales" son un hecho de la vida en el negocio del software. ¿Ce-
rno se debe proceder si se enfrenta con una?

24 .2 . ¿Cuál es la diferencia entre una calendarización macroscópica y una calendarización de-
tallada? ¿Es posible gestionar un proyecto si sólo se desarrolla una calendarización macroscó-
pica? ¿Por qué?

TM

PDF Editor

CAPITULO 24 CALENDARIZACIÓN DE PROYECTOS DE SOFTWARE 745

24 .3 . ¿Existe algún caso donde un hito de un proyecto de software no esté ligado a una revi-
sión? Si es así, ofrecer uno o más ejemplos.

24 .4 . La "sobrecarga de comunicación" puede ocurrir cuando muchas personas trabajan en un
proyecto de software. El tiempo empleado en la comunicación con otros reduce la productivi-
dad individual (LDC/persona-mes) y el resultado es menor productividad para el equipo. Ilus-
trar (cuantitativamente) cómo los ingenieros versados en las buenas prácticas de ingeniería del
software y que usan revisiones técnicas formales pueden aumentar la tasa de producción de un
equipo (cuando se compara con la suma de las tasas de producción individuales). Sugerencia:
se puede suponer que las revisiones reducen la reelaboración y que ésta puede explicar el 20-
40 por ciento del tiempo de una persona.

24 .5 . Aunque agregar personal a un proyecto de software retrasado puede retrasarlo más,
existen circunstancias en las cuales esto no es cierto. Descríbanse.

24 .6 . La relación entre personal y tiempo es enormemente no lineal. Mediante la ecuación del
software de Putnam (descrita en la sección 24.2.2), desarrollar una tabla que relacione el núme-
ro de personas con la duración del proyecto para un proyecto de software que requiera 50 000
LDC y 15 personas-año de esfuerzo (el parámetro de productividad es 5 000). Supóngase que el
software debe entregarse en un máximo de 24 meses o en un mínimo de 12.

24 .7 . Suponga que una universidad lo ha contratado para desarrollar un sistema de registro en
línea a cursos (SRELC). Primero, actúe como el cliente (si es estudiante, ¡esto debe ser sencillo!)
y especifique las características de un buen sistema. (Alternativamente, su instructor le propor-
cionará un conjunto de requisitos preliminares para el sistema.) Por medio de los métodos de
estimación tratados en el capítulo 23, desarrolle una estimación del esfuerzo y la duración pa-
ra el SRELC. Sugiera cómo:

a) Definiría las actividades de trabajo paralelas durante el proyecto de SRELC.
b) Distribuiría el esfuerzo a lo largo del proyecto.
c) Establecería hitos para el proyecto.

24 .8 . Seleccione un conjunto de tareas apropiado para el proyecto del SRELC.

24 .9 . Defina una red de tareas para el SRELC o, alternativamente, para otro proyecto de soft-
ware que le interese. Asegúrese de mostrar las tareas e hitos y de vincular las estimaciones de
esfuerzo y duración a cada tarea. Si es posible, utilice una herramienta automatizada de calen-
darización para realizar este trabajo.

24 .10 . Si está disponible una herramienta automatizada de calendarización, determine la tra-
yectoria crítica para la red definida en el problema 24.9.

2 4 . 1 1 . Mediante una herramienta de calendarización (si está disponible) o papel y lápiz (si es
necesario), desarrolle un cronograma para el proyecto del SRELC.

2 4 . 1 2 . Suponga que es gestor de proyectos de software y que se le ha pedido calcular las es-
tadísticas del valor ganado de un pequeño proyecto El proyecto tiene planeadas 56 tareas de
trabajo que se estima requerirán 582 personas-día para completarse. En el momento en que se
le pide realizar el análisis del valor ganado. 12 tareas se han completado. Sin embargo, la ca-
lendarización del proyecto indica que se tenían que haber completado 15. Están disponibles los
siguientes datos de la calendarización (en personas-día):

Tarea Esfuerzo previsto E s t e r » r e d

1 12.0 12.5

TM

PDF Editor

746 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Toreo E s f u e r z o p r e v i s t o Esfuerzo r ea l

2 15.0 11.0
3 13.0 17.0
4 8.0 9.5
5 9.5 9.0
6 18.0 19.0
7 10.0 10.0
8 4.0 4.5
9 12.0 10.0

10 6.0 6.5
11 14.0 4.0
12 14.0 14.5
13 16.0 —

14 6.0 —

15 8.0 —

Calcule el IDCa, la varianza de calendarización, el porcentaje calendarizado para terminación
el porcentaje completado, IDCo y la varianza de costo para el proyecto.

Casi cualquier libro acerca de gestión de proyectos de software contiene una exposición de la
calendarización. El Project Management Institute (PMBOK Guide, PM1, 2001), Wysoki y sus co-
legas (Effective Project Management, Wiley, 2000), Lewis (Project Planning Scheduling and Con-
trol, 3a. ed„ McGraw-Hill, 2000), Bennatan (On Time, Within Budget: Software Project
Management Practices and Techniques, 3a. ed., Wiley, 2000), McConnell (Software Project Cost
Survival Guide, Microsoft Press, 1998) y Roetzheim y Beasley (Software Project Cost and Schedule
Estimating: Best Practices, Prentice-Hail, 1997) contienen análisis valiosos del tema. Boddie
(Crunch Mode, Preniice-Hall, 1987) ha escrito un libro para todos los gestores que "tienen 90
días para hacer un proyecto de seis meses".

McConnell (Rapid Development, Microsoft Press, 1996) presenta una excelente exposición de
los conflictos que conducen a calendarizaciones de proyectos de software demasiado optimis-
tas y qué puede hacer acerca de ello. O'Connell (How to Run SuccessJuI Projects II: The Silver
Bullet, Prentice-Hall, 1997) presenta un enfoque paso a paso para la gestión de proyectos que
le ayudará a desarrollar una calendarización realista para sus proyectos.

Webb y Wake (Using Earned Valué: A Project Manager's Guide, Ashgate Publishing, 2003) y
Fleming y Koppelman (Earned Valué Project Management, Project Management Institute Publi-
cations, 1996) examinan con considerable detalle el uso de las técnicas del valor ganado para
planificación, seguimiento y control de proyectos.

En Internet hay disponible una gran variedad de fuentes de información acerca de la calen-
darización de proyectos de software. Una lista actualizada de referencias de la World Wide
Web se puede encontrar en el sitio Web de SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

G E S T I Ó N
DEL RIESGO

C O N C E P T O S

C L A V E

alegorías
:eriesgos 7 4 9

ütrategin
rooctiva 748

Ktrotegia
«•ctivo 748

tratación 7 5 7

exposición
é riesgo 757

¡fcitificoción . .750

vincipios 750

inyección 754

-ffinomiento.. .762

KG« 761

Hgsridad
i riesgos 763

«Éta
«e riesgos 755

E n su libro acerca del análisis y la gestión del riesgo, Robert Charet te
(CHA891 presen ta una definición conceptua l de riesgo:

En primer lugar, el riesgo se relaciona con ios acontecimientos futuros. El hoy y el
ayer están más allá de esta relación, pues ya se ha cosechado lo que previamente se
sembró con nuestras acciones pasadas. La pregunta es: ¿podemos, por tanto, al cam-
biar nuestras acciones presentes, crear en lo futuro una oportunidad para una situa-
ción diferente, y esperanzadoramente mejor, para nosotros mismos? Esto significa,
en segundo lugar, que el riesgo implica cambio, como cambios de mentalidad, opi-
nión, acciones o lugares... [en tercer lugar] el riesgo implica elección y la incertidunv
bre que ésta conlleva. Por ende, paradójicamente, el riesgo, al igual que la muerte y
los impuestos, es una de las pocas certezas en la vida.

C u a n d o el r iesgo se cons idera en el con tex to de la ingeniería del sof tware , las
tres ba se s concep tua les de Charet te s iempre se evidencian. El fu turo es una
p reocupac ión de primer orden: ¿qué riesgos causar ían que el p royec to de soft-
ware salga mal? El cambio es una preocupación central : ¿cómo a fec ta rán la
actual idad y el éxito global los cambios en los requisi tos del cliente, las tecnolo-
gías de desarrollo, los en to rnos que se t ienen c o m o objetivo y t odas las o t ras en -
tidades vinculadas con el proyecto? Por último, e s necesario enfrentar las opciones:
¿qué mé todos y he r r amien ta s se deben usar, c u á n t a s p e r s o n a s deben es tar in-
volucradas , c u á n t o énfas is sobre la calidad es "suficiente"?

Peter Drucker [DRU75] dijo una vez: "Aunque es vano intentar el iminar el
riesgo, y cues t ionable in tentar minimizarlo, e s esencial que los riesgos t o m a d o s
s e a n los riesgos correctos". Antes de identificar los "riesgos correctos" que se to-
marán du ran t e un proyecto de sof tware, e s impor tante identificar los r iesgos que
son obvios para los ges to res y profes ionales .

¿ Q u é e s ? El aná l i s i s y la ges t ión del
r iesgo son u n a ser ie d e p a s o s q u e
a y u d a n a un e q u i p o d e s o f t w a r e o
c o m p r e n d e r y m a n e j a r la incer t idum-
bre . M u c h o s p r o b l e m a s p u e d e n des-

b o r d a r un p r o y e c t o d e s o f t w a r e . Un r i e sgo es un
p r o b l e m a potencia l : p u e d e ocur r i r o no. Pero,
sin i m p o r t a r el r esu l tado , en r e a l i d a d es J-C
b u e n a i d e a ident i f icar lo, e v a l u a r la probabi l i -
d a d d e q u e o c u r r a , es t imar su i m p a c t o y es tab le -

cer un p l an d e con t i ngenc i a e n c a s o d e q u e el
p r o b l e m a se p re sen te .

¿Quién lo h a c e ? Todos los involucrados en el
p r o c e s o d e s o f t w a r e (ges tores , i ngen ie ros y p a r -
t ic ipantes) in terv ienen e n el aná l i s i s y la ges t ión
de l r iesgo .

¿Por q u é e s i m p o r t a n t e ? Piénsese en el lema
d e los b o y scout: "es tar p r e p a r a d o " . El s o f t w a r e
e s u n a e m p r e s a difícil. M u c h a s c o s a s p u e d e n sa -
lir rrio: y. R o n c a m e n t e , c o n m u c h a f r ecuenc ia lo

747

TM

PDF Editor

748 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

hacen . Por esta razón estar p r e p a r a d o s (al com-
prender los riesgos y tomar med idas proactivas
p a r a evitarlos o gestionarlos) es un elemento cla-
ve de una buena gestión d e proyecto de software.

¿Cuáles s o n los p a s o s ? Reconocer qué puede
salir mal es el primer paso , l lamado "identifica-
ción del riesgo". A continuación $e ana l i za ca-
d a r iesgo p a r a determinar la p robab i l idad de
que ocurrirá y el d a ñ o que causa r á si en efecto
ocurre. Una vez establecido esta información,
los riesgos se clasifican según su p robab i l idad e
impacto. Finalmente, se desarrolla un plan p a r a
gestionar aquellos riesgos con gran probabili-
d a d y alto impacto.

¿Cuál e s el producto o b t e n i d o ? Se produce
un plan d e reducción, supervisión y gestión del
riesgo (RSGR) o un conjunto d e hojas informati-
vas d e riesgo.

¿Cómo puedo estar seguro de que lo he
h e c h o correctamente? Los riesgos que se
ana l izan y gestionan deben proceder de un es-
tudio ampl io del personal , el producto, el proce-
so y el proyecto. El plan RSGR d e b e revisarse
conforme el proyecto a v a n z a p a r a a segura r se
d e q u e los riesgos están actual izados. Los planes
d e contingencia p a r a la gestión del riesgo deben

, ser realistas.

2 5 . 1 E S T R A T E G I A S P E R I E S G O R E A C T I Y A S Y P R P A C T I Y A S

Las estrategias de riesgo reactivas han sido jocosamente denominadas la "escuela
Indiana Jones de gestión del riesgo" [TH092]. En las películas de la década de 1980
que llevaban su nombre, Indiana Jones, cuando enfrentaba alguna dificultad abru-
madora , invariablemente decía: "¡No te preocupes, pensaré en algo!". Al no preocu-
parse nunca por los problemas, s ino hasta que ocurrían, Indy reaccionaba en algu-
na forma heroica.

"Si usted no a t e t a activamente los riesgos, ellos lo atacarán ortivamente."
Tom Gilb

Tristemente, el gestor promedio de proyectos de sof tware no e s Indiana Jones, .
los miembros del equipo de proyecto de sof tware no son sus confiables compañe-
ros. Más aún, la mayoría de los equipos de software se apoya exclusivamente en las
estrategias de riesgo reactivas. Los riesgos se apar tan para tratarlos, lo que puede
convertirlos en problemas reales. Más usualmente, el equipo de sof tware no hace
nada acerca de los riesgos hasta que algo sale mal. Entonces el equipo se precipita
en la acción con la finalidad de corregir el problema rápidamente. Con frecuencia a
esto s e le llama el modo bombero. Cuando es to falla, la "gestión de crisis" [CHA92
asume el control y el proyecto está en un verdadero peligro.

Una estrategia considerablemente m á s inteligente para la gestión del riesgo es ser
proactivo. Una estrategia proactiva comienza mucho an tes de que se inicie el traba-
jo técnico. Se identifican los riesgos potenciales, s e valoran su probabilidad e impac-
to, y se les clasifica según su importancia. Luego, el equipo de sof tware establece ur
plan para gestionar el riesgo. El objetivo principal e s evitar el riesgo, pero debido a
que no todos los riesgos pueden evitarse, el equipo trabaja para desarrollar un plan

TM

PDF Editor

CAPÍTULO 25 GESTIÓN DEL RIESGO 749

de contingencia que le permitirá responder en una forma controlada y efectiva. A lo lar-
go del resto del capítulo se examina la estrategia proactiva para la gestión del riesgo.

•
¿Qué tipos
de riesgos

«s probable
•con t ra r
« • fo rme se
oNKtruye
software?

Aunque hay un considerable debate en torno a la definición propia para el riesgo de
software, existe un acuerdo general en que el riesgo siempre involucra dos caracte-
rísticas [HIG95] :

• Incertidumbre: el riesgo puede o no ocurrir; es to es, no existen riesgos 100%
probables.1

• Pérdida: si el riesgo se convierte en realidad, ocurrirán consecuencias o pérdi-
das indeseables.

Cuando se analizan los riesgos e s importante cuantificar el grado de incertidumbre
y el grado de pérdida asociado con cada riesgo. Esto se logra considerando diferen-
tes categorías de riesgos.

Los riesgos del proyecto a m e n a z a n el plan del proyecto. Es decir, si los riesgos del
proyecto se vuelven reales e s probable que la calendarización del proyecto se altere
y que los costos aumenten . Los riesgos del proyecto identifican potenciales proble-
m a s en presupuesto, calendarización, personal (plantillas y organización), recursos,
participantes y requisitos, y su impacto sobre un proyecto de software. En el capítu-
lo 23 la complejidad, t amaño y grado de incertidumbre estructural del proyecto tam-
bién se definieron c o m o factores de riesgo del proyecto (y de la estimación).

Los riesgos técnicos a m e n a z a n la calidad y actualidad del sof tware que se produ-
cirá. Si un riesgo técnico se vuelve real, la implementación se torna difícil o imposi-
ble. Los riesgos técnicos identifican potenciales problemas en diseño, implementa-
ción, interfaz, verificación y mantenimiento. Además, también son factores de ries-
go la ambigüedad de la especificación, la incertidumbre técnica, la obsolescencia
técnica y la tecnología "de punta". Los riesgos técnicos ocurren porque el problema
es más difícil de resolver de lo que en un principio se pensó que sería.

Los riesgos de negocios a m e n a z a n la viabilidad del sof tware que se construirá. Es-
tos riesgos con frecuencia ponen en peligro el proyecto o el producto. Los candidatos
para los cinco mayores riesgos de negocios son 1) la construcción de un producto o
sistema excelente que en realidad nadie quiere (riesgo de mercado), 2) la construc-
ción de un producto que ya no enca ja en la estrategia comercial global de la compa-
ñía (riesgo de estrategia), 3) la construcción de un producto que la fuerza de ventas
no sabe cómo vender (riesgo de ventas 4) la pérdida del apoyo de los al tos ejecuti-
vos debido a un cambio en el enfoque o en el personal (riesgo administrativo), y 5)
la pérdida presupuestaria o del personal asignado (riesgo presupuesta!).

1 Un riesgo 100 por ciento probable es una socre e! proyecto de software

TM

PDF Editor

750 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Es ext remadamente importante destacar que la simple clasificación de los riesgos
no siempre funciona. Algunos riesgos s implemente son impredecibles.

Charette [CHA89] ha propuesto otra categorización general de los riesgos. Los
riesgos conocidos son aquellos susceptibles de descubrirse después de una evalua-
ción cuidadosa del plan del proyecto, del entorno de negocios y técnico dentro de los
cuales se desarrollará el proyecto, y otras fuentes de información confiables (por
ejemplo, fechas de entrega irreales, falta de requisitos documentados o de ámbitc
del software, pobre entorno de desarrollo). Los riesgos predecibies se extrapolan de
la experiencia con proyectos previos (por ejemplo, cambios en el personal, mala co-
municación con el cliente, disminución del esfuerzo del personal conforme se atien-
den las solicitudes de mantenimiento). Los riesgos impredecibles son el comodín de
la baraja. Pueden y de hecho ocurren, pero son ex t remadamente difíciles de identi-
ficar con antelación.

INFORMACIÓN

Siete principios de la gestión de riesgos
' El Software Engineering Institute (SEI) (www.

sei.cmu.edu) identifica siete principios que "ofre-
cen un marco de trabajo para lograr una gestión de ries-
gos efectiva". Dichos principios son:

Mantenimiento de una perspectiva global: ver
los riesgos de software dentro del contexto del sistema en
el que está un componente y el problema de negocios que
se intenta resolver.

Tener una visión previsora: pensar en los riesgos
que pudieran surgir en lo futuro (por ejemplo, debido a
cambios en el software); establecer planes de contingencia
de modo que los eventos futuros sean manejables.

Alentar la comunicación abierta: si alguien estable-
ce un riesgo potencial, no lo descarte. Si un riesgo se pro-
pone de una manera informal, considérelo. Aliente a todos

los participantes y usuarios a sugerir riesgos en cualquier
momento.
Integración: en el proceso del software debe estar inte-
grada una consideración de los riesgos.
Enfatizar un proceso continuo: el equipo debe estar
atento a lo largo de todo el proceso de software, modificar
los riesgos identificados conforme se tenga más informa-
ción y agregar unos nuevos a medida que se logre un me-
jor criterio.
Desarrollo de una visión conjunta del producto:
si todos los participantes comparten la misma visión del
software, es probable que ocurra mejor identificación y
evaluación de riesgos.

Alentar el trabajo en equipo: los talentos, habilida-
des y conocimiento de los participantes se deben mezclar
cuando se lleven a cabo actividades de gestión de riesgos.

La identificación de los riesgos es un intento sistemático encaminado a especificar
las a m e n a z a s al plan del proyecto (estimaciones, calendarización, carga de recursos,
etc.). Al identificar los riesgos conocidos y predecibies, el gestor del proyecto da un
primer paso para evitarlos cuando es posible y a controlarlos cuando es necesario.

Existen dos tipos distintos de riesgos para cada una de las categorías que se han
presentado en la sección 25.2: los riesgos genéricos y los riesgos específicos del pro-
ducto. Los riesgos genéricos son una amenaza potencial para todo el proyecto de
software. Los riesgos específicos del producto los pueden identificar sólo aquellos con

TM

PDF Editor

CAPÍTULO 25 GESTIÓN DEL RIESGO 751

un claro conocimiento de la tecnología, el personal y el entorno específico del softwa-

re que se construirá. Los riesgos específicos del producto se identifican examinando el
plan del proyecto y la declaración del ámbito del software, así como desarrollando
una respuesta para la siguiente pregunta: "¿Qué características especiales de es te
producto podrían amenaza r el plan del proyecto?".

"Los proyectos sin riesgos reoles son perdedores. Estos proyectos cosi siempre están desprovistos d e beneficios; por
ello no fueron realizados años otras."

Tom DeMarco y Tim Uster

^CONSEJO^-

krque es impoitante
:ysideror los riesgos
¡enéticos, los riesgos
isxcUkos del
:mducto son los que
j o m a n lo mayoría
i los dolores de
ateza. Asegúrese de
rmpfeflf tiempo pora
efenlifkar tontos
vsgos específicos del
mducto como sea
xsMe.

Un método para identificar riesgos consiste en crear una lista de verificación de
riesgos. Con ésta se pueden identificar riesgos y enfocarse en algún subconjunto de ries-
gos conocidos y predecibles en las siguientes subeategorías genéricas:

• Tamaño del producto: riesgos asociados con el t amaño global del software que
se construirá o modificará.

• Impacto en el negocio: riesgos asociados con las restricciones que impone la
gerencia o el mercado.

• Características del cliente: riesgos asociados con la sofisticación del cliente y la
habilidad del desarrollador para comunicarse con él en una forma oportuna.

• Definición de! proceso: riesgos asociados con el grado en el que se ha definido
el proceso de sof tware y en que le da seguimiento la organización que lo de-

sarrolla.

• Entorno de desarrollo: riesgos asociados con la disponibilidad y calidad de las
herramientas que se usarán en la construcción del producto.

• Tecnología que construir: riesgos asociados con la complejidad del sistema que
se construirá y la "novedad" de la tecnología que está empaquetada en el sis-

tema.

• Tamaño y experiencia de la plantilla de personal: riesgos asociados con la expe-
riencia global técnica y en el proyecto de los ingenieros de software que harán

el trabajo.

La lista de verificación de riesgos se puede organizar en diferentes formas. Las pre-
guntas relevantes respecto de cada uno de los tópicos se pueden responder para
cada proyecto de software. Las respuestas a es tas preguntas permiten que el plani-
ficador est ime el impacto del riesgo. Un formato diferente de lista de verificación de
riesgos simplemente menciona las características relevantes para cada subeategoría
genérica. Finalmente, se menciona un conjunto de "componentes y controladores de
riesgo" [AFC88] junto con su probabilidad de ocurrencia. Los controladores del de-
sempeño, soporte, costo y calendarización se estudian como respuesta a las últ imas

preguntas.

TM

PDF Editor

752 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

¿El proyecto
• de software

en el que actual-
mente trabaja
enfrenta riesgos
serios?

B j g g g a g g
| M radares uno b a s e !

henamientns que
ayudan o los gestores :
o identificar, dosificar y
comunico! los riesgos
de proyecto. 5B puede
encontraren '<<
www.fpmn.com. |

En la bibliografía s e h a n p r o p u e s t o va r ias l istas d e verif icación de t a l l adas para
r iesgos del p royec to d e s o f t w a r e (por e jemplo , [SEI93], [KAR96]), l as cua les p ropor -
c ionan u n a visión útil de los r iesgos gené r i cos p a r a proyec tos d e so f tware , y s e de -
ben u s a r s i e m p r e q u e s e ins t i tuyan anál is is y ges t ión del r iesgo. Sin e m b a r g o , s e pue -
d e e m p l e a r una lista r e l a t i vamen te cor ta de p r e g u n t a s [KE198] p a r a p roporc iona r un
indicio pre l iminar d e si un p royec to es tá "en r iesgo".

25.3.1 Evaluación del riesgo global del proyecto
Las s igu ien tes p r e g u n t a s s e b a s a n en los da to s d e r iesgo ob t en idos al entrevis tar , en
d i fe ren tes pa r t e s del m u n d o , a g e s t o r e s d e p royec to d e s o f t w a r e e x p e r i m e n t a d o s
[KEI98]. Las p r e g u n t a s e s t á n o r d e n a d a s s e g ú n su impor t anc ia re la t iva e n el éxi to de
un proyecto .

1 . ¿Los a l tos e jecu t ivos d e s o f t w a r e y del c l iente s e h a n c o m p r o m e t i d o fo rma l -

Mp a r a apoya r el proyecto?

sua r ios finales e s t á n c o m p r o m e t i d o s con el p royec to y el s i s t e m a / p r o -
duc to q u e s e cons t ru i rá?

3 . ¿Los requis i tos los h a n e n t e n d i d o c o m p l e t a m e n t e el equ ipo de ingenier ía d e
s o f t w a r e y s u s cl ientes?

4 . ¿Los c l i en tes e s tuv ie ron c o m p l e t a m e n t e invo luc rados en la def in ic ión d e los
requis i tos?

5 . ¿Los u sua r io s finales t i enen expec ta t ivas rea l i s tas?

6 . ¿El á m b i t o del p royec to e s es tab le?

7. ¿El e q u i p o de ingenier ía del s o f t w a r e t iene la mezc l a co r rec ta d e habi l idades?

8. ¿Los requis i tos del p royec to son es tab les?

9 . ¿El e q u i p o del p royec to t iene exper ienc ia con la tecnología q u e s e i m p l e m e n -
tará?

1 0 . ¿El n ú m e r o d e p e r s o n a s en el equ ipo d e p royec to e s a d e c u a d o p a r a real izar e'.
t raba jo?

11 . ¿Todos los v o t a n t e s del c l i e n t e / u s u a r i o e s t á n d e a c u e r d o en la impor tanc ia
del p royec to y e n los requis i tos p a r a el s i s t e m a / p r o d u c t o q u e s e cons t ru i rá?

"La gest ión d e r iesgos e s la gest ión de proyectos p a r a adu l tos . "
T i m L i s t e r

Si la r e s p u e s t a a a l g u n a d e e s t a s p r e g u n t a s e s nega t iva s e d e b e n insti tuir s in d e m o -

ra los p a s o s de reducc ión , supervis ión y gest ión. El g r ado en el q u e el p royec to está
en r iesgo e s d i r e c t a m e n t e proporc iona l al n ú m e r o d e r e s p u e s t a s nega t i va s a e s t a s
p r e g u n t a s .

TM

PDF Editor

http://www.fpmn.com

CAPÍTULO 25 GESTIÓN DEL RIESGO 753

25.3.2 Componentes y controladores del riesgo
La Fuerza Aérea de Estados Unidos [AFC88] escribió un folleto con excelentes direc-
trices para la identificación y supresión del riesgo de software. Este enfoque requie-
re que el gestor del proyecto identifique los controladores del riesgo que afectan los
componen tes de riesgo del software: desempeño, costo, soporte y calendarización.
En el contexto de es te estudio los componen tes de riesgo se definen en la forma si-
guiente:

• Riesgo de desempeño: grado de incertidumbre de que el producto satisfaga los
requisitos y se ajuste al uso que se pretende darle.

• Riesgo de costo: grado de incertidumbre de que s e mantenga el presupuesto
del proyecto.

• Riesgo de soporte: grado de incertidumbre de que el software resultante será
fácil de corregir, adaptar y mejorar.

\ ^ C o m p o n e n t e s

Categoría N .
Desempeño Soporte Costo Calendarización

Catastrófico

T
El f racaso en la satisfacción d e los
requisitos resultaría en un f racaso d e
la misión

El f racaso resulta en el aumento d e costos
y en d e m o r a s en la ca lendar izac ión con
valores e spe r ado s que superan 50QK dls.

Catastrófico
2

Cierta reducción
en el de sempeño
técnico

Software que no
responde o no se
puede soportar

Recortes financieros
significativos,
p robab le superación
del presupuesto

COI
ina lcanzable

Crítica

1

El f racaso p a r a satisfacer los requisitos
resultaría en un d e s e m p e ñ o d e g r a d a d o
del sistema hasta un punto d o n d e el éxito
d e to misión es cuestionable

El f racaso resulta en d e m o r a s operativos
o incremento de costos con valor espe-
r a d o d e 100K a 500K dóla res

Crítica
2

Cierta reducción
en el de sempeño
técnico

Demoras menores en
las modificaciones
del software

Cierto recorte d e
recursos financieros,
posibles excesos

Posible
deslizamientos
en la COI

Marginal

1
El f racaso p a r a satisfacer los requisitos
resultaría en degradac ión de la misión
secundario

Deslizamiento d e costos, impactos o
ca lendar izac ión re cuperab le con valor
e s p e r a d o d e 1K a 100K dólares

Marginal

2

Mínima a p e q u e ñ a
reducción en el
de sempeño técnico

Respuesta d e
soporte d e
software

Suficientes recursos
financieros

Ca lendar izac ión
a l c a n z a b l e
y realista

Despreciable

1
El f racaso al satisfacer los requisitos
crear ía inconvenientes o impactos no
operativos

El error resulta en costo menor o
impacto en la ca lendar izac ión con
valor e s p e r a d o d e menos d e 1K dólares

Despreciable
2

Ninguna reducción
en el de sempeño
técnico

Software al que
fácilmente se le
d a soporte

Posible superávit
presupuesta!

COI
fácilmente
a l canzab le

Nota: 1. Consecuencia potencial de errores o (ollas d e software no deteclados.

2 . Consecuencia potencial si el resultado deseado no s e alcanzo.

TM

PDF Editor

7 5 4 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

• Riesgo de calendarización.- grado de incertidumbre de que se mantenga la ca-
lendarización del proyecto y de que el producto se entregue a tiempo.

El impacto de cada controlador de riesgo sobre el componente de riesgo se divide en
cuatro categorías de impacto: despreciable, marginal, crítico o catastrófico. En la fi-
gura 25.1 [BOE89] se describe una caracterización de las consecuencias potenciales
de los errores (hileras et iquetadas 1) o una falla que no permite lograr un resultado
deseado (hileras et iquetadas 2). La categoría de impacto se escoge con base en la ca-
racterización que mejor encaje con la descripción en la tabla.

La proyección del riesgo, también llamada estimación del riesgo, intenta clasificar ca-
da riesgo en dos formas: 1) la posibilidad o probabilidad de que el riesgo sea real, j
2) las consecuencias de los problemas asociados con el riesgo, en caso de que ocu-
rra. El planificador del proyecto, junto con otros gestores y personal técnico, realizar,
cuatro pasos en la proyección del riesgo:

1. Establecimiento de una escala que refleje la posibilidad percibida de un ries-

2 5 . 4 P B O Y E C C Í Ó M REÍ . P I E S G O

go.

2. Delineado de las consecuencias del riesgo.

Ejemplo de
tabla de ries-
gos antes de
la clasifica-
ción.

La estimación del tamaño puede ser
significativamente baja
Mayor número de usuarios de los previstos
Menos reutiltzación que la prevista
Los usuarios finales se resisten al sistema
La fecha límite de entrega estará muy ajustada
Pérdida de fondos
El cliente cambiará requisitos
La tecnología no satisfará las expectativas
Falta de entrenamiento acerca de las herramientas
Personal inexperto
Elevada movilidad del personal

Riesgos Categoría Probabilidad Impacto RSGR

TP
TP

CO
CO
CL
TP
RT
ED
PE
PE

TP

3 0 %
7 0 %
4 0 %
5 0 %
4 0 %
80%
3 0 %
80%
3 0 %
60%

60% 2

3
2
3
2

2

3
2
2

Valores de impacto:
1: catastrófico
2: critico
3: marginal
4: despreciable

TM

PDF Editor

CAPÍTULO 25 GESTIÓN DEL RIESGO 755

[CONSEJO

! mucho acerca
i aforare que está

i de construir y
justed

o : ¿qué puede
r vd? Cree su

l í s t o y pida o
s miembros del

i que hagan lo

\ CLAVE
i toblo d e riesgos
í ordenada por

I y x o b i l i d a d e impacto
m s dosificar los
« s g o s .

3 . Estimación del impacto del riesgo en el proyecto y el producto.

4 . Tomar nota de la precisión global de la proyección del riesgo de m o d o que no
haya malas interpretaciones.

La finalidad de estos pasos es considerar los riesgos en tal forma que conduzcan al
establecimiento de prioridades. Ningún equipo de sof tware tiene los recursos para
enfrentar todos los riesgos potenciales con el mismo grado de rigor. Al priorizar los
riesgos el equipo puede asignar los recursos donde tengan el mayor impacto.

25.4.1 Desarrollo de una tabla de riesgos
Una tabla de riesgos ofrece al gestor de un proyecto una técnica simple para la pro-
yección de riesgos.2 En la figura 25.2 se ilustra un ejemplo de tabla de riesgos.

Un equipo de proyecto comienza una lista de todos los riesgos (sin importar cuán
remotos sean) en la primera columna de la tabla. Esto s e logra con la ayuda de la lis-
ta de verificación de riesgos mencionada en la sección 25.3. Cada riesgo se clasifica
en la segunda columna (por ejemplo, TP implica un riesgo de t amaño del proyecto,
NE implica un riesgo de negocios). En la siguiente columna de la tabla se registra la
probabilidad de que ocurra cada riesgo. El valor de la probabilidad de cada riesgo lo
pueden estimar individualmente los miembros del equipo. Éstos s e encuestan en una
forma de "todos contra todos" hasta que su evaluación de la probabilidad del riesgo
comience a convergir.

A continuación se evalúa el impacto de cada riesgo. Cada componente de riesgo
se evalúa mediante la caracterización presentada en la figura 25.1, y se determina
una categoría de impacto. Las categorías para cada uno de los cuatro componen tes
de riesgo (desempeño, soporte, costo y calendarización) se promedian 3 para deter-
minar un valor de impacto global.

Una vez completadas las cuatro pr imeras co lumnas de la tabla de riesgos, ésta se
ordena según la probabilidad y el impacto. Los riesgos de alta probabilidad y alto im-
pacto se filtran hacia lo alto de la tabla, y los riesgos de baja probabilidad caen al
fondo. Esto logra una priorización del riesgo de primer orden.

El gestor del proyecto estudia la tabla ordenada resultante y define una línea de
corte. La línea de corte (dibujada horizontalmente en algún punto en la tabla) impli-
ca que sólo los riesgos ubicados sobre la línea tendrán una atención posterior. Los
riesgos debajo de la línea se reevalúan para lograr una priorización de segundo or-
den. En la figura 25.3 el impacto y la probabilidad de riesgo influyen de manera dis-
tinta en la gestión. Un factor de riesgo que tiene un alto impacto, pero una probabi-
lidad de que suceda muy baja, no debe absorber una cantidad significativa de tiem-

2 Es posible implementar la tabla de nesgc-s como un modelo en hoja de cálculo. Esto permite una
manipulación sencilla y el ordenamiento de las er -.radas

3 El empleo de un promedio ponderado es facerle ; aigún componente de riesgo tiene mayor rele-
vancia para un proyecto.

TM

PDF Editor

756 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

po de gestión. Sin embargo, los riesgos de alto impacto con moderada a alta proba-i
bilidad y los riesgos de bajo impacto con alta probabilidad deben trasladarse a Ion
pasos de análisis de riesgo que siguen.

Todos los riesgos ubicados sobre la línea de corte deben gestionarse. La columr.i I
rotulada RSGR contiene una referencia que apunta hacia un Plan de reducción, supe-
visión y gestión de riesgo o, alternativamente, una colección de hojas de información de:
riesgo desarrolladas para todos los riesgos que están sobre el corte. En las secciones;
25.5 y 25.6 se examinan el plan RSGR y las hojas de información de riesgo.

"[En la actualidad] nadie tiene el lujo de llegar a conocer una tarea tan bien que no se lleve sorpresas, y las s o r p r e s a
significan riesgo."

La probabilidad del riesgo se determina realizando est imaciones individuales r
luego desarrollando un solo valor de consenso. Aunque dicho enfoque es valioso, se:
han desarrollado técnicas m á s elaboradas con las cuales determinar la probabil ids:
del riesgo [AFC88], Los controladores de riesgo se pueden evaluar sobre una escala
de probabilidad cualitativa que tiene los siguientes valores: imposible, improbable
probable y frecuente. Entonces se asocia la probabilidad matemática con cada valer
cualitativo (por ejemplo, una probabilidad de 0.7 a 0.95 implica un riesgo enorme
mente probable).

Stephen Grey

Riesgo y

preocupaclo-
Muy alto nes de la

gestión.

Impacto

Muy bajo
Relevancia

para la gestión TM

PDF Editor

£ ¿Cómo se
W valoran las
{••secuencias de
• riesgo?

CAPÍTULO 25 GESTIÓN DEL RIESGO 757

25.4.2 Evaluación del impacto del riesgo
Tres factores afectan las consecuencias que son probables si un riesgo ocurre: su na-
turaleza, ámbito y tiempo. La naturaleza indica los problemas que son probables si
ocurre. Por ejemplo, una interfaz externa mal definida hacia el hardware del cliente
(un riesgo técnico) evitará un diseño y prueba tempranos y tal vez genere problemas
de integración de sistema más tarde. El ámbi to combina la severidad (¿cuán serio
es?) con su distribución global (¿cuánto del proyecto se afectará, o cuántos clientes
resultarán dañados?). Finalmente, el t iempo de un riesgo considera cuándo y duran-
te qué periodo se sentirá el impacto. En la mayoría de los casos un gestor de proyec-
to tal vez quiera que ocurran las "malas noticias" tan pronto c o m o sea posible, pero
en a lgunos casos, mientras mayor sea la demora, mejor.

Regresando una vez más al enfoque de análisis de riesgo que propuso la Fuerza
Aérea de Estados Unidos [AFC88], se recomiendan los siguientes pasos para deter-
minar las consecuencias globales de un riesgo:

1. Determinar el valor promedio de la probabilidad de que ocurra para cada
componen te de riesgo.

2 . Empleando la figura 25.1, determinar el impacto para cada componente , con
base en los criterios mostrados.

3 . Completar la tabla de riesgos y analizar los resultados como se describe en las
secciones precedentes.

La exposición al riesgo global, ER, se determina mediante la siguiente relación
[HAL98]:

ER = P x C

donde P es la probabilidad de que ocurra un riesgo, y C, el costo al proyecto en ca-
so de que ocurra el riesgo.

Por ejemplo, suponga que el equipo de software define un riesgo de proyecto en
la forma siguiente:

Ident i f icac ión del riesgo. De hecho, sólo 70 por ciento de los componen tes de
sof tware calendarizados para reutilización se integra en la aplicación. La funciona-
lidad restante tendrá que desarrollarse de modo personalizado.

Probabil idad de riesgo. 80 por ciento (quizá).

Impacto del riesgo. Se planificaron 60 componen tes de sof tware reutilizables.
Si sólo s e puede emplear el 70 por ciento, 18 componen tes tendrían que desarrollar-
s e desde cero (además de otro sof tware personal izado que se ha calendarizado pa-
ra desarrollo). Puesto que el componente promedio e s 100 LDC y los datos locales
indican que el costo de ingeniería del software para cada uno es de 14.00 dólares, el
costo (impacto) global del desarrollo de los componentes sería 18 x 100 x 14 =
25 200 dólares.

Exposic ión al riesgo. ER = 0.8C • 25 200 dólares - 20 200 dólares.

TM

PDF Editor

758 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

^ O N S E J O ^

Compárese la ER de
fodos los riesgos con
lo estimación de costo
para el proyecto. Si la
ER es mayor que SO
por ciento del costo
del proyecto, lo viabi-
lidad del proyecto
debe leevaluarse.

La e x p o s i c i ó n a i r i e s g o s e p u e d e c a l c u l a r p a r a c a d a r i e s g o e n la t a b l a d e r i e s g o s

u n a v e z q u e s e e s t i m e el c o s t o del r i e sgo . La e x p o s i c i ó n al r i e s g o to ta l p a r a t o d o s lo s

r i e s g o s (s o b r e la l í nea d e c o r t e e n la t ab la) p u e d e o f r e c e r u n m e d i o c o n q u e a j u s t a r

la e s t i m a c i ó n de l c o s t o final d e u n p r o y e c t o . T a m b i é n s e e m p l e a p a r a p r e d e c i r el a u -

m e n t o p r o b a b l e e n lo s r e c u r s o s d e p e r s o n a l q u e s e r e q u i e r a n e n v a r i o s p u n t o s du

r a n t e la c a l e n d a r i z a c i ó n del p r o y e c t o .

La p r o y e c c i ó n de l r i e s g o y l a s t é c n i c a s d e a n á l i s i s d e s c r i t a s e n l a s s e c c i o n e s 25 .4 .1

y 25 .4 .2 s e a p l i c a n d e m a n e r a i t e r a t iva c o n f o r m e a v a n z a el p r o y e c t o d e s o f t w a r e . El

e q u i p o de l p r o y e c t o d e b e r e v i s a r d e n u e v o la t a b l a d e r i e s g o s e n i n t e r v a l o s r e g u l a

r e s , r e e v a l u a r c a d a r i e s g o p a r a d e t e r m i n a r c u á n d o n u e v a s c i r c u n s t a n c i a s c a m b i a r á n

su p r o b a b i l i d a d e i m p a c t o . C o m o c o n s e c u e n c i a , tal v e z s e a n e c e s a r i o a g r e g a r n u e -

v o s r i e s g o s a la t a b l a , e l i m i n a r a l g u n o s riesgos q u e a h o r a s o n i r r e l e v a n t e s y c a m b i a r

l a s p o s i c i o n e s r e l a t i v a s d e o t ro s .

Análisis de riesgos

El escenario: Oficina de Doug Mi-
> del proyecto de software HogarSeguro.

: Doug Miller (gerente del equipo de inge-
del software HogarSeguro) y Vinod Raman, Jamie

Lazar y otros miembros del equipo de ingeniería del soft-
ware del producto.

La conversac ión:

D o u g : Me gustaría pasar un poco de tiempo en uno llu-
via de ideas acerca de los riesgos que enfrenta el proyec-
to HogarSeguro.

J a m i e ; ¿Cómo en qué puede salir mal?

D o u g : Sí. Aquí hay algunas categorías de dónde pue-
den salir mal las cosas. [Muestra a todos las categorías
anotadas en la introducción de la sección 25.3.]

Vinod: Mmmmm... ¿quieres que sólo las mencionemos
o...?

Doug: No. Esto es lo que creo que debemos hacer. To-
dos hagan una lista de riesgos... ahora....

(Pasan diez minutos; todos escriben.)

Doug: Muy bien, alto.

Jamie: (Pero no he terminado!

Doug: Está bien. Volveremos a ver las listas. Ahora, en ca-
da entrada de su lista, asignen un porcentaje de probabili-
dad de que el riesgo ocurrirá. Luego, asignan un impacto al
proyecto en una escala de 1 (menor) a 5 (catastrófico).

Vinod: Así que si creo que el riesgo es como lanzar una
moneda, especifico un 50 por ciento de probabilidad, y
si creo que tendrá un impacto de proyecto moderado, es-
pecifico un 3, ¿cierto?

Doug: Exactamente.

(Pasan cinco minutos; todos escriben.)

Doug: Muy bien, alto. Ahora haremos una lista del gru-
po en el pizarrón. Yo escribiré, diré una entrada de su
lista en formato de todos contra todos.

(Pasan quince minutos; se crea la lista.)

J a m i e (s e ñ a l a a l p izarrón y ríe): Vinod, ese ríes
go (apunta hacia una entrada en el pizarrón) es ridículo.
Existe una enorme probabilidad de que todos seamos
golpeados por un rayo. Debemos quitarlo.

Doug: No, dejémoslo por ahora. Consideremos todos
los riesgos, sin importar cuán locos sean. Más tarde ven-
tilaremos la lista.

Jamie : Pero ya tenemos casi 40 riesgos, ¿cómo po
dremos manejar todos?

Doug: No podemos. Por eso definiremos una línea de
corte después de ordenar estas linduras. Yo haré eso más
tarde y nos reuniremos de nuevo mañana. Por ahora re-
gresen a trabajar... y en su tiempo libre, piensen acerca
de cualquier riesgo que hayamos olvidado.

TM

PDF Editor

759

Durante las primeras e tapas de la planificación del proyecto se puede establecer un
riesgo de manera muy general. Conforme pasa el t iempo y s e aprende m á s acerca
del proyecto y el riesgo, es posible refinar el riesgo en un conjunto de riesgos m á s
detallados, cada uno un poco más sencillo de retinar, supervisar y gestionar.

Una forma de hacer esto e s representar el riesgo en el formato condición-transición-
consecuencia (CTC) [GLU94J. Es decir, el riesgo se establece en la forma siguiente:

Dado que <condición> entonces existe una preocupación de que (posiblemente) cconse-
cuencia>

Mediante el empleo del formato CTC en lugar del riesgo de reutilización anotado en
la Sección 25.4.2, se puede escribir:

Dado que todos los componentes de software reutilizables deben ajustarse con estánda-
res de diseño específicos, y como algunos no lo hacen, entonces existe una preocupación
de que (posiblemente) sólo 70 por ciento de los módulos reutilizables planeados puedan
en realidad integrarse al sistema que se construirá, lo que resulta en la necesidad de inge-
niería personalizada para el restante 30 por ciento de componentes.

Esta condición general se puede refinar en la forma siguiente:

Subcondición 1. Ciertos componentes reutilizables fueron desarrollados por terceras
personas sin conocimiento de los estándares de diseño internos.

Subcondición 2 . El estándar de diseño para el componente de interfases no se ha con-
cretado y tal vez no se ajuste con ciertos componentes reutilizables existentes.

Subcondición 3. Ciertos componentes reutilizables se han implementado en un lengua-
je que no soporta el entorno destino.

Las consecuencias asociadas con estas subcondiciones refinadas siguen siendo las
mismas (es decir, 30 por ciento de los componentes de sof tware tienen que some-
terse a ingeniería personalizada), pero el refinamiento ayuda a aislar los riesgos sub-
yacentes y puede conducir a un análisis y respuestas más sencillos.

Todas las actividades del análisis de riesgo presentadas has ta el momento tienen
una sola meta: ayudar al equipo del proyecto a desarrollar una estrategia para luchar
con el riesgo. Una estrategia eficaz debe considerar tres temas-,

• Evitar del riesgo.

• Supervisar el riesgo.

• Gestionar el riesgo y los p lanes de contingencia.

Si un equipo de sof tware adopta u r enfoque rroactivo hacia el riesgo, evitarlo
s iempre es la mejor estrategia. Ésta se ¡ogra ¿es-arrollando un plan para reducir el

TM

PDF Editor

760 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

riesgo. Por ejemplo, supóngase que una elevada movilidad en el personal se anata
como un riesgo del proyecto, r,. Con base en la historia y la intuición administrativa
la probabilidad, /,, de una elevada movilidad se estima en 0.70 (70 por ciento, mai ¡
bien alta) y el impacto, x,, se proyecta como critico. Esto es: u n a tasa elevada de mc-
vilidad tendrá un impacto crítico en el costo del proyecto y la calendarización.

"Si tomo demasiados precauciones, es porque no dejo nada al ozar."
Napoleón

7 ¿Q«é se
* puede hacer

para reducir un

riesgo?

Este riesgo se reduce si el gestor del proyecto desarrolla una estrategia para re-
ducir la movilidad. Entre los posible pasos que s e toman se encuentran:

• Reunirse con el personal actual para determinar las causas de la movilidad
(por ejemplo, limitadas condiciones de trabajo, ba jos salarios, mercado labo-
ral competitivo).

• Reducir aquellas causas que se controlan an tes de que comience el proyectc

• Una vez iniciado el proyecto, suponer que la movilidad ocurrirá y entonces
desarrollar técnicas que aseguren la continuidad cuando la gente se aleje.

• Organizar equipos de proyecto de modo que la información acerca de cada
actividad de desarrollo se disperse con amplitud.

• Definir es tándares de documentación y establecer mecanismos que asegure -
que los documentos se desarrollen en una forma oportuna.

• Llevar a cabo revisiones por pa res de todo el trabajo (de modo que más de
una persona esté "en ritmo").

• Asignar un miembro de personal de respaldo por cada tecnología crítica

Conforme avanza el proyecto se inician las actividades de supervisión del r iesg: l l
gestor del proyecto supervisa los factores que pueden proporcionar un indicio ct a
el riesgo se está volviendo más o menos probable. En el caso de la elevada t a s ;
movilidad del personal, se pueden supervisar los siguientes factores:

• Actitud general de los miembros del equipo con base en las presiones del r e -
yerto.

• El grado en el cual el equipo está cuajado.

• Las relaciones interpersonales entre los miembros del equipo.

• Potenciales problemas con las compensac iones y los beneficios.

• La disponibilidad de empleo dentro y fuera de la compañía .

Además de supervisar es tos factores, un gestor de proyecto debe supervisa-
efectividad de los pasos de reducción del riesgo. Por ejemplo, un paso de reducc.as
del riesgo anotado líneas arriba pide la definición de es tándares de documenta ; :TI

TM

PDF Editor

f cONSEJO^^

Si ¡a ER paro un
->esgo específico es
-enor que el costo de
la reducción del
riesgo, no se intente
'educir el riesgo sino
continuar supervisán-
dolo.

CAPÍTULO 25 GESTIÓN DEL RIESGO 761

y mecanismos para garantizar que los documentos se elaboran en forma oportuna.
Éste e s un mecanismo para asegurar la continuidad en caso de que un individuo cru-
cial abandone el equipo. El gestor del proyecto debe supervisar los documentos cui-
dadosamente para asegurarse de que cada uno puede permanecer por si solo y que
cada uno contiene información que sería necesaria si una nueva persona se viera
obligada a unirse al equipo de sof tware en algún m o m e n t o a la mitad del proyecto.

La gestión del riesgo y los planes de contingencia suponen que los esfuerzos de
reducción han f racasado y que el riesgo se ha vuelto una realidad. Cont inuando con
el ejemplo, el proyecto ya está bien avanzado y varias personas anuncian que renun-
ciarán. Si se ha seguido la estrategia de reducción, el respaldo está disponible, la in-
formación se ha documentado y el conocimiento se ha dispersado entre el equipo.
Además, el gestor del proyecto puede reenfocar temporalmente los recursos (y rea-
justar la calendarización del proyecto) hacia aquellas funciones completamente es-
tructuradas, así permite que los nuevos e lementos que deben agregarse al equipo
"tomen el ritmo". A los individuos que deciden marcharse se les pide detener todo el
trabajo y pasar sus últimas s e m a n a s "aprendiendo el modo de transferencia". Esto
puede incluir la adquisición de conocimiento en videos, el desarrollo de "documen-
tos comentados" o reuniones con otros miembros del equipo que permanecerán en

el proyecto.
Es importante señalar que los pasos de reducción, supervisión y gestión del ries-

go (RSGR) generan costos adicionales en el proyecto. Por ejemplo, utilizar el t iempo
para "respaldar" cualquier tecnología crítica cuesta dinero. Por lo tanto, parte de la
gestión del riesgo consiste en evaluar cuándo los beneficios que generan los pasos
RSGR se rezagan frente a los costos asociados con su implementación. En esencia,
el planificador del proyecto realiza un clásico análisis costo-beneficio. Si los pasos
con que se evita el riesgo de elevada movilidad de personal aumenta ran tanto el cos-
to del proyecto como su duración en un est imado de 15 por ciento, pero el factor de
costo predominante es el "respaldo", el gestor puede decidir no implementar este pa-
so. Por otra parte, si los pasos con que se evita el riesgo se proyectan para aumen-
tar los costos en 5 por ciento y la duración en sólo 3 por ciento, el gestor probable-
mente pondrá todo en su lugar.

En un proyecto grande e s posible definir 30 o 40 riesgos. Si para cada uno se iden-
tifican entre tres y siete pasos de gestión del riesgo, ¡ésta puede convertirse por sí
misma en un proyecto! Por esta razón se adapta la regla 80-20 de Pareto al riesgo
de software. La experiencia indica que 80 por ciento del riesgo del proyecto global
(es decir, 80 por ciento del potencial para falla del proyecto) puede explicarse sólo
con 20 por ciento de los riesgos identificados. El trabajo realizado durante los prime-
ros p a s o s del análisis de riesgo ayudará al planificador a determinar cuáles de los
riesgos se encuentran en ese 20 por ciento ipor ejemplo, riesgos que conduzcan a la
mayor exposición al riesgo). Por esta razón algunos de los riesgos identificados,
evaluados y proyectados pueden no incluirse en el plan RSGR, ya que no se ubican
en el crítico 20 por ciento (los riesgos con a ™iayor prioridad de proyecto).

TM

PDF Editor

762 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Un voluminoso archivo
que cont iene lodos los
entrados del Foro ACM
acerca de Riesgos al
Público se p u e d e
e n c o n t r a r e n
c a t l e s s . m l . a c . u k /

R i sks .

El riesgo n o e s t á l i m i t a d o al p r o y e c t o d e s o f t w a r e . Los riesgos p u e d e n o c u r r i r d e s -

p u é s d e q u e el s o f t w a r e s e h a d e s a r r o l l a d o e x i t o s a m e n t e y e n t r e g a d o a l c l i e n t e . Es-

t o s riesgos e s t á n t í p i c a m e n t e a s o c i a d o s c o n l a s c o n s e c u e n c i a s d e la fal la d e s o f t w a -

r e e n el c a m p o .

El análisis de seguridad y peligros de software [LEV95] s o n a c t i v i d a d e s d e a s e g u r a -

m i e n t o d e la c a l i d a d del s o f t w a r e (cap í tu lo 26) q u e s e e n f o c a n en la i d e n t i f i c a c i ó n y

e v a l u a c i ó n d e lo s p e l i g r o s p o t e n c i a l e s q u e p u d i e r a n a f e c t a r al s o f t w a r e n e g a t i v a -

m e n t e y p r o v o c a r u n a fa l la e n t o d o el s i s t e m a . Si los p e l i g r o s s e p u e d e n iden t i f i ca r

t e m p r a n o e n el p r o c e s o d e i n g e n i e r í a de l s o f t w a r e , l a s c a r a c t e r í s t i c a s d e d i s e ñ o d e

s o f t w a r e s e p u e d e n e s p e c i f i c a r d e m o d o q u e e l i m i n e n o c o n t r o l e n los p e l i g r o s p o -

t e n c i a l e s .

Hoja d e infor-
m a c i ó n de l
r iesgo
[WIL97],

Hoja de información del riesgo

ID de riesgo: P02-4-32 Fecha: 9 / 5 / 0 4 Prob: 80% Impacto: alto

Descripción:
Sólo 70 por ciento de los componentes de software calendarizados paro
reutilización de hecho se integrarán en la aplicación. La funcionalidad restante
tendrá que desarrollarse de manera personalizada.

Refinamiento/contexto:
Subcondición 1: Ciertos componentes de reutilización fueron desarrollados por un
tercer participante sin conocimiento de los estándares de diseño internos.
Subcondición 2: El estándar de diseño para los componentes de interfaces no ha
sido solidificado y tal vez no concuerden con ciertos componentes reutilizables existentes.
Subcondición 3: Ciertos componentes reutilizables se han implementado en un
lenguaje que no soporta el entorno destino.

Reducción/supervisión:
1. Contactar con el tercer participante para determinar la concordancia con los
estándares de diseño.
2. Presionar para completar los estándares de interfaz; considerar la estructura del
componente cuando se decida acerca del protocolo de la interfaz.
3. Verificar para determinar el número de componentes en la categoría 3 de
subcondición; verificar para determinar si se puede adquirir el soporte para el
lenguaje.

Gestión/plan de contingencia/disparador:
La ER se calcula en 2 0 2 0 0 dólares. Asignar esta cantidad dentro del costo de
contingencia del proyecto.
Desarrollar una calendarización revisada suponiendo que se tendrán que construir
18 componentes adicionales; asignar el personal en concordancia.
Disparador: Los pasos de reducción son improductivos al 1 / 7 / 0 4 .

Estado actual:
1 2 / 5 / 0 4 : Inician los pasos de reducción.

Elaboró: D. Gagne Asignado a: B. Laster

TM

PDF Editor

CAPÍTULO 25 GESTIÓN DEL RIESGO 763

En el plan del proyecto de sof tware se puede incluir una estrategia de gestión de ries-
go o los pasos de gestión del riesgo organizarse por separado en un Plan de reduc-
ción, supervisión y gestión del riesgo. El plan RSGR documenta todo el t rabajo realiza-
do como parte del análisis del riesgo y el gestor del proyecto lo emplea como parte
del plan global del proyecto.

Algunos equipos de software no elaboran un documento RSGR formal. En su lu-
gar, cada riesgo se documenta individualmente mediante una hoja de información del
riesgo (HIR) [WIL97]. En la mayoría de los casos la HIR se mant iene empleando un
sistema de base de datos, de modo que la creación y las ent radas de información,
ordenamiento de prioridades, búsquedas y otros análisis se logran fácilmente. En la
figura 25.4 se ilustra el formato de la HIR.

Una vez documentado el plan RSGR y que el proyecto ha comenzado, se inician
los pasos de reducción y supervisión del riesgo. Como ya se ha comentado, la reduc-
ción del riesgo es una actividad encaminada a evitar el problema. La supervisión del
riesgo es una actividad de seguimiento del proyecto con tres objetivos principales: 1)
valorar si los riesgos predichos de hecho ocurren; 2) asegurar que los pasos para evi-
tar el riesgo definidos para és te s e están aplicando con propiedad; y 3) recopilar in-
formación que pueda usarse en futuros análisis de riesgo. En muchos casos, a los
problemas que ocurren durante un proyecto es posible darles seguimiento hacia m á s
de un riesgo. Otra labor de la supervisión del riesgo es intentar ubicar el origen (qué
riesgos provocaron qué problemas a través del proyecto).

Gestión del riesgo
Objetivo: El objetivo de las herramientas de
gestión del riego es ayudar al equipo del pro-

yecto a definir los riesgos, valorar su impacto y probabili-
dad, y seguir los riesgos a través de todo el proyecto de
software.

Mecánica: En general, las herramientas de gestión del
riesgo auxilian en la identificación de riesgos genéricos al
proporcionar una lista de riesgos usuales de proyecto y de
negocios, ofrecer listas de verificación u otras técnicas "de
entrevista" que auxilien en la identificación de riesgos es-

V
pecíficos del proyecto, asignar probabilidad e impacto a

HERRAMIENTAS DE SOFTWARE • \
cada riesgo, apoyar las estrategias de reducción del riesgo
y generar muchos reportes relacionados con el riesgo.

Herramientas representativas4

Riskman, desarrollada en Arizona State University (www.
eas.asu.edu/~sdm/merrill/riskman.html), es un sistema
experto en evaluación de riesgo que identifica riesgos
relacionados con el proyecto.

Risk Radar, desarrollada por SPMN (www.spmn.com), au-
xilia o los gestores de proyectos a identificar y gestio-
nor riesgos. y

4 Las herramientas anotadas aquí son una muestra 3e esta categoría. En la mayoría de los casos los
nombres de las mismas son marcas regístralas rxx sis respectivos desarrolladores.

TM

PDF Editor

http://www.spmn.com

764 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

R/s/íTra/c, desarrollada por RST (www.risktrac.com), apoya
la identificación, el análisis, el reporte y la gestión de
riesgos a través de un proyecto de software.

R¡sk+, desarrollada por C /S Solutions (www.CS-solutions.
com), se integra con Microsoft Project para cuantificar
costos e incertidumbres de calendarización.

X.PRIMER, desarrollada por GrafP Technologies (www.
grafp.com), es una herramienta genérica basada en
Web que predice qué puede salir mal en un proyecto e
identifica el origen de las causas de potenciales fallas y
contramedidas efectivas.

Siempre que en un proyecto de sof tware esté mucho en juego, el sentido común dic-
ta el análisis de riesgos. Sin embargo, muchos gestores de proyecto de software lo
hacen informal y superficialmente, si e s que lo hacen. El t iempo empleado en iden-
tificar, analizar y gestionar el riesgo paga por sí mismo dividendos en muchas for-
mas: menos t ras tornos durante el proyecto, una mayor habilidad para seguir y con-
trolar un proyecto, y la confianza que llega cuando se planifican los problemas an-
tes de que ocurran.

El análisis de riesgos puede absorber una cantidad significativa de esfuerzo de
planificación del proyecto. La identificación, proyección, evaluación, gestión y super-
visión toman tiempo. Pero el esfuerzo bien vale la pena. Para citar a Sun Tzu, el ge-
neral chino que vivió hace 2 500 años: "Si usted conoce al enemigo y se conoce a si
mismo, no necesita temer el resultado de cien batallas". El enemigo del gestor del
proyecto de sof tware es el riesgo.

R E F E R E N C I A

[AFC88] Software Risk Abatement, AFCS/AFLC Pamphlet 800-45, U.S. Air Forcé, 30 de septiem-
bre de 1988.

[BOE89I Boehm, B, W„ Software Risk Management, IEEE Computer Society Press, 1989.
[CHA891 Charette, R. N., Software Engineering Risk Analysis and Management, McGraw-Hill/Inter-

text, 1989.
[CHA92] Charette, R. N., "Building Bridges over Intelligent Rivers", en American Programmer, vol.

5, núm. 7, septiembre de 1992, pp. 2-9.
[DRU75] Drucker, P„ Management, W. H. Heinemann, 1975.
[G1L88J Gilb, T., Principies of Software Engineering Management, Addison-Wesley, 1988.
1GLU94] Gluch, D. P„ "A construct for Describing Software Development Risks", CMU/SEI-94-

TR-14, Software Engineering Institute, 1994.
[HAL98J Hall, E. M., Managing Risk: Methods for Software Systems Development, Addison-Wesley,

1998.
IHIG95] Higuera, R. P„ "Team Risk Management", en CrossTalk, U.S. Dept. of Defense, enero de

1995, pp. 2-4.
[KAR96] Karoiak, D. W., Software Engineering Risk Management, IEEE Computer Society Press,

1996.
[KEI98] Keil, M. et al., "A Framework for Identifying Software Project Risks", en CACM, vol. 41,

núm. 1, noviembre de 1998, pp. 76-83.
[LEV95] Leveson, N. G., Software System Safety and Computers, Addison-Wesley, 1995.
[SEI93] "Taxonomy-Based Risk Identification", Software Engineering Institute, CMU/SEI-93-TR-

6, 1993.

TM

PDF Editor

http://www.risktrac.com
http://www.CS-solutions

CAPÍTULO 25 GESTIÓN DEL RIESGO 765

[TH092] Thomsett, R„ 'The Indiana Jones School of Risk Management", en American Program-
mer, vol. 5, núm. 7, septiembre de 1992, pp. 10-18.

[WIL97J Williams, R. C.,). A. Walker y A. J. Dorofee, "Putting Risk Management into Practice", en
IEEE Software, mayo de 1997, pp. 75-81.

25 .1 . Ofrecer cinco ejemplos de otros campos que ilustren los problemas asociados con una
estrategia de riesgo reactiva.

25 .2 . Describir la diferencia entre "riesgos conocidos" y "riesgos predecibles".

25 .3 . Agregar tres preguntas o tópicos adicionales a cada una de las listas de verificación de
riesgo que se presentan en el sitio Web SEPA.

25 .4 . A usted se le ha pedido construir software para apoyar un sistema de edición de video de
bajo costo. El sistema acepta como entrada video digital, almacena el video en disco y luego
permite que el usuario haga una amplia variedad de ediciones al video digitalizado. El resulta-
do puede entonces grabarse en DVD u otro medio audiovisual. Investigue un poco acerca de
sistemas de este tipo y luego elabore una lista de riesgos tecnológicos que enfrentaría al comen-
zar un proyecto con estas características.

25 .5 . Usted es el gestor de proyecto de una gran compañía de software. Se le solicita dirigir un
equipo que está desarrollando software de procesamiento de textos de "nueva generación".
Cree una tabla de riesgos para el proyecto.

25 .6 . Describir la diferencia entre componentes de riesgo y controladores de riesgo.

25 .7 . Desarrollar una estrategia de reducción de riesgo y especificar actividades de reducción
de riesgo para tres de los riesgos anotados en la figura 25.2.

25 .8 . Desarrollar una estrategia de supervisión de riesgo y especificar actividades de supervi-
sión de riesgo para tres de los riesgos anotados en la figura 25,2. Asegúrese la identificación de
los factores que se supervisarán para determinar si el riesgo se está volviendo más o menos pro-
bable.

25 .9 . Desarrollar una estrategia de gestión del riesgo y especificar actividades de gestión del
riesgo para tres de los riesgos anotados en la figura 25.2.

25 .10 . Inténtese refinar tres de los riesgos anotados en la figura 25.2 y luego créense hojas de
información de riesgo para cada uno.

25 .11 . Represéntense tres de los riesgos anotados en la figura 25.2 empleando un formato CTC.

25 .12 . Vuélvase a calcular la exposición al riesgo examinada en la sección 25.4.2 cuando el
costo/LDC es de 16 dólares, y la probabilidad de 60 por ciento.

25 .13 . ¿Puede pensar en una situación en la que un riesgo de alta probabilidad y alto impacto
no seria considerado como parte de su plan RSGR?

25 .14 . Descríbanse cinco áreas de aplicación de software en las que el análisis de la seguridad
y los peligros del software serían una preocupación principal.

O T R A S L E C T U R A S Y F U E N T E S L I I N F O R M A C I Ó N

La bibliografía de gestión del riesgo de softw are se ha expandido significativamente durante la
década pasada. DeMarco y Lister (Dancing \v.ih Bears Dorset House, 2003) han escrito un libro
entretenido y lúcido que guía a los gestores y profesionales de software a través de la gestión
del riesgo. Moynihan (Coping with IT/IS Risí Springer-Verlag, 2002) presenta con-
sejos pragmáticos de gestores de proyecto que lidiar continuamente con él. Royer (Project Risk

TM

PDF Editor

766 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Management, Management Concepts, 2002) y Smith y Merritt (Proactive Risk Management, Prc-
ductivity Press, 2002) sugieren un proceso proactivo para la gestión del riesgo. Karolak (Softwa-
re Engineering Risk Management, Wiley, 2002) ha escrito una guia que introduce un modelo ot '
análisis de riesgo fácil de usar y que contiene valiosas listas de verificación y cuestionarios que
se apoyan en un paquete de software.

Schuyler (Risk and Decisión Analysis in Projects, PM1, 2001) considera el análisis de riesgo,
desde una perspectiva estadística. Hall (Managing Risk: Methods for Software Systems Devc :
ment, Addison-Wesley, 1998) presenta uno de los tratamientos más exhaustivos de la maten ¿
Myerson (Risk Management Processing for Software Engineering Models, Artech House, 1997»
considera métricas, seguridad, modelos de proceso y otros tópicos. Grey (Practical RiskAsses¿
ment for Project Management, Wiley, 1995) escribió un útil manual de la evaluación del riesg:
Su tratamiento abreviado ofrece una buena introducción a la materia.

Capers Jones (Assessment and Control of Software Risks, Prentice-Hall, 1994) presenta una e >
posición detallada de los riesgos de software que incluye datos recopilados a partir de cientos
de proyectos de software. Jones define 60 factores de riesgo que pueden afectar el resultado c t
los proyectos de software. Boehm [BOE89] sugiere excelentes formatos de cuestionario y listas,
de verificación que pueden resultar invaluables en la identificación de riesgos. Charette [CHAé-
presenta un tratamiento detallado de las mecánicas del análisis de riesgo, y utiliza teoría de pro-
babilidad y técnicas estadísticas para analizar riesgos. En un volumen adicional, Charette lAr
plication Strategies for Risk Analysis, McGraw-Hill, 1990) analiza el riesgo en el contexto de =
ingeniería tanto de sistemas como de software, y sugiere estrategias pragmáticas para la ges
tión del riesgo. Gilb (Principies of Software Engineering Management, Addison-Wesley, 1988) prt
senta un conjunto de "principios" (en ocasiones graciosos y a veces profundos) que pueden se--
vir como una guía valiosa para la gestión del riesgo.

Ewusi-Mensah (Software Development Failures: Anatomy of Abandoned Projects, MIT Pres;
2003) y Yourdon (Death March, Prentice-Hall, 1997) analizan lo que ocurre cuando los riesgos
abruman a un equipo de proyecto de software. Bernstein (Against the Cods, Wiley, 1998) prese-
ta una entretenida historia del riesgo que se remonta a tiempos antiguos.

El Software Engineering Institute ha publicado muchos informes detallados y guías acerca
del análisis y la gestión del riesgo. El folleto AFSCP 800-45 [AFC88] del Air Forcé Systems C o r -
mand describe las técnicas de identificación y reducción de riesgos. Cualquier número del ACW
Software Engineering Notes tiene una sección titulada "Riesgos para el público" (editor, P. G. Ne_
mann). Si usted quiere las más recientes y mejores historias de horror de software, éste es el L -
gar al que tiene que ir.

En internet hay disponible una amplia variedad de fuentes de información acerca de gesti: n
del riesgo de software. Una lista actualizada de referencias en la World Wide Web se puede er
contrar en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s s m a n .

TM

PDF Editor

http://www.mhhe.com/presssman

C A P Í T U L O

G E S T I Ó N
DE LA CALIDAD 26

C O N C E P T O S

C L A V E

apTrfkacióii
te defectos ...77S

a U a d 769

aatrol
á t cofidod 770

sito
te calidad.775

ostos
h tallas 771

SabiRdad 786

SO 9001:
2000 790

• w s t r e o 781

HH de SQA . . .791

• sones
;TF) 774

seguridad de
software 788

seis sigma 785

SOA estadística 783

El enfoque de ingeniería del sof tware descrito en este libro se dirige hacia
una sola meta: producir sof tware de alta calidad. Aunque a muchos lecto-
res les parecerá un reto la pregunta: ¿qué es calidad del software?

Philip Crosby [CR079], en su libro fundamental acerca de calidad, ofrece una
respuesta irónica a esta pregunta:

El problema de la gestión de la calidad no es lo que la gente ignora acerca de ella. El
problema es lo que creen saber...

A este respecto, la calidad tiene mucho en común con el sexo Todo el mundo lo
quiere. (En ciertas condiciones, desde luego.) Todos sienten que lo entienden. (Aun
cuando no quieran explicarlo.) Todos piensan que su ejecución sólo es cuestión de
seguir las inclinaciones naturales. (Después de todo, la gente se las arregla de algu-
na forma.) Y, desde luego, la mayoría de las personas piensa que los problemas en
estas áreas los provocan otras personas. (Si sólo se tomaran el tiempo para hacer las
cosas bien.)

Algunos desarrolladores de sof tware continúan creyendo que la calidad de
és te es algo en lo que se debe comenzar a preocupar sólo después de que se ha-
ya generado el código. ¡Nada podría estar más alejado de la verdad! La gestión
de la calidad (con frecuencia l lamada garantía de Ja calidad del software) es una
actividad protectora o de sombrilla (capítulo 2) que se aplica a lo largo del pro-
ceso de software.

La gestión de la calidad abarca 1) un proceso de garantía de la calidad del
sof tware (SQA, por sus siglas en inglés), 2) ta reas específicas de aseguramiento y
control de la calidad (que incluyen revisiones técnicas formales y una estrategia
de pruebas de varios niveles); 3) prácticas efectivas de ingeniería del sof tware
(métodos y herramientas); 4) control de todos los productos de trabajo del soft-

¿ Q u é e s ? N o es suficiente hab la r
por h a b l a r d ic iendo q u e la ca l idad
de l sof tware es importante. Se t iene
q u e 1 ¡ definir explíci tamente q u é
qu ie re decir c u a n d o d ice "ca l idad

del sof tware" , 2) c r ea r un conjunto d e activida-
d e s q u e a y u d a r á n a a s e g u r a r q u e todo produc-
to d e t r a b a j o d e ingenier ía del sof tware presen -
t a ró a l ta ca l idad , 3) rea l izar ac t iv idades d e
control y a s e g u r a m i e n t o de la ca l idad en c o d a

proyec to d e sof tware , 4 ¡ u s a r métricas p a r a
desarrol lar es t ra tegias q u e mejoren el p roceso
d e sof tware y, c o m o consecuenc ia , la ca l idad
del p roduc to final. ' ' r ,
¿Quién la h a c e ? Todos los involucrados en
el o rcceso de ingenier ía del sof tware son res-
p o n s a b l e s d e la ca l idad .
¿Por qué e s importante? Es posible
hace r lo bien o hacer lo d e nuevo o t ra vez . Si un
e q u i p e c e s o b a r e sub raya la ca l idad en todas

767

TM

PDF Editor

768 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

las actividades de ingeniería dei software, eilo
reduce la cantidad de reelaboración que se
debe realizar. Esto resulta en menores costos y,
más importante, mejorará el tiempo d e llegada
al mercado.
¿ C u á l e s s o n l o s p a s o s ? Antes de se que
inicien las actividades de aseguramiento de la
calidad del software es importante definir "cali-
dad def software" en diversos grados de abs-
tracción. Una vez que entienda qué es calidad,
un equipo de software debe identificar un con-
junto de actividades SQA que filtrarán los erro-
res d e los productos d e trabajo antes de que se
aprueben.
¿Cuál e s el producto obtenido? Se crea
un "Plan de aseguramiento de la calidad del

software" para definir la estrategia SQA del
equipo del software. Durante el análisis, diseño
y generación de código el principal producto
d e trabajo SQA es un breve informe de la revi-
sión técnica formal. Durante las pruebas se
producen los planes de prueba y los procedi-
mientos. También se pueden generar otros pro-
ductos de trabajo asociados con la mejora del
proceso.

¿Cómo puedo estar seguro de que lo
h e h e c h o c o r r e c t a m e n t e ? ¡Encuentre los
errores antes de que se conviertan en defectos!
Es decir, trabaje para mejorar su eficiencia en
la eliminación de defectos (capítulo 22), con lo
que se reduce la cantidad de reelaboración
que su equipo de software tiene que realizar.

w a r e y los c a m b i o s q u e g e n e r a n (capítulo 27); 5) un p roced imien to p a r a garant izar
la c o n c o r d a n c i a con los e s t á n d a r e s de desarro l lo del s o f t w a r e (cuando s e a aplica-
ble), y 6) m e c a n i s m o s d e med ic ión e in forme.

Este capí tu lo s e cen t r a en los t e m a s d e ges t ión y las ac t iv idades espec í f icas del
p r o c e s o q u e permi ten a una o rgan izac ión d e s o f t w a r e ga ran t i za r q u e h a c e las cosas
co r rec tas en el m o m e n t o jus to y e n la fo rma cor rec ta .

2 6 . 1 C O N C E P T O S DE C A L I D A D 1

El control de la variación e s el c o r a z ó n del cont ro l d e cal idad. Un fabr ican te quiere
min imiza r la var iac ión en t r e los p roduc to s q u e se p roducen , a u n c u a n d o h a g a algo

r e l a t ivamen te s imple c o m o dupl icar DVD. S e g u r a m e n t e , e s t o n o p u e d e se r un pro-
b lema: la dupl icación d e los DVD e s u n a operac ión s imple d e fabr icac ión, y e s posi-
ble ga ran t i za r que s i e m p r e s e creen dup l icados e x a c t o s del s o f t w a r e .

¿Se puede? Es necesa r io a s e g u r a r s e de q u e las p i s tas s e co locan en los DVD den-
t ro de u n a to lerancia espec i f icada d e m o d o que la mayor ía a b r u m a d o r a d e los con-
t ro ladores d e DVD p u e d a leer el medio . Las m á q u i n a s d e dupl icac ión de d i scos pue-
den , y lo hacen , acep ta r y r e c h a z a r la to lerancia . Así q u e inc luso u n p r o c e s o "sim-
ple" c o m o la dupl icación d e DVD p u e d e e n c o n t r a r p r o b l e m a s d e b i d o s a la variación
en t r e m ue s t r a s .

¿Pero c ó m o se apl ica e s t o al t r aba jo d e so f tware? ¿Cómo p u e d e u n a organizac ión
d e desar ro l lo d e s o f t w a r e neces i ta r cont ro la r la var iac ión? De un p royec to a o t ro se
quiere min imiza r la d i ferencia en t r e los r ecu r sos p red ichos n e c e s a r i o s p a r a comple-

WOA

A . CLAVE
El control d e la
variación e s la c lave
pora un producto d e
al to ca l idad. En el
c o n t e x t o del s o f t w a r e
s e lucha por controlar
la variación en el
p roceso genér ico q u e
s e oplico y el é n f a s i s
d e calidad que p e r m e a
el t r aba jo d e ingenier ía
del s o f t w a r e .

1 Esta sección, escrita por Michael Stovsky, ha sido adaptada de "Fundamentáis of ISO 9000", un libro
de trabajo desarrollado para Esscntial Software Engineering, un video curriculum desarrollado por R
S. Pressman & Associates, Inc. Reimpreso con permiso.

TM

PDF Editor

CAPÍTULO 26 GESTIÓN DE LA CALIDAD 769

tar un proyecto y los recursos reales utilizados, que incluyen personal, equipo y tiem-
po. En general, se quisiera estar seguro de que el programa de pruebas abarca un
porcentaje conocido del software, de una liberación a otra. No sólo se quiere mini-
mizar el número de defectos que se liberan, sino que se quiere asegurar que la varian-
za en el número de bugs también se minimiza de una liberación a otra. (Los clientes
probablemente se molestarán si la tercera liberación de un producto tiene diez ve-
ces más defectos que la liberación previa.) Nos gustaría minimizar las diferencias en
rapidez y precisión de las respues tas de la línea de soporte para los problemas de los
clientes. La lista puede continuar indefinidamente.

26.1.1 Calidad
El American Heritage Dictionary define calidad c o m o "una característica o atributo de
algo". Como un atributo de un elemento, la calidad se refiere a características mensu-
rables, es decir: cosas que se pueden comparar para conocer estándares, como longi-
tud, color, propiedades eléctricas y maleabilidad. Sin embargo, el software, principal-
mente una entidad intelectual, es más difícil de caracterizar que los objetos físicos.

No obstante, existen las mediciones de las características de un programa. Dichas
propiedades incluyen complejidad ciclomática, cohesión, número de puntos de fun-
ción, líneas de código y muchas ot ras examinadas en el capítulo 15. Cuando se exa-
mina un e lemento con base en sus características mensurables se pueden encontrar
dos tipos de calidad: calidad de diseño y calidad de concordancia.

La calidad de diseño se refiere a las características que los diseñadores especifican
para un elemento. La calidad de concordancia e s el grado en el que las especificacio-
nes de diseño se aplican durante la fabricación.

" l a gente olvido cuán rápido hiciste un trabajo, pero siempre recuerdan cuón bien lo hiciste."
Howard Newton

En el desarrollo de software, la calidad del diseño incluye requisitos, especifica-
ciones y el diseño del sistema. La calidad de concordancia es un tema enfocado prin-
cipalmente en la implementación. Si ésta sigue el diseño y el sistema resultante
sat isface sus requisitos y metas de desempeño, la calidad de concordancia es alta.

¿Pero la calidad del diseño y la calidad de concordancia son los únicos t emas que
deben considerar los ingenieros de software? Robert Glass [GLA98] argumenta que e s
conveniente una relación más "intuitiva

satisfacción del usuario = producto manejable + buena calidad
+ entrega dentro de presupuesto y tiempo

En el fondo, Glass afirma que la calidad e s importante, pero si el usuario no está sa-
tisfecho, nada m á s importa en realidad DeMarco [DEM99] refuerza esta visión cuan-
do afirma: "La calidad de un producto e s j n a función de cuánto cambia el mundo
para mejorar". Esta visión de la calidad afirma que si un producto de sof tware pro-

TM

PDF Editor

770 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

? | .
W i
calidad de
sof tware?

Utiles vínculos o
recursos de SQA se
pueden enconhor en
www.qudifytree.
tom/llnks/inde*.
htm.

•
¿Cuáles
son los

componentes del
costo de calidad?

porc iona benef ic io sus tanc ia l a s u s u sua r io s finales, é s to s e s t én d i spues tos a tolera -
p r o b l e m a s o c a s i o n a l e s en confiabi l idad y d e s e m p e ñ o .

26.1.2 Control de calidad
El cont ro l d e la var iación p u e d e e q u i p a r a r s e con el control de cal idad. Pero, ¿ c ó m :
se logra el control d e calidad? Éste involucra la ser ie de inspecc iones , revis iones y
p ruebas e m p l e a d a s a lo largo del p roceso d e so f tware p a r a ga ran t iza r q u e cada p r :
duc to de t raba jo sa t i s faga los requis i tos q u e s e le h a n as ignado . El control de ca l ida ;
incluye un bucle d e re t roal imentación con el p roceso q u e c reó el producto d e t raba; :
La combinac ión d e medición y re t roal imentación permi te af inar el p roceso c u a n d o los

p roduc tos d e t raba jo c reados f r aca san en c u a n t o a sa t is facer sus especif icaciones.
Un c o n c e p t o c lave del control de cal idad e s q u e t odos los p roduc to s de t r aba jo tie-

n e n espec i f icac iones def in idas m e n s u r a b l e s con las c u a l e s se p u e d e c o m p a r a r la sa-
lida d e c a d a p roceso . El buc le d e re t roa l imentac ión e s esenc ia l p a r a min imizar los
de fec to s produc idos .

26.1.3 Garantía de la calidad
La garant ía d e la ca l idad consis te en u n c o n j u n t o d e func iones d e audi tor ía e infor-
mac ión q u e eva lúan la efectividad y q u é t an c o m p l e t a s son las ac t iv idades d e c o n t r a

d e calidad. La m e t a del a s e g u r a m i e n t o de la cal idad e s br indar le al ges tor los dat os
necesa r ios p a r a q u e es té i n f o r m a d o ace rca d e la cal idad del producto , y po r consi-
gu ien te que c o m p r e n d a y conf ie en q u e la cal idad del p roduc to es tá sa t i s fac iendo sus
me tas . Desde luego, si los da to s que o f r ece el a s e g u r a m i e n t o d e la cal idad identifi-
c a n p rob lemas , e s responsabi l idad del ges to r aborda r los y apl icar los r ecu r sos nece-
sar ios p a r a resolver los confl ic tos de calidad.

26.1.4 Costo de la calidad
El cos to de la cal idad incluye t odos los cos tos que gene ra la b ú s q u e d a d e calidad o
que d e m a n d a el desarro l lo d e las ac t iv idades r e l ac ionadas con la cal idad. Los estu-
dios de cos to d e la ca l idad s e l levan a c a b o p a r a o f rece r u n a linea b a s e para el ces-
to ac tua l d e la cal idad, identif icar o p o r t u n i d a d e s q u e r e d u z c a n el cos to d e calidac \
p roporc iona r una b a s e n o r m a l i z a d a d e c o m p a r a c i ó n . La b a s e d e la n o r m a l i z a d o s
casi s i e m p r e e s m o n e t a r i a . Una vez q u e s e h a n n o r m a l i z a d o los c o s t o s d e la ca l ida ;

sob re u n a b a s e mone t a r i a , se t i enen los d a t o s n e c e s a r i o s p a r a eva lua r d ó n d e se e r -
c u e n t r a n las o p o r t u n i d a d e s para me jo ra r los p rocesos . Más todavía , s e p u e d e e \ a -
luar el e fec to de los c a m b i o s en t é r m i n o s mone ta r io s .

Los c o s t o s d e cal idad s e dividen en cos tos a s o c i a d o s con p revenc ión , evaluación
y fallas. Los costos de prevención inc luyen planif icación de la cal idad, rev i s iones te : -
n icas formales , equ ipo de p r u e b a s y e n t r e n a m i e n t o . Los costos de evaluación inclu-
yen ac t iv idades p a r a c o m p r e n d e r m e j o r la condic ión del p roduc to la "pr imera ve.: a

t r avés de" cada p roceso . Los e j e m p l o s d e c o s t o s d e eva luac ión incluyen inspecci : -
en el p r o c e s o y e n t r e p rocesos , cal ibración y m a n t e n i m i e n t o de e q u i p o y p ruebas .

TM

PDF Editor

http://www.qudifytree

CAPÍTULO 26 GESTIÓN DE LA CALIDAD 771

relativo
corregir
Talla.

o »

incurrir en
-.costos

tranquilo de
i mersión

Req. Diseño Cód igo Des. Pruebas Operac ión
pruebas de sistema de campo

Los costos de fallas son aquellos que desaparecerían si no aparecieran defectos
antes de enviar un producto a los clientes. Estos costos se subdividen en costos de
fallas internas y externas. Se incurre en los costos de fallas internas cuando se detec-
ta un defecto en el producto an tes del envío. Los costos de fallas internas incluyen
reelaboración, reparación y análisis en modo de falla. Los costos de fallas externas se
asocian con defectos detectados después de que el producto ha sido enviado al
cliente. Los ejemplos de costos de fallas externas son la resolución de las quejas, de-
volución y reemplazo del producto, soporte de ayuda en línea y t rabajo de garantía.

Como se esperaba, los costos relativos para encontrar y reparar un defecto au-
mentan sustancialmente conforme se pasa de la prevención a detección y de los de
falla interna a los de falla externa.

La figura 26.1, basada en datos recopilados por Boehm [BOE81] y otros, ilustra es-
te fenómeno.

'Tomo menos tiempo hacer una cosa bien que explicar por qué la hiciste mal . '
H. W. tongfellow

. 2 G A R A N T Í A DE LA C A L I D A D DEL S O F T W A R E (S Q . A)

Incluso los desarrolladores de sof tware m á s exhaustos estarán de acuerdo en que el
sof tware de alta calidad es una meta importante. Pero, ¿cómo se define calidad? Un
bromista dijo una vez: "Todo programa hace algo bien, sólo que puede ser la cosa
que no queremos que haga".

En la bibliografía se han propuesto muchas definiciones de la calidad del softwa-
re. En cuanto a los propósitos del presente texto, la calidad del software se define de
la siguiente manera:

TM

PDF Editor

772 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

¿Cómo se Concordancia con los requisitos funcionales y de desempeño explícitamente establecidos,
define la estándares de desarrollo explícitamente documentados y características implícitas que se

calidad del esperan de cualquier software desarrollado profesionalmente.
sof tware?

No hay duda de que esta definición puede modificarse o extenderse. De hecho, la de-
finición de calidad del sof tware podría debatirse interminablemente. En cuanto a lo?
propósitos de es te libro, esta definición sirve para resaltar tres puntos importantes:

1. Los requisitos de software son la base de las medidas de la calidad. La falta de
concordancia con los requisitos es una falta de calidad.

2 . Los es tándares especificados definen un conjunto de criterios de desarrollo
que guían la forma en que el sof tware se elabora. Si no se siguen los criterios,
casi seguramente resultará una falta de calidad.

3 . Con frecuencia no se menciona un conjunto de requisitos implícito (por ejem-
plo, el deseo de uso sencillo y facilidad de mantenimiento). Si el sof tware con-
cuerda con sus requisitos explícitos pero fracasa al satisfacer los requisitos
implícitos, su calidad está en duda.

26.2.1 Algunos antecedentes
El control y la garantía de la calidad son actividades esenciales en cualquier negocie
que elabore productos de consumo. Antes del siglo xx, el control de calidad era res-
ponsabilidad exclusiva del empresar io que fabricaba un producto. La primera fun-
ción formal de garantía y control de calidad la introdujeron los Laboratorios Bell er.
1916 y se extendió rápidamente a través del mundo industrial. Durante el decenio de
1940 se sugirieron enfoques m á s formales del control de calidad, los cuales se apo-
yaban en la medición y la mejora continua de los procesos [DEM86] como los ele-
mentos clave de la gestión de la calidad.

"Cometiste demosíodos malos errores."
Yogi B e r r o

En la actualidad, toda compañía tiene mecanismos que garant izan la calidad er
sus productos. De hecho, las afirmaciones explícitas de la preocupación de una com-
pañía por la calidad se han convertido en una táctica de mercadotecnia durante las
décadas pasadas.

La historia de la garantía de la calidad en el desarrollo de sof tware avanza para-
lela a la de la calidad en la fabricación de hardware. Durante los primeros días de la
computación (décadas de 1950 y 1960), la calidad era responsabilidad exclusiva de:
programador. Los es tándares de garantía de la calidad para el software se introdu-
jeron en los contratos militares de desarrollo de sof tware durante el decenio de 1970
y se han extendido rápidamente en el desarrollo del sof tware en el mundo de los ne-
gocios [IEE94], Si se extiende la definición presentada anteriormente, la garantía de
la calidad del software es un "patrón de acciones sistemático y planificado" [SCH98]

TM

PDF Editor

•
¿Cuál es el
papel de un

y v p o de SQA?

CAPITULO 26 GESTIÓN DE LA CALIDAD 773

q u e s e requ ie re para ga ran t i za r al ta ca l idad en el s o f t w a r e . N u m e r o s o s y d iversos

par t i c ipan tes t i enen responsabi l idad en la ga ran t í a d e la cal idad del sof tware : inge-
n ie ros d e s o f t w a r e , ge s to re s de proyecto , c l ientes , v e n d e d o r e s y los individuos q u e
par t ic ipan en un g r u p o d e SQA.

El g r u p o d e SQA func iona c o m o el r e p r e s e n t a n t e en c a s a del c l iente . Es decir, las
p e r s o n a s q u e rea l izan el SQA d e b e n obse rva r el s o f t w a r e d e s d e el p u n t o d e vista del
c l iente . ¿El s o f t w a r e sa t i s face a d e c u a d a m e n t e los fac to res d e cal idad s e ñ a l a d o s en
el capí tu lo 15? ¿El desarro l lo d e s o f t w a r e s e ha l l evado a c a b o d e a c u e r d o con los es -
t á n d a r e s p rees tab lec idos? ¿Las disc ipl inas t écn icas h a n rea l i zado a d e c u a d a m e n t e
s u s t a r e a s c o m o pa r t e de la act ividad d e SQA? El g r u p o d e SQA intenta r e s p o n d e r
é s t a s y o t r a s p r e g u n t a s para g a r a n t i z a r q u e la ca l idad del s o f t w a r e s e c o n s e r v a .

26.2.2 Actividades de SQA
La ga ran t í a d e la ca l idad d e s o f t w a r e s e c o m p o n e de u n a var iedad d e t a r e a s a soc ia -
d a s con d o s i n t e g r a n t e s d i fe rentes : los ingen ie ros d e s o f t w a r e q u e rea l izan el t r aba-
jo técn ico y un g r u p o d e SQA q u e t iene la r e sponsab i l idad d e planif icar , superv isar ,
g u a r d a r regis t ros , ana l i za r y repor ta r la ga ran t í a d e cal idad.

Los ingen ie ros d e s o f t w a r e a b o r d a n la ca l idad (y rea l izan ac t iv idades d e a s e g u r a -
m i e n t o y cont ro l d e calidad) al apl icar só l idos m é t o d o s y m e d i d a s técnicas , llevar a
c a b o revis iones t écn icas fo rma le s y desarrol lar p r u e b a s de s o f t w a r e bien planif ica-
das . En es te cap í tu lo só lo s e e x a m i n a n las revis iones . Los tóp icos d e tecnología s e

t r a t an en las pa r t e s 1 ,2 , 3 y 5 d e es te libro.
La mis ión del g r u p o d e SQA e s auxil iar al equ ipo d e s o f t w a r e a c o n s e g u i r un pro-

duc to final d e a l ta ca l idad . El S o f t w a r e Engineer ing inst i tute (SE1) r e c o m i e n d a un
c o n j u n t o d e ac t iv idades d e SQA q u e a b o r d a n la p lanif icación, superv is ión , c o n s e r v a -
ción d e regis tros , anál is is y e laborac ión d e i n fo rmes d e a s e g u r a m i e n t o d e la calidad.
Dichas ac t iv idades las rea l iza (o facilita) un g r u p o d e SQA i n d e p e n d i e n t e q u e s e e n -

c a r g a d e las s igu ien tes ac t iv idades :

Preparar u n p lan d e S Q A p a r a u n p r o y e c t o . El p lan s e desarrol la d u r a n t e la
p lanif icación del p royec to y lo revisan t o d o s los par t ic ipantes . Las ac t iv idades d e
ga r an t í a d e la ca l idad del e q u i p o d e ingenier ía del s o f t w a r e y del g r u p o d e SQA las
rige el p lan . Éste identif ica las e v a l u a c i o n e s q u e s e rea l izarán , las aud i to r ías y revi-
s iones para l levar a cabo, los e s t á n d a r e s apl icables al proyecto , los p roced imien tos

para el i n fo rme y s egu imien to d e errores , los d o c u m e n t o s q u e debe produci r el gru-
p o d e SQA y la can t idad d e r e t roa l imen tac ión p r o p o r c i o n a d a al e q u i p o d e p royec to
de so f tware .

Part ic ipar e n e l d e s a r r o l l o d e la d e s c r i p c i ó n d e l p r o c e s o d e s o f t w a r e de l
p r o y e c t o . El e q u i p o d e s o f t w a r e se lecc iona u n p r o c e s o para el t r aba jo q u e h a b r á
d e real izarse . El g r u p o de SQA revisa la descr ipc ión del p r o c e s o p a r a q u e c o n c u e r d e

con las pol í t icas o rgan i zac iona l e s los e s t á n d a r e s i n t e r n o s d e so f tware , los e s t á n d a -
r e s i m p u e s t o s d e m a n e r a ex t e rna por e e m p l o 1 S 0 9 0 0 1) y o t r a s pa r t e s del plan d e
p royec to del so f tware .

TM

PDF Editor

774 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Revisar las ac t iv idades d e ingeniería de l s o f t w a r e para verificar q u e s e ajus-
te al p r o c e s o d e s o f t w a r e def in ido. El grupo de SQA identifica, documenta y si-
gue las desviaciones del proceso y verifica que se hayan hecho las correcciones.

Audita productos d e trabajo de s o f t w a r e s e l e c c i o n a d o s para verif icar que
s e a justen c o n l o s de f in idos c o m o parte del p r o c e s o del s o f t w a r e . El grupo
de SQA revisa los productos de trabajo seleccionados, identifica, documenta y sigue
las desviaciones; verifica que se hayan hecho las correcciones; y periódicamente in-
forma de los resultados de su t rabajo al gestor del proyecto.

Garantiza que las d e s v i a c i o n e s e n el trabajo de l s o f t w a r e y en los produc-
tos d e trabajo e s t é n d o c u m e n t a d a s y s e m a n e j e n de a c u e r d o c o n el proce-
d imien to e s tab lec ido . Las desviaciones se pueden encontrar en el plan del pro-
yecto, en la descripción del proceso, en los es tándares aplicables o en los productos
de trabajo técnicos.

Registra cualquier falta de ajuste y l o in forma al g e s t o r e jecut ivo . A los ele-
mentos que no se ajustan se les da seguimiento hasta resolverlos.

Además de estas actividades, el grupo de SQA coordina el control y la gestión de!
cambio (capítulo 27) y ayuda a recopilar y analizar métricas de software.

^ C O N S E J O ^

Las revisiones son
como filtros en el flujo
¿e hoka¡o Jel pioceso
de software. Muy
poco y el flujo está
"sucio". Demasiado y
el flujo se reduce a un
chorñto. Use métricas
paia determinai qué
revisiones funcionan y
resáltelos.

Las revisiones del software son un "filtro" para el proceso de software. Esto es, las
revisiones se aplican en varios puntos durante la ingeniería del sof tware y sirven pa-
ra descubrir errores y defectos que luego pueden eliminarse. Las revisiones del soft-
ware "purifican" las actividades de ingeniería del sof tware que se han denominado
análisis, diseño y codificación. Freddman y Weinberg [FRE90] abordan del modo si-
guiente la necesidad de las revisiones:

El trabajo técnico necesita revisarse por la misma razón que los lápices necesitan gomas.
Errar es humano. La segunda razón por la que se necesitan las revisiones técnicas es que,
aunque la gente sea buena al captar algunos de sus propios errores, las grandes clases de
errores escapan de su creador con más facilidad de lo que se le escapan a alguien más.

Como parte de la ingeniería del sof tware se pueden llevar a cabo muchos tipos de
revisiones. Cada uno tiene su lugar. Una reunión informal en torno a una máquina
expendedora de café es una forma de revisión, si se examinan los problemas técni-
cos. Una presentación formal del diseño de sof tware a un auditorio de clientes, ges-
tores y personal técnico también es una forma de revisión. Sin embargo, este libro
se enfoca sobre la revisión técnica formal, a veces l lamada comprobación manual del
código (walkthrough) o inspección. Una revisión técnica formal (RTF) es el filtro más
efectivo desde un punto de vista de aseguramiento de la calidad. Dirigida por los in-
genieros de sof tware (u otras personas) para ingenieros de software, la RTF es un
medio efectivo para descubrir errores y mejorar la calidad del software.

TM

PDF Editor

CAPITULO 26 GESTIÓN DE LA CALIDAD 775

&
I N F O R M A C I Ó N

Bugs, errores y defectos
La meta del SQA es eliminar los problemas de

calidad en el software. A estos problemas se les
conoce con varios nombres: "bugs", "fallas", "errores" o
'defectos", por mencionar unos cuantos. ¿Cada uno de és-
t*s son términos sinónimos o existen sutiles diferencias en-
r e ellos?

En este libro se ha hecho una clara distinción entre un
e ror (un problema de calidad descubierto antes de que el
software sea liberado entre los usuarios finales) y un defec-
to (un problema de calidad detectado sólo después de que
tí software ha sido liberado entre los usuarios finales).2 Se
Ka hecho esta distinción porque los errores y defectos tie-
nen impactos económicos, de negocios, psicológicos y hu-
Tionos muy diferentes. Como ingenieros de software se
quiere descubrir y corregir tantos errores como sea posible
rntes de que el cliente o usuario final los encuentre. Se
quieren evitar los defectos porque (justificadamente) hacen
«er mal a la gente de software.

Sin embargo, es importante mencionar que la distin-
ción temporal hecha en este libro entre errores y defectos
no es la tendencia predominante. El consenso general en-
tre la comunidad de ingeniería del software es que defec-
tos y errores, fallas y bugs son sinónimos. Es decir, el
momento en que el problema se descubrió no tiene impor-
tancia en cuanto al término con que se describe el proble-
ma. Parte del argumento en favor de esta visión es que a
veces es difícil distinguir con claridad entre preliberación y
posliberación (por ejemplo, considérese un proceso incre-
mental utilizado en el desarrollo ágil [capítulo 4]).

Sin importar cómo se elija interpretar estos términos,
reconózcase que el momento en que se descubre un pro-
blema sí importa y que los ingenieros de software deben
intentar duro, muy duro, detectar los problemas antes de
que los clientes y usuarios finales los encuentren. Si se tiene
un interés posterior en este tema, una revisión razonable-
mente amplia de la terminología que rodea a los "bugs" se
puede encontrar en www.softwaredevelopment.ca/bugs.
shtml. y

Modelo d e
ampl i l i cac ión
á e de fec to .

Errores
provenientes

de pasos previos

Paso de desarrollo
Defectos Detección

E r r o r e s p a s a d o s p o r a l t o
P o r c e n t a j e d e

e f i c i e n c i a p a r o
d e t e c c i ó n
d e e r r o r e s

Errores a m p l i f i c a d o s 1 : x

P o r c e n t a j e d e
e f i c i e n c i a p a r o

d e t e c c i ó n
d e e r r o r e s

N u e v o s e r r o r e s g e n e r a d o s

P o r c e n t a j e d e
e f i c i e n c i a p a r o

d e t e c c i ó n
d e e r r o r e s

Errores que
-pasan al paso

siguiente

26.3.1 Impacto de los defectos de software en el costo
El o b j e t i v o p r i n c i p a l d e l a s r e v i s i o n e s t é c n i c a s f o r m a l e s e s d e s c u b r i r l o s e r r o r e s d u -

r a n t e el p r o c e s o , d e m o d o q u e n o s e c o n v i e r t a n e n d e f e c t o s d e s p u é s d e l i be r a r e l

s o f t w a r e . El b e n e f i c i o o b v i o d e l a s r e v i s i o n e s t é c n i c a s f o r m a l e s e s el d e s c u b r i m i e n -

t o t e m p r a n o d e lo s e r r o r e s d e m o d o q u e y a n o s e p r o p a g u e n al p a s o s i g u i e n t e e n el

p r o c e s o de l s o f t w a r e .

2 Si se considera la mejora en el proceso de software, un problema de calidad que se propaga desde
una actividad del marco de trabajo del proceso (por ejemplo, modelado) hacia otra (por ejemplo,
construcción) también se puede llamar "defecto* porque el problema se debió haber descubierto an-
tes de que un producto de trabajo (por eiemr.o ur. Tiodelo de diseño) se hubiese "liberado" hacia la
actividad siguiente.

TM

PDF Editor

http://www.softwaredevelopment.ca/bugs

776 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

^CONSEJcffi-

El objetivo principal de
una Rlf es encontrar
los errores antes de
que posen a otra
actividad de ingeniería
del software o sean
liberados ol usvario
final.

Varios estudios industriales (realizados por TRW, NEC y Mitre Corp., entre otrosí
indican que las actividades de diseño introducen entre 50 y 65 por ciento de los erro-
res (y, a final de cuentas, de los defectos) durante el proceso de software. Sin embar-
go, las técnicas de revisión formal han mostrado hasta 75 por ciento de efectivida:
[10N86] al descubrir fallos en el diseño. Al detectar y eliminar un gran porcentaje de
dichos errores, el proceso de revisión reduce sustancialmente el costo de las activi-
dades subsecuentes en el proceso de software.

Para ilustrar el impacto en el costo de la detección temprana de errores, considé-
rese una serie de costos relativos que se basan en datos de costo real recopilados
para grandes proyectos de software [IBM81].3 Supóngase que la corrección de u-
error descubierto durante el diseño costará 1.0 unidad monetaria . En relación cor
este costo, el mismo error descubierto justo antes de que comience el periodo de
pruebas costará 6.5 unidades; durante las pruebas, 15 unidades; y después de la li-
beración, entre 60 y 100 unidades.

26.3.2 Amplilicación y eliminación del defecto
Se puede usar un modelo de amplificación de defectos [IBM81] para ilustrar la gene-
ración y detección de errores durante el diseño preliminar, el diseño de detalles y los
pasos de codificación de un proceso de ingeniería del software. En la figura 26.2 se
ilustra esquemát icamente el modelo. Un recuadro representa un paso de desarroi.:
del software. Durante el paso, los errores se pueden generar de manera inadvertida.
La revisión puede fallar en descubrir errores generados de manera reciente y errores
de pasos anteriores, lo que resulta en cierto número de errores que se pasan por al-
to. En algunos casos, los errores que se pasan por alto desde pasos anteriores se am-

Ampllíicación
de defecto sin
revisiones.

Diseño pre l iminar

0

0% 0 0%
10

0%
Diseño d e t a l l a d o

10 6

X
94 Prueba d e in tegrac ión

5 0 % 0 5 0 %

0

5 0 %
47

1

6

0 % 4 x 1 . 5 0 %

2 5

0 %

' r u e b a d e va l idac ión

5 0 % 0 5 0 %

0

5 0 %

P r u e b o c ó d i g o / u n i d a d

1 0

2 0 %

2 5

A in
P r u e b o d e s is tema

0 5 0 %

0

94

1 2

Errores la ten tes

3 Aunque estos datos tienen más de 20 años de antigüedad, aún son aplicables en un contexto mo-
derno.

TM

PDF Editor

CAPÍTULO 26 GESTIÓN DE LA calidad 777

Amplificación
de defecto con
revisiones.

Diseño pre l m i n a r

0 Diseño d e t a l l a d o

0 7 0 % 3 2
2

10

3 2

1 . 1 . 5 5 0 %

2 5

2 4 P r u e b a d e in t eg rac ión

Prueba c ó d i g o / u n i d a d

15 5

ü o

5 0 % 0 5 0 %

0

5 0 %

P r u e b a d e va l idac ión
1 2

~L u

~L

5

1 0 . 3 6 0 %

2 5

A in
P rueba d e sistema

0 5 0 %

0

24

Errores la tentes

plifican (factor de amplificación x) con el trabajo actual. Las subdivisiones de los re-
cuadros representan cada una de es tas características y el porcentaje de eficiencia
de la detección de errores, una función de la minuciosidad de la revisión.

i5, dicen los médicos, son fáciles d e curar en sus inicios aunque difíciles de reconocer . . . pero en
el transcurso del tiempo, cuando no han sido reconocidas a primera vista y t ratadas, se vuelven fáciles de reconocer
pero difíciles d e curar."

La figura 26.3 ilustra un ejemplo hipotético de la amplificación del defecto para un
proceso de sof tware en el que no se llevan a cabo revisiones. En la figura se supone
que cada paso de prueba descubre y corrige, sin introducir nuevos errores, 50 por
ciento de los errores que llegan (una suposición optimista). Diez defectos de diseño
preliminar se amplificaron a 94 errores an tes de comenzar las pruebas. Doce defec-
tos latentes se liberaron al campo. La figura 26.4 considera las mismas condiciones
excepto que la revisión del diseño y del código se llevaron a cabo como parte de ca-
da paso de desarrollo. En este caso, diez errores iniciales de diseño preliminar se
amplificaron a 24 errores an tes de comenzar el periodo de pruebas. Sólo existen tres
defectos latentes. Al considerar los costos relativos asociados con el descubrimien-
to y la corrección de errores se puede establecer el costo global (con revisión y sin
ella para el ejemplo hipotético). El número de errores descubiertos durante cada uno
de los pasos anotados en las figuras 26.3 y 26.4 se multiplica por el costo para elimi-
nar un error (1.5 unidades de costo para diseño, 6.5 unidades de costo an tes de las
pruebas, 15 unidades de costo durante las pruebas, y 67 unidades de costo después
de la liberación). Empleando es tos datos, el costo total para desarrollo y manteni -
miento es de 783 unidades cuando se realizan revisiones. Si no se realizan revisio-
nes el costo total e s de 2 177 unidades cas; tres veces más costoso.

TM

PDF Editor

778 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

En las revisiones un ingeniero de software debe utilizar tiempo y esfuerzo, y la or-
ganización desarrolladora, dinero. Sin embargo, los resultados del ejemplo preceden-
te no dejan duda acerca de pagar ahora o hacerlo más tarde. Las revisiones técnicas
formales (para el diseño y otras actividades técnicas) ofrecen un beneficio demostra-
ble en el costo. Se deben llevar a cabo.

2 6 . 4
C u a n d o s e

* l l e v a n a c a b o
RTF, ¿ c u á l e s son
l o s o b j e t i v o s ?

El
G M M (libro fiuto
de Inspección formal)
de NASA SATC se
puede descargar de
salc.gsfc.nasa.
gov/fl/fipage.

Una revisión técnica formal (RTF) es una actividad de control de calidad del softwa-
re que llevan a cabo los ingenieros de software (y otros). Los objetivos de una RTF
son 1) descubrir errores en la función, lógica o implementación en cualquier repre-
sentación del software; 2) verificar que el software en revisión satisface sus requisi-
tos; 3) garantizar que el sof tware se ha representado de acuerdo con los es tándares
predefinidos; 4) lograr software desarrollado en una manera uniforme; y 5) hacer
proyectos más manejables. Además, la RTF sirve como un campo de entrenamien-
to, pues permite que los ingenieros menos exper imentados observen diferentes en-
foques respecto del análisis, el diseño y la construcción del software. La RTF también
funge como promotora del soporte y la continuidad, pues varias personas se fami-
liarizan con las partes del software que de otra forma nunca verían.

"No hay urgencia más grande que la que tiene un hombre por corregir el t raba jo d e otro."
Mark Twain

La RTF es en realidad una clase de revisión que incluye recorridos, inspecciones,
revisiones cíclicas y otro pequeño grupo de evaluaciones técnicas de software. Cada
RTF se realiza en una junta y tendrá éxito sólo si se planifica, controla y at iende apro-
piadamente. En las siguientes secciones se presentan directrices similares a las de
un recorrido (por ejemplo, [FRE90], [GIL93J) que se presenta como una revisión téc-
nica formal representativa.

26.4.1 La junta de revisión
Sin importar el formato de RTF que se elija, cualquier junta de revisión debe atener-
se a las siguientes restricciones:

• En la revisión se deben involucrar (usualmente) entre tres y cinco personas.
• Se debe preparar con anticipación, pero sin que requiera m á s de dos horas de

trabajo de cada persona.

• La duración de la junta de revisión debe ser menor a dos horas.

Dadas es tas restricciones, debe ser obvio que una RTF se enfoca en una parte espe-
cífica (y pequeña) del software total. Por ejemplo, más que intentar revisar un dise-
ño completo, se llevan a cabo recorridos para cada componente o grupo pequeño de
componentes . Al estrechar el enfoque, la RTF tiene una mayor probabilidad de des-
cubrir errores.

TM

PDF Editor

CAPÍTULO 2 6 GESTIÓN DE LA CALIDAD 779

%
CI?A VE

Uno RTF se enfoca en
ano porción
-estivamente pequeña
i¡ un producto de
tobajo.

(C O N S E J O ^

: 1 algunos situaciones
e buena idea hacer
pe alguien distinto al
yoductor recorra el
uvducto que experi-
m¡tn revisión. Esto
induce o una inter-
retoción literal del
roducto de traba¡o y
: un mejor reconoci-
-&ito de los errores.

El enfoque de la RTF se dirige a un producto de t rabajo (por ejemplo, una porción
de una especificación de requisitos, un diseño detallado de componente, una lista de
código fuente de un componente). El individuo que ha desarrollado el producto de tra-
ba jo —el productor— le informa al jefe del proyecto que el producto está completo y
que se requiere una revisión. El jefe del proyecto se pone en contacto con un jefe de
revisión, quien evalúa la disponibilidad del producto, genera copias del material del
producto y las distribuye a dos o tres revisores para que realicen sus observaciones
antes de la junta. Se espera que cada revisor emplee entre una y dos horas en revi-
sar el producto, tomar notas y familiarizarse con el trabajo. Al mismo tiempo, el je-
fe de revisión también revisa el producto y establece una agenda para la junta de re-
visión, la que usualmente se programa para el día siguiente.

A la junta de revisión asisten el jefe de revisión, todos los revisores y el productor.
Uno de los revisores asume el papel de registrador, es decir, el individuo que registra
(por escrito) los t emas importantes que surjan durante la revisión. La RTF comienza
con una presentación de la agenda y una breve introducción a cargo del productor.
Entonces el productor procede a recorrer el producto de trabajo y explica el material,
mientras que los revisores exponen los problemas que descubrieron antes de la jun-
ta. Cuando se descubren problemas o errores válidos el registrador anota cada uno.

Al final, todos los asistentes a la RTF deben decidir si 1) aceptan el producto sin
modificaciones posteriores, 2) rechazan el producto debido a errores severos (una
vez corregidos se tiene que realizar otra revisión) o 3) aceptan el producto provisio-
nalmente (se encontraron errores menores que es necesario corregir, pero no se re-
querirá revisión adicional). Cuando se tome la decisión, todos los asistentes a la RTF
llenan un documento de finalización en el que indican su participación en la revisión
y su conformidad con los hallazgos del equipo revisor.

26.4.2 Informe de la revisión y conservación de registros
Durante la RTF, un revisor (el registrador) registra act ivamente todos los problemas
que hayan surgido. Éstos se resumen al final de la junta de revisión y se genera una
lista de problemas de revisión. Además, se llena un informe resumen de la revisión téc-
nica formal. Un informe resumen de la revisión responde tres preguntas:

1. ¿Qué se revisó?

2 . ¿Quién lo revisó?

3 . ¿Cuáles fueron los hallazgos y conclusiones?

El informe resumen de la revisión es un formato de una sola página (con posibles
anexos). Se vuelve parte del registro histórico del proyecto y e s posible distribuirlo
entre el jefe del proyecto y ot ras partes interesadas.

La lista de problemas de la revisión cumple dos propósitos: 1) identificar áreas
problema en el producto y 2) funcionar c o m o lista de verificación de e lementos de
acción que guían al productor conforme se hacen las correcciones. Normalmente al
informe resumen se anexa una lista de problemas

TM

PDF Editor

780 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Es i m p o r t a n t e es tab lecer un p roced imien to d e s egu imien to p a r a ga ran t i za r que
los e l e m e n t o s en la lista d e p r o b l e m a s s e h a n cor reg ido a d e c u a d a m e n t e . A menos
que e s t o se haga , e s posible q u e los p r o b l e m a s surg idos "caigan en t r e las gr ie tas '
Un e n f o q u e cons i s te e n a s igna r la responsabi l idad del s egu imien to al jefe de revi-
sión.

"A menudo una reunión es un suceso en el que se toman los minutos y se pierden las horas."

Anónimo

(C O N S E J O ^

No señale los errores
de manera hiriente.
Una formo de ser
gentil es preguntar
algo que permita al
productor descubrir el
error.

26.4.3 Directrices de la revisión
Las directr ices p a r a rea l izar las rev i s iones t écn icas fo rmales e s nece sa r io es tab lecer -
las con ant ic ipación, distr ibuir las en t r e t odos los revisores , suscr ibir las y luego se-
guirlas. Una revisión descon t ro l ada u s u a l m e n t e e s peo r q u e ca rece r de una . Las si-

gu i en t e s r e p r e s e n t a n u n c o n j u n t o mín imo d e di rect r ices p a r a las revis iones técnicas
formales :

1. Revisar el producto, no al productor. Una RTF involucra p e r s o n a s y egos . Reali-
z a d a con prop iedad , la RTF d e b e dejar a t o d o s los par t i c ipan tes con un cál ido
sen t imien to de logro. Si se lleva a c a b o d e m a n e r a i n a d e c u a d a , la RTF p u e d e

t o m a r un a u r a inquisitorial . Los e r ro res s e d e b e n seña l a r con gent i leza ; el to-
n o d e la junta d e b e se r r e l a j ado y const ruct ivo; la finalidad n o d e b e se r aver-
g o n z a r o menosp rec i a r .

2. Establecer una agenda y respetarla. Un mal clave de las j un t a s d e cua lqu ie r t ipo
e s la d ivagación. Una RTF t iene q u e m a n t e n e r el r u m b o y segui r el p r o g r a m a .
El jefe d e revisión t iene la responsabi l idad d e m a n t e n e r el p r o g r a m a de la jun-
ta y n o vacilar en l lamar la a t enc ión d e la g e n t e c u a n d o s e e m p i e c e a divagar

3 . Limitar el debatey la impugnación. C u a n d o un revisor p l an tee un p rob lema , tal

vez n o haya un a c u e r d o universa l sob re su impacto . En lugar d e pe rde r t iem-
p o d e b a t i e n d o la cues t ión , el p r o b l e m a s e d e b e regis t rar p a r a t ra tar lo infor-
m a l m e n t e d e s p u é s .

4 . Enunciar áreas de problemas, pero no se intente resolver todos los que se hayan
señalado. Una revisión n o e s una ses ión p a r a resolver p r o b l e m a s . Esto s e debe
p o s p o n e r has ta d e s p u é s d e la junta d e revisión.

5 . Tomar notas. En o c a s i o n e s e s b u e n a idea q u e el regis t rador t o m e n o t a s en una
p izar ra , d e m o d o q u e las p a l a b r a s y las p r io r idades p u e d a n eva lua r l a s o t ros
rev isores c o n f o r m e s e registra la in fo rmac ión .

6 . Limitar el número de participantes e insistir en la preparación anticipada. Dos ca-
b e z a s p i ensan m e j o r q u e una , p e r o 14 n o n e c e s a r i a m e n t e s o n m e j o r e s q u e

cua t ro . M a n t é n g a s e el n ú m e r o d e p e r s o n a s invo lucradas e n el m í n i m o nece-
sario. Sin e m b a r g o , t odos los m i e m b r o s del e q u i p o revisor d e b e n p r e p a r a r s e
po r ant ic ipado. El jefe d e revisión d e b e solicitar c o m e n t a r i o s escr i tos (lo que
o f r ece un indicio de que el revisor ha a n a l i z a d o el material) .

TM

PDF Editor

CAPÍTULO 2 6 GESTIÓN DE LA CALIDAD 781

7 . Desarrollar una lista de verificación para cada producto que tenga probabilidad
de ser revisado. Una lista d e verif icación ayuda al jefe d e revisión a e s t ruc tu ra r
la jun ta d e RTF, y a c a d a revisor a e n f o c a r s e en los p r o b l e m a s impor tan tes .

8. Asignar recursos y programar las RTF. Las revis iones s e r á n e fec t ivas si s e p ro -
g r a m a n c o m o una t a rea del p roceso d e so f tware . Además , s e d e b e p r o g r a m a r
t i e m p o p a r a real izar las inevi tables modi f i cac iones q u e ocurr i rán c o m o resul-
t a d o d e u n a RTF. '

9 . Realizar un entrenamiento significativo de todos los revisores. Los par t i c ipan tes
en la revisión s e r á n ef ic ientes si rec iben a lgún e n t r e n a m i e n t o formal . El e n -
t r e n a m i e n t o debe subrayar t a n t o los p r o b l e m a s r e l ac ionados con el p r o c e s o
c o m o el l ado ps icológico y h u m a n o d e las revis iones.

10. Analizar las revisiones previas. La jun ta e s benef ic iosa p a r a descubr i r p roble -
m a s en el p roceso de revisión mismo . El p r imer p roduc to q u e se haya revisa-
d o d e b e e s t ab lece r las directr ices d e revisión.

"Una de las compensaciones más hermosas de la vida es que ningún hombre puede intentar sinceramente ayudar a
otro sin oyudarse a sí mismo."

Ralph Waldo Emerson

Pues to q u e m u c h a s var iab les (por e jemplo , n ú m e r o d e par t ic ipantes , t ipo d e p ro -
d u c t o s d e t raba jo , t i e m p o y durac ión , e n f o q u e específ ico d e revisión) inciden en una
revisión p rovechosa , una o rgan izac ión de s o f t w a r e debe e x p e r i m e n t a r para de te rmi -
na r q u é e n f o q u e func iona mejor en un con tex to local. Porter y s u s co legas |POR95]
o f r ecen una exce len te guía para e s t e t ipo de exper imen tac ión .

26.4.4 Revisiones basadas en muestras
En un con tex to ideal, c a d a p roduc to d e t r aba jo d e ingenier ía del s o f t w a r e deber ía ex-
pe r imen ta r una revisión t écn ica formal . En el m u n d o real d e los p royec tos d e sof t -
ware , los r e c u r s o s son l imi tados y el t i empo e s corto. C o m o consecuenc i a , usua l -
m e n t e las revis iones se sos layan , a u n q u e s e r e c o n o z c a su valor c o m o m e c a n i s m o
d e control d e cal idad. Thelin y s u s co legas [THEOl] a b o r d a n es te t e m a c u a n d o afir-
m a n :

Las inspecciones [RTF] sólo son vistas como eficientes si se encuentran muchas fallas du-
rante su búsqueda. Si en los artefactos [productos de trabajo] se encuentran muchas fa-
llas, las inspecciones son necesarias. Si por otra parte, sólo se encuentran pocas fallas, la
inspección ha sido una pérdida de tiempo para muchas personas involucradas en la ta-
rea.4 Más aún, los proyectos de software q - j e esian atrasados con frecuencia disminuyen
el tiempo de las actividades de inspeccicr. '.o que conduce a una falta de calidad. Una so-

4 Desde luego, se puede argumentar que. a! llevar a ; = re. ; t res . se alienta a los productores a en-
focarse en la calidad, incluso si no se encuendar e — t s

TM

PDF Editor

782 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

^ O N S E J O ^

Las revisiones loman
tiempo, peto es
tiempo bien
empleado. Sin
embargo, si el tiempo
es corto y no se tiene
otra opción, no se
dispensen las revi-
siones. (n su lugar
uÉ'cense revisiones
basadas en muestms.

lución sería asignar jerarquías a los recursos para las actividades de inspección y, en con-
secuencia, concentrar los recursos disponibles en los artefactos más proclives a las fallas

Thelin y s u s co legas sug ie ren un p r o c e s o d e revisión b a s a d o e n q u e m u e s t r a s d e tc-
d o s los p r o d u c t o s de t r aba jo de ingenier ía del so f tware , é s t a s s e inspecc ionan pa-¿
d e t e r m i n a r q u é p r o d u c t o s d e t r a b a j o son m á s procl ives al error. En tonces los recur
s o s de las RTF c o m p l e t a s s e e n f o c a n sólo e n aque l lo s p roduc to s d e t r aba jo con p r :

habil idad (b a s á n d o s e en los d a t o s recop i l ados d u r a n t e el mues t r eo) d e se r proclives
al error .

Para se r ef icaz, el p r o c e s o d e revisión b a s a d o en m u e s t r a s d e b e in ten ta r c u a n t i f -
ca r aque l lo s p roduc to s d e t r aba jo q u e s e a n ob je t ivos pr incipales p a r a las RTF corr -
ple tas . Para lograr lo s e sug ie ren los s igu ien tes p a s o s [THE01]:

1 . Inspecc ionar u n a fracción a ¡ d e c a d a p roduc to d e t r a b a j o d e s o f t w a r e i . Regis-
t re el n ú m e r o d e fa l las f e n c o n t r a d a s d e n t r o d e a¡.

2. Desarrol lar una es t imac ión b ru ta del n ú m e r o d e fal las d e n t r o del p roduc to de
t r aba jo i al multiplicar f por 1 /a¡.

3 . O rde na r los p r o d u c t o s de t r aba jo e n fo rma d e s c e n d e n t e d e a c u e r d o con la es-

t imac ión bruta del n ú m e r o d e fal las e n c a d a uno .

4 . Enfocar los r ecu r sos de revisión disponibles e n aque l los p roduc to s d e t raba jo
con el mayor n ú m e r o e s t i m a d o d e fallas.

La fracción con la q u e s e ha h e c h o un m u e s t r e o del p roduc to d e t r aba jo debe 1) ser

represen ta t iva del p roduc to d e t r aba jo c o m o un todo, y 2) se r lo su f ic ien temente
g r a n d e d e tal m a n e r a q u e sea significativa para los rev isores q u e real icen el m u é s
t reo. C o n f o r m e a, a u m e n t a , la probabi l idad de q u e la m u e s t r a s ea u n a representa
ción válida de l p r o d u c t o d e t r a b a j o t a m b i é n crece . Sin e m b a r g o , t a m b i é n a u m e n t a r
los r ecu r sos r eque r idos p a r a levantar la mues t r a . Un equ ipo de ingenier ía del soft-

w a r e d e b e e s t ab lece r el m e j o r valor p a r a a ¡ s egún los t ipos d e p r o d u c t o s d e t r a b a j :
p roduc idos . 5

HOGARSEGURO

Problemas en el SQA

. f I escenar io: Oficina de Doug M¡-
11er cuando comienza el proyecto d e software HogarSeguro.

Los a c t o r e s : Doug Miller (gerente del equipo d e inge-
niería del software HogarSeguro) y otros miembros del

equipo d e ingeniería del software.

La conversación:

D o u g : Ya sé que n o hemos empleado tiempo p a r a de-
sarrollar un plan d e SQA p a r a este proyecto, pe ro ya
estamos en él y tenemos que considerar la ca l idad . . .
¿cierto?

5 Thelin y sus colegas han realizado una simulación detallada que puede ayudar a tomar esta deter-
minación. Véase [THE01J para detalles.

TM

PDF Editor

CAPITULO 2 6 GESTIÓN DE LA CALIDAD 783

J a m i e : Claro. Yo hemos decidido que, conforme desa-
rrollemos el modelo d e requisitos [capítulos 7 y 8], Ed se
no comprometido • desarrollar un procedimiento V&V
pora c a d a requisito.

D o u g : Eso es muy bueno, pero n o vamos a esperar has-
ta hacer las p ruebas p a r a evaluar la cal idad, ¿ o si?

V i n o d ; ¡No! Desde luego que no. Hemos p rog ramado
revisiones en el plan del proyecto pa ra este incremento
de software. Comenzaremos el control de cal idad con las
revisiones. ' .

J a m i e : Estoy un poco p reocupada d e que no tengamos
- empo suficiente p a r a realizar todas las revisiones. De
hecho, sé que n o podremos

D o u g : Mmmmm. ¿Qué propones?

J a m i e : Sugiero que seleccionemos aquellos elementos
de los modelos de análisis y diseño cruciales p a r a Hogar-
Seguro y que los revisemos

V i n o d : ¿Pero qué ocurre si perdemos a l g o en una par te
¡el modelo que no revisemos?

S h a k i r a : Leí a lgo acerca d e una técnica d e muestren
[sección 26 .4 .4] que puede ayudamos o seleccionar los
candidatos p a r a revisión. (Shakira explica el enfoque.)

J a m i e : Tal vez. . . pe ro no estoy segura d e que incluso
tengamos tiempo p a r a tomar muestras d e c a d a elemento
d e los modelos.

V i n o d : ¿ Q u é quieres que hagamos , Doug?

D o u g : Robemos a lgo d e Programación Extrema [capítu-
lo 4). Desarrollaremos los elementos d e c a d a modelo en
pares —dos personas— y realizaremos una revisión In-
formal d e cada, uno conforme avancemos Luego selec-
cionaremos los elementos "cruciales" p a r a una revisión
en equipo más formal, pe ro conservaremos dichas revi-
siones en un mínimo. De e sa forma, todo será observado
por más d e un conjunto d e ojos, pe ro aún asi conserva-
remos nuestras fechas d e entrega.

J a m i e : Eso significa que tendremos que revisar la calen-
darización.

D o u g : Así debe ser. La cal idad triunfa sobre la calenda-
rización en este proyecto.

2 6 , 5 E N F O Q U E S F O R M A L E S A C E R C A P E L S & A

Durante las dos d é c a d a s pasadas , un pequeño , pero ruidoso, s e g m e n t o d e la c o m u -
nidad de ingeniería del so f tware ha a rgumen tado que se requiere un en foque m á s
formal de la garantía de la calidad del software. Se puede a rgumenta r que un pro-
grama de computadora es un objeto matemát ico [SOMOl]. En cada lenguaje de pro-
gramación s e definen una sintaxis y una semánt ica rigurosas, y existe un enfoque ri-
guroso respecto de la especificación de requisitos de sof tware (capítulo 28). Si el mo-
delo de requisitos (especificación) y el lenguaje de programación se representan en
una forma rigurosa, debe ser posible aplicar p ruebas matemát icas de exactitud para
demost rar que un programa concuerda exac tamente con sus especificaciones.

Los in tentos encaminados a probar la exactitud de los p rogramas (capítulos 28 y
29) n o son nuevos. Dijkstra [D1J76] y Linger, Mills y Witt [L1N79], entre otros, acon-
sejaron p ruebas de exactitud de p rograma y los vincularon con la aplicación de con-
cep tos de programación es t ructurada (capitulo II).

2 6 . 6 G A R A N T Í A P E LA C A L I D A ? E S T A D Í S T I C A DEL S O F T W A R E

La garant ía de la calidad estadíst ica refleja u n a tendencia , creciente en la industria,
por adoptar un en foque m á s cuanti tat ivo acerca de la calidad. Para el sof tware , la
garant ía de la calidad estadística implica ios pasos siguientes:

TM

PDF Editor

784 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

•
¿Qué posos
se requieren

pa ra realizar SQA
estadíst ico?

1. La in fo rmac ión ace rca d e los de fec to s d e s o f t w a r e s e recopi la y clasifica.

2 . Se in tenta d e t e r m i n a r la c a u s a s u b y a c e n t e d e c a d a de fec to (por e jemplo , falta
de c o n c o r d a n c i a con las espec i f icac iones , e r ro res d e d i seño , violación d e es-
t ánda re s , def ic iente c o m u n i c a c i ó n con el cliente).

3 . Median te el pr incipio d e Pare to (80 por c ien to d e los de fec to s s e e n c u e n t r a en

2 0 por c ien to d e t o d a s las c a u s a s posibles) s e aisla un 20 por c ien to (los "vita-
les").

4 . Una vez q u e las c a u s a s vi ta les h a n s ido ident i f icadas , s e cor r igen los proble -
m a s q u e h a n p r o v o c a d o los de fec tos .

Este c o n c e p t o r e l a t ivamen te s imple r ep re sen t a un p a s o i m p o r t a n t e hac ia la c reac ión
d e un p r o c e s o d e s o f t w a r e adap t ab l e en el q u e los c a m b i o s s e h a g a n p a r a mejora r
aque l los e l e m e n t o s del p r o c e s o q u e in t roducen e r rores .

"20 por tiento del código tiene 80 por ciento de los errores. ¡Encuéntrelos, corrijnlos!"

Lowell Arthur

26.6.1 Un ejemplo genérico
Para i lustrar la apl icación d e los m é t o d o s es tad ís t icos en el t r a b a j o d e ingenier ía del
so f tware , s u p ó n g a s e q u e u n a o rgan izac ión d e ingenier ía del s o f t w a r e recopi la infor-
mac ión ace rca d e de fec to s d u r a n t e un a ñ o . Algunos d e los d e f e c t o s s e d e s c u b r e n
c u a n d o el s o f t w a r e es tá e n desarrol lo; o t ros , d e s p u é s d e q u e s e ha l iberado e n t r e sus

usuar ios finales. A u n q u e se descub ren c ien tos d e d i f e ren te s defec tos , t odos t i enen
u n a (o más) d e las c a u s a s s iguientes :

• Especi f icac iones i ncomple t a s o e r r ó n e a s (E1E).

• Mala in te rpre tac ión d e la comun icac ión del c l iente (MCC).

• Desviación in tenc ional de las e spec i f i cac iones (DIE).

• Violación d e los e s t á n d a r e s de p r o g r a m a c i ó n (VEP).

• Er rores e n la r ep re sen t ac ión d e los d a t o s (ERD).

• In ter faz d e c o m p o n e n t e incons i s t en te (ICI).

• Error en la lógica de l d i s e ñ o (ELD).

• P rueba incomple ta o e r rónea (PIE).

• D o c u m e n t a c i ó n imprec isa o incomple ta (DII).

• Error en la t raducc ión del d i s e ñ o al l engua j e d e p r o g r a m a c i ó n (TLP).

• In ter faz h o m b r e - c o m p u t a d o r a a m b i g u a o incons i s t en te (IHC).

• Misce láneo (MIS).

Para apl icar el a s e g u r a m i e n t o d e la ca l idad es tad ís t ica del s o f t w a r e s e cons t ruye la
tabla d e la figura 26.5. La tabla indica q u e EIE, MCC y ERD son las c a u s a s vi ta les q u e

TM

PDF Editor

C A P Í T U L O 2 6 GESTIÓN DE LA CALIDAD 785

Toral S e r i o s M o d e r a d o s M e n o r e s

Error N ú m % N ú m % N ú m % N ú m %

EIE 2 0 5 22% 3 4 27% 6 8 18% 103 24%
M C C 1 5 6 17% 12 9% 6 8 18% 7 6 17%

0IE 4 8 5% 1 1% 2 4 6% 2 3 5%

VEP 2 5 3% 0 0% 15 4% 10 2%

ERD 1 3 0 14% 2 6 20% 6 8 18% 3 6 8%

ICI 5 8 6% 9 7% 18 5% 3 1 7%
ELD 4 5 5% 14 11% 12 3% 19 4%

PIE 9 5 10% 12 9% 3 5 9% 4 8 11%

CH1 3 6 4% 2 2% 2 0 5% 14 3%

TIP 6 0 6% 15 12% 19 5% 2 6 6%

IHC 2 8 3% 3 2% 17 4% 8 2%

M!S_ ^ 5 6 _ £ > % _ 2 _ Q % _ L £ _ 4 % _ 9 %

Tolo les 9 4 2 100% 1 2 8 100% 3 7 9 100% 4 3 5 100%

explican el 53 por c ien to d e t o d o s los er rores . Sin e m b a r g o , s e debe obse rva r q u e
EIE, ERD, TLP y ELD se se lecc ionar ían c o m o las c a u s a s vi ta les si sólo s e cons ide ra -
ran los e r ro res ser ios . Una vez d e t e r m i n a d a s las c a u s a s vitales, la o rgan izac ión d e
ingenier ía del s o f t w a r e p u e d e c o m e n z a r la acc ión correct iva. Por e j emplo , p a r a co-

rregir MCC, el desar ro l lador d e s o f t w a r e p u e d e i m p l e m e n t a r t écn icas que faciliten la
recopi lac ión d e requis i tos (capítulo 7) p a r a m e j o r a r la ca l idad d e la comun icac ión y
las espec i f icac iones del c l iente . Para m e j o r a r ERD, el desa r ro l l ador p u e d e adquirir
h e r r a m i e n t a s p a r a el m o d e l a d o d e da to s y e j ecu t a r rev i s iones d e d i s e ñ o d e d a t o s
m á s r igurosas .

Es impor t an te a n o t a r que la acc ión correct iva s e en foca p r inc ipa lmen te en las vi-
tales. C o n f o r m e é s t a s s e corr igen, n u e v a s c a n d i d a t a s o c u p a n la pa r t e super io r de la
clasif icación.

Las t écn icas de ga ran t í a es tadís t ica d e la cal idad p a r a s o f t w a r e h a n d e m o s t r a d o
q u e o f r ecen una me jo ra sus tanc ia l en la cal idad [ART97], En a l g u n o s ca sos , las or-
g a n i z a c i o n e s d e s o f t w a r e h a n a l c a n z a d o 5 0 p o r c ien to d e reducc ión a n u a l e n los de -
fec tos d e s p u é s d e apl icar e s t a s técnicas .

La apl icación del SQA es tad í s t i co y el pr incipio de Pare to s e p u e d e n r e sumi r en

una sola oración: Emplee su tiempo enfocándose en las cosas que realmente importan,
¡pero primero asegúrese de entender qué es lo que realmente importaí

Un de ta l l ado anál is is del SQA es tad í s t i co es tá m á s allá del á m b i t o de es te libro.
Los l ec tores i n t e r e s a d o s d e b e n consu l t a r [GOH02], [SCH98] o [KAN95],

26.6.2 Seis sigma para ingeniería del software
Seissigma e s la es t ra teg ia m á s a m p l i a m e n t e e - o l e a d a en la ac tua l idad p a r a el a s e -
g u r a m i e n t o d e la cal idad es tad ís t ico en !a industr ia . Or ig ina lmente popu la r i zada por

TM

PDF Editor

786 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

Motorola en el d e c e n i o de 1980, la es t ra teg ia se i s s igma "es u n a me todo log ía rigu-
rosa y discipl inada q u e utiliza anál is is d e d a t o s y es tad ís t ico p a r a med i r y me jo ra r e
d e s e m p e ñ o opera t ivo d e una c o m p a ñ í a al ident i f icar y e l iminar los ' de fec tos ' en la

fabr icación y los p r o c e s o s r e l ac ionados con el servicio" [ISI03). El t é r m i n o "seis sig-
ma" s e der iva d e se i s desv iac iones e s t á n d a r —3.4 ins t anc ias (defectos) po r mil lón de
ocur renc ias—, lo q u e implica un e s t á n d a r d e ca l idad e x t r e m a d a m e n t e e levado . La
metodo log ía se i s s igma de f ine t res p a s o s cen t ra les :

•
¿Cuáles son • Definir los requis i tos del cliente, e n t r e g a b l e s y m e t a s del p royec to po r m e d i o
los posos d e m é t o d o s b ien def in idos d e comun icac ión con el c l iente .

centrales de lo
metodología seis * M e " , r e ' p r o c e s o ex i s ten te y su sal ida p a r a de t e rmina r el d e s e m p e ñ o d e cali-
sigma? dad ac tua l (recopilación d e mé t r i ca s de defecto) .

• Analizar las mé t r i ca s d e d e f e c t o y d e t e r m i n a r las c a u s a s p o c o vitales.

Si un p r o c e s o d e s o f t w a r e ex i s t en te e s t á en m a r c h a , p e r o s e requ ie re mejor ía , seis
s igma sugiere d o s p a s o s ad ic iona les :

• Mejorar el p r o c e s o e l i m i n a n d o las c a u s a s or ig inales d e los defectos .

• Controlar el p r o c e s o para g a r a n t i z a r q u e el t r aba jo fu turo n o vuelva a introdu-

cir las c a u s a s d e defec tos .

Estos p a s o s cen t ra les y ad ic iona les a v e c e s s e c o n o c e n c o m o el m é t o d o DMAMC
(definir, medir , ana l izar , me jo ra r y controlar) .

Si u n a o rgan izac ión e s t á de sa r ro l l ando un p r o c e s o d e s o f t w a r e (en lugar de me
jorar u n p r o c e s o exis tente) , los p a s o s cen t r a l e s s e a u m e n t a n d e la s iguiente m a n e
ra:

• Diseñar el p r o c e s o p a r a 1) ev i ta r las c a u s a s or ig inales d e los de fec to s y 2) sa -
t isfacer los requis i tos del c l iente .

• Verificar q u e el m o d e l o d e p roceso , d e h e c h o , evi tará los de fec to s y sa t i s fa rá
los requis i tos del cl iente.

A e s t a var iac ión a v e c e s s e le l lama m é t o d o DMADV (definir, medir , ana l iza r , dise
ña r y verificar).

Una expos ic ión de ta l lada d e se i s s i g m a s e e n c u e n t r a en las f u e n t e s bibliográficas
d e d i c a d a s a la mate r ia . El lector i n t e r e s a d o d e b e consu l t a r [ISI03], [SNE03] y
[PAN00].

2 6 . 7 f l f t B I H P A P P E L S O F T W A R E

La fiabilidad del so f tware , a d i ferencia d e o t ro s f ac to re s d e cal idad, s e p u e d e medir

dirigir y es t imar e m p l e a n d o d a t o s h is tór icos y d e desarrol lo . La fiabilidad del softwa-
re s e de f ine en t é r m i n o s es tad í s t i cos c o m o "la probabi l idad d e la ope rac ión libre de
fal las d e un p r o g r a m a de c o m p u t a d o r a e n un e n t o r n o espec í f ico d u r a n t e un t iempo
específ ico" [MUS87]. Con fines i lustrativos, s e e s t ima que el p r o g r a m a X t i ene una

TM

PDF Editor

CAPÍTULO 2 6 GESTIÓN DE LA CALIDAD 787

fiabilidad d e 0,96 d u r a n t e u n p e r i o d o de o c h o h o r a s de p r o c e s a m i e n t o . En o t r a s pa -

labras , si el p r o g r a m a X f u e s e e j e c u t a d o 100 v e c e s y requi r iese un total d e ocho ho-
ras de t i e m p o d e p r o c e s a m i e n t o (t iempo de e jecución) , e s p robab le q u e operar ía co-
r r e c t a m e n t e (sin falla) 96 veces .

"El precio inevitable de ID fiabilidad es la simplicidad."

C.A.R. Honre

c f o v E
sde

í casi siempre
i seguirse o
s en diseño o

tVE
s notar

F y los
s reiocionodos

sen
i x CPU, no en
i * reloj de

Siempre que s e es tudia la fiabilidad del so f tware , su rge u n a p r e g u n t a centra l : ¿qué
significa el t é rmino falla? En el con tex to de cua lqu ie r anál is is d e cal idad y fiabilidad
del so f tware , la falla e s la falta de c o n c o r d a n c i a con los requis i tos del so f tware . Sin
e m b a r g o , incluso d e n t r o de e s t a definición, exis ten g rad ien tes . Las fal las sólo pue -
d e n se r m o l e s t a s y ca tas t róf icas . Una falla p u e d e corregi rse en s egundos , m i e n t r a s
q u e o t ra tal v e z r equ ie ra s e m a n a s o incluso m e s e s . Para compl icar el t e m a a ú n m á s ,
la cor recc ión de u n a falla puede , de h e c h o , resu l t a r en la in t roducc ión d e o t ros e r ro-
res q u e a final d e c u e n t a s r e su l t an en o t r a s fallas.

26.7.1 Medidas de Habilidad y disponibilidad
Los p r imeros t r aba jos en la fiabilidad del s o f t w a r e in ten ta ron ex t rapo la r las m a t e m á -
t icas de la teoría d e fiabilidad del h a r d w a r e (por e jemplo, [ALV64]) a la predicción de
la fiabilidad del so f tware . La mayor ía de los m o d e l o s d e fiabilidad r e l ac ionada con el
h a r d w a r e t ra tan ace rca de las fal las deb idas al u s o m á s q u e a las q u e s e d e b e n a de-
fec tos d e d i seño . En el h a r d w a r e , las fal las q u e s e deben al u s o físico (por e j emplo ,

los e fec tos de la t empera tu ra , la cor ros ión , los c h o q u e s eléctr icos) son m á s p roba-
bles que una falla re lac ionada con el d i seño . D e s d i c h a d a m e n t e , lo o p u e s t o e s cierto
p a r a el so f tware . De hecho , t odas las fal las d e s o f t w a r e s e or iginan en p r o b l e m a s d e
d i s e ñ o o implemen tac ión , el u s o (capítulo 1) n o en t ra en el cuad ro .

Ha h a b i d o d e b a t e s ace rca d e la relación en t r e c o n c e p t o s c lave e n la fiabilidad del
h a r d w a r e y su apl icabi l idad al s o f t w a r e (por e jemplo , [LIT89], [R0090]) . Aunque to-
davía s e t iene q u e es tab lecer un vínculo i r refutable , vale la p e n a cons ide ra r u n o s
c u a n t o s c o n c e p t o s s imp les q u e s e apl ican a e l e m e n t o s d e a m b o s s i s t emas .

Si s e cons ide ra u n s i s t ema b a s a d o en c o m p u t a d o r a , una s imple med ida d e fiabi-
lidad e s el tiempo medio entre fallas (TMEF), d o n d e

TMEF = TMDF + TMDR

Las s ig las TMDF y TMDR signif ican tiempo medio de falla y tiempo medio de repara-
ción, r e spec t i vamen te . 6

M u c h o s inves t igadores a r g u m e n t a n q u e el TMEF e s con m u c h o m á s fácil d e m e -
dir q u e los defec tos /KLDC o los defec tos /PF . Establecido d e m a n e r a simple, el u s u a -

rio final es tá p r e o c u p a d o p o r las fallas, n o por el c o n t e o total d e er rores . Debido a

6 Aunque se pueda requerir la depuración iy correcosnes relacionadas) como consecuencia de una fa-
lla, en muchos casos el software trabajara adecuadamente después de un reinicio sin otro cambio.

TM

PDF Editor

788 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

f c W W J O ^

Algunos aspectos de
la disponibilidad (no
estudiados aquí) no
tienen nada que ver
con las follas. Por
ejemplo, los recortes
en la calendaiización
(para funciones de
soporte) provocan que
el software no esté
disponible.

que cada defecto contenido dentro de un programa no tiene la misma tasa de falla,
la cuenta de defectos totales ofrece poca información de la Habilidad del sistema.

Además de una medida de fiabilidad, se debe desarrollar una medida de disponi-
bilidad. La disponibilidad del software es la probabilidad de que un programa opere
de acuerdo con los requisitos en un punto dado del tiempo, y se define como

Disponibilidad = [TMDF/(TMDF + TMDR)] x 100%

La medida de fiabilidad TMEF es igualmente sensible a TMDF y TMDR. La medida de
disponibilidad e s un poco más sensible a TMDR, y es una medida indirecta de la fa-
cilidad de mantenimiento del software.

26.7.2 Seguridad del software
La seguridad de! software [LEV86] es una actividad de aseguramiento de la calidad de
software que se enfoca en la identificación y evaluación de los peligros potenciales
que pueden afectar negat ivamente al software y provocar una falla de todo el siste-
ma. Si los peligros se pueden identificar t emprano en el proceso de software, las ca-
racterísticas de diseño de software se pueden especificar de modo que eliminarán c
controlarán los peligros potenciales.

"No puedo imaginar alguna condición que provoque que este barco se hunda. La industria naviera moderna ha ido
más altó."

E. I. Smith, capitán del Titonk

Como parte de la seguridad del software s e llevan a cabo procesos de modeladc
y análisis. Inicialmente, los peligros se identifican y clasifican por importancia y ries-
go. Por ejemplo, algunos de los peligros asociados con un control basado en com-
putadora para la conducción de un automóvil pueden ser-,

• Provoca aceleración descontrolada que no se puede detener.

• No responde a la presión del pedal de f reno (al apagarlo).

• No responde cuando el interruptor se activa.

• Pierde o gana rapidez lentamente.

Una vez identificados estos peligros en el nivel del sistema, mediante técnicas de
análisis se asignan severidad y probabilidad de ocurrencia.7 Para ser eficaz, el soft-
ware debe analizarse en el contexto de todo el sistema. Por ejemplo, un sutil error
de entrada de usuario (las personas son componentes del sistema) tal vez lo magni-
fique una falla del software para producir datos de control que posicionan de mane-
ra inadecuada un dispositivo mecánico. Si se reúne un conjunto de condiciones am-

7 Este enfoque es similar a los métodos de análisis de riesgo descritos en el capítulo 25. La diferencia
principal es el énfasis en los contlictos tecnológicos, más que en los tópicos relacionados con el pro-
yecto.

TM

PDF Editor

CAPÍTULO 2 6 GESTIÓN DE LA CALIDAD 789

Jno colección d i o s o
de ensayos acei ta d e
i t S u r k W d e software
* puede encontrar en
www.safeware-
«g.com/.

bien ta les e x t e r n a s (y só lo si e l las s e reúnen) , la posic ión i n a d e c u a d a del disposi t ivo

m e c á n i c o p rovocará u n a falla desas t rosa . Las t écn icas de análisis , c o m o el anál is is
del árbol d e fal las [VES81), la lógica de t i empo real [JAN86] o los m o d e l o s de red d e

Petri [LEV87], s e e m p l e a n p a r a predec i r la c a d e n a de e v e n t o s q u e p u e d e n p rovoca r
pel igros y la probabi l idad de q u e c a d a u n o de los e v e n t o s ocurrirá para c rea r la ca -
d e n a .

Una vez ident i f icados y a n a l i z a d o s los pel igros, se espec i f ican los requis i tos rela-
c i o n a d o s con la segur idad del so f tware . Es to es , la especi f icac ión p u e d e c o n t e n e r
u n a lista d e e v e n t o s i ndeseab le s y las r e s p u e s t a s d e s e a b l e s del s i s t ema a n t e d ichos
even tos . En tonces se indica el pape l del s o f t w a r e en la ges t ión d e los e v e n t o s inde-
seab les .

Aunque la conf iabi l idad del s o f t w a r e y su segur idad es tán e s t r e c h a m e n t e relacio-
n a d a s , e s i m p o r t a n t e e n t e n d e r las sut i les d i fe renc ias en t r e ellas. La confiabi l idad del
s o f t w a r e utiliza anál is is es tad ís t ico para d e t e r m i n a r la probabi l idad d e q u e ocurr i rá
u n a falla del s o f t w a r e . Sin e m b a r g o , el h e c h o de que ocu r ra u n a falla n o necesa r i a -
m e n t e resul ta en un pel igro o pe rcance . La segur idad del s o f t w a r e e x a m i n a las for-
m a s e n las c u a l e s las fal las r e su l t an en cond ic iones q u e p u e d e n conduci r a un pe r -
cance . Esto es, las fallas n o s o n c o n s i d e r a d a s en el vacío, s ino que s e e v a l ú a n en el
con tex to de t o d o un s i s t ema b a s a d o en c o m p u t a d o r a y en su en to rno . Aquel los lec-

tores con m a y o r in te rés d e b e n remit i rse al libro de Leveson [LEV95] p a r a profundi -
za r en el t e m a .

DE C A L I D A D I S O 9 0 0 Q 8

K
CÚVVE

k 9000 describe lo
E se debe bocer pora
r Tmejable, pero no

¡ cómo se debe

Es posible definir un sistema de garantía de la calidad c o m o la es t ruc tura o rgan izac io -

nal, r e sponsab i l idades , p roced imien tos , p rocesos y r ecu r sos p a r a i m p l e m e n t a r la
ges t ión d e la ca l idad [ANS87]. Los s i s t e m a s d e ga ran t í a d e cal idad fueron c r e a d o s
para a y u d a r a las o r g a n i z a c i o n e s a ga ran t i za r q u e s u s p roduc to s y servicios sa t i s fa -
cen las expec ta t ivas de los c l ientes al cumpl i r s u s especi f icac iones . El e s t á n d a r ISO
9000 descr ibe un s i s t ema d e ga r an t í a d e la cal idad en t é r m i n o s genér i cos q u e s e apl i -
can a cua lqu ie r negoc io sin impor ta r los p roduc to s o servic ios ofrec idos .

El regis tro e n u n o d e los m o d e l o s de s i s t ema d e ga ran t í a de la calidad c o n t e n i d o s
e n ISO 9000 requ ie re q u e los s i s t e m a s y o p e r a c i o n e s de cal idad d e una c o m p a ñ í a los
s o m e t a n a escru t in io aud i to r e s d e una tercera ent idad respec to d e su c o n c o r d a n c i a
con el e s t á n d a r y d e su f u n c i o n a m i e n t o ef icaz . Antes del regis tro exi toso, los aud i -
tores le ex t i enden a la c o m p a ñ í a un cer t i f icado d e la o rgan izac ión d e regis tro que re -
p r e s e n t a n . Entrevis tas de audi tor ía s e m i a n u a l e s ga ran t i zan la concordanc ia conti-
nua con el e s t ándar .

8 Esta sección, escrita por Michael Stovsky se ha adaptado de "Fundamentáis of ISO 9000", un libro
de trabajo desarrollado por EssentialSor.-, ore un video curriculum elaborado por R. S.
Pressman & Associates, Inc. Reimpreso ccr. petir-iso

TM

PDF Editor

7 9 0 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

R e f e r e n c i a W e b

Extensos vínculos hocki
fecwsos ISO
9 0 0 0 / 9 0 0 1 se
pueden encaitroi en
www.tantara.ab.
ca/info.htm.

El e s t á n d a r d e ga ran t í a d e la cal idad q u e s e apl ica a la ingenier ía del s o f t w a r e es
el ISO 9001:2000. El e s t á n d a r c o n t i e n e 20 requis i tos q u e d e b e n e s t a r p r e s e n t e s par=
un s i s t ema ef ic iente d e ga ran t í a d e la cal idad. Pues to q u e el e s t á n d a r ISO 9001:200C
e s apl icable a t o d a s las d isc ipl inas d e ingenier ía , s e ha desa r ro l l ado un c o n j u n t o es-
pecia l de di rect r ices ISO (ISO 9000-3) q u e a y u d a n a in te rpre ta r el e s t á n d a r para em-

plear lo en el p r o c e s o d e so f tware .
Los requis i tos q u e de l inea ISO 9001:2000 a b o r d a n tóp icos c o m o responsabi l idac

d e la ges t ión , s i s t ema de cal idad, revisión d e con t ra to , cont ro l d e d i seño , control de
d o c u m e n t o s y da tos , ident if icación y s egu imien to de p roduc to , control de p roceso
inspecc ión y p ruebas , a c c i o n e s cor rec t ivas y prevent ivas , cont ro l d e reg is t ros de ca-

lidad, aud i to r ías de ca l idad in terna , e n t r e n a m i e n t o , servicio y t écn icas es tadís t icas
Una o rgan izac ión d e s o f t w a r e o b t e n d r á el regis t ro ISO 9001:2000 si e s t ab lece políti-
c a s y p roced imien tos p a r a a b o r d a r c a d a u n o d e los requis i tos a n o t a d o s l íneas arriba
(y otros) y, a d e m á s , se r c a p a z d e d e m o s t r a r q u e s e s iguen d ichas pol í t icas y procedí
mien tos . Para m a y o r in fo rmac ión acerca d e ISO 9001, el lector i n t e r e s a d o d e b e con-
sul tar [HOYQ2], [GAA01] O [CIA01].

INFORMACIÓN

a estándar ISO 9001:2000

Las siguientes líneas generales definen los ele-
mentos básicos del estándar ISO 9001:2000 .

Información más amplia acerca del estándar se puede ob-
tener de International Organization for Standardization
(w w w . i s o . c K) y e n o t r a s f u e n t e s d e I n t e r n e t (p o r e j e m p l o ,

w w w . p r a x i o m . c o m) .

Establecer los elementos de un sistema de gestión de cali-
dad.

Desarrollar, implementar y mejorar el sistema.

Definir una política que enfatice la importancia del siste-
ma.

Documentar el sistema de calidad.

Describir el proceso.

Producir un manual operativo.

Desarrollar métodos para controlar (actualizar) los docu-
mentos.

Establecer métodos pa ra la conservación de registros.

Soporte del control y la garant ía de calidad.

Promover la importancia d e la calidad entre todos los
participantes.

, Enfocarse en la satisfacción del cliente.

Definir un plan de calidad que aborde objetivos, respon-
sabilidades y autoridad.

Definir mecanismos de comunicación entre los partici-
pantes.

Establecer mecanismos de revisión para el sistema de ges-
tión de calidad.

Identificar métodos de revisión y mecanismos de retroali-
mentación.

Definir procedimientos de seguimiento.

Identificar recursos de calidad que incluyan personal,
entrenamiento, elementos de infraestructura.

Establecer mecanismos d e control.

Para planeación.

Para requisitos del cliente.

Para actividades técnicas (por ejemplo, análisis, diseño,
pruebas).

Para supervisión y gestión del proyecto.

Definir métodos para corrección.

Valorar los datos y métricas de calidad.

Definir enfoques para procesos continuos y mejora de la
calidad. ,

TM

PDF Editor

http://www.tantara.ab
http://www.iso.cK
http://www.praxiom.com

CAPÍTULO 26 GESTIÓN DE LA CALIDAD 791

2 6 . 9 E L P L A N DE S Q A

El plan de SQA p roporc iona un m a p a para instituir la ga ran t í a d e la ca l idad del sof t -
w a r e . Desar ro l lado por el g r u p o d e SQA (o el equ ipo d e s o f t w a r e si n o exis te un gru-

p o SQA), el p lan func iona c o m o plantilla para las ac t iv idades d e SQA q u e s e insti tu-
yan p a r a c a d a p royec to d e so f tware .

En el IEEE [IEE94] s e ha pub l i cado un e s t á n d a r p a r a p l a n e s d e SQA. El e s t á n d a r
r e c o m i e n d a u n a es t ruc tu ra q u e identifica: I) el p ropós i to y á m b i t o del plan; 2) una
descr ipc ión de t odos los p roduc to s d e t r a b a j o d e ingenier ía del s o f t w a r e (por e j e m -
plo, mode los , d o c u m e n t o s , cód igo fuente) q u e c a e n d e n t r o del a l cance del SQA; 3)
t o d o s los e s t á n d a r e s y p rác t i cas apl icables q u e s e a p r o v e c h a n d u r a n t e el p r o c e s o d e
so f twa re ; 4) a c c i o n e s y t a r e a s d e SQA (incluso rev i s iones y audi tor ías) y su ubicac ión

a t r avés del p r o c e s o de so f twa re ; 5) las h e r r a m i e n t a s y m é t o d o s q u e s o p o r t a n las ac -
c iones y t a r ea s d e SQA; 6) p r o c e d i m i e n t o s d e ges t ión d e conf igurac ión d e s o f t w a r e
(capítulo 27) p a r a ges t iona r el cambio ; 7) m é t o d o s p a r a e n s a m b l a r , s a lvagua r da r y
m a n t e n e r t o d o s los regis t ros r e l ac ionados con el SQA; y 8) p a p e l e s y responsabi l ida-
d e s en la o rgan izac ión re la t ivas a la cal idad de produc to .

fí HERRAMIENTAS DE SOFTWARE

Gestión de la calidad del software
O b j e t i v o : El objetivo d e las herramientas de
SQA es auxiliar al equipo d e proyecto pa ra va-

lorar y mejorar la cal idad del producto d e t r aba jo d e soft-
ware.

M e c á n i c a : La mecánica d e las herramientas varía. En
general, la finalidad es valorar la cal idad d e un producto
de t raba jo específico. Nota; con frecuencia, dentro d e la
categoría d e herramientas d e SQA, se incluye una amplia
variedad de herramientas d e prueba d e software (capítulos
13 y 14).

Herramientas representativas9

ARM, desarrollado por la NASA (satc.gsfc.nasa.gov/tool-
s/index.html), ofrece medidas con las cuales se evalúa
la cal idad d e un documento d e requisitos d e software.

QPR ProcessGuide and Scorecard, desarrol lada por QPR
Software (www.qpronline.com), ofrece soporte p a r a
seis sigma y otros enfoques d e gestión d e cal idad.

Quality Tools Cookbook, desarrol lado por Sytsma and
Manley (www.sytsma .com/tqmtools/tqmtoolme-
nu.html), proporciona descripciones útiles d e herra-
mientas clásicas de gestión d e cal idad tales como los
d i ag ramas d e control, d i ag ramas de dispersión, dia-
g ramas d e af inidad y d i a g r a m a s d e matriz.

Quality Tools and Templóles, desarrol ladas por iSixSigma
(ht tp: / /www.isixsigma.com/tt /) , describe una amplia
var iedad d e herramientas y métodos útiles pa ra gestión
d e cal idad.

TQM Tools, desarrollado por Bain & Company (www.bain.
com), brinda descripciones útiles d e una var iedad d e
herramientas d e gestión usadas por TQM y relaciona-
das con los métodos d e gestión d e calidad.

V

9 Las herramientas expuestas sólo representa- _na rruestra de esta categoría. En la mayoría de los
casos los nombres de las mismas sor. marcas registradas por sus respectivos desarroliadores.

TM

PDF Editor

http://www.qpronline.com
http://www.sytsma
http://www.isixsigma.com/tt/
http://www.bain

792 P A R T E C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

Pl».

La ges t ión de la cal idad del s o f t w a r e e s una actividad p ro tec to ra o d e s o m
— q u e incorpora t a n t o cont ro l c o m o a s e g u r a m i e n t o d e la cal idad— q u e s e aplica a
c a d a p a s o en el p r o c e s o del so f tware . La SQA a b a r c a p roced imien tos p a r a la aplica-
ción ef icaz d e m é t o d o s y h e r r a m i e n t a s , r ev i s iones t écn icas formales , e s t ra teg ias
t écn icas d e p ruebas , p r o c e d i m i e n t o s p a r a cont ro l del cambio , p r o c e d i m i e n t o s para
ga ran t i za r la c o n c o r d a n c i a con los e s t á n d a r e s y m e c a n i s m o s de medic ión y r epone

La SQA la compl ica la n a t u r a l e z a comple ja d e la ca l idad del so f tware , un a t r ib t
t o d e los p r o g r a m a s d e c o m p u t a d o r a que s e de f ine c o m o "concordanc ia con les
requis i tos e spec i f i cados explícita e impl íc i tamente" . Pero c u a n d o s e cons ide ra ce
m a n e r a m á s genera l , la cal idad d e s o f t w a r e a b a r c a m u c h o s p roduc to s di ferentes ,
f ac to res de p roceso y mét r i cas re lac ionadas .

Las revis iones de s o f t w a r e son u n a de las ac t iv idades d e control d e cal idad m á s
impor tan tes . Las rev i s iones sirven c o m o filtros a t r avés d e t o d a s las ac t iv idades ce
ingenier ía del so f tware , q u e e l iminan los e r ro res m i e n t r a s son r e l a t ivamen te p o c :
c o s t o s o s d e e n c o n t r a r y corregir . La revisión técnica formal e s u n a jun ta q u e ha de-
m o s t r a d o ser e x t r e m a d a m e n t e e f i caz p a r a descubr i r e r rores .

La act ividad a d e c u a d a para ga ran t i za r la ca l idad del s o f t w a r e requiere recopilar
eva luar y distribuir los da to s ace rca de los p r o c e s o s de ingenier ía del so f tware . La
SQA estadís t ica ayuda a m e j o r a r la ca l idad del p roduc to y el p r o c e s o d e s o f t w a r e e r

sí m i smo . Los m o d e l o s d e fiabilidad del s o f t w a r e ex t i enden m e d i d a s , lo q u e permi te
recopi lar da to s d e de fec to para ex t rapo la r los en las t a s a s d e falla p r o y e c t a d a s y las
p red icc iones d e fiabilidad.

En r e s u m e n , r e c u é r d e n s e las p a l a b r a s de Dunn y Ullman [DUN82]: "El a segura -

m i e n t o de la cal idad del s o f t w a r e e s el m a p e o (correlación) d e los p r ecep to s geren-
cia les y las discipl inas d e d i s e ñ o d e la ga ran t í a d e cal idad en el e spac io gerencia l y

tecnológico apl icable d e la ingenier ía del so f tware" . La habil idad para ga ran t i za r la
cal idad e s la med ida de u n a disciplina d e ingenier ía m a d u r a . C u a n d o el m a p e o se lo-
gra de m a n e r a exi tosa , el r e su l t ado e s la ingenier ía d e s o f t w a r e m a d u r a .

[ALV64] Alvin, W. H., von (ed.), Reliability Engineering, Prentice-Hall, 1964.
[ANS87] ANSI/ASQC A3-1987, Quality Systems Terminology, 1987.
[ART92] Arthur, L. J., Improving Software Quality: an Insider's Guide to TQM, Wiley, 1992.
|ART97] Arthur, L. J., "Quantum Improvements in Software System Quality, en CACM, vol. 40,

núm. 6, junio de 1997, pp. 47-52.
[BOE81] Boehm, B„ Software Engineering Economics, Prentice-Hall, 1981.
[C1A01] Cianfrani, C. A. el al., ISO 9001:2000 Explained, 2a. ed., American Society for Quality,

2 0 0 1 .

[CR0791 Crosby, P„ Quality Is Free, McGraw-Hill, 1979.
|DEM86] Deming, W. E., Oul of the Crisis, MIT Press, 1986.
[DEM99] DeMarco, T., "Management Can make Quality (im)possible", Cutter IT Summit, Boston,

abril de 1999.

TM

PDF Editor

C A P Í T U L O 2 6 GESTIÓN DE LA CALIDAD 793

[DIJ76] Dijkstra, E., A Discipline of Progromming, Prentice-Hall, 1976.
[DUN82] Dunn, R., y R. Ullman, Quality Assurancefor Computer Software, McGraw-Hill, 1982.
[FRE901 Freedman, D. P. y G, M. Weinberg, Handbook o/Walkthroughs, Inspections and Technical

Reviews, 3a. ed., Dorset House, 1990.
[GAAO1] Gaal, A., ISO 9001:2000for Small Business, Saint Lucie Press, 2001.
(G1L93] Gilb, T., y D. Graham, Software Inspections, Addison-Wesley, 1993.
[GLA98] Glass, R , "Defining Quality Intuitively", en IEEE Software, mayo de 1998,pp. 103-104,107.
[GOH02] Goh, T., V. Kuralmani y M. Xie, Statistical Models and Control Chartsfor High Quality Pro

cesses, Kluwer Academic Publishers, 2002.
[HOY02] Hoyle, D„ ISO 9000 Quality Systems Development Handbook: A Systems Engineering Ap-

proach, 4a. ed., Butterworth-Heinemann, 2002.
[IBM81] "Implementing Software Inspections", notas de curso, IBM Systems Sciences Institute,

IBM Corporation, 1981.
[1EE94] Software Engineering Standards, 1994, IEEE Computer Society, 1994.
[ISI03] iSixSigma, LLC, "New to Six Sigma: A Guide for Both Novice and Experienced Quality

Practitioners", 2003, disponible en http://www.isixsigma.com/library/content/six-sigma-
newbie.asp.

[)AN86] Jahanian, F. y A. K. Mok, "Safety Analysis of Timing Properties of Real-Time Systems",
en IEEE TTans. Software Engineering, vol. SE-12, núm. 9, septiembre de 1986, pp. 890-904.

[JON86] Jones, T. C., Programming Productivity, McGraw-Hill, 1986.
[KAN95] Kan, S. H., Metrics and Models in Software Quality Engineering, Addison-Wesley, 1995.
[LEV86] Leveson, N. G„ "Software Safety: Why, What, and How", en ACM Computing Surveys, vol.

18, núm. 2, junio de 1986, pp. 125-163.
[LEV87] Leveson, N. G. y). L. Stolzy, "Safety Analysis Using Petri Neis", en IEEE TTans. Software

Engineering, vo\. SE-13, núm. 3, marzo de \987, pp. 386-397.
(LEV95) Leveson, N. G., Safeware: System Safety and Computéis, Addison-Wesley, 1995.
[LIN79I Linger, R., H. Mills y B. Witt, Structured Programming, Addison-Wesley, 1979.
ILIT89] Littlewood, B„ "Forecasting Software Reliability", en Software Reliability: Modeling and

Identification (S. Bittanti, ed.), Springer-Verlag, 1989, pp 141-209.
[MUS871 Musa, J. D., A. lannino y K. Okumoto, Engineering and Managing Software with Rcliahi

lity Measures, McGraw-Hill, 1987.
[PAN00] Nande, P. et al, The Six Sigma Way, McGraw-Hill, 2000.
[POR95] Porter, A., H. Siy, C. A. Toman y L. G. Votta, "An Experiment to Assess the Cost-Bene-

fits of Code Inspections in Large Scale Software Development", en Proc. ThirdACM SIG-SOFT
Symposium on the Foundations of Software Engineering, Washington, D.C., octubre de 1995,
ACM Press, pp. 92-103.

[R0090] Rook, Software Reliability Handbook, Elsevier, 1990.
[SCH98] Schulmeyer, G. C. y J. I. McManus (eds.), Handbook of Software Quality Assurance, 3a.

ed., Prentice-Hall, 1998.
[SOMOl] Somerville, I., Software Engineering, 6a. ed., Addison-Wesley, 2001.
[SNE03] Snee, R. y R. Hoerl, Leading Six Sigma, Prentice-Hall, 2003.
[THE01] Thelin, T., H. Petersson y C. Wohlin, "Sample Driven Inspections", en Proceedings Works

hop on Inspection in Software Engineering (WISE'01), París, Francia, julio de 2001, pp. 81-91,
se puede descargar de http://www.cas.mcmaster.ca/wise/wiseOI/thelinPetersson-Woh-
lin.pdf.

[VES811 Veseley, W. E. et al., Fault Tree Handbook, U.S. Nuclear Regulatory Commission, NUREG-
0492, enero de 1981.

2 6 . 1 . En las primeras páginas de este capitulo se anotó que "el control de la variación es el co-
razón del control de calidad". Dado que cualquier programa que se crea es diferente de todos
los otros programas, ¿cuáles son las variaciones que se buscan y cómo se les controla?

2 6 . 2 . ¿Es posible valorar la calidad del sortv. are si el cliente cambia con frecuencia lo que se
supone debe hacer?

TM

PDF Editor

http://www.isixsigma.com/library/content/six-sigma-
http://www.cas.mcmaster.ca/wise/wiseOI/thelinPetersson-Woh-

794 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

26.3 . La calidad y la fiabilidad son conceptos relacionados pero fundamentalmente diferente
en varias formas. Coméntense.

26 .4 . ¿Puede un programa ser correcto y aún así no ser fiable? Expliqúese.

26 .5 . ¿Puede un programa ser correcto y aún así no mostrar buena calidad? Expliqúese.

26 .6 . ¿Por qué con frecuencia existe tensión entre un grupo de ingeniería de software y un gr_-
po independiente de aseguramiento de la calidad del software? ¿Esto es saludable?

26 .7 . A usted le han dado la responsabilidad de mejorar la calidad del software por medio ce
su organización. ¿Qué es lo primero que debe hacer? ¿Qué sería lo siguiente?

26 .8 . Además de contar errores y defectos, ¿existen otras características contables del softwa-
re que impliquen calidad? ¿Cuáles son y cómo se pueden medir directamente?

26.9 . Una revisión técnica formal sólo es eficaz si todos se han preparado por anticipado. ¿Ce-
rno reconoce en la revisión a un participante que no está preparado? ¿Qué hace si usted es e
jefe de revisión?

26 .10 . Algunas personas argumentan que una RTF debe valorar el estilo de programación, as
como la corrección. ¿Ésta es una buena idea? ¿Por qué?

26 .11 . Revise la tabla presentada en la figura 26.5 y seleccione cuatro causas vitales de ene-
res serios y moderados. Sugiera acciones correctivas empleando la información presentada en
otros capítulos.

26 .12 . Investigue la bibliografía acerca de la fiabilidad del software y escriba un ensayo que
describa un modelo de fiabilidad de software. Asegúrese de proporcionar un ejemplo.

26 .13 . El concepto de TMEF para software está abierto a críticas. ¿Puede pensaren algunas ra-
zones de por qué sucede así?

26 .14 . Considere dos sistemas críticos de seguridad que se controlan mediante computadoras
Haga una lista con al menos tres peligros para cada uno que puedan estar ligados directamen-
te con las fallas de software.

26 .15 . Adquiera una copia de ISO 9001:2000 e ISO 9000-3. Prepare una presentación que exa-
mine tres requisitos ISO 9001 y cómo se aplican en un contexto de software.

O T P A S l - E C T t l P A S Y P U E W T B S D E l N P O B M A C l 6 »

Los libros de Moriguchi (Software Excellence: A Total Quality Management Cuide, Productivity
Press, 1997) y Horch (Practicai Guide to Software Quality Management, Artech Publishing, 1996)
son excelentes presentaciones, en el ámbito gerencial, de los beneficios de los programas for-
males de aseguramiento de la calidad del software de computadora. Los libros de Deming
[DEM861, Juran (Juran on Quality by Design, Free Press, 1992) y Crosby ([CR079] y Quality Is Stili
Free, McGraw-Hill, 1995) no se enfocan en el software, pero son una lectura obligada para los
gestores ejecutivos con responsabilidad en el desarrollo de software. Gluckman y Roome (Every-
day Heroes of the Quality Movement, Dorset House, 1993) humanizan los temas de calidad al con-
tar la historia de los actores en el proceso de calidad. Kan (Metrics and Models in Software Qua-
lity Engineering, Addison-Wesley, 1995) presenta una visión cuantitativa de la calidad del soft-
ware.

Cianfani y sus colegas (ISO 9001:2000 Explained, segunda edición, American Society for Qua-
lity, 2001) y Gaal (/SO 9001.2000for Small Business: Implementing Process-Approach Quality Ma-
nagement, St. Lucie Press, 2001) estudian el estándar de calidad ISO 9001:2000. Tingley (Com-
paring ISO 9000, Malcolm Baldrige, and the SEI CMM for Software, Prentice-Hall, 1996) ofrecen
una guía útil para las organizaciones que luchan por mejorar sus procesos de gestión de cali-
dad.

Los libros de George (Lean Six Sigma, McGraw-Hill, 2002), Pande y sus colegas (The Six Sig-
ma Way Fieldbook, McGraw-Hill, 2001) y Pyzdek (The Six Sigma Handbook, McGraw-Hill, 2000)

TM

PDF Editor

C A P Í T U L O 2 6 GESTIÓN DE LA CALIDAD 795

describen seis sigma, una técnica estadística de gestión de calidad que conduce a productos que
tienen muy bajas tasas de defectos.

Radice {High Quality, Low Cost Software Inspections, Paradoxicon Publishers, 2002), Wiegers
(Peer Reviews in Software: A Practical Cuide, Addison-Wesley, 2001), Gilb y Graham (Software Ins-
pection, Addison-Wesley, 1993) y Freedman y Weinberg (Handbook o/Walkthroughs, Inspections
and Technical Reviews, Dorset House, 1990) ofrecen directrices valiosas para llevar a cabo revi-
siones técnicas formales efectivas.

Musa (Software Reliability Engineering: More Reliable Software, Faster Developmenl and Testing,
McGraw-Hill, 1998) ha escrito una guía práctica para técnicas de fiabilidad de software aplica-
do. Kapur el al. (Contributions to Hardware and Software Reliability Modeling, World Scientific Pu-
blishing Co., 1999), Gritzalis (Reliability; Quality and Safely of Software-lntensive Systems, Kluwer
Academic Publishers, 1997) y Lyu (Handbook of Software Reliability Engineering, McGraw-Hill,
1996) han editado antologías de importantes ensayos acerca de la fiabilidad del software.

Hermann (Software Safety and Reliability, Wiley-IEEE Press, 2000), Storey (Safety-Critical Com-
puter Systems, Addison-Wesley, 1996) y Leveson [LEV95] continúan siendo los estudios más de-
tallados de la seguridad del software publicados a la fecha. Además, van der Meulen (Deftnitions
for Hardware and Software Safety Engineers, Springer-Verlag, 2000) ofrece un compendio com-
pleto de importantes conceptos y términos de fiabilidad y seguridad. Gartner (Testing Safety-Re-
lated Software, Springer-Verlag, 1999) ofrece una guía especializada para probar sistemas cru-
ciales de seguridad. Friedman y Voas (Software Assessment: Reliability Safety and Testability, Wi-
ley, 1995) ofrecen modelos útiles para valorar la fiabilidad y la seguridad.

En Internet hay disponible una amplia variedad de fuentes de información acerca de la ges-
tión de calidad de software. Una lista actualizada de referencias en la World Wide Web se pue-
de encontrar en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O
A

G E S T I Ó N
DEL C A M B I O

C O N C E P T O S
C L A V E

¡ 8 1 3

7 9 7

control
d e lo versión . . 8 2 2

control
del cambio 8 1 0

depósi to 8 0 3

tCS 8 0 1

e s t á n d a r e s 8 2 4

GCWebApp . . . 8 1 4

gest ión
del contenido . . 8 1 7

identificación . . 8 0 7

d e e s t ado 8 1 4

(mea» b a s e 8 0 0

objetos d e
configuración . . 8 0 7

pro toso de CCS . 8 0 6

SVC 8 0 9

El c a m b i o e s inevi table c u a n d o s e cons t ruye s o f t w a r e d e c o m p u t a d o r a . Y _ ¡
c a m b i o a u m e n t a el g r a do d e confus ión en t r e los ingen ie ros d e s o f t w a r e que
t r a b a j a n en un proyec to . La c o n f u s i ó n su rge c u a n d o los c a m b i o s n o s e ana

lizan a n t e s de rea l izar los , n o s e regis t ran a n t e s d e implementa r los , n o se repor-
tan a q u i e n e s d e b e n sabe r lo o n o s e con t ro l an en u n a fo rma q u e m e j o r a r á ¡a
ca l idad y reducirá el error . Babich [BÁB86J a b o r d a e s to c u a n d o a f i rma:

El arte de coordinar el desarrollo de software para minimizar... la confusión se llama
gestión de la configuración. La gestión de la configuración es el arte de identificar, or-
ganizar y controlar modificaciones al software que se construye por medio de un
equipo de programación. La meta es maximizar la productividad al minimizar las
equivocaciones.

La ges t ión del cambio , m á s u s u a l m e n t e l l amada gestión de la configuración de
software (GCS o GC), e s u n a act ividad p ro tec to ra (sombrilla) q u e s e aplica a lo
la rgo del p r o c e s o d e so f tware . Pues to q u e el c a m b i o p u e d e ocurrir en cualquier
m o m e n t o , las ac t iv idades d e GCS se desar ro l lan p a r a 1) identif icar el cambio , 2
con t ro la r el cambio , 3) ga ran t i za r q u e el c a m b i o s e i rnp lementa rá de m a n e r a
a d e c u a d a , y 4) repor tar los c a m b i o s a o t ros q u e pud ie ran e s t a r in t e resados .

Es i m p o r t a n t e dist inguir con claridad en t r e sopor t e d e s o f t w a r e y ges t ión de
la conf igurac ión del so f tware . El s o p o r t e e s un c o n j u n t o d e ac t iv idades d e inge-
niería del s o f t w a r e q u e ocu r r en d e s p u é s d e q u e és te s e h a e n t r e g a d o al c l iente y
fue p u e s t o en ope rac ión . La ges t ión d e la conf igurac ión del s o f t w a r e e s un con-
jun to d e ac t iv idades d e s e g u i m i e n t o y cont ro l q u e s e inician c u a n d o c o m i e n z a
u n p royec to d e ingenier ía del s o f t w a r e y t e r m i n a n só lo c u a n d o és te s e retira de
operac ión .

¿ Q u é e s ? Cuando se construye
software d e computadora los cam-
bios ocurren. Y puesto que ocurren,
es necesario gestionarlos con efica-
cia. La gestión del cambio, también

llamada gestión de la configuración del softwa-
re (GCS), es un conjunto d e actividades diseña-
das para gestionar el cambio al identificar los
productos de trabajo que probablemente cam-
bien, establecer relaciones entre ellos, definir
mecanismos para gestionar diferentes versiones

d e estos productos de trabajo, controlar los
cambios impuestos y auditor e informar los cam-
bios realizados. '7;

¿ Q u i é n l o h a c e ? Todos los involucrados en el
proceso de software están involucrados con la
gestión del cambio en alguna medida, pero en
ocasiones se crean posiciones de soporte espe-
cializado para gestionar el proceso d e GCS.

¿ P o r q u é e s i m p o r t a n t e ? Si no se controla el
cambio, él toma el control. Y eso nunca es
bueno. Es muy fácil que una corriente de cam-

TM

PDF Editor

CAPÍTULO 2 7 GESTIÓN DEL CAMBIO 797

bios incontrolados convierta en caótico un pro-
yecto de software bien ¡mplementado. Por esta
razón, ia gestión del cambio es una parte esen-
cial de la buena gestión del proyecto y d e una
sólida práctica de ingeniería de software.

¿ C u á l e s s o n l o s p a s o s ? Puesto que muchos
productos de trabajo se producen cuando se
construye el software, cada uno debe identificar-
se en forma individual. Una vez hecho esto se
establecen los mecanismos d e control d e versión
y cambio. El proceso se audita p a r a garantizar
que ia calidad se conserva conforme e¡ cambio
se realiza y que quienes tienen necesidad d e
conocerlo reciben información acerca de los
cambios mediante los informes respectivos.

¿Cuál e s el p r o d u c t o o b t e n i d o ? Un plan de
gestión de la configuración del software define
la estrategia del proyecto para la gestión del
cambio. Además, cuando se pide una GCS far-
mal, el procesó de control'del cambio producé
solicitudes d e cambio d e software, informes y
peticiones d e cambio de ingeniería.

¿ C ó m o p u e d o e s t a r s e g u r o d e q u e l o h e
h e c h o c o r r e c t a m e n t e ? Guando cualquier
producto d e trabajo puede explicarse, seguirse y
controlarse; cuando los cambios puede seguirse
y analizarse; cuando todos los que necesitan
saber acerca de un cambio han sido informa-
dos, el t rabajo se ha hecho bien.

Una m e t a pr imordia l de la ingenier ía del s o f t w a r e e s m e j o r a r la facilidad con la
q u e los c a m b i o s s e p u e d e n a c o m o d a r y reducir el e s f u e r z o c u a n d o los c a m b i o s se
d e b e n real izar . En e s t e capí tu lo s e es tud ian las acc iones espec í f icas q u e pe rmi t en
g e s t i o n a r el cambio .

2 7 . 1 G E S T I Ó N P E L A C O N F I G U R A C I Ó N B E L S O F T W A R E

La sal ida del p r o c e s o d e s o f t w a r e e s in fo rmac ión q u e s e p u e d e dividir en t res a m p l i a s
ca tegor ías : 1) p r o g r a m a s de c o m p u t a d o r a (tanto al nivel de f u e n t e c o m o de f o r m a s
e jecutables) ; 2) p roduc to s de t r aba jo q u e desc r iben los p r o g r a m a s d e c o m p u t a d o r a
(dirigidos t an to a p ro fes iona le s t écn icos c o m o a usuar ios) , y 3) da to s (in ternos o
e x t e r n o s al p rograma) . Los e l e m e n t o s q u e c o m p r e n d e n la in fo rmac ión p roduc ida

c o m o p a r t e del p r o c e s o d e s o f t w a r e s e d e n o m i n a n co l ec t ivamen te configuración del
software.

Si c a d a e l e m e n t o d e conf igurac ión s i m p l e m e n t e c o n d u j e r a a o t ro s e l e m e n t o s
habr ía p o c a confus ión . Por desgrac ia , o t ra var iable en t ra e n el p roceso : el cambio.
Éste p u e d e ocurrir en cua lqu ie r m o m e n t o , po r cua lqu ie r r azón . De hecho , la p r ime-
ra ley d e la ingenier ía d e s i s t e m a s [BER801 af i rma: "No impor ta d ó n d e s e e n c u e n t r e

en el ciclo de vida del s i s tema, el s i s t ema c a m b i a r á y el d e s e o d e cambia r lo pers is t i -
rá a lo largo d e todo el ciclo d e vida".

"No hoy nada permanente, excepto el cambio."

Herádi to , 5 0 0 a . C

¿Cuál e s el o r igen d e e s t o s c a m b i o s ' La r e spues t a e s tan var iada c o m o los c a m -
b ios m i s m o s . Sin e m b a r g o , exis ten c u a t r o f u e n t e s f u n d a m e n t a l e s de cambio :

TM

PDF Editor

798 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

A ¿Cuál es el
W origen de los
cambios que se
requieren pa ra el
s o f t w a r e ?

•
¿Cuáles son
las metas y

las actividades
real izadas por
cada uno de los
participantes
involucrados en la
gestión del cam-
bio?

• Nuevas cond ic iones en el negoc io o m e r c a d o d ic tan los c a m b i o s e n los r e q u - ¡
s i tos del p r o d u c t o o las reg las del negoc io .

• Nuevas n e c e s i d a d e s del c l iente d e m a n d a n la modif icac ión d e los d a t o s que
p r o d u c e n los s i s t e m a s d e in formación , d e la func iona l idad q u e e n t r e g a n los
p r o d u c t o s o los servic ios q u e en t r ega un s i s t ema b a s a d o e n c o m p u t a d o r a .

• La r eo rgan izac ión o el c r ec imien to o reducc ión del negoc io p rovocan cambi os
en las pr ior idades del p royec to o e n la e s t ruc tu ra del e q u i p o d e ingenier ía de!
so f tware .

• Restr icciones p r e s u p u é s t a l e s o d e ca lendar izac ión inducen u n a redefinición
del s i s t ema o p roduc to .

La ges t ión de la conf igurac ión del s o f t w a r e e s un c o n j u n t o d e ac t iv idades q u e s e h a -

desa r ro l l ado para ges t iona r el c a m b i o a lo largo del ciclo d e vida del s o f t w a r e ce
c o m p u t a d o r a . La GCS se cons ide ra c o m o una act ividad d e a s e g u r a m i e n t o d e la ca.
dad del s o f t w a r e q u e s e apl ica a lo la rgo del p r o c e s o respect ivo. En las s e c c i o n e ;
s igu ien tes s e e x a m i n a n las pr incipales t a r e a s d e la GCS y c o n c e p t o s i m p o r t a n t e s que
a y u d a n a ges t iona r el cambio .

27.1.1 Un escenario de GCS1

Un típico e s c e n a r i o opera t ivo d e GCS involucra un ges tor de p royec to a c a rgo d e un
g r u p o d e so f twa re ; un ges to r de conf igurac ión a c a r g o d e los p r o c e d i m i e n t o s y poli-
t icas de GC; los ingen ie ros de s o f t w a r e r e s p o n s a b l e s del desar ro l lo y m a n t e n i m i e r
t o del p roduc to d e so f tware , y el c l iente q u e e m p l e a el p roduc to . En el e s c e n a n :
s u p ó n g a s e q u e el p r o d u c t o e s p e q u e ñ o e involucra ce rca d e 15 000 l íneas d e códigc

q u e desar ro l l a rá un e q u i p o de se is p e r s o n a s . (Nótese q u e son pos ib les o t ro s e scena -
rios d e equ ipos m e n o r e s o mayores , pero , e n e senc ia , exis ten confl ic tos genér icos
q u e c a d a u n o d e e s to s proyec tos e n f r e n t a en re lación con la GC.)

En el á m b i t o ope ra t i vo el e s cena r io involucra d iversos p a p e l e s y t a reas . La me t¿
del ges tor del p royec to e s ga ran t i za r q u e el p r o d u c t o s e e n t r e g u e d e n t r o d e c ienc
per iodo. En consecuenc i a , el ges to r supervisa el p rog re so del desarro l lo y reconoce
y r eacc iona a n t e los p rob lemas . Esto s e h a c e al g e n e r a r y ana l i za r los in fo rmes acer-
ca del e s t a d o del s i s t ema d e s o f t w a r e y al real izar revis iones en el s i s t ema .

Las m e t a s del ges to r d e conf igurac ión son ga ran t i za r q u e s e s iguen los procedi-

m i e n t o s y polí t icas p a r a crear , c amb ia r y p o n e r a p r u e b a el código , así c o m o posibi-
litar el a c c e s o a la in formación ace rca del proyecto . La imp lemen tac ión d e técnicas
p a r a m a n t e n e r el con t ro l s o b r e los c a m b i o s d e cód igo requ ie re q u e es te ges to r intro-
d u z c a m e c a n i s m o s p a r a sol ici tar o f ic ia lmente c a m b i o s , eva lua r los (med ian te una
jun ta d e cont ro l d e cambios , q u e e s la r e s p o n s a b l e d e a p r o b a r los c a m b i o s al s iste-

I Esta sección procede de [DAROII. El permiso especial para reproducir "Spectrum of Functionality ir.
CM Systems" de Susan Dart [DAROI], © 2001 por Carnegie Mellon University, lo otorgó el Software
Engineering Institute.

TM

PDF Editor

CAPÍTULO 27 GESTIÓN DEL CAMBIO 799

kVE
• un
¡poro

rque los
s amultóneos al

: imponente

m a d e so f tware) y au tor izar los . El ges tor c r e a y dis t r ibuye las l i s tas d e t a r e a s p a r a los
ingen ie ros y b á s i c a m e n t e c rea el con tex to del proyecto . Además , el ges to r recopila

e s tad í s t i cas a c e r c a d e c o m p o n e n t e s en el s i s t ema d e s o f t w a r e , po r e jemplo : la infor-
mac ión q u e d e t e r m i n a c u á l e s c o m p o n e n t e s son p r ob l emá t i cos e n el s i s t ema .

La m e t a de los ingen ie ros d e s o f t w a r e e s t r aba ja r con ef ic iencia . Esto signif ica q u e
n o interf ieren d e m a n e r a innecesa r i a u n o s con o t ros en la c reac ión y p rueba del
cód igo ni en la p roducc ión d e los d o c u m e n t o s d e sopor te . No o b s t a n t e , al m i s m o
t iempo, in ten tan c o m u n i c a r s e y c o o r d i n a r s e d e m a n e r a ef ic iente . Espec í f icamente ,
los ingen ie ros ut i l izan h e r r a m i e n t a s q u e ayudan a cons t ru i r un p roduc to d e s o f t w a -
re cons i s t en te . Ellos s e c o m u n i c a n y c o o r d i n a n al not i f icarse m u t u a m e n t e las t a r ea s
q u e se requ ie ren y las t a r ea s cumpl idas . Los c a m b i o s s e p r o p a g a n por m e d i o del tra-
ba jo d e c a d a u n o m e d i a n t e a rch ivos fus ionados . Existen m e c a n i s m o s p a r a a segu ra r

que, r e spec to d e los c o m p o n e n t e s q u e e x p e r i m e n t a n c a m b i o s s imu l t áneos , exis te
a lguna fo rma d e resolver los conf l ic tos y fu s iona r los c amb ios . La historia d e la evo -
lución d e t odos los c o m p o n e n t e s del s i s t ema s e m a n t i e n e jun to con un regis tro d e
las r a z o n e s d e los c a m b i o s y o t ro d e lo q u e c a m b i ó e n real idad. Los ingen ie ros tie-

n e n su p r o p i o e s p a c i o d e t r a b a j o p a r a crear , cambiar , p roba r e integrar código. En
c ier to pun to , el código s e convier te en una l ínea b a s e a partir d e la q u e con t inúa el
desar ro l lo pos te r ior y de sde la q u e s e real izan las va r i an tes p a r a o t r a s m á q u i n a s q u e

t a m b i é n s e a n el objet ivo.
El cl iente emplea el producto. Dado q u e el p roduc to lo controla la GC, el cliente s igue

procedimientos formales para solicitar cambios e indicar los bugs en el producto.
Idea lmente , un s i s t ema d e GC ut i l izado en es te e s c e n a r i o apoyar ía t odas e s t a s

f u n c i o n e s y t a reas ; e s t o es , las f u n c i o n e s d e t e r m i n a n la func iona l idad requer ida de
un s i s t ema d e GC. El ges tor del proyecto ve una GC c o m o un m e c a n i s m o d e auditoría;
el ges to r d e conf igurac ión , c o m o un m e c a n i s m o d e c reac ión de control , segu imien-

t o y polí t icas; el ingeniero d e so f tware , c o m o un m e c a n i s m o d e cont ro l del cambio ,
la cons t rucc ión y el acceso ; y el usuar io , c o m o un m e c a n i s m o d e garant ía d e la cali-

dad.

27.1.2 Elementos de un sistema de gestión de la configuración
En su de ta l l ado ar t ículo ace rca d e la ges t ión d e la conf igurac ión del so f tware , Susan

Dart [DAR01] identif ica c u a t r o impor t an t e s e l e m e n t o s q u e d e b e n es ta r p r e s e n t e s
c u a n d o s e desar ro l la un s i s t ema de ges t ión d e la conf igurac ión :

• Elementos de componentes: c o n j u n t o d e h e r r a m i e n t a s a c o p l a d a s d e n t r o de un
s i s t ema d e ges t ión de a rch ivos por e jemplo , u n a b a s e de datos) q u e pe rmi t en

el a c c e s o y la ges t ión d e c a d a e l e m e n t o d e conf igurac ión del s o f t w a r e .

• Elementos de proceso: se r ie d e p roce c imien to s y t a r e a s q u e d e f i n e n un
e n f o q u e e f icaz con el cual ges t iona r el c a m b i o (y ac t iv idades re lac ionadas)
p a r a t odos los par t ic ipantes e r .a ges t ión ingenier ía y ut i l ización del s o f t w a r e

d e c o m p u t a d o r a .

TM

PDF Editor

800 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

(C O N S U O £ .

La mayoría de los
cambios de software
están justificados, asi
que no hay razón
para quejarse acerco
de ellos. Más bien, es
necesario asegurarse
de que se tienen los
mecanismos apro-
piados pora mane-
jarlos.

O CLAVE
Un producto de trobojo
de ingeniería del
software se convierte
en lineo bose sólo
Después de que se ha
•?«sado y aprobado.

• Elementos de construcción: c o n j u n t o d e h e r r a m i e n t a s q u e a u t o m a t i z a n la
cons t rucc ión del s o f t w a r e al a s e g u r a r q u e s e ha e n s a m b l a d o un c o n j u n t o
a d e c u a d o d e c o m p o n e n t e s va l idados (es decir: la ve r s ión correcta) .

• Elementos humanos: la i m p l e m e n t a c i ó n d e u n a GCS e f icaz requiere q u e el
equ ipo d e s o f t w a r e utilice u n c o n j u n t o d e h e r r a m i e n t a s y ca rac te r í s t i cas de
p r o c e s o s (que a b a r c a n o t ros e l e m e n t o s d e GC).

Estos e l e m e n t o s (que s e e s tud i a r án con m á s detal le en s ecc iones venideras) n o s o r
m u t u a m e n t e exc luyentes . Por e jemplo , los e l e m e n t o s d e c o m p o n e n t e s t r a b a j a n en

c o n j u n t o con los d e cons t rucc ión c o n f o r m e a v a n z a el p roceso d e so f tware . Los ele-
m e n t o s d e p r o c e s o guían m u c h a s ac t iv idades h u m a n a s q u e s e re lac ionan con GCS
y, po r tan to , t a m b i é n p u e d e n cons ide ra r se e l e m e n t o s h u m a n o s .

27.1.3 Líneas base
El c a m b i o e s un h e c h o d e vida en el desar ro l lo del so f tware . Los c l ientes quieren
modif icar los requisi tos . Los desa r ro l l ado res qu ie ren modif icar el e n f o q u e técnico.
Los g e s t o r e s qu ie ren modif icar la es t ra teg ia del proyecto . ¿Por q u é t o d a s e s t a s modi-
ficaciones? La respues ta , en real idad, e s b a s t a n t e s imple . C o n f o r m e p a s a el t iempo,

t odos los par t i c ipan tes s a b e n m á s (acerca de lo q u e neces i t an , q u é e n f o q u e sería el
mejor , c ó m o hace r lo y a u n así o b t e n e r dinero) . Este c o n o c i m i e n t o ad ic ional e s la
fue rza impulsora de t r á s de la mayor ía d e los c a m b i o s y c o n d u c e a u n a expres ión difí-
cil de a c e p t a r para m u c h o s p ro fes iona le s d e la ingenier ía del so f tware : ¡la mayoría
de los cambios están justificados!

Una línea base e s un c o n c e p t o d e ges t ión d e la conf igurac ión del s o f t w a r e que
ayuda a con t ro la r el c a m b i o sin imped i r s e r i a m e n t e el c a m b i o justif icable. El IEEE

(IEEE Std. No. 610.12-1990) de f ine u n a l ínea b a s e c o m o :

Una especificación o producto que se ha revisado formalmente y se está de acuerdo con
los resultados, y que a partir de ahí sirve como la base para el desarrollo ulterior y que
puede cambiarse sólo por medio de procedimientos formales de control del cambio.

Antes de que un e l e m e n t o d e conf igurac ión del s o f t w a r e s e convier ta en l ínea
base , e s pos ib le rea l izar el c a m b i o ráp ida e i n fo rma lmen te . Sin e m b a r g o , una vez
es tab lec ida u n a l ínea base , m e t a f ó r i c a m e n t e s e p a s a a t r avés d e u n a pue r t a gira to-
ria d e una so la dirección. Los c a m b i o s s e p u e d e n real izar , p e r o se d e b e apl icar un
p roced imien to espec í f ico formal p a r a eva lua r y verif icar c a d a uno .

En el con tex to d e la ingenier ía del so f tware , u n a l ínea b a s e e s un hi to en el d e s a -

rrollo del so f tware . Se m a r c a u n a l ínea b a s e p a r a la en t rega d e u n o o m á s e l e m e n -
tos de conf igurac ión del s o f t w a r e (ECS) q u e s e h a n a p r o b a d o c o m o c o n s e c u e n c i a d e
u n a revisión técnica fo rmal (capítulo 26). Por e jemplo , los e l e m e n t o s de un m o d e l o
d e d i seño s e h a n d o c u m e n t a d o y revisado. Se h a n e n c o n t r a d o e r r o r e s y s e h a n cor re -
gido. Una vez q u e t odas las pa r t e s del m o d e l o s e h a n revisado, cor reg ido y luego
a p r o b a d o , el m o d e l o de d i s e ñ o s e convier te en l ínea base . Los c a m b i o s pos t e r io re s

a la a rqu i tec tu ra del p r o g r a m a (d o c u m e n t a d o s en el m o d e l o d e diseño) só lo s e pue -

TM

PDF Editor

C A P Í T U L O 2 7 GESTIÓN DEL CAMBIO 801

^ O W S i i O ^

>s preciso asegurarse
Je que la base de
:jíos del proyecto se
-•rntiene en uno
Moción central
yitrolado.

d e n e f e c t u a r d e s p u é s d e q u e c a d a u n o s e h a e v a l u a d o y a p r o b a d o . A u n q u e las lí-
n e a s b a s e s e p u e d e n definir e n cua lqu ie r g r ado de detal le , e n la figura 27.1 s e m u e s -
t ran las l íneas b a s e d e s o f t w a r e m á s c o m u n e s .

En la figura 27.1 t ambién s e m u e s t r a la p rogres ión d e e v e n t o s q u e c o n d u c e n a
u n a línea base . Las t a r e a s d e ingenier ía del s o f t w a r e p roducen u n o o m á s ECS.
Después d e q u e é s t o s s e revisan y a p r u e b a n se co locan en una base de datos del pro-

yecto (también l l amada librería del proyecto o depósito de software, q u e s e e x a m i n a n
e n la secc ión 27.2). C u a n d o un m i e m b r o d e un equ ipo d e s o f t w a r e qu ie re modif icar
u n ECS q u e s e ha conve r t ido en l ínea base , s e copia d e la b a s e d e d a t o s del proyec-
t o en el e s p a c i o d e t r aba jo pr ivado del ingeniero. Sin e m b a r g o , e s te ECS ex t ra ído
só lo s e p u e d e modif icar si s e s iguen los con t ro les d e la GCS (t ra tados m á s a d e l a n t e
en e s t e capítulo) . Las flechas en la figura 27.1 i lustran la t rayector ia d e modi f icac ión
p a r a un ECS conver t ido en l ínea ba se .

27.1.4 Elementos de configuración del software
Un e l e m e n t o de conf igurac ión del s o f t w a r e (ECS) e s in fo rmac ión q u e se c rea c o m o
par te del p r o c e s o d e ingenier ía del so f tware . En el ex t r emo , s e p u e d e cons ide ra r q u e
un ECS e s u n a sola secc ión d e una gran especi f icac ión o un c a s o d e p rueba d e un

gran c o n j u n t o d e p ruebas . De m a n e r a m á s realista, un ECS e s un d o c u m e n t o , un
c o n j u n t o c o m p l e t o d e c a s o s d e p rueba o un c o m p o n e n t e d e un p r o g r a m a d a d o (por
e jemplo , una func ión C++ o un applet d e Java).

A d e m á s d e los ECS p r o v e n i e n t e s d e los p roduc to s de t r aba jo d e so f tware , m u c h a s
o r g a n i z a c i o n e s d e ingenier ía del s o f t w a r e t a m b i é n co locan las h e r r a m i e n t a s respec-
t ivas b a j o cont ro l d e conf igurac ión . Es to es: ve r s iones e spec í f i cas d e edi tores , c o m -

ECS convertidos
en l ínea b a s e y
base de da tos del
proyecto.

Modif icado

LINEAS BASE:
Especificación del sistemo
Requisitos d e software
Especificación del d iseño
C ó d i g o fuente
Planes /procedimientos /

da to s d e p rueba
Sistema opera t ivo

TM

PDF Editor

802 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

piladores, navegadores y otras herramientas automat izadas se "congelan" cc
parte de la configuración del software. Puesto que dichas herramientas se utili2
para producir documentación, código fuente y datos, deben estar disponibles al:
lizar cambios en la configuración del software. Aunque los problemas son raros, i
posible que una nueva versión de una herramienta (por ejemplo, un compila
produzca resultados diferentes a los de la versión original. Por esta razón, las her
mientas, al igual que el sof tware que ayudan a producir, pueden convertirse en lii
base como parte de un proceso global de gestión de configuración.

En realidad, los ECS están organizados para formar objetos de configuración ¡
ceptibles de catalogar en la base de datos del proyecto con un solo nombre. Un i
to de configuración tiene un nombre, atributos y está "conectado" con otros obje
por medio de relaciones. Si se observa la figura 27.2, los objetos de configurac
E s p e c i f i c a c i o n D i s e ñ o , M o d e l o D a t o s , C o m p o n e n t e N , C o d i g o F u e n t e
Espec i f i cac ionPrueba están definidos por separado. Sin embargo, cada uno de 1
objetos se relaciona con los otros como lo muestran las flechas. Una flecha
indica una relación de composición. Esto es: M o d e l o D a t o s y C o m p o n e n t e N
parte del objeto Espec i f i cac ionDiseño . Una flecha recta con doble punta ind
una interrelación. Si se realizase un cambio al objeto CodigoFuente, las inter
ciones permiten que un ingeniero de sof tware determine qué otros objetos (y EC5j]
pueden afectarse.2

Objetos de
configuración.

Estas relaciones se definen dentro de la base de datos. La estructura de la base de datos (almacér.
se estudia con mayor detalle en la sección 27.2.

TM

PDF Editor

C A P Í T U L O 2 7 GESTIÓN DEL CAMBIO 803

2 7 . 2 E L D E P Ó S I T O D E E C S

En los p r i m e r o s d ía s d e la ingenier ía del s o f t w a r e los e l e m e n t o s d e conf igurac ión s e
c o n s e r v a b a n c o m o d o c u m e n t o s d e papel (¡o t a r j e t a s per foradas!) , q u e s e c o l o c a b a n
en ca r t apac ios o c a r p e t a s d e ani l los y s e a l m a c e n a b a n en a rch iveros metál icos . Este
e n f o q u e era p rob lemát i co por m u c h a s r azones : 1) con f r ecuenc ia era difícil e n c o n -
t rar un e l e m e n t o d e conf igurac ión c u a n d o s e le neces i taba ; 2) u s u a l m e n t e e r a un
re to d e t e r m i n a r cuál e l e m e n t o hab ía s ido camb iado , c u á n d o y po r qu ién ; 3) la c o n s -
trucción de u n a n u e v a vers ión d e un p r o g r a m a exis ten te c o n s u m í a m u c h o t i e m p o y
e ra procl ive al error ; 4) la descr ipc ión d e re lac iones de t a l l adas o c o m p l e j a s en t r e e le-
m e n t o s d e conf igurac ión e ra v i r tua lmente imposible.

En la actual idad, los ECS se conse rvan en una b a s e d e da to s o depós i to del pro-
yecto. El diccionario Webster def ine la pa labra depósito c o m o "cualquier cosa o pe r so -
n a q u e s e cons idera c o m o c e n t r o d e acumulac ión o a lmacenamien to" . En los inicios
d e la ingenier ía del s o f t w a r e , el depós i to d e h e c h o e ra una pe r sona : el p r o g r a m a d o r ,
quien tenía q u e recorda r la ubicac ión d e toda la in fo rmac ión re levan te p a r a un pro-

yec to d e so f twa re ; a d e m á s , tenia q u e r e c u p e r a r la i n fo rmac ión q u e n u n c a s e hab ía
r e s p a l d a d o por escr i to y recons t ru i r la in fo rmac ión perdida . Tr is temente , e m p l e a r a
u n a p e r s o n a c o m o "cent ro de a c u m u l a c i ó n y a l m a c e n a m i e n t o " (aunque c o n c u e r d e
con la def inición del diccionario) n o func iona m u y bien. Hoy el depós i to e s u n a
"cosa": una b a s e de d a t o s q u e a c t ú a c o m o el c e n t r o t a n t o d e la a c u m u l a c i ó n c o m o
del a l m a c e n a m i e n t o d e la in fo rmac ión d e ingenier ía del so f tware . El pape l d e la pe r -
s o n a (el i ngen ie ro d e so f tware) e s in te rac tuar con el depós i to m e d i a n t e las he r ra -
m i e n t a s q u e t iene in tegradas .

27.2.1 El papel del depósito
El depós i to d e ECS e s el c o n j u n t o de m e c a n i s m o s y e s t r u c t u r a s d e d a t o s q u e permi-
te q u e un e q u i p o d e s o f t w a r e m a n e j e el c a m b i o en u n a fo rma ef icaz . El depós i to p ro -
porc iona las func iones obv ias d e u n s i s t ema d e ges t ión d e b a s e d e d a t o s pero , ade -
m á s , el depós i to rea l iza o impulsa las s igu ien tes f u n c i o n e s [FOR89]:

I ¿Qué • La integridad de los datos incluye func iones p a r a val idar las e n t r a d a s al
depós i to , ga ran t i za r la cons i s tenc ia en t r e ob j e to s r e l ac ionados y a u t o m á t i c a -
m e n t e real izar mod i f i cac iones "en c a s c a d a " c u a n d o un c a m b i o e n un ob j e to
d e m a n d a a lgún c a m b i o a los ob j e to s r e l ac ionados con él.

• El compartir información o f r ece un m e c a n i s m o p a r a distribuir la i n fo rmac ión
en t r e múl t ip les desa r ro l l ado res y he r r amien t a s , m a n e j a r y con t ro la r los
a c c e s o s a los d a t o s po r pa r t e de múl t ip les u s u a r i o s y ce r ra r y abr i r los ob j e to s

d e m o d o q u e los c a m b i o s n o s e a n t r a s l a d a d o s i n a d v e r t i d a m e n t e hac ia o t ros .

• La integración de herramientas establece un mode lo d e da tos al que se puede tener
acceso median te m u c h a s her ramientas d e ingeniería del software, controlar el
a c c e s o a los da tos y realizar f u n d o n e s a d e c u a d a s de gestión d e la configuración.

W funciones
np lemento un
••pósito de ECS?

TM

PDF Editor

804 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

• La integración de los datos b r inda f u n c i o n e s d e b a s e d e d a t o s que p e r m i t e n
q u e va r ias t a r ea s d e GCS se real icen en u n o o m á s ECS.

• El fortalecimiento de la metodología def ine un m o d e l o d e en t idad- re lac ión
g u a r d a d o e n el depós i to q u e implica u n m o d e l o d e p r o c e s o específ ico para la
ingenier ía del so f tware ; c o m o mín imo , las re lac iones y ob je tos de f inen un
c o n j u n t o d e p a s o s q u e s e d e b e n l levar a c a b o para cons t ru i r los con ten idos
del depósi to .

• Estandarización de los documentos e s la def inición d e los ob je tos e n la b a s e de
d a t o s q u e c o n d u c e d i r ec t amen te a un e n f o q u e e s t á n d a r p a r a la c reac ión d e
d o c u m e n t o s d e ingenier ía del so f tware .

El depós i to s e def ine en func ión d e u n m e t a m o d e l o . Para lograr e s t a s func iones d

metamodelo d e t e r m i n a c ó m o se gua rda la in formación en el depós i to , c ó m o se tiene
a c c e s o a los d a t o s med ian t e las h e r r a m i e n t a s y c ó m o los visual izan los ingenieros c t
so f tware , c u á n bien s e p u e d e m a n t e n e r la segur idad e integridad d e los da tos , y cuan
fác i lmente se p u e d e ampl ia r el m o d e l o ex is ten te para a d e c u a r las n u e v a s necesida
des . Para mayor información , el lector i n t e re sado d e b e consu l ta r [SHA95] y [GR195;

27.2.2 Características y contenido generales
Las carac te r í s t i cas y el con t en ido del depós i to s e c o m p r e n d e n m e j o r si s e les obse -

va de sde d o s perspec t ivas : q u é se gua rda rá e n el depós i to y q u é servic ios específi-

c o s o f r e c e és te . En la figura 27 .3 s e p r e s e n t a un anál is is de ta l l ado d e los t ipos c e
represen tac iones , d o c u m e n t o s y p roduc tos d e t raba jo que se g u a r d a n en el deposite

Contenido
del depósito.

Casos de uso
Modelo de análisis

Diagramas basados en escenario
Diagramas orientados a flujo
Diagramas basados en clase ^ - v (

Diagramas comportamentales / V
Modelo de diseño / C o r r i d o de>

Diagramas arqu, e n a n c a s ^ c o m l r u c c ¡ 6 „
Diagramas de intertaz \ A
Diagramas al nivel de componentesV- ;¡& J

Métricas técnicas / N

Reglas del negocio
Funciones del negocio
Eslrucrura d e la oraamzación
Arquitectura deintormoción

Código fuente
Código de objeto
Instrucciones de construcción del sistema

Contenido
d e negocio

Contenido
de modelo

Contenido
VyV

Contenido
d e gestión

del proyecto

Plan del proyecto
Plan G C S / S Q A
Especificaciones del sistema
Especificaciones de requisitos
Documento de diseño
Plon y procedimiento de prueba
Documentos de soporte
Manual del usuario

Estimaciones del proyecto
Calendarización del proyecto
Requisitos de GCS

Solicitudes de cambio
Informes de combios

Requisitos de SQA
Informes de proyecto/informes de auditoría
Métricas del proyecto

Documentos

Casos de prueba
Guiones de prueba
Resultados de prueba
Métricas de calidod

TM

PDF Editor

CAPÍTULO 2 7 GESTIÓN DEL CAMBIO 805

R « f c r e n c i a W e b

e s e
i obtener en

• v w w . s o f t w o r e .
b p . c o m / p r o d l K t s /
SCMGR o en o tn .

• / •

rtpotttoryJitml.

\ CLAVE
El depósito debe ser
copaz de montener los

E£S relacionados con
cuchos versiones
iferentes del
software. Más
mportonte, debe
ofrecer los mecanismos
poro ensamblar dichos
ECS en una
configuración
especifica de versión.

Un depósito robusto proporciona dos clases diferentes de servicios: 1) los mismos
tipos de servicios que se pueden esperar de cualquier sistema sofisticado de gestión
de base de datos, y 2) servicios específicos del entorno de la ingeniería del software.

Un depósito que at ienda a un equipo de ingeniería de software debe 1) integrar-
se con o directamente apoyar las funciones de gestión de proceso; 2) apoyar reglas
específicas que rigen la función de GCS y los datos conservados dentro del depósito;
3) ofrecer una interfaz a otras herramientas de ingeniería del software; y 4) acomo-
dar el a lmacenamiento de datos sofisticados (por ejemplo, texto, gráficos, video,
audio).

27.2.3 Características de la GCS
El apoyo a la GCS requiere que el a lmacén o depósito tenga un conjunto de herra-
mientas que ofrezca soporte para las siguientes características:

Vers iones . Conforme un proyecto progrese se crearán muchas versiones (sección
27.3.2) de productos de t rabajo individuales. El depósito debe ser capaz de guardar
todas es tas versiones para permitir la gestión eficaz de las liberaciones de producto
y permitir que los desarrolladores regresen a versiones anteriores durante las prue-
bas y la depuración.

El depósito debe ser capaz de controlar una amplia variedad de tipos de objetos,
incluso texto, gráficos, m a p a s de bits, documentos complejos y objeto únicos como
definiciones de pantallas e informes, archivos de objeto, datos de prueba y resulta-
dos. Un depósito maduro sigue las versiones de los objetos con grados arbitrarios de
granularidad; por ejemplo, se puede seguir una sola definición de datos o un con-
junto de módulos.

Gest ión de l s e g u i m i e n t o de la d e p e n d e n c i a y de l c a m b i o . El depósito gestio-
na una amplia variedad de relaciones entre los objetos de configuración que guarda.
Se incluyen relaciones entre entidades y procesos empresariales, entre las partes de
un diseño de aplicación, entre componentes de diseño y la arquitectura de informa-
ción del proyecto, entre e lementos de diseño y otros productos de trabajo, etcétera.
Algunas de es tas relaciones son meramente asociaciones, y a lgunas son dependen-
cias o relaciones obligatorias.

La habilidad con que se da seguimiento a todas es tas relaciones es crucial para la
integridad de la información guardada en el depósito y la generación de productos de
trabajo basados en ella, y es una de las aportaciones m á s importantes del concepto
de depósito a la mejora del proceso de desarrollo de software. Por ejemplo, si se
modifica un diagrama de clase UML, el depósito puede detectar si las clases relacio-
nadas, las definiciones de interfaz y los componentes de código también requieren
modificación y pueden colocar en la atención del desarrollador los ECS afectados.

S e g u i m i e n t o d e requis i tos . Esta función especial ofrece la habilidad de seguir
todos los componen tes y entregables de diseño y construcción que resulten de una
determinación específica de requisitos (seguimiento hacia adelante o seguimiento

TM

PDF Editor

806 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

propiamente dicho). Además, proporciona la habilidad de identificar qué requisitos
generaron algún producto de t rabajo dado (seguimiento hacia a t rás o rastreo).

Gest ión d e la conf iguración. Una gestión de la configuración facilita la conser-
vación del rastro de una serie de configuraciones que representan hitos específicos
del proyecto o liberaciones de producción.

Rutas de auditoría. Una ruta de auditoría establece información adicional acerca
de cuándo, por qué y por quién se hicieron los cambios. La información acerca de la
fuente de los cambios se puede ingresar como atributos de objetos específicos en el
depósito.

qué preguntas se
debe diseñar un
p r o c e s o d e G C S ?

El proceso de gestión de la configuración del sof tware define una serie de tareas que
tienen cuatro objetivos principales: 1) identificar todos los elementos que colectiva-
mente definen la configuración del software; 2) gestionar los cambios a uno o más
de dichos elementos; 3) facilitar la construcción de diferentes versiones de una apli-
cación; y 4) garantizar que la calidad del sof tware se conserva conforme la configu-
ración evoluciona a lo largo del tiempo.

Un proceso que logra estos objetivos no necesita ser burocrático y molesto, pero
sí debe caracterizarse en una forma que permita que un equipo de sof tware desa-
rrolle respuestas a un conjunto de preguntas complejas:

• ¿Cómo identifica un equipo de sof tware los elementos discretos de una confi-
guración de software?

• ¿Cómo gestiona una organización las numerosas versiones existentes de un
programa (y su documentación) en una forma que permita que el cambio se
acomode eficientemente?

• ¿Cómo controla una organización los cambios antes y después de que el
sof tware se libere al cliente?

• ¿Quién tiene la responsabilidad de aprobar y clasificar los cambios?

• ¿Cómo se garantiza que los cambios se hayan realizado adecuadamente?

• ¿Con qué mecanismo se valoran otros cambios que se realizan?

Estas preguntas conducen a la definición de las cinco tareas de la GCS ilustradas en
la figura 27.4: identificación, control de la versión, control del cambio, auditoría de la
configuración e informe.

En la misma figura las tareas de la GCS se aprecian como capas concéntricas. Los
ECS fluyen hacia afuera a través de dichas capas a lo largo de su vida útil, y a final
de cuentas se convierten en parte de la configuración del sof tware de una o m á s ver-
siones de u n a aplicación o sistema. Conforme un ECS se mueve a t ravés de una
capa, las acciones que implica cada capa de proceso de la GCS pueden o no aplicar-
se. Por ejemplo, cuando se crea un nuevo ECS debe ser identificado. Sin embargo, si

TM

PDF Editor

CAPÍTULO 27 GESTIÓN DEL CAMBIO 8 0 7

Capas de l
proceso d e
SCS.

n o se solici tan c a m b i o s p a r a el ECS, la c a p a d e control de c a m b i o n o s e apl ica . El
ECS se a s igna a u n a vers ión especí f ica del s o f t w a r e (entran en j uego m e c a n i s m o s d e

cont ro l d e la versión) . S e c o n s e r v a un regis t ro del ECS (su n o m b r e , fecha d e c r ea -
ción, des ignac ión d e vers ión, etc.) p a r a p ropós i tos d e audi tor ía de la conf igurac ión e
in fo rmes a q u i e n e s neces i t en saber lo . En las s ecc iones s igu ien tes s e e x a m i n a n con
m á s de ta l le c a d a u n a d e e s t a s c a p a s del p r o c e s o d e GCS.

27.3.1 Identificación de objetos en la configuración del software
El cont ro l y la ges t ión d e e l e m e n t o s d e conf igurac ión del s o f t w a r e requiere n o m b r a r
c a d a u n o por s e p a r a d o y luego o r g a n i z a d o m e d i a n t e un e n f o q u e o r i e n t a d o a obje-
tos. Es posible identificar d o s t ipos d e ob j e to s [CH089]: bás i cos y a g r e g a d o s . 3 Un
objeto básico e s u n a un idad d e in fo rmac ión c r e a d a por u n ingen ie ro d e s o f t w a r e
d u r a n t e el análisis , el d i seño, el código o las p ruebas . Por e j emplo , un ob j e to b á s i c o
p u e d e ser una sección d e u n a especif icación de requisitos, par te de un mode lo d e dise-
ño, código fuen te para un c o m p o n e n t e , o un c o n j u n t o de ca sos d e p rueba q u e se uti-

lizan para ejerci tar el código. Un objeto agregado e s una colección d e obje tos bás icos
y o t ros ob je tos agregados . En la figura 27.2 E s p e c i f i c a c i o n D i s e ñ o e s un ob je to agre -
gado. Concep tua lmente , e s posible verlo c o m o u n a lista n o m b r a d a (identificada) d e
pun te ros q u e especif ican ob je tos bás icos c o m o son M o d e l o D a t o s y C o m p o n e n t e N .

Versión

software

¡torio d e con f igu rad

Control d e la versión

Control d e j c a m b i ó

Identificación /

3 El concepto de objeto agregado [GUS89] se ha propuesto como un mecanismo para representar una
versión completa de una configuración de software

TM

PDF Editor

PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

%
CLAVE

Los interrelociones
establecidos para los
objetos de
configuración permiten
que un ingeniero de
software evalúe el
impacto del cambio.

(C O N S E J O ^

Incluso si lo tose de
dolos del proyecto
ofrece la habilidad
pora establecer dichas
ielaciones, éstos
consumen tiempo en
su establecimiento y
dificultan mantener lo
octuolizoáón. Aunque
son muy útiles pata el
anúlisis de impacto,
no son esenciales
pora la gestión global
del cambio.

\ CLAVE
Uno facilidad "de
hechura" permite a un
ingeniero de software
obtener todos los
objetos de
configuración
relevantes y construir
v a versión específica
é l software.

Cada objeto tiene un conjunto de características distintivas que lo identifican
manera exclusiva: un nombre, una descripción, una lista de recursos, y una "ir
zación". El nombre del objeto es una cadena de caracteres que identifican al
sin ambigüedades. La descripción del objeto es una lista de e lementos de datos
identifican el tipo de ECS (por ejemplo, e lemento modelo, programa, datos)
representa el objeto, un identificador de proyecto e información de cambio y / o
sión.

La identificación del objeto de configuración también puede considerar las reí:
nes entre los objetos nombrados. Por ejemplo, con la utilización de notación simplí

DiagramadeClase < p a r t e d e > ModeloAnalisis;

ModeloAnalisis < p a r l e d e > EspecificacionRequisitos;

se crea una jerarquía de ECS.
En muchos casos, los objetos están interrelacionados a través de ramas de jerar-

quía de objetos. Dichas relaciones estructurales cruzadas se representan en la forma
siguiente:

ModeloDatos < in t e r t e l ac ionado> ModeloFlujoDatos

ModeloDatos <¡n te r re lac ionado> CasoPruebaClaseM

En el primer caso la interrelación e s entre un objeto compuesto, mientras que la
segunda relación es entre un objeto agregado (ModeloDatos) y un objeto básicc
(CasoPruebaClaseM).

El esquema de identificación para los objetos de configuración debe reconoce:
que los objetos evolucionan a lo largo del proceso de software. Antes de que ur
objeto se convierta en línea base puede cambiar muchas veces, e incluso después de
establecida una línea base los cambios quizá sean muy frecuentes.

27.3.2 Control de la versión

El control de la versión combina procedimientos y herramientas para gestionar dife-
rentes versiones de objetos de configuración que se crean durante el proceso del
software. Un sistema de control de la versión implementa o está directamente inte-
grado con cuatro grandes capacidades: 1) una base de datos del proyecto (depósito)
que guarda todos los objetos de configuración relevantes; 2) una capacidad de ges
tión de la versión que a lmacena todas las versiones de un objeto de configuración (o
permite que se construya cualquier versión empleando diferencias de versiones
anteriores); 3) una facilidad de hechura que permita al ingeniero de sof tware recopi-
lar todos los objetos de configuración relevantes y construir una versión específica
del software. Además, los s is temas de control de la versión y de control del cambio
con frecuencia implementan una capacidad de seguimiento de conflictos (también lla-
mada seguimiento de bugs) que permiten al equipo registrar y hacer el seguimiento
del es tado de todos los conflictos destacados que se asocian con cada objeto de con-
figuración.

TM

PDF Editor

CAPÍTULO 2 7 GESTIÓN DEL CAMBIO 809

"Cualquier cambio, incluso u n o p o r a mejora r , es tá a c o m p a ñ a d o con inconvenientes e incomodidades . "
A m o l d B e n n e t í

Varios s i s t e m a s d e cont ro l d e la vers ión e s t ab l ecen un conjunto de cambio —una
colecc ión de t o d o s los c a m b i o s (con cier ta conf igurac ión de línea base)— q u e
requ ie re la c reac ión d e u n a versión especí f ica del so f tware . Dart [DAR91] advier te
q u e un c o n j u n t o d e c a m b i o s "captura t odos los c a m b i o s d e t odos los a rch ivos en la
conf igurac ión jun to con la r azón p a r a los c a m b i o s y deta l les d e qu ién los h i zo y
cuándo" .

Es pos ib le identif icar va r ios c o n j u n t o s d e c a m b i o n o m b r a d o s para u n a apl icación
o s i s t ema . Esto pe rmi t e q u e un ingen ie ro d e s o f t w a r e cons t ruya u n a vers ión del sof t -
w a r e al especi f icar los c o n j u n t o s d e c a m b i o (por nombre) q u e s e d e b e n aplicar a la
conf igurac ión d e l ínea ba se . Esto s e logra ap l i cando un e n f o q u e d e modelado de sis-
tema. El m o d e l o d e s i s t ema con t i ene 1) u n a plantilla q u e incluye u n a jerarquía d e

c o m p o n e n t e s y un "orden d e cons t rucc ión" para los c o m p o n e n t e s que desc r ibe
c ó m o se d e b e const ru i r el s i s t ema , 2) reglas d e cons t rucc ión y 3) r eg las de verif ica-
ción. 4

Duran te las p a s a d a s d o s d é c a d a s s e h a n p r o p u e s t o var ios e n f o q u e s a u t o m a t i z a -
d o s p a r a el control d e la vers ión . La principal d i ferencia e n los e n f o q u e s e s la sof is -
t icación d e los a t r ibu tos q u e s e util izan en la cons t rucc ión d e ve r s iones espec í f icas
y va r i an tes d e un s i s t ema y los m e c a n i s m o s del p r o c e s o de cons t rucc ión .

HERRAMIENTAS DE SOFTWARE

El Sistema de Versiones Concurrentes (SVC)
El empleo d e herramientas con que lograr el
control d e la versión es esencial pa ra una

gestión del cambio eficaz. El sistema de versiones
concurrentes (SVC; CVS, Concurrent Versions System) es
una herramienta ampliamente empleada en el control d e
versiones. Originalmente d i señada pa ra código fuente,
pero útil pa ra cualquier archivo b a s a d o en texto, el
sistema SVC 1) establece un depósito simple, 2) conserva
todas las versiones d e un archivo en un archivo con un
solo nombre al a lmacenar sólo las diferencias entre
versiones progresivas del archivo original, y 3) protege un
archivo contra cambios simultáneos al establecer diferentes
directorios pa ra c a d a desarrollador, con lo que se aislan
uno d e otro. El SVC mezcla los cambios cuando c a d a
desarrollador completa su t rabajo .

Es importante notar que el SVC n o es un sistema "de
construcción"; esto es, no construye una versión específica

del software. Esto se logra integrando al SVC otras
herramientas (por ejemplo, Makefile). El SVC no
implemento un proceso d e control d e cambio (por ejemplo,
solicitudes d e cambio, informes d e cambio, seguimiento d e
bugs).

Pese a sus limitaciones, el SVC "es un sistema
dominante en el control d e versiones, t ransparente respecto
a la red y d e fuente abier ta [que] es útil p a r a todos, desde
desarrolladores individuales hasta g randes equipos
segmentados" [CVS02], Su arquitectura cliente/servidor
permite que los usuarios accedan a los archivos mediante
conexiones d e Internet y su filosofía d e fuente abier ta
facilita su disponibilidad en la mayoría d e las plataformas
populares.

El SVC está disponible sin costo p a r a entornos
Windows, Macintosh y Unix. Visítese www.cvshome.org
po ra mayores detalles.

4 También es posible consultar el modelo de sistema para valorar cómo un cambio en un componente
impactará a otros componentes.

TM

PDF Editor

http://www.cvshome.org

810 P A S T E C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

27.3.3 Control del cambio
La real idad del control del c a m b i o e n un c o n t e x t o m o d e r n o de ingenier ía del soft-
w a r e la r e s u m i ó b e l l a m e n t e J a m e s Bach [BAC98]:

El control del cambio es vital. Pero las fuerzas que lo hacen necesario también lo tornan
irritante. Nos preocupamos por los cambios porque una pequeña perturbación en el có-
digo puede crear una gran falla en el producto. Pero también puede resolver una gran fa-
lla o permitir maravillosas nuevas capacidades. Nos preocupamos por los cambios porque
un solo desarrollador solitario podría hundir el proyecto; aunque en las mentes de dichos
solitarios se originan ideas brillantes, y un proceso de control del cambio gravoso podría
desalentarlos efectivamente de realizar trabajo creativo.

Bach r e c o n o c e q u e s e e n f r e n t a un a c t o d e equilibrio. D e m a s i a d o control del cambio ,
y s e c r e a n p rob lemas ; poco , y se c r e a n o t ros p r o b l e m a s .

"0 orte del progreso es prese»vor el o rden en t r e el cambio, y p r e s e r v a r el cambio en t r e el orden,"
AHred North Whiteheod

CLAVE
Se debe destocor que
«arias sofciludes de
c a m b o pueden
combina r» pora
resultar en uno soto

0(1 y que te 0(1
ifluolmenle resulten en
cambios o múltiples

configuración.

^ C O N S E J O ^

Lo confusión conduce
oemes, olgunosde
ellos bostonte serios.
B control del occeso y
de lo sinaonizoción
nton confusión,
[mfliense ferro-
««Bitas de control de
knKiánydel

En un gran p royec to d e ingenier ía d e s o f t w a r e el c a m b i o incon t ro lado c o n d u c e
r á p i d a m e n t e al c aos . Respec to a ta les p royec tos el control del c a m b i o c o m b i n a pro-
c e d i m i e n t o s h u m a n o s y h e r r a m i e n t a s a u t o m a t i z a d a s . En la figura 27.5 s e ilustra
e s q u e m á t i c a m e n t e el p r o c e s o d e cont ro l del c ambio . Se emi t e u n a solicitud de cam-
bio y s e es t ima para eva luar los m é r i t o s técnicos , los po tenc ia l e s e fec tos cola tera les ,
el impac to global sobre o t ro s ob j e to s d e conf igurac ión y f u n c i o n e s del s i s tema, y el

COStO p royec tado del cambio . Los r e su l t ados d e la eva luac ión s e p r e s e n t a n c o m o un
informe de cambio, q u e lo utiliza u n a autoridad del control del cambio (ACC): u n a pe r -
s o n a o g r u p o q u e t o m a n la decis ión final ace rca del e s t a d o y la pr ior idad del c a m -

bio. Se genera una orden de cambio en la ingeniería (OCI) para c a d a c a m b i o aprobado .
La OCI descr ibe el c a m b i o q u e s e d e b e realizar , las res t r icc iones insos layables y los
cri ter ios d e revisión y audi tor ía .

El ob j e to q u e se c a m b i a r á s e co loca e n un director io q u e con t ro le exc lus ivamen-
te el i ngen ie ro d e s o f t w a r e q u e rea l iza el c ambio . Un s i s t ema d e control d e la ver-
sión (véase el r ecuad ro acerca d e SVC) actual iza el archivo original una vez rea l izado
el c ambio . C o m o al ternat iva , el ob j e to q u e s e c a m b i a r á p u e d e "salir" d e la b a s e d e
d a t o s del p royec to (depósito), rea l izar el c a m b i o y apl icar las ac t iv idades a p r o p i a d a s
de SQA. Luego el ob je to "ent ra" a la b a s e de da to s y s e apl ican m e c a n i s m o s a d e -
c u a d o s d e cont ro l d e vers ión (sección 27.3.2) p a r a c rea r la s iguiente vers ión del so f t -
w a r e .

Es tos m e c a n i s m o s de cont ro l d e la vers ión, i n t e g r a d o s en el p r o c e s o d e cont ro l

de cambios , i m p l e m e n t a n d o s i m p o r t a n t e s e l e m e n t o s de ges t ión del cambio : cont ro l
del a c c e s o y d e la s incronizac ión . El control del acceso r ige q u é ingen ie ros d e so f t -
w a r e e s t á n a u t o r i z a d o s p a r a ingresar y modif icar u n ob j e to d e conf igurac ión part i-
cular. El control de la sincronización ayuda a ga ran t i za r que los c a m b i o s para le los ,
e f e c t u a d o s po r d o s p e r s o n a s d i ferentes , n o s e sobresc r iben u n o s o b r e otro[HAR89].

TM

PDF Editor

C A P Í T U L O 2 7 GESTIÓN DEL CAMBIO 811

Algunos lec tores qu izá c o m i e n c e n a sen t i r se i n c ó m o d o s con el g r ado d e bu ro -
cracia q u e implica la descr ipc ión del p r o c e s o d e cont ro l del c a m b i o m o s t r a d a en la
figura 27.5. Este s en t imien to e s c o m ú n . Sin las s a l v a g u a r d a s a d e c u a d a s el cont ro l
del c a m b i o p u e d e re t rasa r el p r o g r e s o y c r e a r burocrac ia y pape leo innecesar ios . La
mayor ía d e los desa r ro l l adores de s o f t w a r e con m e c a n i s m o s d e control del c a m b i o
(d e s a f o r t u n a d a m e n t e m u c h o s n o los t ienen) ha c r e a d o var ias c a p a s d e control p a r a
ayuda r se a evi tar los p r o b l e m a s m e n c i o n a d o s aquí .

Antes d e q u e un ECS se convier ta e n l ínea b a s e sólo s e neces i t a apl icar control de
cambio informal. El desa r ro l l ador del ob j e to d e conf igurac ión (ECS) e n cues t ión t iene

3 proceso d e
control de l
cambio.

Se r e c o n o c e la n e c e s i d a d del c a m b i o

I
Solicitud d e c a m b i o por po r t e de l usuar io

I
Evaluación del de sa r ro l l ado r

i
Se g e n e r a informe d e c a m b i o

La a u t o r i d a d d e control de l c a m b i o d e c i d e

Solicitud se p o n e en fila p a r a la a cc ión , se g e n e r a O C I

I
Asignac ión d e individuos p a r a ob j e to s d e conf igu rac ión

í
" S a l i d a " d e ob j e to s d e conf igu rac ión (elementos)

I
S e h a c e el c a m b i o

i
Revisión (auditoría] de l c a m b i o

I
"En t r ada" d e los e l emen tos d e conf igu rac ión q u e h a n c a m b i a d o

I
Establec imiento d e una l ínea b a s e p a r a p r u e b a s

Rea l i zac ión d e a c t i v i d a d e s d e g a r a n t í a d e c a l i d a d y d e p r u e b a s

I
"Promoc ión" d e los c a m b i o s p a r a incluirlos e n la s iguiente l iberación (revisión)

Reconstrucción d e la versión a p r o p i a d a del so f twa re

I
Revisión (auditoría) de l c a m b i o p a r a l o d o s los e l emen tos d e conf igu rac ión

\
Inclusión d e los c a m b i o s e n la n u e v a vers ión

J
Distribución d e la n u e v a <

Se n i e g a la solicitud d e c a m b i o

Í
Se informa el usuar io

TM

PDF Editor

812 P A R T E C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

^ O N S E J O ^

Óptese por un poco
más de control de
cambio del que se
crea que necesitará.
Es probable que
demasiado será lo
cantidad correcta.

la posibil idad d e rea l izar cua le squ ie ra c a m b i o s jus t i f icados p o r el p royec to y los
requis i tos t écn icos (en t a n t o los c a m b i o s n o a fec ten requis i tos d e s i s t ema mas

a m p l i o s q u e s e e n c u e n t r a n f u e r a del á m b i t o d e t r a b a j o del desarrol lador) . Una vez
q u e el ob j e to haya e x p e r i m e n t a d o una revisión t écn ica formal y haya s ido a p r o b a d o
s e p u e d e c r e a r u n a línea base . 5 Una v e z q u e un ECS se convier te en l ínea b a s e se
i m p l e m e n t a un control de cambio a nivel del proyecto. Ahora , p a r a real izar un c a m
bio, el desarrol lador d e b e ob tener la aprobac ión del ges tor del proyecto (si el camb: :
e s "local") o d e la ACC si el c a m b i o a fec t a o t r o s ECS. En a l g u n o s casos , la gene ra -
ción formal d e las sol ic i tudes d e c a m b i o , los i n fo rmes d e c a m b i o y las OC1 se distri-
buyen. Sin embargo , s e lleva a c a b o la evaluación d e c a d a cambio, y t odos los cambios
s e s iguen y revisan .

C u a n d o el p r o d u c t o d e s o f t w a r e s e l ibera en t r e los c l ientes s e inst i tuye el contro

de cambio formal. En la figura 27 .5 se h a e s b o z a d o el p r o c e d i m i e n t o d e cont ro l de
c a m b i o formal .

"El combio e s inevi table , excepto p o r o los m á q u i n a s e x p e n d e d o r a s . "
Calcomanía en on parachoques

La au tor idad d e control del c a m b i o juega un papel ac t ivo en la s e g u n d a y tercera
c a p a s del control . D e p e n d i e n d o del t a m a ñ o y ca r ác t e r d e un p royec to d e s o f t w a r e
la ACC p u e d e e s t a r c o m p u e s t a d e u n a p e r s o n a (el ges to r del proyecto) o va r ias per-
s o n a s (por e jemplo , r e p r e s e n t a n t e s d e so f tware , ha rdware , ingenier ía d e b a s e s de
datos , sopor te , mercado tecn ia) . El pape l d e la ACC e s t ener una visión global, e s to
es: eva lua r el impac to del c a m b i o m á s allá del ECS en cues t ión . ¿Cómo a fec ta rá el

c a m b i o al h a r d w a r e ? ¿ C ó m o a f e c t a r á al d e s e m p e ñ o ? ¿Cómo modif icará la percep-
ción del c l iente ace rca del p roduc to? ¿ C ó m o a f e c t a r á la ca l idad y fiabilidad del pro-
ducto? Es t a s y m u c h a s o t r a s p r e g u n t a s las abo rda la ACC.

H O G A R S E G U R O

Problemas en la GCS

El e s c e n a r i o : Oficina de Doug
Milier c u a n d o comienza el proyecto del software
HogarSeguro.

Los actores: I
ingeniería del software d e HogarSeguro) y Vinod Raman,
Jamie Lazar y otros miembros del equipo d e ingeniería
del software del p rodudo .

La conversación:

D o u g : Yo sé que es muy pronto, pe ro tenemos que
hablar acerca d e la gestión del cambio.

V i n o d (ríe): Apenas. Mercadotecnia llamó esta
m a ñ a n a con unos cuantos "segundos pensamientos"
N a d a importante, pe ro es sólo el comienzo.

5 Se puede crear una linea base también por otras razones. Por ejemplo, cuando se crean "construc-
ciones diarias" todos los componentes que entran en un tiempo dado se convierten en la linea base
para el trabajo del día siguiente.

TM

PDF Editor

CAPÍTULO 2 7 GESTIÓN DEL CAMBIO 813

Hemos sido bastante informales acerca d e la
del cambio en proyectos anteriores.

.o sé, pero éste es mayor y más visible, y según

(asiente con la cabeza): Fuimos asesinados
; incontrolados en el proyecto d e control d e la
en el hogar . . . recuerda las demoras que. . .

frunce el ceño): Una pesadilla que prefiero no

• Asi que qué hacemos.

Como lo veo, tres cosas. Primero, tenemos que
:r, o pedir prestado, un proceso d e control d e

2Te refieres a cómo la gente solicita los cambios?

Si, pero también cómo evaluamos el cambio,
cuándo hacerlo ¡si eso es lo que decidimos) y

cómo conservamos los registros d e lo que afecta el
cambio.

D o u g : Segundo, tenemos que obtener una herramienta 1

d e GCS realmente buena p a r a control del cambio y d e la
versión.

J a m i e : Podemos construir una base d e datos p a r a todos
nuestros productos d e t rabajo .

V i n o d : Se llaman ECS en este contexto, y la mayoría d e
las buenas herramientas ofrecen cierto soporte p a r a eso.

D o u g : Ese es un buen comienzo, ahora tenemos que . . .

J a m i e : Oye , Doug: dijiste que eran tres cosas. , .

D o u g (s o n r í e) : Tercera: todos tenemos que
comprometernos a seguir el proceso d e gestión del
cambio y usar las herramientas, sin importar cuáles sean,
¿de acuerdo?

¿Cióles
S M las

que se
durante

de
?

27.3.4 Auditoría de la configuración
La identif icación, el control d e la vers ión y el control del c a m b i o ayudan al de sa r ro -

Ilador del s o f t w a r e a m a n t e n e r el o r d e n en lo q u e de ot ro m o d o ser ia u n a s i tuación
caót ica e inestable . Sin e m b a r g o , incluso el m e c a n i s m o d e control m á s ex i toso sólo
s igue un c a m b i o h a s t a q u e n o s e g e n e r a una OCI. ¿Cómo se p u e d e ga ran t i za r que el
c a m b i o s e ha i m p l e m e n t a d o con p rop iedad? La r e spues t a e s doble: 1) rev i s iones téc-
n i ca s fo rma le s y 2) audi tor ía d e la conf igurac ión del so f tware .

La revisión técnica fo rmal (p resen tada con detal le en el capí tu lo 26) s e en foca en
la cor recc ión técnica del ob je to d e conf igurac ión que s e h a modi f icado . Los reviso-

res e v a l ú a n el ECS p a r a d e t e r m i n a r su cons i s tenc ia con o t ros ECS, o m i s i o n e s o
po tenc ia l e s e fec tos co la te ra les . Se d e b e rea l izar u n a revisión técnica fo rmal en casi
la mayor ía d e los c a m b i o s triviales.

Una auditoría de configuración del software c o m p l e m e n t a la revisión técnica for-
mal al abo rda r las s igu ien tes p r egun t a s :

1. ¿Se h a rea l i zado el c a m b i o espec i f i cado en la OCI? ¿Se h a n i nco rpo rado modi -
ficaciones ad ic ionales?

2 . ¿Se ha rea l i zado una revisión técnica formal p a r a eva lua r la corrección téc-
nica?

3 . ¿Se ha segu ido el p r o c e s o d e s o f t w a r e ? ¿Se h a n ap l i cado a d e c u a d a m e n t e los
e s t á n d a r e s d e ingenier ía del so f tware?

4 . ¿El c a m b i o s e ha resa l t ado en el ECS? ¿Se h a n espec i f i cado la f echa y el a u t o r
del c amb io? ¿Los a t r ibu tos del ob j e to d e conf igurac ión ref le jan el cambio?

TM

PDF Editor

814 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

(C O N S E J O ^

ílabórese uno lista de
"necesita conocer"

para cada objeto de
configuración y
consérvese actuali-
zada. Cuando se
realice un cambio, es
necesario asegurarse
de que todos los de la
lista sean notificados.

5 . ¿Se h a n s e g u i d o los p r o c e d i m i e n t o s d e GCS p a r a d e s t a c a r el cambio , regis-
t rar lo e in fo rmar d e él?

6 . ¿Todos los ECS r e l ac ionados s e h a n a c t u a l i z a d o d e m a n e r a a d e c u a d a ?

En a l g u n o s casos , las p r e g u n t a s d e la audi tor ía s e p l a n t e a n c o m o pa r t e d e u n a rev*-
sión t écn ica formal . Sin e m b a r g o , c u a n d o la GCS e s u n a act ividad formal , la aud i : : -
ría d e GCS la lleva a c a b o por s e p a r a d o el g r u p o d e a s e g u r a m i e n t o de la c a l i d a ;
Tales aud i to r ías f o rma le s d e conf igurac ión t a m b i é n a s e g u r a n q u e los ECS correct así
(por vers ión) s e h a n i nco rpo rado e n u n a cons t rucc ión especí f ica y q u e toda la doc_
m e n t a c i ó n es tá ac tua l i zada y e s c o n s i s t e n t e con la vers ión q u e s e h a const ru ido.

27.3.5 Informe de estado
El informe de estado de la configuración (a v e c e s l l a m a d o contabilidad de estado) es
una t a rea d e GCS q u e r e s p o n d e las s igu ien tes p regun tas : 1) ¿qué ocurr ió? 2) ¿qu ic -
io hizo? 3) ¿ c u á n d o ocurr ió? 4) ¿qué o t ra c o s a s e r á a fec tada?

En la figura 27.5 s e m u e s t r a el f lu jo d e in fo rmac ión p a r a el i n fo rme d e e s t a d o ce
la conf igurac ión (IEC). Cada v e z q u e s e le a s igna u n a ident if icación n u e v a o actual: -
z a d a a un ECS se e f ec túa una e n t r a d a d e IEC. Cada v e z q u e la ACC a p r u e b a un cam -
bio (es decir , s e expide u n a OCI) s e g e n e r a u n a en t r ada en el IEC. Cada v e z q u e se

rea l iza u n a audi tor ía d e la conf igurac ión los r e su l t ados s e r e p o r t a n c o m o par te de a
t a rea d e IEC. El r e su l t ado del IEC e s pos ib le co loca r lo en u n a b a s e d e d a t o s en línea

o en un sitio Web, d e m o d o q u e los desa r ro l l adores y los e n c a r g a d o s del manteni -
m i e n t o del s o f t w a r e p u e d e n t e n e r a c c e s o a la in fo rmac ión del c a m b i o mediar . : ;
ca t egor í a s clave. Además , s e g e n e r a un IEC con regula r idad y su finalidad e s man-
tener a los ges to re s y p ro f e s iona l e s a l e r t a s a n t e d e los c a m b i o s impor tan tes .

HERRAMIENTAS DE SOFTWARE

Soporte de la GCS
Objetivo: Las herramientas de GCS
proporcionan soporte a una o más d e las

actividades del proceso es tudiadas en la sección 27 .3 .

M e c á n i c a : La mayoría de tas modernas herramientas d e
GCS funciona en conjunto con un depósito (un sistema d e
b a s e d e datos) y ofrecen mecanismos p a r a identificar,
control d e la versión y el cambio, auditoría e informe.

Herramientas representativas6

CCC/Harvest, distribuida por Computer Associates
(www.cai.com), es un sistema de GCS multiplataforma.

ClearCose, desarrol lada por Rational (www.rational.com),
ofrece una familia de funciones d e GCS.

Concurrent Versions Syslem (SVC), una herramienta d e
fuente abier ta (www.cvshome.org), es uno d e los
sistemas d e control d e versión más ampliamente
empleados en la industria (véase un recuadro anterior).

PVCS, distribuida por Merant (www.merant.com), ofrece
un conjunto completo d e herramientas d e GCS que son
aplicables tanto en software convencional como en
WebApps. y

6 Las herramientas mencionadas sólo representan una muestra de esta categoría. En la mayoría de
los casos los nombres de las mismas son marcas registradas por sus respectivos desarrolladores

TM

PDF Editor

http://www.cai.com
http://www.rational.com
http://www.cvshome.org
http://www.merant.com

CAPÍTULO 2 7 GESTIÓN DEL CAMHO 8 1 5

/
f SourceForge, distribuida por VA Software

(sourceforge.net), ofrece gestión d e versión,
capac idades de construcción, seguimiento d e
p rob lemas /bugs y muchas otras características d e
gestión.

5 .rroundSCM, desarrol lada por Seapine Software
(www.seapine.com), proporciona capac idades
completas de gestión del cambio.

V

Vesto, distribuida por Compac (www.vestasys.org), es un
sistema d e GCS d e dominio público que puede d a r
soporte tanto a proyectos pequeños (< 10 KLDC) como
a grandes (10 ,000 KLDC).

Una extensa lista d e herramientas comerciales y entornos
p a r a GCS, se puede encontrar en
www.cmtoday.com/yp/commercial . html.

\

? ¿Qué
• impacto

Sene un cambio
iescontrolado
sobre una
WebApp?

En la par te 3 d e es te libro s e e s tud ió la n a t u r a l e z a especia l d e las ap l icac iones Web
y el p r o c e s o d e ingenier ía Web necesa r io p a r a construir lo. Entre las m u c h a s ca rac -

ter ís t icas q u e d i fe renc ian a las WebApps del s o f t w a r e convenc iona l s e e n c u e n t r a la
n a t u r a l e z a ub icua del cambio .

La ingenier ía Web utiliza un m o d e l o d e p roceso inc remen ta l i terativo (capítulo 16)
q u e apl ica m u c h o s pr incipios de r ivados del desarro l lo de s o f t w a r e ágil (capítulo 4).
Al uti l izar e s te en foque , un equ ipo d e ingenier ía con f recuenc ia desar ro l la un incre-
m e n t o de WebApp en u n p e r i o d o muy cor to m e d i a n t e un e n f o q u e b a s a d o en el cl ien-

te. Los i n c r e m e n t o s s u b s e c u e n t e s a g r e g a n con t en ido y func iona l idad adic ionales , y
tal vez cada u n o i m p l e m e n t e c a m b i o s q u e c o n d u z c a n a con t en ido a u m e n t a d o ,
m e j o r facilidad de uso, es té t ica me jo rada , m e j o r navegac ión , d e s e m p e ñ o a u m e n t a -
d o y mayor segur idad . En consecuenc i a , en el m u n d o ágil de la ingenier ía Web el
c a m b i o se ve de m a n e r a un p o c o diferente .

Los ingen ie ros Web d e b e n adop ta r el cambio , e incluso un típico e q u i p o ágil evita

t o d a s las c o s a s q u e p a r e c e n p e s a d o s p rocesos , bu roc rá t i cos y fo rmales . Por lo g e n e -
ral, s e cons idera (aunque incor rec tamente) q u e la gest ión d e la conf igurac ión del
s o f t w a r e p o s e e e s t a s caracter ís t icas . Esta a p a r e n t e cont radicc ión s e resue lve al n o
r e c h a z a r los principios, p rác t i cas y h e r r a m i e n t a s d e la GCS, s ino m á s b ien m o l d e á n -
dolas para sa t i s facer las n e c e s i d a d e s espec ia les de los proyec tos d e ingenier ía Web.

27.4.1 Problemas en la gestión de la configuración para WebApps
C o n f o r m e las WebApps s e vue lven c a d a vez m á s i m p o r t a n t e s para la sobrev ivenc ia
y el c rec imien to d e los negocios , c rece la neces idad de la ges t ión d e la conf igurac ión .
¿Por qué? Porque sin con t ro les e f i caces los c a m b i o s i n a d e c u a d o s a u n a WebApp
(recuérdese q u e la inmed ia t ez y la evoluc ión con t inua son los a t r ibu tos d o m i n a n t e s
d e m u c h a s WebApps) conduc i r í an a la d i fus ión n o a u t o r i z a d a d e in fo rmac ión d e un
n u e v o produc to ; func iona l idad e r r ó n e a o p o b r e m e n t e p r o b a d a que f rus t ra a los visi-
t an t e s a un sitio Web; hoyos e n la s egur idad q u e p o n e n en peligro los s i s t e m a s inter-

n o s d e la c o m p a ñ í a ; y o t r a s c o n s e c u e n c i a s e c o n ó m i c a m e n t e d e s a g r a d a b l e s o inclu-
s o d e s a s t r o s a s .

TM

PDF Editor

http://www.seapine.com
http://www.vestasys.org
http://www.cmtoday.com/yp/commercial

8 1 6 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Las estrategias generales para la gestión de configuración del sof tware (GCS) des-
critas en este capítulo son aplicables, pero las tácticas y herramientas se deber
adaptar para que concuerden con la naturaleza única de las WebApps. Se deben con-
siderar cuatro temas cuando se desarrollen tácticas para la gestión de la configura-
ción de la WebApp: contenido, personal, escalabilidad y políticas.

Contenido . Una WebApp típica contiene una amplia variedad de contenido: texto
gráficos, applets, guiones, archivos de audio/video, formatos, e lementos de página
activos, tablas, datos clasificados por niveles y muchos otros. El reto e s organizar
este océano de contenido en un conjunto racional de objetos de configuración (sec-
ción 27.1.4) y luego establecer mecanismos de control de configuración adecuados
para dichos objetos.

Personal . Puesto que un porcentaje significativo del desarrollo de la WebApp con-
tinúa real izándose en una forma ad hoc, cualquier persona involucrada en la
WebApp puede (y con frecuencia lo hace) crear contenido. Muchos creadores de
contenido no tienen conocimientos de ingeniería del sof tware e ignoran por com-
pleto la importancia de la gestión de la configuración. Por lo tanto, la aplicación
crece y cambia en una forma descontrolada.

Escalabil idad. Las técnicas y los controles aplicados a u n a WebApp pequeña no
se escalan bien hacia arriba. No es inusual que una WebApp simple crezca signifi-
cat ivamente conforme se implementan interconexiones con los s is temas de infor-
mación existentes, bases de datos, depósitos de datos y portales. Conforme crecen
el t amaño y la complejidad, los cambios pequeños pueden tener efectos de largo
alcance e imprevistos que pueden ser problemáticos. En consecuencia, el rigor de
los mecanismos de control de la configuración debe ser directamente proporciona-
les a la escala de la aplicación.

Polít icas. ¿Quién "posee" una WebApp? Esta pregunta se plantea en compañías
grandes y pequeñas, y su respuesta tiene un impacto significativo en las actividades
de gestión y control asociadas con la IWeb. En ciertas instancias, los desarrolladores
Web se ubican fuera de la organización TI, lo que crea potenciales dificultades de
comunicación. Dart [DAR99] sugiere las siguientes preguntas para ayudar a enten-
der las políticas asociadas con la IWeb:

M : ¿c°m° s e • ¿Quién asume la responsabilidad de la precisión de la información en el sitio
• determina Web?

Quién t i e n e lo
responsabilidad * ¿ Q u i é n asegura que se han seguido los procesos de control de calidad an tes
de la GC de la de que la información se publique en el sitio?

W^App? • ¿Quién es el responsable de realizar los cambios?

• ¿Quién asume el costo del cambio?

Las respuestas a es tas preguntas ayudan a determinar a las personas que, dentro
de una organización, deben adoptar un proceso de gestión de la configuración para
las WebApps.

TM

PDF Editor

C A P Í T U L O 2 7 GESTIÓN DEL CAMBIO 817

27.4.2 Objetos de configuración WebApp
Las WebApps a b a r c a n una ampl ia g a m a d e ob j e to s d e conf igurac ión: ob j e to s d e c o n -
ten ido (por e j emplo , texto, gráf icos , imágenes , video, audio), c o m p o n e n t e s funcio-
na les (por ejemplo, guiones, applets) y obje tos de interfaz (por ejemplo, COM o CORBA).

Los ob je tos WebApp se p u e d e n identif icar (as ignándoles n o m b r e s d e archivo) en
cualquier fo rma q u e sea ap rop iada p a r a la o rgan izac ión . Sin e m b a r g o , s e r e c o m i e n -
dan las s igu ien tes c o n v e n c i o n e s p a r a ga ran t i za r q u e s e c o n s e r v a la compat ibi l idad
en t r e p l a t a fo rmas c ruzadas : los n o m b r e s d e archivo d e b e n es ta r l imitados a 32 c a r a c -
t e r e s d e longitud, s e deben evi tar los n o m b r e s con m a y ú s c u l a s m e z c l a d a s o t o d a s
mayúscu la s , así c o m o el u s o d e subrayados . Además , las r e f e renc i a s URL (vínculos)

d e n t r o d e un ob j e to d e conf igurac ión s i empre d e b e n u sa r t rayector ias re la t ivas (por
e jemplo , . . . / p r o d u c t o s / s e n s o r e s d e a l a r m a . h t m l) .

Todo el c o n t e n i d o d e la WebApp t iene f o r m a t o y es t ruc tura . Los f o r m a t o s inter-
n o s d e a rch ivo los dic ta el e n t o r n o d e c ó m p u t o e n el q u e s e a l m a c e n a el con ten ido .
Sin e m b a r g o , el formato de representación (u sua lmen te l l amado formato de desplie-
gue) s e def ine con el et i lo es té t ico y las reglas d e d i s e ñ o e s t ab l ec idas p a r a la
WebApp. La estructura del contenido de f ine u n a a rqui tec tura d e con ten ido ; e s t o es:
de f ine la fo rma en la q u e los ob je tos d e con t en ido s e e n s a m b l a n para p r e s e n t a r
in fo rmac ión significativa a un usua r io final. Boiko IBOI02] de f ine la e s t ruc tu ra c o m o

" m a p a s q u e us ted t iende sob re un c o n j u n t o d e t rozos [objetos] d e con t en ido para
o rgan iza r lo s y hace r lo s acces ib le s a las p e r s o n a s q u e los neces i tan" .

27.4.3 Gestión del contenido
La gestión del contenido s e re lac iona con la ges t ión d e la conf igurac ión e n el s e n t i d o
en q u e un s i s t ema d e ges t ión del con t en ido (SGC) e s t ab l ece un p r o c e s o (apoyado por
he r r amien ta s) q u e adqu ie re c o n t e n i d o ex i s ten te (de un ampl io o r d e n a m i e n t o d e
ob j e to s d e conf igurac ión de la WebApp), los e s t ruc tu ra en u n a fo rma q u e pe rmi t e

p re sen t a r lo s a un usua r io final y luego los o f r e c e al e n t o r n o del l ado del c l iente p a r a
su desp l iegue .

"La ges t ión del contenido es un an t ído to p a r a el f renes í in format ivo de la ac tua l idad . "
Bob Boiko

El u s o m á s c o m ú n del s i s t ema de ges t ión del con t en ido o c u r r e c u a n d o s e cons -
truye una WebApp d inámica . Este t ipo d e WebApp crea p á g i n a s Web "al vuelo". Es

decir , u s u a l m e n t e el u sua r io consu l t a la WebApp so l ic i tando in fo rmac ión especí f ica .
La WebApp consu l t a una b a s e d e da tos , f o r m a t e a la in fo rmac ión en c o n c o r d a n c i a y
la p resen ta al usuar io . Por e jemplo , u n a c o m p a ñ í a mus ica l o f r ece una librería d e CD
e n ven ta . C u a n d o un usua r io solicita un CD o su equ iva len te en mús ica e lec t rónica ,
s e consu l t a u n a b a s e d e d a t o s y u n a va r i edad d e in fo rmac ión ace rca del ar t is ta , el
CD (por e jemplo , su po r t ada o gráfica), el con t en ido musica l y m u e s t r a s d e aud io s e
d e s c a r g a n y conf iguran en una plantilla d e c o n t e n i d o e s t ánda r . La pág ina Web resul-

TM

PDF Editor

818 PARTE C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

\ CLAVE
El s u b s i s t e m a d e
colección aba rca t o d a s
las acc iones q u e s e
requieren pora crear ,
adquirir o convertir el
con ten ido en u n o
f o r m o q u e s e p u e d a
p re sen t a r en el l ado
del cl iente.

t an t e se cons t ruye e n el lado del servidor y p a s a al n a v e g a d o r del lado del clier.tr
para q u e la e x a m i n e el u sua r io final. En la figura 27.6 s e m u e s t r a u n a r e p r e s e n t a d o -
genér ica d e esto.

En el s en t ido m á s genera l , u n SGC "conf igura" el con t en ido p a r a el u s u a r i o f r
al invocar t r e s s u b s i s t e m a s in tegrados : de colección, d e ges t ión y d e publicación
[B0102).

El s u b s i s t e m a d e c o l e c c i ó n . El con t en ido p r o c e d e de los d a t o s y la información
q u e debe c rea r o adquir i r un desar ro l lador de con ten ido . El subsistema de colección
a b a r c a t odas las a c c i o n e s q u e s e requ ie ren p a r a c rea r y / o adquir i r con ten ido , as.
c o m o las func iones t écn icas n e c e s a r i a s para 1) convert i r el con t en ido en una for-
m a t o q u e se p u e d a r ep re sen t a r e n un l engua je d e m a r c a s (por e jemplo , HTML, XML

y 2) o rgan iza r el con t en ido e n p a q u e t e s q u e s e p u e d a n desp lega r con ef icacia en e
lado del cl iente.

El s u b s i s t e m a d e g e s t i ó n . Una v e z q u e el c o n t e n i d o existe d e b e g u a r d a r s e en u n
depósi to , ca t a loga r se p a r a adquis ic ión y uso s u b s e c u e n t e s , y e t ique ta r se p a r a definir

1) su e s t a d o ac tua l (por e j emplo , el ob j e to d e con t en ido es tá comple to o en desar ro-
llo), 2) la versión ap rop iada del ob je to de conten ido , y 3) los ob j e to s d e conten ido

re lac ionados . Por lo tan to , el subsistema de gestión i m p l e m e n t a u n depós i to que
a b a r c a los s igu ien tes e l emen tos :

• Base de datos de contenido: la e s t ruc tu ra de in fo rmac ión q u e s e ha es tab lec ido
p a r a a l m a c e n a r todos los ob je tos de con ten ido .

Sistema d e
gestión del
contenido
(SGC).

Base d e da los

Plantillas

Sistema d e
gestión del
contenido

C ó d i g o
HTML + gu iones

N a v e g a d o r l ado del cliente

Lado de! servidor

TM

PDF Editor

CAPÍTULO 27 GESTIÓN DEL C A M B I O 819

\
CI?AVE
a s i s t e ™ d e

i implemento un
) pora todo el
o. Lo gestión

i c configuración se
w a cobo dentro de
i s 9JÍBÍstemo.

CLAVE
u x s t e m o de

i obtiene
) del depósito

« sntrego o los
r.*jodores en el lodo

m iente .

• Capacidades de la base de datos funciones que permiten al SGC buscar objetos
de contenido específicos (o categorías de objetos), a lmacenar y recuperar los
objetos, y gestionar la estructura de archivos que se ha establecido para el
contenido.

• Funciones de gestión de la configuración: los e lementos funcionales y flujo de
t rabajo asociado que soportan la identificación del objeto de contenido,
control de la versión, gestión del cambio, auditoria del cambio y creación de
informes.

Además de estos elementos, el subsistema de gestión implementa una función de
administración que abarca los metada tos y reglas que controlan la estructura global
del contenido y la forma en la que recibe soporte.

El s u b s i s t e m a d e publ icación. El contenido se debe extraer del depósito, con-
vertirse en una forma que esté dispuesta para la publicación y formatearse de modo
que sea posible transmitirlo a los navegadores del lado del cliente. El subsistema de
publicación logra es tas tareas mediante una serie de plantillas. Cada plantilla es una
función que construye una publicación empleando uno de tres componen tes dife-
r e n t e s [B0102]:

• Elementos estáticos: los textos, gráficos, medios audiovisuales y guiones que
ya no requieren procesamiento ulterior se transmiten directamente al lado del

cliente.

• Servicios de publicación: función que solicita servicios específicos de recupera-
ción y formateo que personalizan el contenido (mediante reglas predefinidas),
efectúan conversión de datos y construyen vínculos de navegación apro-
piados.

• Servicios extemos: proporcionan acceso a infraestructura de información
corporativa externa como datos de la empresa o aplicaciones de "cuarto
trasero".

Un sistema de gestión de contenido que abarque cada uno de es tos subsis temas e s
aplicable a grandes proyectos de ingeniería Web. Sin embargo, la filosofía básica y la
funcionalidad asociados con un SGC son aplicables a todas las WebApps dinámicas.

•

Gestión del contenido
O b j e t i v o : Auxiliar a los ingenieros d e
software y desarrolladores d e contenido a

gestionar el contenido que se incorpora en las WebApps .

M e c á n i c a : Las herramientas en esta categoría permiten
zue los ingenieros W e b y proveedores d e contenido
actualicen el contenido d e una WebApp en una forma

V "

HERRAMIENTAS DE SOFTWARE

controlada. La mayoría establece un simple sistema d e
gestión d e archivos que asigna actualización página por
pág ina y permisos d e edición pa ra varios tipos d e
contenido WebApp . Algunos mantienen un sistema de
versiones d e modo que se pueden lograr versiones previas
d e contenido p a r a propósitos históricos.

y

TM

PDF Editor

8 2 0 PAETE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

H e r r a m i e n t a s r e p r e s e n t a t i v a s 7

Contení Management Tools Suite, desarrollada por
interaclivetools.com (www.interactivetools.com/), es un
conjunto de herramientas de gestión de contenido que
se enfoca en la gestión del contenido para dominios de
aplicación específicos (por ejemplo, artículos nuevos,
avisos clasificados, bienes raíces).

eklron-CMS300, desarrollada por ektron
(www.ektron.com), es un conjunto de herramientas que
ofrece capacidades de gestión de contenido, as! como
herramientas de desarrollo Web.

OmniUpdate, desarrollada por WebsiteASP, Inc.
(www.omniupdate.com), es una herramienta que
permite a los proveedores de contenido autorizados
desarrollar actualizaciones controladas de contenido
WebApp especificado.

N
Tower IDM, desarrollada por Tower Technologies

(www.towertech.com), es un sistema de procesamiento
de documentos y depósito de contenido para gestionar
todas las formas de información comercial no
estructurada: imágenes, formatos, informes generados
por computadora, cuentas y facturas, documentos
oficiales, correo electrónico y contenido Web.

En los siguientes sitios Web se puede encontrar
información adicional acerca de la GCS y las
herramientas de gestión del contenido pa ra ingeniería
Web:

Web Developer's Virtual Encyclopedia (www.wdlv.com),
WebDeveloper (www.webdeveloper.com), Developer Shed
(www.devshed.com), webknowhow.net
(www.webknowhow.net) o WebReference
(www. webreference .com).

27.4.4 Gestión del cambio
El flujo de trabajo asociado con el control del cambio para software convencional
(sección 27.3.3) generalmente es demasiado laborioso para la ingeniería Web. Es
improbable que se logre la secuencia petición de cambios, informe de cambio v
orden de cambio de ingeniería en una forma ágil y aceptable para la mayoría de los
proyectos de desarrollo WebApp, Entonces, ¿cómo se gestiona una corriente conti-
nua de cambios solicitada para el contenido y la funcionalidad de la WebApp?

La implementación de una gestión de cambio eficaz dentro de la filosofía "codifi-
ca y ve" que continúe dominando el desarrollo de las WebApps requiere modificar el
proceso de control de cambios convencional. Cada cambio se debe clasificar en una
de cuatro clases:

Clase I: un cambio de contenido o función que corrija un error o mejore el conte-
nido o funcionalidad locales.

Clase 2: un cambio de contenido o función que tenga impacto sobre otros objetos
de contenido o componentes funcionales.

Clase 3: un cambio de contenido o función que tenga amplio impacto a través de
una WebApp (por ejemplo, gran ampliación de la funcionalidad, mejora significativa
o reducción del contenido, grandes cambios requeridos en la navegación).

Clase 4: un gran cambio de diseño (por ejemplo, un cambio en el diseño de la
interfaz o enfoque de navegación) que inmediatamente apreciarán una o más cate-
gorías de usuarios.

7 Las herramientas expuestas sólo representan una muestra de esta categoría. En la mayoría de los
casos los nombres de las mismas son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.interactivetools.com/
http://www.ektron.com
http://www.omniupdate.com
http://www.towertech.com
http://www.wdlv.com
http://www.webdeveloper.com
http://www.devshed.com
http://www.webknowhow.net

CAPÍTULO 27 GESTIÓN DEL CAMBIO 821

3estíón d e
cambios
p a r a
WebApps.

Una vez clasificados los cambios solicitados se pueden procesar de acuerdo con
el algoritmo mostrado en la figura 27.7.

En la misma figura, los cambios de las clases I y 2 se tratan de manera informal
y se manejan en una forma ágil. En un cambio de clase 1 el ingeniero Web evalúa el
impacto del cambio, pero no se requiere revisión o documentación externa.
Conforme se realiza el cambio, los procedimientos estándar de entrada y salida se
refuerzan mediante las herramientas de configuración de depósito. En cuanto a los
cambios de la clase 2, es obligación del ingeniero Web revisar el impacto del cam-
bio sobre objetos relacionados (o pedir a los desarrolladores responsables de éstos
que lo hagan). Si el cambio es factible sin que se requieran cambios significativos en
otros objetos, la modificación ocurre sin revisión o documentación adicional. Si se
requieren cambios sustantivos, son necesarias evaluación y planificación ulteriores.

Cambio clase 2

Desarrollar b reve
descripción escrita e v a l u a n d o

Transmitir a lodos
los par t ic ipantes

Transmitir a todos
los miembros de l

Cambios
requeridos en
objetos
relacionados

Se requiere Y
más
evaluación I De ocuerdo

len realización

5e requiere
más
evaluoción

("Sal ida" d e objeto(s) ^
d ser cambiado!*) J

/Efectuar cambios d i s e ñ o A
\ construcción, p r u e b a J

Cambio clase 1

Cambio clase 3

Cambio clase 4

TM

PDF Editor

822 PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Los cambios de las clases 3 y 4 también se tratan en una forma ágil, pero se
requieren alguna documentación descriptiva y más procedimientos de revisiones
formales. Los cambios de la clase 3 requieren el desarrollo de una descripción de.
cambio que ofrezca una breve evaluación del impacto del cambio. La descripción se
distribuye entre todos los miembros del equipo de ingeniería Web, quienes lo revi-
san para evaluar mejor su impacto. También respecto a los cambios de la clase 4 se
desarrolla una descripción del cambio, pero en este caso la revisión la llevan a cabo
todos los participantes.

HERRAMIENTAS DE SOFTWARE
Gestión del cambio

M O b j e t i v o : Auxiliar a los ingenieros Web y
desarrolladores de contenido a gestionar los

cambios conforme se realizan éstos en objetos de
configuración WebApp.

M e c á n i c a : Las herramientas en esta categoría
originalmente fueron desarrolladas para software
convencional, pero es posible adaptar las a la ingeniería
W e b y realizar cambios controlados en las WebApps.

Herramientas representativas 8

ChangeMan WCM, desarrollada por Serena
(www.serena.com), es una de un conjunto de
herramientas

de gestión del cambio que ofrece capacidades de GCS.

ClearCase, desarrollada por Rational (www.rational.com),
es un conjunto de herramientas que ofrecen
capacidades completas de gestión d e configuración
pa ra WebApps.

PVCS, desarrollada por Merant (www.merant.com), es un
conjunto de herramientas que ofrecen capacidades
completas de gestión de configuración pa ra WebApps.

Source Inlegríty, desarrollada por mks (www.mks.com), es
una herramienta GCS que se puede integrar con
entornos de desarrollo seleccionados.

J
27.4.5 Control de la versión
Conforme una WebApp evoluciona por medio de una serie de incrementos, es posi-
ble que existan al mismo tiempo varias versiones diferentes. Una versión (la WebApp
operativa actual) está disponible para los usuarios finales por Internet; otra versión
(el siguiente incremento de la WebApp) quizá esté en las e tapas finales de prueba
previas al lanzamiento; una tercera versión es tá en desarrollo y representa una gran
actualización en contenido, estética de interfaz y funcionalidad. Los objetos de con-
figuración deben estar claramente definidos, de modo que cada uno pueda estar
asociado con la versión adecuada. Además, deben estar establecidos los mecanis-
mos de control. Dreilinger [DRE99] aborda la importancia del control de la versión (y
del cambio) cuando escribe:

En un sitio descontrolado, donde múltiples autores tienen acceso para editar y contribuir,
surge el potencial para el conflicto y los problemas, más aún si los autores trabajan desde

8 Las herramientas expuestas sólo representan una muestra de esta categoría. En la mayoría de los
casos los nombres de las mismas son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.serena.com
http://www.rational.com
http://www.merant.com
http://www.mks.com

C A P Í T U L O 2 7 GESTIÓN DEL CAMBIO 823

diferentes oficinas en distintos momen tos del día y la noche. Usted puede pasar el día me-
jorando el archivo index.html para un cliente. Después que ha realizado los cambios, otro
desarrollador, quien trabaja en su casa después de su jornada laboral, o en otra oficina,
puede pasar la noche ca rgando su propia novedosa versión revisada del archivo
index.html, ¡y sobrescribir por completo el trabajo que usted ha realizado, sin forma alguna

de retroceder!

Esta situación debe sonar familiar a todos los ingenieros de software, así como a
todos los ingenieros Web. Para evitarlo, se debe establecer un proceso de control de
la versión.

1. Se debe establecer un depósito central para el proyecto WebApp. El depósito con-
tendrá las versiones actuales de todos los objetos de configuración de la Web-
App (contenido, componentes funcionales y otros).

2. Cada ingeniero Web crea su propia carpeta de trabajo. La carpeta contiene
aquellos objetos creados o cambiados en algún momento dado.

3. Los relojes en las estaciones de trabajo de todos los desarroíladores deben estar
sincronizados. Esto tiene como fin evitar los conflictos de sobrescritura
cuando dos desarroíladores realizan actualizaciones que están muy cercanas
en el tiempo una de otra.

4 . Conforme se desarrollan nuevos objetos de configuración o se cambian los obje-
tos existentes se importan al depósito central. La herramienta de control de la
versión (véase el estudio precedente del SVC en este capítulo) gestionará to-
das las funciones de entrada y salida de las carpetas de trabajo de cada inge-
niero Web.

5. Conforme los objetos se importan al o exportan del depósito se elabora un men-
saje automático de registro cronometrado. Esto ofrece información útil para au-
ditoría y se puede convertir en parte de un efectivo esquema de elaboración
de informes.

La herramienta de control de la versión mantiene diferentes versiones de la WebApp
y puede revertirse a una versión más antigua si se requiere.

27.4.6 Auditoría y elaboración de informes

En búsqueda de agilidad, las funciones de auditoría y elaboración de informes no se
resaltan en el trabajo de ingeniería Web. Sin embargo, no se eliminan por completo.
Todos los objetos que entran o salen del depósito se anotan en un registro que puede
revisarse en cualquier punto en el tiempo. Es factible crear un informe de registro
completo de modo que todos los miembros del equipo de ingeniería Web tengan una
cronología de los cambios sobre un periodo definido. Además, se envía una notifi-
cación automática de correo electrónico (dirigida a los desarroíladores y participan-
tes interesados) cada vez que un objeto entre o salga del depósito.

TM

PDF Editor

PARTE CUATRO GESTIÓN DE PROYECTOS DE SOFTWARE

Estándares de GCS
y La siguiente lista de estándares GCS

(procedente en parte de www, 12207.com) es
razonablemente extensa:

Estándares IEEE s t a n d a r d s . i e e e . o r g / c a t a l o g /
olis

I N F O R M A C I Ó N

IEEE 828

IEEE 1042

Estándares ISO

ISO 10007-1995

ISO/IEC 12207

ISO/IEC TR 15271

ISO/IEC TR 15846

Estándares EIA
EIA 6 4 9

EIA CMB4-1A

EIA CMB4-2

EIA CMB4-3

EIA CMB4-4

Planes de gestión de configuración
del software

Gestión de configuración del
software

w w w . i s o . c h / i s o / e n /
ISOOonline.frontpage

Gestión de calidad, lineamientos
pa ra GC

Tecnología de información;
procesos de ciclo de vida de
software

Guía para ISO/IEC 12207

Ingeniería del software; procesos
de ciclo de vida de software;
gestión de configuración para
software

www.e ia .o rg /
Estándar de consenso nacional

para gestión de configuración

Definiciones de gestión de la
configuración para programas de
computadoras digitales

Identificación de configuración
para programas de computadoras
digitales

Librerías de software de
computadora

Control de cambio de
configuración para programas de
computadoras digitales

EIA CMB6-1C

EIA CMB6-3

EIA CMB6-4

EIA CMB6-5

EIA CMB7-1

Estándares
militares
e s tadounidenses

DoD MIL STD-973

MIL-HDBK-61

Otros e s tándares

DO-178B

ESA PSS-05-09

AECL CE-1001-STD
rev. 1

DOE SCM lista de
verificación

BS-6488

Mejores prócticas-RU

CMII

Referencias de gestión de
configuración y datos

Identificación de configuración

Control de configuración

Libro de texto para contabilidad d e
estado de configuración

Intercambio electrónico de datos de
gestión de configuración

www-library.itsi .disa.mil

Gestión de configuración

Guía para gestión de configuración

Directrices para el desarrollo de
software de aviación

Guía para gestión de configuración
de software

Estándar para ingeniería del
software de software de seguridad
crítico

cio.doe.gov/ITReform/sqse/
download/cmcklst.doc

British Std., gestión de
configuración de sistemas
basados en computadora

Oficina de comercio
gubernamental: www.ogc.gov.uk

Instituto de mejores prácticas en
GC: www.icmhq.com

Una Guía de recursos de gestión de configuración ofrece
información complementaria para aquellos interesados en
procesos y prácticas de GC. Está disponible en
www.quality.org/config/cm-guide.html.

y

La gestión de configuración del software es una actividad protectora que se aplica a
lo largo del proceso de software. La GCS identifica, controla, audita e informa modi-
ficaciones que invariablemente ocurren mientras se desarrolla software y después de

TM

PDF Editor

http://www.iso.ch/iso/en/
http://www.eia.org/
http://www.ogc.gov.uk
http://www.icmhq.com
http://www.quality.org/config/cm-guide.html

C A P Í T U L O 2 7 GESTIÓN DEL CAMBO 825

que se le libera a un cliente. Toda la información producida como parte de la inge-
niería del software se vuelve parte de una configuración de software. La configura-
ción está organizada de forma que permite la gestión ordenada del cambio.

La configuración del software está compuesta de un conjunto de objetos interre-
lacionados, también llamados elementos de configuración del software, que se pro-
ducen debido a alguna actividad de ingeniería del software. Además de documentos,
programas y datos, el entorno de desarrollo que se utiliza para crear software tam-
bién se puede colocar bajo control de configuración. Todos los ECS se guardan en un
depósito que implementa mecanismos y estructuras de datos para garantizar la inte-
gridad de los datos, ofrece soporte de integración para otras herramientas de soft-
ware, apoya la distribución de información entre los miembros del equipo de software
e implementa funciones en apoyo del control de la versión y del cambio.

Una vez desarrollado y revisado un objeto de configuración se convierte en línea
base. Los cambios a un objeto convertido en línea base generan la creación de una
nueva versión de dicho objeto. La evolución de un programa puede seguirse al exa-
minar la historia de revisión de todos los objetos de configuración. Los objetos básicos
y compuestos forman una piscina de objetos a partir de la que se crean las versio-
nes. El control de la versión es el conjunto de procedimientos y herramientas para
gestionar el empleo de dichos objetos.

El control de cambios es una actividad de procedimiento que asegura la calidad y
la consistencia conforme los cambios se realizan en un objeto de configuración. El
proceso de control de cambios comienza con una petición de cambio, conduce a una
decisión para aceptar o rechazarla y culmina con una actualización controlada del
ECS que se cambiará.

La auditoría de la configuración es una actividad de SQA que ayuda a garantizar
que la calidad se conserva conforme se realizan los cambios. Los informes de esta-
do ofrecen información acerca de cada cambio a quienes tengan necesidad de cono-
cerla.

La gestión de la configuración para ingeniería Web es similar en muchos aspec-
tos a la GCS para el software convencional. Sin embargo, cada una de las tareas
principales de GCS se deben destacar para hacerlas tan simples como sea posible, y
se deben implementar provisiones especiales para la gestión del contenido.

1BAB86] Babich, W. A., Software Conjiguration Management, Addison-Wesley, 1986.
[BAC98J Bach, J„ "The Highs and Lows of Change Control", en Computer, vol. 31, núm. 8, agos-

to de 1988, pp. 113-115.
(BER80) Bersoff, E. H., V. D. Henderson y S. G. Siegel, Software Conjiguration Management,

Prentice-Hall, 1980.
[BOIÜ2] Boiko, B., Content Management Bible, Hungry Minds Publishing, 2002.
[CH0891 Choi, S. C„ y W. Scacchi, "Assuring the Correctness of a Configured Software Description",

Procs. 2nd Intl. Workshop on Software Conñguraaon Management, ACM, Princeton, NJ, octubre de
1989, pp. 66-75.

TM

PDF Editor

3 2 6 P A R T E C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

[CVS02] Concurren! Versions System Web site, www.cvshome.org, 2002.
(DAR91] Dart, S., "Concepts in Configuration Management Systems", Proc. Third Inlernalioni

Workshop on Software Configuration Management, ACM SIGSOFT, 1991, se puede descarg ; -
de:ht tp : / /www.sei .cmu.edu/ legacy/scm/abst rac ts /abscm_concepts .h tml .

(DAR99) Dart, S„ "Change Management: Containing the Web Crisis", Proc. Software Configuranc -
Management Symposium, Toulouse, Francia, 1999, disponible en h t tp : / /www. perforce.coir
perforce/conf99/dar t .html .

[DAR01] Dart, S., Spectrum of Functionality in Configuration Management Systems, Software Er-
gineering Institute, 2001, disponible en h t tp : / /www.se i .cmu.edu/ legacy/scm/ tech_rep
TR11_90/TOC_TRI l_90.html.

[DRE99] Dreilinger, S.. "CVS Versión Control for Web Site Projects", 1999, disponible en
h t tp : / /www.durak.org/cvswebsi tes /howto-cvs /howto-cvs .h tml .

[FOR89] Forte, G., "Rally Round the Repository", en CASE Outlook, diciembre de 1989, pp. 5-27
[GRI95) Griffen, J„ "Repositories: Data Dictionary Descendant Can Extend Legacy Code lnvestment"

en Application Development Trends, abril de 1995, pp. 65-71.
[GUS89] Gustavsson, A„ "Maintaining the Evolution of Software Objects in an Integratec

Environment", Proc. 2nd Intl. Workshop on Software Configuration Management, ACM
Princeton, NJ, octubre de 1989, pp. 114-117.

[HAR89] Harter, R., "Configuration Management", en HPProfessional, vol. 3, núm. 6, junio de 1989.
|1EE94] Software Engineering Standards, edición 1994, IEEE Computer Society, 1994.
UAC02) Jacobson, I., "A resounding 'Yes' to Agile Processes-But Also More", en Cutter IT Journal.

vol. 15, núm. 1, enero de 2002, pp. 18-24.
[REI89] Reichenberger, C., "Orthogonal Versión Management", Proc. 2nd Intl. Workshop on

Software Configuration Management, ACM, Princeton, NJ, octubre de 1989, pp. 137-140.
[SHA95] Sharon, D., y R. Bell, "Tools That Bind: Creating Integrated Environments", IEEE

Software, marzo de 1995, pp. 76-85.
[TAY85] Taylor, B., "A Database Approach to Configuration Management for Large Projects".

Proc. Conf Software Maintenance-1985, IEEE, noviembre de 1985, pp. 15-23.

2 7 . 1 . ¿Por qué es cierta la primera ley de la ingeniería de sistemas? Ofrecer ejemplos específicos
de cada una de las cuatro razones fundamentales para el cambio.

27.2. ¿cuá les son los cuatro e lementos que existen cuando se implementa un s is tema eficaz
de GCS? Comentar cada uno brevemente.

2 7 . 3 . Con palabras propias, coméntense las razones para las lineas base.

2 7 . 4 . Suponga que usted es el gestor de un pequeño proyecto. ¿Qué líneas base definiría para
el proyecto y cómo las controlaría?

2 7 . 5 . Emplear UML agregados o compuestos (capítulo 8) para describir las interrelaciones entre
los ECS (objetos de configuración) en la lista de la sección 27.1.4.

2 7 . 6 . Diseñar un s is tema de base de da tos (depósito) de proyecto que le permitiría a un
ingeniero de sof tware a lmacenar , realizar referencias cruzadas , rastrear, actualizar y cambiar
todos los e l emen tos impor tan tes de configuración de sof tware . ¿Cómo mane ja r ía la ba se de
datos las diferentes versiones del mismo programa? ¿El código fuente se manejaría de manera
diferente a la documentación? ¿Cómo se evitaría que dos desarrolladores realizasen diferentes
cambios al mismo ECS en forma simultánea?

2 7 . 7 . Investigar una herramienta existente de GCS y describir cómo implementa el control de
las versiones y los objetos de configuración en general.

2 7 . 8 . Las re laciones <parte de> e <interrelacionado> represen tan relaciones s imples ent re
obje tos de configuración. Describir c inco re laciones adicionales que puedan ser útiles en el
contexto de un depósito de GCS.

TM

PDF Editor

http://www.cvshome.org
http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_concepts.html
http://www
http://www.sei.cmu.edu/legacy/scm/tech_rep
http://www.durak.org/cvswebsites/howto-cvs/howto-cvs.html

C A P Í T U L O 2 7 GESTIÓN DEL CAMBKD 827

2 7 . 9 . Investigar una her ramienta exis tente de GCS y describir cómo implementa los
m e c a n i s m o s de control de vers iones De mane ra al ternativa, leer dos o t res de los art ículos
acerca de GCS y describir las di ferentes es t ruc turas de da tos y mecan i smos de referencia que
se emplean para el control de las versiones

2 7 . 1 0 . Con la figura 27.5 c o m o guia, desarrol lar un análisis todavía más deta l lado para el
control del cambio. Describir el papel de la ACC y sugerir formatos para la petición del cambio,
el informe del cambio y la OCI.

2 7 . 1 1 . Desarrollar una lista de verificación pa ra emplearla du ran te las audi tor ías de la
configuración.

2 7 . 1 2 . ¿Cuál es la diferencia entre una auditoría GCS y una revisión técnica formal? ¿Sus funciones
se pueden juntar en una revisión? ¿Cuáles son los pros y los contras?

2 7 . 1 3 . Describir brevemente las diferencias ent re GCS para el sof tware convencional y la GCS
para WebApps.

2 7 . 1 4 . ¿Qué es la gestión del contenido? Empléese la Web para investigar las características de una
herramienta de gestión del contenido y ofrézcase un breve resumen.

Lyon [Practical CM, Raven Publishing, 2003, disponible en www.configuration.org) ha escrito
una guía detallada para profesionales de GC que incluye directrices pragmáticas para imple-
mentar cada aspecto de un sistema de gestión de la configuración (actualizado anualmente).
Hass {Conjiguration Management: Principies and Practice, Addison-Wesley, 2002) y León [A Guide
to Sojtware Conjiguration Management, Artech House, 2000) ofrecen exámenes útiles del tema.
White y Clemm (Sojtware Conjiguration Management Strategies and Rationai CiearCase, Addison-
Wesley, 2000) presentan la GCS dentro del contexto de una de las más populares herramientas
de GCS.

Mikkelsen y Pherigo (Practical Sojtware Conjiguration Management: The Latenight Developer's
Handbook, Allyn & Bacon, 1997) y Compton y Callahan (Conjiguration Management for
Sojtware, VanNostrand-Reinhold, 1994) ofrecen guias pragmáticas acerca de importantes
prácticas de GCS. Ben-Menachem (Sojtware Configuration Management Guidebook, McGraw-
Hill, 1994) y Ayer y Patrinnostro (Sojtware Conjiguration Management, McGraw-Hill, 1992)
presentan buenos panoramas para quienes necesitan mayor introducción a la materia. Berlack
(Sojtware Conjiguration Management, Wiley, 1992) presenta un examen útil de conceptos de
GCS, donde resalta la importancia del depósito y las herramientas en la gestión del cambio.
Babich (BAB86) proporciona un tratamiento abreviado, aunque eficaz, de t emas pragmáticos
en la gestión de configuración del software. Arnold y Bohner (Sojtware Change impact Analysis,
IEEE Computer Society Press, 1996) han editado una antología que estudia cómo analizar el
impacto del cambio al interior de s is temas complejos basados en software.

Berczuk y Appleton (Sojtware Conjiguration Management Patterns, Addison-Wesley, 2002)
presentan una diversidad de patrones útiles que auxilian en la comprensión de la GCS y la
implementación de sis temas de GCS eficaces. Brown et al. (Anti-Pattems and Patterns in
Sojtware Conjiguration Management, Wiley, 1999) estudian las cosas que no se hacen (antipa-
trones) cuando se implementa un proceso de GCS y luego consideran sus remedios.

Buckley (Implementing Conjiguration Management, IEEE Computer Society Press, 1993)
considera enfoques de gestión de la configuración para todos los e lementos del sistema
—hardware, sof tware y firmware— con estudios detallados de las principales actividades de
GC. Rawlings (SCM for Network Development Environments, McGraw-Hill, 1994) considera el
impacto de la GCS para desarrollo de software en un entorno de red. Bays (Sojtware Release
Methodology, Prentice-Hall, 1999) presenta una colección de mejores prácticas para todas las
actividades que ocurren después de que se r ea l zan cambios en una aplicación.

Conforme las WebApps se vuelven más dmámicas. la gestión del contenido se vuelve un
tópico esencial para los ingenieros Web Los libros de Addey y sus colegas (Contení Manage-

TM

PDF Editor

http://www.configuration.org

828 P A R T E C U A T R O GESTIÓN DE PROYECTOS DE SOFTWARE

ment Systems, Glasshaus, 2003), Boiko [B0102], Hackos (Contení Managementfor Dynamic l'.fci-
Delivery, Wiley, 2002), Nakano (Web Content Management, Addison-Wesley, 2001) presentar,
valiosos tratamientos de la materia.

En Internet hay disponible una amplia variedad de fuentes de información acerca de la
gestión de configuración del software. Una lista actualizada de referencias en la World Wic;
Web se puede encontrar en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

A

Cinco
TEMAS AVANZADOS EN

INGENIERÍA DEL SOFTWARE

En esta parte de Ingeniería del software. Un enfoque práctico
se consideran varios temas avanzados que ampliarán la
comprensión del lector acerca de la ingeniería del software.

En los siguientes capítulos se abordarán las siguientes preguntas:

• ¿Qué notación y preliminares matemáticos ("métodos for-
males") se requieren para especificar formalmente el soft-
ware?

• ¿Qué actividades técnicas clave se llevan a cabo durante el
proceso de ingeniería del software de sala limpia?

• ¿Cómo se emplea la ingeniería del software basada en com-
ponentes para crear sistemas a partir de componentes reuti-
lizables?

• ¿Qué actividades técnicas se requieren para la reingeniería
del software?

• ¿Cuáles son las tendencias futuras de la ingeniería del soft-
ware?

Una vez que se respondan estas preguntas, se entenderán los
temas que tienen la posibilidad de tener un profundo impacto
sobre la ingeniería del software durante la década siguiente.

8 2 9

TM

PDF Editor

C A P I T U L O

28
m m m m m

C O N C E P T O S

C L A V E

especificocióii

constructiva . . . 8 3 7

especificación

formal . 8 4 2

e squemas 8 4 9

e s t a d a s 8 3 4

invariante

de d o l o s 8 3 5

lenguaje Z 8 4 9

OCl 8 4 S

operaciones . . . 8 3 4

operadores de

conjuntos 8 3 8

operadores

lógicos 8 4 0

pre y
postondiciones .835

M É T O D O S
FORMALES

Los métodos de la ingeniería del software se pueden clasificar sobre un es-
pectro de "formalidad" ligeramente vinculado con el grado de rigor mate-
mático aplicado durante el análisis y el diseño. Por esta razón, los métodos

de análisis y diseño estudiados previamente en este libro se ubican en el extre-
mo informal del espectro. En la creación de modelos de análisis y diseño se uti-
lizan combinaciones de diagramas, texto, tablas y notación simple, pero se ha
aplicado poco rigor matemático.

Considérese ahora el otro extremo del espectro de formalidad. Aquí, una es-
pecificación y diseño se describen empleando sintaxis y semánticas formales
que especifican la función y el comportamiento del sistema. La especificación es
matemática en forma (por ejemplo, el cálculo de predicados se utiliza como ba-
se para un lenguaje formal de especificación).

En su estudio introductorio de los métodos formales, Anthony Hall [HAL90]
afirma;

Los métodos formales son controvertidos. Sus partidarios afirman que pueden revo-
lucionar el desarrollo [del software). Sus detractores piensan que son increíblemen-
te difíciles. Mientras tanto, para la mayoría de la gente, los métodos formales son tan
poco familiares que es difícil juzgar las afirmaciones en competencia.

En este capítulo se exploran los métodos formales y se examinan sus poten
cíales impactos sobre la ingeniería del software en los años por venir.

¿ Q u é e s ? Los métodos formales
permiten que un ingeniero de softwa-
re cree una especificación más com-
pleta, consistente y precisa que las
que se producen empleando métodos

convencionales. Se utilizan ta notación de teoría
de conjuntos y lógica para crear un claro plan-
teamiento de hechos (requisitos). Esta especifica-
ción matemática luego se analiza para mejorar
¡o incluso probar) su corrección y consistencia.
Puesto que la especificación se crea mediante
notación matemática, es inherentemente menos
ambiguo que los modos informales de representación.

¿Quién lo h a c e ? Un ingeniero de software espe-
cialmente entrenado crea una especificación for-
mal.

¿Por q u é e s i m p o r t a n t e ? En los sistemas de
seguridad o de misión críticas, las fallas tienen

un precio elevado. Cuando el software de com-
putadora falla es posible que se pierdan vidas o
surjan graves consecuencias económicas. En
tales situaciones es esencial que los errores sean
descubiertos antes de que el software sea pues-
to en operación. Los métodos formales reducen
sustancialmente los errores de especificación y,
como consecuencia, sirven como base para que
el software íenga tan pocos errores una vez que
el cliente comience a usarlo.

¿Cuáles son los p a s o s ? La notación y heurísti-
ca de conjuntos y la especificación constructiva
—operadores de conjuntos, operadores lógicos
y secuencias— forman la base de los métodos
formales. Éstos definen los datos invariantes,
estados y operaciones para la función de un sis-
tema al traducir los requisitos formales del pro-
blema en una representación más formal.

TM

PDF Editor

C A P Í T U L O 2 8 MÉTODOS FORMALES 831

¿Cuál e s el p r o d u c t o o b t e n i d o ? Cuando se
aplican los métodos formales se produce una
especificación representada en un lenguaje for-
mal como OCL o Z.

¿ C ó m o p u e d o e s t a r s e g u r o d e q u e lo h e
h e c h o c o r r e c t a m e n t e ? Puesto que los méto-
dos formales utilizan matemáticas discretas

como mecanismo de especificación, se aplican
pruebas lógicas a cada función del sistema para
demostrar que la especificación es correcta. Sin
embargo, incluso si no se aplican las pruebas
lógicas, la estructura y disciplina de una especi-
ficación formal conducirán a una calidad de
software mejorada.

2 8 . 1 C o n c e p t o s B Á S I C O S

La Encyclopedia of Sojtware Engineering (MAR94] define así los métodos formales:

Un método es formal si tiene sólidas bases matemáticas, usualmente proporcionadas por
un lenguaje formal de especificación. Esta base ofrece los medios de definir con precisión
nociones como consistencia y completud, y, con más relevancia, especificación, imple-
mentación y corrección.

Las propiedades deseadas de una especificación formal (consistencia, integridad
y falta de ambigüedad) son los objetivos de todos los métodos de especificación. Sin
embargo, emplear métodos formales resulta en una probabilidad mucho mayor de
lograr dichos ideales. La sintaxis de un lenguaje formal de especificación (sección
28.4) permite que los requisitos y el diseño se interpreten sólo en una forma, lo que
elimina la ambigüedad que con frecuencia ocurre cuando un lenguaje natural (por
ejemplo, inglés) o una notación gráfica debe interpretarlos un lector. Las facilidades
descriptivas de la teoría de conjuntos y la notación lógica (sección 28.2) permiten un
planteamiento claro de los hechos (requisitos). Para ser consistente, los hechos plan-
teados en un lugar en una especificación no deben contradecirse en otro sitio. La
consistencia se garantiza probando matemát icamente que los hechos iniciales pue-
den correlacionarse de manera formal (empleando reglas de inferencia) en plantea-
mientos posteriores dentro de la especificación.

"Los métodos formales tienen un enorme potencial pora mejorar la claridad y la precisión d e fas especificaciones d e
requisitos y paro encontrar los errores importantes y sutiles."

S teve Easterbrook el al.

La completud es difícil de lograr, aun cuando se apliquen los métodos formales.
Algunos aspectos de un sistema tal vez queden indefinidos mientras se crea la espe-
cificación; o t ras características quizá se omitan a propósito para permitir que los di-
señadores tengan cierta libertad de elección en el enfoque de implementación; y,
finalmente, es imposible considerar cada escenario operativo en un gran sistema
complejo. Las cosas tal vez se omitan por error

Aunque el formalismo que ofrecen las matemát icas es atractivo para a lgunos in-
genieros de software, o t ros (algunos dinan la mayoría) miran despect ivamente la vi-

TM

PDF Editor

832 P A U T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

^ C O N S E J O ^

Aunque un buen
Indice de documento
no puede eliminar los
contradicciones, sí
puede ayudar o descu-
bridos. Considérese lo
creación de un índice
poro los especifica-
ciones y otros docu-
mentos.

sión matemática del desarrollo del software. Comprender por qué un enfoque forn- ai
tiene su mérito requiere, primero, considerar las deficiencias asociadas con los e-
foques menos formales.

28.1.1 Deficiencias de los enfoques menos formales1

Los métodos estudiados para el análisis y el diseño en las par tes 2 y 3 de ese libr:
emplean ampl iamente el lenguaje natural y una extensa gama de notaciones grar"
cas. Aunque la aplicación cuidadosa de los métodos de análisis y diseño, en conjur-
to con revisiones exhaustivas, puede conducir y de hecho conduce a software de al: i
calidad, el descuido en la aplicación de es tos métodos crea una diversidad de prc
blemas. Una especificación de sistema puede contener contradicciones, ambigüeca
des, vaguedades, p lanteamientos incompletos y grados mixtos de abstracción.

Las contradicciones son conjuntos de planteamientos que divergen unos cor
otros. Por ejemplo, par te de una especificación de sistema puede afirmar que el sis-
tema debe supervisar todas las tempera turas en un reactor químico, mientras que
otra parte, que tal vez escribió otra persona, puede afirmar que sólo deben supervi-
sarse las temperaturas que ocurran dentro de cierto intervalo.

Las ambigüedades son planteamientos que se interpretan en varias formas. Por
ejemplo, el siguiente planteamiento e s ambiguo:

La identidad del operador consiste de su nombre y la contraseña; ésta consiste de seis dí-
gitos. Se debe mostrar en la UDV de seguridad y depositarse en el archivo de registro cuan-
do un operador se registre en el sistema.

En este fragmento, ¿se debe mostrar se refiere a la contraseña o a la identidad de!
operador?

Las vaguedades con frecuencia ocurren porque la especificación de un sistema es
un documento muy voluminoso. Lograr un elevado grado de precisión consistente-
mente es una tarea casi imposible.

"Cometer errores es humano. Repetirlos, t ambién . '
Malcolm F orbes

La incompletud es uno de los problemas que ocurren con mayor frecuencia con
las especificaciones del sistema. Por ejemplo, considérese el requisito funcional:

El sistema debe conservar el nivel horario del depósito a partir de los sensores profundos
situados en el depósito. Dichos valores deben almacenarse respecto de los seis meses an-
teriores.

Esto describe la parte principal del a lmacenamiento de datos de un sistema. Si uno
de los comandos para el sistema fuese:

1 Esta sección y otras en la primera parte de este capítulo se han adaptado del trabajo de Darrel Ince
para la edición europea de la quinta edición de Ingeniería del software. Un enfoque práctico.

TM

PDF Editor

C A P I T U L O 2 8 MÉTODOS FORMALES 833

^ O N S E J Ó ^

ios revisiones técnicos
(órnales eficaces
yueden eliminar
muchos de estos
problemas. Sin
embargo, algunos no
serón descubiertos.
Debe estarse alerta de
las deficiencias
áuronte el diseño, lo
:odificación y la
puesta a prueba.

La función del comando P R O M E D I O es desplegar en una PC el nivel de agua promedio pa-
ra un sensor particular entre dos tiempos.

y si supone que no se presentan más detalles para este comando, los detalles del co-
mando estarían ser iamente incompletos. Por ejemplo, la descripción del comando
no incluye lo que debería ocurrir si un usuario de un sistema especifica un t iempo
que fuese mayor a seis meses antes de la hora actual.

Los grados mixtos de abstracción ocurren cuando planteamientos muy abstractos
se mezclan al azar con planteamientos que tienen un grado mucho menor de deta-
lle. Aunque ambos tipos de planteamientos son importantes en la especificación de
un sistema, quienes la realizan con frecuencia manejan la mezcla en tal forma que
resulta muy difícil ver la arquitectura funcional global de un sistema.

28.1.2 Matemáticas en el desarrollo de software
Las matemáticas tienen muchas propiedades útiles para los desarroíladores de grandes
sistemas. Una es que se puede describir sucinta y exac tamente una situación física,
un objeto o el resultado de una acción. Es posible desarrollar una especificación de
un sistema basado en computadora empleando matemát icas especializadas, en for-
ma muy similar a la que un ingeniero eléctrico aplica las matemáticas para describir
un circuito.2

Las matemát icas sustentan la abstracción y por ende son un excelente medio pa
ra el modelado. Puesto que se trata de un medio exacto, existe poca posibilidad de
ambigüedad. Las especificaciones pueden validarse matemát icamente para contra-
dicciones e incompletudes, y se pueden eliminar las vaguedades. Además, las mate-
máticas se emplean para representar, en una forma organizada, grados de abstracción
en la especificación de un sistema.

Finalmente, las matemát icas ofrecen un alto grado de validación al emplear las
como un medio de desarrollo de software. Es posible aplicar una prueba matemáti-
ca para demostrar que un diseño encaja en una especificación y que el código del
programa es un reflejo correcto de un diseño.

28.1.3 Conceptos de métodos formales
La meta de esta sección es presentar los principales conceptos involucrados en la es-
pecificación matemática de los sistemas de software, sin atiborrar al lector con dema-
siados detalles matemáticos. Esto se logra empleado unos cuantos ejemplos simples.

Ejemplo 1: una tabla d e s í m b o l o s . Un programa se emplea para mantener una
tabla de símbolos, la cual se utiliza f recuentemente en diferentes tipos de aplicacio-

2 En este momento es adecuada una advertencia. Las especificaciones del sistema matemático que
se presentan en este capitulo no son tan sucintas como una especificación matemática para un cir-
cuito simple. Los sistemas de software sor - Monamente complejos y seria irreal esperar que se po-
drían especificar en una linea de mater- a!

TM

PDF Editor

8 3 4 PARTE C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

<s>;
%
cfovE

Un invariante de datos
es un conjunto de
condiciones verdaderas

ejecución del sistemo
que contiene una
colección de datos.

^ O N S I J O ^ .

Otra forma de
observo/la noción de
estado es decir que
los datos determinan
el estado. Esto es, se
pueden examinarlos
datos para ver en qué
estado estó el
sistema.

nes. Consiste de una colección de e lementos sin duplicación alguna. En la figura 28.1
se muestra un ejemplo de una tabla de símbolos común. En ella se representa la ta-
bla que utiliza un sistema operativo para retener los nombres de los usuarios del sis-
tema. Otros ejemplos de tablas incluyen la colección de nombres del personal de ur
sistema de nómina o la colección de los nombres de computadoras en un sistema de
comunicaciones en red.

Supóngase que la tabla presentada en este ejemplo consiste de no más de Maxlds
miembros de personal. Este planteamiento, que coloca una restricción en la tabla, es
un componente de una condición conocida como invariante de datos, una importan-
te idea que se retomará a lo largo de este capítulo.

Un invariante de datos es una condición verdadera a lo largo de la ejecución de.
sistema que contiene una colección de datos. La invariante de datos que se mantie-
ne para la tabla de símbolos apenas estudiada tiene dos componentes: 1) que la ta-
bla contendrá no más de Maxlds nombres y 2) que no habrá nombres duplicados er
la tabla. En el caso del programa de tabla de símbolos, es to significa que no impor-
ta cuándo se examine la tabla durante la ejecución del sistema, siempre contendré
no más de Maxlds identificadores de personal y no incluirá duplicados.

Otro concepto importante es el de estado. Muchos lenguajes formales, como OCL
(sección 28.5), utilizan la noción de es tado como se le estudió en los capítulos 7 y 8
e s decir: un sistema puede estar en uno de varios estados, y cada uno de ellos repre-
senta un modo de comportamiento observable externamente. Sin embargo, una de-
finición diferente para el término estado se utiliza en el lenguaje Z (sección 28.6). Er.
z (y en lenguajes relacionados), el es tado de un sistema se representa mediante los
datos a lmacenados del sistema (por tanto, Z sugiere un número mucho mayor de es-
tados, que representan cada posible configuración de los datos). Al emplear la últi-
ma definición en el ejemplo del programa de tabla de símbolos, el es tado es la tabla
de símbolos.

El concepto final es el de operación. Ésta es una acción que ocurre dentro de un
sistema y lee o escribe datos. Si el programa de tabla de símbolos está preocupado

Tab la d e
símbolos.

Maxlds = 10

1. Wilson

2, Simpson

3. Abel

4. Fernandez

5.

6.
7.

8.

9.

1 0 .

TM

PDF Editor

CAPÍTULO 28 MÉTODOS FORMALES 835

^ O N S E J Ó ^

_3 técnicas de lluvia
é ideas pueden
\ncmar bien cuando
¡e áebe desarrollar un
'wriante de datos

;aa una función rozo-
•:tkmente compleja,

lado miembro del
equipo de software
~ene que escribir los
mites, restricciones y

imitaciones para lo
ijnción y luego combi-
-ryfos y editarlas.

por añadir y remover nombres de personal de la tabla de símbolos, entonces estará
asociado con dos operaciones: una para añadir un nombre específico a la tabla de
símbolos, y una para eliminar un nombre existente de la tabla. 4 Si el programa ofre-
ce la capacidad de verificar si un nombre específico está en la tabla, entonces habría
una operación que regresaría alguna indicación acerca de la presencia del nombre
en la tabla.

Tres tipos de condiciones se asocian con las operaciones: invariantes, precondi-
ciones y poscondiciones. Un invariante define lo que está garant izado que no cam-
biará. Por ejemplo, la tabla de símbolos tiene un invariante que establece que el nú-
mero de e lementos siempre será menor o igual a Maxlds. Una precondición define las
circunstancias en las cuales es válida una operación particular. Por ejemplo, la pre-
condición para una operación que añade un nombre a la tabla de símbolos de iden-
tificadores de personal sólo es válida si el nombre no está en la tabla y también si en
ésta existen menos de Maxlds identificadores de personal. La poscondición de una
operación define lo que está garant izado que será cierto hasta completar una ope-
ración. Esto lo define su efecto sobre los datos. En el ejemplo de una operación que
añade un identificador a la tabla de símbolos de identificadores de personal, la pos-
condición especificaría matemát icamente que la tabla ha aumentado con el nuevo
identificador.

Ejemplo 2: un g e s t o r d e b loques . Una de las partes más importantes del siste-
ma operativo de una computadora es el subsistema que mantiene los archivos que
hayan creado los usuarios. Parte del subsistema de archivado e s el gestor de bloques.
Los archivos en el archivero están compuestos de bloques de a lmacenamiento que
se mant ienen en un dispositivo de a lmacenamiento de archivos. Durante la opera-

Gestor de
bloques.

Bloques no usados

1 3 4 6 9 Bloques usados

2 5 7 8 10
11 12

Cuando se borran
los archivos, los bloques

Fila para entrar en los bloques no usados s e ' ' ^ e , a n a '° ' ' '° rn ¿i
Archivo #1 Archivo #2 Archivo #3

La cola de bloques contiene bloques provenientes de los archivos borrados

3 Se debe señalar que añadir un nombre -o puede ocurrir en el estado lleno, y que borrar un nombre
es imposible en el estado vacio

TM

PDF Editor

836 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

ción de la computadora, los archivos se crearán y borrarán, lo que requiere la adqui-
sición y liberación de bloques de almacenamiento. El subsistema de archivado lidiará
con esto manteniendo un depósito de bloques no utilizados (libres) y dará segui-
miento a los bloques que actualmente están en uso. Cuando se borra un archivo, los
bloques liberados normalmente se agregan a una fila de bloques que esperan ser
agregados al depósito de bloques no utilizados. Esto se muestra en la figura 28.2. En
esta figura se muestran varios componentes: el depósito de bloques no utilizados,
los bloques que actualmente constituyen los archivos que administra el sistema ope-
rativo y aquellos bloques que esperan agregarse al depósito. Los bloques en espera
se mantienen en una fila, y cada elemento de ésta contiene un conjunto de bloques
provenientes de un archivo borrado.

En este subsistema el estado es la colección de bloques libres, la colección de blo-
ques utilizados y la fila de bloques devueltos. El invariante de datos, expresado en
lenguaje natural, es:

• Ningún bloque será marcado a la vez como no utilizado y utilizado.

• Todos los conjuntos de bloques mantenidos en la fila serán subconjuntos de
la colección de bloques actualmente usados.

• Ningún número de bloque pertenecerá a dos o más elementos de la fila.

• La colección de bloques utilizados y no utilizados será la colección total de
bloques que configuran los archivos.

• La colección de bloques no utilizados no tendrá números de bloque duplica-
dos.

• La colección de bloques utilizados no tendrá números de bloque duplicados.

Algunas de las operaciones asociadas con el invariante de datos son: añadirf) una
colección de bloques al final de la fila, eliminar() una colección de bloques utiliza-
dos del frente de la fila y colocarlos en la colección de bloques no utilizados, y verifi-
car() si la fila de bloques está vacía.

La precondición de la primera operación es que los bloques que se añadirán de-
ben estar en la condición de bloques utilizados. La poscondición es que la colección
de bloques ahora se encuentra al final de la fila. La precondición de la segunda ope-
ración es que la fila debe tener al menos un elemento en ella. La operación final
—verificar si la fila de bloques devueltos está vacía— no tiene precondición. Esto sig-
nifica que la operación siempre está definida, sin importar de qué valor sea el esta-
do. La poscondición entrega el valor cierto si la fila está vacía y f a l s o de cualquier otro
modo.

En los ejemplos tratados en esta sección se introducen los conceptos clave de la es-
pecificación formal. Esto se hizo sin resaltar las matemáticas que se requieren para for-
malizar la especificación. En la sección 28.2 se consideran tales matemáticas.

TM

PDF Editor

C A P Í T U L O 2 8 MÉTODOS FORMALES 837

La aplicación eficaz de los métodos formales requiere que un ingeniero de software
tenga un conocimiento operativo de la notación matemática asociada con los con-
juntos y las secuencias, y de la notación lógica utilizada en el cálculo de predicados.
La finalidad de la sección es proporcionar una breve introducción al tema. Para una
exposición más detallada, se recomienda al lector consultar libros dedicados a estos
temas (por ejemplo, [WIL87], [GRI93] y [ROS95]).

28.2.1 Conjuntos y especificación constructiva
Un conjunto es una colección de objetos o elementos, y se utiliza como piedra angu-
lar de los métodos formales. Los elementos que contiene un conjunto son únicos (es
decir: no se permiten duplicaciones). Los conjuntos con un número pequeño de ele-
mentos se escriben dentro de llaves, con los elementos separados por comas. Por
ejemplo, el conjunto

|C++, Smalltalk, Ada, COBOL, Java)

contiene los nombres de cinco lenguajes de programación.
El orden en el que aparecen los elementos dentro de un conjunto es irrelevante.

Al número de elementos en un conjunto se le conoce como cardinalidad. El opera-
dor # proporciona la cardinalidad de un conjunto. Por ejemplo, la expresión

#{A, B, C, D) = 4

implica que se ha aplicado el operador cardinalidad al conjunto mostrado, con un re-
sultado que indica el número de elementos en el conjunto.

Existen dos formas de definir un conjunto. Un conjunto se define enumerando sus
elementos (así se han definido los conjuntos mencionados). El segundo enfoque
consiste en crear una especificación constructiva de conjuntos. La forma general de los
miembros de un conjunto se especifica empleando una expresión booleana. La es-
pecificación constructiva de conjuntos es preferible a la enumeración porque ello
permite una definición sucinta de conjuntos grandes. También define explícitamen-
te la regla que se aplicó al construir el conjunto. Considérese el siguiente ejemplo de
especificación constructiva:

|n : N I n < 3 • n¡

Esta especificación tiene tres componentes: una firma, n : N; un predicado, n < 3; y
un término, n. La firma especifica el intervalo de valores que se considerarán cuan-
do se forme el conjunto; el predicado (una expresión Booleana) define cómo se res-
tringirá el conjunto; y, finalmente, el término brinda la forma general del elemento
del conjunto. En el ejemplo anter ior , ' , representa los números naturales; por lo tan-
to, se considerarán los números naturales El predicado indica que sólo se incluirán

•
¿ Q u é e s

e spec i f i cac ión

construct iva d e

conjuntos?

TM

PDF Editor

838 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

^ O N S U O ^

Es indispensable el
conocimiento de los
operaciones de
conjuntos cuando se
desarrollen especifica-
ciones formales. Debe
pasarse algún tiempo
familiarizándose con
cado una, sise tiene
la intención de aplicar
métodos formales.

los números naturales menores que 3; y el término especifica que cada e lemento ce
conjunto será de la forma n. En consecuencia, esta especificación define el conjunt :

10, 1 , 2)

Cuando la forma de los e lementos de un conjunto es obvia, el término se puede om¡
tir. Por ejemplo, el conjunto precedente se podría especificar como

{/i : N I n < 3)

Todos los conjuntos que se han descrito tienen e lementos que son e lementos indi-
viduales. También se pueden formar conjuntos a partir de e lementos que sean pa-
res, t emas , etcétera. Por ejemplo, la especificación de conjunto

{x,y : N Ix +y = 10 • (x ,y 2))

describe el conjunto de pares de números naturales que tienen la forma (x.y2) y don-
de la suma de x ey es 10. Éste e s el conjunto

{(1,81), (2, 64), (3, 49) , -)

Obviamente, la especificación constructiva de conjuntos requerida para represen-
tar algún componente de software de computadora será considerablemente m á s
compleja que las ano tadas aquí. Sin embargo, la forma y estructura básicas perma-
necen iguales.

28.2.2 Operadores de conjuntos
En la representación de operaciones de conjuntos y lógicas se utiliza simbologla es-
pecializada. El ingeniero de sof tware que pretenda aplicar los métodos formales de-
be comprender es tos símbolos.

El operador e indica la pertenencia de un conjunto. Por ejemplo, la expresión

x E X

tiene el valor verdadero si x e s miembro del conjunto X y el valor falso en caso con-
trario. Por ejemplo, el predicado

12 e |6, 1, 12, 22)

tiene el valor verdadero dado que 12 e s miembro del conjunto.
El opuesto del operador e e s el operador e . La expresión

x e X

tiene el valor verdadero si x no e s miembro del conjunto X y falso en caso contrario.
Por ejemplo, el predicado

13 z {13, 1, 124,22)

tiene el valor falso.
Los operadores e y e tienen conjuntos como sus operandos. El predicado

ACB

TM

PDF Editor

C A P Í T U L O 2 8 MÉTODOS FORMALES 839

tiene el valor verdadero si los miembros del c o n j u n t o s están en el conjunto 6 y tie-
ne el valor falso en caso contrario. Por lo tanto, el predicado

(1,2) c {4, 3, 1,2}

tiene el valor verdadero. Sin embargo, el predicado

{HD1, LP4, RC5) C |HD1, RC2, HD3, LP1, LP4, LP6)

tiene un valor de falso porque el e lemento RC5 no está en el conjunto a la derecha
del operador.

El operador c e s similar a c . Sin embargo, si sus operandos son iguales, tiene el
valor verdadero. Por lo tanto, el valor del predicado

¡HD1, LP4, RC5} C |HDl, RC2, HD3, LP1, LP4, LP6|

e s falso, y el predicado

(HD1, LP4, RC5} C (HD1, LP4, RC51

e s verdadero.

—
" t a s estructuras matemáticas están ent re los descubrimientos más hermosos realizados por la mente h u m a n a . "

Doug la s H a f s t a d t e r

Un conjunto especial es el conjunto vacío 0 . Éste corresponde a cero en las ma-
temáticas normales. El conjunto vacío tiene la propiedad de ser un subconjunto de
cualquier otro conjunto. Dos útiles identidades que involucran al conjunto vacío son

01>A=A y 0DA = 0

para cualquier conjunto A, donde u se conoce como el operador unión, a veces co-
nocido como taza; n e s el operador intersección, a veces conocido como gorra.

El operador unión admite dos conjuntos y forma uno que contiene los e lementos
de los dos conjuntos y elimina los duplicados. Por lo tanto, el resultado de la expre-
sión

{Archivol, Archivo2, Impuesto, Compilador) u (ImpuestoNuevo, D2, D3, Archi-
V02)

es el conjunto

(Archivol, Archivo2, Impuesto, Compilador, ImpuestoNuevo, D2, D3)

El operador de intersección admite dos conjuntos y forma uno que consiste de los
e lementos comunes en cada conjunto. Por lo tanto, la expresión

(12, 4, 99, 1} n {1, 13, 12, 77)

genera el conjunto (12, 1).
El operador diferencia de conjuntos, \, como su nombre sugiere, forma un

conjunto al eliminar los e lementos de su segundo operando de los e lementos de su
primer operando. Por lo tanto, el valor de la expresión

TM

PDF Editor

9 4 0 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

(Nuevo, Viejo, Archivolmpuesto, ParamSisj \ (Viejo, ParamSis)

genera el conjunto (Nuevo, Archivolmpuesto).
El valor de la expresión

(a, b, c, d) n (x,y)

será el conjunto vacío 0 . El operador siempre proporciona un conjunto; sin embar-
go, en este caso no existen elementos comunes entre sus operandos, así que el con-
junto resultante no tendrá elementos.

El operador final es el producto cruzado, x , a veces conocido como producto car-
tesiano. Éste tiene dos operandos. El resultado es un conjunto de pares donde cada
par consiste de un elemento tomado del primer operando combinado con un ele-
mento del segundo. Un ejemplo de una expresión que involucra al producto cruza-
do es

(1, 2) x {4, 5, 6)

El resultado de esta expresión es

((1,4), (1,5), (1,6), (2, 4), (2,5), (2,6))

Nótese que cada elemento del primer operando está combinado con cada uno de los
elementos del segundo.

Un concepto importante en los métodos formales es el de conjunto potencia. Un
conjunto potencia de un conjunto es la colección de todos los posibles subconjuntos
de dicho conjunto. El símbolo que se utiliza para este operador de conjunto en este
capítulo es P. Se trata de un operador unitario que, cuando se aplica a un conjunto,
devuelve el conjunto de subconjuntos de su operando. Por ejemplo,

P (1, 2 , 3) = { 0 , (1), (2), (3), (1 , 2) , (1, 3) , (2 , 3) , (1, 2 , 3))

ya que todos los conjuntos son subconjuntos de (1, 2, 3).

28.2.3 Operadores lógicos
Otro componente importante de un método formal es la lógica: el álgebra de expre-
siones verdaderas y falsas. El significado de los operadores lógicos comunes lo com-
prende bien cualquier ingeniero de software. Sin embargo, los operadores lógicos
asociados con los lenguajes de programación comunes se escriben empleando sím-
bolos disponibles fácilmente en el teclado. Los operadores matemáticos equivalen-
tes son

A y

V o

-i no

=> implica

La cuantificación universal es una forma de elaborar un planteamiento acerca de
los elementos de un conjunto que resulta verdadero para cualquier miembro del

TM

PDF Editor

C A P Í T U L O 2 8 MÉTODOS FORMALES 841

conjunto. La cuantificación universal utiliza el símbolo v. Un ejemplo de su utiliza-
ción es

V , N • i >j =* i 2 > j 2

en donde se establece que para cada par de valores en el conjunto de números na-
turales, si / es mayor que j, entonces i2 es mayor que j2.

28.2.4 Sucesiones
Una sucesión es una estructura matemática que modela el hecho de que sus elemen-
tos están ordenados. Una sucesión s es un conjunto de pares cuyos elementos va-
rían de 1 al elemento de mayor número. Por ejemplo,

{(1, Jones), (2, Wilson), (3, Shapiro), (4, Estavez)]

es una sucesión. Los elementos que forman los primeros elementos de los pares se
conocen colectivamente como dominio de la sucesión, y la colección de segundos
elementos se conoce como el intervalo de la sucesión. En este libro, las sucesiones
están indicadas mediante corchetes angulados. Por ejemplo, la sucesión precedente
normalmente se escribiría como (Jones, Wilson, Shapiro, Estavez).

A diferencia de los conjuntos, la duplicación se permite en una sucesión, cuyo or-
den es importante. Por lo tanto,

(Jones, Wilson, Shapiro) * (Jones, Shapiro, Wilson)

La sucesión vacía se representa como ().
En las especificaciones formales se utilizan varios operadores de sucesión. La

concatenación, —, es un operador binario que forma una sucesión construida al
agregar su segundo operando al final de su primer operando. Por ejemplo,

(2 , 3 , 3 4 , 1) (12,33,34,200)

genera la sucesión (2, 3, 34, 1,12, 33, 34, 200).
Otros operadores que se aplican a las sucesiones son cabeza, cola, frente y último.

El operador cabeza extrae el primer elemento de una sucesión; cola proporciona los
últimos n - 1 elementos en una sucesión de longitud n; último extrae el elemento fi-
nal en una sucesión; y frente proporciona los primeros n - 1 elementos en una suce-
sión de longitud n. Por ejemplo,

cabeza (2, 3, 34, 1, 99, 101) = 2
cola (2, 3, 34, 1, 99, 101) = (3, 34, 1, 99, 101)
último (2, 3 ,34, 1,99, 101)= 101

frente (2, 3, 34, 1, 99, 101) = (2, 3, 34, 1, 99)

Dado que una sucesión es un conjunto de pares, se pueden aplicar todos los opera-
dores de conjunto descritos en la sección 28.2.2. Cuando se emplea una sucesión en
un estado, se debe designar mediante la palabra seq. Por ejemplo,

ArchivoLista : seq ARCHIVOS
NumUsuarios : N

TM

PDF Editor

342 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

describen un estado con dos componentes: una sucesión de archivos y un número
natural.

28.3 APLICACIÓN PE LA NOTACIÓN MATEMÁTICA PARA LA «ACION FORMAL

^ ¿Cómo s e
• pueden

r e p r e s e n t a r los
e s t a d o s e
i n v a r i a n t e s de
iiftlAr a m h I a a h i i a aaiu> empieunuo
los o p e r a d o r e s
lógicos y de
conjuntos que
ya se han
in t roducido?

Infotmoción ex t emo
acerco de ios métodos
formales s e puede en-
contrar en . w w w ,
afm.sbu.ac .uk .

El empleo de la notación matemát ica en la especificación formal de un componente
de sof tware se ilustrará repasando el gestor de bloques presentado en la sección
28.1.3. Un importante componente de un sistema operativo de computadora mantie-
ne los archivos que han creado los usuarios. El gestor de bloques mant iene un de-
pósito de bloques no utilizados y también seguirá los bloques actualmente en uso
Cuando se liberan bloques de un archivo borrado normalmente se añaden a una fi-
la de bloques que esperan ser añadidos al depósito de bloques no utilizados. En la
figura 28.2 se ha bosquejado esto esquemáticamente. 4

Un conjunto llamado BLOQUES consistirá de todos los números de bloque. Todos-
Bloques es un conjunto de bloques que se ubica entre 1 y MáxBloques. El es tado lo
modelarán dos conjuntos y una sucesión. Los dos conjuntos son usados y Ubres. Am-
bos contienen bloques: el conjunto usados contiene los bloques que actualmente se
están utilizando en los archivos, y el conjunto libres contiene los bloques disponibles
para los archivos nuevos. La sucesión contendrá conjuntos de bloques que están lis-
tos para ser liberados de los archivos que se han borrado. El es tado se puede descri-
bir como

usados, libres-, P BLOQUES
FilaBloques: seq P BLOQUES

Esto es muy parecido a la declaración de variables de programa. Establece que usa
dos y libres serán conjuntos de bloques y que FilaBloques será una sucesión, cada
elemento de la cual será un conjunto de bloques. El invariante de datos se puede es-
cribir como

usados n libres = 0 A
usados u libres = TodosBloques A
V i: dom FilaBloques • FilaBloques i c usados A
V i, j: dom FilaBloques • i * j => FilaBloques i n FilaBloques j = 0

Los componentes matemát icos del invariante de datos se corresponden con cuatro
de los componentes de lenguaje natural marcados que se describieron anteriormente.
La primera línea del invariante de datos establece que no existirán bloques comunes
en las colecciones de bloques usados y libres. La segunda línea afirma que la colec-

4 Si no se recuerda bien el ejemplo del gestor de bloques, por favor véase de nuevo la sección 28.1.3
para revisar el invariante de datos, las operaciones, precondiciones y poscondiciones asociadas con
el gestor de bloques.

TM

PDF Editor

C A P Í T U L O 2 8 MÉTODOS F O R M A I S 843

ción de bloques usados y libres siempre será igual a toda la colección de bloques en
el sistema. La tercera linea indica que el i-ésimo elemento en la fila de bloques siem-
pre será un subconjunto de los bloques usados. La línea final afirma que, para cua-
lesquier dos elementos de la fila de bloques que no son el mismo, no habrá bloques
comunes en estos dos elementos. Los dos componentes finales de lenguaje natural del
invariante de datos se implementan en virtud del hecho de que usados y libres son
conjuntos y por lo tanto no contendrán duplicados.

La primera operación que se definirá es la que elimina un elemento de la cabeza
de la fila de bloques. La precondición es que debe existir al menos un elemento en
la fila:

FilaBloques > 0,

La poscondición es que la cabeza de la fila debe eliminarse y colocarse en la colec-
ción de bloques libres, y la Fila se debe ajustar para mostrar la eliminación:

usados' = usados \ cabeza FilaBloques A
libres' = libres u cabeza FilaBloques A
FilaBloques' = cola FilaBloques

Una convención que se utiliza en muchos métodos formales es que al valor de una
variable después de una operación se le pone prima. Por lo tanto, el primer compo-
nente de la expresión precedente afirma que los nuevos bloques usados {usados')
serán iguales a los antiguos bloques usados menos los bloques que se han elimina-
do. El segundo componente afirma que los nuevos bloques libres (libres') serán los
antiguos bloques libres más la cabeza de la fila de bloques. El tercer componente es-
tablece que la nueva fila de bloques será igual a la cola del antiguo valor de la fila de
bloques; esto es: todos los elementos en la fila, menos el primero.

Una segunda operación agrega una colección de bloques, Abloques, a la fila de
bloques. La precondición es que Abloques sea actualmente un conjunto de bloques
usados:

Abloques c usados

La poscondición es que el conjunto de bloques sea añadido al final de la fila, y el
conjunto de bloques usados y libres permanezca invariable:

FilaBloques' = FilaBloques -Abloques A
usados' = usados A
libres' = libres

No existe duda de que la especificación matemática de la fila de bloques es conside-
rablemente más rigurosa que una narración en lenguaje natural o un modelo gráfi-
co. El rigor adicional requiere esfuerzo, pero los beneficios obtenidos a partir de la
consistencia y la completud mejoradas se pueden justificar para muchos tipos de
aplicaciones.

^ ¿ C ó m o s e

V r e p r e s e n t a n

•sprey
M acondic iones?

TM

PDF Editor

344 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Un lenguaje formal de especificación usualmente está compuesto de tres componen-
tes principales: 1) una sintaxis que define la notación específica con la que se represen-
ta la especificación, 2) semántica para ayudar a definir un "universo de objetos" [WIN90]
que se empleará para describir el sistema, y 3) un conjunto de relaciones que definen las
reglas que indican cuáles objetos satisfacen adecuadamente la especificación.

Con frecuencia, el dominio sintáctico de un lenguaje formal de especificación se
basa en una sintaxis que se deriva de la notación estándar de la teoría de conjuntos
y el cálculo de predicados. Por ejemplo, variables tales como x,y y z describen un
conjunto de objetos que se relacionan con un problema (en ocasiones llamado da-
minio del discurso) y se utilizan en conjunto con los operadores descritos en la sec-
ción 28.2. Aunque la sintaxis usualmente es simbólica, también se pueden utilizar
iconos (por ejemplo, símbolos gráficos como cajas, flechas y círculos) si no son am-
biguos.

El dominio semántico de un lenguaje de especificación indica cómo el lenguaje re-
presenta los requisitos del sistema. Por ejemplo, un lenguaje de programación tiene
un conjunto de semánticas formales que permite al desarrollador de software espe-
cificar algoritmos que transforman entrada en salida. Se puede utilizar una gramáti-
ca formal (como BNF) para describir la sintaxis del lenguaje de programación. Sin
embargo, un lenguaje de programación no hace un buen lenguaje de especificación
porque sólo representa funciones de cómputo. Un lenguaje de especificación debe
tener un dominio semántico más amplio, es decir, debe ser capaz de expresar ideas
como "para toda x en un conjunto infinito A, existe una_y en un conjunto infinito B
tal que la propiedad P se mantiene para x y / ' [WIN90], Otros lenguajes de especifi-
cación aplican semánticas que permiten la especificación del comportamiento del
sistema. Por ejemplo, es posible desarrollar una sintaxis y una semántica para espe-
cificar estados y transiciones de estado, y eventos, junto con sus efectos sobre la
transición de estado, la sincronización y la temporalidad.

Es posible usar diferentes abstracciones semánticas para describir el mismo sis-
tema en diferentes formas. En el capítulo 8 esto se hizo en una manera menos for-
mal. Se representaron clases, datos, funciones y comportamiento. Se puede usar di-
ferente notación de modelado para representar el mismo sistema. La semántica de
cada representación ofrece visiones complementarias del sistema. Para ilustrar este
enfoque cuando se usan métodos formales, suponga que se usa un lenguaje formal
de especificación para describir al conjunto de eventos que provocan que ocurra un
estado particular en un sistema. Otra relación formal bosqueja todas las funciones
que ocurren dentro de un estado dado. La intersección de estas dos relaciones pro-
porciona una indicación de los eventos que causarán que ocurran funciones especi-
ficas.

En la actualidad se emplean varios lenguajes formales de especificación. OCL
[OMG03], Z ([1S002], [SPJ88], [SP192J), LARCH [GUT93] y VDM [JON91] son lenguajes

TM

PDF Editor

CAPÍTULO 2 8 MÉTODOS FORMALES 845

formales de especificación representativos que muestran las características anota-
das con anterioridad. En es te capitulo se presenta un breve panorama de OCLy Z.

P P H J P I M H 5

Referencia Web

xereoc
de encontrar»
www-3.ibm.tMii/
software/
awdtoolt/
faary/
itandords/
od.hlmf.

El lenguaje restringido a objetos (OCL, por sus siglas en inglés) es una notación formal de-
sarrollada de m o d o que los usuarios de UML puedan conferirle mayor precisión a sus
especificaciones. El lenguaje dispone de todo el poder de la lógica y la matemáticas
discretas. Sin embargo, los diseñadores de OCL decidieron que en este lenguaje sólo
deberían usarse caracteres ASCII (en lugar de notación matemática convencional). Es-
to permite que el lenguaje sea m á s asequible a las personas menos inclinadas a las
matemáticas y que la computadora los procese con mayor facilidad. Pero es to tam-
bién favorece que OCL sea un poco farragoso en algunos lugares.

28.5.1 Un breve panorama de la sintaxis y la semántica del OCL
La utilización del OCL requiere que un ingeniero de sof tware comience con uno o
m á s d iagramas UML: las clases, estados o d iagramas de actividad más comunes. Por
lo tanto, se agregan expresiones OCL que establecen hechos acerca de los elementos
de los diagramas. Estas expresiones se llaman restricciones; cualquier implementa-
ción derivada del modelo debe garantizar que cada una de las restricciones s iempre
permanezca verdadera.

Al igual que el lenguaje de programación orientado a objetos, una expresión OCL
involucra operadores que operan sobre los objetos. Sin embargo, el resultado de una
expresión completa siempre debe ser booleana, e s decir: verdadero o falso. Los ob-
jetos pueden ser instancias de la clase OCL Colecc ión, de la cual Conjunto y Su-
c e s i ó n son dos subclases.

El objeto s e l f (propio) es el e lemento del diagrama UML en cuyo contexto s e eva-
luará la expresión OCL. Se pueden obtener otros objetos al navegar usando el sím-
bolo . (punto) del objeto self. Por ejemplo:

• Si s e l f e s clase C, con atributo a, entonces self.a evalúa al objeto a lmacenado

en a.

• Si C tiene una asociación multívoca llamada asoc con otra clase D, entonces
seif.aeoc evalúa un Conjunto cuyos e lementos son del tipo D.

. Finalmente (y un poco más sutil), si D tiene un atributo b, en tonces la expre-
sión self.asoc.b evalúa el conjunto de todas las b que per tenecen a todas las D.

5 Esta sección es una aportación del profesor Timoíhv Lethbridge, de la Universidad de Ottawa, y se
presenta aquí medíate autorización

TM

PDF Editor

3 4 6 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

El OCL proporciona operaciones construidas que implementan las matemáticas
descritas en la sección 28.2, y más. En la tabla 28.1 se presenta una pequeña mues-
tra de estas operaciones.

T A B L A 2 8 . 1 R E S U M E N DE N O T A C I Ó N C L A V E O C L

N o t a c i ó n OCL S i g n i f i c a d o

x.y Obtiene la propiedad y del objeto x. Uno propiedad puede se?
un atributo, el conjunto de objetos al final de una asociación,
el resultado d e evoluar una operación u otras cosas que depe-
dan del tipo d e diagrama UML. Si x es un Conjunto, entonce;
y se aplica a todo elemento de x; los resultados se juntan en i -
nuevo Conjunto.

c - > « 1 Aplica la operación OCL incorporada f a la Colección c mis-
ma (en oposición a cado uno d e los objetos en c). Los ejemplo:
de operaciones incorporadas se presentan líneas aba jo .

y, or, = , O y lógica, o lógica, igual, no igual.

p implies q Verdadero si q es verdadera o p es falsa.

M u e s t r a d e o p e r a c i o n e s s o b r e c o l e c c i o n e s (inc luye c o n j u n t o s y s e c u e n c i a s)

c - > s i z e (] Número de elementos en lo Colección c.

c ->esEmpty |) Verdadero si c no tiene elementos, falso d e cualquier otro mo-
do.

e l — > i nc 1 udesAI l(c 2) Verdadero si todo elemento d e c2 se encuentra en c 1.

e l ->excludesAII(c2| Verdadeio si ningún elemento d e c 2 se encuentra en e l .

e l ->forAII(elem 1 boolexpr) Verdadero si boolexpr ¡expresión booleana) es verdadera cuan-
d o se aplica a lodo elemento d e c. Conforme se evalúa un ele-
mento, se liga a la variable elem |elemento|. que se puede usar
en boolexpr. Esto implementa cuantificación universal, estudia-
da previamente.

c->forAII(eleml, e¡em2 1 boolexprl Lo mismo que antes, excepto que boolexpr se evalúa para lo-
do posible par d e elementos lomados d e c, incluso casos don-
d e el par consiste del mismo elemento.

c - > i s unique|elem 1 expr| Verdadero si expr (expresión] evalúa un valor diferente cuando
se aplica a lodo elementa de c.

M u e s t r a d e o p e r a c i o n e s e s p e c í f i c a s a c o n j u n t o s

s i ->interseclion(s2) El conjunto de aquellos elementos que se encuentran
en si y también en s2.

si ->un ion(s2 | El conjunto de aquellos elementos que se encuentran
en si o en s2.

si ->excluding(x) El conjunto si con el objeto x omitido.

M u e s t r a d e o p e r a c i ó n e s p e c i f i c a a s e c u e n c i a s

seq—>first() El objeto que es el primer elemento en la sucesión seq.

TM

PDF Editor

CAPÍTULO 28 MÉTODOS FORMALES 8 4 7

28.5.2 Ejemplo de uso del OCL

En esta sección se utiliza el OCL para ayudar a formalizar la especificación del ejem-
plo del gestor de bloques, introducido en la sección 28.1.3. El primer paso consiste
en desarrollar un modelo UML. En este ejemplo se comienza con el diagrama de cla-
se de la figura 28.3. Este diagrama especifica muchas relaciones entre los objetos in-
volucrados; sin embargo, se deben agregar expresiones OCL que garanticen que
quienes implementen el sistema conozcan con mayor precisión qué deben asegurar
que permanezca verdadero conforme se desarrolle el sistema.

Las expresiones OCL que se agregarán corresponden a las seis partes del inva-
riante tratadas en la sección 28.1,3. Respecto de cada una se repetirá el invariante
en español y luego se brindará la correspondiente expresión OCL. Se considera una
buena práctica ofrecer el texto en español junto con la lógica formal; hacerlo ayuda
al lector a comprender la lógica, y también apoya a los revisores a descubrir errores,
por ejemplo: situaciones donde el español y la lógica no correspondan.

1. Ningún bloque se marcará al mismo tiempo como no usado y usado.

contex t GestorBIoques inv:

(se l f .usados->in te rsec t ion(se l f . l ib res)) - > isEmpty()

Nótese que cada expresión comienza con la palabra clave context (contexto). Esto in-
dica el elemento del diagrama UML que la expresión restringe. En forma alterna, el
ingeniero de software podría colocar la restricción directamente en el diagrama
UML, rodeada por llaves {). La palabra clave self se refiere a la instancia de GestorBIo-
ques ; e n l o q u e s i g u e , c o m o e s p e r m i s i b l e e n OCL, s e o m i t i r á self.

2. Todos los conjuntos de bloques que se mantienen en la cola serán subconjun-
tos de la colección de bloques usados actualmente.

context GestorBIoques inv:

co laBloques->forAII (aConjuntoBloques I usados->inc ludesAII (aConjuntoBloques))

D i a g r a m a d e
c l a s e p a r a u n
g e s t o r d e
b l o q u e s .

TM

PDF Editor

848 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

3. Ningún número de bloque pertenecerá a dos o más elementos de la fila.

context GestorBIoques inv:

co laBloques->forAII (con jun toBloques l , con jun toBloques2 |

conjuntoBloquest O conjuntoBloques2 ¡mplies

c o n j u n t o B l o q u e s l . e l e m e n t o s , n ú m e r o — > e x c l u d e s A I I (c o n j u n t o B l o q u e s 2 .

e lementos .número))

La expresión antes de implies (implica) es necesaria para asegurar que se igno-
ran los pares donde ambos elementos son el mismo bloque.

4 . La colección de bloques utilizados y bloques sin usar será la colección total de
bloques que constituyen los archivos,

context GestorBIoques inv:

alIBIooks = u s a d o s - > u n ¡ o n (l ¡ b r e s)

5. La colección de bloques sin usar no tendrá números de bloques duplicados,

context GestorBIoques inv:

l ib res ->¡sUnique(aBloque | aBloque.número)

6. La colección de bloques utilizados no tendrá números de bloques duplicados,

context GestorBIoques inv:

u s a d o s - > i s U n i q u e (a B l o q u e | aBloque.número)

El OCL también se utiliza para especificar precondiciones y poscondiciones de
operaciones. Por ejemplo, considérense las operaciones que eliminan y agregan
conjuntos de bloques de la cola. La notación x@pre indica que el objeto x existe an-
tes de la operación; esto es, opuesto a la notación matemática expuesta con anterio-
ridad, donde la x después de la operación es la que está designada especialmente
(como x').

contex t GestorBIoques: :eliminarBloques()

pre: c o l a B l o q u e s - > s i z e () > 0

pos t : u sados = u s a d o @ p r e - c o l a B l o q u e s @ p r e - > f i r s t () and

libres = l i b r e@pre—>union (co laBloques@pre -> f i r s t () and

colaBloques = c o l a B l o q u e s @ p r e - > e x c l u d ¡ n g (c o l a B l o q u e s @ p r e - > f i r s t)

context GestorBloques: :agregarBloques(aConjuntoBloques .-ConjuntoBloques)

pre: usados—>includesAII(aConjuntoBloques.elementos)

pos t : (colaBloques.elementos = colaBloques .e lementos@pre

- >append(aConjun toBloques))

and u s a d o s = u s a d o @ p r e

and libres = libre@pre

El OCL es un lenguaje de modelado, pero tiene todos los atributos de un lenguaje for-
mal. También permite la expresión de varias restricciones, precondiciones y poscon-

TM

PDF Editor

CAPITULO 28 MÉTODOS FORMALE 849

diciones, guardias y otras características que relacionan a los objetos representados
en varios modelos UML.

lotod
- puede encontrai en
«ww-users.fs.
fOfk.iKJik/

- w s o n / o b s / z .

Z es un lenguaje de especificación que ha evolucionado durante las dos décadas pa-
sadas y hoy se utiliza ampliamente entre la comunidad de los métodos formales. El
lenguaje Z aplica conjuntos tipificados, relaciones y funciones dentro del contexto de
predicados lógicos de primer orden para construir esquemas, un medio para estruc-
turar una especificación formal.

28.6.1 Breve panorama de la sintaxis y semántica Z
Las especificaciones Z están organizadas como un conjunto de esquemas; es decir,
una estructura parecida a un recuadro que introduce variables y especifica la rela-
ción entre éstas. Un esquema es, en esencia, la especificación formal análoga del
componente de lenguaje de programación. En la misma forma que los componentes
se emplean para estructurar un sistema, los esquemas se utilizan al estructurar una
especificación formal.

Un esquema describe los datos almacenados a los que un sistema accede y altera.
En el contexto de Z esto se denomina el "estado". La utilización del término estado
en Z es ligeramente diferente de la que se emplea en el resto de este libro.1" Además,
el esquema identifica las operaciones que se aplican para cambiar estado y las rela-
ciones que ocurren dentro del sistema. La estructura genérica de un esquema asu-
me la forma:

nombreEsquema -
declaraciones

invariante

donde las declaraciones identifican las variables que comprenden el estado del sis-
tema, y el invariante impone restricciones en la forma en la que el estado puede evo-
lucionar. En la tabla 28.2 se presenta un resumen de la notación del lenguaje Z.

28.6.2 Un ejemplo que utiliza Z
En esta sección se utiliza el lenguaje de especificación Z para modelar el ejemplo del
gestor de bloques introducido previamente en este capítulo. El siguiente ejemplo de
un esquema describe el estado del gestor de bloques y el invariante de datos:

6 Recuérdese que en otros capítulos estado se emplea para identificar un modo de comportamiento
observable externamente para un sistema

TM

PDF Editor

8 5 0 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

GestorBIoques
usados, libres: P BLOQUES
FilaBloques: seq P BLOQUES

usados n libres = 0 A
usados u libres = TodosBloques A
V;': d o m ColaBIoques • FilaBloques i c usados A
V/, j: dom ColaBIoques • + j => ColaBIoques i n ColaBIoques j = 0

TABLA 2 8 . 2 R E S U M E N DE N O T A C I Ó N Z

La notación Z se basa en teoría d e conjuntos tipificada y en lógica d e primer orden. Z proporciona ur
constructo, llamado esquema, para describir el espacio y las operaciones d e es tado d e una especifica-
ción. Un esquema agrupa declaraciones d e variable con una lista de predicados que restringen el pos-
ble valor d e una variable. En Z el esquema X se define por la forma

X
declaraciones

predicados

las funciones globales y las constantes se definen por la forma

declaraciones

predicados

Lo declaración brinda el tipo de la función o constante, mientras que el predicado proporciona su v a b '
En esta tabla sólo se presenta un conjunto abreviado d e símbolos Z.

Conjuntos:
S : P X S es declarado como conjunto d e Xs.
x e S x es miembro d e S.
x $ S x no es miembro d e S.
S CT S es un subconjunto d e T: lodo miembro de S también está en T.
S u r La unión d e S y T: contiene a todo miembro d e S o T o ambos.
S n T La intersección d e S y T: contiene a todo miembro que está tonto en S como en T.
S \ T La diferencia d e S y T: contiene a todo miembro d e S, excepto a aquellos que también

están en T.
0 Conjunto vacío: no contiene miembros.
(x) Conjunto unitario: sólo contiene a x.
M El conjunto d e los números naturales 0 , 1, 2 , . . .
S : F X S es declarado como conjunto finito de X.
max (S) El máximo del conjunto no vacío d e números S.

Funciones:
f:X >-» f es declarado como una inyección parcial d e X a Y.
dom f El dominio d e f: el conjunto d e valores x paro los cuales está definida f(x|.
ron f El rango de f: el conjunto d e valores que toma f(x| conforme x varía sobre el dominio de f.
í © (* i -) y) Una función que concuerda con f, excepto que x se correlaciona con y.
dom f Una función como f, excepto que x es eliminado d e su dominio.

TM

PDF Editor

CAPÍTULO 28 MÉTODOS FORMALE 851

Lógica:
P A Q P y Q : es verdadero si tanto P como Q son verdaderos.
P => Q P implica Q : es verdadero si o Q es verdadera o P es falsa.
0 S ' = 0 S Ningún componente de! esquema S cambia en uno operación.

Como se ha señalado, el esquema consiste de dos partes. La parte sobre la línea cen-
tral representa las variables del estado, mientras que la parte debajo de la línea cen-
tral describe el invariante de datos. Siempre que el esquema especifica las operacio-
nes que cambian el estado lo precede el símbolo A. El siguiente ejemplo de esquema
describe la operación que elimina un elemento de la cola de bloques:

EliminarBloques
A GestorBloques

#GestorBloques > 0,
usados' = usados \ cabeza CoIaBloques A
libres' = libres u cabeza CoIaBloques A
CoIaBloques' = cola CoIaBloques

La inclusión de A GestorBloques resulta en todas las variables que configuran el esta-
do que estará disponible para el esquema EliminarBloques y asegura que el invariante
de datos se mantendrá antes y después de que la operación se haya ejecutado.

La segunda operación, que añade una colección de bloques al final de la cola, es-
tá representada como

AñadirBloques-
A GestorBloques
Abloques? : BLOQUES

Abloques? c usados
FilaBloques' = FilaBloques (Abloques?) A
usados' = usados A
libres' = libres A

Por convención en Z, una variable de entrada que se lee pero no forma parte del es-
tado termina con un signo de interrogación. Por ende, Abloques?, que actúa como
parámetro de entrada, termina con un signo de interrogación.

TM

PDF Editor

852 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

HERRAMIENTAS DE SOFTWARE

Métodos formales
O b j e t i v o : El objetivo de las herramientas de
los métodos formales es auxiliar al equipo de

software en la especificación y verificación de la correc-
ción.

M e c á n i c a : La mecánica de las herramientas varía. En
general, ayudan en la especificación y en la prueba auto-
mática de la corrección, usualmente al definir un lenguaje
especializado para la prueba de teoremas. Muchas herra-
mientas no se comercializan y se han desarrollado con
propósitos de investigación.

Herramientas representativas7

ACL2, desarrollada en la Universidad de Texas (www.cs.u-
^ t exas . edu /use r s /moore /ad2 /) , es "tanto un lenguaje

d e programación con el que puede modelar sistemas de
cómputo, como una herramienta para ayudarlo a pro-
bar las propiedades de dichos modelos".

EVES, desarrollada por ORA Canadá (www.ora.on,ca/e-
ves.html), implemento el lenguaje Verdi para especifi-
cación formal y un generador de pruebas
automatizado.

Una lista extensa con más de 9 0 herramientas d e métodos
formales se puede encontrar en
ht tp: / /www.afm.sbu.ac.uk/ .

La decisión de usar métodos formales en el mundo real no es una que se tome a la
ligera. Bowan y Hinchley [BOW95] han acuñado "los diez mandamientos de los mé-
todos formales" como una guía para aquellos que están a punto de aplicar este im-
portante enfoque de la ingeniería de software.8

1. Elegirás la notación apropiada. Para elegir con eficacia de una amplia variedad
de lenguajes formales de especificación, un ingeniero de sof tware debe consi-
derar el vocabulario del lenguaje, el tipo de aplicación que se especificará y la
amplitud de uso del lenguaje.

2. Formalizarás pero no en exceso. Por lo general no es necesario aplicar los mé-
todos formales en todos los aspectos de un gran sistema. Aquellos compo-
nentes cruciales para la seguridad son las primeras elecciones, seguidos por
los componentes cuya falla no puede tolerarse (por razones de negocios).

3 . Estimarás los costos. Los métodos formales tienen elevados costos de arran-
que. El entrenamiento del equipo, la adquisición de herramientas de apoyo y
la utilización de consultores redunda en altos costos al inicio. Es preciso con-
siderar dichos costos cuando se examina el rendimiento sobre la inversión
asociada con los métodos formales.

7

8

Las herramientas mencionadas sólo representan una muestra de esta categoría. En la mayoría de
los casos, los nombres de las mismas son marcas registradas por sus respectivos desarrolladores.
Este tratamiento es una versión más abreviada de IBOW95],

TM

PDF Editor

http://www.afm.sbu.ac.uk/

C A P Í T U L O 2 8 MÉTODOS FORMALES 8 5 3

4 . Tendrás un experto en métodos formales a tu disposición. El entrenamiento ex-
perto y la consultaría de seguimiento son esenciales para el éxito cuando se
emplean los métodos formales por primera ocasión.

5. No abandonarás los métodos tradicionales de desarrollo. Es posible, y en mu-
chos casos deseable, integrar los métodos formales con métodos convencio-
nales u orientados a objetos (parte 2 de este libro). Cada uno tiene fortalezas y
debilidades. Una combinación, si se aplica con propiedad, puede producir ex-
celentes resultados.9

6. Documentarás suficientemente. Los métodos formales proporcionan un méto-
do conciso, sin ambigüedades y consistente para documentar los requisitos
del sistema. Sin embargo, es recomendable que un comentario en lenguaje
natural acompañe la especificación formal y sirva como mecanismo para re-
forzar la comprensión del lector acerca del sistema.

7. No comprometerás los estándares de calidad. "No hay nada mágico en los mé-
todos formales" [BOW95], y por esta razón debe continuar la aplicación de
otras actividades de SQA (capítulo 26) conforme los sistemas se desarrollen.

8. No serás dogmático. Un ingeniero de software debe reconocer que los méto-
dos formales no regarantizan la corrección. Es posible (alguien diría, proba-
ble) que el sistema final, aun cuando se desarrolle empleando métodos
formales, puede tener pequeñas omisiones, bugs menores y otros atributos
que no satisfagan las expectativas.

9. Probarás, probarás y probarás de nuevo. La importancia de las pruebas del soft-
ware se ha estudiado en los capítulos 13 y 14. Los métodos formales no ab-
suelven al ingeniero de software de la necesidad de llevar a cabo pruebas
extensivas bien planeadas.

10. Reutilizarás. A largo plazo, la única forma racional de reducir los costos de
software y aumentar la calidad de éste es mediante la reutilización (capítulo
30). Los métodos formales no cambian esta realidad. De hecho, es posible que
los métodos formales sean un enfoque apropiado cuando se han de crear
componentes para librerías de reutilización.

Aunque las técnicas formales de especificación basadas matemáticamente no se
emplean con amplitud en la industria, sí ofrecen ventajas sustanciales sobre las téc-
nicas menos formales. Liskov y Bersins [LIS86] resumen esto así:

9 La ingeniería de software de sala limpia (capitulo 29) es un ejemplo de un enfoque integrado que
utiliza métodos formales y métodos de desarrollo más convencionales.

TM

PDF Editor

P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Las especificaciones formales se pueden estudiar matemáticamente, pero no las informa-
les. Por ejemplo, un programa correcto se prueba para satisfacer s u s especificaciones, o
se puede probar que dos conjuntos alternativos de especificaciones son equivalentes.. .
Ciertas formas de incompletud o inconsistencia se pueden detectar automát icamente .

Además, la especificación formal elimina la ambigüedad y alienta el mayor rigor en
las primeras etapas del proceso de ingeniería del software.

No obstante, los problemas persisten. La especificación formal se enfoca princi-
palmente en la función y los datos. La temporalidad, el control y los aspectos de
comportamiento de un problema son más difíciles de representar. Además, ciertos
elementos de un problema (por ejemplo, interfaces humano/máquina) se especifi-
can mejor empleando técnicas gráficas o prototipos. Finalmente, la especificación
que emplea métodos formales es más difícil de aprender que los métodos que incor-
poran notación UML y representan un significativo "choque cultural" para algunos
profesionales del software.

Los métodos formales ofrecen un cimiento para los entornos de especificación que
conducen a modelos de análisis más completos, consistentes y sin ambigüedades
que aquellos producidos con métodos convencionales u orientados a objetos. Las fa-
cilidades descriptivas de la teoría de conjuntos y la notación lógica permiten que un
ingeniero de software cree un planteamiento claro de hechos (requisitos).

Los conceptos subyacentes que rigen los métodos formales son 1) el invariante de
datos, una condición verdadera a través de la ejecución del sistema que contiene
una colección de datos; 2) el estado, una representación del modo de comporta-
miento observable externamente de un sistema, o (en Z y lenguajes relacionados) los
datos almacenados a los que un sistema tiene acceso y altera; y 3) la operación, una
acción que tiene lugar en un sistema y lee o escribe datos a un estado. Una opera-
ción está asociada con dos condiciones: una precondición y una poscondición.

Las matemáticas discretas —la notación y heurísticas asociados con conjuntos y
la especificación constructiva, operadores de conjuntos, operadores lógicos y suce-
siones— forman la base de los métodos formales. Las matemáticas discretas se im-
plementan en el contexto de los lenguajes formales de especificación, tales como
OCL y Z. Estos lenguajes tienen dominios tanto sintáctico como semántico. El domi-
nio sintáctico utiliza una simbología alineada de manera cercana con la notación de
conjuntos y el cálculo de predicados. El dominio semántico permite que el lenguaje
exprese los requisitos en una forma concisa.

La decisión de usar métodos formales debe considerar los costos de arranque, así
como los cambios culturales asociados con una tecnología radicalmente diferente.
En la mayoría de las instancias, los métodos formales tienen mayores rendimientos
respecto de los sistemas cruciales para la seguridad y los negocios.

TM

PDF Editor

C A P Í T U L O 2 8 MÉTODOS FORMALES 855

[BOW95] Bowan, J. P., y M. G. Hinchley, 'Ten Commandments of Formal Methods", en Compu-
ter, vol. 28, núm. 4, abril de 1995.

[GRI95J Gries, D., y F. B. Schneider, A Logical Approach to Discrete Math, Springer-Verlag, 1993.
[GUT93] Guttag, J. V., y j. J. Horning, Larch. Languages and Tools for Formal Specification, Sprin-

ger-Verlag, 1993.
[HAL90] Hall, A., "Seven Myths of Formal Methods", en IEEE Software, septiembre de 1990, pp.

1 1 - 2 0 .

[HOR85J Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International, 1985.
[IS002] Zformal Specification Notation-Syntax, Type System and Semantics, 1SO/1EC 13568:2002,

Intl. Standards Organization, 2002.
LFON91] Jones, C. B., Systematic Software Development Using VDM, 2a. ed., Prentice-Hall, 1991.
[US86] Liskov, B. H., y V. Berzins, "An Appraisal of Program Specifications", en Software Specifi-

cation Techniques, N. Gehani y A. T. McKittrick (eds.), Addison-Wesley, 1986, p. 3.
[MAR94] Marciniak, J. J. (ed.) Encyclopedia of Software Engineering, Wiley, 1994.
IOMG03] "Object Constraint Language Specification", en Unified Modeling Language, v2.0, Ob-

ject Management Group, septiembre de 2003, se puede descargar de www.omg.org.
IROS95] Rosen, K. H„ Discrete Mathematics and Its Applications, 3a. ed., McGraw-Hill, 1995.
(SPI88) Spivey, J. M., Understanding Z: A Specification Language and Its Formal Semantics, Cam-

bridge University Press, 1988.
[SPI92) Spivey, J. M., The Z Notation: A Reference Manual, Prentice-Hall, 1992.
¡WIL87) Wiltala, S. A., Discrete Mathematics: A Unified Approach, McGraw-Hill, 1987.
[WIN90] Wing, J. M., "A Specifier's Introduction to Formal Methods", Computer, vol.23, núm. 9,

septiembre de 1990, pp. 8-24.
[YOU941 Yourdon, E., "Formal Methods", Guerrilla Programmer, Cutter Information Corp., octu-

bre de 1994.

2 8 . 1 . Revisar los tipos de deficiencias asociadas con los enfoques menos formales para la in-
geniería del sof tware de la sección 28.1.1. Ofrecer tres ejemplos de cada uno a partir de la ex-
periencia propia.

2 8 . 2 . Los beneficios de las matemát icas como mecan ismo de especificación se han tratado ex-
tensamente en es te capítulo. ¿Existe algún aspecto negativo?

2 8 . 3 . Usted ha sido asignado a un equipo que está desarrollando software para un fax módem.
Su tarea es desarrollar la parte de "directorio" de la aplicación. La función directorio permite que
almacenen hasta MaxNombres pe rsonas junto con los asociados de nombres de compañía , nú-
meros de fax y otra información relacionada. Empleando lenguaje natural defina

a) El invariante de datos
b) El estado.
c) Las operaciones probables.

2 8 . 4 . Usted ha sido asignado a un equipo que está desarrollando software, l lamado Duplicador
de memoria, que ofrece mayor memoria aparente para una PC que la memoria física. Esto se lo-
gra al identificar, recopilar y reasignar bloques de memoria que s e han as ignado a una aplica-
ción existente pero que no se utilizan. Los bloques n o utilizados se reasignan a las aplicaciones
que requieren memoria adicional. Con las suposiciones apropiadas y el uso de lenguaje natural,
defina

a) El invariante de datos.
b) El estado.
c) Las operaciones probables

2 8 . 5 . Desarrolle una especificación consirucnva para un conjunto que contiene duplas de nú-
meros naturales de la forma {x,y, z~\ tales que la suma de x y y es igual a z.

TM

PDF Editor

http://www.omg.org

8 5 6 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

2 8 . 6 . El instalador para una aplicación basada en PC determina primero si es tán presentes u-
conjunto aceptable de hardware y recursos del sistema. Verifica la configuración del ha rdwa: ;
para determinar si es tán presentes varios dispositivos (de muchos posibles dispositivos) y de-
termina si ya están instaladas versiones específicas de sof tware y controladores del s i s tema
¿Qué operador de conjunto se podría usar para lograr esto? Ofrecer un ejemplo en este con-
texto.

2 8 . 7 . Intentar desarrollar una expresión utilizando operadores lógicos y de conjunto para el si-
guiente enunciado: "Para toda x ey, si x es el padre áeyyy es el padre de z, en tonces x es el
abuelo de z. Todos tienen un padre." Sugerencia: emplear las funciones P(x,y) y G(x, /.) para re-
presentar las funciones padre y abuelo, respectivamente.

2 8 . 8 . Desarrollar una especificación constructiva de conjunto del conjunto de pares donde el
primer elemento de cada par es la suma de dos números naturales distintos de cero, y el segun-
do e lemento e s la diferencia entre los mismos números. Ambos números deben estar entre 100
y 200, inclusive.

2 8 . 9 . Desarrollar una descripción matemática para el es tado y el invariante de datos del pro-
blema 28.3. Refinar esta descripción en el lenguaje de especificación OCL o Z.

2 8 . 1 0 . Desarrollar una descripción matemática para el es tado y el invariante de datos del pro-
blema 28.4. Refinar esta descripción en el lenguaje de especificación OCL o Z.

2 8 . 1 1 . Mediante la notación OCL o Z presentadas en las tablas 28.1 o 28.2, seleccionar alguna
parte del sistema de seguridad HogarSeguro descrito previamente en este libro e intentar des-
cribirla con OCL o Z.

2 8 . 1 2 . Empleando una o m á s de las fuentes de información que aparecen en las referencias de
este capítulo o en "Otras lecturas y fuentes de información", desarrollar una presentación de
media hora acerca de la sintaxis y la semántica básicas de un lenguaje formal de especificación
distintos a OCL o Z.

V»*.®

Además de los libros empleados como referencias en este capítulo, durante la década pasada
se publicaron numerosos libros acerca de t emas de métodos formales. A continuación se pre-
senta una lista de algunos de los m á s útiles:

Bowan, J., Formal Specijication and Documentation using Z: A Case Study Approach, Interna-
tional Thomson Computer Press, 1996.

Casey, C„ A Programming Approach lo Formal Methods, McGraw-Hill, 2000.

Clark, T„ et al. (eds.), Object Modeling with OCL, Springer-Verlag, 2002.

Cooper, D„ y R. Barden, Z in Practice, Prentice-Hall, 1995.

Craigen, D., S. Gerhart y T. Ralston, Industrial Application of Formal Methods to Model, Design
andAnalyze Computer Systems, Noyes Data Corp., 1995.

Harry, A., Formal Methods Fact File: VDMyZ, Wiley, 1997.

Hinchley, M., y J. Bowan, Applications of Formal Methods, Prentice-Hall, 1995.

Hinchley, M., y J. Bowan, Industrial Strenght Formal Methods, Academic Press, 1997.

Hussmann, H., Formal Foundations for Software Engineering Methods, Springer-Verlag, 1997.

Jacky, J., The Way of Z: Practical Programming with Formal Methods, Cambridge University
Press, 1997.

Monin, F., y M. Hinchley, Understanding Formal Methods, Springer-Verlag, 2003.

Rann, D„ J. Turner y J. Whitworth, Z: A Beginner's Guide, Chapman and Hall, 1994.

Ratcliff, B., lntroducing Specijication Using Z: A Practical Case Study Approach, McGraw-Hill,
1994.

TM

PDF Editor

C A P Í T U L O 2 8 MÉTODOS FORMALE; 857

Sheppard, D., An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1995.

Warner,) . , y A. Kleppe, Object Constraint Language, Addison-Wesley, 1998.

Dean (Essence of Discrete Mathematics, Prentice-Hall, 1996), Gries y Schneider [GRI93] y Lips-
chultz y Lipson (2000 Solved Problems in Discrete Mathematics, McGraw-Hill, 1991) presentan in-
formación útil para quienes deben aprender más acerca de las bases de los métodos formales.

En Internet hay disponible una amplia variedad de fuentes de información acerca de los mé-
todos formales. Una lista actualizada de referencias en la World Wide Web se puede encontrar
en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P Í T U L O

29 INGENIERÍA DEL SOFTWARE
DE SALA LIMPIA

C O N C E P T O S

C L A V E

certificación . . . 8 7 4

especificación de

tajo de estado . 8 6 6

especificación

de coja trans-

parente 8 6 6

especificación de

caja negra 865

especificación

de estructura

de cajas 8 6 3

especificación

funcional 8 6 3

estrategia de

sala limpia 8 6 0

prueba estadística

de uso 8 7 3

re f inamiento

de diseño 8 6 7

« 8 6 9

verificación 8 6 7

verificación

de corrección . . 8 6 8

E! uso integrado del modelado convencional de ingeniería del software (y
posiblemente los métodos formales), la verificación de programas (prue-
bas de corrección) y el SQA estadístico se han combinado en una técnica

que puede conducir a software de calidad extremadamente alta. La ingeniería de!
software de sala limpia es un enfoque que resalta la necesidad de construir la co-
rrección en el software conforme se desarrolla. En lugar del clásico ciclo de aná-
lisis, diseño, código, prueba y depuración, el enfoque de sala limpia sugiere un
punto de vista diferente [L1N94]:

La filosofía detrás de la ingeniería del software de sala limpia consiste en evitar la de-
pendencia de costosos procesos de eliminación de defectos al escribir los incremen-
tos de código correctos la primera vez y verificar su corrección antes de ponerlo a
prueba. Su modelo de proceso incorpora la certificación estadística de calidad de los
incrementos de código conforme se acumulan en el sistema.

En muchos aspectos, el enfoque de sala limpia eleva la ingeniería de softwa-
re a otro nivel. Al igual que los métodos formales presentados en el capítulo 28,
el proceso de sala limpia destaca el rigor en la especificación y el diseño, y la
verificación formal de cada elemento de diseño mediante pruebas de corrección
con bases matemáticas. Al extender el enfoque adoptado en los métodos for-
males, el enfoque de sala limpia también resalta las técnicas para el control
estadístico de la calidad, incluso pruebas que se basan en el uso anticipado del
software por parte de los clientes.

Cuando el software falla en el mundo real, abundan los peligros inmediatos
y a largo plazo. Los peligros se relacionan con la seguridad humana, las pérdi-
das económicas o la operación efectiva del negocio y la infraestructura social.
La ingeniería del software de sala limpia es un modelo de proceso que elimina
los defectos antes de que puedan generar peligros serios.

¿ Q u é e s ? ¿Cuántas veces se ha
escuchado la expresión: "Hazlo bien
la primera vez"? Esa es la filosofía
primordial d e la ingeniería del soft-
ware de sala limpia: un proceso que

destaca la verificación matemática de la correc-
ción antes de que comiencen la construcción del
programa y la certificación de la confiabilidad
del software como parte d e la actividad d e prue-
bas. El rasgo fundamental es tasas de falla

extremadamente bajas que serían difíciles
imposibles de lograr empleando métodos mer
formales. ;

¿Quién lo hace? Un ingeniero de software
esnerinlmf-ilte ftntrenodo

O
menos

¿Por qué e s importante? Los errores implican
la reelaboración. Ésta lleva tiempo y aumenta
los costos. ¿No sería agradable si se pudiese
reducir sustancialmente el número de errores
(bugs) introducidos conforme el software se dise-

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE IX SALA LIMPIA 859

ña y construye? Esa es la premisa de la ingenie-
ría del software d e sala limpia.

¿Cuáles son los pasos? tos modelos de análi-
sis y diseño se crean empleando una represen-
tación de estructura de cajas. Una "caja" encap-
sula el sistema {o a cierto aspecto del sistema) en
un grado específico de abstracción. La verifica-
ción d e la corrección se aplica una vez que está
completo el diseño d e la estructura de cajas.
Una vez verificada la corrección d e cada estruc-
tura d e caja comienzan las pruebas estadísticas
de utilización. El software se prueba ai definir un
conjunto de escenarios de utilización, al deter-
minar la probabilidad de utilización para cada
escenario y luego definir pruebas aleatorias que
concuerden con las probabilidades. Los registros
de error resultantes se analizan para permitir el

cálculo matemático de la fiabilidad proyectada
dei componente de software.

¿Cuál es el producto obtenido? Se desarro
lian especificaciones de caja negra, caja de
estado y caja transparente. Los resultados de las
pruebas de corrección formales y de las pruebas
estadísticas d e utilización se registran.

¿Cómo puedo estar seguro de que lo he
hecho correctamente? La prueba formal de
corrección se aplica a la especificación de
estructura d e cajas. Las pruebas estadísticas de
utilización ejercitan los escenarios d e utilización
para garantizar que los errores en la funcionali-
dad de usuario se descubren y corrigen. Los
datos d e prueba se utilizan para proporcionar
un indicio d e la fiabilidad del software.

2 9 . 1 EL E N F O S U F . DE SALA L I M P I A
La filosofía d e la "sala l impia" en las t ecno log ía s d e fabr icación d e h a r d w a r e e n r ea -
lidad e s b a s t a n t e simple-, e s e f i caz en c u a n t o a cos to y t i empo para e s t ab lece r un
e n f o q u e d e fabricación q u e evi te la in t roducción de d e f e c t o s d e producc ión . Más q u e
fabr icar un p roduc to y luego t r aba j a r para e l iminar los de fec tos , el e n f o q u e d e sala
l impia d e m a n d a la disciplina requer ida p a r a e l iminar los e r r o r e s en la espec i f icac ión

y el d i s e ñ o y luego fabr icar lo en una fo rma "limpia".
Mills, Dyer y Linger [MIL87] propus ie ron , d u r a n t e el d e c e n i o d e 1980, original-

m e n t e la filosofía d e sa la l impia p a r a la ingenier ía del so f tware . A u n q u e las p r ime-
r a s exper i enc ias con e s t e e n f o q u e disc ipl inado r e spec to al t r a b a j o d e s o f t w a r e fue -
ron s ign i f ica t ivamente p r o m e t e d o r a s [HAU94], n o o b t u v o g r a n d i fus ión . Hende r son

[HEN95] sugiere t res pos ib les r a z o n e s :

1. Una c reenc ia d e q u e la me todo log ía d e sa la limpia e s d e m a s i a d o teór ica , de -
m a s i a d o m a t e m á t i c a y d e m a s i a d o radical p a r a aplicarla en el desar ro l lo d e

s o f t w a r e real.

2. No a b o g a por u n a p r u e b a uni ta r ia d e pa r t e d e los desa r ro l l adores , s ino q u e la

sust i tuye con la verif icación d e la cor recc ión y el control es tad ís t ico d e la cali-
dad , c o n c e p t o s q u e r ep re sen t an u n a gran desv iac ión d e la fo rma en la q u e se

desar ro l la a c t u a l m e n t e la mayor ía del so f tware .

3. La m a d u r e z d e la industr ia d e desa r ro l lo del so f tware . La uti l ización d e los
p r o c e s o s d e sa la limpia requiere la rigurosa apl icación d e p r o c e s o s def in idos

en t o d a s las f a se s del ciclo d e vida D a d o q u e gran pa r t e d e la industr ia conti-

TM

PDF Editor

860 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

núa o p e r a n d o en g r a d o s re la t ivamente b a j o s d e m a d u r e z del p roceso , los in-
gen ie ros d e s o f t w a r e n o h a n e s t a d o l istos p a r a apl icar las t écn icas d e sa la
limpia.

A p e s a r de los e l e m e n t o s d e ve rdad en c a d a u n a d e e s t a s p r e o c u p a c i o n e s , los bene
ficios po tenc ia l e s de la ingenier ía del s o f t w a r e de sa la limpia s u p e r a n con m u c h o la

inversión requer ida p a r a supe ra r la res is tencia cul tural ub i cada e n el c e n t r o d e esta?
p r eocupac iones .

"La único f o r m a de q u e en un p r o g r a m a ocurran los e r r o r e s es que un au to r los coloque ah í . No s e conocen otros
m e c a n i s m o s . . . Ln práctica correcta busca evi ta r la inserción de e r ro res y, c u a n d o se fa l la al respecto, el iminarlos an tes
de probar lo o cualquiera o t r a f o r m a de e jecutar el p r o g r a m a . "

Harían Mills

29.1.1 La estrategia de sala limpia
El e n f o q u e d e sa la limpia utiliza u n a vers ión espec ia l izada del m o d e l o d e p rocese
inc rementa l (capítulo 3). Mediante p e q u e ñ o s e q u i p o s d e s o f t w a r e i n d e p e n d i e n t e s se

desarrol la u n a "línea de i n c r e m e n t o s d e s o f t w a r e " [LIN94|. C o n f o r m e c a d a incre-
m e n t o s e certifica s e in tegra en el todo. Por ende , la func iona l idad del s i s t ema crece
con el t i empo.

En la figura 29.1 s e ilustra la suces ión de las t a r e a s d e sa la l impia p a r a c a d a incre-
m e n t o . Los requis i tos g lobales del s i s t ema o p roduc to s e desar ro l lan e m p l e a n d o los

Modelo de l
proceso de
sala limpia.

Incremento 1

I
IS = ingeniería d e sistemas

RR = recopilación d e requisitos
EEC = especificación d e estructura d e c a j a s

DF = d iseño formal
VC = verificación d e corrección

G C = generac ión d e código
IC = inspección d e cód igo

PEU = p rueba estadística d e uso
C = certificación

PP = p laneac ión d e p ruebas

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWA3E DE SALA LIMPIA 861

•
¿Cuáles son
fas principa-

les tareas l leva-
te a cabo como
Mrte de la inge-
• e r í a del s o f t w a -
re de sala limpia?

f . nfomwcióíi y
xursosp

rgenieifo d

- soto limpio s e pueril
contrai e n w w w .
-ansoft.tom.

m é t o d o s de ingenier ía del s o f t w a r e e s t u d i a d o s en el capí tu lo 6. La l ínea d e incre-

m e n t o s d e sa la limpia se inicia u n a vez q u e la func iona l idad s e ha a s i g n a d o al e le-
m e n t o d e s o f t w a r e del s i s t ema . Se p r o d u c e n las s igu ien tes ta reas :

P l a n i f i c a c i ó n d e l i n c r e m e n t o . Se desar ro l la un p lan de p royec to q u e adop ta la
es t ra teg ia inc rementa l . Se c r e a n la func iona l idad d e c a d a inc remen to , su t a m a ñ o
p royec tado y un p lan d e desar ro l lo de sala limpia. Se d e b e t e n e r especia l c u i d a d o
para a segu ra r q u e los i n c r e m e n t o s cer t i f icados se in tegrarán en fo rma opo r tuna .

R e c o p i l a c i ó n d e r e q u i s i t o s . Median te t écn icas s imi la res a las in t roduc idas en

el capí tu lo 7 s e e l abo ra u n a descr ipc ión m á s deta l lada d e los requis i tos del c l iente
(para c a d a incremento) .

E s p e c i f i c a c i ó n d e la e s t r u c t u r a d e c a j a s . Se util iza un m é t o d o d e especi f ica-
ción q u e e m p l e a estructuras de caja [HEV93] p a r a describir la especi f icac ión funcio-
nal. Para a ju s t a r s e a los pr incipios d e anál is is ope ra t ivo t r a t ados en los capí tu los 5 y
7, las e s t r u c t u r a s d e c a j a s "aislan y s e p a r a n la def inición creat iva d e c o m p o r t a m i e n -
to, d a t o s y p r o c e d i m i e n t o s en c a d a g r ado d e re f inamiento" .

D i s e ñ o f o r m a l . E m p l e a n d o el e n f o q u e d e es t ruc tu ra d e c a j a s el d i s e ñ o d e sa la
limpia e s una ex tens ión na tura l y un i fo rme d e la especif icación. A u n q u e e s posible
e s t ab lece r u n a dis t inción c lara e n t r e las d o s ac t iv idades , la e spec i f i cac iones (llama-
d a s cajas negras) s on i t e ra t ivamente r e f i n a d a s (dentro d e un inc remento) para vol-

verse a n á l o g a s a los d i s e ñ o s a rqu i t ec tón ico y al nivel d e c o m p o n e n t e (l l amados cajas
de estado y cajas transparentes, r e spec t ivamente) .

V e r i f i c a c i ó n d e la c o r r e c c i ó n . El equ ipo d e sala limpia lleva a c a b o u n a serie
d e r igurosas ac t iv idades de verif icación de la cor recc ión en el d i s e ñ o y luego en el

código. La verif icación (secc iones 29 .3 y 29.4) c o m i e n z a con la e s t ruc tu ra d e ca ja d e
nivel super io r (especif icación) y se m u e v e hacia el detal le d e d i s e ñ o y el código. El
p r imer nivel de verif icación d e cor recc ión ocur re al apl icar un c o n j u n t o d e "pregun-

tas d e co r recc ión" [LIN88J. Si é s t a s n o d e m u e s t r a n q u e la especi f icac ión e s co r rec ta
s e e m p l e a n m é t o d o s m á s fo rma le s (matemát icos) en la verif icación.

G e n e r a c i ó n d e c ó d i g o , i n s p e c c i ó n y v e r i f i c a c i ó n . Las e spec i f i cac iones d e
es t ruc tu ra d e ca ja , r e p r e s e n t a d a s en un l engua j e espec ia l i zado , s e t r aducen al len-
g u a j e d e p r o g r a m a c i ó n ap rop iado . En tonces s e ut i l izan c o m p r o b a c i o n e s m a n u a l e s
e s t á n d a r o t écn icas d e inspecc ión (capítulo 26) q u e g a r a n t i z a n la c o n f o r m i d a d
s e m á n t i c a del cód igo y las e s t r u c t u r a s d e ca jas , así c o m o la cor recc ión s intáct ica del

código. Luego s e lleva a c a b o la verif icación d e la cor recc ión p a r a el cód igo fuen te .

"La ingeniería del software de sa la l impio logra el control estadístico de la cal idad sob re el desar ro l lo del software al
separar estrictamente el proceso de diseño del proceso de p rueba en u n a l ínea de desar ro l lo incrementa l de software."

Harían Mills

P l a n i f i c a c i ó n d e p r u e b a s e s t a d í s t i c a s . Se ana l iza el u s o p r o y e c t a d o del so f t -
w a r e y s e planif ica y d i seña un c o n j u n t o d e c a s o s d e p rueba q u e e jerc i tan una "dis-

TM

PDF Editor

862 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

^ O N S U O ^ -

La sala limpia destoco
las pruebas que
ejercitan lo forma en
que el softwore es
realmente utilizado.
Los cosos de uso
ofrecen uno introduc-
ción al proceso de
planeación de
pruebas.

t r ibución d e probabi l idad" d e ut i l ización (sección 29.4). C o m o se m u e s t r a en la figu-
ra 29.1, e s t a act ividad d e sa la l impia s e lleva a c a b o en para le lo con la especifica-

ción, la verif icación y la gene rac ión d e código.

P r u e b a e s t a d í s t i c a d e la u t i l i z a c i ó n . C o m o se r ecorda rá , la p r u e b a exhaust i -
va del s o f t w a r e d e c o m p u t a d o r a e s impos ib le (capítulo 14), po r lo q u e s i empre e<
necesa r io d i s eña r un n ú m e r o finito d e c a s o s d e p rueba . Las t écn icas es tad ís t icas de
ut i l ización [POO88] e j ecu tan u n a ser ie de p r u e b a s de r i vadas d e u n a m u e s t r a esta-
dística (la dis t r ibución d e probabi l idad a n o t a d a p rev iamente) d e t o d a s las posibles
e j e c u c i o n e s d e p r o g r a m a por pa r t e d e t odos los u sua r io s a part i r de u n a p o b l a d o r

ob je t ivo (sección 29.4).

C e r t i f i c a c i ó n . Una v e z c o m p l e t a d a s la verif icación, la inspecc ión y las p ruebas

d e ut i l ización (y d e q u e t odos los e r ro res h a y a n s ido corregidos) , el i n c r e m e n t o se
cert if ica listo p a r a la in tegrac ión .

Al igual que o t ros mode los de p roceso d e so f tware t r a t ados en o t ras pa r tes d e este
libro, el p roceso d e sala limpia s e apoya sus t anc ia lmen te en la neces idad de producir
anál is is de al ta calidad y mode los de diseño. C o m o se verá m á s ade l an te e n es te capí-
tulo, la no tac ión d e es t ruc tu ra d e c a j a s e s s i m p l e m e n t e o t ra fo rma en la q u e un inge
n ie ro d e s o f t w a r e p u e d e r ep re sen t a r los requis i tos y el d i seño . La dis t inción real dei
e n f o q u e d e sa la l impia e s q u e la verif icación formal s e aplica a los m o d e l o s d e inge-

niería.

\ CLAVE
Los más importantes
coracteristicas
distintivos de lo solo
limpio son lo prueba
de la corrección y las

s estadísticas de

29.1.2 ¿Qué hace diferente a la sala limpia?

Dycr [DYE92] a lude a las d i fe renc ias del e n f o q u e d e sa la l impia c u a n d o de f ine el pro-

ceso:

La sala limpia representa el primer intento práctico de someter el proceso de desarrollo de
software al control estadístico de la calidad con una estrategia bien definida para la me-

jora continua de los procesos. Con el fin de alcanzar esta meta se definió un ciclo de vida
único de sala limpia, el cual se enfoca en la ingeniería del sof tware basada en matemáti-
cas para corregir diseños de sof tware y en la prueba de sof tware basada en estadísticas

para la certificación de la fiabilidad del software.

La ingenier ía del s o f t w a r e d e sala limpia dif iere d e los m é t o d o s c o n v e n c i o n a l e s y
o r i e n t a d o s a ob j e to s d e la ingenier ía del s o f t w a r e porque :

1. Emplea en fo rma explícita el control es tad ís t ico d e la cal idad.

2 . Verifica las e spec i f i cac iones del d i s e ñ o u t i l i zando u n a p r u e b a d e co r recc ión ba-

s a d a m a t e m á t i c a m e n t e .

3. Implemen ta t écn icas d e p rueba con u n a al ta probabi l idad de descubr i r e r rores

d e a l to impacto .

Obv iamen te , el e n f o q u e d e sa la l impia apl ica la mayor ía , si n o todos , los pr incipios
y c o n c e p t o s bás i cos d e la ingenier ía del s o f t w a r e p r e s e n t a d o s a lo largo d e e s t e libro.

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE DE SALA LIMPIA 863

Los b u e n o s anál is is y p r o c e d i m i e n t o s d e d i s e ñ o son e senc ia l e s si se quiere o b t e n e r
a l ta cal idad. Pero la ingenier ía d e sala l impia dif iere d e las p rác t i cas del s o f t w a r e
convenc iona l p o r q u e le res ta impor tanc ia (a lgunos dirían, el imina) al pape l d e la
p rueba uni tar ia y la depu rac ión y r e d u c e d r á s t i c a m e n t e (o elimina) la can t idad de
p r u e b a s q u e rea l iza el desa r ro l l ador del sof tware . 1

En el desarrol lo de so f tware convencional los e r rores se a cep t an c o m o un h e c h o
ineludible. Pues to que los e r rores e s t án c o n d e n a d o s a ser inevitables, c a d a c o m p o -
n e n t e de p r o g r a m a debe p roba r se en fo rma individual (para descubr i r los errores) y

luego depura r se (para e l iminar los errores). C u a n d o finalmente s e libera el sof tware ,
du ran te su utilización se descubren todavía m á s de fec tos y c o m i e n z a ot ro ciclo d e
p rueba y depurac ión . La ree laborac ión a soc iada con d ichas ac t iv idades e s cos to sa y

c o n s u m e m u c h o t iempo. Peor aún, p u e d e resul tar degenera t iva : la corrección de erro-
res tal vez c o n d u z c a (¡ inadvert idamente!) a la introducción de m á s e r rores todavía.

"Un aspecto curioso de lo vida es que si t e rehusas en abso lu to a acep ta r lo m e j o r con f recuencia lo ob t i enes . "
W. Somerset Maugham

En la ingenier ía del s o f t w a r e de sa la limpia la p r u e b a uni tar ia y la depu rac ión s e
sus t i tuyen ver i f icando la cor recc ión y las p r u e b a s b a s a d a s en es tadís t icas . Dichas
act ividades , c o m b i n a d a s con la conse rvac ión d e regis t ros necesa r i a p a r a la me jo ra
con t inua , h a c e n q u e el e n f o q u e d e sa la limpia s ea único .

2 9 . 2 E S P E C I F I C A C I Ó N F U N C I O N A L
Sin impor ta r el m é t o d o d e anál is is elegido, se apl ican los pr incipios de anál is is o p e -
ra t ivo p r e s e n t a d o s en el capí tu lo 7. Los da tos , las f u n c i o n e s y el c o m p o r t a m i e n t o s e
m o d e l a n . Los m o d e l o s q u e s e ob t i enen d e b e n par t i c ionarse (refinarse) p a r a p ropor -
c iona r cada vez mayor detal le . El obje t ivo global e s m o v e r s e d e s d e u n a especi f ica-
ción (o mode lo) q u e c a p t u r e la e senc ia de un p r o b l e m a has ta una especi f icac ión q u e
o f r ezca s u s t a n c i a l e s de ta l les d e imp lemen tac ión .

La ingenier ía del s o f t w a r e d e sa la limpia c u m p l e con los pr inc ip ios d e anál is is

ope ra t ivo e m p l e a n d o un m é t o d o l l a m a d o especificación de estructura de cajas. Una
"ca ja" e n c a p s u l a al s i s t ema (o a lgún a s p e c t o d e éste) en a lgún g r a d o de detalle. Por
m e d i o d e un p r o c e s o d e e l aborac ión o r e f i namien to en niveles , las c a j a s s e r e f inan
en u n a jerarquía d o n d e c a d a u n a t iene t r anspa renc i a referencial . Esto es: "el c o n t e -
nido d e in fo rmac ión de c a d a espec i f icac ión d e ca ja e s suf ic iente p a r a definir su refi-
namien to , sin d e p e n d e r d e la i m p l e m e n t a c i ó n de a lguna otra ca ja" [LIN94], Esto le
pe rmi t e al ana l i s ta part i r un s i s t ema j e r á rqu i camen te , m o v e r s e d e s d e la r ep re sen ta -

ción esenc ia l e n la par te super io r hacia un detal le espec í f ico de la i m p l e m e n t a c i ó n
en el fondo. Se util izan t r e s t ipos d e ca jas :

1 La prueba la realiza un equipo de prueba independiente.

TM

PDF Editor

864 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

¿Cómo s e
logra el refi-

namiento como
parte de una
especificación de
estructura de
cajas?

\ CLAVE
El refinomiento de l a
e s t r u c t u r o d e c o j o s y l a
verificación de la
corrección ocurren
simultáneamente.

Caja n e g r a . La ca ja negra especi f ica el c o m p o r t a m i e n t o d e un s i s t ema o d e una
par te de és te . El s i s t ema (o pa r t e d e él) r e s p o n d e a e s t ímulos espec í f icos (eventos) al
apl icar un c o n j u n t o d e reg las d e t ransic ión q u e co r r e l ac ionan el e s t ímulo con una
r e spues t a .

Caja d e e s t a d o . La ca ja d e e s t a d o e n c a p s u l a los da to s de e s t a d o y servic ios (ope-
raciones) en una forma a n á l o g a a los obje tos . En es ta visión d e especi f icac ión se
r ep re sen t an las e n t r a d a s a la ca ja de e s t a d o (estímulos) y las sa l idas (respuestas) . La
ca ja d e e s t a d o t ambién r ep re sen t a la "historia d e es t ímulo" de la c a j a negra , e s to e s

los d a t o s e n c a p s u l a d o s en la ca ja de e s t a d o que d e b e n c o n s e r v a r s e en t re las transi-
c i o n e s implicadas .

Caja t r a n s p a r e n t e . Las func iones d e t ransic ión q u e implica la ca ja de e s t a d o s e
def inen en la ca ja t r anspa ren t e . E n u n c i a d o de m a n e r a simple, una ca ja t r anspa ren -
te con t i ene el d i s e ñ o de p roced imien to para la ca ja de es tado .

La figura 29.2 ilustra el e n f o q u e de r e f i namien to e m p l e a n d o la especi f icac ión de
es t ruc tu ra de ca ja s . Una ca ja negra (CN,) de f ine r e s p u e s t a s p a r a un c o n j u n t o c o m -

pleto d e es t ímulos . CN, s e p u e d e re f ina r en un c o n j u n t o de c a j a s negras , CN, ., has ta
CN, c a d a una d e las c u a l e s abo rda u n a c lase d e c o m p o r t a m i e n t o . El r e f inamien to
con t inúa h a s t a que s e identif ica una c lase cohes iva d e c o m p o r t a m i e n t o (por e jem-
plo, CN,.,.,). En tonces s e de f ine una ca ja d e e s t a d o (CE, , ,) p a r a la ca ja negra (CN, , ,)
En es te caso , CE,.,., con t i ene t odos los d a t o s y servic ios q u e s e requ ie ren p a r a imple-

m e n t a r el c o m p o r t a m i e n t o que def ine CN,.,.,. F inalmente , CE,.,., s e ref ina e n c a j a s
t r a n s p a r e n t e s (C T , y s e espec i f ican los de ta l les d e d i s e ñ o del p roced imien to .

C o n f o r m e ocur re c a d a u n o d e e s to s p a s o s d e re f inamien to , t ambién ocur re la

verif icación d e la cor recc ión . Las e spec i f i cac iones d e ca ja d e e s t a d o se verif ican para

R e f i n a m i e n t o

d e estructura
d e ca ja s .

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE DE SALA LIMPIA 865

Especificación
d e c a j a negra .

f: S* — R f: S* — R

garan t i za r q u e c a d a u n o c o n c u e r d a con el c o m p o r t a m i e n t o def in ido por la especif i -
cac ión p a d r e de ca ja negra . De igual modo , las e spec i f i cac iones d e ca ja t r a n s p a r e n -

t e s e verif ican con t r a la ca ja d e e s t a d o padre .
Se debe n o t a r q u e los m é t o d o s d e especi f icac ión b a s a d o s en l e n g u a j e s c o m o OCL

o Z (capítulo 28) e s pos ib le usa r los e n c o n j u n c i ó n con el e n f o q u e d e especif icación
d e es t ruc tu ra d e ca ja s . El ún ico requis i to e s q u e c a d a g r ado d e especi f icac ión sea

verif icable f o r m a l m e n t e .

29.2.1 Especificación de ca ja negra
Una especificación de caja negra descr ibe una abs t racc ión , e s t ímulos y r e spues t a
m e d i a n t e la no tac ión m o s t r a d a en la figura 29.3 [MIL88J. La f u n c i ó n / s e aplica a una
suces ión , S*, d e e n t r a d a s (estímulos), S, y las t r ans fo rma en una sal ida (respuesta) ,
R. Respec to a c o m p o n e n t e s d e s o f t w a r e s i m p l e s / p u e d e ser una función m a t e m á t i -
ca , pero , en g e n e r a l , / s e desc r ibe u s a n d o l engua j e na tu ra l (o un l engua j e formal d e

especi f icación) .
Muchos d e los c o n c e p t o s in t roduc idos para los s i s t e m a s o r i e n t a d o s a ob je tos

t ambién son apl icables r e spec to d e la c a j a negra . Las abs t r acc iones d e d a t o s y las
o p e r a c i o n e s q u e man ipu l an d ichas abs t r acc iones las e n c a p s u l a la ca ja negra . Al
igual q u e u n a jerarquía d e c lase , la especif icación d e c a j a n e g r a p u e d e exhibir el u s o
d e j e ra rqu ías e n las c u a l e s las c a j a s d e nivel inferior h e r e d a n las p r o p i e d a d e s d e

c a j a s supe r io res en la e s t ruc tu ra de árbol .

Especificación
d e c a j a d e
estado.

TM

PDF Editor

PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

29.2.2 Especificación de ca ja de estado
La caja de estado e s "una genera l i zac ión s imple d e u n a m á q u i n a d e e s t ado" [MIL88],

Si se r e c u e r d a la descr ipc ión del m o d e l a d o d e c o m p o r t a m i e n t o y los d i a g r a m a s de
e s t a d o del capí tu lo 8, un e s t a d o e s a lgún m o d o obse rvab le d e c o m p o r t a m i e n t o del
s i s t ema . C o n f o r m e ocu r r en los p r o c e s a m i e n t o s , un s i s t ema r e s p o n d e a los e v e n t o s
(estímulos) m e d i a n t e la real ización de t r ans ic iones d e s d e el e s t a d o actual has ta cier-
t o e s t a d o n u e v o . C o n f o r m e s e real iza la t ransic ión e s posible q u e ocur ra una acción.
La ca ja d e e s t a d o util iza u n a abs t r acc ión d e d a t o s para d e t e r m i n a r la t ransic ión
hacia el s iguiente e s t a d o y la acc ión (respuesta) q u e ocurr i rá c o m o c o n s e c u e n c i a de
la t rans ic ión.

Según s e m u e s t r a en la figura 29.4, la ca ja d e e s t a d o incorpora una ca ja negra . El
es t ímulo, S, q u e ingresa a la ca ja n e g r a llega d e s d e a lguna fuen te ex t e rna y un con -

jun to d e e s t a d o s in t e rnos del s i s tema, T. Mills [MIL88] p roporc iona una descr ipción
m a t e m á t i c a de la func ión , / d e la c a j a negra con ten ida d e n t r o d e la ca ja d e e s t ado :

g:S* xT" ->RxT

d o n d e o e s u n a s u b f u n c i ó n l igada a un e s t a d o específ ico, f. C u a n d o s e cons ide ran en
con jun to , los pa r e s d e s u b f u n c i o n e s d e e s t a d o (£, g) de f inen la func ión / d e ca ja
negra .

29.2.3 Especificación de ca ja transparente
La especif icación d e ca ja t r a n s p a r e n t e e s t á c e r c a n a m e n t e r e l ac ionada con el d i seño

d e p roced imien tos y la p r o g r a m a c i ó n e s t ruc tu r ad a (capítulo 11). En esenc ia , la sub -
func ión g d e n t r o de la ca ja de e s t a d o se sust i tuye con las e s t r u c t u r a s d e p r o g r a m a -

ción e s t ruc tu r a d a q u e i m p l e m e n t a g.
c o m o e jemplo , cons idé re se la ca ja t r a n s p a r e n t e q u e s e m u e s t r a en la figura 29.5.

La ca ja negra , g, de la figura 29.4 s e sust i tuye con u n a suces ión d e e s t r u c t u r a s q u e

incorpora una condic ional . Estas es t ruc turas , a su vez , s e re f inan en c a j a s t r a n s p a -
r e n t e s d e nivel inferior c o n f o r m e p r o c e d e el r e f inamien to e n niveles.

Especificación
d e c a j a
t ransparente . Estado

r~ T *—i

R

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE DE SALA U M P I A 867

Es impor t an te obse rva r q u e p u e d e d e m o s t r a r s e la corrección de la espec i f icac ión
d e p roced imien to descr i ta en la je rarquía d e caja t r anspa ren te . Este t e m a s e cons i -

dera en la secc ión s iguiente .

A ¿Qué condi-
ciones son

aplicables para
probar que son
adecuadas las
estructuras
estructuradas?

El e n f o q u e d e d i s e ñ o ut i l izado en la ingenier ía del s o f t w a r e d e sa la l impia utiliza con
ampl i tud la filosofía d e p r o g r a m a c i ó n e s t ruc tu rada . Pero, en e s t e caso , la p r o g r a m a -
ción e s t ruc tu r a d a s e aplica m u c h o m á s r i gu rosamen te .

Las f u n c i o n e s d e p r o c e s a m i e n t o bás ico (descr i tas d u r a n t e las p r i m e r a s e t a p a s del
r e f i namien to d e la especif icación) s e re f inan u t i l izando u n a "expans ión progres iva
d e f u n c i o n e s m a t e m á t i c a s en e s t r u c t u r a s d e conec t ivos lógicos [por e jemplo , if-then
else] y s u b f u n c i o n e s , d o n d e la e x p a n s i ó n [se] rea l iza h a s t a q u e t odas las sub func io -
n e s ident i f icadas p u e d a n e s t ab l ece r se d i r e c t a m e n t e en el l engua j e d e p r o g r a m a c i ó n

u s a d o p a r a la imp lemen tac ión" [DYE92]
El e n f o q u e d e p r o g r a m a c i ó n e s t ruc tu r ad a se e m p l e a con eficacia p a r a ref inar la

func ión , ¿pe ro q u é h a y a c e r c a de l d i s eño? Aquí s e involucran va r ios c o n c e p t o s f u n -
d a m e n t a l e s d e d i s e ñ o (capítulos 5 y 9). Los d a t o s d e p r o g r a m a se e n c a p s u l a n c o m o
un c o n j u n t o d e a b s t r a c c i o n e s q u e a t i e n d e n las sub func iones . Los c o n c e p t o s d e en-
c a p s u l a d o d e da tos , o c u l t a m i e n t o d e in fo rmac ión y clasif icación d e d a t o s se aprove-

c h a n para c r e a r el d i s e ñ o de da tos .

29.3.1 Refinamiento y verificación del diseño
Cada especi f icac ión d e ca ja t r a n s p a r e n t e r e p r e s e n t a el d i s e ñ o d e un p r o c e d i m i e n t o
(subfunción) nece sa r io p a r a lograr u n a t ransic ión d e ca ja d e e s t ado . Con la ca ja
t r a n s p a r e n t e las e s t r u c t u r a s d e p r o g r a m a c i ó n e s t ruc tu rada y el r e f i namien to progre-
sivo s e ut i l izan c o m o se ilustra en la figura 29.6. Una func ión de p r o g r a m a , / s e refi-
na en u n a suces ión de s u b f u n c i o n e s g y h. Éstas, a su vez, s e re f inan e n e s t r u c t u r a s

cond ic iona le s {if-then-else y do-while). El r e f inamien to ad ic ional i lustra la con t i nua -

ción del r e f i namien to lógico.
En cada nivel d e r e f i namien to el equ ipo d e sa la l impia2 rea l iza u n a verif icación

formal d e cor recc ión . Es to s e logra a n e x a n d o un c o n j u n t o d e c o n d i c i o n e s d e cor rec-
ción gené r i ca s a las e s t r u c t u r a s de p rog ramac ión e s t ruc tu rada . Si u n a f u n c i ó n / s e
e x p a n d e en una suces ión g y h, la cond ic ión de cor recc ión p a r a cua lqu ie r e n t r a d a a

f e s

• ¿g s egu ida d e h h a c e / ?

C u a n d o una func ión p se ref ina e n u n condic iona l d e la fo rma if < c > then q, e lse r
(si < c > e n t o n c e s q, d e o t ro m o d o r), la condic ión d e cor recc ión p a r a cua lqu ie r e n t r a -

da a p e s

2 Puesto que el equipo completo está involucrado en e! proceso de verificación, es menos probable
que se cometa un error al realizar la verificación

TM

PDF Editor

868 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Refinamiento
progresivo.

^ C O N S E J Ó ^

Si el lector se limita
sólo a los estructuras
estructurados
conforme desarrollo
un diseño de procedi-
miento, lo prueba de
corrección es directa.
Sise violan las estruc-
turas las pruebas de
corrección son i
o imposibles.

• ¿ S i e m p r e q u e la c o n d i c i ó n < c > e s v e r d a d e r a , q h a c e p; y s i e m p r e q u e < c > e s

f a l s a , r h a c e p?

C u a n d o la func ión m s e re f ina c o m o un buc le las cond ic iones d e corrección para
cualquier en t r ada a m son

• ¿La t e rminac ión es tá ga r an t i zada?

• ¿S iempre q u e <c> e s ve rdade ra , n s egu ida d e m h a c e m; y s i e m p r e q u e < c >
e s falsa, sos layar el bucle todavía h a c e m ?

Cada vez q u e u n a c a j a t r a n s p a r e n t e s e ref ina al s igu ien te nivel d e detal le s e apl ican
d ichas cond ic iones d e corrección.

Es i m p o r t a n t e s e ñ a l a r q u e la ut i l ización d e e s t ruc tu ra s d e p r o g r a m a c i ó n e s t ruc -
tu rada res t r inge el n ú m e r o d e p r u e b a s d e cor recc ión q u e s e d e b e n real izar . Una so la
condic ión s e verifica para las suces iones ; d o s cond ic iones se p r u e b a n p a r a if-then-
else; y t r e s cond ic iones s e verif ican p a r a los bucles .

La verif icación d e cor recc ión d e un d i s e ñ o d e p roced imien to s e ilustra e m p l e a n -
d o un e j e m p l o s imple q u e in t rodu je ron Linger, Mills y Witt [LIN79]. El obje t ivo e s
d i s eña r y verificar u n p e q u e ñ o p r o g r a m a q u e e n c u e n t r a la pa r t e en te ra , y, d e u n a

TM

PDF Editor

\ CLAVE
Probar que un diseño
es correcto requiere,
primero, identificar
todos los condiciones y
luego probor que cada
una toma el volor
booleano adecuado. A
estas condiciones se
les llama subpruebas.

raíz cuadrada de un en te ro dado, x. El d iseño de procedimiento se representa en la
figura 29.7 e m p l e a n d o el d iagrama de flujo.

Verificar la corrección de es te d iseño requiere definir las condiciones de ent rada
y salida c o m o se indica en la figura 29.8. La condición de en t rada advierte que x debe
ser mayor que o igual a 0. La condición de salida requiere que x p e r m a n e z c a inalte-
rada y que y sat isfaga la expresión indicada en la figura. Probar la corrección del
d iseño requiere comprobar que, en todos los casos , son verdaderas las condiciones
inicio, bucle, cuenta, sí y salida que se muest ran en la figura 29.8. En ocas iones , a
é s tas s e les l lama subpruebas•.

1. La condición inicio d e m a n d a que | x > 0 e y = 01. Con base en los requisitos del
problema se s u p o n e que la condición de en t rada e s correcta.3 En consecuencia ,
se satisface la primera par te de la condición inicio, x a 0. Según el d iagrama de
flujo, el enunc iado que precede inmedia tamente a la condición inicio es tablece
y = 0. Por lo tanto, la segunda parte de la condición inicio t ambién se satisface.
En consecuencia , inicio es verdadera .

2. La condición bucle se puede encont ra r en una de d o s fo rmas posibles: 1) direc-
t amen te a partir de inicio (en este caso, la condición bucle se satisface directa-
mente) o por medio del flujo d e control que pasa a t ravés de la condición
cuenta . Dado que la condición cuenta e s idéntica a la condición bucle, bucle e s
verdadera sin importar la trayectoria de flujo que conduce a ella.

3 En este contexto, un valor negativo para .a r a u cuadrada no tiene significado.

TM

PDF Editor

870 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Prueba d e
q u e el diseño
es conecto .
Diseño con
subpruebas .

se
r

L

sal ida: x no cambia y y2 < x <, (y + 1) 2

cuenta: [y2 < x]

3 . La condic ión c u e n t a s e e n c u e n t r a sólo d e s p u é s d e q u e el valor d e y a u m e n t a en
1. Además , la t rayector ia del f lujo d e control q u e c o n d u c e a cuen ta s e p u e d e in-

vocar sólo si la condic ión sí t a m b i é n e s ve rdade ra . Por lo tan to , si (y + l)2 s x ,
se s igue q u e y 2 s x . L a condic ión c u e n t a s e sa t i s face .

4 . La condic ión sí se p rueba en la lógica condic ional m o s t r a d a . Por lo tan to , la

condic ión sí debe se r ve rdade ra c u a n d o el f lujo d e cont ro l s e m u e v e a lo largo
d e la t rayector ia m o s t r a d a .

5 . La condic ión sal ida d e m a n d a p r i m e r o q u e x n o haya c a m b i a d o . Un e x a m e n del
d i s e ñ o indica q u e x n o a p a r e c e en n ingún sitio a la izquierda d e un o p e r a d o r de
as ignac ión . No exis te l l amado d e func ión q u e u s e x. Por lo tan to , n o cambia .
D a d o q u e la p r u e b a condic iona l (y + l) 2 < x debe fallar p a r a a l canza r la condi -
ción salida, s e s igue q u e (y + l)2 :< x. Además , la condic ión bucle todavía debe
ser verdadera (es decir ,y2 =s x). En consecuencia , se pueden combina r (y + l)2 > x
y y 2 £ x para sa t i s facer la condic ión salida.

A d e m á s s e debe ga ran t i za r q u e el buc le t e rmina . Un e x a m e n de la condic ión bucle
indica que, p u e s t o que y a u m e n t a y x > 0, el buc le a la larga debe te rminar .

Los c inco p a s o s a p e n a s a n o t a d o s p r u e b a n la cor recc ión del d i s e ñ o del a lgor i tmo
ind icado en la f igura 29.7. Ahora s e t iene ce r teza d e q u e el d iseño, de hecho , ca lcu-
lará la pa r t e en te ra d e u n a raíz c u a d r a d a .

Es posible e m p l e a r un e n f o q u e m a t e m á t i c o m á s r iguroso en el d i seño d e la ver i -
f icación. Sin embargo , u n a exposición d e es te t e m a r ebasa el á m b i t o d e e s t e libro.
Los l ec tores i n t e r e sados p u e d e n consu l t a r [LIN79J.

TM

PDF Editor

CAPITULO 29 INGENIERÍA DEL SOFTWARE DE SALA LIMPIA 871

4 j | ¿Qué s e
w gana al rea-
l z a r pruebas de
corrección?

29.3.2 Ventajas de la verificación del diseño4

La ver i f icación r igurosa d e la cor recc ión d e c a d a r e f i namien to del d i s e ñ o de la ca ja
t r a n s p a r e n t e t iene va r ias ven ta j a s . Linger [LIN94] las desc r ibe de la s iguiente forma:

• Reducen la verif icación a un p r o c e s o finito. La m a n e r a secuenc ia l y a n i d a d a
e n q u e s e o r g a n i z a n las e s t r u c t u r a s d e control e n u n a ca ja t r a n s p a r e n t e de f ine
con na tu ra l idad u n a jerarquía q u e revela las c o n d i c i o n e s de cor recc ión q u e s e
d e b e n verificar. Un "ax ioma d e r e e m p l a z o " [LIN79] permi te sust i tuir las
f u n c i o n e s p royec t adas con sus r e f i n a m i e n t o s d e es t ruc tu ra d e control en la
je rarquía de las subp ruebas . Por e jemplo , la s u b p r u e b a d e la func ión proyec-

tada fl de la f igura 29 .9 requ ie re p roba r q u e la compos ic ión d e las ope ra -
c i o n e s g l y g2 con la func ión p royec tada f2 t iene el m i s m o e fec to sob re los
d a t o s q u e f l . Nótese q u e f2 sust i tuye t odos los deta l les d e su r e f i namien to en

la p rueba . Esta sus t i tuc ión localiza el a r g u m e n t o d e p rueba con la es t ruc tura
d e control q u e s e es ta e s tud iando . De h e c h o , de ja q u e el ingeniero de

s o f t w a r e lleve a c a b o las p r u e b a s en cualquier o rden .

• Es imposible sob rees t imar el e fec to posi t ivo q u e la reducción d e la verif icación
a un p r o c e s o finito t iene s o b r e la cal idad. Aun c u a n d o todos los p r o g r a m a s ,
excep to los m á s t r iv ia les ,muest ren un n ú m e r o e s e n c i a l m e n t e infinito d e
t rayector ias d e e jecución, p u e d e n verificarse en un n ú m e r o finito d e pasos .

Diseño con
subpruebas . [fl]

DO
gl
g2
[f2]

WHILE
P'

DO [f3]
8 3
[«]
IF

p2
THEN [f5]

g5
EL8E [f6]

g e
67

END
g8

END
END

Subpruebas:

f l = [DO gl: g2 : [f2] END] ?

f 2 = [WHILE pl DO [f3] END] ?

f 3 = [DO g3: [M]: g8 END] ?

f4 = [IF p2; THEN [f5] EL8E [f6] END] 7

f S = [DO g4: g5 END] 7

f 6 = [DO g6: g7 END] 7

4 Esta sección y las figuras 29.7 a 29.9 har. sido adaptadas de [LIN94] y se usaron con permiso.

TM

PDF Editor

872 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

CLAVE
A pesar del número
extremadamente
grande de trayectorias
de ejecución en un
programa, el número
de pasos para probar
que el programa e s
correcto e s bastante
pequeño.

• Permiten al equipo de sala limpia verificar cada línea de diseño y código. Los
equ ipos p u e d e n real izar la verif icación por m e d i o del anál is is y la d iscus ión

en g r u p o sob re la b a s e del t e o r e m a d e cor recc ión , y son c a p a c e s d e produci r
p r u e b a s esc r i t as d o n d e s e requ ie re u n a c o n f i a n z a adic ional e n u n s i s t ema
crucial para la vida o la mis ión.

• Resultan en un nivel de defecto cercano a cero. Duran te u n a revisión d e e q u i p o
s e verifica por t u r n o s la cond ic ión d e corrección d e c a d a es t ruc tu ra d e
contro l . Cada m i e m b r o del e q u i p o d e b e e s t a r d e a c u e r d o en q u e c a d a
cond ic ión e s correc ta , de m o d o q u e un e r ror só lo e s posible si c a d a m i e m b r o
del e q u i p o verifica d e m a n e r a incorrecta una condic ión . El requis i to del

a c u e r d o u n á n i m e b a s a d o e n la verif icación individual g e n e r a un s o f t w a r e con
p o c o s o n ingún d e f e c t o a n t e s d e su p r imera e jecuc ión .

• Es escaíable. Cualquier s i s t ema d e so f tware , sin impor ta r c u á n g r a n d e s e a ,
t iene p r o c e d i m i e n t o s de ca ja t r a n s p a r e n t e d e nivel super io r c o m p u e s t o s d e
e s t r u c t u r a s d e suces ión , a l t e rnac ión e i teración. Cada u n a d e e l las u s u a l m e n t e

invoca un gran subs i s t ema con mi les d e l íneas d e código, y c a d a u n o d e
d ichos s u b s i s t e m a s t iene s u s p rop ios p roced imien tos y f u n c i o n e s p royec t adas
d e nivel super ior . De m o d o q u e las cond ic iones d e corrección p a r a ta les
e s t ruc tu ra s d e nivel super io r s e verif ican en la m i s m a fo rma q u e las e s t ruc -
tu ra s d e nivel inferior. La verif icación e n niveles supe r io res p u e d e tomar , y
vale la p e n a , m á s t iempo, pe ro n o requ ie re m á s teor ía .

• Produce mejor código que la prueba unitaria. La p rueba uni tar ia verifica los
e f e c t o s d e e jecu ta r sólo las t rayector ias d e p rueba s e l ecc ionadas e n t r e
m u c h a s t rayector ias posibles . Al b a s a r la verif icación e n la teoría d e
func iones , el e n f o q u e d e sa la limpia p u e d e verif icar cua lqu ie r e f e c t o posible
s o b r e t odos los d a t o s porque , m ien t r a s un p r o g r a m a p u e d e t ener m u c h a s

t rayec tor ias d e e jecuc ión , só lo t iene una func ión . La verif icación t a m b i é n e s
m á s ef ic iente q u e la p r u e b a uni tar ia . La mayor ía d e las cond ic iones d e verifi-
cac ión s e p u e d e c o m p r o b a r e n u n o s c u a n t o s minutos , p e r o las p r u e b a s
uni ta r ias requieren un t i e m p o sus tanc ia l en s u p reparac ión , e jecuc ión y
c o m p r o b a c i ó n .

Es i m p o r t a n t e advert i r q u e la verif icación del d i s e ñ o debe , a final d e c u e n t a s , apli-
ca r se al p rop io cód igo fuen te . En e s t e con tex to , con f recuenc ia s e le l lama verifica-
ción de ¡a corrección.

La es t ra teg ia y las tác t icas d e las p r u e b a s d e sa la l impia son f u n d a m e n t a l m e n t e dife-
r e n t e s d e los e n f o q u e s d e p r u e b a convenc iona le s . Los m é t o d o s c o n v e n c i o n a l e s
g e n e r a n un c o n j u n t o d e c a s o s d e p r u e b a para descubr i r e r ro res d e d i s e ñ o y codifi-
cac ión . La m e t a d e las p r u e b a s d e sa la limpia e s val idar los requis i tos d e s o f t w a r e

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE DE SALA U M P I A 873

^ C O N S I J O ^

incluso si no se es
xrtidorio del enfoque
de salo limpio, válelo
xna considerar las
yuebas estadísticas
de utilización como
xrte integral de su
estrategia de pruebas.

d e m o s t r a n d o q u e una m u e s t r a es tadís t ica d e c a s o s d e u s o (capítulo 7) s e ha e jecu-
t ado e x i t o s a m e n t e .

""T— —
"lo calidad n o es un acto; e s un háb i to . "

29.4.1 Pruebas estadísticas de uso
El usua r io d e un p r o g r a m a d e c o m p u t a d o r a ra ra v e z neces i ta e n t e n d e r los de ta l les
t écn icos del d i seño . El c o m p o r t a m i e n t o del p r o g r a m a q u e ve el u sua r io lo a l i m e n t a n

e n t r a d a s y e v e n t o s q u e con f recuenc ia él m i s m o p roduce . Pero, en los s i s t e m a s c o m -
plejos, el posible e spec t ro d e e n t r a d a s y e v e n t o s (es decir, los c a s o s d e uso) tal vez
s e a e x t r e m a d a m e n t e ampl io . ¿Qué s u b c o n j u n t o d e c a s o s d e u s o verif icará a d e c u a -
d a m e n t e el c o m p o r t a m i e n t o del p r o g r a m a ? Esta e s la p r imera p r e g u n t a q u e a b o r d a

la p rueba es tadís t ica d e uso .
La p rueba es tadís t ica d e u s o "equivale a p r o b a r el s o f t w a r e en la fo rma q u e los

u sua r io s in ten ta r ían usar lo" [LIN94], Esto s e logra si los equ ipos d e p rueba d e sala
l impia (también l l a m a d o s equipos de certificación) d e t e r m i n a n una distr ibución d e
probabi l idad d e u s o p a r a el so f tware . La especi f icac ión (caja negra) d e c a d a incre-
m e n t o del s o f t w a r e s e ana l iza p a r a definir un c o n j u n t o de e s t ímulos (en t radas o
even tos) q u e p r o v o c a n el c a m b i o d e c o m p o r t a m i e n t o del so f tware . Con b a s e en
en t r ev i s t a s con usua r io s po tenc ia les , la c reac ión d e e s c e n a r i o s de u s o y u n a c o m -
p r e n s i ó n genera l del d o m i n i o d e la apl icación, s e a s igna una probabi l idad de u s o a

c a d a es t ímulo.
Los c a s o s d e p rueba se g e n e r a n p a r a c a d a c o n j u n t o d e es t ímulos 5 d e a c u e r d o con

la dis t r ibución d e probabi l idad d e uso. Con f ines i lustrativos, c o n s i d é r e s e el s i s t ema
HogarSeguro e s t ud i ado p r e v i a m e n t e en e s t e libro. La ingenier ía del s o f t w a r e de sa la
limpia s e aplica en el desar ro l lo d e un i n c r e m e n t o d e s o f t w a r e q u e ges t iona la inte-
racc ión del u s u a r i o con el t ec l ado n u m é r i c o del s i s t ema d e segur idad . Respec to de
e s t e i n c r e m e n t o s e h a n ident i f icado c inco es t ímulos . El aná l i s i s indica el p o r c e n t a j e
d e distr ibución d e probabi l idad d e c a d a es t ímulo . Con el fin s implif icar la se lecc ión

de los c a s o s d e p rueba d i c h a s p robab i l idades e s t á n s e co r re lac ionan con los inter-
va los n u m e r a d o s en t r e 1 y 99 [LIN94] y s e ilustran en la tabla s iguiente:

Estímulo del programa Probabilidad Intervalo

Habilitar/deshabilitar (HD)

Fijar zona |FZ]

Consulla (C)

Prueba (P)

Alarma(A)

50%
15%
15%
15%

5%

1-49

5 0 6 3

6 4 - 7 8

79-94

9 5 - 9 9

5 Es posible utilizar herramientas au tomat izadas para lograr esto. Véase [DYE92]para mayor infor-

mación.

TM

PDF Editor

874 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Crear una sucesión de casos de prueba de uso que concuerde con la distribución
de probabilidad de uso requiere generar números aleatorios entre 1 y 99. Cada
número aleatorio corresponde a un intervalo en la distribución de probabilidad pre-
cedente. Por lo tanto, la secuencia de casos de prueba de uso se define aleatoria-
mente, pero corresponde a la probabilidad correspondiente de presencia de estímulos
Por ejemplo, supóngase que se generan las siguientes secuencias de números alea-
torios:

13-94-22-24-45-56
81-19-31-69-45-9
38-21-52-84-86-4

Al seleccionar los estímulos apropiados con base en el intervalo de distribución que
se muestra en la tabla se derivan los casos de uso siguientes:

HD-P-HD-HD-HD-FZ
P-HD-HD-C-HD-HD
HD-HD-FZ-P-P-HD

El equipo de prueba ejecuta estos casos de uso y verifica el comportamiento del soft-
ware frente a la especificación del sistema. El t iempo para las pruebas se registra de
modo que sea posible determinar los t iempos de intervalo. Al usar t iempos de inter-
valo, el equipo de certificación tiene la posibilidad de calcular el t iempo medio entre
fallas (TMEF). Si se lleva a cabo una larga secuencia de pruebas sin fallas, el TMEF
es ba jo y e s probable que la fiabilidad del sof tware sea alta.

29.4.2 Certificación
Las técnicas de verificación y prueba ya descritas en este capítulo llevan a compo-
nentes de software (e incrementos completos) que pueden certificarse. En el con-
texto del enfoque de ingeniería del sof tware de sala limpia la certificación implica
que la fiabilidad (medida en TMEF) se especifica para cada componente .

El impacto potencial de los componen tes de sof tware certificables va mucho más
allá de un solo proyecto de sala limpia. Los componen tes de sof tware reutilizables
se pueden a lmacenar junto con sus escenarios de uso, est ímulos de programa y dis-
tribuciones de probabilidad. Cada componente tendría una fiabilidad certificada en
el escenario de uso y el régimen de pruebas descritos. Esta información es invalua-
ble para ot ros que intenten emplear los componentes .

El enfoque de la certificación involucra cinco pasos [WOH94):

1. Creación de escenarios de uso.

2. Especificación de perfiles de uso.

3 . Generación de casos de prueba a partir del perfil.

4 . Ejecución de pruebas y registro y análisis de datos de fallas.

5 . Cálculo y certificación de la fiabilidad.

•
¿Cómo se
certifico un

conponente de
sof tware?

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE CE SALA LIMPIA 875

Los p a s o s del l al 4 s e h a n t r a t ado en u n a secc ión anter ior . Esta secc ión s e c o n c e n -
t rará en la cer t i f icación d e la fiabilidad.

La cer t i f icación p a r a la ingenier ía del s o f t w a r e d e sa la limpia requiere la c reac ión
d e t r e s m o d e l o s [P0093] :

M o d e l o d e m u e s t r e o . La p rueba del s o f t w a r e e j ecu ta m c a s o s d e p rueba a l ea -
tor ios y s e certifica si n o ocu r r en fa l las o un n ú m e r o espec í f ico de és tas . El valor d e
m se deriva m a t e m á t i c a m e n t e para a segu ra r q u e se logra la fiabilidad requer ida .

M o d e l o d e c o m p o n e n t e s . Se cer t i f icará un s i s t ema c o m p u e s t o d e n c o m p o -
n e n t e s . El m o d e l o d e c o m p o n e n t e s pe rmi t e q u e el ana l i s ta d e t e r m i n e la probabi l idad
d e q u e el c o m p o n e n t e i fallará a n t e s d e comple t a r s e .

M o d e l o d e c e r t i f i c a c i ó n . La fiabilidad global del s i s t ema s e proyecta y certifica.

En el m o m e n t o d e comple t a r las p r u e b a s es tad ís t icas d e u s o el e q u i p o d e certifi-
cac ión t iene la in fo rmac ión n e c e s a r i a para en t r ega r el s o f t w a r e q u e t iene un TMEF
cert i f icado, el cual s e ca lcula e m p l e a n d o c a d a u n o d e d ichos mode los .

Una descr ipc ión deta l lada del cá lcu lo d e los m o d e l o s d e mues t r eo , c o m p o n e n t e s y
cer t i f icación e s t á m á s allá del á m b i t o d e e s t e libro. El lector i n t e r e s a d o hal lará de t a -
lles ad ic iona les en [MUS87], [CUR86] y [POQ93].

La ingenier ía del s o f t w a r e d e sala limpia e s un e n f o q u e formal p a r a el desar ro l lo d e
s o f t w a r e q u e p u e d e llevar a s o f t w a r e con cal idad n o t a b l e m e n t e al ta . Utiliza la e s p e -
cif icación d e es t ruc tu ra de c a j a s (o m é t o d o s formales) p a r a el m o d e l a d o d e anál is is

y d i s e ñ o y resal ta la verif icación d e la cor recc ión , e n lugar d e las p ruebas , c o m o el
principal m e c a n i s m o para de tec ta r y e l iminar los er rores . Se apl ican p r u e b a s e s t a -
dís t icas d e uti l ización para desar ro l la r la in fo rmac ión necesa r i a de tasa d e fal las con
q u e cert if icar la fiabilidad del s o f t w a r e e n t r e g a d o .

El e n f o q u e d e s a l a limpia c o m i e n z a c o n los m o d e l o s d e anál is is y d i s e ñ o q u e uti-
lizan u n a r ep resen tac ión en es t ruc tu ra d e ca ja s . Una "ca ja" e n c a p s u l a el s i s t ema (o
a lgún a s p e c t o d e él) en un g r a do específ ico d e abs t racc ión . Las c a j a s n e g r a s s e apro-
v e c h a n p a r a r e p r e s e n t a r el c o m p o r t a m i e n t o d e un s i s t ema obse rvab le d e m a n e r a

ex te rna . Las c a j a s d e e s t a d o e n c a p s u l a n da to s y o p e r a c i o n e s d e e s t ado . Una c a j a
t r a n s p a r e n t e s e e m p l e a en el m o d e l a d o del d i s e ñ o d e p r o c e d i m i e n t o q u e implican
los d a t o s y o p e r a c i o n e s de una ca ja de e s t ado .

La verif icación de la corrección s e apl ica c u a n d o s e comple t a el d i s e ñ o d e la
e s t ruc tu ra d e ca ja s . El d i s e ñ o d e p roced imien to p a r a un c o m p o n e n t e d e s o f t w a r e s e
divide en una ser ie d e subfunc iones . La p r u e b a d e la cor recc ión d e las s u b f u n c i o n e s

r equ ie re definir cond ic iones d e sal ida p a r a c a d a sub func ión y s e apl ica un c o n j u n t o
de s u b p r u e b a s . Si c a d a condic ión d e sal ida s e sa t i s face el d i s e ñ o d e b e se r cor rec to .

TM

PDF Editor

876 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

U n a v e z c o m p l e t a d a la v e r i f i c a c i ó n d e la c o r r e c c i ó n c o m i e n z a la p r u e b a e s t a d í s -

t ica d e u s o . A d i f e r e n c i a d é l a s p r u e b a s c o n v e n c i o n a l e s , la i n g e n i e r í a de l s o f t w a r e d e

s a l a l i m p i a n o s u b r a y a la i m p o r t a n c i a d e l a s p r u e b a s u n i t a r i a s o d e i n t e g r a c i ó n . En

v e z d e e l lo e l s o f t w a r e s e p r u e b a d e f i n i e n d o u n c o n j u n t o d e e s c e n a r i o s d e u s o .

d e t e r m i n a n d o la p r o b a b i l i d a d d e u s o p a r a c a d a e s c e n a r i o y d e f i n i e n d o e n t o n c e s las

p r u e b a s a l e a t o r i a s q u e c o n c u e r d e n c o n l a s p r o b a b i l i d a d e s . L o s r e g i s t r o s d e e r r o r

r e s u l t a n t e s s e c o m b i n a n c o n l o s m o d e l o s d e m u e s t r e o , c o m p o n e n t e s y c e r t i f i c a c i ó n

p a r a p e r m i t i r e l c á l c u l o m a t e m á t i c o d e la f iab i l idad p r o y e c t a d a r e s p e c t o al c o m p o -

n e n t e d e s o f t w a r e .

La filosofía d e s a l a l i m p i a e s u n e n f o q u e r i g u r o s o p a r a la i n g e n i e r í a de l s o f t w a r e .

Es u n m o d e l o d e p r o c e s o d e s o f t w a r e q u e d e s t a c a la v e r i f i c a c i ó n m a t e m á t i c a d e la

c o r r e c c i ó n y la c e r t i f i c a c i ó n d e la f i ab i l idad del s o f t w a r e . La l í nea f u n d a m e n t a l e s las

t a s a s d e fal la e x t r e m a d a m e n t e b a j a s q u e s e r í a n di f íc i les o i m p o s i b l e s d e log ra r

e m p l e a n d o m é t o d o s m e n o s f o r m a l e s .

[CUR86] Currit, P. A., M. Dyer y H. D. Mills, "Certifying the Reliability of Software", en IEEE Trans
Software Engineering, vol. SE-12, núm. 1, enero de 1994.

[DYE92] Dyer, M„ The Cleanroom Approach to Quality Software Development, Wiley, 1992.
[HAU94] Hausler, P. A., R. LingeryC. Trammel, "Adopting Cleanroom Software Engineering with

a Phased Approach", en IBM Systems Journal, vol. 33, núm 1, enero de 1994, pp. 89-109.
[HEN95] Henderson, J„ "Why isn't Cleanroom the Universal Software Development Methodo-

logy", en Crosstalk, vol. 8, núm. 5, mayo de 1995, pp. 11-14.
IHEV93] Hevner, A. R., y H. D. Mills, "Box Structure Methods for System Development with Ob-

jects", en IBM Systems Journal, vol. 31, núm. 2, febrero de 1993, pp. 232-251.
[LIN79] Linger, R. M., H. D. Mills y B. I. Witt, Structured Programming: Theoiy and Practice, Addi-

son-wesley, 1979.
ILIN881 Linger, R. M., y H. D. Mills, "A Case Study in Cleanroom Software Engineering: The IBM

COBOL Structuring Facility", Proc. COMPSAC '88, Chicago, octubre de 1988.
[L1N94] Linger, R., "Cleanroom Process Model", en IEEE Software, vol. 11, núm. 2, marzo de 1994.

pp. 50-58.
[MIL87I Mills, H. D„ M. Dyer y R. Linger, "Cleanroom Software Engineering", en IEEE Software,

vol. 4, núm. 5, septiembre de 1987, pp. 19-24.
[MIL88] Mills, H. D., "Stepwise Refinement and Veriflcation in Box Structured Systems", en Com

puter, vol. 21, núm. 6, junio de 1988, pp. 23-35.
IMUS87] Musa,) . D , A lannino y K. Okumoto, Engineering and Managing Software with Reliabi-

lity Measures, McGraw-Hill, 1987.
[P0088 | Poore, J. H., y H. D. Mills, "Bringing Software Under Statistical Quality Control", en Qua

tity Progress, noviembre de 1988, pp. 52-55.
[P00931 Poore, J. H., H. D. Mills y D. Mutchler, "Planning and Certifying Software System Relia-

bili ty, en IEEE Software, vol. 10, núm. 1, enero de 1993, pp. 88-99.
[WOH94] Wohiin, C., y P. Runeson, "Certification of Software Components", en IEEE Trans. Soft

ware Engineering, vol. SE-20, núm. 6, junio de 1994, pp. 494-499.

2 9 . 1 . Si se tuviese que elegir un aspecto de la ingeniería del sof tware de sala limpia que la
hiciese radicalmente diferente de los enfoques convencionales de ingeniería de software, ¿cuál
sería?

TM

PDF Editor

CAPÍTULO 29 INGENIERÍA DEL SOFTWARE DE SALA LIMPIA 877

29.2. ¿Cómo trabajan en conjunto un modelo de proceso incremental y la certificación para
producir sof tware de alta calidad?

29.3. Empleando la especificación de estructura de cajas desarróllense modelos de análisis "de
primer paso" y de diseño para el sistema HogarSeguro.

29.4. Desarróllese una especificación de estructura de ca jas para una porción del sistema
PHTRS presentado en el problema 8.10.

29.5. Un algoritmo de ordenamiento en burbuja se define del modo siguiente:

p r o c e d u r e b u b b l e s o r t ;
v a r i, t, i n t ege r ;
b e g i n
r e p e a t unt i l t = a [1]

t : = a [I] :
f o r j: = 2 t o n d o

if a [j - l j > a | j] t h e n b e g i n
t : = a [j - l] ;
a O - l] : = a [j] ;
«DI: = ' i
e n d

e n d r e p
e n d

Divídase el diseño en subfunciones y defínase un conjunto de condiciones que permitirían pro-
bar que es te algoritmo es correcto.

29.6. Documéntese una prueba de verificación de corrección para el ordenamiento en burbu-
ja tratado en el problema 29.5.

29.7. Selecciónese un componente de programa que se haya diseñado en otro contexto (o uno
que haya asignado el instructor) y desarróllese respecto de él una prueba completa de correc-
ción.

29.8. Selecciónese un programa que se use regularmente (por ejemplo, un gestor de correo
electrónico, un procesador de palabra, un programa de hojas de cálculo) y créese un conjunto
de escenarios de uso para el programa. Defínase la probabilidad de uso para cada escenario y
luego desarróllese una tabla de estímulos de programa y de distribución de probabilidad simi-
lar al que se muestra en la sección 29.4.1.

29.9. Para la tabla de estímulos de programa y distribución de probabilidad desarrollada en el
problema 29.8, utilícese un generador de números aleatorios con el fin de desarrollar un con-
junto de casos de prueba para emplearlo en pruebas estadísticas de uso.

29.10. Con palabras propias, descríbase el intento de certificación en el contexto de ingeniería
del sof tware de sala limpia.

Prowell eí al. (Clcanroom Software Engineeríng: Technology and Process, Addison-Wesley, 1999)
ofrecen un tratamiento detallado de los aspectos importantes del enfoque de sala limpia. Poore
y Trammell (Cleanroom Software Engineeríng: A Reader, Blackwell Publishing, 1996) han editado
exposiciones útiles de t emas de sala limpia. Beckery Whittaker (Cleanroom Software Engineeríng
Practices, Idea Group Publishing, 1996) presentan un excelente panorama para quienes no es tán
familiarizados con las prácticas de sala limpia

The Cleanroom Pamphlet (Software Technology Support Center, Hill AFBase, abril de 1995) con-
tiene reimpresiones de varios artículos importantes Linger 1UN941 produjo una de las mejores
introducciones a la materia. El Data and Analysis Center for Software (DACS) (www.dacs.dtic.mil)
ofrece muchos artículos útiles, libros guia y : t r a i fuentes de información acerca de la ingenie-
ría del sof tware de sala limpia.

TM

PDF Editor

http://www.dacs.dtic.mil

PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Linger y Trammell ("Cleanroom Software Engineering Reference Model", SEI Technical
Report CMU/SE1-96-TR-022, 1996) han definido un conjunto de 14 procesos de sala limpia y 20
productos de trabajo que forman la base para la SEI CMM de la ingeniería de software de sala
limpia (CMU/SEI-96-TR-023).

Michael Deck de Cleanroom Software Engineering (www.cleansoft.com) ha preparado una
bibliografía acerca de t emas de sala limpia. Muchos están disponibles en formato descargable.

La verificación del diseño mediante la prueba de las correcciones se encuentra en el centro
del enfoque de sala limpia. Los libros de Stavely {Toward Zero-Defect Software, Addison-Wesley.
1998), Baber (Error-Free Software, Wiley, 1991) y Schulmeyer {Zero Defect Software, McGraw-Hill,
1990) abordan la prueba de corrección en forma muy detallada.

En Internet hay disponible una amplia variedad de fuentes de información acerca de la inge-
niería del sof tware de sala limpia. Una lista actualizada de referencias en la World Wide Web se
puede encontrar en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.cleansoft.com
http://www.mhhe.com/pressman

C A P Í T U L O

INGENIERÍA DEL SOFTWARE
BASADA EN C O M P O N E N T E S 30

C O N C E P T O S
CLAVE

adoptación 8 8 8

calificación 8 8 7
c l a s i f i c a c i ó n 8 9 2

DBC 8 8 6

entorna
de reotliindón .894

ingeniería
del dominio . . . 8 8 3

ISBC 8 7 9

middleware . . . 8 9 0

economía 8 0 5

proceso 8 8 2

puntos
de estroctura . . 8 9 7

tipos de
componentes . .881

En el c o n t e x t o de la ingenier ía del s o f t w a r e la reut i l ización e s una idea t an -
t o an t igua c o m o n u e v a . Los p r o g r a m a d o r e s h a n reu t i l izado ideas , abs t r ac -
c iones y p r o c e s o s d e s d e los p r imeros días d e la compu tac ión , p e r o el

e n f o q u e original p a r a la reut i l ización era específ ico. En la ac tua l idad , los c o m -
ple jos s i s t e m a s d e al ta cal idad b a s a d o s e n c o m p u t a d o r a s s e d e b e n cons t ru i r e n
u n t i e m p o muy co r to y d e m a n d a un e n f o q u e m á s o r g a n i z a d o d e la reut i l ización.

La ingeniería del software basada en componentes (ISBC) e s un p r o c e s o q u e
c o n c e d e par t icu lar impor tanc ia al d i s e ñ o y la cons t rucc ión de s i s t e m a s b a s a d o s
e n c o m p u t a d o r a s q u e util izan " c o m p o n e n t e s " d e s o f t w a r e reuti l izables. Cle-
m e n t s [CLE95] desc r ibe así la ISBC:

[la ISBC] está cambiando la forma en que se desarrollan los grandes sistemas de soft-
ware. [La fSBCj encama la filosofía de "comprar, no construir" de la cual son partida
ríos Fred Brooks y otros. En la misma forma como las primeras subrutinas liberaron
al programador de pensar acerca de los detalles, [la ISBC] cambió el interés de pro-
gramar software por el de componer sistemas de software. La implementación ha da-
do paso a la integración como centro del enfoque. En sus cimientos está la suposición
de que existe suficiente base común entre muchos grandes sistemas de software pa-
ra justificar el desarrollo de componentes reutilizables para explotarla y satisfacerla.

Pero su rgen var ias p r e g u n t a s . ¿Es posible cons t ru i r s i s t e m a s c o m p l e j o s m e -
d ian te el e n s a m b l a d o d e c o m p o n e n t e s d e s o f t w a r e reut i l izables p roven i en t e s d e
un ca tá logo? ¿Esto se p u e d e lograr e n u n a fo rma e f icaz t a n t o e n c o s t o c o m o e n
t i empo? ¿Es posible es tab lecer incen t ivos a d e c u a d o s que a l ien ten a los ingen ie -
ros d e s o f t w a r e a reutil izar en v e z d e re inventar? ¿Los ges to re s t i enen b u e n a
disposic ión p a r a incurrir e n el ga s to adic ional a s o c i a d o con la c r e a c i ó n d e c o m
p o n e n t e s d e s o f t w a r e reut i l izables? ¿La bibl io teca d e c o m p o n e n t e s e s n e c e s a r i a
p a r a lograr q u e la reuti l ización s e c ree e n u n a f o r m a q u e sea acces ib le a qu ie -
n e s la neces i t an? ¿Los c o m p o n e n t e s q u e ex i s ten p u e d e n encon t r a r lo s qu ienes
los neces i t en?

¿ Q u é e s ? Usted compra un sistema
de entretenimiento y lo lleva a casa.
Cada componente ha sido diseña-
d o para encajar en una arquitectura
específica de audio y video: las cone-

xiones son estandarizadas y el protocolo de co-
municación se ha preestablecido. El ensamblado
es sencillo porque usted no tiene que construir el

sistema a partir de cientos de partes discretas
La ingeniería de software basada en componen
tes (ISBC) lucha por lograr la misma coso. Un
conjunto de componentes de software estandari-
zados preconstruidos se hacen disponibles p a r a
encajar en un estilo arquitectónico específico pa-
ra cierto dominio de aplicación. Entonces la
aplicación es ensamblada usando dichos com

879

TM

PDF Editor

880 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

ponentes, en lugar de las partes discretas de un
lenguaje de programación convencional.

¿Quién lo hace? Los ingenieros de software
aplican el proceso de ISBC.

¿Por q u é e s i m p o r t a n t e ? Toma sólo unos
cuantos minutos ensamblar el sistema de entrete-
nimiento del hogar porque los componentes es-
tán diseñados para ser integrados con facilidad.
Aunque el software es considerablemente más
complejo, se sigue que los sistemas basados en
componentes son más fáciles de ensamblar y
por lo tanto menos costosos de construir que ios
sistemas que se construyen a partir de partes
discretas. Además, la ISBC alienta el uso de pa-
trones arquitectónicos predecibles y de infraestruc-
tura de software estándar, y por lo tanto conduce
a un resultado de mayor calidad.

¿Cuáles son los pasos? La ISBC abarca dos
actividades de ingeniería paralelas: la ingenie-
ría de dominios y el desarrollo basado en com-
ponentes. La ingeniería de dominios explora un
dominio de aplicación con la intención específi-
ca de encontrar componentes funcionales, de
comportamiento y de datos que sean candidatos
para la reutilización. Dichos componentes son
colocados en librerías de reutilización. El desa-
rrollo basado en componentes obtiene requisitos
de los clientes; selecciona un estilo arquitectóni-
co apropiado para satisfacer los objetivos del

sistema a construir; y luego 1) selecciona com-
ponentes potenciales para reutilización, 2! cali-
fica los componentes para asegurarse de que
encajan adecuadamente en la arquitectura para
el sistema, 3) adapta los componentes si se de-
ben hacer modificaciones para integrarlos ade-
cuadamente, y 4) integra los componentes para
formar subsistemas y la aplicación como un to-
do. Además, algunos componentes personaliza-
dos son sometidos a ingeniería para enfrentar
aquellos aspectos del sistema que no pueden ser
implementados con el uso de los componentes
existentes.

¿Cuál es el producto de trabajo? Un software
operativo, ensamblado con el uso de componen-
tes de software existentes y desarrollados recien-
temente, es el resultado de la ISBC.

¿Cómo puedo estar seguro de que lo he
hecho correctamente? Use las mismas
prácticas de SQA que se aplican en todo proce-
so de ingeniería del software: las revisiones téc-
nicas formales valoran los modelos de análisis y
de diseño, las revisiones especializadas conside-
ran los conflictos asociados con los componentes
adquiridos, las pruebas se aplican para descu-
brir errores en el software desarrollado reciente-
mente y en los componentes reutilizables que se
han integrado en la arquitectura.

Incluso en la actualidad, los ingenieros de sof tware luchan con és tas y ot ras pre-
gun tas acerca de la reutilización de c o m p o n e n t e s de sof tware . En este capítulo se
abordan a lgunas de las respuestas .

3 0 . 1 I N G E N I E R Í A DE S I S T E M A S B A S A D A E N C O M P O N E N T E S

En la superficie, la ISBC parece bas tan te similar a la ingeniería del so f tware orienta-
da a obje tos convencional . El p roceso comienza c u a n d o un equipo de sof tware
establece requisitos pa ra el s is tema que se construirá mediante técnicas convencio-
nales de investigación de requisitos (capítulo 7). Se es tablece un d iseño arquitectó-
nico (capítulo 10), pe ro en lugar de dirigirse inmedia tamente hacia ta reas de d iseño
m á s detal ladas, el equipo examina los requisitos para de terminar qué subconjun to
está d i rec tamente d ispuesto para la composición, y no para la construcción. Es decir,
el equipo plantea las s iguientes preguntas para cada requisito del s is tema:

Informoriónúliloceiai

se puede encontrar en
www.cbd-hq.tom.

TM

PDF Editor

http://www.cbd-hq.tom

CAPÍTULO 30 INGENIERÍA D A SOFTWARE EASADA EN COMPONENTES 881

• ¿Hay c o m p o n e n t e s comerc i a l e s d e l ínea (CDL) d i spon ib les p a r a i m p l e m e n t a r
los requis i tos?

• ¿Hay d isponib les c o m p o n e n t e s reut i l izables desa r ro l l ados i n t e r n a m e n t e p a r a
i m p l e m e n t a r los requis i tos?

• ¿Las in te r fases p a r a los c o m p o n e n t e s d i sponib les s o n compa t ib l e s d e n t r o de
la a rqu i tec tu ra del s i s t ema q u e s e cons t ru i rá?

El e q u i p o tal vez in ten te modif icar o e l iminar aque l lo s requis i tos del s i s t ema que
n o sea pos ib le i m p l e m e n t a r con CDL o d e desar ro l lo propio1 . Si el requis i to n o pue -
d e c a m b i a r s e o e l iminarse s e apl ican los m é t o d o s d e ingenier ía del s o f t w a r e en la

cons t rucc ión d e aque l los n u e v o s c o m p o n e n t e s q u e d e b e n desar ro l la r se para sa t i s fa -
cer los requisi tos . Pero p a r a los requis i tos q u e se a b o r d a n con los c o m p o n e n t e s dis-
pon ib les c o m i e n z a un c o n j u n t o d i fe ren te d e ac t iv idades d e ingenier ía del so f tware :
cual i f icación, a d a p t a c i ó n , compos ic ión y ac tua l izac ión . Cada una d e e s t a s act ivida-
d e s d e ISBC se e x a m i n a con mayor detal le en la secc ión 30.4.

En la p r imera par te d e es ta secc ión s e ha ut i l izado r e p e t i d a m e n t e el t é rmino com-
ponente, a u n q u e falta una descr ipción definit iva del té rmino. Brown y Wallnau
[BR096] sug ie ren las s igu ien tes posibil idades:

• Componente: par te impor tan te , casi i ndepend i en t e y r e e m p l a z a b l e d e un siste-
m a q u e sa t i s face u n a func ión clara en el c o n t e x t o d e una a rqu i tec tu ra bien
def in ida .

• Componente del software en ejecución: p a q u e t e d i n á m i c o de un ión de u n o o
m á s p r o g r a m a s g e s t i o n a d o s c o m o un idad y a los c u a l e s s e t i ene a c c e s o p o r
m e d i o d e in t e r fa ses d o c u m e n t a d a s q u e se p u e d e n descubr i r en la e jecución .

• Componente de software: un idad d e compos ic ión q u e só lo t iene d e p e n d e n c i a s
d e con tex to explíci tas y e spec i f i cadas en fo rma cont rac tua l .

• Componente de negocio• la imp lemen tac ión d e s o f t w a r e d e un c o n c e p t o o pro-
c e s o d e negoc io "au tónomo" .

A d e m á s d e e s t a s descr ipc iones , los c o m p o n e n t e s d e s o f t w a r e t a m b i é n s e p u e d e n ca-
rac ter izar con b a s e en s u s ap l icac iones en el p r o c e s o d e ISBC. A d e m á s d e los c o m -
p o n e n t e s CDL, el p roceso d e ISBC produce :

• Componentes cualificados: e v a l u a d o s por ingen ie ros de s o f t w a r e para garan t i -

za r q u e n o só lo la func iona l idad , s ino el d e s e m p e ñ o , la fiabilidad, la facilidad
d e u s o y o t ro s fac to res d e ca l idad (capítulo 26) c o n c u e r d a n con los requis i tos
del s i s t ema o p roduc to q u e se cons t ru i rá .

1 La implicación es que la organización ajusta los requisitos de su negocio o producto de modo que
la implementación basada en componentes se consiga sin que sea necesaria la ingeniería de perso-
nalización. Este enfoque reduce los costos y mejora el tiempo en que el producto llega al mercado,
pero no siempre es posible

TM

PDF Editor

382 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

• Componentes adaptados: a d a p t a d o s para modif icar (acción t ambién l lamada en-
mascarar o envolver) [BR096] caracter ís t icas q u e n o s e requieren o indeseables

• Componentes actualizados: sus t i tuyen el s o f t w a r e ex i s t en te c o n f o r m e e s t á n
d isponib les las n u e v a s ve r s iones d e los c o m p o n e n t e s .

3 Q . 2 E L P R O C E S O P E I S B C

El proceso de ISBC s e ca rac te r i za d e tal f o rma q u e n o só lo ident if ica los c o m p o n e n -
t e s c a n d i d a t o s s ino q u e t a m b i é n cualif ica la in te r faz d e c a d a c o m p o n e n t e , a d a p t a los
c o m p o n e n t e s p a r a e l iminar las equ ivocac iones a rqu i tec tón icas , e n s a m b l a los c o m -
p o n e n t e s en un es t i lo a rqu i t ec tón ico s e l ecc ionado y ac tua l iza los c o m p o n e n t e s con-

f o r m e los requis i tos del s i s t ema c a m b i a n [BR096], El m o d e l o d e p r o c e s o p a r a la
ingenier ía del s o f t w a r e b a s a d a en c o m p o n e n t e s d e s t a c a las p i s t a s pa ra l e l a s en las
c u a l e s la ingenier ía del domin io (sección 30.3) s e lleva a c a b o c o n c u r r e n t e m e n t e con
el desar ro l lo b a s a d o en c o m p o n e n t e s .

La figura 30.1 ilustra un m o d e l o d e p r o c e s o típico q u e exp l í c i t amente acopla la
ISBC [CHR95], La ingeniería del dominio c rea un m o d e l o del d o m i n i o d e apl icación
q u e s e util iza c o m o b a s e p a r a ana l i za r los requis i tos del u s u a r i o e n el flujo d e inge-
niería del so f tware . Una a rqu i tec tu ra genér ica d e s o f t w a r e p roporc iona la en t r ada

p a r a el d i s e ñ o d e la apl icación. F ina lmente , d e s p u é s d e q u e los c o m p o n e n t e s reuti-
l izables s e h a n c o m p r a d o , s e l ecc ionado d e b ib l io tecas ex i s t en t e s o cons t ru ido (co-

Medelo de
proceso que
apoya la ISBC.

Ingeniería del dominio

Análisis del Desarrollo
arquitectónico

de software
dominio

Desarrollo
arquitectónico

de software

Desarrollo
de componentes

reutilizables

Depósito de
artefactos/

componentes
reutilizables

TM

PDF Editor

CAPITULO 30 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 883

m o pa r t e d e la ingenier ía del dominio) , e s t á n d isponibles para los ingen ie ros d e so f t -
w a r e d u r a n t e el desar ro l lo b a s a d o en c o m p o n e n t e s .

Los p a s o s de análisis y diseño arquitectónico de f in idos c o m o par te del desarrollo
basado en componentes (figura 30.1) s e p u e d e n i m p l e m e n t a r en el c o n t e x t o d e un pa-
radigma de diseño abstracto (ADP, por s u s s ig las en inglés) [DOG03], Un ADP implica
q u e el m o d e l o global del s o f t w a r e — r e p r e s e n t a d o c o m o da tos , f u n c i o n e s y c o m p o r -
t a m i e n t o (control)— se p u e d e d e s c o m p o n e r j e r á rqu i camen te . C o n f o r m e la d e s c o m -
posic ión c o m i e n z a , el s i s t ema s e represen ta c o m o u n a colecc ión d e m a r c o s de tra-
b a j o arqui tec tónico , c a d a u n o c o m p u e s t o d e u n o o m á s p a t r o n e s d e d i seño (capítu-
lo 10). Un r e f inamien to m a y o r identifica los c o m p o n e n t e s necesa r ios para c rea r ca -
da pa t rón d e d i seño . En un c o n t e x t o ideal, t odos los c o m p o n e n t e s se adquir i r ían a
part i r d e un depós i to (apl icando ac t iv idades de calificación, adaptación y composición
de componentes). C u a n d o s e requ ie ren c o m p o n e n t e s e spec ia l i zados s e aplica la in
geniería de componentes.

3 Q . 3 I N G E N I E R Í A DEL P P M I N I Q

La finalidad d e la ingeniería del dominio e s identif icar, const rui r , ca ta logar y d isemi-
na r un c o n j u n t o d e c o m p o n e n t e s de s o f t w a r e q u e s e a n apl icables p a r a el s o f t w a r e

ex is ten te y fu tu ro en un domin io de apl icación part icular . La m e t a global e s es tab le -
ce r m e c a n i s m o s q u e les pe rmi t an a los ingen ie ros d e s o f t w a r e compar t i r d i chos
c o m p o n e n t e s — p a r a reuti l izarlos— d u r a n t e el t r aba jo en s i s t e m a s n u e v o s y exis ten-
tes . La ingenier ía del d o m i n i o incluye t res g r a n d e s act ividades: anál is is , cons t rucc ión
y d i seminac ión .

^ C O N S E J O ^ .

fIpioceso de análisis
estudiado en esta sec-
ción se enfoca en los
componentes reutiliza-
bles. Sin embargo, el
análisis de sistemas
CDL completos (por
ejemplo, aplicaciones
de comercio electróni-
co, aplicaciones de au-
tomatización de
fuerza de ventas)
también puede ser
una parte del análisis
del dominio.

"Lo ingenier ía del domin io t r a t a de encon t r a r los aspectos comunes en t r e los s i s temas p a r a identif icar los componen tes
que s e o posible aplicar en muchos s is temas, y p a r a identificar fami l ias de p r o g r a m a s que s e posicionen pora sacar la
m a y o r v e n t a j a d e dichos componen te s . "

Paul (l e m e n t s

Se p u e d e a r g u m e n t a r q u e "la reut i l ización d e s a p a r e c e r á , n o por e l iminación, s ino
por in tegrac ión" en la e s t ruc tu ra de la práct ica de la ingenier ía del s o f t w a r e [TRA95],
C o m o la reut i l ización cada vez t iene m a y o r a u g e a l g u n o s c reen q u e la ingeniería del
d o m i n i o adquir i rá t an ta impor tanc ia c o m o la ingenier ía del s o f t w a r e d u r a n t e la dé -
c a d a s iguiente .

30.3.1 El proceso de análisis del dominio
El e n f o q u e global p a r a el aná l i s i s del domin io u s u a l m e n t e s e ca rac te r i za en el con -
texto d e la ingenier ía del s o f t w a r e o r i e n t a d a a obje tos . Los p a s o s en el p roceso s e
de f inen c o m o :

1. Definir el domin io q u e s e invest igará.

2 . Categor izar los e l e m e n t o s ex t ra ídos del domin io .

TM

PDF Editor

884 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

3 . Recopilar una m u e s t r a represen ta t iva d e las ap l i cac iones en el dominio .

4 . Anal izar c a d a apl icación e n la m u e s t r a y definir las c l a s e s d e anál is is .

5 . Desarrol lar un m o d e l o d e anál is is para las c lases .

Es i m p o r t a n t e advert ir q u e el aná l i s i s del d o m i n i o e s ap l icable a cua lqu ie r paradig-
ma d e ingenier ía del so f tware , y q u e s e p u e d e aplicar al desar ro l lo convenc iona l y al
o r i e n t a d o a obje tos .

Aunque los p a s o s c i t ados o f r ecen un m o d e l o útil p a r a el aná l i s i s del domin io , n o
b r indan una guía p a r a decidir c u á l e s c o m p o n e n t e s d e s o f t w a r e s o n c a n d i d a t o s a la
reuti l ización. Hutch inson y Hindley [HUT88] sugie ren el s iguiente c o n j u n t o d e pre-
g u n t a s p rác t i cas c o m o u n a guía p a r a identif icar los c o m p o n e n t e s d e s o f t w a r e reuti-

l izables:

• ¿En las i m p l e m e n t a c i o n e s fu tu ras s e requ ie re la func iona l idad del c o m p o n e n -

te?

• ¿Cuán c o m ú n e s la función del c o m p o n e n t e d e n t r o del domin io?

• ¿Existe dupl icidad d e la func ión del c o m p o n e n t e d e n t r o del domin io?

• ¿El c o m p o n e n t e d e p e n d e del h a r d w a r e ? Si e s así , ¿el h a r d w a r e p e r m a n e c e in-
var iable en t r e las i m p l e m e n t a c i o n e s o las e spec i f i cac iones del h a r d w a r e pue -

d e n t ras ladarse hacia o t ro c o m p o n e n t e ?

• ¿El d i s e ñ o e s t á lo su f i c i en t emen te op t imizado para la s iguiente imp lemen ta -

ción?

• ¿ s e p u e d e n e s t ab lece r p a r á m e t r o s r e spec to d e un c o m p o n e n t e n o reuti l izable
d e m o d o q u e s e vuelva reuti l izable?

• ¿El c o m p o n e n t e e s reut i l izable e n m u c h a s i m p l e m e n t a c i o n e s só lo con c a m -
b ios m e n o r e s ?

• ¿Es factible la reut i l ización por m e d i o de la modi f icac ión?

• ¿Un c o m p o n e n t e n o reuti l izable s e p u e d e d e s c o m p o n e r p a r a produci r c o m p o -
n e n t e s reuti l izables?

• ¿Cuán válida e s la d e s c o m p o s i c i ó n d e un c o m p o n e n t e p a r a la reut i l ización?

Para i n fo rmac ión adic ional a c e r c a del aná l i s i s del d o m i n i o v é a s e [ATK01], [HEI01] y

[PRI93].

30.3.2 Funciones de caracterización
A v e c e s e s difícil d e t e r m i n a r si un c o m p o n e n t e p o t e n c i a l m e n t e reuti l izable e s d e he -
cho apl icable en u n a s i tuación part icular . Esta d e t e r m i n a c i ó n requ ie re definir un
con jun to de caracter ís t icas del domin io que compar t a todo el so f tware den t ro d e u n do-
minio. Una caracter ís t ica del d o m i n i o de f ine a lgún a t r ibuto gené r i co d e t odos los
p r o d u c t o s q u e exis ten d e n t r o d e él. Por e jemplo , las ca rac te r í s t i cas gené r i ca s po-
drían incluir la impor tanc ia de la segur idad y fiabilidad, el l engua j e d e p rogramac ión ,

la concur renc ia en el p r o c e s a m i e n t o y m u c h a s ot ras .

1 ¿Q«é
• componentes

identificados
durante el análisis
del dominio serán
candidatos para la
reutilización?

TM

PDF Editor

CAPÍTULO 30 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 885

Información útil acetco
del anúlisis del dominio
s e puede encontrar en
www.sel.miu.

e d u / s i r /

descriptions/
deda.html. ' I | |

®¿Qué es un
punto de e s -

tructura y cuáles
son sus caracte-
rísticas?

Un c o n j u n t o d e carac te r í s t i cas d e d o m i n i o d e un c o m p o n e n t e reuti l izable s e p u e -
d e r e p r e s e n t a r c o m o [Dp], d o n d e c a d a e l emen to , Dpj, en el c o n j u n t o r ep re sen t a una
caracter ís t ica especi f ica del dominio . El valor a s i g n a d o a Dpi r ep re sen t a una esca la
ordinal q u e indica la re levanc ia de la caracter ís t ica p a r a el c o m p o n e n t e p. Una e sca -
la típica [BAS94] podría se r

1: No e s re levante si la reuti l ización e s ap rop iada .

2 : Re levante sólo e n c i r cuns t anc ia s inusua les .

3 : Relevante: el c o m p o n e n t e s e modif ica p a r a usar lo , a p e s a r d e las d i ferencias .

4 : C l a r a m e n t e re levante , y si el n u e v o s o f t w a r e n o t iene es ta caracter ís t ica , la
reut i l ización s e r á inef ic iente pe ro tal vez s ea posible .

5 : C l a r a m e n t e re levante , y si el n u e v o s o f t w a r e n o t iene es ta caracter ís t ica , la
reut i l ización s e r á inef ic iente y la reuti l ización sin d icha caracter ís t ica n o se re-
c o m i e n d a .

C u a n d o d e n t r o del d o m i n i o d e apl icación s e cons t ru i rá n u e v o s o f t w a r e , w, s e der iva
p a r a él u n c o n j u n t o d e carac ter í s t icas del dominio . E n t o n c e s s e c o m p a r a n Dp, y Dm

p a r a d e t e r m i n a r si el c o m p o n e n t e ex i s t en te p s e reutiliza con eficacia en la apl ica-
ción w.

Aunque el s o f t w a r e q u e s e cons t ru i rá c l a r a m e n t e existe d e n t r o d e un domin io d e
apl icación, los c o m p o n e n t e s reut i l izables en él s e d e b e n ana l i za r para de t e rmina r su
aplicabil idad. En a l g u n o s c a s o s (con suerte , un n ú m e r o limitado), " re inventar la rue -
da" tal v e z s ea la m e j o r e lección en c u a n t o a cos to .

30.3.3 Modelado estructural y puntos de estructura
C u a n d o s e aplica el anál is is del domin io el ana l i s ta b u s c a los p a t r o n e s repet i t ivos en
las ap l i cac iones q u e res iden d e n t r o d e un dominio . El m o d e l a d o es t ruc tura l e s u n en-
f o q u e d e ingenier ía del domin io b a s a d a e n p a t r o n e s q u e func iona ba jo la p r e m i s a de
q u e cua lqu ie r d o m i n i o d e apl icación t iene p a t r o n e s repet i t ivos (de func ión , da to s y
compor t amien to) q u e t ienen un potencia l de reuti l ización.

Cada domin io d e apl icación se ca rac te r iza m e d i a n t e u n m o d e l o es t ruc tura l (por
e jemplo , los s i s t e m a s av iónicos d e las a e r o n a v e s dif ieren e n o r m e m e n t e en especif i -
cac iones , p e r o todo el s o f t w a r e m o d e r n o en es te d o m i n i o t i ene el m i s m o m o d e l o es -
tructural) . Por lo tan to , el m o d e l o es t ruc tura l e s un est i lo a rqu i t ec tón ico (capítulo 10)
q u e p u e d e y d e b e reut i l izarse m e d i a n t e las ap l i cac iones d e n t r o del dominio .

McMahon [MCM95] descr ibe un punto de estructura c o m o "una es t ruc tu ra dist in-
ta d e n t r o d e un m o d e l o es t ructural" . Los p u n t o s d e es t ruc tu ra t i enen t res carac ter í s -
t icas dis t intas:

1. Un p u n t o d e es t ruc tu ra e s u n a abs t racc ión q u e debe t e n e r un n ú m e r o l imitado
d e ins tanc ias . Además , la abs t r acc ión d e b e recurr i r a t r avés de las apl icacio-

n e s en el dominio . De o t ro m o d o n o s e justifica el cos to d e verificar, d o c u -
m e n t a r y d i semina r el p u n t o d e es t ruc tu ra .

TM

PDF Editor

http://www.sel.miu

886 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

fe? \
CLAVE

Un p u n t o d e es t ructuro
e s onó logo a un pa t rón
d e d iseño que s e pue-
d e encont ra r repet ida-
m e n t e en apl icaciones
con u n d o m i n i o especí-
f ico.

2 . Las reglas q u e rigen el u s o del p u n t o d e es t ruc tu ra d e b e n c o m p r e n d e r s e con

facilidad. Además , la in te r faz p a r a el p u n t o d e e s t ruc tu ra d e b e se r re la t iva-
m e n t e simple.

3 . El p u n t o de es t ruc tu ra debe i m p l e m e n t a r la ocul tac ión d e in fo rmac ión ai ais-
lar toda la comple j idad d e n t r o del m i s m o p u n t o de es t ruc tura . Esto r educe la
comple j idad percibida del s i s t ema g loba les con jun to .

C o m o un e j e m p l o de p u n t o s d e es t ruc tu ra c o m o p a t r o n e s a rqu i t ec tón icos d e un sis-
t ema , cons idérese el domin io d e s o f t w a r e d e s i s t emas d e a l a rma . Este domin io p u e d e
aba rca r s i s t e m a s t an s imp les c o m o HogarSeguro (descri tos en capí tu los anter iores)
o t an comple jo s c o m o el s i s t ema de a l a r m a p a r a un p r o c e s o industrial . Sin e m b a r -
go, e n cada c a s o s e e n c u e n t r a un c o n j u n t o d e p a t r o n e s es t ruc tu ra les predecibles :
una interfaz q u e le pe rmi t e al u s u a r i o in te rac tua r con el s i s tema; un mecanismo de

establecimiento de límites q u e le pe rmi t e al u sua r io es tab lecer l ímites a los p a r á m e -
tros q u e se medirán; un mecanismo de gestión de sensores que s e comun ica con t odos

los s e n s o r e s d e supervis ión; un mecanismo de respuesta q u e r eacc iona a la e n t r a d a
p r o p o r c i o n a d a por el s i s t ema de ges t ión d e s enso re s , y un mecanismo de control que
le pe rmi t e al u sua r io cont ro la r la fo rma en la q u e s e rea l iza la supervis ión . Cada u n o
d e e s to s p u n t o s de es t ruc tu ra s e in tegra en una a rqui tec tura d e domin io .

Es posible definir p u n t o s de e s t ruc tu ra gené r i cos q u e t r a sc i endan d i fe ren tes do-
min ios d e apl icación [STA94]:

t Aplicación frontal (cliente): la GUI que incluye t odos los m e n ú s , p a n e l e s y e n -
t r adas y o r d e n a las f u n c i o n e s de edición.

• Bases de datos: el depós i to para t odos los ob j e to s r e l e v a n t e s r e spec to del do-

min io d e la apl icación.

• Motor de cálculo: los m o d e l o s n u m é r i c o s y n o n u m é r i c o s q u e m a n i p u l a n da-

tos.

• Función de generación de informes: la func ión q u e p roduce sa l idas d e cualquier
tipo.

• Editor de aplicaciones: el m e c a n i s m o p a r a pe r sona l i za r la apl icación r e spec to a
las n e c e s i d a d e s d e u s u a r i o s especí f icos .

Los p u n t o s d e es t ruc tu ra se h a n suge r ido c o m o u n a a l ternat iva a las l íneas d e códi-
go y p u n t o s de func ión p a r a la e s t imac ión del cos to del s o f t w a r e [MCM95], En la s ec -
ción 30.6.2 se p r e s e n t a u n a breve descr ipc ión del e m p l e o de los p u n t o s de es t ruc tu -

ra e n la co t izac ión .

El desarrollo basado en componentes (DBC) e s u n a act ividad d e ISBC que o c u r r e en
para le lo con la ingenier ía del dominio . Al aplicar los m é t o d o s d e d i s e ñ o d e aná l i s i s

y a rqu i tec tón ico ya t r a t a d o s en es te libro, el equ ipo de s o f t w a r e ref ina un est i lo a r -

TM

PDF Editor

CAPÍTULO 30 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 887

¿Qué facto-
• res se consi-

deran durante la
calificación de
componentes?

qui tec tón ico a p r o p i a d o para el m o d e l o d e anál is is c r e a d o para la apl icación q u e s e
cons t ru i rá . 2

Una vez q u e la a rqu i tec tu ra s e h a es tab lec ido , d e b e n agregárse le c o m p o n e n t e s
q u e I) e s t é n d isponib les en bibl io tecas de reut i l ización 2) s e a n d i s e ñ a d o s p a r a sat is-
facer las n e c e s i d a d e s p e r s o n a l e s del cl iente. Por tan to , el f lujo d e t a r ea s p a r a el d e -
sarrol lo b a s a d o en c o m p o n e n t e s t iene d o s t rayectorias para le las (figura 30.1). C u a n d o
los c o m p o n e n t e s reut i l izables e s t á n d isponib les p a r a su potencial in tegración en la
a rqui tec tura t i enen q u e cual i f icarse y adap ta r se . C u a n d o s e requieren n u e v o s c o m -
p o n e n t e s e s prec iso d iseñar los . En tonces los c o m p o n e n t e s r e s u l t a n t e s s e " c o m p o -
nen" (integran) en la planti l la a rqu i tec tón ica y s e p r u e b a n en forma minuc iosa .

30.4.1 Calificación, adaptación y composición de componentes
C o m o ya s e ha visto, la ingenier ía del d o m i n i o p roporc iona la biblioteca d e c o m p o -
n e n t e s reut i l izables i nd i spensab le s p a r a la ingenier ía del s o f t w a r e b a s a d a e n c o m -
ponentes . Algunos d e e s to s c o m p o n e n t e s s e desarrollan espec ia lmente para el dominio,
o t ro s p u e d e n ex t raerse d e ap l icac iones ex i s ten tes e incluso o t ros pueden adquir i rse
d e t e rce ras par tes .

Desg rac i adamen te , la ex is tenc ia d e c o m p o n e n t e s reut i l izables n o ga ran t i za q u e
p u e d a n in tegrarse con facilidad o ef icacia en la a rqu i tec tu ra elegida p a r a una nueva
apl icación. Por e s t a r a z ó n s e apl ica u n a suces ión d e ac t iv idades d e desar ro l lo ba sa -
da en c o m p o n e n t e s c u a n d o s e p r o p o n e el u s o d e un c o m p o n e n t e .

C a l i f i c a c i ó n d e c o m p o n e n t e s . Esta act ividad ga ran t i za q u e el c o m p o n e n t e can -
d ida to rea l izará la func ión requer ida , "enca ja rá" a d e c u a d a m e n t e en el es t i lo a rqu i -
t ec tón ico que especi f ica el s i s t ema y m o s t r a r á las ca rac te r í s t i cas d e cal idad (por
e jemplo , d e s e m p e ñ o , fiabilidad, facilidad d e uso) q u e requ ie re la apl icación.

La descr ipción de la in ter faz suminis t ra in fo rmac ión útil a ce rca d e la ope rac ión y

la uti l ización d e un c o m p o n e n t e de so f tware , pe ro n o p roporc iona t o d a la in fo rma-
ción q u e s e requiere p a r a d e t e r m i n a r si un c o m p o n e n t e p r o p u e s t o puede , en la p rác-
tica, reut i l izarse con ef icacia en una apl icación n u e v a . Entre los m u c h o s f ac to re s
c o n s i d e r a d o s d u r a n t e la cual i f icación d e c o m p o n e n t e s e s t á n [BR096]: in ter faz d e
p r o g r a m a c i ó n de la apl icación (IPA); h e r r a m i e n t a s d e desar ro l lo e in tegración q u e
requ ie re el c o m p o n e n t e ; requis i tos d e t i e m p o d e e jecuc ión , q u e incluyen u s o d e re-

c u r s o s (por e j emplo , m e m o r i a o a l m a c e n a m i e n t o) , t i e m p o s o velocidad y p ro toco lo
de red; requisi tos d e servicio, que incluyen interfases de s i s t ema opera t ivo y apoyo d e
o t r o s c o m p o n e n t e s ; ca rac te r í s t i cas de segur idad , q u e incluyen con t ro l e s de a c c e s o y
p ro toco los de au ten t icac ión ; supos i c iones d e d i s e ñ o an idado , q u e incluyen el e m -
pleo d e a lgo r i tmos n u m é r i c o s o n o n u m é r i c o s especí f icos ; y m a n e j o d e excepc iones .

2 Se debe señalar que en el estilo arquitectónico con frecuencia influye el modelo estructural genéri-
co creado durante la ingenieria del Con ir o rvease la ricura 30.1)

TM

PDF Editor

888 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

^ O W S E J C Í ^ .

Además de valorar si
es justificado el costo
de adaptación para lo
reutilización, el equipo
de software también
evalúo si lograr la fun-
cionalidad requerida y
el desempeño se pue-
den hacei eficientes
tBcpecto del tasto.

Cada u n o de e s to s f ac to re s e s r e l a t ivamen te senci l lo d e eva lua r c u a n d o s e prop :
n e n c o m p o n e n t e s reut i l izables q u e s e h a n desa r ro l l ado e s p e c i a l m e n t e p a r a la apli-
cac ión . Sin e m b a r g o , e s m u c h o m á s difícil d e t e n n i n a r la opera t iv idad in terna d e lc>
CDL o d e c o m p o n e n t e s d e p roven i en t e s d e t e r ce ros p o r q u e la ún ica in fo rmac ión d:s
ponib le tal vez s ea la m i s m a espec i f icac ión de la in terfaz .

A d a p t a c i ó n d e c o m p o n e n t e s . En un con tex to ideal, la ingenier ía del dominio
crearía u n a bibl ioteca de c o m p o n e n t e s que pod r í an in tegrarse fác i lmente en u n a ar-
qui tec tura d e apl icación. La impl icación de la " in tegración fácil" e s q u e 1) s e h a n im-
p l e m e n t a d o m é t o d o s cons i s t en tes d e gest ión d e recursos para todos los c o m p o n e n t e s
en la bibl ioteca, 2) exis ten ac t iv idades c o m u n e s c o m o la ges t ión d e d a t o s para todos
los c o m p o n e n t e s , y 3) se h a n i m p l e m e n t a d o in te r fases d e n t r o d e la a rqui tec tura \
con el e n t o r n o ex te rno en una fo rma cons i s t en te .

En real idad, incluso d e s p u é s d e que un c o m p o n e n t e s e ha cual i f icado p a r a em-
plear lo d e n t r o d e una a rqui tec tura d e apl icación, e s posible q u e h a y a confl ic tos en
u n a o m á s de las á r e a s indicadas. Estos conflictos u s u a l m e n t e s e evitan ut i l izando una
técnica d e a d a p t a c i ó n l lamada encubrimiento de componente [BR096]. C u a n d o u r
equ ipo de s o f t w a r e t iene p leno a c c e s o al d i s e ñ o in t e rno y el cód igo de un c o m p o
nen te (con f recuencia n o e s el ca so c u a n d o s e util izan c o m p o n e n t e s CDL) s e aplica el
encubrimiento de caja blanca. Al igual q u e su con t r apa r t e en la p r u e b a d e s o f t w a r e

(capítulo 14), el e n c u b r i m i e n t o d e ca ja b l anca e x a m i n a los deta l les d e p r o c e s a m i e n -
t o in t e rno del c o m p o n e n t e y h a c e modi f i cac iones e n el cód igo p a r a e l iminar cual-

quier confl icto. El encubrimiento de caja gris s e apl ica c u a n d o la b ibl io teca d e com-
p o n e n t e s p roporc iona un l engua je d e ex tens ión de c o m p o n e n t e o IPA q u e permite

e l iminar o e n m a s c a r a r los confl ictos. El encubrimiento de caja negra requiere la in-
t roducc ión de pre y p o s p r o c e s a m i e n t o en la in ter faz del c o m p o n e n t e para e l iminar
o e n m a s c a r a r los confl ic tos . El e q u i p o d e s o f t w a r e debe de t e rmina r si el e s f u e r z o re-

quer ido p a r a encubr i r a d e c u a d a m e n t e un c o m p o n e n t e e s t á just i f icado o si, en lugar

d e ello, d e b e d i s eña r se un c o m p o n e n t e pe r sona l i z ado (des ignado p a r a e l iminar los
confl ic tos encon t rados) .

C o m p o s i c i ó n d e c o m p o n e n t e s . La t a rea de compos ic ión d e c o m p o n e n t e en-

s a m b l a c o m p o n e n t e s cual i f icados , a d a p t a d o s y d i s e ñ a d o s con el fin d e ag regá r se los
a la a rqu i tec tu ra es tab lec ida p a r a u n a apl icación. Esto se logra e s t ab lec i endo u n a in-
f raes t ruc tu ra q u e una los c o m p o n e n t e s en u n s i s t ema opera t ivo . La inf raes t ruc tura
(usua lmente u n a bibl ioteca d e c o m p o n e n t e s especia l izados) p roporc iona un m o d e -
lo p a r a coord ina r los c o m p o n e n t e s y los servic ios especí f icos q u e pe rmi t en q u e los
c o m p o n e n t e s se c o o r d i n e n m u t u a m e n t e y real icen t a r e a s c o m u n e s .

Entre los m u c h o s m e c a n i s m o s q u e exis ten p a r a c rea r u n a in f raes t ruc tura eficaz
hay un c o n j u n t o d e c u a t r o " ingred ien tes a rqu i tec tón icos" [ADL95] que d e b e es tar
p r e s e n t e para lograr la compos ic ión d e c o m p o n e n t e s :

M o d e l o d e i n t e r c a m b i o d e d a t o s . Respec to d e los c o m p o n e n t e s reuti l izables
s e d e b e n definir m e c a n i s m o s q u e p e r m i t a n q u e los u sua r io s y ap l icac iones interac-

TM

PDF Editor

CAPÍTULO 30 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 889

*) ¿Qué ingre-
• clientes se

necesitan para lo-
grar la composi-
ción de componen-
t e s ?

R e f e r e n c i a W e b

Lo ¡rfom«KÍ6n más re-

BA se puede obtener
en www.omg.org.

R e f e r e n c i a W e b

Lo información m i s re-
ciente acerco d e COM

www.mkrosof t .

(om/COM.

túen y t ransf ieran da to s (por e jemplo, a r ras t ra r y soltar, cortar y pegar) . Los mecan i s -

m o s de in te rcambio d e da to s n o sólo permi ten la t ransferencia de d a t o s h u m a n o - s o f t -
w a r e y c o m p o n e n t e - c o m p o n e n t e , s ino también la t ransferencia en t re recursos del sis-
t e m a (por e jemplo, a r ras t ra r un archivo a un icono d e impresora para imprimirlo).

A u t o m a t i z a c i ó n . Se d e b e n i m p l e m e n t a r va r ias he r r amien t a s , m a c r o s y g u i o n e s
para facilitar la in teracción en t r e c o m p o n e n t e s reuti l izables.

A l m a c e n a m i e n t o e s t r u c t u r a d o . Los d a t o s h e t e r o g é n e o s (por e j emplo , d a t o s
gráf icos , voz, video, tex to y d a t o s numér icos) q u e con t i ene un " d o c u m e n t o c o m -
pues to" d e b e n es ta r o rgan izados y of recer a c c e s o c o m o una sola es t ruc tura d e da to s
y n o c o m o una colecc ión d e a rch ivos s e p a r a d o s . "Los d a t o s e s t r u c t u r a d o s c o n s e r v a n
un índice descr ip t ivo d e e s t r u c t u r a s a n i d a d a s po r las c u a l e s las ap l i cac iones p u e d e n
n a v e g a r l i b remen te para ubicar , c r e a r o ed i t a r c o n t e n i d o s d e d a t o s individuales s e -
g ú n o r d e n e el u s u a r i o final" [ADL95].

M o d e l o d e o b j e t o s u b y a c e n t e . El m o d e l o d e ob j e to a s e g u r a q u e los c o m p o -

n e n t e s de sa r ro l l ados en d i f e ren te s l e n g u a j e s d e p r o g r a m a c i ó n y que residen en dife-
r e n t e s p la t a fo rmas p u e d e n se r in teroperables . Es decir, los obje tos d e b e n ser c a p a c e s
d e c o m u n i c a r s e a t r avés d e una red. Esto s e logra si el m o d e l o de ob j e to de f ine un
e s t á n d a r para la in teroperabi l idad d e los c o m p o n e n t e s .

Pues to q u e el i m p a c t o potencia l d e la reut i l ización y la ISBC sob re la industr ia del

s o f t w a r e e s e n o r m e , va r ias g r a n d e s c o m p a ñ í a s y conso rc ios indus t r ia les h a n pro-
p u e s t o e s t á n d a r e s p a r a el s o f t w a r e d e c o m p o n e n t e s :

O M G / C O R B A . El Grupo d e Ges t ión d e Obje tos (OMG, por s u s siglas e n inglés)
ha publ icado una arquitectura común de distribución de objetos (CORBA: por s u s s ig las
e n inglés). Un distribuidor de objetos (ORB, por sus s ig las en inglés) p roporc iona u n a
diversidad de servic ios q u e pe rmi t en q u e los c o m p o n e n t e s reut i l izables (objetos) s e
c o m u n i q u e n con o t ros c o m p o n e n t e s , sin impor ta r su ubicac ión d e n t r o de un siste-
ma .

COM d e M i c r o s o f t . Microsoft ha desa r ro l l ado un modelo de objetos para compo-
nentes (COM, por s u s siglas en inglés) q u e o f r ece u n a especi f icac ión p a r a uti l izar
c o m p o n e n t e s p roduc idos po r var ias e m p r e s a s d e n t r o d e una so la apl icación q u e co-
rra ba jo el s i s t ema opera t ivo Windows . El COM incluye d o s e l e m e n t o s : i n t e r f aces
COM (imp lemen tadas c o m o ob je tos COM) y un c o n j u n t o d e m e c a n i s m o s q u e regis-
tra y p a s a m e n s a j e s en t r e in t e r f aces COM.

C o m p o n e n t e s S u n J a v a B e a n s . El s i s t ema d e c o m p o n e n t e s J a v a B e a n s e s u n a
inf raes t ruc tura d e ISBC portátil e i ndepend i en t e d e la p l a t a fo rma q u e utiliza y d e s a -
rrolla e m p l e a n d o el l engua je d e p r o g r a m a c i ó n Java. El s i s t ema d e c o m p o n e n t e s Ja-

v a B e a n s incluye u n c o n j u n t o d e he r r amien t a s , l l a m a d o Kit de Desarrollo Bean (BDK,
Bean Development Kit), que permi te a los desar ro l ladores 1) ana l i za r c ó m o func ionan
los Beans ex i s t en tes (componen tes ; 2) pe r sona l i za r s u c o m p o r t a m i e n t o y apa r i en -
cia, 3) e s t ab lece r m e c a n i s m o s p a r a coo rd inac ión y comun icac ión , 4) desar ro l la r

TM

PDF Editor

http://www.omg.org
http://www.mkrosoft

890 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

I' II !I'! HL l n 11
Lo infamación mós re-
cíente oceico d e Jovo-
beons se puede obte-
ner en
javn.sun.tom/

producís/
javabeons/docs/

B e a n s p e r s o n a l i z a d o s para usa r los en una apl icación especí f ica , y 5) p r o b a r y eva-
luar el c o m p o r t a m i e n t o Bean.

¿Cuál d e e s to s e s t á n d a r e s d o m i n a r á la industr ia? En es te m o m e n t o n o exis te una
r e spues t a sencil la . A u n q u e m u c h o s desa r ro l l ado res h a n a d o p t a d o u n o d e los e s t á n -
dares , tal v e z las g r a n d e s o r g a n i z a c i o n e s d e s o f t w a r e qu ie ran o p t a r po r u n o d e los
t r e s e s t á n d a r e s , s e g ú n las c a t ego r í a s d e apl icación y las p l a t a f o r m a s q u e eli jan.

INFORMACIÓN

Arquitectura común de distribución de objetos
1 Los sistemas d iente-serv idor se implementan

e m p l e n a d o componen tes (objetos) d e sof tware

q u e d e b e n ser c a p a c e s d e interactuar unos con otros den-

tro d e una sola máqu ina (cliente o servidor) o a t ravés d e
la red. Un distribuidor de objetos (ORB) es middleware
(software personal izado) q u e permite q u e un ob je to resi-

dente en un cliente envíe un m e n s a j e a un m é t o d o q u e está

e n c a p s u l a d o en un obje to residente en un servidor. En

esencia , el ORB intercepta el m e n s a j e y m a n e j a las activi-

d a d e s d e comunicación y coordinac ión necesa r ias p a r a

encontrar el ob je to al cual fue dir igido el mensa j e , invoca

su método, p a s a los da tos a p r o p i a d o s al ob j e to y transfiere

los d a t o s resultantes d e vuelta al ob je to q u e g e n e r ó prime-

ro el mensa j e .

CORBA, C O M y JavaBeans implementan u n a filosofía
d e distribuidor de objetos. En este r ecuad ro CORBA se
u sa rá p a r a ilustrar el midd leware ORB,

En la f igura 3 0 . 2 se ilustra la estructura bás ica d e una
arqui tectura CORBA. C u a n d o CORBA se implemento en un
sistema cliente-servidor, los obje tos servidores a m b o s se

definen uti l izando un lenguaje de descripción de ¡nterfase

(IDL, interface description languoge), un l engua je d e decla-
rac iones q u e permite q u e un ingeniero d e sof tware def ina
objetos , atr ibutos, métodos y los mensa je s q u e se requieren

p a r a invocarlos. Para q u e un obje to residente en el cliente

a c o m o d e u n a petición p a r a un método res idente en el ser-
vidor se c r e a n stubs (adap t ado re s) del IDL en el cliente y el

servidor. Los stubs p ropo rc ionan la compuer ta a t ravés d e

la q u e se a c o m o d a n las peticiones d e objetos a lo la rgo del
sistema cliente-servidor.

Puesto q u e las peticiones d e obje tos a t ravés d e la red

ocurren en t iempo d e ejecución, se d e b e establecer un me-

can i smo p a r a a l m a c e n a r la descripción de obje to d e m o d o

q u e la información pert inente ace r ca del ob je to y su ubica-

ción estén disponibles c u a n d o se necesite. El depós i to d e
interfaz logra esto.

C u a n d o una apl icación en el cliente d e b e invocar un
método u b i c a d o den t ro d e un ob je to en cualquier pa r t e del

sistema, CORBA utiliza invocación d inámica p a r a 1) obte-

ner información pert inente a c e r c a del método d e s e a d o a

part ir del depós i to d e interfaz, 2) c rea r una estructura d e

d a t o s con p a r á m e t r o s q u e p a s a r á n al ob je to , 3) c r e a r una

petición p a r a el ob je to , y 4) invocar la petición. Entonces

la petición p a s a al núcleo del ORB —una p a r t e del sistema

opera t ivo d e la red específ ica d e la implementación q u e

gest iona las peticiones— y se cumple la petición.
La petición p a s a a través del núcleo y la p r o c e s a el ser-

vidor. En el sitio d e és te un a d a p t a d o r d e objeto a l m a c e n a

información d e la c lase y el ob je to en un depós i to d e inter-

f az residente en el servidor, a c e p t a y ges t iona las peticio-

nes q u e llegan del cliente y real iza u n a d ivers idad d e o t r a s

funciones d e gestión d e objetos. En el servidor stubs del IDL
similares a los def inidos en la m á q u i n a cliente se utilizan

c o m o la interfaz p a r a la implementación del obje to real re-

sidente en el sitio del servidor.

30.4.2 Ingeniería de componentes
C o m o ya s e indicó en es te capítulo, el p r o c e s o d e ISBC al ienta el u s o d e c o m p o n e n -

tes d e so f tware existentes. Sin embargo , hay ocas iones en q u e los c o m p o n e n t e s deben
d i seña r se . Es decir, s e d e b e n desa r ro l l a r n u e v o s c o m p o n e n t e s d e s o f t w a r e e inte-
g ra r se con los CDL ya ex i s t en tes y con los c o m p o n e n t e s d e desar ro l lo propio . Pues -
to q u e los n u e v o s c o m p o n e n t e s s e in tegran a la bibl ioteca propia d e c o m p o n e n t e s
reut i l izables, d e b e n d i s e ñ a r s e para su reuti l ización.

TM

PDF Editor

CAPÍTULO 30 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 891

Arquitectura
CORBA bás ica .

No h a y n a d a m á g i c o e n la c reac ión d e c o m p o n e n t e s d e s o f t w a r e reut i l izables . Los
c o n c e p t o s d e d i s e ñ o ta les c o m o abs t racc ión , ocu l tac ión , i ndependenc i a func ional ,
r e f i namien to y p rog ramac ión es t ruc tu rada , j un to con m é t o d o s o r i e n t a d o s a obje to ,
p r u e b a s d e SQA y m é t o d o s d e verif icación d e cor recc ión , t o d o s cont r ibuyen a la
c reac ión d e c o m p o n e n t e s d e s o f t w a r e reut i l izables . 3 En es ta secc ión n o s e vo lverán
a t r a ta r e s t o s t e m a s . Más b ien , s e c o n s i d e r a r á n los t e m a s espec í f icos d e la reut i l iza-
ción q u e c o m p l e m e n t a n las p rác t i cas só l idas d e ingenier ía del s o f t w a r e .

30.4.3 Análisis y diseño para la reutilización
El m o d e l o d e anál is is s e ana l iza p a r a de t e rmina r aque l los e l e m e n t o s del m o d e l o q u e

a p u n t a n hac ia los c o m p o n e n t e s reut i l izables ex is ten tes . El p rob lema e s ex t r ae r in-
fo rmac ión a part i r del m o d e l o d e requis i tos en u n a forma q u e c o n d u z c a a la "con-
co rdanc ia d e espec i f icac iones" .

Si la c o n c o r d a n c i a d e espec i f i cac iones p r o d u c e c o m p o n e n t e s q u e se a j u s t a n con
las n e c e s i d a d e s d e la apl icación actual , el d i s e ñ a d o r p u e d e ex t r ae r d ichos c o m p o -
n e n t e s d e u n a bibl ioteca (depósito) d e reut i l ización y apl icar los en el d i s e ñ o d e n u e -

v o s s is temas. Si n o e n c u e n t r a c o m p o n e n t e s de diseño, el ingeniero d e so f tware d e b e
apl icar m é t o d o s d e d i s e ñ o convenc iona l u OO para crear los . En es te p u n t o —cuan-
d o el d i s e ñ a d o r c o m i e n z a a c rea r un n u e v o c o m p o n e n t e — se d e b e cons ide ra r el di-
seño para la reutilización (DPR).

C o m o ya s e indicó, el DPR requ ie re q u e el i ngen ie ro d e s o f t w a r e apl ique só l idos
c o n c e p t o s y pr incipios d e d i s e ñ o d e s o f t w a r e (capítulo 9). Pero t a m b i é n s e d e b e n

3 Para aprender más acerca de estos conceptos véanse las partes 2 y 5 de este libro.

TM

PDF Editor

PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

cons ide ra r la carac ter í s t icas del domin io d e la apl icación. Binder [BIN93] sugiere va -
rios t e m a s clave" q u e f o r m a n una b a s e para el d i s e ñ o d e s t i n a d o a la reuti l ización.

D a t o s e s t á n d a r . Se d e b e invest igar el d o m i n i o d e la apl icación e identificar las
e s t r u c t u r a s d e da to s g loba les (por e jemplo , e s t r u c t u r a s d e a r ch ivos o u n a b a s e d e da-

tos comple ta) . En tonces s e p u e d e n carac te r iza r t odos los c o m p o n e n t e s d e d i seño
para a p r o v e c h a r d i c h a s e s t r u c t u r a s d e d a t o s e s t ánda r .

P r o t o c o l o s d e i n t e r f a z e s t á n d a r . Se d e b e n es tab lecer t r e s niveles d e p ro toco-
lo d e interfaz: la n a t u r a l e z a d e las in t e r f aces i n t r amodu la re s , el d i s e ñ o d e in te r faces
t écn icas (no h u m a n a s) e x t e r n a s y la in ter faz h o m b r e - m á q u i n a .

Plant i l la s d e p r o g r a m a . El m o d e l o d e es t ruc tu ra (sección 30.3.3) s i rve c o m o
una plantilla p a r a el d i s e ñ o a rqu i t ec tón ico d e un p r o g r a m a nuevo.

Una vez es t ab lec idas las in ter fases , los d a t o s e s t á n d a r y las plant i l las d e progra-
m a , el d i s e ñ a d o r t i ene un m a r c o d e t r a b a j o en el q u e p u e d e c r e a r el d i seño . Los n u e -
vos c o m p o n e n t e s q u e se a j u s t e n a e s t e m a r c o d e t r aba jo t i enen una mayor probabi -
lidad d e q u e s e les reutilice pos te r io rmen te .

Cons idé rese una biblioteca universi tar ia . Cien tos d e miles d e libros, publ icac iones
per iódicas y o t r a s f u e n t e s d e in fo rmac ión es tán d isponib les p a r a utilizarlos. Pero el

ingreso a d i c h a s f u e n t e s requ ie re desar ro l la r un s i s t ema d e clasif icación. Para n a v e -
gar por e s te g ran vo lumen d e información , los bibl iotecarios h a n def inido un s i s tema
d e clasif icación q u e incluye el cód igo d e clasif icación d e la Biblioteca del Congreso

(en los Es t ados Unidos d e América) , p a l a b r a s clave, n o m b r e s d e a u t o r y o t r a s e n t r a -
d a s d e índice. Todo e s t o pe rmi t e q u e el u sua r io e n c u e n t r e rápida y fác i lmente la
fuen te requer ida .

Ahora , c o n s i d é r e s e un gran depós i to d e c o m p o n e n t e s . Cien tos d e mi les d e c o m -
p o n e n t e s d e s o f t w a r e reutilizable s e hal lan e n él. Pero, ¿ c ó m o e n c u e n t r a un ingenie-
ro d e s o f t w a r e el c o m p o n e n t e q u e neces i ta? Para r e sponde r es ta p regunta surge otra:

¿ c ó m o se descr iben los c o m p o n e n t e s d e so f tware en t é rminos clasif icables y sin a m -
bigüedades? Éstas son p regun tas difíciles y todavía n o s e ha desar ro l lado una respues-
ta definitiva. En es ta sección s e exploran las t e n d e n c i a s ac tua les que permit i rán a los
fu turos ingenieros de s o f t w a r e n a v e g a r en t r e las bibl iotecas d e reuti l ización.

30.5.1 Descripción de los componentes reutilizables
Un c o m p o n e n t e d e s o f t w a r e reut i l izables s e desc r ibe en m u c h a s fo rmas , p e r o una
descr ipc ión ideal incluye lo q u e Tracz [TRA90] h a l l amado el modelo 3C: concep to ,
c o n t e n i d o y con tex to .

892

^ O N S E J O ^

El DPR puede sei bas-
tante difícil cuando los
componentes deben
estoi en interfaz o in-
tegrados con sistemas
heredados o con siste-
mas múltiples cuyo ar-
quitectura y protocolos
de interfaz sean in-
consistentes.

4 En general, se deben realizar preparativos para el DPR como parte de la ingeniería del dominio (sec-
ción 30.3).

TM

PDF Editor

CAPÍTULO 30 INGENIERÍA D A SOFTWARE BASADA EN COMPONENTES 893

El concepto d e u n c o m p o n e n t e d e s o f t w a r e e s "una descr ipc ión de lo q u e h a c e el
c o m p o n e n t e " [WHI95]. La in te r faz con el c o m p o n e n t e e s t á c o m p l e t a m e n t e descr i ta
y la s emán t i ca —represen tada d e n t r o del con tex to d e las precondic iones y las poscon-

diciones—, identificada. El concep to d e b e comunica r la intención del c o m p o n e n t e .
El contenido d e un c o m p o n e n t e desc r ibe c ó m o se cons t ruye el concep to . En e s e n -

cia, el c o n t e n i d o e s i n fo rmac ión ocul ta p a r a los u sua r io s hab i tua les y q u e só lo n e c e -
s i tan conoce r l a q u i e n e s qu ie ran modif icar o p roba r el c o m p o n e n t e .

El contexto s i túa un c o m p o n e n t e d e s o f t w a r e reut i l izable en su d o m i n i o de aplica-
bilidad. Es decir, al especi f icar las ca rac te r í s t i cas concep tua les , ope ra t ivas y d e
i m p l e m e n t a c i ó n el con tex to permi te q u e u n ingeniero d e s o f t w a r e e n c u e n t r e el c o m -
p o n e n t e a p r o p i a d o para sa t i s facer los requis i tos d e la apl icación.

Para que s e a n úti les en la práct ica , concep to , con t en ido y c o n t e x t o s e d e b e n tra-
ducir en un e s q u e m a d e especi f icac ión concre to . Se h a n escr i to d o c e n a s d e e n s a y o s

y ar t ículos ace rca de los e s q u e m a s d e clasif icación p a r a c o m p o n e n t e s d e s o f t w a r e
reut i l izables (por e j emplo , [LUC01] y [WHI95] c o n t i e n e n bibl iografías ex tensas) . Los
m é t o d o s p r o p u e s t o s se p u e d e n clasificar en t res g r a n d e s á reas : m é t o d o s d e bibliote-
c o n o m í a y d e c iencias de la c omun icac ión , m é t o d o s d e intel igencia artificial y siste-
m a s d e h iper texto . La gran mayor ía del t r aba jo rea l i zado h a s t a la fecha sugiere el
e m p l e o de m é t o d o s de b ib l io teconomía para la clasif icación de c o m p o n e n t e s .

La figura 30 .3 p r e s e n t a u n a t a x o n o m í a de los m é t o d o s de indexac ión en la biblio-
t e c o n o m í a . Los vocabularios controlados de indexación l imitan los t é r m i n o s o s in taxis
con q u e s e clasifica un ob je to (componen te) . Los vocabularios de indexación no con-

trolados n o p o n e n res t r icc iones en la na tu ra l eza de la descr ipción. La mayor ía d e los
e s q u e m a s d e clasif icación p a r a los c o m p o n e n t e s d e s o f t w a r e s e incluye en t r e s ca -
tegor ías .

C l a s i f i c a c i ó n e n u m e r a d a . Los c o m p o n e n t e s s e descr iben m e d i a n t e u n a e s t ruc -
tura je rá rquica en la cual s e de f inen las c lases y los n ive les var iab les d e subc l a se s d e

los c o m p o n e n t e s d e s o f t w a r e . La e s t ruc tu ra je rá rquica d e un e s q u e m a de clasif ica-
ción e n u m e r a d a facilita c o m p r e n d e r l o y utilizarlo. Sin e m b a r g o , a n t e s d e cons t ru i r
u n a jerarquía s e debe llevar a c a b o la ingeniería del domin io d e m o d o q u e haya su-
ficiente conoc imien to de las e n t r a d a s a d e c u a d a s en la je rarquía .

C l a s i f i c a c i ó n p o r f a c e t a s . Se ana l iza una á r e a del domin io y s e identif ica u n
c o n j u n t o de carac ter í s t icas descr ip t ivas bás icas . Estas caracter ís t icas , l l a m a d a s face-
tas, e n t o n c e s s e clasif ican según su impor tanc ia y s e c o n e c t a n con un c o m p o n e n t e .
Una face ta descr ibe la func ión q u e el c o m p o n e n t e real iza, los d a t o s que s e m a n i p u -
lan, el con tex to en el q u e s e apl ican o cua lquiera otra caracter ís t ica . El c o n j u n t o de
f ace ta s q u e desc r ibe un c o m p o n e n t e s e d e n o m i n a descriptor de facetas. En genera l ,
la descr ipción por f ace ta s s e limita a n o m á s d e siete u ocho face tas .

C l a s i f i c a c i ó n d e v a l o r e s y a t r i b u t o s . Un c o n j u n t o d e a t r ibu tos s e de f ine p a r a
todos los c o m p o n e n t e s en cier ta á r e a del domin io . Enseguida s e a s ignan va lo res a
d ichos a t r ibutos en una forma m u y similar a la clasif icación por face tas . De hecho ,

TM

PDF Editor

894 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Indexación
d e vocabularios Taxonomía d e

los métodos d e
indexación
[F R A 9 4] .

Contro lado Descontrolado

Por clases Pa labra clave Términos extraídos Términos no
del texto extraídos del texto

— Enumerada — Descriptores

Por f a c e t a s E n c a b e z a d o s
d e materia

Con sintaxis

Sin sintaxis

Diccionario

la c lasif icación d e va lo res y a t r ibutos e s s imilar a la c lasif icación por face tas , con las
s igu ien tes excepc iones : 1) n o s e limita el n ú m e r o d e a t r ibu tos q u e s e p u e d e n utili-
zar, 2) n o s e a s ignan pr ior idades a los a t r ibu tos , y 3) n o s e utiliza la func ión diccio-

nario.
Con b a s e en un e s t u d i o empír ico d e c a d a u n a d e e s t a s t écn icas d e clasif icación,

Frakes y Pole [FRA94] indican q u e n o exis te u n a técnica c l a r a m e n t e " m e j o r y q u e
"ningún m é t o d o se d e s e m p e ñ ó m á s q u e m o d e r a d a m e n t e e n la ef icacia d e b ú s q u e -

da . . . " Parecer ía q u e todavía falta real iza m á s t r aba jo en el desar ro l lo d e e s q u e m a s

d e clasif icación e f i caces p a r a bibl io tecas d e reuti l ización.

30.5.2 El entorno de reutilización
La reut i l ización d e c o m p o n e n t e s d e s o f t w a r e d e b e apoyar la u n e n t o r n o q u e incluya
los s igu ien tes e l e m e n t o s :

• Una b a s e d e d a t o s d e c o m p o n e n t e s c a p a z d e a l m a c e n a r c o m p o n e n t e s d e
so f tware , así c o m o la i n fo rmac ión d e clasif icación necesa r i a para r ecupe ra r -

• Un s i s t ema d e ges t ión d e bibl io tecas q u e o f r ezca a c c e s o a la b a s e d e da tos .

• Un s i s t ema d e recuperac ión d e c o m p o n e n t e s d e s o f t w a r e (por e jemplo , un
dis tr ibuidor d e obje tos) q u e pe rmi ta q u e una apl icación cl iente r ecupe re c o m -
p o n e n t e s y servic ios del se rv idor d e la biblioteca.

• He r r amien t a s d e ISBC q u e a p o y e n la in tegrac ión d e los c o m p o n e n t e s reutili-
z a d o s en un n u e v o d i s e ñ o o imp lemen tac ión .

los.

Cada una de e s t a s f u n c i o n e s in te rac túa con o e s t á i n c o r p o r a d a e n los con f ine s d e
una bibl ioteca d e reut i l ización.

TM

PDF Editor

CAPITULO 30 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 895

l iMI-l i l iHll idl

traren
h t t p : / / w w w .

cbd-hq.com/.

M

La biblioteca d e reut i l ización e s un e l e m e n t o de un depós i to d e s o f t w a r e m a y o r
(capítulo 27) y p roporc iona m e d i o s p a r a el a l m a c e n a m i e n t o d e c o m p o n e n t e s d e so f t -
w a r e y una ampl ia g a m a de p roduc to s d e t r aba jo reut i l izables (por e j emplo , e spec i -

f icaciones , d i seños , p a t r o n e s , m a r c o s de t raba jo , f r a g m e n t o s d e código, c a s o s d e
p rueba , gu i a s de usuario) . La biblioteca con t i ene una b a s e de d a t o s y las h e r r a m i e n -
t a s n e c e s a r i a s p a r a consu l ta r la y r ecupe ra r c o m p o n e n t e s d e ella. Un e s q u e m a de
clasif icación de c o m p o n e n t e s (sección 30.5.1) s i rve c o m o b a s e para consu l t a r la bi-
bl ioteca.

Las consu l t a s u s u a l m e n t e s e ca rac t e r i zan m e d i a n t e el e l e m e n t o c o n t e x t o del mo-
de lo 3C ya descr i to en es ta secc ión . Si una consul ta inicial resul ta en una e x t e n s a lis-
ta d e c o m p o n e n t e s cand ida tos , la consu l t a se ref ina p a r a reducir la . En tonces s e ex-
t rae la in fo rmac ión d e c o n c e p t o y c o n t e n i d o (después d e hal lar los c o m p o n e n t e s
cand ida tos) p a r a auxil iar al desa r ro l l ador e n la se lecc ión del c o m p o n e n t e ap rop iado .

Una descr ipción deta l lada de la e s t ruc tu ra de las b ibl io tecas de reut i l ización y d e
las h e r r a m i e n t a s q u e las g e s t i o n a n e s m e j o r de já rse la a las f u e n t e s e spec i a l i zadas en
la mate r ia . El lector i n t e re sado o b t e n d r á m a y o r in fo rmac ión c o n s u l t a n d o [F1S00] y

ILIN95],

HERRAMIENTAS DE SOFTWARE

Desarrollo basado en componentes
O b j e t i v o : Auxiliar en el modelado, diseño, re-
visión e integración de los componentes de soft-

ware como parte de un sistema mayor.

M e c á n i c a : La mecánico de las herramientas varía. En
general, las herramientas d e DBC auxilian en una o más
de las siguientes capacidades: especificación y modelado
de la arquitectura del software; navegación y selección de
los componentes de software disponibles; integración de
componentes.

Herramientas representativas5

ComponentSource (www.componentsource.com) propor-
ciona un amplia serie de componentes (y herramientas)
de software CDL apoyado en muchos estándares de
componentes diferentes.

Component Manager, desarrollada por Flashline (www-
.flashline.com), "es una aplicación que posibilita, pro-
mueve y mide la reutilización de componentes de
software".

Select Component Factory, desarrollada por Select Busi-
ness Solutions (www.selectbs.com/products), "es un
conjunto integrado de productos para el diseño de soft-
ware , revisión de diseño, gestión de servicios y compo-
nentes, gestión de requisitos y generación de código".

Software Through P¡ctures-ACD, distribuida por Aonix
(www.aonix.com), permite el modelado integral em-
pleando UML pa ra la arquitectura que rige el modelo
OMG; un enfoque pa ra la ISBC abierta e independien-
te de la empresa.

3 Q . 6 E C O N O M Í A PE LA I S B C

La ingenier ía del s o f t w a r e b a s a d a en c o m p o n e n t e s t iene un a t rac t ivo intuitivo. En
teoría , d e b e p roporc ionar a una o rgan izac ión d e s o f t w a r e v e n t a j a s en c u a n t o a cali-

5 Las herramientas expuestas sólo representar una muestra de esta categoría. En la mayoría de los
casos los nombres de las mismas son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www
http://www.componentsource.com
http://www.selectbs.com/products
http://www.aonix.com

896 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Uno diversidad d e orf t
culos que ofrecen direc-
trices poro el DBCy los
sistemas bosodos en
CDL se puede encontrar
en w w w . s e i . c m u .
e d u .

d ad y opor tun idad , lo q u e d e b e t r aduc i r se e n ahor ros . Pero, ¿exis ten da to s rea les que
a p o y e n es ta intuición?

La respues ta a es ta p regunta pr imero requiere e n t e n d e r lo q u e en realidad s e puede
reut i l izar en un con tex to de ingenier ía del s o f t w a r e y luego cuá les son en real idad
los c o s t o s a s o c i a d o s con la reut i l ización. C o m o c o n s e c u e n c i a , s e r á posible desa r ro -
llar un aná l i s i s cos to -benef ic io p a r a la reuti l ización d e c o m p o n e n t e s .

30.6.1 Impacto sobre la calidad, la productividad y el costo
Existen n u m e r o s a s ev idencias , a part i r de es tud ios de c a s o indust r ia les (por e jemplo ,
[ALL02], [HEN95], [MCM95]), q u e indican la posibil idad d e der ivar sus t anc i a l e s b e n e -

ficios d e negoc ios a part i r d e la reut i l ización vigorosa del so f tware . Mejoran la cali-
dad del p roduc to , la product iv idad d e desarro l lo y el cos to global .

Cal idad. En un e n t o r n o ideal, un c o m p o n e n t e de s o f t w a r e q u e s e desarro l le p a r a
reut i l ización s e verificaría c o m o cor rec to (véase el capí tu lo 29) y n o con tendr ía d e -
fectos. En real idad, la verif icación fo rmal n o se lleva a c a b o d e m a n e r a ru t inar ia y

existe la posibil idad de q u e ocu r r an defec tos , y de h e c h o ocur ren . Sin e m b a r g o , con
c a d a reuti l ización los de fec to s s e e n c u e n t r a n y e l iminan , y, c o m o resu l tado , me jo ra
la cal idad del c o m p o n e n t e . Con el t i empo el c o m p o n e n t e q u e d a v i r tua lmen te libre
d e defec tos .

En un e s tud io rea l i zado en Hewlet t -Packard , Lim [LIM94] r epor tó q u e la t a s a de
de fec to s p a r a el código reut i l izado e s d e 0.9 de fec to s po r KLDC, m i e n t r a s q u e la ta-

sa p a r a s o f t w a r e desa r ro l l ado r e c i e n t e m e n t e e s de 4.1 de fec to s po r KLDC. En una
apl icación c o m p u e s t a d e 68 por c ien to d e código reut i l izado la t a s a d e de fec to fue
d e 2 .0 de fec tos po r KLDC, e s decir: un 51 por c ien to d e m e j o r a r e spec to de la tasa

e s p e r a d a si la apl icación hub iese s ido desar ro l lada sin reut i l ización. Henry y Faller
[HEN95] repor ta un 35 por c ien to d e me jo ra e n la cal idad. Aunque los r epo r t e s a n e c -
dót icos aba rcan un e s p e c t r o r a z o n a b l e m e n t e ampl io de p o r c e n t a j e s de m e j o r a e n la

cal idad, e s justo a f i rmar q u e la reut i l ización o f r ece un benef ic io i m p o r t a n t e en c u a n -
t o a la cal idad y fiabilidad p a r a el s o f t w a r e en t r egado .

P r o d u c t i v i d a d . C u a n d o los c o m p o n e n t e s reut i l izables s e apl ican a lo largo del
p r o c e s o d e so f tware , s e ded ica m e n o s t i e m p o a la c reac ión d e p lanes , mode los , do-
c u m e n t o s , código y da to s que s e requ ie ren p a r a c rea r u n s i s t ema fiable. Por lo t a n -
to, s e en t rega al cl iente el m i s m o nivel d e func iona l idad con m e n o s e s f u e r z o , lo q u e
m e j o r a la product iv idad. Aunque los repor tes d e me jo ra po rcen tua l en la productivi-
dad s o n n o t a b l e m e n t e difíciles d e in terpre tar , 6 p a r e c e q u e la reut i l ización del 30 al

50 por c ien to p u e d e resul tar en m e j o r a s en la product iv idad en el r ango del 25-40 por
c iento.

6 Muchas circunstancias atenuantes (por ejemplo, dominio de aplicación, complejidad del problema,
estructura y tamaño del equipo, duración del proyecto, tecnología aplicada) tienen un profundo im-
pacto sobre la productividad del equipo del proyecto.

TM

PDF Editor

http://www.sei.cmu

CAPÍTULO 30 INGENIERÍA D A SOFTWARE BASADA EN COMPONENTES 897

^ C O N S E J O ^ -

El costo de desarrollar
un componente reutilh
zable con frecuencia
es mayor que el de
desarrolloi un compo-
nente específico para
una aplicación. Asegú-
rese de que en el futu-
ro habrá uno
necesidad lespecto del
componente reutiliza-
ble. Aquí es donde se
realiza lo retribución.

C o s t o . Los a h o r r o s en el cos to n e t o po r la reuti l ización s e e s t i m a n al p royec ta r el
cos to del p royec to si é s t e f u e s e desa r ro l l ado d e s d e cero , C0, y luego s e res ta la s u m a

d e los c o s t o s a s o c i a d o s con la reut i l ización, Cr, y el cos to real del s o f t w a r e en el m o -
m e n t o d e la en t rega , Q .

El fac tor C0 s e p u e d e de t e rmina r al apl icar una o m á s d e las t écn icas de e s t ima-
ción e s tud iadas en el capítulo 23. Los cos tos asoc iados con la reutilización, C„ incluyen
[CHR95]: anál is is y m o d e l a d o del domin io , desar ro l lo de a rqu i tec tu ra del domin io ,

a u m e n t o en la d o c u m e n t a c i ó n p a r a facilitar la reut i l ización, s o p o r t e y m e j o r a d e los
c o m p o n e n t e s d e reut i l ización, regal ías y l icencias p a r a c o m p o n e n t e s adqui r idos ex
t e r n a m e n t e , c reac ión o adquis ic ión y operac ión de un depós i to d e reut i l ización, y en-
t r e n a m i e n t o del persona l en d i seño y cons t rucc ión p a r a reut i l ización. Aunque los
cos tos a s o c i a d o s con el anál is is del domin io (sección 30.3) y la ope rac ión d e un de-
pósi to d e reut i l ización p u e d e n se r sus tanc ia les , m u c h o s de los o t ro s cos tos indica-
d o s aquí a b o r d a n los confl ictos que f o r m a n par te d e una buena práct ica de ingeniería
d e so f tware , ya s ea que la reut i l ización sea o n o una prioridad.

30.6.2 Análisis de costo empleando puntos de estructura
En la secc ión 30.3.3 s e def in ió un p u n t o d e es t ruc tu ra c o m o un pa t rón a rqu i tec tón i -

c o r ecur ren te en la to ta l idad de un domin io de apl icación part icular . Un d i s e ñ a d o r de
s o f t w a r e (o ingeniero d e s i s temas) p u e d e desar ro l la r una a rqui tec tura para u n a nue -
va apl icación, s i s t ema o p roduc to al definir una a rqui tec tura del domin io y luego do-
tarla con p u n t o s de es t ruc tura . Éstos son o c o m p o n e n t e s reut i l izables individuales o
p a q u e t e s d e c o m p o n e n t e s reuti l izables.

Aunque los p u n t o s de es t ruc tu ra s e a n reut i l izables, s u s c o s t o s d e cual i f icación,
adap tac ión , in tegración y m a n t e n i m i e n t o n o son insignif icantes . Antes d e p r o c e d e r
a la reut i l ización el ges to r del p royec to d e b e c o m p r e n d e r los c o s t o s a s o c i a d o s con la
ut i l ización d e los p u n t o s d e es t ruc tu ra .

Dado q u e t odos los p u n t o s d e es t ruc tu ra (y los c o m p o n e n t e s reut i l izables en ge-
neral) t i enen u n a historia, e s pos ib le recopi lar da to s d e c o s t o s d e c a d a uno. En un

con tex to ideal los c o s t o s d e calif icación, a d a p t a c i ó n , in tegrac ión y m a n t e n i m i e n t o
a s o c i a d o s con c a d a c o m p o n e n t e en una bibl ioteca d e reut i l ización se m a n t i e n e n pa-
ra c a d a c a s o d e uti l ización. En tonces se p u e d e n ana l i za r d ichos d a t o s para desa r ro -
llar los c o s t o s p r o y e c t a d o s r e spec to del s iguiente c a s o d e reut i l ización.

C o m o e jemplo , c o n s i d é r e s e u n a n u e v a apl icación, X, q u e requ ie re 60 por c iento

de código n u e v o y la reut i l ización d e t r e s p u n t o s d e es t ruc tura : PE,, PE2 y PE.,. Cada
u n o d e e s to s c o m p o n e n t e s reut i l izables s e ha ut i l izado en m u c h a s o t r a s aplicacio-
nes , y e s t á n d isponib les los c o s t o s p r o m e d i o p a r a cual i f icación, adap tac ión , in tegra -
c ión y m a n t e n i m i e n t o .

La est imación del esfuerzo necesario para entregar X requiere determinar lo siguiente:

e s f u e r z o global = En u

d o n d e

TM

PDF Editor

898 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

¿nuevo = e s f u e r z o r equer ido p a r a d i s eña r y cons t ru i r n u e v o s c o m p o n e n t e s de
s o f t w a r e (de t e rminados e m p l e a n d o las t écn icas desc r i t a s en el capí-
tulo 23)

Ecaiir = e s f u e r z o r equer ido p a r a calificar PE,, PE2 y PE3

¿adapi = e s f u e r z o r equer ido p a r a a d a p t a r PE,, PE2 y PE3

£int = e s f u e r z o r equer ido para integrar PE,, PE2 y PE3

El e s f u e r z o r equer ido para cualificar, a d a p t a r e integrar PE,, PE2 y PE3 s e d e t e r m i n a

al t o m a r el p r o m e d i o d e los d a t o s h is tór icos recop i l ados p a r a la cual i f icación, a d a p -
tac ión e in tegrac ión d e los c o m p o n e n t e s reut i l izables e n o t r a s ap l icac iones .

La ingenier ía del s o f t w a r e b a s a d a en c o m p o n e n t e s o f r ece benef ic ios i n h e r e n t e s en
la cal idad del s o f t w a r e , la product iv idad del desa r ro l l ador y el c o s t o global del s iste-
ma . Sin e m b a r g o , fa l ta s u p e r a r m u c h o s o b s t á c u l o s a n t e s d e q u e el m o d e l o d e p ro -
ceso d e ISBC s e utilice a m p l i a m e n t e e n la industr ia .

A d e m á s d e los c o m p o n e n t e s del sof tware , un ingeniero de so f tware p u e d e adquirir
una ampl ia g a m a d e a r t e f ac to s reuti l izables. Entre é s t o s s e e n c u e n t r a n r ep re sen ta -

c i o n e s t écn icas del s o f t w a r e (por e jemplo , espec i f i cac iones , m o d e l o s a rqui tec tóni -
cos, d iseños) , d o c u m e n t o s , pa t rones , m a r c o s d e t raba jo , d a t o s d e p rueba e inc luso
t a r ea s r e l ac ionadas con el p r o c e s o (por e jemplo , i n specc iones técnicas) .

El p r o c e s o d e ISBC incluye d o s s u b p r o c e s o s concu r r en t e s : la ingenier ía del d o m i -
n io y el desarro l lo b a s a d o en c o m p o n e n t e s . La finalidad d e la ingenier ía del domin io
e s identificar, construir , ca t a loga r y d i semina r un c o n j u n t o d e c o m p o n e n t e s d e sof t -

w a r e en un d o m i n i o d e apl icación especí f ico . En tonces el desar ro l lo b a s a d o en c o m -
ponen te s califica, adap ta e integra d ichos c o m p o n e n t e s para emplear los en un nuevo

s i s t ema . Además , el desar ro l lo b a s a d o en c o m p o n e n t e s d i seña los c o m p o n e n t e s

n u e v o s q u e s e b a s a n en los requis i tos p e r s o n a l i z a d o s d e un s i s t ema nuevo .
Las t écn icas d e aná l i s i s y d i s e ñ o para c o m p o n e n t e s reut i l izables s e b a s a n en los

m i s m o s pr incipios y c o n c e p t o s q u e f o r m a n pa r t e d e una b u e n a práct ica d e ingenie-
ría del so f tware . Los c o m p o n e n t e s reut i l izables d e b e n d i s e ñ a r s e en un e n t o r n o que
e s t ab l ezca e s t r u c t u r a s d e d a t o s e s t ánda r , p ro toco los d e in terfaz y a rqu i t ec tu ras d e
p r o g r a m a p a r a c a d a d o m i n i o d e la apl icación.

La ingeniería del so f tware basada en c o m p o n e n t e s utiliza un mode lo d e intercam-
bio d e datos , her ramientas , a l m a c e n a m i e n t o es t ruc turado y un mode lo de obje to sub-

yacen te para construir las aplicaciones. El mode lo d e ob je to gene ra lmen te concue rda
con u n o o m á s e s t á n d a r e s de c o m p o n e n t e s (por ejemplo, OMG/CORBA) que def inen
la forma en q u e una aplicación p u e d e acceder a los ob je tos reutilizables. Los e s q u e m a s
d e clasificación permiten q u e un desarrol lador encuen t r e y recupere c o m p o n e n t e s reu-
t i l izables y s e a j u s t e a un m o d e l o q u e identif ica concep to , c o n t e n i d o y con t ex to . La
clasif icación e n u m e r a d a , la clasif icación por f a c e t a s y la c lasif icación d e va lores y

a t r ibu tos son representa t ivas de m u c h o s e s q u e m a s de clasificación de componen te s .

TM

PDF Editor

C A P Í T U L O 3 0 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 899

La economía de la reutilización del sof tware se aborda med ian te una sola pregun-
ta: ¿es efectivo en costo el construir m e n o s y reutilizar más? En general, la respuesta
e s sí, pero un planificador de proyectos de sof tware debe considerar los cos tos im-
por tan tes asoc iados con la calificación, adaptac ión e integración de los c o m p o n e n -
tes reutilizables.

[ADL95] Adler, R. M., "Emerging Standards for Component Software", en Computer, vol 28, núm.
3, marzo de 1995, pp. 68-77.

[ALL021 Alien, P., "CBD Survey: The State of the Practice", en The Cutter Edge, marzo de 2002,
disponible en http://www.cutter.com/research/2002/edge020305.html.'

[ATK0I) Atkinson, C., et al., Component-Based Product Line Engineeríng wilh UML, Addison-Wes-
ley, 2001,

[BAS94] Basili, V. R., L. C. Briand y W. M. Thomas, "Domain Analysis for the Reuse of Software
Development Experiences", Proc. Of the I9th Annual Software Engineeríng Workshop, NA-
SA/GSFC, Greenbelt, MD, diciembre de 1994.

[B1N93] Binder, R., "Design for Reuse is for Real", en American Programmer, vol. 6, núm. 8, agos-
to de 1993, pp. 30-37.

[BR0961 Brown, A. W., y K. C. Wallnau, "Engineeríng of Component-Based Systems", en Com-
ponent-Based Software Engineeríng, IEEE Computer Society Press, 1996, pp. 7-15.

(CHR951 Christensen, S. R„ "Software Reuse Initiatives at Lockheed", en CrossTalk, vol. 8, núm.
5, mayo de 1995, pp. 26-31.

[CLE95J Clements, P. C., "From Subroutines to Subsystems: Component-Based Software Deve-
lopment", en American Programmer, vol. 8, núm. 11, noviembre de 1995.

|DOG03] Dogru, A., y M. Tanik, "A Process Model for Component-Oriented Software Enginee-
ríng", en IEEE Software, vol. 20, núm. 2, marzo-abril 2003, pp. 34-41.

[FIS00] Fischer, B„ "Specification-Based Browsing of Software Component Libraries", en). Auto-
mated Software Engineeríng, vol. 7, núm. 2, 2000, pp. 179-200, disponible en http://ase.arc-
.nasa.gov/people/fischer/papers/ase-00.html.

[FRA94) Frakes, W. B., yT. P. Pole, "An Empirical Study of Representation Methods for Reusable
Software Components", en IEEE Trans. Software Engineeríng, vol. SE-20, núm. 8, agosto de
1994, pp. 617-630.

[HEI01] Heineman, G., y W. Councill (eds), Component-Based Software Engineeríng, Addison-
Wesley, 2001.

[HEN95J Henry, E„ y B. Faller, "Large Scale Industrial Reuse to Reduce Cost and Cycle Time", en
IEEE Software, septiembre de 1995, pp. 47-53.

[HUT881 Hutchinson, J. W., y P. G. Hindley, "A Preliminary Study of Large Scale Software Reuse",
en Software Engineeríng Journal, vol. 3, núm. 5, 1988, pp. 208-212.

[LIA93] Liao, H., y Wang, F., "Software Reuse Based on a Large Object-Oriented Library", en ACM
Software Engineeríng Notes, vol. 18, núm. 1, enero de 1993, pp. 74-80.

[L1M941 Lim, W. C., "Effects of Reuse on Quality, Productívity, and Economics", en IEEE Softwa-
re, septiembre de 1994, pp. 23-30.

|LIN95] Linthicum, D. S„ "Component Development (a Special Feature)", Application Develop-
ment TYends, junio de 1995, pp. 57-78.

(LUC01] deLucena, Jr., V., "Facet-Based Classification Scheme for Industrial Software Compo-
nents", 2001, se puede descargar de http://research.microsoft.com/users/cszypers/e-
vents/WCOP2001 /Lucena.pdf

[MCM95] McMahon, P. E., "Pattem-Based Architecture: Bridging Software Reuse and Cost Ma-
nagement", en Crosstalk, vol. 8. núrr 3, marzo de 1995, pp. 10-16.

[ORF96] Orfali, R., D. HarkeyyJ. Edwards. The Essenüal Distributed Objects Survival Guide, Wiley,
1996.

[PR193] Prieto-Díaz, R., "Issues and Exper.ences ¡n Software Reuse", en American Programmer,
vol. 6, núm. 8, agosto de 1994, pp 67-68

TM

PDF Editor

http://www.cutter.com/research/2002/edge020305.html.'
http://research.microsoft.com/users/cszypers/e-

9 0 0 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

|POL94] Pollak, W. y M. Rissman, "Structural Models and Patterned Architectures", en Computer
vol. 27, núm. 8, agosto de 1994, pp.67-68.

[STA94] Staringer, W., "Constructing Applications from Reusable Components", en IEEE Softwa-
re, septiembre de 1994, pp. 61-68.

1TRA90] Tracz, W., "Where Does Reuse Start?", Proc. Realities ofReuse Workshop, Syracuse Un
versity CASE Center, enero de 1990.

[TRA951 Tracz, W., "Third International Conference on Software Reuse-Summary", en ACM Soft-
ware Engineering Notes, vol. 20, núm. 2, abril de 1995, pp. 21-22.

[WH195] Whittle, B., "Models and Languages for Component Description and Reuse", en ACM
Software Engineering Notes, vol. 20, núm. 2, abril de 1995, pp. 76-89.

[YOU98] Yourdon, E. <ed.), "Distributed Objects", en Cutter IT Journal, vol. 11, núm. 12, diciem-
bre de 1998.

30.1. Uno de los obstáculos clave para la reutilización consiste en hacer que los desarrollado-
res de software consideren la reutilización de componentes existentes en lugar de reinventar
unos nuevos (después de todo, ¡construir cosas es divertido!). Sugerir de tres a cuatro formas
diferentes en que una organización de software puede ofrecer incentivos para que los ingenie-
ros de software empleen la reutilización. ¿Qué tecnologías deben existir para apoyar el esfuer-
zo de la re utilización?

30.2. Aunque los componentes de software son los "artefactos" reutilizables más obvios, se
pueden reutilizar muchos otros productos de trabajo producidos como parte de la ingeniería del
software. Considerar los planes de proyecto y las estimaciones de costo. ¿Cómo se pueden reu-
tilizar y cuál es el beneficio de hacerlo?

30.3. investigúese un poco acerca de la ingeniería del dominio y detállese el modelo de proce-
so esbozado en la figura 30.1. Identifiqúense las tareas que se requieren para el análisis del do-
minio y el desarrollo arquitectónico del software.

30.4. ¿En qué son semejantes las funciones de caracterización para dominios de aplicación y
los esquemas de clasificación de componentes? ¿En qué se diferencian?

30.5. Desarrollar un conjunto de características de dominio para sistemas de información que
sean relevantes respecto al procesamiento de datos de estudiantes de una universidad.

30.6. Desarrollar un conjunto de características de dominio que sean relevantes para un soft-
ware de procesamiento de textos y publicación.

30.7. Desarrollar un modelo estructural simple para un dominio de aplicación que asigne indi-
vidualmente el instructor o uno con el cual se esté familiarizado.

30.8. ¿Qué es un punto de estructura?

30.9. Adquirir información acerca del más reciente estándar CORBA, COM o JavaBeans y ela-
borar un ensayo de tres a cinco páginas que aborde sus principales atributos. Obtener información
acerca de una herramienta de distribución de solicitudes de objetos e ilustrar cómo la herra-
mienta se ajusta al estándar.

3 0 . 1 0 . Desarrollar una clasificación enumerada para un dominio de aplicación que asigne el
instructor o uno con el que se esté familiarizado.

3 0 . 1 1 . Desarrollar un esquema de clasificación por facetas para un dominio de aplicación que
asigne el instructor o uno con el que se esté familiarizado.

3 0 . 1 2 . Investigúese en la bibliografía para obtener datos recientes de calidad y productividad
que apoyen el uso de la 1SBC. Preséntense los datos a la clase.

TM

PDF Editor

C A P Í T U L O 3 0 INGENIERÍA DEL SOFTWARE BASADA EN COMPONENTES 901

En años recientes se han publicado muchos libros acerca del desarrollo basado en componen-
tes y la reutilización de éstos. Heineman y Councill [HEI01], Brown (Large Scale Component-Based
Development, Prentice-Hall, 2000), Alien (Realizing e-Business with Components, Addison-Wesley,
2000), Herzum y Sims (Business Component Factory, Wiley, 1999) y Alien, Frost y Yourdon (Com-
ponent-Based Development for Enterprise Systems: Applying the Select Perspective, Cambridge Uni-
versity Press, 1998) cubren todos los aspectos importantes del proceso de ISBC. Apperly y sus
colegas (Service- and Component-Based Development, Addison-Wesley, 2003), Atkinson [ATK01]
y Cheesman y Daniels (JML Components, Addison-Wesley, 2000) examinan la ISBC poniendo es-
pecial cuidado en UML.

Leach (Software Reuse: Methods, Models, and Costs, McGraw-Hill, 1997) proporciona un aná-
lisis detallado de los conflictos de costo asociados con la ISBC y la reutilización. Poulin (Measu-
ring Software Reuse: Principies, Practices, and Economic Models, Addison-Wesley, 1996) sugieren
algunos métodos cuantitativos para valorar los beneficios de la reutilización de software.

En años recientes se han publicado docenas de libros que describen los estándares basados
en componentes de la industria. En ellos se abordan las funciones internas de los estándares
mismos, pero también consideran muchos tópicos importantes de la ISBC. A continuación se
presenta una muestra de los tres estándares estudiados en este capitulo:

CORBA

Bolton, F., Puré CORBA, Sams Publishing, 2001.
Doss, G. M., CORBA Networking With Java, Wordware Publishing, 1999.
Hoque, R„ CORBA for Real Programmers, Academic Press/Morgan Kaufmann, 1999.
S i e g e l , C O R B A Fundamentáis and Programming, Wiley, 1999.
Slama, D., J. Garbis y P. Russell, Enterprise CORBA, Prentice-Hall, 1999.
COM

Box, D., K. Brown, T. Ewald y C. Sells, Effective COM: 50 Ways to Improve YourCOM- and MTS-
Based Applications, Addison-Wesley, 1999.

Gordon, A., The COM and COM+ Programming Primer, Prentice-Hall, 2000.
Kirtland, M., Designing Component-Based Applications, Microsoft Press, 1999.
Tapadiya, P., COAÍ+ Programming, Prentice-Hall, 2000.

Muchas organizaciones aplican una combinación de estándares de componentes. Los libros de
Geraghty y sus colegas [COM-CORBA Interoperability, Prentice-Hall, 1999), Pritchard (COM and
CORBA Side by Side: Architectures, Strategies, and Implementations, Addison-Wesley, 1999), y Ro-
sen y sus colegas (Integrating CORBA y COM Applications, Wiley, 1999) consideran los conflictos
asociados con el uso tanto de CORBA como de COM como la base para el desarrollo basado en
componentes.

JavaBeans

Asbury, S., y S. R. Weiner, Developing Java Enterprise Applications, Wiley, 1999.
Anderson, G., y P. Anderson, Enterprise Javabeans Component Architecture, Prentice-Hall,

2002.

Monson-Haefel, R., Enterprise Javabeans, tercera edición, O'Reilly & Associates, 2001.
Román, E., etal., Mastering Enterprise Javabeans, 2a. ed., Wiley, 2001.

En Internet hay disponible una amplia variedad de fuentes de información acerca de la ingenie-
ría del software basada en componentes. Una lista actualizada de referencias en la World Wide
Web se puede encontrar en el sitio Web SEPA
http: / /www.mhhe.com/pressmai i .

TM

PDF Editor

http://www.mhhe.com/pressmaii

C A P I T U L O

31
^
C O N C E P T O S
CLAVE

análisis de
inventarios... .909

arquitecturas
c/s 920

arquitecturas
00 921

economía 923

ingeniería
directa 918

ingeniería
inversa 912

mantenimiento .906

modelo de
proceso RPN...903

proceso de
reingeniería . . .908

reestructuración 916

reestructuro
de datos .917

REINGENIERÍA

En un re levan te ar t ículo publ icado e n la Harvard Business Review, Michael
H a m m e r [HAM90] s e n t ó las b a s e s para u n a revoluc ión e n el p e n s a m i e n t o
adminis t ra t ivo ace rca d e los p r o c e s o s d e negoc ios y la compu tac ión :

Es el momento de dejar de pavimentar los senderos para vacas. En lugar de incrus-
tar procesos anticuados en silicio y software, debemos eliminarlos y comenzar de
nuevo. Debemos someter a "reingeniería" nuestros negocios: usar el poder de las
modernas tecnologías de la información para rediseñar radicalmente nuestros pro -
cesos de negocios con la finalidad de alcanzar mejoras radicales en su desempeño.

Cualquier compañía opera de acuerdo con una gran cantidad de reglas desarticu-
ladas... La reingeniería lucha por separarse de las viejas reglas acerca de cómo or-
ganizar y dirigir nuestros negocios.

Al igual que todas las revoluciones, el l l amado a las a r m a s de Hammer g e n e r ó
c a m b i o s posi t ivos y negat ivos . Duran te el d e c e n i o d e 1990, a l g u n a s c o m p a ñ í a s
apl icaron un e s f u e r z o legí t imo en la rea l izac ión d e re ingenier ía , y los r e su l t ados
las c o n d u j e r o n a m e j o r a r su compet i t iv idad. Ot ras se a p o y a r o n exc lus ivamen te
e n el r e d i m e n s i o n a m i e n t o y la subcon t r a t ac ión (en lugar d e la reíngeniería) p a r a
m e j o r a r s u s l íneas b a s e ; po r lo tan to , con f recuenc ia resu l t a ron o r g a n i z a c i o n e s
con p o c o potencia l para un c rec imien to fu turo [DEM95].

Duran te e s t a p r imera d é c a d a del siglo xxi, la p r o m o c i ó n e x a g e r a d a d e la rein-
genier ía ha deca ído , p e r o el p r o c e s o en sí con t inúa en c o m p a ñ í a s g r a n d e s y
p e q u e ñ a s . Los n e x o s e n t r e la re ingenier ía de negoc ios e ingenier ía del s o f t w a r e
se e n c u e n t r a n e n u n a revisión d e s i s t ema .

M ¿ Q u é e s ? Considere cualquier produc-
V to tecnológico que le haya servido bien.

Usted lo utiliza regularmente, pero se
está volviendo obsoleto. Se rompe con

mucha frecuencia, su reparación toma más tiempo
del que usted quisiera, y ya no representa más la
nueva tecnología. ¿Qué hacer? Si el producto es
hardware, probablemente usted lo tirará a la basu-
ra y comprará un modelo más nuevo. Pero si es soft-
ware personalizado, dicha opción tal vez no esté
disponible. Necesitará reconstruirlo. Creará un pro-
: . no con una mejor funcionalidad, mejor desem-

peño y fiabilidad, así como una mejor facilidad de
mantenimiento. A eso se le llama reingeniería.

¿Quién la h a c e ? En el ámbito de las organizacio-
nes, la reingeniería la llevan a c a b o especialistas
en negocios (con frecuencia compañías consulto-
ras). En el ámbito del software la reingeniería la
realizan los ingenieros de software.

¿Por q u é e s importante? Se vive en un mundo en
cambio constante, tas demandas acerca de las fun-
ciones de negocios y la tecnología de la informa-
ción que ios soportan están cambiando a un ritmo
que impone una enorme presión competitiva en las

TM

PDF Editor

CAPÍTULO 3 1 REINGENIERÍA 903

organizaciones comerciales. Tanto el negocio como
el software que soporta (o es) el negocio debe redi-
señarse para mantener el ritmo.

¿Cuáles son los p a s o s ? La reingeniería de proce-
sos d e negocio (RPN) define las metas del negocio,
identifica y evalúa los procesos vigentes del nego-
cio, y crea procesos de negocios renovados que
cumplen mejor las metas actuales El proceso de
reingeniería de software incluye análisis d e inventa-
rios, reestructuración de documentos, ingeniería
inversa, reestructuración de programas y datos, e
ingeniería avanzada . La finalidad d e estas activida-
des es crear versiones d e programas existentes que
muestren mayor calidad y mejor facilidad d e man-
tenimiento.

¿Cuál e s el producto obten ido? Se produce una
diversidad de productos de trabajo de reingeniería
(por ejemplo, modelos d e análisis, modelos d e dise-
ño, procedimientos de prueba). El resultado final es
Un proceso d e reíngeniería d e negocios o el soft-
ware d e reingeniería que b soporta.

¿Cómo puedo estar seguro de que lo he
hecho correctamente? Utilice las mismas prácti-
cas d e SQA que se aplican o cualquier procesa de
ingeniería del software: las revisiones técnicas for-
males evalúan los modelos de análisis y d e diseño;
las revisiones especializadas consideran la aplica-
bifidad y ia compatibilidad en el negocio; y las prue-
bas se aplican para descubrir errores en contenido,
funcionalidad e interoperabilidad.

\ CLAVE
Lo RPN con f recuenc ia
g e n e r a u n o n u e v a
func iona l idad d e
s o f t w a r e , m i e n t r a s q u e
la reingenier ía del
s o f t w a r e t raba ja p a r a
r e e m p l a z o r la
func iona l idad del
s o f t w a r e ex i s t en te con
un m e j o r s o f t w a r e y d e
m a y o r facil idod d e
m a n t e n i m i e n t o .

U s u a l m e n t e el s o f t w a r e e s la rea l izac ión d e las reg las del negoc io q u e H a m m e r
descr ibe . C o n f o r m e c a m b i e n d i c h a s reglas , el s o f t w a r e t a m b i é n d e b e hacer lo . En la
actual idad, las g r a n d e s c o m p a ñ í a s t ienen d e c e n a s d e miles de p r o g r a m a s d e c o m p u -
tadora q u e apoyan a las viejas reglas del negocio. A medida que los admin i s t radores
t raba jen en la modif icación d e las reglas y logren mayore s efectividad y competi t ivi-

dad , el s o f t w a r e d e b e m a n t e n e r el r i tmo. En a l g u n o s ca sos , e s t o implica la c reac ión
d e m a y o r e s y n u e v o s s i s t e m a s b a s a d o s en c o m p u t a d o r a . 1 Pero, en m u c h o s o t ros ,
s ignif ica la modif icac ión o recons t rucc ión d e las ap l i cac iones ex is ten tes .

En es te capí tu lo s e e x a m i n a la re ingenier ía e n fo rma d e s c e n d e n t e , c o m e n z a n d o
con un b r eve p a n o r a m a de la re ingenier ía de p r o c e s o s d e negoc io y d e s p u é s s e abo r -
d a n con m a y o r detal le las ac t iv idades t écn icas q u e s e l levan a c a b o al real izar la

re ingenier ía del so f tware .

3 1 . 1 R E Í N G E N I E R Í A P E P R O C E S O S P E N E S Q C I P

La re ingenier ía d e p r o c e s o s d e negoc io (RPN) r ebasa el á m b i t o d e las t ecno log ía s d e
la in fo rmac ión y d e la ingenier ía del so f tware . Entre las m u c h a s def in ic iones (la
mayor ía un t a n t o abs t rac ta) suger idas p a r a la RPN des t aca una publ icada e n la revis-
ta Fortune [STE93]: "La b ú s q u e d a e i m p l e m e n t a c i ó n d e un c a m b i o radical e n el pro-
c e s o d e negoc ios p a r a lograr r e su l t ados de vanguard ia" . Pero, ¿ c ó m o se lleva a c a b o
la b ú s q u e d a y c ó m o se logra la i m p l e m e n t a c i ó n ? Más impor t an te a ú n , ¿ c ó m o se

p u e d e ga ran t i za r q u e el " cambio radical" suge r ido conduc i r á a " resu l tados d e van -
guard ia" e n lugar d e c a o s o rgan izac iona l?

I La explosión de aplicaciones y sistemas basados en Web estudiados en la parte 3 de este libro es un
indicio de esta tendencia.

TM

PDF Editor

9 0 4 PARTE C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

"Enf ren t a r el m a ñ a n o con la ideo de e m p l e a r los m é t o d o s de aye r e s visual izar la vido t o m o u n a parál is is ."
J a m e s Bell

^ O N S E J O ^

Como ingenieio de
softwote, su trabajo lo
desempeño en lo base
de esto jerarquía. Sin
embargo, asegúrese
de que alguien ha
pensado seriamente
en los niveles supe-
riores. Si esto no ha
ocurrido, su trobo jo
esiú en nesgo.

R e f e r e n c i a W e b

Araplja infcímottón
acerco d e la RPff s e
puede encontrar en
w w w . b r i n l . c o m /
BPR.htm.

31.1.1 Procesos d e negocios

Un p r o c e s o d e negoc io e s "un c o n j u n t o d e t a r ea s l óg i camen te r e l ac ionadas q u e s e
e j ecu tan p a r a lograr un resu l t ado d e negoc ios específ ico" [DAV90]. Dent ro del pro-
ceso d e negoc io , la gen te , el equipo , los r ecu r sos ma te r i a l e s y los p r o c e d i m i e n t o s del
negoc io s e c o m b i n a n p a r a producir un r e su l t ado específ ico. Los e j e m p l o s d e p roce -
s o s d e n e g o c i o s incluyen el d i seño d e u n n u e v o p roduc to , la c o m p r a d e servic ios y

suminis t ros , la con t r a t ac ión d e un n u e v o e m p l e a d o y el p a g o a p roveedo re s . Cada
u n o d e m a n d a un c o n j u n t o d e t a r ea s y t a m b i é n emp lea d iversos r ecu r sos d e n t r o del
negocio .

Cada p r o c e s o d e negoc io t iene un cl iente definido: una p e r s o n a o g r u p o q u e reci-
b e el r e su l t ado (por e jemplo , u n a idea , u n informe, un d iseño, u n producto) . Además ,
los p rocesos d e negoc ios t r a s p a s a n las f r o n t e r a s d e la o rgan izac ión . Esto requ ie re

que d i fe ren tes g rupos d e o r g a n i z a c i o n e s par t ic ipen en las " t a r ea s lóg icamente rela-
c ionadas" q u e de f inen el p roceso .

En el capí tu lo 6 s e indicó q u e todo s i s t ema e s en real idad u n a jerarquía de sub-
s i s t emas . Un negoc io n o e s la excepción . Cada s i s t ema d e n e g o c i o (también l lama-
d o una func ión negocio) e s t á c o m p u e s t o d e u n o o m á s p r o c e s o s d e negoc io , y a c a d a
p r o c e s o d e negoc io lo def ine un c o n j u n t o de subp rocesos .

La RPN se p u e d e apl icar en cua lqu ie r nivel d e la jerarquía , pe ro c o n f o r m e s e
amplía su ámbito (es decir, conforme u n o s e mueve hacia arriba en la jerarquía) los ries-
gos a s o c i a d o s con ello c r ecen sus t anc i a lmen te . Por e s t a r azón , la mayor ía de los

e s f u e r z o s de la RPN se en foca e n p r o c e s o s individuales o subprocesos .

"Tan p ron to se nos p r e sen to a l g o viejo en u n a cosa n u e v a , nos t r anqu i l i zamos . "
F. W. N i e t z s c h e

31.1.2 Un modelo de RPN

C o m o la mayor ía d e las ac t iv idades d e ingenier ía , la re ingenier ía d e p r o c e s o s de
negoc io e s i terativa. Las m e t a s del negoc io y los p r o c e s o s con q u e se logran s e
d e b e n a d a p t a r a un e n t o r n o d e negoc ios c a m b i a n t e . Por es ta r a z ó n no existe princi-
p io ni fin para la RPN: s e t ra ta de un p r o c e s o evolut ivo. En la figura 31.1 s e m u e s t r a

un m o d e l o d e re ingenier ía d e p r o c e s o s d e negocio . El m o d e l o de f ine se i s ac t iv ida-
des .

D e f i n i c i ó n d e l n e g o c i o . Las m e t a s del negoc io s e ident i f ican denle el con tex to

de c u a t r o con t ro l ado re s clave: reducción d e costo , reducción d e t iempos , m e j o r a de
la ca l idad y desar ro l lo y fo r ta lec imien to del pe r sona l . Es posible definir las m e t a s al
nivel del negoc io o r e spec to de un c o m p o n e n t e específ ico del negocio.

I d e n t i f i c a c i ó n de l p r o c e s o . S e ident if ican los p r o c e s o s c ruc ia les p a r a lograr las

m e t a s p rec i sadas en la def inición del negocio . Luego podría c las i f icarse d e a c u e r d o

TM

PDF Editor

http://www.brinl.com/

CAPITULO 3 1 REINGENIERÍA 905

con su importancia, necesidad de cambio o en cualquier otra forma que sea ade-
cuada para la actividad de reingeniería.

Evaluación del p r o c e s o . El proceso existente se analiza y mide exhaustiva-
mente. Se identifican las tareas del proceso; se anotan los costos y el t iempo que con-
sumen las tareas del proceso; y se aislan los problemas de calidad y desempeño.

Espec i f i cac ión y d i s e ñ o de l p r o c e s o . Con base en la retroalimentación obte-
nida durante las primeras tres actividades de la RPN, se preparan casos de uso (capí-
tulo 7) para cada proceso que será rediseñado. En del contexto de la RPN los casos
de uso identifican un escenario que entrega cierto resultado a un cliente. Con el cas de
uso como la especificación del proceso se diseña un nuevo conjunto de tareas para
el proceso.

Elaboración d e protot ipos . Un proceso de negocio rediseñado debe conver-
tirse en prototipo antes de que sea integrado por completo en el negocio. Esta acti-
vidad "prueba" el proceso de modo que puedan llevarse a cabo refinamientos.

Ref inamiento y particularización. Con base en la retroalimentación del pro-
totipo, el proceso de negocio se refina y luego se particulariza dentro de un sistema
de negocio.

En ocasiones, estas actividades de RPN se utilizan junto con las herramientas de
análisis de flujo de trabajo. La finalidad de es tas herramientas es elaborar un mode-
lo de flujo de trabajo práctico, esfuerzo encaminado a analizar mejor los procesos
existentes. Además, para implementar las primeras cuatro actividades descritas en
el modelo de proceso se pueden aplicar las técnicas de modelado usualmente aso-
ciadas con las actividades de ingeniería de procesos de negocio (capítulo 6).

Modelo de RPN. Definición del

TM

PDF Editor

906 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

HERRAMIENTAS DE SOFTWARE

Reingeniería d e procesos de negocio (RPN)

Objetivo: El objetivo de las herramientas de e-Work, desarrollado por Mefastorm
la RPN es apoyar el análisis y la evaluación de

los procesos de negocio existentes y la especificación y el
diseño de unos nuevos.

Mecánica: La mecánica de las herramientas varía. En
general, las herramientas de la RPN permiten que un
analista de negocios modele los procesos de negocio
existentes en un esfuerzo destinado a evaluar las
ineficiencias del flujo de trabajo o problemas funcionales.
Una vez que se identifican los problemas existentes las
herramientas permiten que los analistas elaboren
prototipos o simulen procesos de negocio revisados.

Herramientas representa t ivas 2

Extend, desarrollada por ImagineThat, Inc.
(vAvw.imaginethatinc.com), es una herramienta de
simulación para el modelado de procesos existentes y
la exploración de unos nuevos. Extend proporciona
una extensa capacidad "si... entonces" que permite
que un analista de negocios explore diferentes escenarios

, de proceso,

(www.metastorm.com), apoya la gestión de procesos
de negocios en procesos manuales y automatizados.

IceTools, desarrolladas por Blue Ice (www.blueice.com), es
una colección de plantillas de RPN para Microsoft
Office y Microsoft Project.

SpeeDev, desarrollada por NimbleStar Group
(www.nimblestar.com), es una de muchas herramientas
que permiten que una organización modele flujos de
trabajo de procesos (en este caso, flujo de trabajo de
TI).

Workflow tools, desarrolladas por MetaSoftware
(www.metasoftware.com), incorpora un conjunto de
herramientas para modelado, simulación y
calendarización del flujo de trabajo.

Una lista útil de vínculos a herramientas de RPN se puede
encontrar en http://www.donald-
firesmith.com/Components/Producers/Tools/BusinessProce
ssReengineeringTools.html.

El e s c e n a r i o e s l a n c o m ú n : u n a a p l i c a c i ó n h a c u b i e r t o l a s n e c e s i d a d e s d e n e g o c i o s

d e u n a c o m p a ñ í a d u r a n t e 10 o 15 a ñ o s . D u r a n t e e s e l a p s o s e h a c o r r e g i d o , a d a p t a -

d o y m e j o r a d o m u c h a s v e c e s . El p e r s o n a l e n f r e n t ó e s t e t r a b a j o c o n l a s m e j o r e s

i n t e n c i o n e s , p e r o l a s b u e n a s p r á c t i c a s d e i n g e n i e r í a del s o f t w a r e s i e m p r e f u e r o n

s o s l a y a d a s (d e b i d o a la p r e s i ó n d e o t r o s a s u n t o s i m p o r t a n t e s) . A h o r a la a p l i c a c i ó n

e s i n e s t a b l e . T o d a v í a f u n c i o n a p e r o , c a d a v e z q u e s e i n t e n t a u n c a m b i o , o c u r r e n

e f e c t o s c o l a t e r a l e s , i n e s p e r a d o s y s e r i o s . Y la a p l i c a c i ó n t o d a v í a t i e n e q u e e v o l u c i o -

n a r . ¿ Q u é h a c e r ?

El s o f t w a r e al c u a l n o s e le p u e d e d a r m a n t e n i m i e n t o n o e s u n p r o b l e m a n u e v o .

De h e c h o , la i m p o r t a n c i a c a d a v e z m a y o r q u e s e le c o n c e d e a la r e i n g e n i e r í a de l s o f t -

w a r e la h a n i m p u l s a d o lo s p r o b l e m a s e n el m a n t e n i m i e n t o del s o f t w a r e q u e h a n ido

c r e c i e n d o d u r a n t e m á s d e 4 0 a ñ o s .

2 Las herramientas expuestas el autor no las respalda; sólo representan una muestra de las herra-
mientas incluidas en esta categoría. En la mayoría de los casos, los nombres de las herramientas
son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.metastorm.com
http://www.blueice.com
http://www.nimblestar.com
http://www.metasoftware.com

CAPÍTULO 3 1 REINGENIERIA 907

31.2.1 Mantenimiento del software

Duran te las t r e s d é c a d a s p a s a d a s el m a n t e n i m i e n t o del s o f t w a r e s e ca rac t e r i zó
[CAN72] c o m o un "iceberg". Se e s p e r a b a q u e lo i n m e d i a t a m e n t e visible f u e s e todo
lo q u e hab ía , p e r o s e sabía que b a j o la superf ic ie s e e n c o n t r a b a una e n o r m e m a s a
d e p r o b l e m a s y c o s t o s po tenc ia les . A pr incipios del d e c e n i o d e 1970, el m a n t e n i -

m i e n t o del iceberg e ra su f i c i en t emen te g r a n d e c o m o para hundi r un po r t aav iones .
En la ac tua l idad , ¡ fác i lmente podría hundi r a toda la m a r i n a !

El m a n t e n i m i e n t o del s o f t w a r e ex i s t en te expl ica casi el 60 por c ien to del e s fue r -

z o que e m p l e a una o rgan izac ión d e desarrol lo , y el p o r c e n t a j e con t inúa e l e v á n d o s e
c o n f o r m e s e p roduce m á s s o f t w a r e (HAN93], Los lec tores con e s c a s o s conoc imien -
tos sob re el t e m a podr ían p r e g u n t a r s e p o r qué se requiere t a n t o m a n t e n i m i e n t o y
por q u é s e dedica t a n t o e s fue rzo . O s b o r n e y Chikofsky [C>SB90] o f r ecen u n a res-
pues t a parcial:

Gran parte del software del que dependemos en la actualidad tiene en promedio de 10 a
15 años de antigüedad. Aun cuando dichos programas se crearon empleando las mejores
técnicas de diseño y codificación conocidas en la época [y la mayoría no lo eran|, se crea-
ron cuando el tamaño de los programas y el espacio de almacenamiento eran las princi-
pales preocupaciones. Entonces emigraron hacia nuevas plataformas, se ajustaron para
adecuarlos a los cambios en las máquinas y a la tecnología de los sistemas operativos y
aumentaron para satisfacer las necesidades de nuevos usuarios; todo se hizo sin consi-
derar lo suficiente la arquitectura global. El resultado es estructuras mal diseñadas, codi-
ficación deficiente, lógica inadecuada y escasa documentación de los sistemas de
software por los que ahora se nos llama para mantenerlos en operación...

Ot ra r azón respec to del p rob lema del m a n t e n i m i e n t o del s o f t w a r e e s la movi l idad
del persona l . Es p robab le q u e el e q u i p o (o pe r sona) d e s o f t w a r e q u e real izó el tra-

ba jo original ya n o es té . Peor aún , l a s g e n e r a c i o n e s s u b s e c u e n t e s d e persona l h a n
modi f i cado el s i s t ema y lo h a n d a ñ a d o . En la ac tua l idad , tai vez n o haya n a d i e q u e
t enga a lgún conoc imien to d i rec to del s i s t ema he redado .

C o m o se indicó en el capí tu lo 27, la na tu ra l eza ub icua del c a m b i o subyace en
todo el t r aba jo d e s o f t w a r e . El c a m b i o e s inevitable c u a n d o s e cons t ruyen s i s t e m a s
b a s a d o s e n c o m p u t a d o r a ; e n consecuenc i a , s e d e b e n desar ro l la r m e c a n i s m o s para
eva luar , cont ro la r y e fec tua r modi f icac iones .

"ID facilidad de m a n t e n i m i e n t o de los p r o g r a m o s y la comprensibi l idad d e los p r o g r a m a s son conceptos para le los :
m i e n t r a s m á s difícil sea comprender un p rog rama , m á s difícil s e r á su m a n t e n i m i e n t o . "

Geraid B e r n s

D e s p u é s d e leer los p á r r a f o s a n t e r i o r e s un lec tor podr ía p ro t e s t a r : "Pero y o n o
p a s o el 60 por c i e n t o d e mi t i e m p o c o m p o n i e n d o e r r o r e s e n los p r o g r a m a s q u e de-
sarrol lo". Desde luego, el m a n t e n i m i e n t o del s o f t w a r e e s m u c h o m á s q u e " c o m p o -

ne r errores" . Es posible definir el m a n t e n i m i e n t o desc r ib i endo c u a t r o ac t iv idades
[SWA76] q u e s e real izan d e s p u é s d e q u e u r p r o g r a m a e s l iberado p a r a su uti l ización.

TM

PDF Editor

908 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

\ CLAVE
El m o n t e n i m i e n t o del
s o f t w a r e incluye cua t ro
ac t iv idades: corrección
d e error, adop t ac ión ,
m e j o r a y reingenien 'o.

R e f e r e n c i a W e b

Uno excelente fuente
de información ocerco

s o t a r e Sé puede
encontrar en
w w w .
r e e n g i n e e r i n g . n e t .

El m a n t e n i m i e n t o del s o f t w a r e s e def ine iden t i f icando c u a t r o ac t iv idades di ferentes :
m a n t e n i m i e n t o correct ivo, m a n t e n i m i e n t o adap ta t ivo , me jo ra o m a n t e n i m i e n t o de
p e r f e c c i o n a m i e n t o y m a n t e n i m i e n t o prevent ivo o re ingenier ía . Sólo cerca del 20 por

c iento del t r aba jo de m a n t e n i m i e n t o se emp lea e n " c o m p o n e r errores". El r e s t an te
80 por c ien to s e ded ica a a d a p t a r los s i s t e m a s ex i s t en tes a los c a m b i o s en s u en to r -
n o ex te rno , real izar las m e j o r a s q u e solici tan los u sua r io s y r e d i s e ñ a r una apl icación
p a r a usar la en lo fu turo . Al cons ide ra r q u e el m a n t e n i m i e n t o incluye t o d a s e s t a s acti-
v idades e s r e l a t ivamen te senci l lo obs e r va r po r q u é a b s o r b e t an to e s fue rzo .

31.2.2 Un modelo de procesos de reingeniería del software

La re ingenier ía requ ie re t iempo, cues t a c a n t i d a d e s s ignif icat ivas de d ine ro y absor -
be r ecu r sos q u e de o t ro m o d o s e ocupa r í an en p r o b l e m a s inmedia tos . Por t odas
e s t a s r a z o n e s la re ingenier ía n o s e logra en u n o s c u a n t o s m e s e s , ni s iquiera e n u n o s
c u a n t o s años . La re ingenier ía d e los s i s t e m a s d e información e s una act ividad q u e
a b s o r b e r á r ecu r sos d e la tecnología d e la i n fo rmac ión d u r a n t e m u c h o s años . Por
tan to , t o d a o rgan izac ión neces i t a una es t ra teg ia p r agmá t i ca r e spec to de la re inge-
niería del so f tware .

El m o d e l o d e p r o c e s o d e re ingenier ía incluye u n a es t ra teg ia opera t iva . El m o d e l o
s e t ra ta rá m á s a d e l a n t e en es ta sección, pe ro p r imero s e p r e sen t a r án a l g u n o s prin-
cipios bás icos .

La re ingenier ía e s una act ividad d e r econs t rucc ión , y la re ingenier ía d e los siste-

m a s d e información s e c o m p r e n d e m e j o r si se cons ide ra una actividad aná loga : la
r econs t rucc ión de una ca sa . Cons idé rese la s iguiente s i tuac ión.

El lector compra u n a c a s a en o t ro e s t ado . En real idad n u n c a ha vis to la p ropie -
dad , pe ro la adquir ió e n un prec io s o r p r e n d e n t e m e n t e bajo, con la adver tenc ia d e
q u e tal vez t e n g a que recons t ru i r se po r comple to . ¿Cómo se proceder ía?

• Antes de que s e pueda iniciar la r econs t rucc ión sería r a z o n a b l e in specc iona r
la c a sa . De t e rmina r si e s nece sa r io reconstruir la requ ie re q u e el lector (o un
inspec to r profes ional) e l abore u n a lista de cri ter ios d e m o d o q u e la inspección
resul te s i s temát ica .

• Antes de tirar y reconstruir toda la casa s e debe tener la cer teza q u e la es t ruc-
tura e s débil. Si la casa es e s t ruc tu ra lmente sólida tal vez sea posible " remode-
larla" sin reconstruir la (a un cos to m u c h o m á s ba jo y e n m u c h o m e n o s t iempo).

• A n t e s d e iniciar la r econs t rucc ión s e d e b e t ener la ce r t eza de q u e s e en t i ende
c ó m o se cons t ruyó la original. Eche un v is tazo de t r á s d e las pa redes . Ent ienda
el a l a m b r a d o , la p lomería y los c o m p o n e n t e s es t ruc tura les . Incluso si s e t iran

t odos a la b a s u r a , la c o m p r e n s i ó n q u e s e adqu ie ra se rá útil c u a n d o c o m i e n c e
la cons t rucc ión .

• Si s e c o m i e n z a a recons t ru i r sólo se ut i l izarán los ma te r i a l e s m á s m o d e r n o s y
d e larga durac ión . Es to p u e d e cos ta r un p o c o m á s aho ra , pe ro a y u d a r á a
evi tar un m a n t e n i m i e n t o c o s t o s o y t a r d a d o m á s ade lan te .

TM

PDF Editor

C A P I T U L O 3 1 REINGENIERIA 909

• Si s e dec ide reconst ru i r e s p rec iso disc ipl inarse en c u a n t o a ello. Util ícense
prác t icas q u e r e d u n d a r á n en al ta ca l idad, hoy y m a ñ a n a .

A u n q u e e s to s principios s e e n f o c a n en la r econs t rucc ión d e una casa , t a m b i é n s e
apl ican i g u a l m e n t e bien a la re ingenier ía d e s i s t e m a s y ap l i cac iones b a s a d a s e n
c o m p u t a d o r a s .

La imp lemen tac ión de e s t o s principios requiere apl icar un m o d e l o d e p r o c e s o d e
re ingenier ía del s o f t w a r e q u e de f ine se is ac t iv idades , c o m o se m u e s t r a en la figura
31.2. En a l g u n o s c a s o s d i c h a s ac t iv idades ocu r r en e n una s e c u e n c i a lineal, p e r o és te
n o s i empre e s el caso . Por e jemplo , tal vez la ingenier ía inversa (comprende r el f u n -
c i o n a m i e n t o in t e rno d e un p rog rama) t enga q u e ocurr i r a n t e s d e q u e c o m i e n c e la
rees t ruc turac ión d e d o c u m e n t o s .

El p a r a d i g m a d e re ingenier ía q u e s e m u e s t r a e n la figura e s un m o d e l o cíclico.
Esto significa q u e c a d a una d e las ac t iv idades p r e s e n t a d a s c o m o pa r t e del pa rad ig -

ma p u e d e n volver a visi tarse. En a lgún ciclo par t icular el p r o c e s o qu izá t e rmine d e s -
p u é s de cua lquiera d e d i c h a s act iv idades .

A n á l i s i s d e i n v e n t a r i o s . Las o r g a n i z a c i o n e s d e s o f t w a r e debe r í an t ener un inven-
tar io d e t odas s u s apl icac iones . El inven ta r io tal vez n o sea m á s q u e un m o d e l o en

una hoja d e cá lcu lo q u e c o n t e n g a in fo rmac ión q u e p roporc ione una descr ipc ión
de ta l lada (por e j emplo , t a m a ñ o , edad , impor tanc ia p a r a el negocio) d e las apl icac io-
n e s act ivas . Al o r d e n a r es ta in fo rmac ión —de a c u e r d o con la impor tanc ia para el
negocio , an t igüedad , facil idad ac tua l d e m a n t e n i m i e n t o y o t ro s cri ter ios l o c a l m e n t e
impor tan tes— a p a r e c e n los c a n d i d a t o s p a r a re ingenier ía . En tonces s e p u e d e n asig-
n a r los recursos a las ap l icac iones c a n d i d a t a s p a r a el t r aba jo d e re ingenier ía .

Modelo de
proceso d e la
reingeniería del
software.

Reestructuración
de documentos

TM

PDF Editor

9 1 0 PARTE CINCO TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

^ O N S E J O ^ ^

Si el tiempo y los
temos escasean,
puede considerar la
aplicación del principio
de Poreto al software
que será sometido a
ingeniería. Aplique el
proceso de reinge-
niería al 20 por ciento
del software que
explica el 80 por
ciento de los
problemas.

^^ONSEJO^^

Cree solamente tanta
documentación como
necesite para
entender el software,
ni una página mús.

Es importante señalar que el inventario deberá visitarse con regularidad. El estado
de las aplicaciones (por ejemplo, importancia respecto del negocio) puede cambiar
en función del t iempo y, como resultado, cambiarán las prioridades para la reinge-
niería.

Reestructuración d e d o c u m e n t o s . La documentación débil es la marca de mu-
chos s is temas heredados. ¿Pero qué se hace acerca de ello? ¿Cuáles son las opcio-
nes?

1. Crear documentación consume muchísimo tiempo. Si el sistema funciona vivirá
con lo que se tenga. En algunos casos és te es el enfoque correcto. No es posi-
ble recrear documentación para cientos de programas de computadora . Si un
programa es relativamente estático está llegando al final de su vida útil, por lo
que es improbable que experimente un cambio significativo, ¡déjelo ser!

2 . La documentación debe actualizarse, pero se tienen recursos limitados. Se utili-
zará un enfoque de "documentar cuando se toque". Tal vez sea innecesario
volver a documentar por completo la aplicación. En cambio, se documentan
completamente aquellas porciones del sistema que en la actualidad experi-
men tan cambios. Con el t iempo evolucionará una colección de documenta-
ción útil y relevante.

3. El sistema es crucial para el negocio y debe volver a documentarse por completo.
Incluso en este caso un enfoque inteligente e s recortar la documentación a un
mínimo esencial.

Cada una de estas opciones es viable. Una organización de sof tware debe elegir la
m á s a p r o p i a d a p a r a c a d a c a s o .

Ingeniería inversa. El término ingeniería inversa tiene sus orígenes en el mundo
del hardware. Una compañía desensambla un producto de hardware de un compe-
tidor con la finalidad de comprender sus "secretos" de diseño y fabricación. Tales
secretos podrían comprenderse fácilmente si se obtuviesen las especificaciones de
diseño y fabricación del competidor. Pero dichos documentos están patentados y no
están disponibles para la compañía que realiza la ingeniería inversa. En esencia, la
ingeniería inversa exitosa obtiene una o más especificaciones de diseño y fabrica-
ción para un producto cuando se examinan especímenes reales del producto.

La ingeniería inversa para el sof tware es bas tante similar. Sin embargo, en ambos
casos el programa objeto de la ingeniería inversa no es el de un competidor, sino el
trabajo de la propia compañía (con frecuencia elaborado muchos años atrás). Los
"secretos" que se comprendan serán oscuros, pues nunca se desarrolló u n a especi-
ficación. Por lo tanto, la ingeniería inversa del sof tware es el proceso de analizar un
programa con la finalidad de crear una representación del programa en un mayor
grado de abstracción que el código fuente. La ingeniería inversa es un proceso de
recuperación de diseño. Las herramientas de la ingeniería inversa obtienen infor-

TM

PDF Editor

CAPÍTULO 31 REINGENIER1A 911

R e f e r e n c i a W e b

pota lo

obtener en
www.tomp. lancs .
a c . u k / p r o j e t t s /
Rena i s snnceWeb / .

mación del diseño de datos, arquitectónico y de procedimientos a partir de un pro-
grama existente.

Reestructurac ión de cód igo . El tipo m á s común de reingeniería (en realidad, en
es te caso el empleo del término reingeniería es cuestionable) es la reestructuración
de código.-' Algunos s is temas heredados tienen una arquitectura de programa rela-
t ivamente sólida, pero los módulos individuales se codificaron en una forma que difi-
culta comprenderlos, probarlos y mantenerlos. En tales casos se puede reestructurar
el código dentro de los módulos sospechosos.

Llevar a cabo esta actividad requiere analizar el código fuente empleando una
herramienta de reestructuración. Se indican las violaciones de las estructuras de
programación estructurada y en tonces el código se reestructura (esto se puede hacer
automáticamente) . El código reestructurado resultante se revisa y prueba para
garantizar que no se han introducido anormalidades. La documentación del código
interno se actualiza.

Reestructuración de d a t o s . Un programa con una arquitectura de datos débil
será difícil de adaptar y mejorar. De hecho, en muchas aplicaciones la arquitectura
de datos está más relacionada con la viabilidad a largo plazo de un programa que el
código fuente.

A diferencia de la reestructuración de código, que ocurre en un grado relativa-
mente ba jo de abstracción, la reestructuración de da tos e s una actividad de reinge-
niería a gran escala. En la mayoría de los casos, la reestructuración de datos
comienza con una actividad de ingeniería inversa. La arquitectura de datos actual se
analiza con minuciosidad y se definen los modelos de datos necesarios (capítulo 9).
Se identifican los objetos de datos y los atributos, y después se revisa la calidad de
las estructuras de datos existentes.

Cuando la estructura de datos e s débil (por ejemplo, ac tualmente se implementan
archivos planos, cuando un enfoque relacional simplificaría enormemente el proce-
samiento), los datos se someten a reingeniería.

Puesto que la arquitectura de datos tiene una fuerte influencia sobre la arquitec-
tura del programa y los algoritmos que lo pueblan, los cambios a los datos invaria-
blemente resultarán en cambios arquitectónicos o al nivel de código.

Ingeniería directa. En un mundo ideal, las aplicaciones se reconstruirían emple-
ando un "motor de reingeniería" automatizado. El programa antiguo sería insertado
en el motor, analizado, reestructurado y luego regenerado en una forma que exhi-
biese los mejores aspectos de la calidad del software. A corto plazo e s improbable
que tal "motor" aparezca, pero las empresas han introducido herramientas que
mejoran un limitado subconjunto de dichas capacidades que aborden dominios de
aplicación específicos (por ejemplo, las aplicaciones que se implementan mediante

3 La reestructuración de código tiene algunos de ios elementos de "refactorización", un concepto de
rediseño introducido en el capitulo 4 y tratado en otras partes de este libro.

TM

PDF Editor

http://www.tomp.lancs

912 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

un s is tema de base de da tos específico). Más importante, d ichas her ramien tas de
reingeniería se es tán volviendo cada vez m á s sofisticadas.

La ingeniería directa, también l lamada renovación o reclamación [CHI90], n o sólo
recupera la información de d iseño a partir del so f tware existente, también utiliza
es ta información para al terar o reconstituir el s is tema existente con la finalidad de
mejorar su calidad global. En la mayoría de los c a s o s el so f tware somet ido a reinge-
niería vuelve a implementar la función del s is tema existente y también a ñ a d e nuevas
func iones o mejora el d e s e m p e ñ o global.

La ingeniería inversa invoca una imagen de "ranura mágica". En la ranura se inserta
una lista fuen te sin documen ta r y d i señado casualmente , y del otro ex t remo sale una
descripción (y toda la documentación) comple ta del d iseño pa ra el p rograma de
computadora . Desdichadamente , la ranura mágica n o existe. La ingeniería inversa
puede obtener información de d iseño a partir del código fuente, pero el grado de abs-
tracción, la completud de la documentac ión , el g rado en el q u e las he r ramien tas y
un analista h u m a n o t raba jan en conjunto , y la direccionalidad del proceso son enor-
m e m e n t e variables.

El grado de abstracción de un proceso d e ingeniería inversa y las he r ramien tas uti-
l izadas para efectuarlo se refieren a la sofisticación de la información del d iseño que
e s posible obtener del código fuente . Idealmente, el g rado de abstracción debe ser
tan alto c o m o sea posible. Esto es, el p roceso de ingeniería inversa debe ser capaz
de derivar represen tac iones de d iseño de procedimiento (un g rado de abstracción
bajo), información de estructura de p rograma y datos (un grado de abstracción un
poco m á s elevado), modelos de objeto, mode los de flujo de da tos o control (un grado
de abstracción relat ivamente alto) y c lases UML, d iag ramas de e s t a d o y despliegue
(un g rado alto de abstracción). Conforme el g rado de abstracción aumen ta , el inge-
niero de sof tware obt iene información que le permitirá comprende r con m á s facili-
dad el programa.

La completud de un p roceso de ingeniería inversa se refiere al grado de detalle que
se ofrece en un grado de abstracción. En la mayoría de los casos , la integridad dis-
minuye confo rme el grado de abstracción a u m e n t a . Por e jemplo, dada una lista del
código fuente, es re la t ivamente sencillo desarrollar una representación completa
del d i seño del procedimiento . También s e pueden derivar represen tac iones sencillas
de diseño, pe ro e s m u c h o m á s difícil desarrollar un conjun to comple to de d iagramas
o modelos UML.

La completud mejora en proporción directa con la cant idad de análisis que efec-
túa quien realiza la ingeniería inversa. La interactividad se refiere al grado en el que
el ser h u m a n o está "integrado" con las he r ramien tas au tomat i zadas para crear un
proceso de ingeniería inversa efectivo. En la mayoría de los casos , confo rme a u m e n -
ta el g rado d e abstracción la interactividad debe a u m e n t a r o la completud sufrirá.

TM

PDF Editor

C A P Í T U L O 3 1 REINGENIERÍA 913

Proceso d e
ingeniería
inversa.

Código Fuente sucio

Código íuente limpio

1

Especificación final

I

CLAVE
S e d e b e n a b o r d o r t r e s
t e m a s d e lo i ngen ie r í a
i n v e r s a : g r a d o d e
a b s t r a c c i ó n , i n t e g r i d a d
y d i r e c c i o n a l i d a d .

Si la direccionalidad del proceso de ingeniería inversa es unidireccional, toja la
información extraída del código fuente se ofrece al ingeniero de software que erton-
ces puede usarla durante cualquier actividad de mantenimiento. Si la direccionalidad
es bidireccional, la información alimenta a una herramienta de reingeniería que
intenta reestructurar o regenerar el programa antiguo.

En la figura 31.3 se representa el proceso de ingeniería inversa. Antes de que
comiencen las actividades de ingeniería inversa, el código fuente no estructurado
("sucio") se reestructura (sección 31.4.1) de modo que sólo contenga las estructuras
de programación estructurada.4 Esto facilita la lectura del código fuente y ofrece la
base para las subsecuentes actividades de ingeniería inversa.

El núcleo de la ingeniería inversa es una actividad llamada extracción de abstrac-
ciones. El ingeniero debe evaluar el programa antiguo y, a partir del código fuente
(con frecuencia sin documentar), desarrollar una especificación significativa del pro-
cesamiento que realiza, la interfaz del usuario que se aplica y las estructuras de
datos del programa o las bases de datos que se utilizan.

31.3.1 Ingeniería inversa para comprender los datos

La ingeniería inversa de datos ocurre en diferentes grados de abstracción y con fre-
cuencia es la primera tarea de reingeniería. Al nivel del programa, las estructuras de
datos internos del programa usualmente deben someterse a reingenieria inversa

4 El código se reestructura empleando un mcxor de reestructuración, una herramienta que reestruc-
tura código fuente.

TM

PDF Editor

914 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Recursos útiles paro la

de programo" se
pueden enctmtrof e n
wwwscl.iit.nrc.
ca/projetls/dr/
dr.htmi

^ C O N S E J O ^

Los compromisos
aparentemente insig-
nificantes en los
estructuras de datos
pueden conducir a
problemas potencial-
mente catastróficos en
años futuros.
Considere como
ejemplo el problema
m.

como parte de un esfuerzo global de reingeniería. En el nivel del sistema las estruc-
turas globales de datos (por ejemplo, archivos, bases de datos) con frecuencia se
someten a reingeniería para ajusfarlos con los nuevos paradigmas de gestión de
bases de datos (por ejemplo, el movimiento desde los archivos planos hacia los sis-
temas de bases de datos relaciónales u orientados a objetos). La ingeniería inversa
de las actuales estructuras globales de datos establece el escenario para la intro
ducción de una nueva base de datos que abarque todo el sistema.

Estructuras de datos internos. Las técnicas de ingeniería inversa para datos
internos del programa se enfoca en la definición de clases de objetos. Esto se logra
al examinar el código del programa con el propósito de agrupar las variables de pro-
grama relacionadas. En muchos casos, la organización de los datos dentro del códi-
go identifica tipos abstractos de datos. Por ejemplo, estructuras de registro, archivos,
listas y cyrnrjgstructuras de datos con frecuencia ofrecen una indicación inicial de las
clases. *^7^

Estructura de bases de datos. Sin importar su organización lógica y estructura
física, una base de datos permite la definición de objetos de datos y apoya algún
método para establecer relaciones entre los objetos. En consecuencia, la reingenie-
ría de un esquema de base de datos en otro requiere comprender los objetos exis-
tentes y sus relaciones.

Los siguientes pasos [PRE94] se pueden utilizar para definir el modelo de datos
existente como un precursor para la reingeniería de un nuevo modelo de base de
datos: 1) construcción de un modelo inicial de objeto, 2) determinación de los can-
didatos clave, 3) refinar las clases tentativas, 4) definición de generalizaciones y 5)
descubrimiento de asociaciones (empleo de técnicas análogas al enfoque CRC). Una
vez que se conoce la información definida en los pasos precedentes, se aplica una
serie de transformaciones [PRE94] para correlacionar la estructura antigua de la
base de datos con una nueva estructura de base de datos.

31.3.2 Ingeniería inversa para comprender el procesamiento

La ingeniería inversa para comprender el procesamiento comienza con un intento
por comprender y luego extraer abstracciones de procedimientos representadas por
el código fuente. Para comprender las abstracciones de procedimientos el código se
analiza en grados variables de abstracción: sistema, programa, componentes, patrón
y planteamiento.

La funcionalidad global de todo el sistema de aplicación se debe comprender
antes de que ocurra un trabajo de ingeniería inversa más detallado. Esto establece
un contexto para un mayor análisis y ofrece poca visión de los conflictos de inter-
operabilidad entre las aplicaciones dentro del sistema. Cada uno de los programas
que conforman el sistema de la aplicación representa una abstracción funcional en
un mayor grado de detalle. Se crea un diagrama de bloques que representa la inte-
racción entre dichas abstracciones funcionales. Cada componente realiza alguna

TM

PDF Editor

CAPÍTULO 3 1 REINGENIERÍA 915

sub func ión y r ep re sen t a u n a abs t racc ión d e p r o c e d i m i e n t o def inida. Para c a d a c o m -

p o n e n t e s e desar ro l la u n a nar ra t iva d e p r o c e s a m i e n t o . En a l g u n a s s i t uac iones ya
exis ten espec i f i cac iones del s i s t ema , el p r o g r a m a y los c o m p o n e n t e s . C u a n d o és te
e s el caso , las espec i f icac iones s e revisan para verif icar si c o n c u e r d a n con el código
ex is ten te . 5

"Existe u n o pasión por la comprens ión , así como exis te uno por la música . Dicho pasión es m á s común e n los niños,
pe ro m á s t a r d e se p ierde en la m a y o r í a de las pe r sonos . "

fllbert Einstein

Las c o s a s s e compl ican m á s c u a n d o s e cons ide ra el código d e n t r o d e un c o m p o -
n e n t e . El ingen ie ro busca las s ecc iones de cód igo q u e r ep re sen t en p a t r o n e s d e pro-
ced imien to genér icos . Casi en c a d a c o m p o n e n t e u n a secc ión del cód igo p r epa ra los
d a t o s p a r a el p r o c e s a m i e n t o (dentro del módulo) , u n a secc ión d i fe ren te d e cód igo
real iza el p r o c e s a m i e n t o y o t ra secc ión del código p r epa ra los r e su l t ados del p roce -
s a m i e n t o p a r a expor ta r los de sde el c o m p o n e n t e . Den t ro d e c a d a una d e e s t a s s ec -
c i o n e s s e p u e d e n e n c o n t r a r p e q u e ñ o s pa t rones ; po r e jemplo , la val idación d e los
d a t o s y la verif icación de e n l a c e s con f recuenc ia o c u r r e d e n t r o d e la secc ión d e códi-

go q u e p r epa ra los d a t o s para el p r o c e s a m i e n t o .
En s i s t e m a s g r a n d e s la ingenier ía inversa, por lo genera l , se logra u t i l izando un

e n f o q u e s e m i a u t o m a t i z a d o . Las h e r r a m i e n t a s a u t o m a t i z a d a s s e ut i l izan p a r a ayuda r
al i ngen ie ro d e s o f t w a r e a c o m p r e n d e r la s e m á n t i c a del cód igo exis tente . En tonces
la sal ida de es te p r o c e s o p a s a a la rees t ruc turac ión y a las h e r r a m i e n t a s d e ingen ie -

ría a v a n z a d a para comple t a r el p roceso d e re ingenier ía .

31.3.3 Ingeniería inversa de interfaces de usuario

Las IGU sof i s t i cadas a h o r a son ind i spensab les en p r o d u c t o s b a s a d o s en c o m p u t a d o -
ra y en s i s t e m a s de todo tipo. En consecuenc i a , desar ro l la r de n u e v o las in t e r f aces

d e usua r io s e h a vuel to u n o d e los t ipos m á s c o m u n e s de act ividad de re ingenier ía .
Pero a n t e s d e q u e u n a in terfaz de usua r io se p u e d a reconst ru i r debe rá rea l izarse una

act ividad d e ingenier ía inversa.
En tender po r comple to una in terfaz d e usua r io ex is ten te requ ie re especif icar la

e s t ruc tu ra y el c o m p o r t a m i e n t o d e la interfaz. Merlo y s u s co legas (MER931 sugie ren
t res p r e g u n t a s bás i cas q u e s e d e b e n r e s p o n d e r c o n f o r m e c o m i e n z a la ingenier ía

inversa d e la IGU:

• ¿Cuáles son las a c c i o n e s bás i cas (por e jemplo , p r e s iones d e tecla o clics d e
ra tón) que debe p rocesa r la in ter faz?

5 Con frecuencia, las especificaciones escritas en las primeras etapas en la historia de vida de un pro-
grama nunca se actualizan. Conforme los cambios se realizan, el código ya no concuerda más con
las especificaciones.

TM

PDF Editor

916 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

•
¿ C ó m o
e n t e n d e r l o s

func iones d e una
in ter faz d e u s u a -
rio e x i s t e n t e ?

• ¿Cuál e s la descr ipc ión c o m p a c t a de las r e s p u e s t a s de c o m p o r t a m i e n t o del
s i s t ema a e s t a s acc iones?

• ¿Qué s e en t i ende por " r eemplazo" o, m á s e x a c t a m e n t e , q u é c o n c e p t o d e equi-
va lenc ia de in te r faces es r e l evan te en es te c a s o ?

La no tac ión de m o d e l a d o de c o m p o r t a m i e n t o (capítulo 8) p u e d e o f rece r un m e d i o
para desarrol lar r e s p u e s t a s a las p r imera s d o s p regun tas . Gran par te de la in fo rma-

ción necesar ia p a r a c rea r un m o d e l o d e c o m p o r t a m i e n t o s e p u e d e ob t ene r obse r -
v a n d o la mani fes tac ión externa de la interfaz existente. Pero la información adicional
necesar ia p a r a c rea r el m o d e l o d e c o m p o r t a m i e n t o s e debe ex t r ae r del código.

Es i m p o r t a n t e s eña l a r que u n a GUI de r e e m p l a z o tal vez n o refleje e x a c t a m e n t e
la interfaz ant igua (de hecho, quizá sea rad ica lmente diferente). Con f recuencia vale la
p e n a desar ro l la r n u e v a s m e t á f o r a s d e in teracción. Por e jemplo , u n a GUI an t igua

solicita q u e un usuar io p roporc ione un factor d e esca la (que varía de sde 1 has ta 10)
para e n c o g e r o ampl ia r u n a i m a g e n gráf ica . Una GUI somet ida a re ingenier ía p u e d e
utilizar u n a ba r ra d e des l i zamien to y un ra tón p a r a real izar la m i s m a función.

HERRAMIENTAS DE SOFTWARE

•

Ingeniería inversa
Objetivo: Ayudar a los Ingenieros de software
a comprender la estructura de diseño interna de

los programas complejos.

Mecánica: En la mayoría de los casos, las herramientas
de ingeniería inversa aceptan código fuente como entrada
y producen una diversidad de representaciones de diseño
estructural, procedimiento, da tos y comportamiento.

Herramientas representativas6

Irnagix 4D, d e s a r r o l l a d a p o r Imagix (wvAV.imagix.com),
" a y u d a a los d e s a b o l l a d o r e s d e so f tware a c o m p r e n d e r

software C y C++ complejo o heredado" al someter a inge-
niería inversa y documentar el código fuente.

Undersland, desarrollada por Scientific Toolworks, Inc.
(www.scitools.com), analiza gramaticalmente Ada,
Fortran, C, C++ y Java "para realizar ingeniería inver-
sa, documentar automáticamente, calcular métricas de
código y auxiliarlo a comprender, navegar y mantener
el código fuente".

Una extensa lista de herramientas de ingeniería inversa se
puede encontrar em http://scgwiki.iam.unibe.ch:8080/
SCG/370.

La rees t ruc tu rac ión d e s o f t w a r e modif ica el código fuen te o los d a t o s con la finali-
dad d e a d e c u a r l o s para fu tu ros cambios . En genera l , la rees t ruc turac ión n o modif i-
ca la arqui tectura global del p rograma. Tiende a enfocarse sobre los detalles de d iseño
de los m ó d u l o s individuales y en las e s t ruc tu ra s d e d a t o s locales def in idos d e n t r o d e
los módulos . Si el t r aba jo d e rees t ruc turac ión s e ex t i ende m á s allá de las f ron te ra s

6 Las herramientas expuestas el autor no las respalda; sólo representan una muestra de las herra-
mientas incluidas en esta categoría. En la mayoría de los casos, los nombres de las herramientas
son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.scitools.com
http://scgwiki.iam.unibe.ch:8080/

C A P Í T U L O 3 1 RHNGENIERÍA 917

^ O N S i J O ^

Aunque la reestiuctu-
loción del código
puede aliviar inmedia-
tamente los
problemas asociados
con lo depuiación o
los cambios
pequeños, eslonoes
reingeniería. El
beneficio real se logra
sólo cuando se rees-
tructuran los datos y
lo arquitectura.

del módulo y abarca la arquitectura del sof tware, la reestructuración se convierte en
ingeniería a v a n z a d a (sección 31.5).

La reestructuración ocurre c u a n d o la arquitectura básica de una aplicación e s
sólida, aun c u a n d o el interior técnico necesi te trabajarse. Se inicia c u a n d o g randes
par tes del so f tware son funcionales y sólo un subconjun to de los c o m p o n e n t e s y
da tos necesi tan una modificación extensa. 7

31.4.1 Reestructuración del cód igo

La reestructuración del código se realiza para generar un d iseño que produzca la
misma función que el p rograma original, pe ro con mayor calidad. En general , las téc-
nicas de reestructuración de código (por ejemplo, técnicas de simplificación lógica
de Warnier [WAR74]) modelan la lógica del p rograma uti l izando álgebra booleana y
luego aplican una serie de reglas de t ransformación que producen lógica reestructu-
rada. El objet ivo es tomar el "tazón de espagueti" de código y derivar un d iseño de
procedimiento que concuerde con la filosofía de la programación es t ructurada (capi-
tulo 11).

También s e han propues to ot ras técnicas de reestructuración para utilizarlas con
las he r ramien tas de reingeniería. Un diagrama de intercambio de recursos correla-
ciona cada módulo de p rograma y los recursos (tipos de datos, procedimientos y
variables) que s e in tercambian entre ellos y o t ros módulos . Mediante la creación de
represen tac iones del flujo de recursos se puede reestructurar la arquitectura del pro-
grama para lograr mín imos acop lamien tos entre módulos.

31.4.2 Reestructuración d e los datos

Antes de c o m e n z a r la reestructuración de da tos se d e b e llevar a cabo una actividad
de ingeniería inversa denominada análisis del código fuente. Primero se evalúan
todos los enunc iados del lenguaje de programación que con tengan definiciones de
datos, descripciones de archivos, I /O y descripciones de interfaz. La finalidad e s
extraer e l emen tos y obje tos de da tos para ob tener información acerca del flujo de
da tos y comprende r las es t ructuras de da tos exis tentes que se han implementado.
Esta actividad a veces se denomina análisis de datos [RIC89].

Una vez comple tado el análisis de da tos comienza el rediseño de datos. En su
forma m á s simple, un paso de estandarización de registro de da tos clarifica las defi-
niciones d e da tos para lograr consistencia entre los n o m b r e s de e l emen tos de da tos
o formatos de registro físicos den t ro de una estructura de da tos existente o formato
de archivo. Otra fo rma de rediseño, d e n o m i n a d a racionalización del nombre de los
datos asegura que todas las convenciones de nombramien to de los datos concuer -
dan con el es tándar local y que los pseudón imos se e l iminan c o m o flujo de d a t o s a
t ravés del s is tema.

7 A veces es difícil distinguir entre reestructuración extensa y volver a desarrollar. Ambos son rein-
geniería.

TM

PDF Editor

9 1 8 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

Cuando la reestructuración rebasa la estandarización y la nacionalización se rea-
lizan modificaciones físicas a las estructuras de datos existentes para lograr que el
diseño de los datos sea más efectivo. Esto puede significar una traducción de un for-
mato de archivo a otro o, en algunos casos, la traducción desde un tipo de base de
datos a otro.

Reestructuración de software
HERRAMIENTAS DE SOFTWARE

Objetivo: El objetivo de las herramientas de
reestructuración es transformar el antiguo soft-

ware de computadora carente de estructura en lenguajes
de programación y estructuras de diseño modernos.

Mecánica: En general, el código fuente se ingresa y trans-
forma en un mejor programa estructurado. En algunos
casos, la transformación ocurre dentro del mismo lenguaje
de programación. En otros casos, un lenguaje de programa-
ción antiguo se transforma en un lenguaje más moderno.

Herramientas representa t ivas 8

DMS Software Reengineering Toolkit, desarrollada por
Semantic Design (www.semdesigns.com), proporciona

V

* \
una diversidad de capacidades de reestructuración
para COBOL, C/C++, Java, FORTRAN 90 y VHDL.

FORESYS, desarrollada por Simulog (www.simulog.fr),
analiza y transforma programas escritos en FORTRAN.

Function Encopsulaliort Tool, desarrollada en la Wayne
State University
(www.cs.wayne.edu/~vip/RefactoringTools/), refactori-
za en C++ los antiguos programas en C.

plusFORT, desarrollada por Polyhedron (www.polyhedron.
com), es un conjunto de herramientas de FORTRAN
que tiene capacidades para reestructurar en FORTRAN
moderno o C estándar los programas en FORTRAN
deficientemente diseñados.

3 1 . 5 I N G E N I E R Í A D I R E C T A

^ ¿Qué opcio-
* nes e x i s t e n

cuando se enfren-
ta un programa
def ic ientemente
d i señado e imple-
m e n t a d o ?

Un programa con flujo de control —el equivalente gráfico de un tazón de espagueti, con
"módulos" que tienen 2 000 enunciados de longitud, con pocas líneas significativas
de comentarios en los 290 000 enunciados fuente y ninguna otra documentación, se
debe modificar para que se ajuste a los cambiantes requerimientos de los usuarios.
Se tienen las siguientes opciones:

1. Se puede trabajar modificación tras modificación, luchando con el diseño im-
plícito y el código fuente para implementar los cambios necesarios.

2. Se puede intentar comprender el extenso funcionamiento interno del pro-
grama con el propósito de realizar modificaciones de manera más eficiente.

3. Se puede rediseñar, recodificar y probar aquellas porciones del software que
requieran modificación mediante la aplicación de un enfoque de ingeniería
del software en todos los segmentos revisados.

8 Las herramientas expuestas sólo representan una muestra de esta categoría. En la mayoría de los
casos los nombres de las mismas son marcas registradas por sus respectivos desarrolladores.

TM

PDF Editor

http://www.semdesigns.com
http://www.simulog.fr
http://www.cs.wayne.edu/~vip/RefactoringTools/
http://www.polyhedron

C A P Í T U L O 3 1 REINGENIERÍA 9 1 9

^ O N S E J O ^ -

Lo reingeniería es muy
porecida o lo limpieza
denlol. Puede pensai
en miles de tazones
pata demorada, y la
aplozató muchas
veces. Peto eventual-
mente sus tócticos
dilatorias regresarán
para provocarte dolor.

4 . Se puede rediseñar, recodificar y probar ei programa completamente empleando
her ramien tas de reingeniería c o m o auxiliares para comprender el d iseño ac-
tual.

No existe una opción individual "correcta". Las c i rcunstancias pueden dictar la pri-
mera opción, incluso si las o t ras son m á s deseables.

En lugar de esperar has ta que se reciba la solicitud de mantenimiento , la organi-
zación de desarrollo o soporte utiliza los resul tados del análisis de inventarios para
seleccionar un p rograma que 1) se empleará duran te un n ú m e r o de te rminado de
años , 2) ac tua lmente se utilice con éxito, y 3) es probable que exper imentará gran-
des modif icaciones o mejoras en el futuro cercano. Entonces se aplican las opc iones
2, 3 o 4.

Este en foque de mantenimiento preventivo lo introdujo Miller [MIL81] con el n o m -
bre de retrofit* estructurado. Este concepto se define c o m o "la aplicación de las meto-
dologías de hoy a los s i s t emas del ayer para apoyar los requisitos del mañana" .

A primera vista, la sugerencia de que se desarrolle de nuevo un gran p rograma
c u a n d o ya existe una versión operat iva puede parecer bas tan te extravagante . Antes
de emitir un juicio, cons idérense los pun tos siguientes:

1. El cos to de m a n t e n e r una línea de código fuente tal vez oscile entre 20 y 40
veces el cos to de su desarrollo inicial.

2 . El rediseño de la arquitectura de sof tware (estructura de p rog rama o datos)
e m p l e a n d o conceptos m o d e r n o s de diseño p u e d e facilitar e n o r m e m e n t e el
man ten imien to futuro.

3. Puesto que ya existe un prototipo del sof tware, el desarrollo de la productivi-
dad debe ser mucho mayor que el promedio.

4 . El usuar io ahora tiene experiencia con el sof tware . En consecuencia , los nue-
vos requisitos y la dirección del cambio pueden af i rmarse con mayor facilidad.

5. Las her ramien tas au tomat i zadas para reingeniería facilitarán a lgunas par tes
del trabajo.

6 . Antes de terminar el manten imien to preventivo existirá una configuración
completa del so f tware (documentos, p rogramas y datos).

Cuando una organización de desarrollo de sof tware vende sof tware c o m o pro-
ducto, el man ten imien to preventivo se considera c o m o "nuevas l iberaciones" de un
programa. Un gran desarrollador de sof tware local (por ejemplo, un grupo de desa-
rrollo de sof tware para s i s temas de negocios des t inados a una gran compañía con
sumidora de productos) puede tener 500-2 000 p rogramas de producción dent ro de

* El término retrofit (literalmente retroajustei recibe muchas denominaciones en español, entre las
que destacan: remodelado, modemizac: in. retrocambio, reajuste, modificación retroactiva. Para no
generar confusión con otros conceptos y denominaciones similares, pero no relacionados, utilizaré
el término original, que por lo demás es reconocido dentro del medio. (N.T.)

TM

PDF Editor

920 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

^ C O N S E J Ó ^

En algunos casos, lo
migiación hacia lo
arquitectura cliente-
servidor no debe
enfocarse como rein-
genierío, sino como
un nuevo esfuerzo de
desorrollo. la reinge-
niería ingresa ol
cuadro sólo cuando lo
funcionalidad especi-
fica del sistema
antiguo se integrará
en la nueva arquitec-

su dominio de responsabil idad. Dichos p rog ramas pueden clasificarse según su
importancia y luego revisarlos c o m o candida tos para manten imien to preventivo.

El proceso de ingeniería avanzada aplica los principios, conceptos y mé todos de
la ingeniería del so f tware para recrear una aplicación existente. En la mayoría de los
casos , la ingeniería directa no s implemente crea el equivalente m o d e r n o de un pro-
g rama antiguo. Más bien, los nuevos requisitos de usuar io y tecnología se integran
en el t rabajo de reingeniería. El programa que se desarrolla de nuevo amplía las
capac idades de la aplicación anterior.

31.5.1 Ingeniería directa para arquitecturas cliente/servidor

Durante las décadas p a s a d a s m u c h a s aplicaciones para computadora central s e han
somet ido a reingeniería para adapta r las a arqui tecturas c l iente/servidor (incluso
WebApps). En esencia , los recursos de c ó m p u t o central izados (que incluyen sof twa-
re) se distribuyen entre m u c h a s p la ta formas cliente. Aunque se pueden diseñar
varios en to rnos distribuidos diferentes, la aplicación típica de computadora central
que se s o m e t e a reingeniería en una arquitectura c l iente/servidor t iene las siguien-
tes características:

• La funcionalidad de la aplicación migra hacia cada computadora cliente.

• En los sit ios cliente se implementan n u e v a s interfases IGU.

• Las funciones de base de da tos se as ignan al servidor.

• La funcionalidad especial izada (por e jemplo, anális is in tenso de cómputo)
puede pe rmanece r en el sitio servidor.

• Tanto en los sitios cliente c o m o servidor se deben es tablecer nuevos requi-
si tos de comunicaciones , seguridad, archivado y control.

Es importante señalar que la migración desde la computadora central hacia el cómpu-
to cliente/servidor requiere reingeniería tanto de negocio como de software. Además,
se debe establecer una "infraestructura de red de empresa" [JAY94J.

La reingeniería para aplicaciones c l iente/servidor comienza con un ampl io aná-
lisis del en to rno de negocios que incluye la computadora central existente. Se pue-
den identificar tres capas de abstracción. La capa de base de datos pone los cimientos
de una arquitectura c l iente/servidor y gest iona las t ransacc iones y consul tas desde
apl icaciones cliente. Aunque dichas t ransacc iones y consul tas s e deben controlar
dent ro del contex to de un con jun to de reglas de negocios (definidas mediante un
proceso de negocio existente o somet ido a reingeniería). Las apl icaciones cliente
ofrecen la funcional idad deseada pa ra la comunidad de usuarios.

Las funciones del s is tema de gestión de bases de datos existente y la arquitectu-
ra de d a t o s de la base de da tos exis tente deben somete r se a ingeniería inversa como
precursores del rediseño de la capa d e b a s e de datos. En a lgunos casos se crea un
nuevo modelo de da tos (capítulo 8). En cada c a s o la b a s e de da tos c l iente/servidor
se s o m e t e a reingeniería para garant izar que las t ransacciones se e jecutan en forma

TM

PDF Editor

CAPÍTULO 3 1 REINGENIERÍA 921

consistente, que todas las actual izaciones las realizan sólo usuar ios autorizados,
que las reglas centrales del negocio se refuerzan (por ejemplo, an tes de que se borre
el registro de una empresa el servidor se asegura de que n o haya cuen tas por pagar,
contra tos o comunicac iones re lacionados con dicha empresa) , que las consul tas se
pueden a jus tar ef ic ientemente y que se ha establecido una capacidad comple ta de
archivado.

La capa de reglas de negocios representa el so f tware que reside tanto en el clien-
te c o m o en el servidor. Este sof tware realiza t a reas de control y coordinación para
garant izar que las t ransacc iones y consul tas entre la aplicación cliente y la base de
datos se a jus tan al proceso de negocios establecido.

La capa de aplicaciones cliente implementa func iones de negocios que requieren
grupos específicos de usuar ios finales. En m u c h a s instancias, una aplicación de
computadora central se s egmen ta en varias apl icaciones de escritorio m á s p e q u e ñ a s
y somet idas a reingeniería. La comunicación entre las aplicaciones de escritorio
(cuando e s necesario) se controla mediante la capa de reglas de negocios.

Un estudio completo del diseño y la reingeniería del sof tware c l iente/servidor es
mater ia de libros especializados. El lector interesado debe consul tar [VAN02],
[COUOO] y [ORF99].

31.5.2 Ingeniería directa para arquitecturas orientadas a objetos

La ingeniería del sof tware or ientado a obje tos se ha convert ido en la alternativa en
c u a n t o al paradigma de desarrollo para muchas organizac iones de sof tware . Pero,
¿qué hay acerca de las apl icaciones existentes que se desarrollaron empleando
métodos convencionales? En a lgunos c a s o s la respuesta es dejar tales aplicaciones
"como están". En otros, las apl icaciones viejas deben somete r se a reingeniería de
m o d o que se integren con facilidad en grandes s i s temas or ientados a objetos.

La reingeniería del so f tware convencional en una implementación or ientada a
obje tos utiliza m u c h a s de las mismas técnicas es tud iadas en la par te 2 de este libro.
Primero, el sof tware existente se somete a ingeniería inversa de m o d o que sea posi-
ble crear modelos de datos, funcionales y de compor tamien to apropiados. Si el sis-
tema de reingeniería amplía la funcionalidad o el compor tamien to de la aplicación
original, se crean casos de u s o (capítulos 7 y 8). Luego los mode los de da tos c reados
duran te la ingeniería inversa se utilizan junto con el modelado CRC (capítulo 8) pa ra
establecer la base con que se definirán las clases. Enseguida se definen las jerarquías
de clases, los modelos de relación de objetos, los modelos de compor tamien to de
obje tos y los subs i s temas y en tonces comienza el d iseño or ientado a objetos.

Conforme la ingeniería directa or ientada a objetos progresa desde el análisis
has ta el d iseño se puede invocar un mode lo de p roceso ISBC (capítulo 30). Si la apli-
cación ant igua s e encuen t ra en un dominio que ya ocupan m u c h a s aplicaciones
or ien tadas a objetos, es probable que haya una buena biblioteca de c o m p o n e n t e s y
q u e se pueda utilizar durante la ingeniería directa.

TM

PDF Editor

922 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

^ O N S E J O ^

¿Qué pasos se deben
seguir poro someter o
reingenierío uno
interfaz de usuario?

U n m o n u o l d e m ó s d e
3 0 0 páginas acerco de
los patrones ile

(desarrollado como
porte del proyecto
FAMOOS ESPR1D se
puede descargar desde
w w w . i o m . u n i h e .
d i / - s t g /
A r c h i v e / f a m o o s /
p a t t e r n s / i n d e x 3 .

En aque l l a s c lases q u e d a b a n cons t ru i r se de sde el pr incipio tal vez s ea posible

reutil izar a lgor i tmos y e s t ruc tu ra s d e d a t o s de la apl icación convenc iona l ex is ten te
Sin e m b a r g o , qu izá s e a prec iso d i seña r los d e n u e v o p a r a a jus t a r los a la a rqui tec tu-
ra o r ien tada a obje tos .

31.5.3 Ingeniería directa d e interfaces d e usuario

C o n f o r m e las ap l icac iones migran d e la c o m p u t a d o r a central hac ia el escri torio, los
usuar ios ya n o d e s e a n tolerar las in te r faces de u s u a r i o mi s t e r io sas b a s a d a s en carac-
teres . De h e c h o , una porc ión significat iva del t raba jo e m p l e a d o en la t ransición d e la
c o m p u t a d o r a central a la c o m p u t a c i ó n c l iente-servidor se p u e d e dedicar a la rein-
genier ía de las in ter faces d e usua r io de la apl icación cl iente .

Merlo y s u s co legas [MER95] sug ie ren el s iguiente m o d e l o p a r a la re ingenier ía de
in te r faces de usuar io :

1. Comprender la interfaz original y los datos que se trasladan entre ella y el resto de
la aplicación. La finalidad e s e n t e n d e r c ó m o o t ros e l e m e n t o s d e un p r o g r a m a
in te rac túan con el cód igo exis ten te q u e i m p l e m e n t a la in terfaz . Si se desa r ro -

llará una nueva GUI, los da to s q u e fluyan en t r e és ta y el p r o g r a m a re s t an te
d e b e n se r cons i s t en t e s con los d a t o s q u e a c t u a l m e n t e f luyen en t r e la in te r faz
b a s a d a en ca r ac t e r e s y el p r o g r a m a .

2. Remodelar el comportamiento implícito en la interfaz existente en una serie de
abstracciones que tengan sentido en el contexto de una GUI. A u n q u e el m o d o d e

in teracc ión p u e d e se r r ad ica lmen te diferente , el c o m p o r t a m i e n t o de negoc ios
que m u e s t r a n los u sua r io s d e las in te r fases vieja y n u e v a (cuando s e le cons i -
dera en t é rminos d e un e scena r io d e utilización) d e b e p e r m a n e c e r igual. Una

interfaz r ed i s eñada d e b e r á permit i r que un u s u a r i o m u e s t r e el c o m p o r t a -
mien to de negoc ios aprop iado . Por e jemplo , c u a n d o s e consu l t a una b a s e de

d a t o s la vieja in terfaz p u e d e requer i r una larga serie d e c o m a n d o s b a s a d o s en
texto p a r a especif icar la consul ta . La GUI s o m e t i d a a re ingenier ía p u e d e dirigir
la consu l t a a una p e q u e ñ a s e c u e n c i a d e e lecc iones con el ra tón , pe ro el pro-
pós i to y el c o n t e n i d o d e la consu l t a p e r m a n e c e n intactos .

3 . Introducir mejoras que hagan más eficiente el modo de interacción. Las fal las e r -
gonómicas de la interfaz existente se estudian y corrigen en el diseño de la
nueva GUI.

4 . Construir e integrarla nueva GUI. La existencia de bibliotecas d e c lases y herra-
mien tas au toma t i zadas p u e d e reducir significativamente el t rabajo requerido
para construir la GUI. Sin embargo , la integración con el sof tware de la aplica-

ción existente p u e d e requerir m á s tiempo. Debe tenerse cuidado de garant izar
que la GUI n o propagará efectos colaterales adversos en el resto de la aplicación.

"Puede p a g a r poco d inero a h o r a , o p u e d e p a g o r mucho dinero m á s a d e l a n t e . "
Anuncio d e tal ler mecánico q u e s u g i e r e un a j u s t e

TM

PDF Editor

http://www.iom.unihe

C A P Í T U L O 3 1 REINGENIERÍA 9 2 3

En un m u n d o per fec to , cua lqu ie r p r o g r a m a al q u e n o s e le pud ie ra da r m a n t e n i -
m i e n t o ser ia re t i rado i n m e d i a t a m e n t e , y sería sus t i tu ido por ap l i cac iones d e m a y o r
ca l idad con re ingenier ía desar ro l lada e m p l e a n d o m o d e r n a s prác t icas d e ingenier ía
del so f tware . Sin e m b a r g o , se vive e n un m u n d o d e r ecu r sos l imitados. La re inge-
niería d e m a n d a r ecu r sos q u e p u e d e n uti l izarse p a r a o t ro s p ropós i tos del negocio. En
consecuenc i a , a n t e s de q u e u n a o rgan izac ión in tente s o m e t e r a re ingenier ía una
apl icación exis tente , d e b e real izar un anál is is cos to-benef ic io .

S n e e d [SNE95] ha p r o p u e s t o un m o d e l o d e anál is is cos to -benef ic io p a r a la rein-
genier ía . Se de f inen n u e v e p a r á m e t r o s :

P, — cos to d e m a n t e n i m i e n t o anua l ac tua l p a r a u n a apl icación
P2 = cos to d e ope rac ión a n u a l ac tua l p a r a u n a apl icación
P 3 = valor d e negoc ios a n u a l ac tua l d e u n a apl icación
P„ = cos to d e m a n t e n i m i e n t o anua l p r ed i cho d e s p u é s d e la re ingenier ía
P5 = cos to de ope rac ión a n u a l p red icho d e s p u é s de la re ingenier ía
P é = valor d e negoc ios anua l p r ed i cho d e s p u é s d e la re ingenier ía
P7 = cos to e s t i m a d o d e la re ingenier ía
Pg = f echa e s t i m a d a d e la re ingenier ía

P9 = fac tor d e r iesgo d e la re ingenier ía (P9 = 1.0 e s el valor nominal)
L = vida e s p e r a d a del s i s t ema

El cos to a s o c i a d o con el m a n t e n i m i e n t o con t inuo d e u n a apl icación cand ida t a (es
decir , si la re ingenier ía n o s e realiza) s e p u e d e definir c o m o

CMAN, = [P3 - (P, + P2)L X L (31-1)

Los c o s t o s a s o c i a d o s con la re ingenier ía s e def inen e m p l e a n d o la s iguiente re lación:

Creing = P « ~ (^4 + Ps> X (í " P g) - (P 7 X P 9)] (3 1 - 2)

Con la uti l ización d e los c o s t o s p r e s e n t a d o s en las e c u a c i o n e s (31-1) y (31-2) el
benef ic io global d e la re ingenier ía s e p u e d e calcular c o m o

c o s t o benef ic io = CRE¡NG - CMAM (31-3)

El anál is is cos to -bene f i c io p r e s e n t a d o en las e c u a c i o n e s s e p u e d e rea l izar para t odas
las ap l i cac iones d e al ta pr ior idad ident i f icadas d u r a n t e el anál is is d e inven ta r io (sec-
ción 31.2.2). Aquel las ap l icac iones q u e m u e s t r e n el m a y o r cos to -benef ic io p o d r á n
de s t i na r se a la re ingenier ía , m i e n t r a s el t r a b a j o con o t r a s s e p u e d e p o s p o n e r h a s t a
q u e haya r ecu r sos disponibles .

La re ingenier ía s e p r e s e n t a en d o s d i f e ren te s g r a d o s d e abs t racc ión . En el á m b i t o del
negocio , la re ingenier ía s e cen t r a en el p r o c e s o de negoc ios con el p ropós i to d e e fec -

TM

PDF Editor

9 2 4 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

tuar los cambios para mejorar la competit ividad en a lguna área del negocio. En el
ámbi to del sof tware, la reingeniería examina los s i s temas y apl icaciones de infor-
mación con la finalidad de reestructurarlos o reconstruirlos de m o d o que muest ren
mayor calidad.

La reingeniería de procesos de negocio (RPN) define metas del negocio, identifica
y evalúa los p rocesos de negocios exis tentes (en el contex to de m e t a s definidas),
especifica y diseña procesos revisados, y e labora prototipos, los refina y particulari-
za dent ro de un negocio. La RPN tiene un objetivo q u e va m á s allá del sof tware . Su
resul tado con frecuencia es la definición de las formas en las cuales las tecnologías
de la información pueden apoyar mejor a los negocios.

La reingeniería de sof tware comprende una serie de actividades que incluyen
análisis de inventario, reestructuración de documentos , ingeniería inversa, reestruc-
turación de programas y dalos, e ingeniería directa. La finalidad de es tas actividades
es crear versiones de p rogramas exis tentes que sean de mayor calidad y tengan
mayor facilidad de manten imien to (programas que serán viables ya muy a v a n z a d o
el siglo xxi).

El análisis de inventarios permite que una organización evalúe cada aplicación
s is temát icamente , con la finalidad de determinar cuáles son candidatas a la reinge-
niería. La reestructuración de documentos crea un marco de trabajo de documentación
que necesar io para brindar apoyo a largo plazo a una aplicación. La ingeniería

isa es el p roceso de anal izar un p rograma con el propósito de obtener informa -
cion de d iseño de datos, arquitectónico y de procedimiento. Finalmente, la ingenie-
ría directa reconstruye un p rograma e m p l e a n d o m o d e r n a s práct icas de ingeniería
del sof tware y la información aprendida duran te la ingeniería inversa.

El costo-beneficio de la reingeniería se determina cuant i ta t ivamente. El cos to del
statu quo, es to es, el cos to asoc iado con el soporte y el manten imien to ac tua les de
una aplicación existente, se compara con los cos tos proyectados de la reingeniería y
la reducción resul tante en los cos tos de manten imiento . En casi todos los casos en
los que un p rograma tenga una vida larga y en la actualidad mues t re escasa facili-
dad de mantenimiento , la reingeniería representa una estrategia de negocios efecti-
va en cuan to al costo.

[CAN72] C a n n i n g , R., "The M a i n t e n a n c e ' Iceberg '" , e n EDPAnalyzer, vol. 10, n ú m . 10, o c t u b r e
de 1972.

[CAS88] "Case Tools for Reverse Engineer ing" , e n CASE Outlook, CASE Consul t ing Group, vol 2,
n ú m . 2, 1988, pp. 1-15.

ICHI90] Chikofsky, E.). y). H. Cross , II, " R e v e r s e E n g i n e e r i n g a n d D e s i g n Recovery: A
T a x o n o m y , e n IEEE Software, e n e r o d e 1990, pp. 13-17.

[COUOO] Coulouris , G., J. Dol l imore y T. Kindberg, Distríbuted Systems: C o n c e p t s a n d Design, 3a .
ed., Addison-Wesley, 2000.

|DAV90) D a v e n p o r t , T. H. y J. E. Young, "The N e w Indus t r ia l Engineering-, I n f o r m a t i o n
Techno logy a n d Bus iness P roces s Redes ign" , en Sloan management Review, v e r a n o d e 1990,
pp. 11-27.

TM

PDF Editor

CAPÍTULO 3 1 REINGENIERÍA 925

[DEM95] DeMarco, T., "Lean and Mean", en IEEE Software, noviembre de 1995, pp. 101-102.
[HAM90) Hammer, M., "Reengineer Work: Don't Automate, Oblitérate", en Harvard Business

Review, julio-agosto de 1990, pp. 104-112.
[HAN93] Manna, M., "Maintenance Burden Begging for a Remedy", en Datamation, abril de

1993, pp. 53-63.
[JAY94| Jaychandra, Y., Re-engineering the Networked Enterprise, McGraw-Hill, 1994.
|MER93| Merlo, E. et al., "Reverse Engineeríng of user Interfaces", Proc. Working Conference on

Reverse Engineeríng, IEEE, Baltimore, mayo de 1993, pp. 171-178.
[MER95] Merlo, E. et al., "Reengineering User Interfaces", en IEEE Software, enero de 1995, pp.

64-73.
1M1L81] Miller,)., en Techniques ofProgram and System Maintenance, (G. Parikh, ed.) win throp

Publishers, 1981.
[ORF99] Orfali, R., D. Harkey y J. Edwards, Client/Server Suvival Guide, 3a. ed., Wiley, 1999.
[OSB90] Osborne, W. M. y E. J. Chikofsky, "Fitting Pieces to the Main tenance Puzzle", en IEEE

Software, enero de 1990, pp. 10-11.
[PRE94J Premerlani, W. J. y M. R. Blaha, "An Approach for Reverse Engineeríng of Relational

Databases", en CACM, vol. 37, núm. 5, mayo de 1994, pp. 42-49.
[RIC89I Ricketts, J. A.,). C. DelMonaco y M. W. Weeks, "Data Reengineering for Application

Systems", Proc. Conf. Software Maintenance-1989, IEEE, 1989, pp. 174-179.
[SNE951 Sneed, H., "Planning the Reengineering of Legacy Systems", en IEEE Software, enero de

1995, pp. 24-25.
[STE93] Stewart , T. A., "Reengineering: The Hot New Managing Tool", en Fortune, 23 de agosto

de 1993, pp. 41-48.
[SWA76] Swanson , E. B., "The Dimensions of Maintenance", Proc. Second Intl. Conf. Software

Engineeríng, IEEE, octubre de 1976, pp. 492-497.
[VAN02) Van Steen, M. y A. Tanenbaum, Distributed Systems: Principies and Paradigms.

Prentice-hall, 2002.
[WAR74] Wamier, J. D„ Ijygical Construction ofPrograms, Van Nostrand-Reinhold, 1974.

3 1 . 1 . Considerar cualquier empleo realizado en los últimos cinco años. Describir el proceso de
negocio en el que se participó. Emplear el modelo de RPN descrito en la sección 31.1.3 para
recomendar cambios al proceso con la finalidad de hacerlo más eficiente.

3 1 . 2 . Investigar un poco acerca de la eficacia de la reingeniería de p rocesos del negocio.
Presentar argumentos en favor y en contra de este enfoque.

3 1 . 3 . El instructor seleccionará uno de los p rogramas que todos en la c lase han desarrollado
duran te es te curso. Intercambie su p rograma en forma aleatoria con alguien m á s en la clase.
No explique u of rezca un "paseo" por el p rograma. Ahora, implemente una mejora (que haya
especificado el instructor) en el programa que ha recibido.

a) Realice todas las t a reas de ingeniería del sof tware , incluso una breve prueba manua l
(mas no con el autor del programa).

b) Conserve un cu idadoso seguimiento de todos los er rores encon t r ados duran te las
pruebas.

c) Describa sus experiencias en clase.

3 1 . 4 . Explorar la lista de verificación del análisis de inventario presentado en el sitio Web SEP e
intentar el desarrollo de un sistema cuantitativo de calificación de software que pudiese aplicarse
a programas existentes con la finalidad de elegir programas candidatos para reingeniería. El
sistema debe rebasar el análisis presentado en la sección 31.6.

3 1 . 5 . Sugerir opc iones a la documen tac ión por escri to o electrónica convencional q u e
pudiesen servir como base para la reestructuración de documentos . (Sugerencia: p iénsese en
las n u e v a s tecnologías descriptivas que se pudieran usar para comunicar el propósi to del
software.)

TM

PDF Editor

P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

31.6. Algunas pe r sonas creen que la tecnología de inteligencia artificial a u m e n t a r á el grado
de abstracción del proceso de ingeniería inversa. Realizar algo de investigación acerca de esta
materia (es decir, el uso de IA en la ingeniería inversa) y escribir un breve ensayo que contenga
una opinión acerca de es te punto.

31.7. ¿Por qué la completud e s difícil de lograr conforme aumen ta el grado de abstracción?

31.8. ¿Por qué debe aumenta r la interactividad si la completud aumenta?

31.9. Con base en la información obtenida vía Internet, presente a su clase las características
de tres herramientas de ingeniería inversa.

31.10. Existe una sutil diferencia entre reestructuración e ingeniería directa. ¿Cuál es?

31.11. Investigue la bibliografía o fuen tes de Internet para encontrar uno o m á s escritos que
borden estudios de caso de reingeniería de computadora central a cliente-servidor. Presente un
resumen.

31 .12 . ¿Cómo determinaría de P,¡ a P7 en el modelo costo-beneficio presentado en la sección 31.6?

Al igual que muchos temas apas ionantes en la comunidad de negocios, las exageraciones que
rodeaban la reingeniería de procesos de negocio han dado paso a una visión más pragmática
de la materia. Hammer y Champy (Reengineering the Corporation, HarperBusiness, edición revi-
sada, 2001) precipitó el interés temprano con el éxito de ventas de su libro. Más tarde, Hammer
(Beyond Reengineering. How the Processed-Centered Organization Is Changing Our Work and Our
Lives, HarperColIins, 1997) refino su visión al enfocarse sobre los t emas "centrados en el pro-
ceso".

Los libros de Smith y Fingar (Business Process Management (BPM): The Third Wave, Meghan-
Kiffer Press, 2003), Jacka y Keller (Business Process Mapping: Improving Customer Satisfaction,
wiley, 2001), Sharp y McDermott (Workflow Modeling, Artech House, 2001), Andersen (Business
Process improvement Toolbox, American Society for Quality, 1999) y Harrington et al. (Business
Process Improvement Workbook, McGraw-Hill, 1997) presentan estudios de caso y directrices
detalladas para la RPN

Feldmann (The Practical Guide to Business Process Reeingineering Using IDEFO, Dorset House,
1998) analiza una notación de modelado que auxilia en la RPN. Berztiss (Software MeLhods for
Business Reengineering, Springer, 1996) y Spurr el ai (Software Assistancefor Business Reengineering,
Wiley, 1994) examinan herramientas y técnicas que facilitan la RPN.

Secord y sus colegas (Modernizing Legacy Systems, Addison-Wesley, 2003), Ulrich (Legacy
systems. rransformation Stratcgics, Prentice-Hall, 2002), Valenti (Successful Software Reenginee-
ring, IRM Press, 2002) y Rada (Reengineering Software: How to Reuse Programming to Build new,
State-of-the-Art Software, Fitzroy Dearborn Publishers, 1999) se enfocan en las estrategias y prác-
ticas para la reingeniería en un contexto técnico. Miller (Reengineering Legacy Software Systems,
Digital Press, 1998) "ofrece un marco de trabajo para mantener las aplicaciones de los s is temas
sincronizadas con las estrategias del negocio y los cambios tecnológicos". Umar (Application
(Re)Engineering: Building Web-Based Applications and Dealing with Legacies, Prentice-Hall, 1997)
ofrece l incamientos valiosos para las organizaciones que quieren transformar los s is temas
heredados en un entorno basado en Web. Cook (Building Enterprise Information Architectures:
Reengineering Information Systems, Prentice-Hall, 1996) analiza el puente entre la RPN y la tecno-
logía de la información. Aiken (Data Reverse Engineering, McGraw-Hill, 1996) estudia cómo recu-
perar, reorganizar y reutilizar datos de la organización. Arnold (Software Reengineering, IEEE
Computer Society Press, 1993) ha reunido una excelente antología de los primeros ensayos que tra-
taban acerca de las tecnologías de la reingeniería del software.

Una amplia variedad de fuentes de información acerca de reingeniería de sof tware está dis-
ponible en Internet. Una lista actualizada de referencias en la World Wide Web s e puede encon-
trar en el sitio Web SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

C A P I T U L O

EL CAMINO
POR RECORRER 32

C O N C E P T O S
CLAVE

ámbito del
cambio 929

conocimiento . .934

datos 933

ética 936

impor t anc i a
del software - .928

información . . . 9 3 3

personas 930

proceso 931

tendencias
tecnológicas . . .936

En los 31 capí tu los p r e c e d e n t e s s e exploró un p r o c e s o para la ingenier ía del
s o f t w a r e . Se p r e s e n t a r o n t a n t o p r o c e d i m i e n t o s d e ges t ión c o m o m é t o d o s
técnicos , pr inc ip ios b á s i c o s y t écn icas e spec ia l i zadas , ac t iv idades o r ien ta -

d a s a las p e r s o n a s y t a r ea s a d e c u a d a s p a r a au tomat iza r l a s , no tac ión de pape l y
lápiz y h e r r a m i e n t a s d e s o f t w a r e . Se a r g u m e n t ó q u e la medic ión , la disciplina y
u n a vigilancia es t r ic ta sob re la ca l idad g e n e r a r á n un s o f t w a r e q u e sa t i s faga las
n e c e s i d a d e s d e los c l ientes , que sea:fiable, q u e t enga facilidad d e m a n t e n i m i e n t o ,
q u e sea mejor . Sin e m b a r g o , n u n c a s e ha p r o m e t i d o que la ingenier ía del soft-
w a r e s e a u n a p a n a c e a .

C o n f o r m e s e c o n t i n ú e el v ia je e n el n u e v o siglo, las tecnologías d e s o f t w a r e
y s i s t e m a s segu i rán s i e n d o un desa f ío p a r a los p ro fes iona le s del s o f t w a r e y las
c o m p a ñ í a s q u e cons t ruyan s i s t e m a s b a s a d o s en c o m p u t a d o r a s . Aunque escr ib ió

e s t a s p a l a b r a s con una visión del s iglo xx, Max Hopper [HOP90] descr ib ió c o n
prec is ión el e s t a d o ac tua l del a s u n t o :

Puesto que los cambios en la tecnología de la información se están volviendo tan rá-
pidos e implacables, y las consecuencias de caer ante ellos son irreversibles, las com-
pañías dominarán la tecnología o morirán... Piense en ello como en un molino de
tecnología. Las compañías tendrán que correr cada vez más rápido para permanecer
en su lugar.

¿ Q u é e s ? El futuro nunca es fácil de
predecir, no obstante eruditos, confe-
rencistas televisivos y expertos indus-
triales rio se resisten. El camino por
recorrer, está plagado de restos de

excitantes nuevas tecnologías que en realidad
nunca lo fueron (a pesar d e las exageraciones
publicitarias), y con frecuencia lo conforman las
tecnologías más modestas que d e alguna forma
modificaron la dirección y amplitud del camino
principal. En consecuencia, no se intentará pre-
decir el futuro sino que se estudiarán algunos de
los conflictos que será necesario considerar pora
comprender cómo el software y la ingeniería del
software cambiarán en los años por venir.

¿ Q u i é n l o h a c e ? ¡Todo él mundo!
¿ P o r q u é e s i m p o r t a n t e ? ¿Por qué los anti-

guos reyes contrataban adivinos? ¿Por qué las
grandes corporaciones multinacionales conirc-

tan firmas consultoras y grupos de analistas
para elaborar predicciones? ¿Por qué un por-
centaje sustancial del público lee horóscopos?
Porque quieren saber qué vendrá para estar
preparados.

¿ C u á l e s s o n l o s p a s o s ? No existe una fórmu-
la para predecir el camino que se recorrerá. Se
intenta hacerlo mediante la recopilación de
datos —y su organización para proporcionar
información útil— y el examen de asociaciones
sutiles para obtener conocimiento y, a partir de
éste, sugerir probables hechos que predigan
cómo serán las cosas en cierto tiempo futuro.

¿Cuál e s el producto obtenido? Una visión
del futuro cercano que podría o no ser correcta.

¿Cómo puedo estar seguro de que lo he
h e c h o c o r r e c t a m e n t e ? Predecir el camino
que se recorrerá es un arte, no una ciencia. De
hecho, es bastante raro cuando una predicción

927

TM

PDF Editor

928 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

seria ace rca del futuro es absolutamente correc-
ta o inequívocamente e r rónea (con la excepción,
por fortuna, d e las predicciones del fin del
mundo). Se buscan tendencias y se intenta extra-

polar las hac ia ade lante en el t iempo. Las correc-
ciones d e la extrapolación sólo se pueden valo-
rar conforme p a s a el tiempo.

Los cambios en la tecnología de ingeniería de software son de hecho "rápidos e
implacables", mientras que, al mismo tiempo, el progreso, por lo general, es bastan-
te lento. Pero cuando se toma la decisión de adoptar un nuevo método (o una nueva
herramienta), de llevar a cabo el entrenamiento necesario para comprender su apli-
cación y de introducir la tecnología en la cultura de desarrollo del software, algo más
nuevo (e incluso mejor) ha llegado, y el proceso comienza de nuevo.

En este capítulo se examinan tendencias hacia el futuro. La finalidad no es explo-
rar todas las áreas de investigación que resulten prometedoras. Tampoco es mirar en
una "bola de cristal" y pronosticar el futuro. Más bien, se explora el ámbito del cam-
bio y la forma en la que éste afectará el proceso de ingeniería del software en los
años por venir.

3 2 . 1 L A I M P O R T A N C I A D E L S O F T W A R E . S E G U N D A P A R T E

La importancia del software de computadora se puede establecer en muchas formas.
En el capítulo I el software se caracterizó como un diferenciador. La función que pro-
porciona el software diferencia productos, sistemas y servicios, y ofrece una ventaja
competitiva en el mercado. Pero el software es más que un diferenciador. Los progra-
mas, documentos y datos que constituyen el software ayudan a generar el producto
más importante que cualquier individuo, negocio o gobierno pueda adquirir: informa
ción. Pressman y Herrón [PRE91] describen al software en la forma siguiente:

El software de computadora es una de sólo unas cuantas tecnologías clave que tendrán
un impacto significativo en casi cualquier aspecto de la sociedad moderna. . . Es un meca-
nismo para automatizar negocios, industrias y gobiernos, y un medio para transferir nueva
tecnología, un método de captura de experiencias valiosas para que las utilicen otros, un
medio para diferenciar los productos de una compañía de los de sus competidores, y una
ventana al conocimiento colectivo de una corporación. El sof tware es un pivote para casi
cualquier aspecto de los negocios. Pero, en muchas formas, el sof tware también es una
tecnología oculta. Se encuentra sof tware (usualmente sin darse cuenta de ello) cuando se
viaja al trabajo, se realiza alguna compra al menudeo, se detiene en el banco, se hace una
llamada telefónica, se visita al médico o se realiza alguna de las c ientos de actividades co-
tidianas que reflejan la vida moderna.

La omnipresencia del software conduce a una conclusión simple: siempre que
una tecnología tenga un amplio impacto (un impacto que pueda salvar vidas o
ponerlas en peligro, construir negocios o destruirlos, informar a los líderes de
gobiernos o mal informarlos) debe manejársele con cuidado.

TM

PDF Editor

C A P Í T U L O 3 2 EL CAMINO POR RECORRER 929

"Las p red icc iones s o n m u y difíciles d e hacer , e s p e c i a l m e n t e c u a n d o se r e l a c i o n a n con el f u t u r o . "
Mark Twoin

3 2 . 2 EL ÁMBITO PEL C A M B I O

Los cambios en la informática durante los pasados 50 años han sido dirigidos por
avances en las ciencias básicas: física, química, ciencia de materiales e ingeniería.
Esta tendencia continuará durante el primer cuarto del siglo xxi. El impacto de las
nuevas tecnologías es profundo: en las comunicaciones, la energía, el cuidado de la
salud, la transportación, el entretenimiento, la economía, la industria manufacture-
ra y la guerra, por mencionar sólo unas cuantas.

Tecnologías a observar. Las tecnologías para mirar.
I N F O R M A C I Ó N

• Los editores de PC Magazine [PCM03]
preparan un número anual de "Tecnologías del

futuro" que "[busca] a través de todos los espacios de chat
(hay varios de ellos) identificar las 20 tecnologías más
prometedoras del mañana". Las tecnologías registradas
abarcan toda una amplia gama, desde el cuidado de la
salud hasta la guerra. Sin embargo, es interesante
observar que el software y la ingeniería del software tienen
un significativo papel que jugar en todas, ya sea como
impulsores de la tecnología o como una parte integral de
ellas. Las siguientes representan una muestra de las
tecnologías registradas:

N a n o t u b o s d e c a r b o n o . Con una fina estructura
parecida al grafito, los nanotubos de carbono pueden
funcionar como alambres, para transmitir señales
desde un punto a otro, y como transistores, usando
cambios de señal para almacenar información. El uso
de estos dispositivos parece prometedor en el
desarrollo de dispositivos electrónicos más pequeños,
más rápidos, de menor energía y menos costosos (por
ejemplo, microprocesadores, memorias, pantallas).

Biosensores . Los sensores microelectrónicos, externos o
implantables, ya se utilizan ampliamente en la
detección, desde agentes químicos en el aire que se
respira hasta niveles de sangre en pacientes cardiacos.
Conforme estos'sensores se vuelvan más sofisticados,
podrán implantarse en pacientes médicos para
supervisar una variedad de condiciones relacionadas

, con la salud, o incorporarlos a los uniformes de los

soldados para supervisar la presencia de armas
biológicas o químicas.

Panta l las OLED. Un OLED (diodo emisor de luz
orgánico) "utiliza una molécula diseñadora con base
de carbono que emite luz cuando una corriente
eléctrica pasa a través de ella. Junte muchas de estas
moléculas y obtendrá una pantalla muy delgada de
asombrosa calidad; no requiere fuente de luz trasera
que provoca pérdidas de energía" [PCM03], El
resultado: pantallas ultradelgadas que se pueden
enrollar o doblar, extender sobre una superficie curva o
adaptarse de alguna otra forma a un entorno
específico.

Retícula d e cómputo . Esta tecnología (disponible en la
actualidad) crea una red que aprovecha los miles de
millones de ciclos de CPU no utilizados de cada
máquina en la red y permite que se completen tareas
de cómputo excesivamente complejas sin contar con
una supercomputadora. Véase un ejemplo práctico que
abarca 4.5 millones de computadoras en
http://setiathome.berlceley.edu/.

M á q u i n a s cogni t ivas . El "santo grial" en el campo de
la robótica es desarrollar máquinas que estén
conscientes de su entorno, que puedan "recabar pistas,
responder a situaciones siempre cambiantes e
interactuar con personas de modo natural" [PCM03].
Las máquinas cognitivas todavía están en las primeras
etapas de desarrollo, pero el potencial (si se logra
alguna vez) es enorme.

TM

PDF Editor

http://setiathome.berlceley.edu/

P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

A largo plazo, los a v a n c e s revo luc ionar ios e n la informát ica b ien p u e d e n dirigir-
los las c ienc ias soc ia les : psicología h u m a n a , sociología, filosofía, an t ropo log ía y
o t ras . El pe r iodo d e ges tac ión d e las t ecno log ías in formát icas q u e s e p u e d a n der ivar
d e e s t a s discipl inas e s m u y difícil de predecir , p e r o las p r imera s in f luenc ias ya h a n
c o m e n z a d o (por e jemplo , las c o m u n i d a d e s — u n a e s t ruc tu ra an t ropo lóg ica— d e
usuar ios , q u e son r ami f i cac iones de las r edes d e pa re s a pares) .

La inf luencia d e las c i enc i a s soc ia les qu izá a y u d e a mo ldea r la dirección d e la

invest igación en in formát ica e n las c ienc ias bás icas . Por e jemplo , el d i s e ñ o d e las
f u tu r a s c o m p u t a d o r a s tal v e z lo gu íe m á s el c o n o c i m i e n t o d e la ps icología cerebra l

q u e el d e la microe lec t rónica convenc iona l .
A co r to plazo, los c a m b i o s q u e incidirán e n la ingenier ía del s o f t w a r e d u r a n t e la

s iguiente d é c a d a recibirán la inf luencia d e c u a t r o f u e n t e s s imu l t áneas : 1) las p e r s o -
n a s q u e real icen el t r aba jo , 2) el p r o c e s o q u e ap l iquen , 3) la na tu ra l eza d e la infor-
mac ión y 4) la tecnología informát ica subyacen te . En las s e c c i o n e s q u e s iguen s e
e x a m i n a n con m á s detal le c a d a u n o d e e s to s c o m p o n e n t e s : p e r s o n a s , p roceso ,

i n fo rmac ión y tecnología .

3 2 . 3 L A S P E R S O N A S Y I.A F O R M A EN LA Q U E C O N S T R U Y E N S I S T E M A S

El s o f t w a r e q u e requ ie ren los s i s t e m a s d e al ta tecnología s e vuelve m á s c o m p l e j o
c a d a a ñ o , y el t a m a ñ o d e los p r o g r a m a s r e s u l t a n t e s a u m e n t a p ropo rc iona lmen te . El

rápido c r ec imien to en el t a m a ñ o del p r o g r a m a "promedio" presen ta r ía p o c o s pro-
b l e m a s si n o fuese po r un h e c h o s imple: c o n f o r m e a u m e n t a el t a m a ñ o del p rog ra -
m a , t a m b i é n d e b e a u m e n t a r el n ú m e r o d e p e r s o n a s q u e d e b e n t r aba ja r e n él.

La exper ienc ia indica q u e c o n f o r m e a u m e n t a el n ú m e r o d e p e r s o n a s d e un equi -
p o d e p royec to d e so f tware , tal v e z la product iv idad global del g r u p o d i sminuya . Una

fo rma para resolver e s t e p rob lema cons i s t e en c rea r e q u i p o s d e ingenier ía del sof t -
ware , y en c o n s e c u e n c i a dividir al pe r sona l en g r u p o s d e t r aba jo individuales. Sin
e m b a r g o , c o n f o r m e crece el n ú m e r o d e equ ipos d e t r a b a j o d e ingenier ía del s o f t w a -
re, la c o m u n i c a c i ó n e n t r e el los se vuelve tan difícil y t a rdada c o m o la c o m u n i c a c i ó n
en t r e los individuos. Peor a ú n , la c o m u n i c a c i ó n (entre individuos o equipos) t i ende

a se r inef ic iente; e s decir, s e p a s a d e m a s i a d o t i e m p o t rans f i r i endo m u y p o c o c o n t e -
nido de in fo rmac ión , y con m u c h a f recuenc ia la in fo rmac ión impor t an te "cae en t r e

las grietas".

"El choque del f u t u r o es lo a g o t a d o r a tensión y desor ientación que inducimos en los individuos al su je tar los o
d e m a s i a d o s cambios en un p e r i o d o d e m a s i a d o cor to . "

Atvin Toff ler

Si la c o m u n i d a d d e la ingenier ía del s o f t w a r e t iene q u e t r a ta r con eficacia el dile-
m a d e la c om un ic a c ión , el c a m i n o q u e recor re rán los ingen ie ros d e s o f t w a r e d e b e
incluir c a m b i o s rad ica les en la fo rma en q u e los individuos y los e q u i p o s s e c o m u n i -

can en t r e sí. El c o r r e o e lec t rónico , los si t ios Web y las con fe r enc i a s de v ideo cen t ra -

930

Para predicciones
acerco del futuro de ta
tecnología y otros
materias, véase
w w w . f u t u r e f a c i n g .
com.

TM

PDF Editor

http://www.futurefacing

C A P Í T U L O 3 2 EL CAMINO POR RECORRER 931

l i zadas a h o r a son m e c a n i s m o s c o m u n e s p a r a conec t a r a un gran n ú m e r o de pe r so -

n a s a una red d e información . La impor tanc ia d e e s t a s h e r r a m i e n t a s en el con tex to
del t raba jo d e ingenier ía del s o f t w a r e n o s e d e b e sobreva luar . Con un cor reo e lec-
t rónico e f ic ien te o un s i s t ema d e m e n s a j e r í a i n s t a n t á n e a , el p r o b l e m a que e n c u e n -
tre un ingen ie ro d e s o f t w a r e en la c iudad de Nueva York p u e d e reso lverse con la
a y u d a d e un co lega en Tokio. En real idad, las s e s i o n e s d e conve r sac ión [chat] sob re
un t ema par t icular y los g r u p o s de not ic ias e spec ia l i zados se vuelven depós i t o s d e
conoc imien to q u e permi ten q u e el s a b e r colect ivo d e un gran g rupo d e t écn icos s ea
ap l i cado p a r a so luc ionar u n p r o b l e m a técn ico o un conf l ic to de gest ión.

El video pe r sona l i za la comun icac ión . En el m e j o r d e los ca sos , pe rmi t e q u e los
co legas en d i fe ren tes ub i cac iones (o en d i fe ren tes con t inen tes) se " r eúnan" con cier
ta regular idad. Además , el v ideo t a m b i é n o f r ece o t ro benef ic io: se p u e d e u sa r c o m o
depós i to d e c o n o c i m i e n t o ace rca del s o f t w a r e y p a r a e n t r e n a r a los recién l l egados

a un proyecto .

"Lo respuesta artístico a d e c u a d a an t e la tecnología digital es adop ta r l a como u n a n u e v a ven t ano a todo lo
e t e r n a m e n t e h u m a n o , y usar la con pas ión, sabiduría , t emer idad y a legr ía . "

Ralph Lambreglia

^ C O N S E J O ^

Másymós'no
programadores" están
construyendo sus
propias (pequeños)
aplicaciones. Esta
tendencia actual es
probable que se
acelere en lo futuro.
¿Estosíciviles'
deberían aplicar la
tecnología estudiado
en este libro? Proba-
blemente no. Pero
deberían adoptar uno
filosofía de ingeniería
del software ágil,
incluso si no adoptan
la práctica.

La evolución d e los a g e n t e s in te l igentes t ambién c a m b i a r á los p a t r o n e s l abora les

de un ingen ie ro de s o f t w a r e al e x t e n d e r s u s t a n c i a l m e n t e las c a p a c i d a d e s d e las
h e r r a m i e n t a s d e so f tware . Los a g e n t e s in te l igentes m e j o r a r á n la habil idad del inge-
n ie ro al c o m p r o b a r va r ias v e c e s los p roduc to s d e t raba jo d e ingenier ía e m p l e a n d o
conoc imien to espec í f ico del domin io , r e a l i z a n d o t a r ea s adminis t ra t ivas , l l evando a
c a b o u n a invest igación dirigida y c o o r d i n a n d o la comun icac ión en t r e las p e r s o n a s .

Finalmente , la adquis ic ión de c o n o c i m i e n t o e s t á c a m b i a n d o en f o r m a radical . En
Internet , un ingeniero de s o f t w a r e p u e d e suscr ibi rse a g rupos de not icias q u e se

e n f o q u e n en á r e a s d e tecnología q u e le in te resen d i r ec t amen te . Una p regun ta envia-
da a un g rupo de not icias precipita las respues tas de o t ras pa r tes in te resadas a l rededor
del m u n d o . La World Wide Web o f r ece a un ingeniero d e s o f t w a r e la m á s g r a n d e
bibl ioteca del m u n d o de t r aba jos e in fo rmes d e invest igación, m a n u a l e s , c o m e n t a -

r ios y r e f e renc i a s ace rca d e la ingenier ía del so f tware .
Si la historia e s un indicio, e s a c e r t a d o decir q u e las p e r s o n a s n o c a m b i a r á n . Sin

e m b a r g o , las f o r m a s en las q u e s e c o m u n i c a n , el e n t o r n o en el q u e t r aba j an , la

mane ra en la que adquieren conocimiento, los mé todos y he r ramien tas que usan , la dis-
ciplina q u e apl ican y, po r lo tan to , la cul tura genera l del desar ro l lo del s o f t w a r e c a m -
biarán en f o r m a s s ignif icat ivas e incluso p ro fundas .

3 2 . 4 E L " N U E Y Q " P R O C E S O D E I N G E N I E R I A D E L S O F T W A R E

Es r a z o n a b l e ca rac te r iza r las p r i m e r a s d o s d é c a d a s d e la prác t ica d e la ingenier ía del
s o f t w a r e c o m o la era del " p e n s a m i e n t o l ineal ' F o m e n t a d a por el m o d e l o c lás ico del
ciclo vital, la ingenier ía del s o f t w a r e s e e n f o c ó c o m o una actividad lineal en la q u e

TM

PDF Editor

932 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

se podr ían apl icar u n a serie de p a s o s s ecuenc i a l e s con la finalidad d e reso lver pro-
b l e m a s comple jos . Sin e m b a r g o , los e n f o q u e s l ineales a c e r c a del desarro l lo d e sof t -
w a r e co r r en con t r a la fo rma e n la q u e la mayor ía d e los s i s t e m a s r e a l m e n t e s e cons -
truye. En real idad, los s i s t e m a s comple jo s evo luc ionan i t e ra t ivamente , incluso en
fo rma incrementa ! . Por e s t a r azón , un gran s e g m e n t o d e la c o m u n i d a d de ingenie-
ría del s o f t w a r e s e d e s p l a z a hacia m o d e l o s i nc r emén ta l e s ágiles p a r a el desar ro l lo
del s o f t w a r e .

Los mode los d e p roceso incrementa l ágil r econocen q u e la incer t idumbre domina
la mayor ía d e los p royec tos , q u e los p l a z o s d e e n t r e g a con f recuenc ia s o n imposibles
de cumplir y cortos, y q u e la i teración proporc iona la habilidad de da r una solución
parcial, incluso c u a n d o un p roduc to comple to n o e s real izable den t ro del t i empo asig-

nado . Los mode los evolut ivos subrayan la neces idad d e p roduc to s de t raba jo incre-
ménta les , anál is is de riesgo, p laneación y luego revisión del plan, y re t roal imentación
con el cliente. En m u c h o s ca sos el equipo d e s o f t w a r e aplica un "mani f ies to ágil"
(capítulo 4) q u e sub raya "los individuos e in t e racc iones sob re los p r o c e s o s y h e r r a -
mien tas ; el s o f t w a r e opera t ivo sob re la d o c u m e n t a c i ó n deta l lada; la co laborac ión del
c l iente sob re la negoc iac ión d e con t ra tos ; y la r e s p u e s t a al c a m b i o sob re el segui -
m i e n t o d e un p lan" [BEC01].

"La m e j o r p repa rac ión pa r a el buen t r a b a j o m a ñ a n a es hacer un b u e n t r a b a j o hoy."
Elbert Hubbard

Las t ecno log ías de obje tos , j un to con la ingenier ía del s o f t w a r e b a s a d a e n c o m -
p o n e n t e s (capítulo 30), son u n a c o n s e c u e n c i a na tu ra l d e la t e n d e n c i a hac ia los

m o d e l o s de p r o c e s o s i n c r e m e n t a l e s y evolutivos. A m b o s t end rán un p r o f u n d o
i m p a c t o sob re la product iv idad del desarro l lo d e s o f t w a r e y la ca l idad del p roduc to .
La reut i l ización de c o m p o n e n t e s o f r ece benef ic ios i n m e d i a t o s y conv incen tes .
C u a n d o la reut i l ización s e u n e con las h e r r a m i e n t a s CASE p a r a los p ro to t ipos d e una
apl icación, los i n c r e m e n t o s del p r o g r a m a se p u e d e n cons t ru i r m u c h o m á s r áp ida -
m e n t e q u e m e d i a n t e los e n f o q u e s convenc iona le s . La e laborac ión de pro to t ipos
involucra al c l iente con el p roceso . En consecuenc i a , e s p robab le que los c l ientes y
u sua r io s s e involucren m u c h o m á s en el desarro l lo del so f tware . Esto, a su vez ,
p u e d e conduci r a u n a m a y o r sa t i s facc ión del u sua r io final y en genera l a m e j o r a r la
ca l idad del so f tware .

El r áp ido c rec imien to en las t ecno log ías d e red y mul t imed ia (por e j emplo , el
a u m e n t o exponenc ia l en las WebApps d u r a n t e las p a s a d a s décadas) es tá c a m b i a n -
d o t a n t o al p roceso de ingenier ía del s o f t w a r e c o m o a s u s par t ic ipan tes . De nuevo ,
se es tá a n t e un p a r a d i g m a inc rementa l ágil q u e d e s t a c a la inmedia tez , la segur idad
y la es té t ica , así c o m o p r e o c u p a c i ó n por la ingenier ía d e s o f t w a r e m á s convenc io -
nal. Los m o d e r n o s equ ipos d e s o f t w a r e (por e jemplo , un equ ipo d e ingenier ía Web)

con f recuenc ia m e z c l a n t écn icos con espec ia l i s tas d e con t en ido (por e jemplo , art is-
tas , mús icos , v ideográfos) p a r a const ru i r una f u e n t e d e in fo rmac ión des t inada a u n a

TM

PDF Editor

C A P Í T U L O 3 2 EL CAMINO POR RECORRER 933

c o m u n i d a d de u sua r io s g r a n d e e impredecible . El s o f t w a r e q u e s e ha desa r ro l l ado
con b a s e e n e s t a s t ecno log ías ha g e n e r a d o rad ica les c a m b i o s e c o n ó m i c o s y cu l tu ra -
les. Aunque los c o n c e p t o s y pr incipios bás i cos t r a t a d o s en es te libro son apl icables ,
el p r o c e s o d e ingenier ía del s o f t w a r e se debe adap ta r .

A lo la rgo d e la his tor ia d e la in formát ica h a ocur r ido u n a t ransic ión sutil en la t e r -
minología con q u e se descr ibe el t r aba jo d e desar ro l lo del s o f t w a r e r ea l i zado p a r a la
c o m u n i d a d d e negoc ios . Hace c u a r e n t a a ñ o s , el t é rmino procesamiento de datos era
la f rase opera t iva para describir la ut i l ización d e las c o m p u t a d o r a s en un con tex to
de negoc ios . En la ac tua l idad , el p r o c e s a m i e n t o d e d a t o s ha d a d o p a s o a o t r a f r ase
—tecnología de la información— que significa lo m i s m o pe ro p r e s e n t a un sutil c a m -
bio en el e n f o q u e . La impor tanc ia radica n o só lo en p rocesa r g r a n d e s c a n t i d a d e s d e

da tos , s ino e n ob t ene r in fo rmac ión significat iva d e d ichos datos . Obv iamen te , é s t a
fue s i empre la finalidad, p e r o el c a m b i o en la te rminología refleja un c a m b i o m u c h o
m á s i m p o r t a n t e en la filosofía de la ges t ión .

C u a n d o en la ac tua l idad s e a b o r d a n las ap l i cac iones de s o f t w a r e las pa l ab ra s
datos e información a p a r e c e n r epe t idamen te . La pa labra conocimiento s e e n c u e n t r a
en a l g u n a s ap l i cac iones d e intel igencia artificial, pe ro su uti l ización e s r e l a t ivamen-
te e s c a s a . Vi r tua lmente nad i e s e ref iere a la sabiduría en el con tex to d e las apl ica-

c i o n e s de so f tware .
Los d a t o s s o n in fo rmac ión en bruto: co lecc iones d e h e c h o s q u e deben p rocesa r -

se para q u e s e a n significativos. La in fo rmac ión s e der iva al a soc i a r los h e c h o s en un

Espectro de
"información".

Datos:
sin asociatividad

Información:
asociatividad dentro
de un contexto

asociatividad dentro de creación de principios
múltiples contextos generalizados con

base en el conocimiento
procedente de fuentes
diferentes

TM

PDF Editor

934 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

con tex to d a d o . El c o n o c i m i e n t o a soc ia la in fo rmac ión ob ten ida en un con tex to con
o t ra in fo rmac ión ob ten ida en un con tex to diferente . F ina lmente , la sabidur ía s e p re -
s e n t a c u a n d o los pr incipios g e n e r a l i z a d o s s e der ivan d e c o n o c i m i e n t o s d i spares .
Cada u n a d e e s t a s c u a t r o v is iones d e la " in formación" s e r e p r e s e n t a e s q u e m á t i c a -
m e n t e en la figura 32.1.

A la fecha , la g ran mayor ía del s o f t w a r e s e ha cons t ru ido p a r a p rocesa r d a t o s o
in fo rmac ión . Los ingen ie ros d e s o f t w a r e a h o r a e s t á n igua lmen te p r e o c u p a d o s con
los s i s t e m a s q u e p r o c e s a n el conocimiento . 1 £1 c o n o c i m i e n t o e s b id imens iona l . La
in fo rmac ión recopi lada ace rca de una divers idad d e t e m a s r e l ac ionados e i n c o n e x o s
s e re lac iona p a r a fo rmar un c u e r p o d e h e c h o s q u e s e l lamará conocimiento. La c lave
e s la habi l idad pe r sona l p a r a asoc ia r la in fo rmac ión p roven ien t e d e d iversas fuen tes ,

q u e tal v e z n o t engan a lguna conex ión evidente , y combina r l a en una fo rma q u e
o f r ezca a lgún benef ic io distinto.

" L a s a b i d u r í a e s e l p o d e r q u e p e r m i t e u t i l i za r el c o n o c i m i e n t o p o r a el b e n e f i c i o d e n o s o t r o s m i s m o s y d e o t r o s . "
T h o m a s J. W a f s o n

Para i lustrar la p rogres ión d e s d e d a t o s h a s t a conoc imien to , c o n s i d é r e n s e los
d a t o s c e n s a l e s q u e indican q u e los n a c i m i e n t o s en 1996 e n Es t ados Unidos fue ron

4 .9 mi l lones . Este n ú m e r o r ep re sen t a un valor d e da tos . Al re lac ionar e s t a p ieza d e
da to s con las t a s a s d e n a c i m i e n t o p a r a los 40 a ñ o s p receden te s , s e p u e d e der ivar

u n a útil p i eza d e información-, los c a d a v e z m á s v ie jos baby boomers d e la d é c a d a d e
1950 y d e pr incipios d e la d e 1960 hac í an un ú l t imo e s f u e r z o p a r a t ener h i jos a n t e s
del final de su vida reproduct iva . Además , los gen-Xers (miembros d e la gene rac ión

X) c o m e n z a b a n su vida reproduct iva . Los da to s c e n s a l e s e n t o n c e s p u e d e n vincular-
s e con o t r a s p i e z a s d e in fo rmac ión a p a r e n t e m e n t e n o re lac ionada . Por e j emplo , el

n ú m e r o ac tua l d e p r o f e s o r e s d e escue la e l emen ta l q u e s e re t i rarán d u r a n t e la

s iguiente d é c a d a , el n ú m e r o de e s t u d i a n t e s univers i ta r ios q u e s e g r a d u a r á n en edu -
cación pr imaria y secundar ia , la pres ión sob re los polít icos para m a n t e n e r b a j o s los

i m p u e s t o s y, po r lo t an to , l imitar los a u m e n t o s sa la r ia les a los p ro fesores .
Todos e s t o s e l e m e n t o s d e in fo rmac ión s e p u e d e n c o m b i n a r p a r a formular una

r ep resen tac ión del conoc imien to : exist irá una p res ión significativa s o b r e el s i s t ema
educa t ivo en Es t ados Unidos e n la p r imera d é c a d a del s iglo xxi, y e s t a p res ión c o n -
t inuará d u r a n t e u n a década . Con la ut i l ización d e e s t e c o n o c i m i e n t o p u e d e surgir
u n a opo r tun idad de negocio . Quizá haya s ignif icat ivas o p o r t u n i d a d e s p a r a d e s a r r o -
llar n u e v o s m o d o s d e a p r e n d i z a j e q u e s e a n m á s e f i caces y m e n o s c o s t o s o s q u e los
e n f o q u e s ac tua les .

1 El rápido crecimiento de las tecnologías de extracción y almacenamiento de datos refleja esta ten-
dencia creciente.

TM

PDF Editor

C A P Í T U L O 3 2 EL CAMINO POR RECORRER 935

El camino que recorrerá el so f tware conduce a s i s temas que procesan el conoci-
miento. Se han es tado p rocesando da tos e m p l e a n d o computadoras durante 50 a ñ o s
y extrayendo información duran te m á s de tres décadas . Uno de los desafios m á s sig-
nificativos que enfrenta la comunidad de ingeniería del sof tware es construir s is temas
que den el próximo paso a lo largo del espectro: s i s temas que extraigan conoci-
miento a partir de los da tos e información en una forma práctica y beneficiosa.

La gente que construye y utiliza sof tware, el p roceso de ingeniería del so f tware que
s e aplica y la información que s e produce resultan afec tados por los avances en el
ha rdware y la tecnología del sof tware . Históricamente, el ha rdware ha servido c o m o
el impulsor tecnológico en la computación. Una nueva tecnología de hardware pro-
porciona potencial . Entonces los const ructores de sof tware reaccionan a las d e m a n -
d a s de los consumidores con la finalidad de aprovechar el potencial.

Es probable que las tendencias fu turas de la tecnología de ha rdware avancen por
dos trayectorias paralelas. A lo largo de una trayectoria las tecnologías de ha rdware
cont inuarán evolucionando con rapidez. Ante la mayor capacidad que of recen las
arqui tecturas de ha rdware tradicionales, las d e m a n d a s a los ingenieros de sof tware
cont inuarán creciendo.

Pero los cambios verdaderos en la tecnología de ha rdware podrían producirse en
otra dirección. El desarrollo de arqui tec turas de ha rdware no tradicionales (por
ejemplo, nano tubos de carbono, microprocesadores EUL, m á q u i n a s cognitivas, retí-
culas de cómputo) podrían provocar cambios radicales en el tipo de sof tware que se
construirá y cambios fundamenta le s en el enfoque hacia la ingeniería del sof tware .
Dado que es tos en foques n o tradicionales se es tán madurando , e s difícil de terminar
cuál tendrá un impacto significativo e incluso es m á s difícil predecir c ó m o cambiará
el m u n d o del sof tware para adap ta r se a ellos.

Las t endenc ias futuras de la ingeniería del so f tware las impulsan las tecnologías
de sof tware . La reutilización y la ingeniería del so f tware basada en componen te s
ofrecen la mejor oportunidad en cuan to a me jo ras en la magnitud de la calidad de
los s i s temas y en el t iempo en que llegan al mercado. De hecho, conforme pasa el
t iempo, el negocio del so f tware p u e d e c o m e n z a r a parecerse m u c h o al negocio de
ha rdware de la actualidad. Quizá haya e m p r e s a s que const ruyan dispositivos dis-
cretos (componentes de sof tware reutilizables), o t ras empresas que const ruyan
componen te s de s i s temas (por ejemplo, un conjun to de her ramien tas para la inte-
racción hombre-máquina) e integradores de s i s temas que ofrezcan soluciones (pro-
ductos y s i s temas construidos de forma personal izada) para el usuar io final.

La ingeniería del sof tware cambiará , de eso se puede es tar seguro. Pero, sin
importar cuán radicales s ean los cambios , se puede es tar seguro de que la calidad
nunca perderá su importancia, y de que el análisis y el d iseño efectivos y las prue-
b a s compe ten tes s iempre tendrán un lugar en el desarrollo de los s i s temas b a s a d o s
en computadoras .

TM

PDF Editor

936 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

I N F O R M A C I Ó N

Tendencias tecnológicas
P. Cripwell Associates (www.jpcripwell.com),
una firma de consultorio especializada en

gestión del conocimiento e ingeniería de la información,
analiza cinco impulsores tecnológicos que influirán en las
direcciones de la tecnología en los años por venir.

Combinación d e t ecno log ía s . Cuando dos
importantes tecnologías se funden, el impacto del resultado
con frecuencia es mayor que la suma del impacto de cada
una por separado. Por ejemplo, la tecnología de los
satélites GPS (sistemas de posicionamiento global) junto
con la capacidad de cómputo a bordo y las tecnologías de
pantallas LCD han permitido construir sofisticados sistemas
de localización en los automóviles. Las tecnologías con
frecuencia evolucionan a rutas separadas, pero el impacto
en los negocios o social significativo sólo ocurre cuando
alguien los combina para resolver un problema.

Fusión d e d a t o s . Mientras más datos se adquieran,
más datos se necesitarán. Más importante aún, mientras
más datos se adquieran, más difícil es extraer información
útil. De hecho, con frecuencia se necesita adquirir todavía
más datos para comprender qué datos son importantes;
qué datos son relevantes para una necesidad o fuente
particular, y qué datos se deben emplear para la toma de
decisiones. Este es el problema de la fusión de datos. J. P.
Cripwell utiliza como ejemplo un sistema avanzado de
supervisión de tráfico automovilístico. Sensores digitales de
rapidez (en el camino) y cámaras digitales detectan un
acc iden te . La sever idad del a c c i d e n t e se d e b e d e t e r m i n a r
(¿a través de las cámaras?). Con base en la severidad, el
sistema de supervisión debe contactar a la policía, los
bomberos o ambulancias; el tráfico se debe redirigir; los
medios de comunicación (radio) deben difundir

advertencias; y debe informárseles a los automóviles
individuales (si están equipados con sensores digitales o
comunicación inalámbrica). Para lograrlo se debe tomar
una variedad de decisiones, con base en los datos
adquiridos a partir del sistema de supervisión (fusión de
datos).

Tecnología d e e m p u j e . En años pasados surgió un
problema y se desarrolló tecnología para resolverlo. Puesto
que el problema era evidente para muchas personas, el
mercado para la nueva tecnología estaba bien definido.
En la actualidad, algunas tecnologías evolucionan como
soluciones que buscan problemas. Un mercado debe
empujarse para reconocer que necesita la nueva
tecnología (por ejemplo, teléfonos móviles, PDA).
Conforme las personas reconocen la necesidad, la
tecnología se acelera, mejora y con frecuencia se
transforma conforme evoluciona la combinación de
tecnologías.

Red y c a s u a l i d a d . En este contexto, red implica
conexiones entre personas o entre personas e información.
Conforme crece la red, la probabilidad de sinergia entre
dos nodos de red (por ejemplo, personas, fuentes de
información) también crece. Una conexión fortuita (casual)
puede conducir a una inspiración y a nueva tecnología o
aplicación.

S o b r e c a r g a d e i n f o r m a c i ó n . Un amplio océano de
información está a disposición de cualquiera con una
conexión de Internet. El problema, desde luego, es
encontrar la información correcta, determinar su validez y
luego traducirla en una aplicación práctica en un ámbito
de negocios o personal.

je! código de ético
1CM/1EEE se p u e d e
¡ncontroien
SMri.itsg.edu/
Codes/defoult.

3 2 . 7 L A R E S P O N S A B I L I D A D D E LA I N G E N I E R Í A D E L S O F T W A R E

La ingeniería del so f tware ha evoluc ionado en una profesión respetada en el ámbi-
to mundial . Como profesionales, los ingenieros de sof tware deben regirse por un
código de ética que guíe el t rabajo q u e realizan y los productos que producen. Una
fuerza de trabajo conjunto ACM/IEEE-CS ha producido un Código de ética y práctica
profesional para los ingenieros de software (versión 5.1). El código [ACM98] afirma:

Los ingenieros de software se deben comprometer a sí mismos a convertir el análisis, la
especificación, el diseño, el desarrollo, la prueba y el mantenimiento del sof tware en una
profesión beneficiosa y respetada. En concordancia con su compromiso con la salud, la

TM

PDF Editor

http://www.jpcripwell.com

C A P Í T U L O 3 2 EL CAMINO POR RECORRER 937

seguridad y el b ienestar del público, los ingenieros de sof tware deben adher i rse a los si-

guientes Ocho Principios:

1. PÚBLICO. Los ingenieros de sof tware deben ac tuar cons is ten temente con el interés del

público.

2. CLIENTES Y EMPLEADORES. Los ingenieros de sof tware deben actuar en una forma que

beneficie los in tereses de sus clientes y empleadores y sea consis tente con el interés pú-

blico.

3. PRODUCTO. Los ingenieros de sof tware deben garant izar que sus productos y modifi-

cac iones re lacionadas satisfacen los mayores e s t ándares profesionales posibles.

4. JUICIO. Los ingenieros de sof tware deben m a n t e n e r la integridad y la independencia en

su juicio profesional.

5. GESTIÓN. Los ges tores y líderes de la ingeniería del sof tware deben suscribir y promo-

ver un en foque ético de la gestión del desarrollo y el manten imien to del sof tware .

6. PROFESIÓN. Los ingenieros de so f tware deben promover la integridad y la buena repu-

tación de la profesión en una forma consis tente con el interés público.

7. COLEGAS. Los ingenieros de sof tware deben ser jus tos con sus colegas y apoyarlos.

8. COMPROMISO PERSONAL. Los ingenieros de sof tware deben participar en un aprendi-

zaje p e r m a n e n t e en relación con la práctica de su profesión y promover un enfoque ético

para s u práctica.

Aunque cada uno de es tos ocho principios es igualmente importante, apa rece un
tema más relevante: un ingeniero de sof tware debe t rabajar en pro del interés públi-
co. En el ámbi to personal , un ingeniero de sof tware debe a tenerse a las s iguientes
reglas:

• Nunca robar da tos para beneficio personal .

• Nunca distribuir o vender información pa ten tada que haya obtenido c o m o
par te de su t raba jo en un proyecto de sof tware .

• Nunca destruir o modificar mal ic iosamente los programas , archivos o datos
de otra persona.

• Nunca violar la privacidad de un individuo, grupo u organización.

• Nunca atacar un s is tema por deporte o beneficio.

• Nunca crear o difundir un virus o gusano de computadora .

• Nunca usar la tecnología de computac ión para facilitar la discriminación o el

host igamiento.

Durante la década pasada , ciertos miembros de la industria del so f tware han
cabi ldeado por una legislación protectora que [SEE03]:

1. Permita a las compañ ía s liberar el so f tware sin revelar los defectos conocidos.

2 . Exentar a los desarrol ladores de responsabil idad penal por cualesquiera da -
ños que resulten debido a d ichos defectos conocidos.

TM

PDF Editor

9 3 8 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

3. Restringir a o t ros la revelación de defectos sin permiso del desarrol lador ori-
ginal.

4 . Permitir la incorporación de sof tware de "autoayuda" den t ro de un producto
que pueda desactivar (vía c o m a n d o s remotos) la operación del producto.

5 . Exentar a los desabo l l ado re s de sof tware con "autoayuda" de los d a ñ o s en
caso de que el so f tware lo desactive una tercera persona.

Al igual que con cualquier legislación, el debate con frecuencia se centra en conflic-
tos políticos, no tecnológicos. Sin embargo, mucha gente (incluso este autor) conside-
ra que la legislación protectora, si se propone de mane ra inadecuada , entra en con-
flicto con el código de ética de la ingeniería del sof tware al exentar indirectamente
a los ingenieros de sof tware de su responsabil idad para producir sof tware de alta
calidad.

Ya han pasado 25 a ñ o s desde que se escribió la primera edición de este libro. Todavía
me recuerdo s e n t a d o en mi escritorio c o m o un joven profesor, escribiendo el manus -
crito de un libro acerca de una materia de la que poca gen te se preocupaba e inclu-
so todavía m e n o s rea lmente comprendía . Recuerdo las car tas de rechazo de los edi-
tores, qu ienes a rgumen taban (gentil, pe ro firmemente) que nunca habría un merca-
do para un libro acerca de "ingeniería del software". Afor tunadamente , McGraw-Hill

decidió darle una oportunidad,2 y el resto, c o m o dicen, es historia.
Durante los p a s a d o s 25 años, es te libro ha cambiado sus tancia lmente: en a lcan-

ce, en t amaño , en estilo y en contenido. Al igual que la ingeniería del sof tware, ha
crecido y (espero) m a d u r a d o con los años .

Un en foque de ingeniería para el desarrollo del sof tware de computadora es ahora
sabiduría convencional . Aunque el debate cont inúa acerca del "paradigma correcto",
la importancia de la agilidad, el g rado de automat ización y los mé todos m á s efecti-
vos, los principios subyacen tes de la ingeniería del so f tware ahora son acep tados a
lo largo de la industria. ¿Por qué, entonces , se ha visto su amplia aceptación sólo
recientemente?

La respuesta, creo, se encuen t ra en la dificultad de la transición tecnológica y el
cambio cultural que la a c o m p a ñ a . Aun c u a n d o la mayoría de las pe r sonas aprecian
la necesidad de una disciplina de ingeniería para el sof tware, se lucha contra la iner-
cia de la práctica pasada y se enfrentan nuevos dominios de aplicación (y los desa-
rrolladores que t rabajan en ellos), que parecen listos a repetir los errores del pasado .

2 En realidad, el crédito corresponde a Peter Freeman y Eric Munson, quienes convencieron a McGraw-
Hill de que valía la pena intentarlo.

TM

PDF Editor

C A P Í T U L O 3 2 EL CAMINO POR RECORRER 939

P a r a fac i l i tar la t r a n s i c i ó n s e n e c e s i t a n m u c h a s c o s a s : u n p r o c e s o d e s o f t w a r e

ági l , a d a p t a b l e y s e n s i b l e ; m é t o d o s m á s e f e c t i v o s ; h e r r a m i e n t a s m á s p o d e r o s a s ;

m e j o r a c e p t a c i ó n d e lo s p r o f e s i o n a l e s y a p o y o d e lo s g e s t o r e s ; y n o p e q u e ñ a s d o s i s

d e e d u c a c i ó n y "pub l i c idad" . La i n g e n i e r í a del s o f t w a r e n o h a t e n i d o el b e n e f i c i o d e

la p u b l i c i d a d m a s i v a , p e r o , c o n f o r m e p a s a el t i e m p o , el c o n c e p t o s e v e n d e a sí

m i s m o . De a l g u n a m a n e r a , e s t e l ibro e s u n " a n u n c i o pub l i c i t a r i o " p a r a la t e c n o l o g í a .

El l e c t o r ta l v e z n o e s t é d e a c u e r d o c o n t o d o s l o s e n f o q u e s d e s c r i t o s e n e s t e l ibro.

A l g u n a s d e l a s t é c n i c a s y o p i n i o n e s s o n c o n t r o v e r t i d a s ; o t r a s d e b e r á n a j u s t a r s e p a r a

t r a b a j a r b i e n e n d i f e r e n t e s e n t o r n o s d e d e s a r r o l l o d e s o f t w a r e , s i n e m b a r g o , m i s in -

c e r a e s p e r a n z a e s q u e Ingeniería del software. Un enfoque práctico h a y a d e l i n e a d o lo s

p r o b l e m a s q u e s e e n f r e n t a n , d e m o s t r a d o la f u e r z a d e lo s c o n c e p t o s d e la i n g e n i e r í a

del s o f t w a r e y o f r e c i d o u n m a r c o d e t r a b a j o d e lo s m é t o d o s y h e r r a m i e n t a s .

C o n f o r m e s e a v a n z a e n el s ig lo xxi, el s o f t w a r e s e h a c o n v e r t i d o e n el p r o d u c t o

m á s i m p o r t a n t e y e n u n a i n d u s t r i a p r i m o r d i a l e n el e s c e n a r i o m u n d i a l . Su i m p a c t o e

i m p o r t a n c i a h a n t r a n s i t a d o u n l a r g o c a m i n o . E i n c l u s o , u n a n u e v a g e n e r a c i ó n d e

d e s a r r o l l a d o r e s d e s o f t w a r e d e b e e n f r e n t a r m u c h o s d e lo s m i s m o s d e s a f í o s q u e

e n f r e n t a r o n l a s p r i m e r a s g e n e r a c i o n e s . E s p e r o q u e l a s p e r s o n a s q u e e n f r e n t e n el

r e t o — i n g e n i e r o s d e s o f t w a r e — t e n d r á n la s a b i d u r í a d e d e s a r r o l l a r s i s t e m a s q u e

m e j o r e n la c o n d i c i ó n h u m a n a .

[ACM98] ACM/IEEE-CS joint Task Forcé, Software Engineering Code of Ethics and Professional
Practice, 1998, disponible en h t tp : / /www.acm.org / se rv ing / se /code .h tm.

[BECOl] Beck, K. el al., "Manifestó for Agile Software Development", h t tp : / /www.agi lemanifes-
to.org/ .

[BOL91] Bollinger, T. y C. McGowen, "A Critical Look at sof tware Capability Evaluations", en
IEEE Software, julio de 1991, pp. 25-41.

[GIL961 Giib, T„ "What is Level Six?", IEEE Software, enero de 1996, pp. 97-98, 103.
[HOP90] Hopper, M. D., "Rattling SABRE, New Ways to Compete on Information", en Harvard Bu-

siness Review, mayo-junio de 1990.
[PAU931 Paulk, M. el al., Capability Maturity Modelfor Software, Software Engineering Institute,

Camegie Mellon University, 1993.
(PCM03] "Technologies to Watch", en PC Maga/.ine, julio de 2003, disponible en h t tp : / /www.pc-

mag.com/article2/0,4149,1130591 .OO.asp.
[PRE911 Pressman, R. S. y S. R. Herrón, Software Shock, Dorset House, 1991.
[SEE03) The Software Engineering Ethics Research Institute, "UC1TA Updates", 2003, disponible

en ht tp: / /seer i .e tsu .edu/defaul t .h tm.

3 2 . 1 . Obtener una copia de las principales revistas de negocios y noticias de esta s emana (por
ejemplo, Newsweek, Time, Business Week). Elaborar una lista de cada elemento del artículo o
noticia que se pueda utilizar para ilustrar la importancia del software.

3 2 . 2 . Uno de los dominios más reñidos de la aplicación del sof tware son los s is temas y apli-
caciones basados en Web. Estudiar cómo la gente, la comunicación y el proceso tienen que evo-
lucionar para adaptarse al desarrollo de las WebApps de "siguiente generación".

TM

PDF Editor

http://www.acm.org/serving/se/code.htm
http://seeri.etsu.edu/default.htm

940 P A R T E C I N C O TEMAS AVANZADOS EN INGENIERÍA DEL SOFTWARE

3 2 . 3 . Escribir una breve descripción del entorno de desarrollo de un ingeniero de software
ideal hacia el 2010. Describir los e lementos del entorno (hardware, sof tware y tecnologías de
comunicación) y su impacto sobre la calidad y el t iempo en que llega al mercado.

3 2 . 4 . Revisar el estudio de los modelos de proceso incrementales ágiles en el capítulo 4.
Realizar una investigación y recopilar artículos recientes acerca de la materia. Resumir las for-
talezas y debilidades de los paradigmas ágiles con base en las experiencias subrayadas en los
artículos.

3 2 . 5 . Inténtese desarrollar un ejemplo que comience con la recopilación de datos en bruto y
llévese a cabo la adquisición de información, luego de conocimiento y, por último, de sabiduría.

3 2 . 6 . Proporcionar ejemplos específicos que ilustren uno de los ochos principios éticos de la
ingeniería del sof tware mencionados en la sección 32.7.

Los libros que estudian las tendencias futuras del sof tware y la computación abarcan una
amplia variedad de t emas técnicos, científicos, económicos, políticos y sociales. Sterling
(Tomorrow Now, Random House, 2002) recuerda que el progreso real rara vez e s ordenado y efi-
ciente. Teich (Technology and the Future, Wadworth, 2002) presenta reflexivos ensayos acerca
del impacto social de la tecnología y cómo la cultura cambiante da forma a la tecnología.
Naisbitt, Philips y Naisbítt (High Tech/High Touch, Nicholas Brealey, 2001) señalan que muchas
personas se han "intoxicado" con la alta tecnología y que la "gran ironía de la era de la alta tec-
nología es que la humanidad se ha esclavizado a los dispositivos que se supone brindarían liber-
tad". Zey (The Future Factor, McGraw-Hill, 2000) analiza cinco fuerzas que darán forma al destino
humano durante este siglo. Cantón (Techno/utures, Hay House, 1999) estudia cómo la tecnolo-
gía transformará los negocios en el siglo xxi. Robertson (The New Renaissance: Computéis and
the Next Level of Civilization, Oxford University Press, 1998) argumenta que la revolución en la
computación puede ser el avance individual m á s significativo en la historia de la civilización.

Broderick (Spike, Forge, 2001) analiza el impacto de las tecnologías emergentes. Dertrouzos
y Gates (HTwf Will be: tlow the New World of Information Will Change Our Uves, Harper-Business,
1998) ofrecen un estudio detallado de a lgunas de las direcciones que pueden tomar las tecno-
logías de la información en las pr imeras décadas de es te siglo. Barnatt (Valueware: Technology,
Humanity and Organization, Praeger Publishing, 1999) presenta un intrigante estudio de una
"economía de ideas" y cómo el valor económico se creará conforme evolucionen los ciberne-
gocios. El de Negroponte (Being Digital, Alfred A. Knopf, 1995) fue un éxito de ventas a media-
dos del decenio de 1990 y continúa ofreciendo una interesante visión de la computación y de su
impacto global.

Kroker y Kroker (Digital Delirium, New World Perspectives, 1997) han editado una controver-
tida colección de ensayos, poemas y humor que examinan el impacto de las tecnologías digita-
les sobre las personas y la sociedad. Brin (The TTansparent Society: Will Technology Forcé Us to
Choose Between Privacyand Freedom?, Perseus Books, 1999) vuelven a revisar el continuo deba-
te asociado con la inevitable pérdida de privacidad personal que acompaña al crecimiento de
las tecnologías de la información. Shenk (Data Smog: Surviving the Information Olut,
HarperCollins, 1998) estudia los problemas asociados con una "sociedad infestada de informa-
ción" que se sofoca por el volumen de información que produce el software.

Brockman [The Next Fifly Years, Vintage Books, 2002) y Miller y sus colegas (21st Centuty
Technologies: Promises and Períls of a Dynamic Future, Brookings Institution Press, 1999) han edi-
tado una colección de artículos y ensayos acerca del impacto de la tecnología sobre las estruc-
turas sociales, empresariales y económicas. Para aquellos interesados en los t emas técnicos,
Luryi, Xu y Zaslavsky (Future Trcnds in Microelectronics, Wiley, 1999) han editado una colección
de articulos acerca de las probables direcciones para el hardware de computadora, con énfasis
en las nanotecnologías. Hayzelden y Bigham (Software Agents for Future Communication
Systems, Springer-Verlag, 1999) han editado una colección que analiza las tendencias en el
desarrollo de agentes de software inteligentes.

TM

PDF Editor

C A P Í T U L O 3 2 EL CAMINO POR RECORRER 941

Conforme el sof tware se vuelve cada vez más parte de la fabricación de virtualmente todas
las facetas de la vida moderna, la "ciberética" ha evolucionado como un tema importante de
estudio. Los libros de Spinello (Cyberethics: Morality and Law in Cybcrspace, Jones & Bartlett
Publishers, 2002), Halbert e Ingulli (Cyberethics, South-Western College Publishers, 2001) y Baird
y sus colegas (cyberethics: Social and Moral Issues in the ComputerAge, Prometheus Books, 2000)
consideran el tema en detalle. El gobierno estadounidense ha publicado un voluminoso repor-
te en CD-ROM (2 Ist Centuiy Guide to Cybercrime, Progressive Management, 2003) que conside-
ra todos los aspectos del crimen computacional, conflictos de propiedad intelectual y el Centro
de Protección a la Infraestructura Nacional (N1PC, por sus siglas en inglés).

Kurzweil (The Age of Spiritual Machines, When Computers Exceed Human Intelligcnce,
Viking/Penguin Books, 1999) argumenta que, dentro de 20 años , la tecnología de hardware ten-
drá la capacidad de modelar por completo el cerebro humano. Borgmann (Holding on lo Reahty.
The Nature of Information al theTUrn of the Millenium, University of Chicago Press, 1999) ha escri
to una interesante historia de la información, y rastrea su papel en la transformación de la cul-
tura. Devlin (InfoSense: TUrning Information Into Knowledge, W. H. Freeman & Co., 1999) intenta
darle sentido al constante flujo de información que bombardea a la población diariamente.
Gleick (Faster: The Acceleration offust About Eveiything, Pantheon Books, 2000) estudia la tasa
siempre en aceleración del cambio tecnológico y su impacto sobre todos los aspectos de la vida
moderna. Jonscher (The Evolution ofwired Life: From the Alphabcl to the Soul-Catcher Chíp-HOW
Infoi-mation Technologies Change Our World, Wiley, 2000) argumenta que el pensamiento y la
interacción h u m a n a s trascienden la importancia de la tecnología.

En Internet hay disponible una amplia variedad de fuentes de información acerca de las
direcciones futuras en las tecnologías relacionadas con el sof tware y la ingeniería de software
Una lista actualizada de referencias en la World Wide Web se puede encontrar en el sitio Web
SEPA:
h t t p : / / w w w . m h h e . c o m / p r e s s m a n .

TM

PDF Editor

http://www.mhhe.com/pressman

I N D I C E A N A L Í T I C O

ABC MPI, 37
Abstracción, 252
Accesibilidad, 375
Acciones, 25
Acoplamiento, 260, 482

niveles de, 329
medición, 487, 489

Actividades, 24
Actividades de sombrilla, 2 4 , 2 8
Actividades del marco de trabajo,

2 4 , 2 6
genéricas, 26

Actores, 173, 206
Agilidad, 79. Véase también

Proceso ágil
definición de, 79
factores humanos , 82
principios de la, 80

Almacenamien to de datos, 278
Ambiente de t rabajo, 368
Ámbito, 112
Ámbito del sof tware , 651, 693

límites, 693
Análisis, 192. Véase también

Análisis de los requisitos
or ientado a objetos, 201
patrones , 183 (Véase también

Patrones)
reglas por experiencia, 194

Análisis de inventario, 909
Análisis de peligros, 762
Análisis de requisitos, 192. Véase

también Análisis
objetivos del, 193
ingeniería Web, 545

Análisis de tareas, 361
Análisis del árbol de decisión,

717
Análisis del dominio, 194
Análisis del flujo d e trabajo, 364
Análisis del usuario, mé todos

para el, 361
Análisis del valor de frontera,

437, 624
Análisis del valor g a n a d o (AVG),

742
Análisis gramát ico, 212
Análisis Relación-Navegación

(ARN), 589
Aplicaciones b a s a d a s en Web.

Véase WebApps
Árbol de datos, 552
Árbol de requisitos de la calidad,

WebApps, 568
Arquetipos, 289
Arquitectura, 253

análisis de sensibilidad, 294

aplicaciones b a s a d a s en Web,
587

de datos, 140
descripción de la, 276
importancia de la, 277
MVC, 589

Arquitectura de aplicación, 8-9
Arquitectura de datos, 140
Arquitectura del agente para soli-

citud de objeto, 890
Arquitectura del contenido, 586

estructuras, 586
Aseguramiento de la calidad, 770

actividades, 773
estadístico, 783
historia, 772
plan, 791

Aseguramiento de la calidad del
sof tware (SQA). Véase
Aseguramiento de la calidad

Asociaciones, 232
Atributos, 222
Atributos de los datos, 198
Auditoria de configuración, 813

apl icaciones b a s a d a s en
Web, 823

Auditorías, 806. Véase también
Auditoría de configuración

Autentificación, 631
Autoridad del control del cambio

(ACC), 810
Autorización, 62

Base de da tos del proyecto, 800.
Véase también Depósito

Caja de t iempo, 740
Calendarización, 724, 727, 736

conceptos , 725
principios, 728
seguimiento, 739
var ianza, 743

Calidad
contexto de la ISBC, 896
costo de la, 770
definición de, 463, 769
de terminantes , 665
directrices para la IWeb, 513
factores, 464
factores del ISO 9126, 465
medición, 676
med idas de la, 677

Calidad de la concordancia , 769
Calidad del diseño, 769
Calidad del sof tware. Véase

Calidad
Calificación de componen tes , 887

Cambio, 6, 7, 114
ámbi to del, 929
impacto sobre el sof tware , 6
origen del, 797

Caos, 48
Capital del sof tware , 22
Característica, definición de, 95
Cardinalidad, 199. 232
Casos de prueba

caracter ís t icas d e los, 420
derivación, 427

Categorías de usuario, definición
de las, 521

Centro de t ransacción, 306
Certificación, 874
Clase

agregada compues ta , 230
multiplicidad, 232

Clase-responsabi l idad-colabora-
dor, 225. Véase también
Modelado CRC

Clases de análisis
apl icaciones b a s a d a s e n Web,

554
atributos, 221
característ icas de las, 221
identificación de las, 219
operaciones , 223
tipos de, 219, 226-227

Clases de controlador, 227
Clases de diseño, 259

caracter ís t icas de las, 260
tipos de, 259

Clases de ent idad, 226
Clases de frontera, 226
Clientes, 111
COCOMO II, 710
Codificación, 631
Codificación, principios, 123
Código fuente

a nivel de programa, 493
medición, 493
volumen, 493

Cohesión, 260, 483
medición para la, 489
niveles de, 326

Colaboración, 83, 110
definición de CRC, 228

Complejidad, 482, 490
medición, 491

Complejidad ciclomática, 426
Componen tes

adaptac ión de, 888
b a s a d o s en clases, 321
clasificación de, 893
composic ión de, 888
convencionales , 317, 340

943

TM

PDF Editor

944 ÍNDICE ANALÍTICO

definición de, 315, 889
descripción de, 892
ejemplo de d i seño de, 321
ingeniería de, 890
nuevos , 696
reutilizables, 695
visión OO, 316

Comprobación de corrección,
867, 868

Comprobaciones subordinadas ,
869

Computación ubicua, 10
Comunicación, 26, 110

con jun to de tareas, 112
del cliente, 523
ingeniería Web, 510, 523
principios de la, 110

Concurrencia, 286
Condición posterior, 834
Condición previa, 833
Configuración del sof tware, 797
Conjunto de base, 424, 425
Conjunto de cambios , 809
Conjunto de ta reas

comunicación, 112
comunicac ión con el cliente,

524
construcción, 124
definición del, 27
despliegue, 128
d i s e ñ o , 122
modelación del análisis, 118
planeación, l i é
p laneación del proyecto, 693
pruebas , 125-126
p ruebas de apl icaciones b a s a -

d a s en la Web, 611
ref inamiento del, 737
s e l e c c i ó n . 7 3 2

Conocimiento, 934
Consecuencias imprevistas, 1
Consejo Airlie, 658
C o n s t r u c c i ó n , 2 6 , 3 9 9

con jun to de tareas , 124
ingeniería Web, 510
práctica, 122

Construcción basada en c o m p o -
nentes, 8

Construcciones es t ructuradas ,
340

Control de calidad, 770
Control de la variación, 768
Control de la versión, 805, 808

aplicaciones b a s a d a s en la
Web, 822

Control del cambio, 810
flujo de trabajo, 811
tipos de, 811

Controlador vista del mode lo
(MVC), 589

Controladores, 394

Corrección, 677
comprobación de la, 868
condiciones, 869
verificación de la, 867, 868

Cortafuegos, 631
Costo, var ianza, 744
Costos de falla, 771
Costos de prevención, 770
Costos de valoración, 770
Cristal, 95
Curva de la bañera , 5
Curva Putnam-Raleigh-Norden,

730
Curvas de falla, 7

Decisión de hacer la compra , 717
Defectos, 775
Dependencias , 232
Depósito, 801

característ icas del, 804
contenido, 804

Depuración, 408
cons iderac iones psicológicas,

410
estrategias, 411
proceso de, 409
tácticas, 412

Desarrollo basado en componen -
tes (DBC), 63, 886

Desarrollo conducido por la
característica (DCC), 95

Desarrollo del so f tware adaptat i -
vo (DSA), 89

Desarrollo or ien tado a aspectos ,
65

Descomposición del problema,
652

Descomposición funcional, 362
Desgaste, 5, 6
Despliegue, 26

principios, 126
con jun to de tareas, 128
i n g e n i e r í a W e b , 5 1 0

Despliegue de la función de cali-
dad (QFD), 171

Deterioro, 6
Diagrama de caso de uso, 150
Diagrama de clase, 148, 2 2 3
Diagrama de contexto, 212
Diagrama de contexto de la arqui-

tectura (DCA), 288
Diagrama de con tex to del siste-

ma, 145
Diagrama de despliegue, 148
Diagrama de es tado, 181,216,

237, 555
utilización de pruebas , 450

Diagrama de flujo, 340, 341
Diagrama de flujo de da tos

(DFD), 212, 299
Diagrama de flujo del s is tema

(DFS), 146

Diagramas de actividad, 148,
180, 208, 340

Diagramas de relación de enti-
dad, 200

Diagramas de secuencia , 238
apl icaciones b a s a d a s en la

Web, 554, 555
Diseño, 245, 275, 314, 350

a nivel de componen te , 314,
593

aplicaciones b a s a d a s e n la
Web, 566

arquitectónico, 275, 585
atr ibutos de calidad, 251
comprobación de la correc-

ción del, 868
con jun to de tareas, 122, 252
directriz de calidad, 249
estético, 582
hipermedia, 595
ingeniería del so f tware de sala

limpia, 867
interfaces con el usuario, 350
interfaces para apl icaciones

b a s a d a s en Web, 573
medición, 479
proceso, 250
verificación, 867

Diseño al nivel de componen tes ,
314

aplicaciones b a s a d a s e n Web,
593

directrices, 326
pasos, 331
principios básicos, 322

Diseño arquitectónico, 275, 287
aplicaciones b a s a d a s en la

Web, 585
complej idad del, 296
diagrama del flujo de datos,

297
evaluación del, 294
ref inamiento del, 290, 310

Diseño de datos , 26
a nivel arquitectónico, 278
a nivel de componen te , 279

Diseño de interfaz, 350
análisis del, 358
apl icaciones b a s a d a s e n la

Web, 573
flujo de trabajo, 368, 580
pa t rones para el, 371, 372
principios del, 351, 574
proceso del, 358

Diseño de la interfaz con el
usuario, 350

análisis de tareas , 361
análisis del flujo de trabajo, 364
aspec tos del, 372
evaluación del, 377
medición, 492
principios del, 352

TM

PDF Editor

ÍNDICE ANALÍTICO 945

proceso, 358
pasos , 368
reglas de oro, 351

Diseño de navegación, 590
Diseño del contenido , 584
Diseño estético, 572, 582

aplicaciones b a s a d a s en Web,
582

aspectos de configuración, 582
Diseño gráfico. Véase Diseño

estét ico
Disponibilidad, apl icaciones

b a s a d a s en Web, 569
Distribución, 286
Distribución del esfuerzo , 732
Dominio semánt ico, 844

ECS, 803
Ecuación del sof tware, 712, 731
Eficacia en la remoción de defec-

tos (EED), 678
Eficiencia, 466
Elaboración, 159, 652
Elaboración de objetos , 364
Elaboración de tareas, 363

objetos , 364
tareas , 363

Elementos de configuración del
sof tware (ECS), 800

Elementos de d i seño
arquitectónico, 264
componen tes , 266
datos , 263
despliegue, 267
interfaz, 264

Elementos del s is tema, 134
Encubrimiento de componen tes ,

888
Ensayo, 774. Véase también

Revisiones
Entrega incremental , 81
Envoltura, 888
Equipo de medición, MDOO, 485
Equipos

ágiles, 82, 649
coordinación, 650
cuajados , 83, 90, 647
ingeniería Web, 526
organización propia, 83
p rogramador e n jefe, 647
tipos de, 646

Equipos ágiles, 649
Equipos de sof tware . Véase

Equipos
Errores, 775

corrección de, 414
costo relativo, 771

Escalabilidad, WebApps, 569
Escenarios del usuario, 172
Especificación, 160
Especificación constructiva, 837
Especificación de caja de es tado,

866

Especificación de ca ja negra, 865
Especificación de ca ja t ranspa-

rente, 866
Especificación de la estructura de

caja, 864
Especificación del control (EC),

215
Especificación del proceso (EP),

217
Especificación formal, 842
Espectro de la información, 933
Estado, 833
Estereotipo, 232
Estilos arquitectónicos, 280

cent rada en datos , 281 -282
estratificada, 284
flujo de datos, 281
l lamada y retorno, 283
or ientada a objetos, 284
taxonomía de los, 281

Estimación, 690, 696
aplicaciones b a s a d a s e n Web,

715
basada en PF, 702
basada en LDC, 700
basada en el problema, 699
basada en el proceso, 704
descomposición, 698
desarrol lo ágil, 714
est imación, 713
modelos, 710
modelos empíricos, 709
observaciones, 691
proyectos OO, 713
técnicas au tomat izadas , 709
uso-casos , 705

Estimación del proyecto. Véase
Estimación

Est imaciones
ingeniería Web, 534
reconciliación, 708

Estructura de análisis de t rabajo
(EAT), 737

Estructura de superficie, 445
Estructura profunda , 445
Ética, 936

código de, 936
cons iderac iones personales ,

937
Evaluación del riesgo, 752, 757
Eventos, 215, 235
Evolución del sof tware, 12

leyes de la, 13
Evolución. Véase Evolución del

sof tware
Exposición al riesgo, 757

cálculo de la, 757
Extracción de datos, 278

Facilidad de mantenimiento , 466,
677

Factibilidad, 693

Factores de calidad de McCall,
463

Factores humanos , 82
Factorización, primer nivel, 302
Fiabilidad, 465, 786

medidas de, 787
Filtros, 283
Flujo de t ransformación, 297
Formas de navegación (FdN), 591
Formato de condición- t ransmi-

s ión-consecuencia (CTC),
759

Formulación, 510, 517
de preguntas , 519
recopilación de requisitos, 520

Fuente abierta, 10
Funcionalidad, 465
Funciones de ayuda, 373
Funciones de caracterización,

884
Fundamentos , 741

pun tos de fijación, 59

GCS, 797, 815
e l emen tos de la, 799
escenario, 798
es tándares , 824
es t ra tos del proceso, 807
funciones, 805
gestión del cambio, 820
gest ión del contenido, 817
identificación, 807
ingeniería Web,
medición, 598
medición del valor de nego-

cios, 538
mode lo de análisis, 580
obje tos de configuración, 817
jerarquía del usuario, 546
proceso, 806
p ruebas de de sempeño , 631
p ruebas de navegación, 625
p ruebas de seguridad, 680
tipos de, 506

Gestión de la calidad, 767. Véase
también Aseguramiento de
la calidad

Gestión de la configuración del
sof tware. Véase GCS

Gest ión de la conf igurac ión ,
829. Véase también SCM

Gestión de requisitos, 161
Gestión del cambio, 796. Véase

también GCS
apl icaciones b a s a d a s en Web,

815
Gestión del contenido, 817
Gestión del proyecto, 640

aspectos de la, 643
práct icas críticas, 658

Gestión del proyecto de sof tware .
Véase Gestión de proyecto

Gestión del riesgo, 747

TM

PDF Editor

946 ÍNDICE ANALÍTICO

Gráfica de flujo, 423, 425
Gráfica de la estructura, 320
Gráfica de línea de tiempo, 737
Graficación de la t ransacción,

306
Graficación de la t ransformación,

299
Graficación del flujo de datos,

298
Gráfico de es tado, 336
Granularidad, 114
Grupo independiente de prueba

(GIP), 386
GUI, 451

facilidad de uso, 620
jerarquía de clase, 444
medic iones para, 494
mé todos OO, 441
modelación del flujo de datos,

436
modelado del flujo de t ransac-

ción, 436
modelación del es tado finito,

435
modelos de compor tamiento ,

451
navegación, 610
opciones , 400
partición, 447
part iciones de equivalencia,

436
patrones , 455
principios, 124
proceso para apl icaciones

basadas en Web, 609
ruta básica, 423
servicios de ayuda, 454
s is temas en t iempo real, 455
t é c n i c a s , 4 1 8

Herramientas, 24
a lmacenamien to de datos,

2 7 9
análisis estructurado, 218
basadas en Web, 599
calendarización, 737
casos de uso, 78
DBC, 8 9 5
depuración, 413
desarrollo de la interfaz con el

usuario, 376
desarrollo ágil, 98-99
diseño de casos de prueba ,

439
est imación, 716
gestión de la calidad, 791
gestión del cambio, 822
gestión del contenido, 819
gest ión del proceso, 66
gestión del proyecto, 659
gestión del proyecto de inge-

niería Web, 536

gestión del riesgo, 763
ingeniería de los requisitos,

163
ingeniería inversa, 916
intermedias, 321
LDA, 297
medición de apl icaciones

b a s a d a s en Web, 599
medición del producto, 495
medición del p r o c e s o y el pro-

yecto, 676
m é t o d o s formales, 852
minería de datos, 279
modelado de datos, 200
modelado del análisis en

UML, 239
mode lado del proceso, 43
mode lado del s is tema, 151
PDL, 344
p laneación de pruebas , 408
p ruebas de apl icaciones b a s a -

d a s en Web, 633
reestructuración, 918
RPN, 905, 906
simulación del s is tema, 139,

140
sopor te de la GCS, 814
UML/OCL, 339

Herramientas del sof tware, véase
Herramientas

Historias del usuario, 85
HogarSeguro

árbol de datos, 552
carta índice CRC, 226
c lases de análisis, 220, 554
clases de diseño, 261
configuración de pantalla, 371
DCA, 289
diagrama de ACTIVIDAD, 209,

558
d iagrama de carriles, 210
d iagrama de clase, 181, 225
d iagrama de despliegue, 268
d iagrama de es tado, 216 ,237 ,

555
diagrama de flujo de datos,

212 ,213 , 300
diagrama de secuencia , 238,

554
diagrama uso-caso, 178, 208
diseño de componen te , 344
EP, 217
esquema conceptual , 597
estructura arquitectónica, 292,

306, 310
estructura de la función de

seguridad, 292
mode lo CRC, 231
narrativa de procesamiento ,

2 1 2
objetos del contenido, 584
relaciones de clase, 290

USN,592
uso-casos , 175, 205, 369, 549

HogarSeguro (cuadros al mar-
gen), 17, 57 ,62 , 111, 143,
170, 172, 177, 182, 185,
203, 207 ,216 , 224 ,231 ,
258, 261, 265, 295, 305,
323, 328, 330, 354, 362,
388, 4 0 6 , 4 1 2 , 4 2 1 , 4 2 6 ,
448, 477, 486, 521, 533,
549, 577, 622, 651, 668,
679, 702, 719, 742, 758,
782, 812

Hojas de información del riesgo,
757, 762

Idiomas, 270
IMCM, 29

adopción de la, 32
mode lo continuo, 30
metas , 32
mode lo por e tapas , 32
niveles.de capacidad, 30
prácticas, 31

Impurezas, 775
Incremento. Véase Incrementos

del sof tware
Incrementos de software, 5 1 , 8 1
Independencia funcional, 256
Indicadores, 466
índice de calidad de la estructura

del d i seño (1CED), 480
Información, representación de

la, 933
Informe de cambios , 810
Infraestructura, tecnología, 141
Ingeniería de requisitos, 155

ta reas de la, 157
Ingeniería de sof tware de sala

limpia, 64, 850
certificación, 874
diferenciación de característi-

cas, 862
diseño, 867
especificación funcional, 863
estrategia, 860
pruebas , 872

Ingeniería del diseño, 245
Ingeniería del dominio, 883
Ingeniería del p roceso de nego-

cios (1PN), 903
jerarquía, 141

Ingeniería del producto, 142
Ingeniería del s is tema

jerarquía, 136
visión mundial , 136

Ingeniería del sof tware
definición de la, 23
de sala limpia, 858
estratos, 24
ética, 936
futuro de la, 927

TM

PDF Editor

ÍNDICE ANALÍTICO 947

práctica, 104. Véase también
Práctica

principios, 107
Ingeniería del sof tware asist ida

por computadora . Véase
Herramientas

Ingeniería del sof tware basada
en componentes , 879, 880.
Véase también ISBC

Ingeniería directa, 9 1 1 , 9 1 8
cl iente/servidor, 920
interfaces con el usuario, 922
s is temas OO, 921

Ingeniería inversa, 910, 912
datos , 913-914
interfaces con el usuario, 915
procesamiento , 914-915

Ingeniería Web (IWeb), 502
act ividades del marco d e tra-

bajo, 509
característ icas del equipo, 527
c a s o s de uso, 547
construcción del equipo, 528
desarrol lo en casa, 533
directrices de calidad, 513
d iseño a nivel de componen -

te, 593
d iseño arquitectónico, 585
d iseño de interfaz, 573
diseño de navegación, 590
diseño del contenido, 584
est imación, 715
formulación, 517 (Véase tam-

bién Formulación)
GCS, 815
herramientas , 508
las peo res prácticas, 539
las mejores prácticas, 512
métodos, 507
medición, 536
medición del diseño, 598
modelado del análisis, 544
planeación, 525
preguntas básicas, 511
proceso, 507, 508, 511
pruebas , 604, 607, 612
subcontratación, 530

Ingeniería Web, pirámide de dise-
ño, 572

Inicio, 157
Inmediatez, 505
Inspecciones, 774. Véase también

Revisiones
Integridad, 678
Intereses generales , 65
Interfaz con el usuario, 349.

Véase también Interfaz
análisis, 359
carga de memoria , 353
consistencia, 354
contenido del despliegue, 367
control del usuario, 351

ingeniería inversa, 915
m e c a n i s m o s de control, 579
mode lo de análisis, 356
patrones , 372
prototipo, 557, 580
pruebas , 616

Intermedio (middleware), 322
Internacionalización, 375
Invariante de datos, 834
ISAC. Véase Herramientas
ISBC, 879

análisis del costo, 897
economía de la, 895
proceso, 882

ISO 9000, 790
ISO 9001: 2000, 38, 790

e s q u e m a del, 790
Itinerario del proyecto. Véase

Calendarización

Jerarquía del contenido, 552
je rarquías de usuario, 546

Lenguaje de diseño de programa.
Véase LDP

Lenguaje de especificación Z,
849

e jemplo, 849
notación, 850

Lenguaje de restricción de obje-
tos (LRO), 338, 845

condiciones previas /pos ter io-
res, 337

e jemplo de, 847
invariante, 338
notación, 846
visión general, 845

Lenguajes de descripción arqui-
tectónica (LDA), 296

Lenguajes de especificación for-
mal, 844

Ley de Deméter, 261
Ley de Fiit, 576
Líder del equipo, 644
Línea de base, 800

definición de, 800
medición, 681

Lista de problemas, 169
Lista de verificación

calidad del d i seño de
WebApps, 570

validación de requisitos, 161,
186

Lista de verificación de e l emen-
tos de riesgo, 750

Lista de verificación para la vali-
dación de requisitos, 161

Manejo del error. 374
Manifiesto, desarrol lo de sof twa-

re ágil, 77
Manifiesto ágil, 77

Mantenimiento, 7, 12, 907
medición del, 496

Mantenimiento del sof tware , 7,
12, 907. Véase también
Mantenimiento

Marcos de trabajo, 270
Matrices gráficas, 430
MDHOO, 595

d iseño abs t rac to de interfaz,
597

d iseño conceptual , 595
d iseño de navegación, 596

MDSD, 91
reinpeniería, 908

Medición (métricas), 467
acoplamiento , 487
análisis de, 474
a nivel de componen tes , 488
apl icaciones b a s a d a s en Web,

536, 598, 674
a rgumentos para la, 680
atr ibutos de la, 471
basada e n la función, 474
calidad, 677
calidad de la especificación,

477
código fuente, 492
cohesión, 489
complejidad, 491
definición, 467
diseño, 479
d iseño arquitectónico, 479
establecimiento, 684
et iqueta, 666
interfaz con el usuario, 492
linea de base, 681
mantenimiento , 496
or ientada a la clase, 486
or ientada al t amaño , 669
or ientada a objetos, 481, 495,

673
or ientada a la operación, 491
organizac iones pequeñas , 682
privada, 666
proceso, 663, 682
productividad, 699
proyecto, 462, 472, 667
pruebas , 494
pública, 666
retos, 468
tipos de, 471

Medición de Halstead, 493
Medición de la productividad,

699
Medición de línea de código

(LDC), 669
Medición del sof tware. Véase

Medición
Mediciones CK, 482
Medidas, 467

directas, 668
indirectas, 668

TM

PDF Editor

948 I N D I C E A N A L I T I C O

MEIEP, 37
Mejoramiento del proceso del

sof tware (MPS), 664
estadístico, 667

Melé, 92
principios, 93
reuniones, 94

Metáfora, 577
Método de análisis del cambio de

arquitectura (MACA), 294
Métodos, 24
Métodos formales, 64, 830

conceptos, 830, 833
definición de, 830
directrices de los, 852
preliminares matemáticas,

837
Miniespecificaciones, 169
Mitigación del riesgo, 760
Mitos, 14-15

de la gestión, 13-14
del cliente, 15
del desarrollador, 16

Modalidad, 200
Modelado, 26

ingeniería Web, 510
Modelado ágil, 97

principios del, 97-98, 121
Modelado CRC, 225, 226

en PE, 86
Modelado de datos, 197
Modelado de Hatley-Pirbhai, 144
Modelado del análisis, 1S9, 191

basado en clases, 181, 21?
basado en escenarios, 179,

202
conjunto de tareas, 118
contenido, 551
del comportamiento, 181, 234
enfoques, 196
ingeniería Web, 544
interacción, 554
orientado al flujo, 182, 211
principios, 117

Modelado del diseño, principios,
119

Modelado del flujo de control,
215

Modelado del sistema, 137, 144
factores restrictivos, 138-139
UML, 147

Modelado estructural, 885
Modelo clásico del ciclo de vida,

50
Modelo CRC

colaboraciones, 228
construcción, 225
responsabilidades, 227
revisión de directrices, 233

Modelo de amplificación del
defecto, 776

Modelo de análisis

aplicaciones basadas en Web,
550

e lementos del, 179, 197
relación con el diseño, 247

Modelo de comportamiento, 235
Modelo de desarrollo concurren-

te, 60
Modelo de espiral, 58

problemas con el, 59
Modelo de interacción, 554
Modelo de la cascada, 50

problemas con el, 51
Modelo del contenido, 551
Modelo del diseño, 247

dimensiones del, 263
relación con el análisis, 247

Modelo DRA, 53
retrocesos, 54

Modelo funcional, 557
Modelos de proceso

ágil, 81
cascada, 50
Cristal, 95
DAR, 53
DAS, 89
DCC, 95
determinados por el riesgo, 58
desarrollo concurrente, 60
diferencias, 28-29
especializado, 63
espiral, 58
es tados de bloqueo, 51
evolutivo, 54
incremental, 52
ISBC, 882
RPN, 904
Programación Extrema, 84
prescriptivo, 49
prototipos, 55
sala limpia, 859

Modelos evolutivos, 54-55
Modelos incrementales, 52
Modelos iterativos, 55
Modelos prescriptivos, 49. Véase

también Modelos de proceso
fallas de los, 78

Modo de bombero, 747
Modularidad, 254
Monitoreo del riesgo, 760
MS, 107
Multiplicidad, 232

Navegación, 559, 572
análisis de la, 559, 561
preguntas, 560
semántica, 591, 626
sintaxis, 590, 592, 625

Negociación, 112, 160, 184
Nodos de navegación, 591
Notación del diseño

basada en texto, 242
comparación de la, 345

gráfica, 340
tabular, 342

Nueva economía, 10

Objeto de los datos, 197
Objetos de configuración, 802

aplicaciones basadas en Web,
817

Objetos de contenido, 551, 584
Obtención, 158, 652
Obtención de requisitos, 166
Ocultamiento de información,

256
OMG/CORBA, 889
Operaciones, 223, 833

identificación, 223
Operadores de conjunto, 838
Operadores lógicos, 840
Orden del cambio, 810
Organización propia, 83-84
Orientado a objetos

conceptos, 201
estimación, 713
seguimiento del proyecto, 741

Paquetes, 234
Paquetes de análisis, 234
Paradigma OPM, 469
Partición, 652

de equivalencia, 435, 623
Patrones, 108, 119, 124

análisis de, 183
arquitectónicos, 280, 281, 284
diseño, 254
diseño d e hipermedia, 594
depósitos de hipermedia, 595
interfaz con el usuario, 371
plantilla de patrones para el

análisis, 183
plantilla para los, 37
proceso, 36
pruebas, 455

Patrones arquitectónicos, 280
refinamiento de los, 287
tipos de, 586

Patrones de diseño, 254. Véase
también Patrones

descripción de los, 269
plantillas, 269
uso de, 270

Patrones del proceso, 34
ejemplo de, 36

PE. Véase Programación Extrema
(PE)

Persistencia, 286
Personal, 641, 930

aspectos de gestión, 641
relación con el esfuerzo, 729
usuarios, 643

PERT/CPM, 736
Peso del vínculo, 429, 433
Plan de SQA, 791

TM

PDF Editor

ÍNDICE ANALÍTICO 949

Planeación, 26, 655
Planeación de pruebas , 381, 608
Planeación del ciclo adaptat ivo

(PCA), 90
Planeación del proyecto, 692
Plan RSGR, 761, 763
Plantilla mode lo del s is tema, 145
Portabilidad, 465
Práctica (ingeniería del software) ,

103-132
Preguntas, libres de contexto, 55
Primitivismo, 260, 482
Principio abier to-cerrado (PAC),

322
Principio de cerradura común

(PCC), 325
Principio de equivalencia de la

reutilización (PER), 325
Principio de inversión de la

dependencia (PS1), 324
Principio de Pareto, 125
Principio de reutilización común

(PRC), 325
Principio de segregación de inter-

fase (PS1), 324
Principio de susti tución de Liskov

(PSL), 324
Principio W5HH, 115, 657
Principios, 113, 655

análisis, 117
codificación, 123
comunicación, 110
con jun to de tareas, 116
despliegue, 126
diseño, 119-120
ingeniería del sof tware , 107
IWeb, 511, 525
modelado ágil, 121
planeación, 113
pruebas , 124

Proceso, 24
aspec tos de la gestión del pro-

yecto, 653
aspec tos de gest ión, 642
descomposic ión, 654
direcciones futuras, 931
evaluación, 37
marco de trabajo, 24
medición, 663
relación con el producto, 43

Proceso ágil, 81
política del, 81

Proceso del so f tware en equipo
(PSE)

act ividades del marco de t ra-
bajo, 41

objetivos, 40
escritos, 41

Proceso del sof tware personal
(PSP), 39

Proceso unificado (PU), 67
fases, 68

historia del, 67
productos del t rabajo, 71

Procesos de negocios, 904
Producto, 651

aspec tos de gestión, 642
del t rabajo, 173
relación con el proceso, 43

Producto esencial, 52
Programación es t ructurada, 340
Programación ext rema (PE), 84

act ividades del marco de tra-
bajo, 85

codificación, 87
diseño, 86
planeación, 85
pruebas , 88

Programación par, 87
Prototipos, 55

p rob lemas con los, 57
Proyectos

diferencias, 526
est imación, 690
medición OO, 673
medición para, 667
problemas, 656
seguimiento, 739
tipos de, 733

Proyectos de sof tware . Véase
Proyectos

Prudencia, 934
Prueba beta, 405
Prueba de caja negra, 422, 433
Prueba de ruta básica, 423

e jemplo de, 428
Prueba de unidad, 88
Pruebas

aleatorias, 48
a nivel de componen te , 610,

623
apl icaciones b a s a d a s en Web,

604
arqui tecturas convencionales ,

386
arqui tecturas OO, 388
b a s a d a s en el uso, 403
b a s a d a s en escenar ios , 444
b a s a d a s en faltas, 443
b a s a d a s en gráficas, 434
b a s a d a s en la clase, 447
b a s a d a s en ligas, 403
base de datos, 613
caracter ís t icas genéricas, 383
con jun to de tareas , 125
contenido, 610, 612
cl iente/servidor, 452
criterio de completi tud, 389
de clase múltiple, 449
de uso estadístico, 873
documentac ión , 454
especial izadas, 452
estrategias, 383, 390
es t ra tegias OO, 402

estructura de control, 430
estructura profunda, 446
estructura de superficies, 446
exhaust ivas , 422
ingeniería del sof tware de sala

limpia, 872
interfaces, 610, 616, 617, 619
límites, 437
tabla ortagonal , 438

Pruebas a la configuración
aplicaciones b a s a d a s en Web,

611, 628
del lado del cliente, 629
d e l l a d o d e l s e r v i d o r , 6 2 8

Pruebas a la unidad, 388, 392
ambiente para las, 394
consideraciones de las, 392
procedimientos para las, 393

Pruebas a las bases de datos, 613
Pruebas al flujo de datos, 431
Pruebas al s is tema, 388, 406
Pruebas alfa, 405
Pruebas de aceptación, 88
Pruebas de agrupamiento , 404
Pruebas de bucle, 431
Pruebas de caja blanca, 423
Pruebas de carga, 633
Pruebas de compatibilidad, 622
Pruebas de condición, 431
Pruebas de de sempeño , 408, 631
Pruebas de humo, 399
Pruebas de integración, 388, 394
Pruebas del contenido, 612
Pruebas de tabla ortogonal , 438

ascendentes , 398
documentac ión , 400
descendente , 396
estudio, 395
humo, 395

Pruebas de navegación, 625
Pruebas de recuperación, 407
Pruebas de regresión, 398
Pruebas de ruta, 624
Pruebas de sof tware. Véase

Pruebas
Pruebas de tensión, 408, 633
Pruebas de validación, 388, 404

criterios, 404
principios, 123

Pruebas estadíst icas de uso, 873
PSE, 40
PSP, 39
Puntos de fijación, 59
Puntos de función, 474, 670

cómpu to de, 476
lenguajes de programación,

672
reconciliación, 671

Puntos de la estructura, 885
análisis del costo, 897
característ icas de los, 885-886

Puntos de objeto, 711

TM

PDF Editor

9 5 0 ÍNDICE ANALÍTICO

Puntos de prioridad, 165
Puntos vitales, 784-785

Recopilación de requisitos
colaborativa, 167 [Véase tam-

bién Obtención)
directrices, 167
equipo, 168

Recopilación de requisitos,
WebApps, 520

Recursos ambientales, 696
Recursos del proyecto, 694
Recursos humanos , 695
Red de actividad, 735
Red de tareas, 735
Reestructuración

de código, 917
de datos, 917

Reestructuración d e código, 911
Reestructuración de datos, 911
Reestructuración de documentos ,

910
Refabricación, 87, 258
Refinamiento, 257
Refinamiento paso a paso, 257
Regla 40-20-40, 732
Reingeniería, 906

economía de la, 923
modelo del proceso, 908

Reingeniería del proceso de
negocios (RPN), 903

modelo del proceso, 904
Relaciones del contenido, 554
Reportes de estado, 814
Requisitos de los aspectos, 65
Requisitos, validación de los, 186
R e s g u a r d o s , 3 9 4
Responsabilidades, definición de

CRC, 227
Retraso, 93
Reutilizabilidad, 64
Reutilización, 8, 109, 269, 325,

8 9 4
análisis y diseño, 891
medio ambiente, 894

Revisión de la configuración, 405
Revisiones, Véase también

Revisiones técnicas forma-
les (RTF)

basadas en muestra, 781
conservación del registro, 779
directrices, 780
junta de reunión, 778
reporte general, 779
reportes, 779

Revisiones basadas en muestra,
781

Revisiones del software, 774.
Véase también Revisiones

Revisiones técnicas formales
RTF), 250, 577, 774. Véase

teimbién Revisiones

Riesgo, 114
componentes , 753
estrategias, 747
formato CTC, 759
definición de, 748
controladores, 753
identificación, 750
impacto, 754, 757
planeación, 759
proyección, 754
refinamiento del, 759
tipos de, 748

Rotulación, m e n ú s y comandos ,
374

Ruta crítica, 736
Rutas de acción, 306
Rutas independientes, 424

Salvaguarda del software, 762,
788

Seguimiento de conflictos, 808
Seguimiento de la dependencia,

805
Seguimiento de requisitos, 805
Seguimiento del proyecto, IWeb,

535
Seguridad, 407, 506

aplicaciones basadas en la
Web, 569

pruebas de, 407, 630
Servicios otorgados, 807
Sigma seis, 785
Similaridad, 482
Simulación del sistema, 139
Sistema

definición de, 134
e lemento macro, 135

Sistema de versiones concurren-
tes (SVC), 809

Sistemas basados en componen-
tes, 880

Sitios Web, bien diseñados, 583
Software

aplicaciones heredadas, 11
características del, 5
definición de, 4
mitos acerca del, 14
papel evolutivo del, 2
preguntas fundamentales , 4-5
referencias históricas, 4

Software de ingeniería y científi-
co, 9

Software de Inteligencia
Artificial, 9-10

Software de línea de producto, 9
Software de sistema, 8
Software heredado, 11

calidad del, 12
Software, categorías de aplica-

ción, 8-9
Software empotrado, 9
Solicitud de cambio, 810

Solución de problemas, 106
Solución pico, 86
Soporte, 126
SPICE, 37
Sprint, 94
Subcontratación, 718

ingeniería Web, 530
Sucesiones, 841
Suficiencia, 482
Susceptibilidad a las pruebas,

características de la, 420

Tabla de decisión, 342
Tabla de recursos, 739
Tabla de riesgo, 754
Tablas de rastreabilidad, 162
Tamaño, 482
Tamaño, proyectos de software,

698
Tecnología del proceso, 42
Tecnologías, futuro, 929, 935
Tiempo de respuesta, 373
Tiempo en el mercado, aplicacio-

nes basadas en Web, 569
Tiempo medio de reparación

(TMDR), 787
Tiempo medio entre fallas

(TMDF), 787
Toxicidad del equipo, 648
Transacción, 298
Tubos, 282

UML
diagrama de actividad, 148,

180 209, 335
diagrama de carriles, 209, 366
diagrama de caso de uso, 150,

178, 547
diagrama de colaboración,

332
diagrama de clase, 150, 180
diagrama de despliegue, 148,

268
diagrama de estado, 181,216,

247
diagrama de modelación del

sistema, 148
d iagramas de secuencia, 238
elaboración del componente ,

318
estereotipo, 233
gráfica de estado, 336
OCL, 337, 845
paquetes, 234
representaciones de interfaz,

265, 333
Unidad semánt ica de navegación

(USN), 592, 626
Uso, casos de, 360

análisis de tareas, 361
aplicaciones basadas en la

Web, 524, 547, 554

TM

PDF Editor

ÍNDICE ANALÍTICO

desarrol lo del, 173
escritura, 202
identificación de eventos , 235
medición, 674
preguntas acerca del, 174-

175
Usuario, 26, 643

identificación del, 173
puntos de vista múltiples, 173

Usuarios finales, 111
Validación, 161, 384
Velocidad del proyecto, 86
Verificación, 384
Vínculos de navegación, 591
Volatilidad, 483

WebApps, 9, 504
atr ibutos de las, 504

TM

PDF Editor

ÍNDICE DE S I G L A S M Á S C O M U N E S
EN I N G E N I E R Í A DEL S O F T W A R E

Siglas español/ inglés

Término equivalente en español

ABC MPI (apreciación basada en el CMM para el mejo-
ramiento del proceso interno) 37

ACC (autoridad del control del cambio) 810
A D P (paradigma de diseño abstracto) 883
AECO (acoplamiento ent re c lases de objetos) 485
A G 2 D (análisis geométr ico bidimensional) 701
A G 3 D (análisis geométr ico tridimensional) 701
AIE (archivos de interfaz externos) 475
ALI (archivos lógicos internos) 474
AOO (análisis or ientado a objetos) 201
APD (acceso público a datos) 495
APH (árbol de profundidad de la herencia) 484
ARN (análisis relación-navegación) 560
AVG (análisis del valor ganado) 742
AVL (análisis de valores limite) 437
CAD (diseño asistido por computadora) 700
CCYD (componentes comerciales ya desarrollados)

695
CDL (componentes comerciales de línea) 881
CE (consultas externas) 474
CN (contador numérico) 6?6
CO (complejidad de la operación) 491
C O C O M O (modelo constructivo de costos) 710
COM (modelo de objetos para componentes) 889
CORBA (arquitectura común de distribución de objetos)

889
CPTC (costo p resupues tado para el trabajo

calendarizado) 743
CPTR (costo presupues tado del t rabajo realizado) 743
CRC (clase-responsabilidad-colaborador) 225
CRTR (costo real del t rabajo realizado) 743
CTC (condición-transición-consecuencia) 759
DAS (desarrollo adaptat ivo de software) 89
DBC (desarrollo b a s a d o en componentes) 63
DBMS (gestor de bases de datos) 614
DCA (diseño de contexto arquitectónico) 288
DCBD (descubrimiento de conocimiento en base

de datos) 278
DCC (desarrollo conducido por características) 95
DCS (diagrama de contexto del sistema) 145
DFD (diagrama de flujo de datos) 211, 298
DFS (diagrama de flujo del sistema) 146
DIE desviación intencional de las especificaciones) 784
DU documentación imprecisa o incompleta) 784

952

Término equivalente en inglés

CMM (based appraisal for internal procces improvement
CBA 1PI)

CCA (change control authority)
A D P (abstract design paradigm)
CBO (coupling be tween object classes)
2 D G A (two-dimensional geometric analysis)
3 D G A (three-dimensional geometr ic analysis)
ElFs (external interface files)
ILFs (internal logical files)
O O D A (object-oriented domain analysis)
PAD (public acces s to data members)
DIT (depth of the inheri tance tree)
RNA (relationship-navigation-analysis)
EVA (earned valué analysis)
BVA (boundary valué analysis)
CAD (computer aided design)
C O T S (comercial off-the-shelf)

COTS (comercial off-the-shelt)
E Q s (external inquiries)
NC (numerical control)
O C (operation complexity)
C O C O M O (coñstructive cost model)
COM (component object model)
CORBA (common object request broker architecture)

BCWS (budgeted cost of work scheduled)

BCWP (budgeted cost of work performed)
FTR (formal technical reviews)
ACWP (actual cost of work performer)
CTC (condit ion-transit ion-consequence)
ASD (adaptative sof tware development)
CBD (component based development)
DBMS (database m a n a g e r system)
ACD (architecture context diagram)
KDD (knowledge discovery in databases)

FDD (feature driven development)
SCD (system context diagram)
DFD (data flow diagram)
SFD (system flow diagram)
IDS (intentional deviation from specifications)
IID (inaccurate or incomplete documenlat ion)

TM

PDF Editor

ÍNDICE DE SIGLAS MÁS COMUNES EN INGENIERÍA DEL SOFTWARE 9 5 3

DMADV (definir, medir, analizar, diseñar y verificar) 786
DPR (diseño para la reutilización) 891
DRA (desarrollo rápido de aplicaciones) 53
DSOA (desarrollo de sof tware orientado a aspectos) 65
DU (cadena definición-uso) 431
EAT (estructura de análisis del trabajo) 737
EC (especificación de control) 215
ECS (elementos de configuración del software) 800
EDI (entornos de desarrollo integrado) 413
EE (entradas ex temas) 474
EED (eficacia en la eliminación de defectos) 677
EIE (especificaciones incompletas o erróneas) 784
EIS (entorno de ingeniería del software) 696
ELD (error de la lógica del diseño) 784
EP (especificación de proceso) 217
EPI (equipos de producto integrado) 40
ER (exposición al riesgo) 757
ERD (errores de la representación de los datos) 784
FA (factor de acoplamiento) 487
FCM (falta de cohesión en métodos) 485
FCP (función de control periférica) 701
FDN (formas de navegación) 591
FIN (dependencia hacia dentro) 495
FIUC (facilidades de interfaz del usuario y control) 701
FPGC (facilidades de presentación gráfica de computa-

dora) 701
GBD (gestión de b a s e s de datos) 701
GCS (gestión de la configuración del software) 796
GIP (grupo independiente de prueba) 386
GUIs (interfaces gráficas de usuario) 452
ICED (índice de calidad de la estructura de diseño) 480
ICI (interfaz de componen te inconsistente) 784
ICOA (ingeniería de componen tes orientada a aspectos)

65
IDCO (índice de d e s e m p e ñ o del costo) 744
IHC (interfaz hombre-computadora ambigua o inconsis-

tente) 784
IMCM (integración del modelo de capacidad de madu-

rez) 29
IMS (Índice de madurez del sof tware) 496
IPA (interfaz de programación de la aplicación) 887
IPN (ingeniería de procesos de negocios) 140
IR (ingeniería de requisitos) 157
ISBC (ingeniería del software basada en componentes) 879
ISO (organización internacional de estandarización) 38
IU (interfaz con el usuario) 264
KLDC (miles de l íneas de código) 669
LDA (lenguaje de descripción arquitectónica) 296
L D P (lenguaje de diseño de programas) 217
MA (modelado ágil) 97
MACA (método de análisis de compensación para la

arquitectura) 294
MAD (módulos de análisis de diseño) 701
MCC (mala interpretación de la comunicación del clien-

te) 784
M D H O O (método de diseño hipermedia or ien tado a

objetos) 595

DMADV (define, measure, analyze, design, and verity)
DFR (design for reuse)
RAD (rapid application development)
AOSD (aspect - oriented sof tware development)
DU (definition-use chain)
WBS (work breakdown structure)
CSPEC (control specification)
s e i s (software configuration ítems)
IDEs (integrated development environment)
EIs (external inputs)
DRE ideffect removal efficiency)
IES (incomplete or e r roneous specification)
SEE (software engineer ing environment)
EDL (error in design logic)
PSPEC (process specification)
IPT (integrated product teams)
RE (risk exposure)
ERD (error in data representation)
CF (coupling factor)
LCOM (lack of cohesion in methods)
FCF (peripheral control function)
WoN (ways of navigating)
FIN (fan-in)
UICF (user interface and control facilities)
CGDF (computer graphics display facilities)

DBM (database management)
SCM (software configuration management)
ITG (independent test group)
GUIs (graphical user interfaces)
DSQI (design structure quality Índex)
ICI (inconsistent component interface)
AOCE (aspect-oriented component engineering)

CPI (cost per formance index)
HCI (human-computer interaction)

CMMI (capability maturity model integration)

SMI (software maturity index)
API (application programming interface)
BPE (business processes engineering)
RE (requirements engineering)
CBSE (component based sof tware engineering)
ISO (international organizat ion for standardization)
UI (user interface)
KLOC (thousands lines of code)
ADLs (architectural description languages)
PDL (program design language)
AM (agile modeling)
ATAM (architecture trade-off analisis method)

DAM (design analysis modules)
MCC (misinterpretation of cus tomer communicat ion)

O O H D M (object-oriented hipermedia design method)

TM

PDF Editor

9 5 4 ÍNDICE DE SIGLAS MÁS COMUNES EN INGENIERÍA DEL SOFTWARE

M D S D (método de desarrollo de sis temas dinámicos) 91
ME (metas específicas) 31
MEIEMP (método d e evaluación d e la 1MCM es t ánda r

para el me joramien to del proceso) 37
M E P S (mejora estadística del p roceso de software) 667
MFH (método del factor de herencia) 487
MG (metas genéricas) 32
MIS (misceláneo) 784
M M C G P (modelo de madurez d e la capacidad d e gest ión

de personal) 641
M P C (métodos ponderados por clase) 484
MRC (método d e ruta critica) 736
MVC (modelo-vista-controlador) 589
NCR (número de clases raíz) 495
NCSC (nuevos c o m p o n e n t e s d e sof tware comerciales)

63
NDD (número d e descendientes) 485
NOA (número de operac iones añadidas) 488
N P O (nuevos pun tos objeto) 711
N P O p r o m (número promedio de parámet ros d e la ope ra -

ción) 492
OCI (orden de cambio de ia ingeniería) 810
OCL (lenguaje de restricción d e objeto) 332
OMG (grupo d e gest ión de objetos) 889
O P M (obje t ivo/pregunta /métr ica) 470
O R B (distribuidor de objetos) 889
PAC (principio abierto-cerrado) 322
PCC (principio del cierre común) 325
PCR (principio c o m ú n de la reutilización) 325
P D L (lenguaje d e d iseño de programas) 343
P E {prácticas especificas) 31

PER (principio de equivalencia en t re reutilización y ver-
sión) 325

PERT (técnica de evaluación y revisión de programa)
736

PF (punto de función) 474
PG (prácticas genéricas) 32
PID (principio de inversión de la dependencia) 324
PIE (prueba incompleta o errónea) 784
PNR (curva Putnam-Norden-Rayleigh) 730
POA (programación or ientada a aspectos) 65
PSE (proceso d e so f tware en equipo) 40
PSI (principio d e segregación de la interfaz) 324
PSL (principio de sustitución de Liskov) 324
P S P (proceso de sof tware personal) 39
PU (proceso unificado) 67
P Y P (porcentaje público y protegido) 495
QFD (despliegue de la función de calidad) 171
RPC (respuesta pa ra u n a clase) 485
RSGR (reducción, supervisión y gestión del riesgo) 761
RTF (revisión técnica formal) 774
SCCT (sistema de clasificación de cinta t ransportadora)

145
SE (salidas externas) 474
SEI (instituto d e ingeniería del software) 29
SQA (garantía d e la calidad del software) 767
SQL lenguaje d e consul tas estructurado) 614

D S D M (dynamic sys tems development method)
SG (specific goals)
SCAMPI (standard CMMI a s se s smen t method for process

improvement)
SSPI (statistical sof tware process improvement)
MIF (method inheri tance factor)
GG (generic goals)
MIS (miscellaneous)
PM-CMM (people m a n a g e m e n t capability maturity

model)
WMC (weighted me thods per class)
C P M (critical path method)
MVC (model-view-controller)
ÑOR (number of root classes)
NCSC (commercial off- the-self (COTS) so f tware c o m p o -

nent)
NOC (number of children)
NOA (number of opera t ions added by a subclass)
N O O (number of opera t ions overridden by subclass)
NP a v g (average n u m b e r of pa rame te r s per operation)

ECO (engineering change order)
OCL (object constraint language)
O M G (object m a n a g e m e n t group)
GQM (goal /ques t ion/metr ic)
O R B (object request broker)
O C P (open closed principie)
C C P (common closure principie)
CRP (common reuse principie)
P D L (program design language)
S P (specific practices)
REP (release reuse equivalency principie)

PERT (program evaluation and review technique)

FP (function points)
G P (generic practices)
D I P (dependency inversión principie)
IET (incomplete or e r roneous testing)
PNR (Putnam-Norden-Rayleigh curve)
A O P (aspect-oriented programming)
T S P (team sof tware process)
ISP (interface segregat ion principie)
LSP (Liskov substi tution principie)
P S P (personal sof tware process)
UP (unified process)
PAP (percent public protected)
QFD (quality function deployment)
RFC (response for a class)
RMMM (risk mitigation, monitor ing and managemen t)
FTR (formal technical reviews)
CLSS (conveyor line sort ing system)

E O s (eos (external outputs)
SEI (software engineer ing institute)
S Q A (software quality assurance)
S Q L (structured query language)

TM

PDF Editor

ÍNDICE DE SIGLAS MÁS COMUNES EN INGENIERÍA DEL SOFTWARE 9 5 5

SVC (sistema de vers iones concurrentes) 809
TC (tamaño de la clase) 488
TI (tecnología d e la información) 278
T L P (error de la traducción del d i seño al lenguaje d e pro-

gramación) 784
T M C (tiempo medio d e cambio) 677
T M D F y T M D R (tiempo medio d e falla y t i empo medio

de reparación) 787
TMEF (tiempo medio entre fallas) 787, 874
TMR (tiempo med io de reparación) 407
T O p r o m (t amaño promedio de operación) 491
UML (lenguaje d e mode lado unificado) 68
USN (unidad semánt ica d e navegación) 591
VAD (visión abstracta de datos) 597
VC (varianza del costo) 744
V E P (violación d e los e s t ánda re s de programación) 784
VyV (verificación y validación) 384

CVS (concurrent vers ions system)
CS (class size)
IT (information technologies)
PLT (error p rogramming language translation)

MTTC (mean- t ime- to-change)
MTTC & MTTF (mean-t ime-to-charge) and (mean-

time-to-failure)
MTBF (mean t ime be tween failures)
MTTR (mean t ime to repair)
OS a v„ (average operat ion size)
UML (unified modeling language)
NSU (navigation semant ic unit)
ADV (abstract data view)
CV (cost variance)
V P S (violation of p rogramming s tandards)
V&V (verification and validation)

Siglas inglés/español

Término en inglés

3DGA (three-dimensional geometr ic analysis)
2 D G A (two-dimensional geometr ic anaiysis)
ACD (architecture context diagram)
ACWP (actual cost of work performer)
ADLs (architectural description languages)
A D P (abstract des ing paradigm)
ADV (abstract data view)
AM (agile modeling)
AOCE (aspect-oriented component engineering)

A O P (aspect-oriented programming)
A O S D (aspect-oriented so f tware development)
API (application p rogramming interface)
ASD (adaptative so f tware development)
ATAM (architecture trade-off analisis method)

B C W P (budgeted cost of work performed)
B C W S (budgeted cost of work scheduled)

B P E (business p rocesses engineering)
BVA (boundary valué analysis)
CAD (computer aided design)
C B D (component based development)
C B O (coupling be tween object classes)
CBSE (component based so f tware engineering)

CCA (change control authority)
C C P (common closure principie)
C F (coupling factor)
C G D F (computer graphics display facilities)

Término equivalente en español

A G 3 D (análisis geométr ico tridimensional) 701
A G 2 D (análisis geométr ico bidimensional) 701
DCA (diseño d e con tex to arquitectónico) 288
CRTR (costo real del t raba jo realizado) 743
LDA (lenguaje d e descripción arquitectónica) 296
A D P (paradigma d e d i seño abstracto) 883
VAD (visión abstracta de datos) 597
MA (modelado ágil) 97
ICOA (ingeniería de componentes orientada

a aspectos) 65
POA (programación or ientada a aspectos) 65
D S O A (desarrollo d e so f tware or ien tado a aspectos) 65
IPA (interfaz d e programación de la aplicación) 887
D A S (desarrollo adapta t ivo de software) 89
MACA (método de análisis de compensac ión para la

arquitectura) 294
C P T R (costo p resupues tado del t raba jo realizado) 743
CPTC (costo p resupues tado para el t raba jo ca lendar iza-

do) 743
IPN (ingeniería d e p rocesos d e negocios) 140
AVL (análisis d e valores límite) 437
CAD (diseño asistido por computadora) 700
D B C (desarrollo b a s a d o en componen tes) 63, 886
AECO (acoplamiento entre c lases de objetos) 485
ISBC (ingeniería del so f tware basada

en componentes) 879
ACC (autoridad del control del cambio) 810
PCC (principio del cierre común) 325
FA (factor d e acoplamiento) 487
FPGC (facilidades de presentación gráfica

d e computadora) 701

TM

PDF Editor

9 5 6 ÍNDICE DE SIGLAS MÁS COMUNES EN INGENIERÍA DEL SOFTWARE

COTS (comercial off-the-shelf)
CLSS (conveyor line sorting system)

CMM (based appraisal for internal procces improvement
CBA 1PI)

CMMI (capability maturity model integration)

C O C O M O (constructive cost model)
COM (component object model)
CORBA (common object request broker architecture)

CPI (cost per formance index)
CPM (critical path method)
CRP (common reuse principie)
CS (class size)
CSPEC (control specification)
CTC (condition - transition - consequence)
CV (cost variance)
CVS (concurrent versions system)
DAM (design analysis modules)
D B M (database management)
D B M S (database manager system)
DFD (data flow diagram)
DFR (design for reuse)
DIP (dependeney inversión principie)
DIT (depth of the inheritance tree)
DMADV (define, measure, analyze, design, and verify)

DRE (deffect removal efficiency)
DSDM (dynamic systems development method)

DSQI (design structure quality index)
DU (definition-use chain)
ECO (engineering ctiange order)
EDL (error in design logic)
EIs (external inputs)
EIFs (external interface files)
EOs (external outputs)
EQs (external inquiries)
ERD (error in data representation)
EVA (earned valué analysis)
FDD (feature driven development)
FIN (fan-in)
F P (function points)
FTR (formal technical reviews)
FTR (formal technical reviews)
GG (generic goals)
GQM (goal /quest ion/metr ic)
GP (generic practices)
GUIs (graphical user interfaces)
HCI (human-computer interaction)

ICI (inconsistent component interface)
IDEs (integrated development environments)
IDS lintentional deviation from specifications)
IES uncomplete o r e r roneous specification)
IET ¡ncomplete or e r roneous testing)

CDL (componentes comerciales de linea) 695
SCCT (sistema de clasificación de cinta

transportadora) 145
ABC MPI (apreciación basada en el cmm para el

mejoramiento del proceso interno) 37
IMCM (integración del modelo de capacidad de

madurez) 29
C O C O M O (modelo constructivo de costos) 710
COM (modelo de objetos para componentes) 889
CORBA (arquitectura común de distribución de

objetos) 889
IDCO (índice de d e s e m p e ñ o del costo) 744
MRC (método de ruta crítica) 736
P C R (principio común de la reutilización) 325
TC (tamaño de la clase) 488
EC (especificación de control) 215
CTC (condición-transición-consecuencia) 759
VC (varianza del costo) 744
SVC (sistema de versiones concurrentes) 809
MAD (módulos de análisis de diseño) 701
GBD (gestión de bases de datos) 701
D B M S (gestor de bases de datos) 614
DFD (diagrama de flujo de datos) 211, 298
D P R (diseño para la reutilización) 891
P I D (principio de inversión de la dependencia) 324
APH (árbol de profundidad de la herencia) 484
DMADV (definir, medir, analizar, diseñar

y verificar) 786
EED (eficacia en la eliminación de defectos) 677
M D S D (método de desarrollo de s is temas

dinámicos) 91
ICED (Indice de calidad de la estructura de diseño) 480
DU (cadena definición-uso) 431
OCI (orden de cambio de la ingeniería) 810
ELD (error de la lógica del diseño) 784
EE (entradas externas) 474
AIE (archivos de interfaz extemos) 475
SE (salidas externas) 474
CE (consultas extemas) 474
ERD (errores de la representación de los datos) 784
AVG (análisis del valor ganado) 742
DCC (desarrollo conducido por características) 95
FIN (dependencia hacia dentro) 495
PF (punto de función) 474, 670
CRC (clase-responsabilidad-colaborador) 225
RTF (revisión técnica formal) 774
MG (metas genéricas) 32
OPM (objet ivo/pregunta/métr ica) 470
PG (prácticas genéricas) 32
GUIs (interfaces gráficas de usuario) 452
IHC (interfaz hombre-computadora ambigua o

inconsistente) 784
ICI (interfaz de componen te inconsistente) 784
EDI (entornos de desarrollo integrado) 413
DIE (desviación intencional de las especificaciones) 784
EIE (especificaciones incompletas o erróneas) 784
PIE (prueba incompleta o errónea) 784

TM

PDF Editor

ÍNDICE DE SIGLAS MÁS COMUNES EN INGENIEBÍA DEL SOFTWASE 957

IID (inaccurate or imcomple te documenta t ion)
ILFs (internal logical files)
I P T (integrated product teams)
ISO (intemational organizat ion for s tandardizat ion)

ISP (interface segregat ion principie)
IT (information technologies)
ITG (independen! test group)
K D D (knowledge discovery in databases)

KLOC (thousands lines of code)
LCOM (lack of cohesion in methods)
LSP (Liskov subsli tution principie)
MCC (misinterpretation of cus tomer communica t ion)

MIF (method inheri tance factor)
M I S (miscellaneous)
MTBF (mean t ime be tween failures)
MTTC & MTTF (mean-t ime-to-charge) and (mean-t ime-

to-failure)
MTTC (mean-t ime-to-change)
MTTR (mean t ime to repair)
MVC (model-view-controller)
NC (numerical control)
NCSC (commercial of í - the-self (COTS) sof tware

component)
NOA (number of opera t ions added by a subclass)
NOC (number of children)
N O O (number of opera t ions overridden by subclass)
ÑOR (number of root classes)
NPavg (average number of pa rame te r s per operation)

NSU (navigation semant ic unit)
O C (operation complexity)
OCL (object constraint language)
O C P (open closed principie)
OMG (object m a n a g e m e n t group)
O O D A (object-oriented domain analysis)
O O H D M (object-oriented hipermedia design method)

O R B (object reques t broker)
OSou(((average operat ion size)
PAD (public access to data members)
PAP (percent public and protected)
P C F (peripheral control function)
P D L (program design language)
PERT (program evaluat ion and review technique)
PLT (error p rogramming language translation)

P M - C M M (people m a n a g e m e n t capability maturity model)

PNR (Putnam-Norden-Rayleigh curve)
P S P (personal sof tware process)
P S P E C (process specification)
QFD (quality function deployment)
RAD (rapid application development)
RE (requirements engineering)
RE (risk exposure)

DII (documentación imprecisa o incompleta) 784
ALI (archivos lógicos internos) 474
EPI (equipos d e p roduc to integrado) 40
I S O (organización internacional

d e es tandar ización) 38
PSI (principio d e segregación de la interfaz) 324
TI (tecnología de la información) 278
G I P (grupo independiente d e prueba) 386
D C B D (descubrimiento d e conocimiento en base d e

datos) 278
KLDC (miles d e líneas d e código) 669
FCM (falta de cohesión en métodos) 485
PSL (principio de susti tución d e Liskov) 324
MCC (mala interpretación d e la comunicac ión

del cliente) 784
MFH (método del factor d e herencia) 487
MIS (misceláneo) 784
TMEF (tiempo medio entre fallas) 787
T M D F y T M D R (tiempo medio d e falla y t iempo medio

de reparación) 787
T M C (tiempo medio de cambio) 677
TMR (tiempo medio de reparación) 407
MVC (modelo-vista-controlador) 589
CN (contador numérico) 696
NCSC (nuevos c o m p o n e n t e s d e sof tware

comerciales) 63
NOA (número d e operac iones añadidas) 488
N D D (número de descendientes) 485
NPO (nuevos pun tos objeto) 711
NCR (número de c lases raíz) 495
N P O p r o m (número promedio de parámet ros de la

operación) 492
USN (unidad semánt ica de navegación) 591
C O (complejidad de la operación) 491
OCL (lenguaje de restricción d e objeto) 332
PAC (principio abierto-cerrado) 322
OMG (grupo d e gest ión de objetos) 889
A O O (análisis or ien tado a objetos) 201
M D H O O (método de d iseño hipermedia or ien tado a

objetos) 595
O R B (distribuidor de objetos) 889
TO p t o n l (tamaño promedio d e operación) 491
A P D (acceso público a datos) 495
P Y P (porcentaje público y protegido) 495
F C P (función de control periférica) 701
L D P (lenguaje d e d iseño de programas) 217
PERT (técnica de evaluación y revisión d e programa) 736
TLP (error de la traducción del d iseño al lenguaje

de programación) 784
M M C G P (modelo de madurez d e la capacidad de gest ión

de personal) 641
P N R (curva Putnam-Norden-Rayleigh) 730
P S P (proceso de so f tware personal) 39
E P (especificación de proceso) 217
Q F D (despliegue de la función de calidad) 171
DRA (desarrollo rápido d e aplicaciones) 53
IR (ingeniería d e requisitos) 157
ER (exposición al riesgo) 757

TM

PDF Editor

9 5 8 ÍNDICE DE SIGLAS MÁS COMUNES EN INGENIERÍA DEL SOFTWARE

R E P (release r e u s e equ iva l ency principie)

RFC (re sponse for a class)
RMMM (risk mit igat ion, mon i to r ing , a n d m a n a g e m e n t)
RNA (re la t ionsh ip-navega t ion-ana l i sys)
S C A M P I (s tandard CMM1 a s s e s s m e n t m e t h o d for

p r o c e s s i m p r o v e m e n t)
S C D (system con tex t d iagram)
S C I s (so f tware conf igura t ion i tems)
S C M (sof tware conf igura t ion m a n a g e m e n t)
SG (specific goals)
S E E (sof tware eng inee r ing env i ronmen t)
SEI (sof tware e n g i n e e r i n g inst i tute)
S F D (system flow diagram)
S M I (sof tware matur i ty index)
S Q A (sof tware quali ty a s s u r a n c e)
S Q L (s t ructured que ry language)
S P (specific pract ices)
S S P I (statistical s o f t w a r e p r o c e s s improvemen t)
T S P (team s o f t w a r e p rocess)
U1 (user interface)
UICE (user in te r face a n d cont ro l facilities)
U M L (unified m o d e l i n g l anguage)
U P (unified p rocess)
V&V (ver i f i ca ron a n d val idat ion)
V P S (violation of p r o g r a m m i n g s tandards)
W B S (work b r e a k d o w n s t ructure)
W M C (weighted m e t h o d s p e r class)
W o N (ways of navega t ing)

P E R (principio de equ iva lenc ia en t r e reut i l ización
y versión) 325

R P C (respues ta p a r a u n a clase) 485
R S G R (reducción, superv i s ión y ges t ión del riesgo) 761
ARN (análisis r e l ac ión-navegac ión) 560
M E I E M P (mé todo d e e v a l u a c i ó n d e la IMCM e s t á n d a r

p a r a el m e j o r a m i e n t o del p roceso) 37
D C S (d iagrama de c o n t e x t o del s i s t ema) 145
E C S (e l emen tos de conf igurac ión del so f tware) 800
G C S (gestión de la conf igurac ión del s o f t w a r e) 796
M E (me ta s especí f icas) 31
E I S (en torno de ingenier ía del so f tware) 696
SEI (inst i tuto d e ingenier ía del so f tware) 2 9
D F S (d iagrama d e flujo del s i s tema) 146
I M S (índice de m a d u r e z del so f tware) 496
S Q A (garant ía de la ca l idad del so f tware) 767
S Q L (lenguaje de c o n s u l t a s es t ruc tu rado) 614
P E (práct icas específ icas) 31
M E P S (mejora es tad ís t ica del p r o c e s o d e so f tware) 667
P S E (proceso de s o f t w a r e e n equipo) 4 0
IU (interfaz c o n el usuar io) 264
F IUC (faci l idades de in te r faz del u s u a r i o y control) 701
U M L (lenguaje de m o d e l a d o uni f icado) 68
P U (proceso unif icado) 67
VyV (verificación y val idación) 384
V E P (violación de los e s t á n d a r e s d e p r o g r a m a c i ó n) 784
EAT (es t ruc tura de anál is is del t raba jo) 737
M P C (m é t o d o s p o n d e r a d o s p o r clase) 484
F d N (formas d e navegac ión) 591

TM

PDF Editor

Roger S. Pressmari es una autoridad reconocida a nivel internacional en el
mejoramiento del proceso del software y en las tecnologías de ingeniería del
software.

Los 3 2 capítulos de la sexta edición se han organizado en cinco partes:

Parte 1. El proceso del software, presenta diferentes perspectivas del proceso
del software y considera todos los modelos de proceso importantes; además ,
aborda el deba te entre las filosofías del proceso prescriptivo y del proceso ágil.

• Parte 2. Práctica de la ingeniería del software, presenta métodos de análisis,
diseño y prueba con especial interés en las técnicas orientadas a objetos y el
modelado UML.

• Parte 3. Aplicación de la ingeniería Web, presenta un enfoque completo de
ingeniería para el análisis, diseño y prueba de aplicaciones Web.

• Parte 4 . Gestión de proyectos de software, presenta temas relevantes para
quienes planean, gestionan y controlan un proyecto de software.

• Parte 5. Temas avanzados en ingeniería del software, presenta capítulos que
abordan métodos formales, ingeniería del software de sala limpia, ingeniería
de software b a s a d a en componentes, reingeniería y tendencias futuras.

Además de muchos capítulos nuevos y significativamente revisados, la sexta
edición incluye aproximadamente 1 2 0 recuadros que:

• Permiten al lector seguir a un equipo de proyecto (ficticio) conforme planifica
y diseña un sistema basado en computadora.

• Proporciona estudios complementarios de temas selectos.
• Subraya los "conjuntos de tareas" que describen el flujo de t rabajo para

actividades selectas de ingeniería del software.
Sugiere herramientas automatizadas de interés para los temas de los capítulos.

Visite nuestra página WEB
www.mcgraw-hiH-educacion.com

McGraw-Hill
Interamericana

TM

PDF Editor

http://www.mcgraw-hiH-educacion.com

