Introduccion a la Programacion
Aprendiendo a programar usando Python como
herramienta
Universidad Nacional de Lujin



Contenidos

Conceptos basicos

1.1 Computadorasy programas . . . . . .. .. ..... .. ... ... ... ..
1.2 El mito de la maquina todopoderosa . . . . ... ... ...... .. ... .. ...
1.3 Coémo darle instrucciones a la maquina usando Python . . . . .. ... ... ...
1.3.1 Laterminal . . . . . . . . . . . e
1.3.2 Elintérprete interactivode Python . . . . . . ... ... .. ... ... ...
14 Valoresytipos . . . . ... ... ...
1.5 Variables . . . . . . . e
1.6 Funciones . . . . . . . . . . e e
1.7 Construir programasy médulos . . . . ... ... ... oL
1.8 Interaccibnconelusuario . . . . . . . . . . . . e
19 BEstadoycomputacion . . ... ... ... ... ..
19.1 Depuracionde programas . . . . . . . .. ... ..o
Programas sencillos
2.1 Construccién de programas . . . . . . . . .. ...
2.2 Realizando un programasencillo . . . . . ... ... ... ... 00 L.
2.3 PiezasdeunprogramaPython . ... ... ... ... .. ... ... .. ...,
231 Nombres . . . . . . . . e e
232 Expresiones . . .. ... ... ...
2.3.3 No s6lo de nimeros viven los programas . . . . .. ... ..........
2.3.4 Instrucciones . . . . . . . . . ..
24 Unaguiaparaeldisefio ... ....... ... ... .. ... .. ... .. ... ...
25 Calidaddesoftware. . . . . . . . . . . . .. .
Funciones
3.1 Creaciénde funciones . . . . . . . . . . . . e
3.2 Documentaciénde funciones . . . . . . . . ... e
3.3 Imprimir versusdevolver . ... .. .. ... ... ... .. ... .
3.4 Coémo usar una funcién en un programa . . . . . . . . ...
3.5 Alcancedelasvariables . . . .. .. . . . . .. ...
3.6 Devolver multiplesresultados . . . . .. ... ... ... . o L 0L
3.7 Moédulos . . . ... e e
3.71 Mboébdulosestandar . . . . . . ...

3.8 Resumen . . . . . . . . . e e e



CONTENIDOS 3

4 Decisiones 37
41 Expresionesbooleanas . .. ... .. ... ... .. .. ... L. 37
411 Expresionesdecomparacién . . .. ... .. ... ... L. 38

412 Operadoreslégicos . . . . . .. .. ... .. o 38

42 Comparacionessimples . . . .. .. .. ... ... .. 39
4.3 Mualtiples decisiones consecutivas . . . . . ... ... .. Lo L0 L 42
44 Resumen . . . . . . . . . i i e 44

5 Ciclos 46
51 Elciclodefinido . . . . . . . . . . e e 46
52 Ciclosindefinidos . . . . . . . . . . . e 48
53 Ciclointeractivo . . . . . . . . . e e 49
54 Cicloconcentinela . . .. .. . . . . . . ... 50
55 Resumen . . . . . . . . e 53

6 Validacién 54
6.1 Errores . . . . . .. e e e 54
6.2 Validaciones . . . . . . . . . . e 55
6.2.1 Entradadelusuario. . . . . . . . . . .. ... 55

6.2.2 Comprobaciones por aserciones . . . .. ... ................ 56

6.3 Resumen . . . . . . . . e e 57
Licencia y Copyright 58



Unidad 1

Algunos conceptos basicos

En esta unidad hablaremos de lo que es un programa de computadora e introduciremos
unos cuantos conceptos referidos a la programacion y a la ejecuciéon de programas. Utilizaremos
en todo momento el lenguaje de programacién Python para ilustrar esos conceptos.

1.1 Computadoras y programas

En la actualidad, la mayoria de nosotros utilizamos computadoras permanentemente: para
mandar correos electrénicos, navegar por Internet, chatear, jugar, escribir textos.

Las computadoras se usan para actividades tan disimiles como predecir las condiciones me-
teoroldgicas de la préxima semana, guardar historias clinicas, disefiar aviones, llevar la contabi-
lidad de las empresas o controlar una fébrica. Y lo interesante aqui (y lo que hace apasionante a
esta carrera) es que el mismo aparato sirve para realizar todas estas actividades: uno no cambia
de computadora cuando se cansa de chatear y quiere jugar al solitario.

Muchos definen una computadora moderna como “una maquina que almacena y manipula
informacion bajo el control de un programa que puede cambiar”. Aparecen aca dos conceptos
que son claves: por un lado se habla de una mdquina que almacena informacion, y por el otro
lado, esta maquina estd controlada por un programa que puede cambiar.

Una calculadora sencilla, de esas que s6lo tienen 10 teclas para los digitos, una tecla para
cada una de las 4 operaciones, un signo igual, encendido y CLEAR, también es una maquina
que almacena informacion y que estd controlada por un programa. Pero lo que diferencia a esta
calculadora de una computadora es que en la calculadora el programa no puede cambiar.

Un programa de computadora es una secuencia de instrucciones paso a paso que le indican a
una computadora cémo realizar una tarea dada. En la computadora uno puede modificar un
programa de acuerdo a la tarea que quiere realizar.

Las instrucciones se deben escribir en un lenguaje que nuestra computadora entienda. Los
lenguajes de programacion son lenguajes disefiados especialmente para dar érdenes a una
computadora, de manera exacta y no ambigua. Seria muy agradable poder darle las 6rdenes
a la computadora en castellano, pero el problema del castellano, y de las lenguas habladas en
general, es su ambigtiedad. Por ejemplo, si alguien nos dice “Compri el collar sin monedas”, no sa-
bremos si nos pide que compremos el collar que no tiene monedas, o que compremos un collar
y que no usemos monedas para la compra. Habrd que preguntarle a quien nos da la orden cual
es la interpretacién correcta. Pero tales dudas no pueden aparecer cuando se le dan érdenes a
una computadora.

Este curso va a tratar precisamente de cémo se escriben programas para hacer que una



1.2. El mito de la mdquina todopoderosa 5

computadora realice una determinada tarea. Vamos a usar un lenguaje especifico, Python, por-
que es sencillo y elegante, pero éste no serd un curso de Python sino un curso de programacion.

(L
*@: Sabias que...

Existen cientos de lenguajes de programacioén, y Python es uno de los més utilizados en la industria
del software. Entre sus usos mds frecuentes se destacan las aplicaciones web, computacion cientifica
e inteligencia artificial. Muchas empresas hacen extensivo uso de Python, entre ellas gigantes como
Google, Yahoo!, NASA, Facebook y Amazon. Python también suele ser incluido como herramienta
de scripting embebido en ciertos paquetes de software, por ejemplo en programas de modelado y
animacién 3D como 3ds Max y Blender, o videojuegos como Civilization IV.

1.2 El mito de la maquina todopoderosa

Muchas veces la gente se imagina que con la computadora se puede hacer cualquier cosa;
o que si bien hubo tareas que no eran posibles de realizar hace 50 afios, si lo serdn cuando las
computadoras crezcan en poder (memoria, velocidad), y se vuelvan médquinas todopoderosas.

Sin embargo eso no es asi: existen algunos problemas, llamados no computables que nunca
podrén ser resueltos por una computadora digital, por méds poderosa que ésta sea. La compu-
tabilidad es la rama de la computacién que se ocupa de estudiar qué tareas son computables y
qué tareas no lo son.

De la mano del mito anterior, viene el mito del lenguaje todopoderoso: hay problemas que
son no computables porque en realidad se utiliza algtin lenguaje que no es el apropiado.

En realidad todas las computadoras pueden resolver los mismos problemas, y eso es inde-
pendiente del lenguaje de programacion que se use. Las soluciones a los problemas computables
se pueden escribir en cualquier lenguaje de programacion. Eso no significa que no haya lengua-
jes méas adecuados que otros para la resolucién de determinados problemas, pero la adecuacién
estd relacionada con temas tales como la elegancia, la velocidad, la facilidad para describir un
problema de manera simple, etc., nunca con la capacidad de resolucién.

Los problemas no computables no son los tinicos escollos que se le presentan a la compu-
tacién. Hay otros problemas que si bien son computables demandan para su resolucién un es-
fuerzo enorme en tiempo y en memoria. Estos problemas se llaman intratables. El anélisis de
algoritmos se ocupa de separar los problemas tratables de los intratables, encontrar la solucién
mas barata para resolver un problema dado, y en el caso de los intratables, resolverlos de mane-
ra aproximada: no encontramos la verdadera solucién porque no nos alcanzan los recursos para
eso, pero encontramos una solucién bastante buena y que nos insume muchos menos recursos
(el orden de las respuestas de Google a una busqueda es un buen ejemplo de una solucién
aproximada pero no necesariamente 6ptima).

En este curso trabajaremos con problemas no s6lo computables sino también tratables. En
la carrera aprenderemos a medir los recursos que nos demanda una solucién, y empezaremos
a buscar la solucién menos demandante en cada caso particular.

Algunos ejemplos de los problemas que encararemos y de sus soluciones:

Problema 1.1. Dado un ntimero N se quiere calcular N33.



6 Unidad 1. Conceptos bésicos

Una solucién posible, por supuesto, es hacer el producto N - N --- N, que involucra 32 mul-
tiplicaciones.
Otra solucién, mucho mas eficiente es:

Calcular N - N.

Al resultado anterior mutiplicarlo por si mismo con lo cual ya disponemos de N*.

Al resultado anterior mutiplicarlo por si mismo con lo cual ya disponemos de N®.

Al resultado anterior mutiplicarlo por si mismo con lo cual ya disponemos de N°.

Al resultado anterior mutiplicarlo por si mismo con lo cual ya disponemos de N32.

Al resultado anterior mutiplicarlo por N con lo cual conseguimos el resultado deseado
con s6lo 6 multiplicaciones.

Cada una de estas dos soluciones representa un algoritmo, es decir un método de calculo,
diferente. Para un mismo problema puede haber algoritmos diferentes que lo resuelven, cada
uno con un costo distinto en términos de recursos computacionales involucrados.

s,
*@: Sabias que...
O

La palabra algoritmo no es una variacién de logaritmo, sino que proviene de algorismo. En la antigtie-
dad, los algoristas eran los que calculaban usando la numeracién arabiga y mientras que los abacistas
eran los que calculaban usando abacos. Con el tiempo el algorismo se deformé en algoritmo, influen-
ciado por el término aritmética.

A su vez, el uso de la palabra algorismo proviene del nombre de un matematico persa famoso,
en su época y para los estudiosos de esa época, Abu Abdallah Muhammad ibn Misé al-Jwarizmi,
que literalmente significa: “Padre de Ja’far Mohammed, hijo de Moises, nativo de Jiva”. Al-Juarismi,
como se lo llama usualmente, escribié en el afio 825 el libro “Al-Kitab al-mukhtasar fi hisab al-gabr
wa’'l-mugébala” (Compendio del célculo por el método de completado y balanceado), del cual sur-
gi6 también la palabra “algebra”.

Hasta hace no mucho tiempo se utilizaba el término algoritmo para referirse tinicamente a for-
mas de realizar ciertos calculos, pero con el surgimiento de la computacién, el término algoritmo
paso a abarcar cualquier método para obtener un resultado.

Problema 1.2. Tenemos que permitir la actualizacién y consulta de una guia telefénica.

Para este problema no hay una solucién tnica: hay muchas y cada una estd relacionada con
un contexto de uso. ; De qué guia estamos hablando: la guia de una pequefia oficina, un pequefio
pueblo, una gran ciudad, la guia de la Argentina? Y en cada caso ;de qué tipo de consulta
estamos hablando: hay que imprimir un listado una vez por mes con la guia completa, se trata
de una consulta en linea, etc.? Para cada contexto hay una solucién diferente, con los datos
guardados en una estructura de datos apropiada, y con diferentes algoritmos para la actualizacién
y la consulta.

1.3 Coémo darle instrucciones a la maquina usando Python



1.3. Cémo darle instrucciones a la miaquina usando Python 7

2:':: Sabias que...
Python fue creado a finales de los afios 80 por un programador holandés llamado Guido van Ros-
sum, quien se desempefi6 como lider del desarrollo del lenguaje hasta 2018.

La version 2.0, lanzada en 2000, fue un paso muy importante para el lenguaje ya que era mucho
mads madura, incluyendo un recolector de basura. La versién 2.2, lanzada en diciembre de 2001, fue
también un hito importante ya que mejor6 la orientacién a objetos. La tltima versién de esta linea
es la 2.7 que fue lanzada en noviembre de 2010 y estard vigente hasta 2020.

En diciembre de 2008 se lanz6 la rama 3.0 (en este libro utilizamos la versién 3.7, de junio de
2018). Python 3 fue disefiado para corregir algunos defectos de disefio en el lenguaje, y muchos de
los cambios introducidos son incompatibles con las versiones anteriores. Por esta razén, las ramas
2.xy 3.x coexisten con distintos grados de adopcioén.

A Atencion

De forma tal de aprovechar al méximo este libro, recomendamos instalar Python 3 en una compu-
tadora, y acompanar la lectura probando todos los ejemplos de c6digo y haciendo los ejercicios.

En https://www.python.org/downloads/ se encuentran los enlaces para descargar Python,
yenhttp://docs.python.org.ar/tutorial/3/interpreter.html hay més informacién acerca
de como ejecutar el intérprete en cada sistema operativo.

El lenguaje Python nos provee de un intérprete, es decir un programa que interpreta las 6r-
denes que le damos a medida que las escribimos. La forma mas tipica de invocar al intérprete
es ejecutar el comando python3 en la terminal.

1.3.1 La terminal

La terminal o consola del sistema operativo permite ingresar 6rdenes a la computadora en for-
ma de lineas de texto. Los tres sistemas operativos mas populares (Windows, Mac OS y Linux)
estdn equipados con una terminal. Esta fuera del alcance de este apunte cubrir el uso detallado
de la terminal, pero para empezar serd suficiente con saber cémo acceder a la misma.

Para abrir la terminal:

e En Windows, presionar las teclas +[ R, luego escribir cmd y presionar [Enter|.
e En Mac OS, presionar las teclas + [Espacio], luego escribir terminal y presionar Enter|.
e En Linux (Ubuntu), presionar + +[T.

La terminal deberia mostrar algo como se ve en la Figura 1.1. En la figura se muestra la
terminal en un sistema operativo Linux; en otros sistemas operativos puede verse ligeramente
diferente, pero siempre deberia mostrar un espacio de texto con un cursor para escribir.

1.3.2 El intérprete interactivo de Python

Una vez que accedimos a la terminal del sistema operativo, el préximo paso es abrir el in-
térprete de Python. Para eso, escribimos python3 y presionamos [Enter).
La terminal deberia mostrar algo como se ve en la Figura 1.2.


https://www.python.org/downloads/
http://docs.python.org.ar/tutorial/3/interpreter.html

8 Unidad 1. Conceptos bésicos
0 usuario@x1:~ Q| = x
Figura 1.1: La terminal en un sistema operativo Linux.
Gl usuario@x1:~ Q fl = x
Figura 1.2: El intérprete de Python.
A partir de ahora vamos a mostrar el contenido de la terminal utilizando el siguiente forma-
to:

$ python3 ©

Python 3.6.0 (default, Dec 23 2016, 11:28:25)

[GCC 6.2.1 20160830] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> @

@ Las lineas que comienzan con $ indican 6rdenes que le damos al sistema operativo (en

este caso la orden es python3, es decir abrir el intérprete de Python).

@ Para orientarnos, el intérprete de Python muestra los simbolos >>> (llamaremos a esto el

prompt),indicando que podemos escribir a continuacién una sentencia u orden que serd evaluada
por Python (en lugar de ser evaluada directamente por el sistema operativo).

Algunas sentencias sencillas, por ejemplo, permiten utilizar el intérprete como una calcula-

dora simple con nliimeros enteros. Para esto escribimos la expresion que queremos resolver luego
del prompt y presionamos la tecla [Enter|. El intérprete de Python evaltia la expresién y muestra
el resultado en la linea siguiente. Luego nos presenta nuevamente el prompt.

>>> 243
5

>>>

Python permite utilizar las operaciones +, -, *, /, // y ** (suma, resta, multiplicacién, divi-

sién, division entera y potencia). La sintaxis es la convencional (valores intercalados con ope-
raciones), y se puede usar paréntesis para modificar el orden de asociacién natural de las ope-
raciones (potencia, producto/divisién, suma/resta).

>>> §5*7



1.4. Valores y tipos 9

35

>>> 243%7
23

>>> (2+3)*7
35

>>> 10/4
2.5

>>

\Y

10//4

>>> §Xx)

25

1.4 Valoresy tipos

En la operacién 5 * 7 cuyo resultado es 35, decimos que 5, 7 y 35 son valores. En Python,
cada valor tiene un tipo de dato asociado. El tipo de dato del valor 35 es niimero entero.

Hay dos tipos de datos numéricos: los niimeros enteros y los niimeros de punto flotante.
Los ntiimeros enteros (42, 0, -5, 10000) representan el valor entero exacto que ingresemos. Los
nimeros de punto flotante (5.3, -98.28109, 0. 0)! son parecidos a la notacién cientifica, alma-
cenan una cantidad limitada de digitos significativos y un exponente, por lo que sirven para
representar magnitudes en forma aproximada. Segtin los operandos y las operaciones que ha-
gamos usaremos la aritmética de los enteros o de los de punto flotante.

Vamos a elegir enteros cada vez que necesitemos recordar un valor exacto: la cantidad de
alumnos, cudntas veces repito una operacién, un nimero de documento, el dinero en una cuenta
bancaria®.

Cuando operamos con nimeros enteros, el resultado es exacto:

>>> 1 + 2

3

Vamos a elegir punto flotante cuando nos interese mas la magnitud y no tanto la exactitud, lo
cual suele ser tipico en la fisica y la ingenieria: la temperatura, el seno de un dngulo, la distancia
recorrida, el nadmero de Avogadro, el factorial de un numero>.

Cuando hay nimeros de punto flotante involucrados en la operacion, el resultado es apro-

ximado:

>>> 0.1 + 0.2
0.30000000000000004

Ademads de efectuar operaciones matematicas, Python nos permite trabajar con porciones
de texto, que llamaremos cadenas, y que se introducen entre comillas simples (') o dobles ("):

>>> 'jHola Mundo!'
"iHola Mundo!'

>>> 'abcd' + 'efgh'
'abcdefgh'

>>> 'abcd' * 3
'abcdabcdabcd

!Notar que se utiliza el punto decimal y no la coma decimal.

2;Pero la moneda no tiene decimales?, jsi!, pero conviene representar el saldo como la cantidad total de centavos,
que es un namero entero, ya que es muy importante almacenar la suma exacta que hay en la cuenta.

3;Pero el factorial no es entero?, jsil, pero si lo necesitamos, por ejemplo, para calcular un polinomio de Taylor, el
factorial figura como denominador y ahi nos importa més su magnitud que su valor exacto.



10 Unidad 1. Conceptos bésicos
1.5 Variables

Python nos permite asignarle un nombre a un valor, de forma tal de “recordarlo” para usarlo
posteriormente, mediante la sentencia <nombre> = <expresidn>.

>>> X = 8
>>> X

128

>>> lenguaje = 'Python'

>>> 'Estoy programando en ' + lenguaje
'Estoy programando en Python'

En este ejemplo creamos tres variables, llamadas x, y y lenguaje, y las asociamos a los valores
8,64y 'Python', respectivamente. Luego podemos usar esas variables como parte de cualquier
expresion, y en el momento de evaluarla, Python reemplazaré las variables por su valor asocia-
do.

1.6 Funciones

Para efectuar algunas operaciones particulares necesitamos introducir el concepto de fun-
cion:

>>> abs(10)

10

>>> abs(-10)

10

>>> max(5, 9, -3)
9

>>> min(5, 9, -3)
-3

>>> len("abcd")
4

Una funcién es un fragmento de programa que permite efectuar una operacion determinada.
abs, max, miny len son ejemplos de funciones de Python: la funcién abs permite calcular el valor
absoluto de un ntimero, max y min permiten obtener el maximo y el minimo entre un conjunto
de ntimeros, y len permite obtener la longitud de una cadena de texto.

Una funcién puede recibir 0 o mds pardmetros o arqumentos (expresados entre entre parén-
tesis, y separados por comas), efecttia una operacion y devuelve un resultado. Por ejemplo, la
funcién abs recibe un parametro (un niimero) y su resultado es el valor absoluto del ntimero.

parametros

resultado

> funcion

Figura 1.3: Una funcién recibe parametros y devuelve un resultado.



1.7. Construir programas y moédulos 11

Python viene equipado con muchas funciones, pero ya hemos dicho que, como programa-
dores, debiamos ser capaces de escribir nuevas instrucciones para la computadora. Los progra-
mas de correo electrénico, navegacién web, chat, juegos, procesamiento de texto o prediccién
de las condiciones meteorolédgicas de los proximos dias no son mas que grandes programas
implementados introduciendo nuevas funciones a la maquina, escritas por uno o muchos pro-
gramadores.

1.7 Construir programas y médulos

El intérprete interactivo es muy ttil para probar cosas, acceder a la ayuda, inspeccionar el
lenguaje, etc, pero tiene una gran limitacién: jcuando cerramos el intérprete perdemos todas las
definiciones! Para conservar los programas que vamos escribiendo, debemos escribir el c6digo
utilizando algtin editor de texto, y guardar el archivo con la extensién . py.

(L
*@: Sabias que...

El intérprete interactivo de python nos provee una ayuda en linea; es decir, nos puede dar la docu-
mentacién de cualquier funcién o instruccién. Para obtenerla llamamos a la funcién help(). Si le
pasamos por parametro el nombre de una funcién (por ejemplo help(abs) o help(range)) nos da-
ré la documentacion de esa funcién. Para obtener la documentacién de una instruccién la debemos
poner entre comillas; por ejemplo: help('for'), help('return').

En el c6digo 1.1 se muestra nuestro primer programa, cuad2. py, que nos permite calcular la
suma de los cuadrados de dos ntimeros.

Cédigo 1.1 cuad2.py: Imprime la suma de los cuadrados de dos nimeros

1n=2
>m=3
s print("La suma de los cuadrados de ", n, "y ", m, " es ", n*n+m*m)

En la dltima linea del programa introducimos una funcién nueva: print (). La funcién print
recibe uno o mas pardmetros de cualquier tipo y los imprime en la pantalla. ;Por qué no habia-
mos utilizado print hasta ahora?

En el modo interactivo, Python imprime el resultado de cada expresién luego de evaluarla:

>>> 2 + 2
4

En cambio, cuando Python ejecuta un programa .py no imprime absolutamente nada en la
pantalla, a menos que le indiquemos explicitamente que lo haga. Por eso es que en cuad2.py
debemos llamar a la funcién print para mostrar el resultado.

Para ejecutar el programa debemos abrir una consola del sistema y ejecutar python cuad2.
py:

$ python3 cuad2.py

La suma de los cuadrados de 2 y 3 es 13



12 Unidad 1. Conceptos bésicos

1.8 Interaccion con el usuario

Ya vimos que la funcién print nos permite mostrar informacién al usuario del programa.
En algunos casos también necesitaremos que el usuario ingrese datos al programa. Por ejemplo:

Problema 1.8.1. Escribir en Python un programa que pida al usuario que escriba su nombre, y
luego lo salude.

Coédigo 1.2 saludar.py: Saluda al usuario posr su nombre

1 nombre = input("Por favor ingrese su nombre: ")
> saludo = "Hola " + nombre + "!"
3 print(saludo)

Solucién.

En el Cédigo 1.2 usamos la funcién input para pedirle al usuario su nombre. input presenta
al usuario el mensaje que le pasamos por pardmetro, y luego le permite ingresar una cadena

de texto. Cuando el usuario presiona la tecla [Enter), input devuelve la cadena ingresada. Luego
concatenamos cadenas de caracteres para generar el saludo, y llamamos a print para mostrar
el saludo al usuario.

Para ejecutar el programa, nuevamente escribimos en la consola del sistema:

$ python3 saludar.py
Por favor ingrese su nombre: Alan
Hola Alan!

Problema 1.8.2. Escribir en Python un programa que haga lo siguiente:
1. Muestra un mensaje de bienvenida por pantalla.
2. Le pide al usuario que introduzca dos ntimeros enteros nl y n2.
3. Imprime la suma de los cuadrados de los dos ntimeros enteros introducidos.
4. Muestra un mensaje de despedida por pantalla.

Solucién. La solucién a este problema se encuentra en el Cédigo 1.3.

Coédigo 1.3 suma_cuadrados.py: Imprime los cuadrados solicitados

print("Se calculard la suma de los cuadrados")

nl = int(input("Ingrese un numero entero: "))
n2 = int(input("Ingrese otro numero entero: "))
suma = 0

suma = suma + nl*nl

suma = suma + n2*n2

© ® N o U A W N -

print(suma)
print("Es todo por ahora")

-
5]

Como siempre, podemos ejecutar el programa en la consola del sistema:



1.9. Estado y computacion 13

$ python3 suma_cuadrados.py

Se calculard la suma de los cuadrados
Ingrese un nimero entero: 5

Ingrese otro nimero entero: 8

61

Es todo por ahora

En el Cédigo 1.3 aparece una funcién que no habiamos utilizado hasta ahora: int. ;Por qué
es necesario utilizar int para resolver el problema?

En un programa Python podemos operar con cadenas de texto o con ntimeros. Las represen-
taciones dentro de la computadora de un nimero y una cadena son muy distintas. Por ejemplo,
los ntiimeros 0, 42 y 12345678 se almacenan como nimeros binarios ocupando todos la misma
cantidad de memoria (tipicamente 4 u 8 bytes), mientras que las cadenas "0", "42" y "12345678
" son secuencias de caracteres, en las que cada digito se representa como un caracter y cada
caracter ocupa tipicamente 1 byte.

La funcién input interpreta cualquier valor que el usuario ingresa mediante el teclado co-
mo una cadena de caracteres. Es decir, input siempre devuelve una cadena, incluso aunque el
usuario haya ingresado una secuencia de digitos.

Por eso es que introducimos la funcién int, que devuelve el pardmetro que recibe convertido
a un numero entero:

>>> int("42")

42

1.9 Estado y computacion

Ao largo de la ejecucion de un programa las variables pueden cambiar el valor con el que
estdn asociadas. En un momento dado uno puede detenerse a observar a qué valor se refiere
cada una de las variables del programa. Esa “foto” que indica en un momento dado a qué valor
hace referencia cada una de las variables se denomina estado. También hablaremos del estado de
una variable para indicar a qué valor esta asociada esa variable, y usaremos la notacién n — 13
para describir el estado de la variable n (e indicar que estd asociada al namero 13).

A medida que las variables cambian de valores a los que se refieren, el programa va cambian-
do de estado. La sucesiéon de todos los estados por los que pasa el programa en una ejecucién
dada se denomina computacion.

Para ejemplificar estos conceptos veamos qué sucede cuando se ejecuta el programa
suma_cuadrados.py:

Instrucciéon Qué sucede Estado
print("Se calculard la suma  Se despliega el texto “Se calcula-
de los cuadrados") ra la suma de los cuadrados” en
la pantalla.
nl = int(input("Ingrese Se despliega el texto “Ingrese un
un nimero entero: ")) numero entero: ” en la pantalla y

el programa se queda esperando
que el usuario ingrese un name-
ro.




14 Unidad 1. Conceptos bésicos

Supondremos que el usuario in- nl —3
gresa el namero 3 y luego opri-

me la tecla [Enter|,

Se asocia el nimero 3 con la va-

riable n1.
n2 = int(input("Ingrese otro Se despliega el texto “Ingrese nl —3
nimero entero: ")) otro nimero entero:” en la pan-

talla y el programa se queda es-
perando que el usuario ingrese

un namero.

Supondremos que el usuario in- nl —3
gresa el nimero 5 y luego opri- n2 -5

me la tecla [Enter|,

Se asocia el niimero 5 con la va-

riable n2.
suma = 0 Se asocia el numero 0 con la va- nl— 3
riable suma. n2 -5
suma — 0
suma = suma + nl*nl Se asocia a la variable suma,lasu- nl — 3
ma del cuadrado del valor dela n2 —5
variable nl con el valor de la va- suma — 9
riable suma.
suma = suma + n2*n2 Se asocia a la variable suma,lasu- nl — 3
ma del cuadrado del valordela n2 -5
variable n2 con el valor de la va- suma -
riable suma. 36
print(suma) Se imprime por pantalla el valor nl1 -3
de suma (36) n2 -5
suma —
36
print("Es todo por ahora") Se despliega por pantallael men- nl1 — 3
saje “Es todo por ahora” n2 -5
suma —
36

1.9.1 Depuracién de programas

Una manera de seguir la evolucién del estado es insertar instrucciones de impresién en sitios
criticos del programa. Esto nos serd de utilidad para detectar errores y también para comprender
cémo funcionan determinadas instrucciones.

Por ejemplo, podemos insertar llamadas a la funcién print en el Cédigo 1.3 para inspeccio-
nar el contenido de las variables:

print("Se calculard la suma de los cuadrados")
nl = int(input("Ingrese un ndmero entero: "))

print("el valor de nl es:", nl)
n2 = int(input("Ingrese otro numero entero: "))



1.9. Estado y computacion

15

print("el valor de n2 es:", n2)

suma = 0

print("el valor de suma es:", suma)
suma = suma + nl*nl

print("el valor de suma es:", suma)
suma = suma + n2*n2

print("el valor de suma es:", suma)

print(suma)
print("Es todo por ahora")

En este caso, la salida del programa sera:

$ python3 suma cuadrados.py
Se calculard la suma de los cuadrados
Ingrese un numero entero: 5
el valor de nl es: 5

Ingrese otro nimero entero: 8
el valor de n2 es: 8

el valor de suma es: 0

el valor de suma es: 25

el valor de suma es: 61

61

Es todo por ahora

Si utilizamos este método para depurar el programa, tendremos que recordar eliminar las

llamadas print una vez que terminemos.



Unidad 2

Programas sencillos

En esta unidad empezaremos a resolver problemas sencillos, y a programarlos en Python.

2.1 Construccién de programas

Cuando nos disponemos a escribir un programa debemos seguir una cierta cantidad de pa-
sos para asegurarnos de que tendremos éxito en la tarea. La accién irreflexiva (me siento frente
a la computadora y escribo rdpidamente y sin pensar lo que me parece que es la solucién) no
constituye una actitud profesional (e ingenieril) de resolucién de problemas. Toda construccién
tiene que seguir una metodologia, un protocolo de desarrollo.

Existen muchas metodologias para construir programas, pero en este curso aplicaremos una
sencilla, que es adecuada para la construccion de programas pequefios, y que se puede resumir
en los siguientes pasos:

1. Analizar el problema. Entender profundamente cudl es el problema que se trata de re-
solver, incluyendo el contexto en el cual se usara.

Una vez analizado el problema, asentar el analisis por escrito.

2. Especificar la solucién. Este es el punto en el cual se describe qué debe hacer el programa,
sin importar el cémo. En el caso de los problemas sencillos que abordaremos, deberemos
decidir cuéles son los datos de entrada que se nos proveen, cudles son las salidas que
debemos producir, y cudl es la relacién entre todos ellos.

Al especificar el problema a resolver, documentar la especificacién por escrito.

3. Disefiar la solucién. Este es el punto en el cual atacamos el cémo vamos a resolver el
problema, cuédles son los algoritmos y las estructuras de datos que usaremos. Analiza-
mos posibles variantes, y las decisiones las tomamos usando como dato de la realidad el
contexto en el que se aplicara la solucién, y los costos asociados a cada disefio.

Luego de disefiar la solucién, asentar por escrito el disefio, asegurdndonos de que esté com-

pleto.

4. Implementar el disefio. Traducir a un lenguaje de programacion (en nuestro caso, y por
el momento, Python) el disefio que elegimos en el punto anterior.



2.2. Realizando un programa sencillo 17

La implementacién también se debe documentar, con comentarios dentro y fuera del cédigo,
al respecto de qué hace el programa, cémo lo hace y por qué lo hace de esa forma.

5. Probar el programa. Disefiar un conjunto de pruebas para probar cada una de sus partes
por separado, y también la correcta integracion entre ellas. Utilizar la depuracion como
instrumento para descubir dénde se producen ciertos errores.

Al ejecutar las pruebas, documentar los resultados obtenidos.

6. Mantener el programa. Realizar los cambios en respuesta a nuevas demandas.

Cuando se realicen cambios, es necesario documentar el andlisis, la especificacién, el disefio,
la implementacion y las pruebas que surjan para llevar estos cambios a cabo.

2.2 Realizando un programa sencillo

Al leer un articulo en una revista norteamericana que contiene informacién de longitudes
expresadas en millas, pies y pulgadas, queremos poder convertir esas distancias de modo que
sean f4ciles de entender. Para ello, decidimos escribir un programa que convierta las longitudes
del sistema inglés al sistema métrico decimal.

Antes de comenzar a programar, utilizamos la guia de la seccién anterior, para analizar,
especificar, disefiar, implementar y probar el problema.

1. Andlisis del problema. En este caso el problema es sencillo: nos dan un valor expresado
en millas, pies y pulgadas y queremos transformarlo en un valor en el sistema métrico
decimal. Sin embargo hay varias respuestas posibles, porque no hemos fijado en qué uni-
dad queremos el resultado. Supongamos que decidimos que queremos expresar todo en
metros.

2. Especificacién. Debemos establecer la relaciéon entre los datos de entrada y los datos de
salida. Ante todo debemos averiguar los valores para la conversién de las unidades bési-
cas. Buscando en Internet encontramos la siguiente tabla:

e 1 milla = 1.609344 km
e 1 pie =30.48 cm
e 1 pulgada =2.54 cm

A Atencion

A lo largo de todo el curso usaremos punto decimal, en lugar de coma decimal, para repre-
sentar valores no enteros, dado que esa es la notacién que utiliza Python.

La tabla obtenida no traduce las longitudes a metros. La manipulamos para llevar todo a
metros:

e 1 milla = 1609.344 m
e 1 pie =0.3048 m



18

Unidad 2. Programas sencillos

e 1 pulgada = 0.0254 m

Si una longitud se expresa como L millas, F pies y P pulgadas, su conversién a metros se
calculara como:

M =1609.344 =+ L 4 0.3048 = F 4 0.0254 = P

Hemos especificado el problema. Pasamos entonces a la préxima etapa.

. Disefo. La estructura de este programa es sencilla: leer los datos de entrada, calcular la

solucién, mostrar el resultado, o Entrada-Cilculo-Salida.

Antes de escribir el programa, escribiremos en pseudocédigo (un castellano preciso que se
usa para describir lo que hace un programa) una descripcién del mismo:

Leer cuantas millas tiene la longitud dada
(y referenciarlo con la variable millas)

Leer cuantos pies tiene la longitud dada
(y referenciarlo con la variable pies)

Leer cuantas pulgadas tiene la longitud dada
(y referenciarlo con la variable pulgadas)

Calcular metros = 1609.344 * millas +
0.3048 * pies + 0.0254 * pulgadas

Mostrar por pantalla la variable metros

. Implementacién. Ahora estamos en condiciones de traducir este pseudocédigo a un pro-

grama en lenguaje Python:

Cédigo 2.1 ametrico.py: Convierte medidas inglesas a sistema metrico

1 print("Convierte medidas inglesas a sistema metrico")

2

3

millas = int(input("Cudntas millas?: "))

4 pies = int(input("Y cuantos pies?: "))

5

6
7
8

pulgadas = int(input("Y cuantas pulgadas?: "))

metros = 1609.344 * millas + 0.3048 * pies + 0.0254 * pulgadas
print("La longitud es de ", metros, " metros")

5. Prueba. Probaremos el programa con valores para los que conocemos la solucién:

e 1 milla, 0 pies, 0 pulgadas (el resultado debe ser 1609.344 metros).
e O millas, 1 pie, 0 pulgada (el resultado debe ser 0.3048 metros).
e O millas, 0 pies, 1 pulgada (el resultado debe ser 0.0254 metros).

La prueba la documentaremos con la sesién de Python correspondiente a las tres invoca-
ciones a ametrico.py.



2.3. Piezas de un programa Python 19

En la seccién anterior hicimos hincapié en la necesidad de documentar todo el proceso de
desarrollo. En este ejemplo la documentacién completa del proceso lo constituye todo lo escrito
en esta seccion.

2.3 Piezas de un programa Python

Cuando empezamos a hablar en un idioma extranjero es posible que nos entiendan pese a
que cometamos errores. No sucede lo mismo con los lenguajes de programacion: la computado-
ra no nos entenderé si nos desviamos un poco de alguna de las reglas.

Por eso es que para poder empezar a programar en Python es necesario conocer los elemen-
tos que constituyen un programa en dicho lenguaje y las reglas para construirlos.

2.3.1 Nombres

Ya hemos visto que se usan nombres para denominar a los programas (ametrico) y para de-
nominar a las funciones dentro de un médulo (main). Cuando queremos dar nombres a valores
usamos variables (millas, pies, pulgadas, metros). Todos esos nombres se llaman identificadores
y Python tiene reglas sobre qué es un identificador valido y qué no lo es.

Unidentificador comienza con una letra o con guién bajo (_) y luego sigue con una secuencia
de letras, nimeros y guiones bajos. Los espacios no estan permitidos dentro de los identifica-
dores.

Los siguientes son todos identificadores validos de Python:

hola
holal2t
_hola
Hola

Python distingue maytsculas de mintisculas, asi que Hola es un identificador y hola es otro
identificador.

Por convencién, no usaremos identificadores que empiezan con mayuscula.

Los siguientes son todos identificadores invalidos de Python:

hola al2t
8hola
hola\%
Hola*9

Python reserva 31 palabras para describir la estructura del programa, y no permite que se
usen como identificadores. Cuando en un programa nos encontramos con que un nombre no
es admitido pese a que su formato es vélido, seguramente se trata de una de las palabras de
esta lista, a la que llamaremos de palabras reservadas. Esta es la lista completa de las palabras
reservadas de Python:

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with

as elif if or yield



20 Unidad 2. Programas sencillos
assert else import pass
break except in raise

2.3.2 Expresiones

Una expresién es una porcién de cédigo Python que produce o calcula un valor (resultado).

e La expresién mas sencilla es un valor literal. Por ejemplo, la expresiéon 12345 produce el
valor numérico 12345.

e Una expresién puede ser una variable, y el valor que produce es el que tiene asociada
la variable en el estado. Por ejemplo, si x — 5 en el estado, entonces el resultado de la
expresion x es el valor 5.

e Usamos operaciones para combinar expresiones y construir expresiones mas complejas:

— Si x es como antes, x + 1 es una expresion cuyo resultado es 6.

— Sienel estadomillas — 1, pies — 0y pulgadas — 0, entonces 1609.344 * millas +

— La exponenciacion se representa con el simbolo **. Por ejemplo, x**3 significa x°.

0.3048 * pies + 0.0254 * pulgadas es una expresion cuyo resultado es 1609.344.
3

— Se pueden usar paréntesis para indicar un orden de evaluacién: ((b * b) - (4 *

a *xc)) / (2 * a).

Igual que en la notacién matematica, si no hay paréntesis en la expresién, primero
se agrupan las exponenciaciones, luego los productos y cocientes, y luego las sumas
y restas.

Hay que prestar atencién con lo que sucede con los cocientes:

* La expresiéon 6 / 4 produce el valor 1.5.
* Laexpresion6 // 4 produce el valor 1, que es el resultado de la division entera
entre 6 y 4.
* La expresién 6 % 4 produce el valor 2, que es el resto de la divisién entera entre
6y4.
Como vimos en la seccién 1.4, los niimeros pueden ser tanto enteros (0, 111, -24,
almacenados internamente en forma exacta), como reales (0.0, 12.5, -12.5, repre-
sentados internamente en forma aproximada como ntimeros de punto flotante). Dado
que los nlimeros enteros y reales se representan de manera diferente, se comportan
de manera diferente frente a las operaciones. En Python, los niimeros enteros se
denominan int (de integer), y los nimeros reales float (de floating point).

e Una expresion puede ser una llamada a una funcion: si f es una funcién que recibe un
pardmetro, y x es una variable, la expresion f (x) produce el valor que devuelve la funcién
f al invocarla pasandole el valor de x por parametro.

Algunos ejemplos:

— input() produce el valor ingresado por teclado tal como se lo digita.

— abs(x) produce el valor absoluto del nimero pasado por parametro.

Ejercicio 2.1. Aplicando las reglas matemaéticas de asociatividad, decidir cudles de las siguientes
expresiones son iguales entre si:



2.3. Piezas de un programa Python 21

a) ((b *b) - (4*ax*c)) / (2*a)
b) ((b *b) - (4 *a*c)) // (2*a)
) (b*b-4%axc)/ (2%a)
d)b*b-4*a*xc/2%*a

e) (b *b) - (4*a*c/2*a)
fy1/2*b

g) b /2

Ejercicio 2.2. Escribir un programa que le asigne a a, b y c los valores 10, 100 y 1000 respectiva-
mente y evalte las expresiones del ejercicio anterior.

Ejercicio 2.3. Escribir un programa que le asigne a a, b y c los valores 10.0, 100.0 y 1000.0 res-
pectivamente y evaltie las expresiones del ejercicio anterior.

2.3.3 No sélo de nimeros viven los programas

No s6lo tendremos expresiones numéricas en un programa Python. También puede haber
expresiones que sean una cadena de caracteres (letras, digitos, simbolos, etc.), por ejemplo "Ana".

Como en la seccién anterior, veremos las reglas de qué constituyen expresiones con carac-
teres:

e Una expresion puede ser simplemente una cadena de texto. El resultado de la expresiéon
literal 'Ana’' es precisamente el valor 'Ana’.

e Una variable puede estar asociada a una cadena de texto: si amiga — 'Ana’' en el estado,
entonces el resultado de la expresioén amiga es el valor 'Ana’.

e Se puede usar comillas simples o dobles para representar cadenas simples: 'Ana’ y "Ana"
son equivalentes.

e Se puede usar tres comillas (simples o dobles) para representar cadenas que incluyen més
de una linea de texto:

martin_fierro = """Aqui me pongo a cantar
al compas de la viglela,

que al hombre que lo desvela

una pena estraordinaria,

como el ave solitaria

con el cantar se consuela."""

e Usamos operaciones para combinar expresiones y construir expresiones més complejas,
pero atencién con qué operaciones estdn permitidas sobre cadenas:

— El signo + no representa la suma sino la concatenacion de cadenas: Si amiga es como
antes, amiga + 'Laura’ es una expresion cuyo valor es AnaLaura.



22 Unidad 2. Programas sencillos

A Atencion

No se puede sumar cadenas con ntimeros.

>>> amiga="Ana"
>>> amiga+'lLaura’
"AnalLaura’
>>> amiga+3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects
>>>

— El signo * permite repetir una cadena una cantidad de veces: amiga * 3 es una ex-
presion cuyo valor es 'AnaAnaAna’.

A Atencion

No se pueden multiplicar cadenas entre si

>>> amiga * 3
"AnaAnaAna’
>>> amiga * amiga
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'

2.3.4 Instrucciones

Las instrucciones son las 6rdenes que entiende Python. En general cada linea de un progra-
ma Python corresponde a una instruccién. Algunos ejemplos de instrucciones que ya hemos
utilizado:

e La instruccién de asignacién <nombre> = <valor>.

e Lainstruccién return <expresién>, que provoca que una funcién devuelva el valor resul-
tante de evaluar la expresion.

e Lainstruccién més simple que hemos utilizado es la que contiene una tinica <expresién>,
y el efecto de dicha instruccién es que Python evaltia la expresion y descarta su resul-
tado. El siguiente es un programa vélido en el que todas las instrucciones son del tipo
<expresiodn>:

0

23.9

abs(-10)

"Este programa no hace nada uatil : ("

2.4 Una guia para el disefo

En su articulo “How to program it”, Simon Thompson plantea algunas preguntas a sus
alumnos que son muy ttiles para la etapa de disefio:



2.5. Calidad de software 23

e ;Has visto este problema antes, aunque sea de manera ligeramente diferente?
e ;Conoces un problema relacionado? ;Conoces un programa que pueda ser ttil?

e Observa la especificacion. Intenta encontrar un problema que te resulte familiar y que
tenga la misma especificacién o una parecida.

e Supongamos que hay un problema relacionado, y que ya fue resuelto. ;Puedes usarlo?
(Puedes usar sus resultados? ;Puedes usar sus métodos? ;Puedes agregarle alguna parte
auxiliar a ese programa del que ya dispones?

e Sino puedes resolver el problema propuesto, intenta resolver uno relacionado. ;Puedes
imaginarte uno relacionado que sea mas fécil de resolver? ;Uno maés general? ;Uno més
especifico? ;Un problema anédlogo?

e ;Puedes resolver una parte del problema? ;Puedes sacar algo ttil de los datos de entrada?
(Puedes pensar qué informacion es ttil para calcular las salidas? ; De qué manera se puede
manipular las entradas y las salidas de modo tal que estén “mads cerca” unas de las otras?

e ;Utilizaste todos los datos de entrada? ; Utilizaste las condiciones especiales sobre los da-
tos de entrada que aparecen en el enunciado? ;Has tenido en cuenta todos los requisitos
que se enuncian en la especificacion?

2.5 Calidad de software

Los programas que hemos construido hasta ahora son pequefios y simples. Existen pro-
yectos de software profesionales de tamafios muy diversos, yendo desde programas sencillos
desarrollados por una tnica persona hasta proyectos gigantescos, con millones de lineas de
cédigo y desarrollados durante afios por miles de personas.

L
:@: Sabias que...
o

Uno de los proyectos de cédigo abierto mds colosales es el nticleo del sistema operativo Linux. Fue
publicado por primera vez en 1991, y aun hoy sigue en desarrollo activo. El cédigo fuente es pt-
blico?, y cualquiera puede contribuir aportando mejoras. Hasta la versién 4.13 publicada en 2017
participaron mds de 15000 personas, creando en total més de 24 millones de lineas de cédigo.

*https://github.com/torvalds/linux

Cuanto mds grande es un proyecto de software, mds dificil es su construccién y manteni-
miento, y mds tenemos que prestar atencion a la calidad con la que esta construido. Presentamos
aqui una lista no completa de propiedades que contribuyen a la calidad, y algunas preguntas
que podemos hacer para medir cudnto contribuye cada factor:

e Confiabilidad: ;El sistema resuelve el problema inicial en forma correcta? ;Lo resuelve
siempre o a veces falla? ;Cudantas veces falla en un periodo de tiempo?

o Testabilidad: ;Qué tan facil es probar que el sistema funciona correctamente? ; Hay algtin
proceso de pruebas automaéticas o manuales?

e Performance: ;Cudnto tarda el sistema en producir un resultado? ;Cuantos recursos con-
sume (memoria, espacio en disco, etc.)?


https://github.com/torvalds/linux

24 Unidad 2. Programas sencillos

e Usabilidad: ;Puede un nuevo usuario aprender a utilizar el sistema facilmente? ;Las ope-
raciones més comunes son faciles de realizar?

e Mantenibilidad: ;Qué tan legible y entendible es el c6digo? ;Qué tan facil es modificar
el comportamiento del programa o agregar nuevas funcionalidades?

o Escalabilidad: ;C6mo se comporta el sistema cuando se incrementa la demanda (canti-
dad de usuarios, cantidad de datos, etc.)?

e Portabilidad: ;El sistema puede funcionar en diferentes plataformas (arquitecturas de
procesador, sistemas operativos, navegadores web, etc.)?

e Seguridad: ;Los datos sensibles estan protegidos de ataques informaéticos? ;Qué tan di-
ficil es para un atacante tomar el control, desestabilizar o dafiar el sistema?

Por supuesto, cada proyecto es particular y algunos de las propiedades mencionadas ten-
dran mas o menos prioridad segtin el caso. En particular en este curso nos concentraremos més
en que nuestros programas sean confiables y mantenibles, y también prestaremos atencién a la
performance (sobre todo al comparar diferentes algoritmos).



Unidad 3

Funciones

3.1 Creacion de funciones

En la primera unidad vimos que el programador puede definir nuevas instrucciones, que
llamamos funciones. Una funcion es un fragmento de programa que permite efectuar una ope-
racién determinada.

Una funcién puede recibir ninguno, uno o mas parametros (expresados entre paréntesis, y
separados por comas), efectiia una operacion, y puede o no devolver un resultado.

parametros

resultado

> funciéon

Figura 3.1: Una funcién recibe pardmetros y devuelve un resultado.

Si queremos crear una funcién (que llamaremos hola_marta) que devuelve la cadena de tex-
to “Hola Marta! Estoy programando en Python.”, lo que debemos hacer es ingresar el siguiente
conjunto de lineas en Python:

>>> def hola marta(): @
return "Hola Marta! Estoy programando en Python." @

>>>

@ def hola_marta(): le indica a Python que estamos escribiendo una funcién cuyo nombre
es hola_marta, y los paréntesis indican que la funcién no recibe ningtin parametro.

@ La instruccidn return <expresion> indica cudl serd el resultado de la funcién.

Lasangria! con la que se escribe la linea return esimportante: le indica a Python que estamos
escribiendo el cuerpo de la funcién (es decir, las instrucciones que la componen), que podria
estar formado por méas de una sentencia. La linea en blanco que dejamos luego de la instrucciéon
return le indica a Python que terminamos de escribir la funcién (y por eso aparece nuevamente
el prompt).

Si ahora queremos que la méquina ejecute la funcién hola_marta, debemos escribir
hola_marta() a continuacién del prompt de Python:

ILa sangria puede ingresarse utilizando dos o més espacios, o presionando la tecla [Tab. Es importante prestar
atencién en no mezclar espacios con tabs, para evitar “confundir” al intérprete.



26 Unidad 3. Funciones

>>> hola marta()
'Hola Marta! Estoy programando en Python.'
>>>

Se dice que estamos invocando a la funciéon hola_marta. Al invocar una funcion, se ejecutan
las instrucciones que habiamos escrito en su cuerpo.

Nuestro amigo Pablo seguramente se pondra celoso porque escribimos una funcién que
saluda a Marta, y nos pedira que escribamos una funcién que lo salude a él. Y asi procederemos
entonces:

>>> def hola pablo():
return "Hola Pablo! Estoy programando en Python."

Pero, si para cada amigo que quiere que lo saludemos debemos que escribir una funcién
distinta, pareceria que la computadora no es una gran solucién. A continuacién veremos, sin
embargo, que podemos llegar a escribir una tinica funcién que se personalice en cada invoca-
cién, para saludar a quien queramos. Para eso estan precisamente los pardmetros.

Escribamos entonces una funcién hola que nos sirva para saludar a cualquiera, de la siguien-
te manera:

>>> def hola(alguien):
return "Hola " + alguien + "! Estoy programando en Python."

La funcién hola recibe un tnico pardmetro (alguien). Para llamar a una funcién debemos
asociar cada uno de los parametros con algtn valor determinado (que se denomina argumento).
Por ejemplo, podemos invocar a la funcién hola dos veces, para saludar a Ana y a Juan, haciendo
que alguien se asocie al valor "Ana" en la primera llamada y al valor "Juan" en la segunda. La
funcién en cada caso devolvera un resultado que que se calcula a partir del argumento.

>>> hola("Ana")
'Hola Ana! Estoy programando en Python.'
>>> hola("Juan")
'Hola Juan! Estoy programando en Python.'

Problema 3.1.1. Escribir una funcién que calcule el cuadrado de un niimero dado.

Solucién.

def cuadrado(n):
return n * n

Para invocarla, deberemos hacer:

>>> cuadrado(5)
25

Problema 3.1.2. Piensa un namero, duplicalo, simale 6, dividelo por 2 y resta el niimero que
elegiste al comienzo. El nimero que queda es siempre 3.

Solucién. Si bien es muy sencillo probar matematicamente que el resultado de la secuencia de
operaciones serd siempre 3 sin importar cudl sea el nimero elegido, podemos aprovechar nues-
tros conocimientos de programacién y probarlo empiricamente.

Para esto escribamos una funcién que reciba el niimero elegido y devuelva el niimero que
queda luego de efectuar las operaciones:



3.2. Documentacion de funciones 27

def f(elegido):
return ((elegido * 2) + 6) / 2 - elegido

Tal vez el cuerpo de la funcién quedé poco entendible. Podemos mejorarlo dividiendo la
secuencia de operaciones en varias sentencias mas pequefias:

def f(elegido):

n = elegido * 2
n=n+=6
n=n/2
n=n - elegido
return n

Aqui utilizamos una variable llamada n y luego en cada sentencia vamos reemplazando el
valor de n por un valor nuevo.

Las dos soluciones que presentamos son equivalentes. Veamos si al invocar a f con distintos
numeros siempre devuelve 3 o no:

>>> (9)
3.0

>>> f(4)
3.0

>>> f(118)
3.0

>>> (165414606)
3.0

>>> f(0)
3.0

>>> f(-15)
3.0

3.2 Documentacion de funciones

Cada funcién escrita por un programador realiza una tarea especifica. Cuando la cantidad de
funciones disponibles para ser utilizadas es grande, puede ser dificil recordar exactamente qué
hace cada funcién. Es por eso que es extremadamente importante documentar en cada funcién
cudl es la tarea que realiza, cudles son los pardmetros que recibe y qué es lo que devuelve, para
que a la hora de utilizarla sea lo pueda hacer correctamente.

Por convencién, la documentacién de una funcién se coloca en la primera linea del cuer-
po de la misma, como una cadena de caracteres (que, como vimos en la seccién 2.3.4, es una
instruccién que no tiene ningtn efecto). Dado que la documentacién suele ocupar més de una
linea de texto, se acostumbra encerrarla entre tres pares de comillas.

Asf, para la funcion vista en el ejemplo anterior:

def hola(alguien):
"""Devuelve un saludo dirigido a la persona indicada por parametro.
return "Hola " + alguien + "! Estoy programando en Python."



28 Unidad 3. Funciones

*@: Sabias que...

Cuando una funcién definida estd correctamente documentada, es posible acceder a su documenta-
cién mediante la funcién help provista por Python. Suponiendo que la funcién hola estd definida
en el archivo saludo. py:

>>> import saludo
>>> help(saludo.hola)
Help on function hola in module saludo:

hola(alguien)
Devuelve un saludo dirigido a la persona indicada por pardmetro.

De esta forma no es necesario mirar el cédigo de una funcién para saber lo que hace, simplemente
llamando a help es posible obtener esta informacién.
En la seccién 3.7 se explica qué hace la instruccién import.

3.3 Imprimir versus devolver

Supongamos que tenemos una medida de tiempo expresada en horas, minutos y segundos, y
queremos calcular la cantidad total de segundos. Cuando nos disponemos a escribir una funcién
en Python para resolver este problema nos enfrentamos con dos posibilidades:

1. Devolver el resultado con la instruccidon return.

2. Imprimir el resultado llamando a la funcién print.

A continuacién mostramos ambas implementaciones:

def devolver segundos(horas, minutos, segundos):
"""Transforma en segundos una medida de tiempo expresada en
horas, minutos y segundos"""
return 3600 * horas + 60 * minutos + segundos

def imprimir_segundos(horas, minutos, segundos):
"""Imprime una medida de tiempo expresada en horas, minutos y
segundos, luego de transformarla en segundos"""
print (3600 * horas + 60 * minutos + segundos)

Veamos si funcionan:

>>> devolver segundos(l, 10, 10)
4210
>>> imprimir_segundos(1l, 10, 10)
4210

Aparentemente el comportamiento de ambas funciones es idéntico, pero hay una gran dife-
rencia. La funcién devolver_segundos nos permite hacer algo como esto:

>>> sl = devolver_segundos(1l, 10, 10)
>>> s2 = devolver_segundos(2, 32, 20)
>>> sl + s2

13350

En cambio, la funcién imprimir_segundos nos impide utilizar el resultado de la llamada para
hacer otras operaciones; lo tinico que podemos hacer es mostrarlo en pantalla. Por eso decimos



3.4. Cémo usar una funcioén en un programa 29

que devolver_segundos es maés reutilizable. Por ejemplo, podemos reutilizar devolver_segundos
en la implementacion de imprimir_segundos, pero no a la inversa:
def imprimir segundos(horas, minutos, segundos):
"""Imprime una medida de tiempo expresada en horas, minutos y

segundos, luego de transformarla en segundos"""
print(devolver_segundos(horas, minutos, segundos))

Contar con funciones es de gran utilidad, ya que nos permite ir armando una biblioteca de
soluciones a problemas simples, que se pueden reutilizar en la resolucién de problemas mas
complejos, tal como lo sugiere Thompson en “How to program it”.

En este sentido, mas til que tener una biblioteca donde los resultados se imprimen por
pantalla, es contar con una biblioteca donde los resultados se devuelven, para poder manipular
los resultados de esas funciones a voluntad: imprimirlos, usarlos para realizar calculos mas
complejos, etc.

En general, una funcién es mas reutilizable si devuelve un resultado (utilizando return) enlugar de
imprimirlo (utilizando print). Andlogamente, una funcién es mds reutilizable si recibe pardmetros
en lugar de leer datos mediante la funcién input.

3.4 Coémo usar una funcién en un programa

Las funciones son ttiles porque nos permiten encapsular y repetir una operaciéon (puede
que con argumentos distintos) todas las veces que las necesitemos en un programa, sin tener
que reescribir la lista de pasos para realizar la operacion cada vez.

Supongamos que necesitamos un programa que permita transformar tres duraciones de
tiempo en segundos:

1. Analisis: El programa debe pedir al usuario tres duraciones expresadas en horas, minu-
tos y segundos, y la tiene que mostrar en pantalla expresada en segundos.
2. Especificacion:
e Entradas: Tres duraciones leidas de teclado y expresadas en horas, minutos y se-
gundos.

e Salidas: Mostrar por pantalla las duraciones ingresadas, convertida a segundos.
Para el juego de datos de entrada (h, m, s) se obtiene entonces 3600/ + 601 + s, y se
muestra ese resultado por pantalla.

3. Diseno:

e Se tienen que leer por teclado tres datos y el juego de datos convertirlo a segundos.
En pseudocédigo:
Leer cuantas horas tiene el tiempo dado
(y referenciarlo con la variable h)

Leer cuantos minutos tiene tiene el tiempo dado
(y referenciarlo con la variable m)

Leer cuantos segundos tiene el tiempo dado
(y referenciarlo con la variable s)



30 Unidad 3. Funciones

Mostrar por pantalla 3600 * h + 60 * m + s

Pero la conversiéon a segundos es exactamente lo que hace nuestra funcién
devolver_segundos. Si la renombramos a a_segundos, podemos hacer que se di-
sefie como:

Leer cuantas horas tiene la duracién dada

(y referenciarlo con la variable h)

Leer cuantos minutos tiene tiene la duracién dada
(y referenciarlo con la variable m)

Leer cuantas segundos tiene la duracién dada
(y referenciarlo con la variable s)

Invocar la funcidén a_segundos(h, m, s) y
mostrar el resultado en pantalla.

e El pseudocddigo final queda:
Leer cuantas horas tiene la duracién dada
(y referenciarlo con la variable h)

Leer cuantos minutos tiene la duracién dada
(y referenciarlo con la variable m)

Leer cuantos segundos tiene la duracién dada
(y referenciarlo con la variable s)

Invocar la funcién a_segundos(h, m, s) vy
mostrar el resultado en pantalla.

4. Implementacién: A partir del disefio, se escribe el programa Python que se muestra en
el Cédigo 3.1, que se guardara en el archivo tres_tiempos.py.

Cédigo 3.1 tres_tiempos.py: Lee tres tiempos y los imprime en segundos

1 def a_segundos(horas, minutos, segundos):

2 """Transforma en segundos una medida de tiempo expresada en
3 horas, minutos y segundos"""
4 return 3600 * horas + 60 * minutos + segundos

s def main():

7 """Lee tres tiempos expresados en horas, minutos y segundos,
8 y muestra en pantalla su conversién a segundos"""
9 h = int(input("Cuantas horas?: "))

10 m = int(input("Cuantos minutos?: "))

11 s = int(input("Cuantos segundos?: "))

12 print("Son", a_segundos(h, m, s), "segundos")
13

12 main()

Nota. En nuestra implementacion decidimos dar el nombre main a la funcién principal del
programa. Esto no es mds que una convencién: “main” significa “principal” en inglés.



3.5. Alcance de las variables 31

5. Prueba: Probamos el programa con las ternas (1,0,0), (0,1,0) y (0,0,1):

$ python3 tres tiempos.py
Cuantas horas?: 1
Cuantos minutos?: 0O
Cuantos segundos?: 0
Son 3600 segundos
Cuantas horas?: 0
Cuantos minutos?: 1
Cuantos segundos?: 0
Son 60 segundos
Cuantas horas?: 0
Cuantos minutos?: ©
Cuantos segundos?: 1
Son 1 segundos

3.5 Alcance de las variables

Ya hemos visto que podemos definir variables, ya sea dentro o fuera del cuerpo de una
funcién. Definamos ahora la siguiente funcién:

>>> def suma_cuadrados(n, m):
suma = cuadrado(n) + cuadrado(m)
return suma
>>> y = suma_cuadrados (5, 6)
¢Qué pasa si intentamos utilizar la variable suma fuera de la funcién?

>>> suma
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'suma' is not defined
>>>

Las variables y los pardmetros que se declaran dentro de una funcién no existen fuera de ella, y por
eso se las denomina variables locales. Fuera de la funcién se puede acceder tinicamente al valor que
devuelve mediante return.

Veamos en detalle qué sucede cuando invocamos a la funcién mediante la instruccién:

>>> y = suma_cuadrados(5, 6)

1. Se invoca a suma_cuadrados con los argumento 5 y 6, y se ejecuta el cuerpo de la funcién
con la variable local n = 5y n — 6.

2. La funcioén declara una variable local suma — cuadrado(n) + cuadrado(m).

3. Cuando la ejecucién llega a la linea return suma, la variable suma — 61. Por lo tanto, la
funcién devuelve el valor 61.

4. La funcién termina su ejecucion, y con ella dejan de existir todas sus variables locales: n,
my suma.

5. Se declara la variable y — 61, que es el valor que devolvié la funcién.

Si la funcién no devolviera ningtn valor, la variable y no quedaria asociada a ningtin valor?.

2Técnicamente, quedaria asociada con un valor especial llamado None.



32

Unidad 3. Funciones

3.6

Devolver multiples resultados

Problema 3.1. Escribir una funcién que, dada una duracién en segundos sin fracciones (repre-
sentada por un namero entero), calcule la misma duracién en horas, minutos y segundos.

Solucién. La especificacion es sencilla:

La cantidad de horas es la duracién informada en segundos dividida por 3600 (divisiéon
entera).

La cantidad de minutos es el resto de la divisién del paso 1, dividido por 60 (divisiéon
entera).

La cantidad de segundos es el resto de la divisién del paso 2.

Es importante notar que si la duracién no se informa como un ntimero entero, todas las
operaciones que se indican mds arriba carecen de sentido.

¢{Coémo hacemos para devolver mas de un valor? En realidad lo que se espera de esta funcién
es que devuelva una terna de valores: si ya calculamos h, my s, lo que debemos devolver es la
terna (h, m, s):

def a_hms(segundos):

"""Dada una duracién entera en segundos
se la convierte a horas, minutos y segundos
h = segundos // 3600
m = (segundos % 3600) // 60
S (segundos % 3600) % 60
return h, m, s

Esto es lo que sucede al invocar esta funcién:

>>> h, m, s = a _hms(3661)
>>> print("Son", h, "horas", m, "minutos", s, "segundos")
Son 1 horas 1 minutos 1 segundos

-

(L
*@: Sabias que...

Cuando la funcién debe devolver mdltiples resultados, se empaquetan todos juntos en una n-upla
(secuencia de valores separados por comas) del tamafio adecuado.

lenguajes en los que esta caracteristica no estd presente, como C, Pascal o Java, es necesario recurrir
a otras técnicas mds complejas para poder obtener un comportamiento similar.

Esta caracteristica estd presente en Python, Ruby, Haskell y algunos otros pocos lenguajes. En los

Respecto de la variable que hara referencia al resultado de la invocacién, se podra usar tanto
una n-upla de variables, como en el ejemplo anterior (en cuyo caso podremos nombrar en forma
separada cada uno de los resultados), o bien se podrd usar una sola variable (en cuyo caso se
considerara que el resultado tiene un solo nombre y la forma de una n-upla):

>>> hms = a_hms(3661)

>>> print(hms)
(1, 1, 1)



3.7. Médulos 33

A Atencion

Si se usa una n-upla de variables para referirse a un resultado, la cantidad de variables tiene que
coincidir con la cantidad de valores que se devuelven.

>>> X, y = a_hms(3661)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: too many values to unpack
>>> X, Y, W, zZ = a _hms(3661)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: need more than 3 values to unpack

3.7 Modbdulos

A medida que los programas se hacen méas grandes y complejos suele ser conveniente divi-
dirlos en médulos. Cada uno de los programas que escribimos hasta ahora estan formados por
un tnico médulo, ya que cada archivo .py es un médulo.

Coédigo 3.2 saludos.py: Médulo con funciones para saludar

def hola(nombre)
return "Hola, " + nombre

def adios(nombre)
return "Adids, " + nombre

Cédigo 3.3 main.py: Médulo principal del programa

import saludos

def main()
nombre = input("iCudl es tu nombre?")
print(saludos.hola(nombre))
print(saludos.adios(nombre))

main()

En Cédigo 3.2 y Cédigo 3.3 se muestra un ejemplo de un programa formado por dos médu-
los, saludos y main:

e El médulo saludos define dos funciones: hola y adios. Notar que lo tinico que hacemos es
definir funciones pero nunca las llamamos, justamente porque las vamos a invocar desde
el médulo main.

e Lo primero que hacemos en el médulo main es utilizar la instruccién de Python import
saludos, para indicar al intérprete que queremos utilizar las funciones definidas en el
modulo saludos. Luego las invocamos, con la diferencia de que tenemos que anteceder el



34 Unidad 3. Funciones

“” o

nombre de cada funcién con el nombre del médulo y un “.”, en este caso saludos.holay

saludos.chau. Y finalmente llamamos a la funcién main().

Para ejecutar el programa lo hacemos con el comando python main.py. Cuando el intérprete
encuentre la instruccién import saludo autométicamente buscara el archivo saludos.py y lo
ejecutara.

3.7.1 Moébdulos estandar

Se dice que “Python viene con las baterias incluidas”. Esto es porque el intérprete incluye un
conjunto numeroso de médulos ya implementados con utilidades de uso general: matematica,
acceso al sistema operativo y la red, depuracién, criptografia, compresion, interfaces gréficas...
iIncluso hay una tortuga!

L
@: Sabias que...
D

El lenguaje de programacién Logo, creado en 1967 y utilizado principalmente con fines educativos,
introdujo la idea de crear dibujos utilizando la metéfora de una tortuga que se mueve por la pantalla
obedeciendo a comandos simples.

El médulo turtle de Python nos permite crear dibujos usando un sistema muy similar al de
Logo:

import turtle

def movete tortu():
turtle.forward(200)
turtle.right(144)

turtle.shape("turtle") /\

turtle.color('red', 'yellow')
turtle.begin fill()

movete tortu()
movete tortu(
(
(

movete tortu
movete tortu
movete tortu(
turtle.end fill()
turtle.done()

)
)
)
)

La lista completa de médulos incluidos y sus respectivas instrucciones de uso se puede ver
en https://docs.python.org/3/library/index.html.

3.8 Resumen

e Una funcién puede recibir ninguno, uno o méas parametros. Adicionalmente puede leer
datos de la entrada del teclado.

e Una funcién puede no devolver nada, o devolver uno o més valores. Adicionalmente pue-
de imprimir mensajes para comunicarlos al usuario.


https://docs.python.org/3/library/index.html

3.8. Resumen 35

e No es posible acceder a las variables definidas dentro de una funcién desde el programa
principal. Si se quiere utilizar algtn valor calculado en la funcién, serd necesario devol-
verlo.

e Cuando una funcién realice un calculo o una operacién, es preferible que reciba los da-
tos necesarios mediante los pardmetros de la funcién, y que devuelva el resultado. Las
funciones que leen datos del teclado o imprimen mensajes son menos reutilizables.

e Es altamente recomendable documentar cada funcién que se escribe, para poder saber
qué pardmetros recibe, qué devuelve y qué hace sin necesidad de leer el cédigo.

Referencia Python @

def funcion(paraml, param2, param3):

Permite definir funciones, que pueden tener ninguno, uno o més parametros. El cuerpo de la
funcién debe estar un nivel de sangria mdas adentro que la declaracién de la funcién.

def funcion(paraml, param2, param3):
# hacer algo con los parametros

Documentacién de funciones

Sien la primera linea de la funcién se ingresa una cadena de caracteres, la misma por convencién
pasa a ser la documentacién de la funcién, que puede ser accedida mendiante el comando help(
funcion).

def funcion():
"""Esta es la documentacién de la funcién"""
# hacer algo

return valor

Dentro de una funcion se utiliza la instruccién return para indicar el valor que la funcién debe
devolver. Una vez que se ejecuta esta instruccion, se termina la ejecucién de la funcién, sin importar
si es la dltima linea o no. Si la funcién no contiene esta instruccién, no devuelve nada.

return valorl, valor2, valor3

Si se desea devolver mas de un valor, se los empaqueta en una n-upla de valores. Esta n-upla
puede o no ser desempaquetada al invocar la funcién:

def f(valor):
# operar
return al, a2, a3

# desempaquetado:
vl, v2, v3 = f(x)
# empaquetado

v = f(y)

import modulo

Permite utilizar funciones y valores definidos en el médulo especificado. Las referencias deben

7

ser precedidas por el nombre del médulo y “.



36 Unidad 3. Funciones

>>> import math
>>> math.cos(2 * math.pi)
1.0

import modulo as variable

Hace lo mismo que import modulo, pero nos permite llamar al médulo con una variable nom-
brada por nosotros.

>>> import math as matematica
>>> matematica.cos(2 * matematica.pi)
1.0

from modulo import refl, ref2,

Similar a import modulo, pero importando tinicamente las funciones y valores especificados, y
ademads eliminando la necesidad de anteponer el nombre del médulo al utilizarlos:

>>> from math import cos, pi
>>> cos(2 * pi)
1.0



Unidad 4

Decisiones

Problema 4.1. Debemos leer un ntimero y, si el ntimero es positivo, debemos escribir en pantalla
el cartel “Numero positivo”.

Solucion. Especificamos nuestra solucién: se deberd leer un nimero x. Si x > 0 se escribe el
mensaje "Nimero positivo".
Disefiamos nuestra solucién:

1. Solicitar al usuario un niimero, guardarlo en x.
2. Six > 0, imprimir "Nimero positivo"

Es claro que la primera linea se puede traducir como
x = int(input("Ingrese un nldmero: "))

Sin embargo, con las instrucciones que vimos hasta ahora no podemos tomar el tipo de
decisiones que nos planteamos en la segunda linea de este disefio.

Para resolver este problema introducimos una nueva instruccién que llamaremos condicional
y tiene la siguiente forma:

if <expresién>:
<cuerpo>

donde if es una palabra reservada, la <expresién> es una condicién y el <cuerpo> se ejecuta solo
si la condicién se cumple.

Antes de seguir adelante explicando la instruccién if, debemos introducir un nuevo tipo de
dato que nos indicaré si se da una cierta situaciéon o no. Hasta ahora las expresiones con las que
trabajamos fueron de tipo numérica y de tipo texto; pero ahora la respuesta que buscamos es
de tipo si o no.

4.1 Expresiones booleanas

Ademas de los tipos numéricos (int, float), y las cadenas de texto (str), Python introduce
un tipo de dato llamado booleano (bool). Una expresion booleana o expresion 16gica puede tomar
dos valores posibles: True (si) o False (no).

>>>n = 3 # n es de tipo 'int' y toma el valor 3
>>> b = True # b es de tipo 'bool' y toma el valor True



38 Unidad 4. Decisiones

41.1 Expresiones de comparacién

En el ejemplo que queremos resolver, la condicién que queremos ver si se cumple o0 no es
que x sea mayor que cero. Python provee las llamadas expresiones de comparacion que sirven
para comparar valores entre si, y que por lo tanto permiten codificar ese tipo de pregunta. En
particular la pregunta de si x es mayor que cero, se codifica en Python como x > 0.

De esta forma, 5 > 3 es una expresién booleana cuyo valor es True, y 5 < 3 también es una
expresion booleana, pero su valor es False.

>>> 5 > 3
True

>>> 3 > 5§
False

Las expresiones booleanas de comparacién que provee Python son las siguientes:

Expresién Significado

a == aesigualab

al=hb a es distinto de b

a<b a es menor que b

a<=b a es menor o igual que b
a>hb a es mayor que b

a>=b a es mayor o igual que b

A continuacién, algunos ejemplos de uso de estos operadores:

>>> 6 ==
True

>>> 6 =0
False

>>> 0 > 0
False

>>> 6 >= 6
True

>>> 6 > 4
True

>>> 06 < 4
False

>>> 6 <= 4
False

>>> 4 < 6
True

4.1.2 Operadores l6gicos

De la misma manera que se puede operar entre nimeros mediante las operaciones de suma,
resta, etc., también existen tres operadores 16gicos para combinar expresiones booleanas: and
(y), or (0) y not (no).

El significado de estos operadores es igual al del castellano, pero vale la pena recordarlo:



4.2. Comparaciones simples 39

Expresién Significado

a and b El resultado es True solamente si a es True y b es True
de lo contrario el resultado es False

aorb El resultado es True si a es True o b es True (0 ambos)
de lo contrario el resultado es False

not a El resultado es True si a es False

de lo contrario el resultado es False

Algunos ejemplos:

e a > b and a > ces verdadero si a es simultdneamente mayor que b y que c.

>>>5>2and 5 > 3
True
>>>5>2and 5 >6
False

e a > b or a > cesverdadero si a es mayor que b 0 a es mayor que c.

>>>5>20r5>3
True
>>>5>2o0r5>6
True
>>>5>80r5>6
False

e not a > besverdaderosia > besfalso (oseasia <= bes verdadero).

>>> 5 > 8
False

>>> not 5 > 8
True

>>> 5 > 2
True

>>> not 5 > 2
False

4.2 Comparaciones simples

Volvemos al problema que nos plantearon: Debemos leer un ntimero y, si el nimero es po-
sitivo, debemos escribir en pantalla el mensaje "Nimero positivo".

Recordemos la instruccién if que acabamos de introducir y que sirve para tomar decisiones
simples. Dijimos que su formato general es:

if <expresién>:
<cuerpo>

cuyo efecto es el siguiente:
1. Se evaltia la <expresién> (que debe ser una expresion légica).

2. Si el resultado de la expresion es True (verdadero), se ejecuta el <cuerpo>.



40 Unidad 4. Decisiones

<expresién>

R

Figura 4.1: Diagrama de flujo para la instruccién if.

Esto se puede representar en un diagrama de flujo, como el de la Figura 4.1.
Como ahora ya sabemos también cémo construir condiciones de comparacién, estamos en
condiciones de implementar nuestra solucién. Escribimos la funcién positivo() que hace lo

pedido:

def positivo():
x = int(input("Ingrese un numero: "))
if x > 0:
print("Numero positivo")

y la probamos:

>>> positivo()

Ingrese un nimero: 4
Nimero positivo

>>> positivo()

Ingrese un numero: -25
>>> positivo()

Ingrese un numero: 0

Problema 4.2. Necesitamos ademds un mensaje "Nimero no positivo" cuando no se cumple la
condicién.
Modificamos la especificacién consistentemente y modificamos el disefio:

1. Solicitar al usuario un namero, guardarlo en x.
2. Six > 0, imprimir "Nimero positivo"
3. En caso contrario, imprimir "Nimero no positivo"

La negaciéon de x > 0 es —~(x > 0) que se traduce en Python como not x > 0, por lo que
implementamos nuestra solucién en Python como:

def positivo o no():
x = int(input("Ingrese un numero: "))
if x >0: @
print("Ndmero positivo")
if not x > 0: @
print("Ndmero no positivo")

Probamos la nueva solucién y obtenemos el resultado buscado:

>>> positivo o no()
Ingrese un nimero: 4
Nimero positivo

>>> positivo o no()
Ingrese un numero: -25
Nimero no positivo



4.2. Comparaciones simples 41

>>> positivo o no()
Ingrese un numero: 0
Nimero no positivo

Sin embargo hay algo que nos preocupa: si ya averiguamos una vez, en @, si x > 0, ;Es
realmente necesario volver a preguntarlo en @?.
Existe una construccion alternativa para la estructura de decisién, que tiene la forma:

if <expresién>:
<cuerpol>
else:
<cuerpo2>

donde if y else son palabras reservadas. Su efecto es el siguiente:

1. Se evaltia la <expresién>.

2. Siel resultado es True, se ejecuta el <cuerpol>. En caso contrario, se ejecuta el <cuerpo2>.
Volvemos a nuestro disefio:

1. Solicitar al usuario un ntimero, guardarlo en x.
2. Six > 0, imprimir "Nimero positivo"
3. En caso contrario, imprimir "Nimero no positivo"

En la Figura 4.2 se muestra el diagrama de flujo para la estructura if-else.

<expresién> <cuerpol> o

!

~ <cuerpo2>
Figura 4.2: Diagrama de flujo para la estructura if-else.

Este disefio se implementa como:

def positivo o no():
x = int(input("Ingrese un numero: "))
if x > 0:
print("Ndmero positivo")
else:
print("Ndmero no positivo")

y lo probamos:

>>> positivo o no()
Ingrese un nimero: 4
Nimero positivo

>>> positivo_o _no()
Ingrese un numero: -25
Nimero no positivo

>>> positivo o no()
Ingrese un numero: 0
Nimero no positivo



42 Unidad 4. Decisiones

Es importante destacar que, en general, negar la condicién del if y poner else no son in-
tercambiables, porque no necesariamente producen el mismo efecto en el programa. Notar qué
sucede en los dos programas que se transcriben a continuacién. ;Por qué se dan estos resulta-
dos?:

>>> def pnl(): >>> def pn2():
x = int(input("Ingrese un nro: ")) Goc x = int(input("Ingrese un nro: "))
if x > 0: 06 ¢ if x > 0:
print("Nimero positivo") C print("Nimero positivo")
X = -X S X = -X
if x < 0: S else:
print("Nimero no positivo") . print("Nimero no positivo")
>>> pnl() >>> pn2()
Ingrese un nro: 25 Ingrese un nro: 25
Nimero positivo Nimero positivo

Nimero no positivo

4.3 Multiples decisiones consecutivas

La decisién de incluir una decisién en un programa, parte de una lectura cuidadosa de la
especificacion. En nuestro caso la especificacién nos decia:

Si el namero es positivo escribir un mensaje "Nimero positivo", de lo contrario es-
cribir un mensaje "Nimero no positivo".

Veamos qué se puede hacer cuando se presentan tres o mds alternativas:

Problema 4.3. Si el ntimero es positivo escribir un mensaje "Nimero positivo", si el nimero
es igual a 0 un mensaje "Igual a 0", y si el nimero es negativo escribir un mensaje "Nimero
negativo".

Una posibilidad es considerar que se trata de una estructura con dos casos como antes, sélo
que el segundo caso es complejo (es nuevamente una alternativa):

1. Solicitar al usuario un namero, guardarlo en x.
2. Six > 0, imprimir "Nimero positivo"
3. De lo contrario:

(a) Six =0, imprimir "Igual a 0"

(b) De lo contrario, imprimir "Nimero no positivo"

Este disefio se implementa como:

def pos cero o neg():
x = int(input("Ingrese un nldmero: "))
if x > 0:
print("Numero positivo")
else:
if x ==
print("Igual a 0")
else:
print("Ndmero negativo")



4.3. Multiples decisiones consecutivas 43

Esta estructura se conoce como de alternativas anidadas ya que dentro de una de las ramas de
la alternativa (en este caso la rama del else) se anida otra alternativa.

Pero ésta no es la tinica forma de implementarlo. Existe otra construccién, equivalente a la
anterior pero que no exige sangrias cada vez mayores en el texto. Se trata de la estructura de
alternativas encadenadas, que tiene la forma

if <expresién 1>:

<cuerpo_ 1>

elif <expresién 2>:

<cuerpo_2>

elif <expresién n>:
<cuerpo_n>
else:
<cuerpo_else>

donde if, elif y else son palabras reservadas.
En nuestro ejemplo:

def pos cero o neg():
x = int(input("Ingrese un nldmero: "))

if x > 0:

print("Ndmero positivo")
elif x ==

print("Igual a 0")
else:

print("Ndmero negativo")

El efecto de la estructura if-elif-else en este ejemplo se muestra en la Figura 4.3.

T p -
O @ rue ’Numero positivo }—».

{False

Igual a 0

:

~ Nimero negativo}

Figura 4.3: Diagrama de ﬂujo para una estructura if-elif-else.



44

Unidad 4. Decisiones

L)

-

:@:- Sabias que...

No s6lo mediante los operadores vistos (como > o ==) es posible obtener expresiones booleanas.
En Python, se consideran verdaderos los valores numéricos distintos de 0, las cadenas de caracteres
que no son vacias, y en general cualquier valor que no sea 0 o vacio. Los valores nulos o vacios se
consideran falsos.

Asf, en el ejemplo anterior la linea

elif x ==

también podria escribirse de la siguiente manera:

elif not x:

Ademas, en Python existe un valor especial llamado None que se utiliza comtdnmente para re-

presentar la ausencia de un valor. Podemos preguntar si una variable v es None simplemente con:

if v is None:

O, como None también es considerado un valor nulo,

if not v:
4.4 Resumen

e Para poder tomar decisiones en los programas y ejecutar una accién u otra, es necesario
contar con una estructura condicional.

e Las condiciones son expresiones booleanas, es decir, cuyos valores pueden ser verdadero o
falso, y se las confecciona mediante operadores entre distintos valores.

e Mediante expresiones légicas es posible modificar o combinar expresiones booleanas.

e La estructura condicional puede contar, opcionalmente, con un bloque de cédigo que se
ejecuta si no se cumplié la condicién.

e Es posible anidar estructuras condicionales, colocando una dentro de otra.

e También es posible encadenar las condiciones, es decir, colocar una lista de posibles con-
diciones, de las cuales se ejecuta la primera que sea verdadera.

Referencia Python ﬁé

if <condicién>:

Bloque condicional. Las acciones a ejecutar si la condicién es verdadera deben tener un mayor

nivel de sangria.

if <condicién>:
# acciones a ejecutar si condicién es verdadera



4.4. Resumen 45

else:

Un bloque que se ejecuta cuando no se cumple la condicién correspondiente al i f. Sélo se puede
utilizar else si hay un if correspondiente. Debe escribirse al mismo nivel que if, y las acciones a
ejecutar deben tener un nivel de sangria mayor.

if <condicién>:

# acciones a ejecutar si condicién es verdadera
else:

# acciones a ejecutar si condicién es falsa

elif <condiciodn>:

Bloque que se ejecuta si no se cumplieron las condiciones anteriores pero si se cumple la con-
dicién especificada. S6lo se puede utilizar elif si hay un if correspondiente, se lo debe escribir al
mismo nivel que if, y las acciones a ejecutar deben escribirse en un bloque de sangria mayor. Puede
haber tantos elif como se quiera, todos al mismo nivel.

if <condiciénl>:
# acciones a ejecutar si condicidénl es verdadera
elif <condicién2>:
# acciones a ejecutar si condicién2 es verdadera
else:
# acciones a ejecutar si ninguna condicién fue verdadera

Operadores de comparacién

Son los que forman las expresiones booleanas.

Expresién Significado

a == aesigualab

al'=b a es distinto de b

a<b a es menor que b
a<=b a es menor o igual que b
a>b a es mayor que b
a>=b a es mayor o igual que b

Operadores 16gicos
Son los utilizados para concatenar o negar distintas expresiones booleanas.
Expresién Significado

a and b Elresultado es True solamente si a es True y b es True
de lo contrario el resultado es False

aorb El resultado es True si a es True o b es True (o ambos)
de lo contrario el resultado es False
not a El resultado es True si a es False

de lo contrario el resultado es False



Unidad 5

Ciclos

5.1 El ciclo definido

Problema 5.1.1. Supongamos que queremos calcular la suma de los primeros 5 ndmeros cua-
drados.

Solucién. Dado que ya tenemos la funcién cuadrado de la Unidad 3, podemos aprovecharla y
hacer algo como esto:

>>> def suma 5 cuadrados():
suma = 0

suma = suma + cuadrado(1l)
suma = suma + cuadrado(2)
suma = suma + cuadrado(3)
suma = suma + cuadrado(4)
suma = suma + cuadrado(5)

return suma

>>> suma_5_cuadrados ()
55

Esto resuelve el problema, pero resulta poco satisfactorio. ;Y si quisiéramos encontrar la
suma de los primeros 100 nimeros cuadrados? En ese caso tendriamos que repetir la linea suma
= suma + cuadrado(...) 100 veces. ;Se puede hacer algo mejor que esto?
Para resolver este tipo de problema (repetir un célculo para los valores contenidos en un
intervalo dado) de una manera mds eficiente, introducimos el concepto de ciclo definido. Un
ciclo definido es de la forma

for <nombre> in <expresién>:
<cuerpo>

El ciclo for es una instruccién compuesta ya que incluye una linea de inicializacién y un
<cuerpo>, que a su vez estd formado por una o mads instrucciones.

Decimos que el ciclo es definido porque una vez evaluada la <expresién> (cuyo resultado
debe ser una secuencia de valores), se sabe exactamente cudntas veces se ejecutara el <cuerpo>y
qué valores tomara la variable <nombre>.

Para resolver el problema de sumar los cuadrados consecutivos en un intervalo necesitamos
un ciclo definido que tiene la siguiente forma:



5.1. El ciclo definido 47

for x in range(nl, n2):
<hacer algo con x>

Esta instruccion se lee como:

e Generar la secuencia de valores enteros del intervalo [n1,n2), y

e Para cada uno de los valores enteros que toma x en el intervalo generado, se debe hacer
lo indicado por <hacer algo con x>.

La instruccién que describe el rango en el que va a realizar el ciclo (for x in range(...))
es el encabezado del ciclo, y las instrucciones que describen la accién que se repite componen el
cuerpo del ciclo. Todas las instrucciones que describen el cuerpo del ciclo deben tener una sangria
mayor que el encabezado del ciclo.

En nuestro ejemplo la secuencia de valores resultante de la expresién range(nl, n2) es el
intervalo de enteros [n1, nl+l, ..., n2-1]y la variable es x.

La secuencia de valores se puede indicar como:

e range(n). Establece como secuencia de valoresa [0, 1, ..., n-1].
e range(nl, n2).Establece como secuencia de valores a [n1, nl+l, ..., n2-1].

e Se puede definir a mano una secuencia entre corchetes. Por ejemplo,

for x in [1, 3, 9, 27]:
print(x * x)

imprimird los cuadrados de los ntiimeros 1, 3, 9 y 27.

Solucién. Usemos un ciclo definido para resolver el problema anterior de manera mas compacta:

>>> def suma 5 cuadrados():
suma = 0
for x in range(1l, 6): ©
suma = suma + cuadrado(x)
return suma

@ Notar que en nuestro ejemplo necesitamos recorrer todos los valores enteros entre 1y 5, y
el rango generado por range(nl, n2) es abierto en n2. Es decir, x tomaré los valores n1, n1 + 1,
nl + 2,...,n2 - 1. Poresoes que usamos range(1l, 6).

Problema 5.1.2. Hacer una funcién mds genérica que reciba un pardmetro n y calcule la suma
de los primeros n niimeros cuadrados.

Solucion.

>>> def suma_cuadrados(n):
suma = 0
for x in range(l, n + 1):
suma = suma + cuadrado(x)
return suma

>>> suma_cuadrados(5)
55

>>> suma_cuadrados (100)
338350



48 Unidad 5. Ciclos

Supongamos ahora el siguiente problema:

Leer un ntimero. Si el nimero es positivo escribir un mensaje “Numero positivo”,
si el niimero es igual a 0 un mensaje “Igual a 07, y si el nimero es negativo escribir
un mensaje “Numero negativo”. El usuario debe poder ingresar muchos niimeros y
cada vez que se ingresa uno debemos informar si es positivo, cero o negativo.

Utilizando los ciclos definidos vistos en las primeras unidades, es posible preguntarle al
usuario cada vez, al inicio del programa, cudntos ntimeros va a ingresar para consultar. La so-
lucién propuesta resulta:

def muchos pcn():
i = int(input("Cuantos numeros quiere procesar?: "))
for j in range(0, i):
X = int(input("Ingrese un numero: "))
if x > 0:
print("Numero positivo")
elif x ==
print("Igual a 0")
else:
print("Numero negativo")

Su ejecucion es exitosa:

>>> muchos_pcn()

Cuantos numeros quiere procesar: 3
Ingrese un numero: 25

Numero positivo

Ingrese un numero: 0

Igual a ©

Ingrese un numero: -5

Numero negativo

>>>

Sin embargo, el uso de este programa no resulta muy intuitivo, porque obliga al usuario a
contar de antemano cudntos niimeros va a querer procesar, sin equivocarse, en lugar de ingresar
uno a uno los ntiimeros hasta procesarlos a todos.

5.2 Ciclos indefinidos

Para poder resolver este problema sin averiguar primero la cantidad de niimeros a procesar,
debemos introducir una instruccién que nos permita construir ciclos que no requieran que se
informe de antemano la cantidad de veces que se repetird el calculo del cuerpo. Se trata de los
ciclos indefinidos, en los cuales se repite el calculo del cuerpo mientras una cierta condicién es
verdadera.

Un ciclo indefinido es de la forma

while <expresidn>:
<cuerpo>

donde while es una palabra reservada, y la <expresién> debe ser booleana, igual que en las
instrucciones if. El <cuerpo> es, como siempre, una o mds instrucciones de Python.
El funcionamiento de esta instruccion es el siguiente:



5.3. Ciclo interactivo 49

1. Evaluar la condicién.
2. Si la condicién es falsa, salir del ciclo.
3. Sila condicién es verdadera, ejecutar el cuerpo.

4. Volveral.

En la Figura 5.1 se muestra el diagrama de flujo correspondiente al ciclo indefinido while.

<expresién>

<cuerpo>

Figura 5.1: Diagrama de flujo para el ciclo indefinido while.

5.3 Ciclo interactivo

(Cuadl es la condicién y cudl es el cuerpo del ciclo en nuestro problema? Claramente, el cuer-
po del ciclo es el ingreso de datos y la verificacion de si es positivo, negativo o cero. En cuanto
a la condicién, es que haya mas datos para seguir calculando.

Definimos una variable hay mas_datos, que valdrd “Si” mientras haya datos.

Se le debe preguntar al usuario, después de cada célculo, si hay o no mas datos. Cuando el
usuario deje de responder “Si”, dejaremos de ejecutar el cuerpo del ciclo.

Una primera aproximacion al c6digo necesario para resolver este problema podria ser:

def muchos pcn():

while hay_mas_datos == "Si":
x = int(input("Ingrese un numero: "))
if x > 0:
print("Numero positivo")
elif x ==
print("Igual a 0")
else:

print("Numero negativo")

hay_mas_datos = input("éiQuiere seguir? <Si-No>: ")
Veamos qué pasa si ejecutamos la funcién tal como fue presentada:

>>> muchos_pcn()
Traceback (most recent call last):
File "<pyshell#25>", line 1, in <module>
muchos_pcn()
File "<pyshell#24>", line 2, in muchos pcn
while hay mas datos == "Si":
UnboundLocalError: local variable 'hay mas datos' referenced before assignment

El problema que se presento en este caso, es que hay_mas_datos no tiene un valor asignado
en el momento de evaluar la condicién del ciclo por primera vez.



50 Unidad 5. Ciclos

Es importante prestar atencién a cudles son las variables que hay que inicializar antes de ejecutar un
ciclo, para asegurar que la expresién booleana que lo controla sea evaluable.

Una posibilidad es preguntarle al usario, antes de evaluar la condicion, si tiene datos; otra
posibilidad es suponer que si llamé a este programa es porque tenia algtn dato para calcular, y
darle el valor inicial “Si” a hay mas datos.

Encararemos la segunda opcién:

def muchos pcn():

hay_mas_datos = "Si"
while hay mas datos == "Si":
X = int(input("Ingrese un numero: "))
if x > 0:
print("Numero positivo")
elif x ==
print("Igual a 0")
else:

print("Numero negativo")

hay mas datos = input("Quiere seguir? <Si-No>: ")
El esquema del ciclo interactivo es el siguiente:

hay mas datos hace referencia a "Si"
Mientras hay mas datos haga referencia a "Si":
Pedir datos
Realizar calculos
Preguntar al usuario si hay mds datos ("Si" cuando los hay)
hay mas datos hace referencia al valor ingresado

Esta es una ejecucion:

>>> muchos_pcn()

Ingrese un numero: 25
Numero positivo

Quiere seguir? <Si-No>: Si
Ingrese un numero: 0

Igual a 0

Quiere seguir? <Si-No>: Si
Ingrese un numero: -5
Numero negativo

Quiere seguir? <Si-No>: No

5.4 Ciclo con centinela

Un problema que tiene nuestra primera solucién es que resulta poco amigable preguntarle
al usuario después de cada célculo si desea continuar. Para evitar esto, se puede usar el método
del centinela: un valor arbitrario que, si se lee, le indica al programa que el usuario desea salir
del ciclo. En este caso, podemos suponer que si el usuario ingresa el caracter *, es una indicacién
de que desea terminar.

El esquema del ciclo con centinela es el siguiente:

Pedir datos
Mientras el dato pedido no coincida con el centinela:



5.4. Ciclo con centinela 51

Realizar calculos
Pedir datos

El programa resultante es el siguiente:

def muchos pcn():
centinela = input("Ingrese un numero (* para terminar): ") @

while centinela != "*":
x = int(centinela)
if x > 0:
print("Numero positivo")
elif x ==
print("Igual a 0")
else:
print("Numero negativo")

centinela = input("Ingrese un numero (* para terminar): ") @

Notar que no podemos hacer centinela = int(input(...)) porque cuando el usuario in-
grese '*' la llamada a int fallarfa (al no poder convertir '*' a un valor entero). Por eso es que
por un lado hacemos la llamada a input, y una vez que sabemos que el valor centinela no es
un '*', lo convertimos a entero llamando a int.

Y ahora lo ejecutamos:

>>> muchos_pcn()

Ingrese un numero (* para terminar): 25
Numero positivo

Ingrese un numero (* para terminar): 0

Igual a ©

Ingrese un numero (* para terminar): -5
Numero negativo

Ingrese un numero (* para terminar): *

El ciclo con centinela es muy claro pero tiene un problema: hay una linea de c6digo repetida,
marcada con @ y @.

Si en la etapa de mantenimiento tuviéramos que realizar un cambio en el ingreso del dato
(por ejemplo, cambiar el mensaje) deberiamos estar atentos y corregir ambas lineas. En princi-
pio no parece ser un problema muy grave, pero a medida que el programa y el cédigo se hacen
mas complejos, se hace mucho mas dificil llevar la cuenta de todas las lineas de c6digo dupli-
cadas, y por lo tanto se hace mucho mas facil cometer el error de cambiar una de las lineas y
olvidar hacer el cambio en la linea duplidada.

El c6digo duplicado suele incrementar el esfuerzo necesario para hacer modificaciones en la etapa
de mantenimiento. Es conveniente prestar atencion en a etapa de implementacién, y modificar el
cédigo para eliminar la duplicacién.

Veamos c6mo eliminar el cédigo duplicado en nuestro ejemplo. Lo ideal seria leer el dato
centinela en un tnico punto del programa. Una opcioén es extraer el c6digo duplicado en una
funcién:

def leer centinela():
return input("Ingrese un numero (* para terminar): ")

def muchos _pcn():



52 Unidad 5. Ciclos

centinela = leer_centinela()
while centinela != "*":
X = int(centinela)
if x > 0:
print("Numero positivo")
elif x ==
print("Igual a 0")
else:
print("Numero negativo")

centinela = leer_centinela()

)

2:'_:: Sabias que...
Desde hace mucho tiempo los ciclos infinitos vienen provocando dolores de cabeza a los programa-
dores. Cuando un programa deja de responder y se utiliza todos los recursos de la computadora,
suele deberse a que entré en un ciclo del que no puede salir.

Estos bucles pueden aparecer por una gran variedad de causas. A continuacién algunos ejem-
plos de ciclos de los que no se puede salir, siempre o para ciertos parametros. Queda como ejercicio
encontrar el error en cada uno.

def menor_ factor primo(x):
"""Devuelve el menor factor primo del numero x.

n=2
while n <= x:
if X % n ==

return n

def buscar_impar(x):
"""Divide el numero recibido por 2 hasta que sea impar."""
while x % 2 == 0:
X=X/ 2
return x




5.5. Resumen 53

5.5 Resumen

e Ademads de los ciclos definidos, en los que se sabe cudles son los posibles valores que
tomard una determinada variable, existen los ciclos indefinidos, que se terminan cuando
no se cumple una determinada condicién.

e La condicion que termina el ciclo puede estar relacionada con una entrada de usuario o
depender del procesamiento de los datos.

e Se puede utilizar el método del centinela cuando se quiere que un ciclo se repita hasta que
el usuario indique que no quiere continuar.

Referencia Python @

for <nombre> in <expresién>:

Introduce un ciclo definido. Una vez evaluada la <expresién> (cuyo resultado debe ser una
secuencia de valores), se sabe exactamente cudntas veces se ejecutard el <cuerpo> y qué valores
tomara la variable <nombre>.

for <nombre> in <expresién>:
# el cuerpo de ejecuta una cantidad definida de veces
<cuerpo>

while <condicion>:

Introduce un ciclo indefinido, que se termina cuando la condicién sea falsa.

while <condicién>:
# acciones a ejecutar mientras condicidn sea verdadera



Unidad 6

Validacion

6.1 Errores

En un programa podemos encontrarnos con distintos tipos de errores, pero a grandes rasgos
podemos decir que todos los errores pertenecen a una de las siguientes categorias.

e Errores de sintaxis: estos errores son seguramente los més simples de resolver, pues son
detectados por el intérprete (o por el compilador, segtn el tipo de lenguaje que estemos
utilizando) al procesar el c6digo fuente y generalmente son consecuencia de equivoca-
ciones al escribir el programa. En el caso de Python estos errores son indicados con un
mensaje SyntaxError. Por ejemplo, si trabajando con Python intentamos definir una fun-
cién y en lugar de def escribimos dev.

e Errores semanticos: se dan cuando un programa, a pesar de no generar mensajes de error,
no produce el resultado esperado. Esto puede deberse, por ejemplo, a un algoritmo inco-
rrecto o a la omisién de una sentencia.

e Errores de ejecucién: estos errores aparecen durante la ejecucion del programa y su origen
puede ser diverso. En ocasiones pueden producirse por un uso incorrecto del programa
por parte del usuario, por ejemplo si el usuario ingresa una cadena cuando se espera
un ndamero. En otras ocasiones pueden deberse a errores de programacioén, por ejemplo
si una funcién intenta realizar una divisién por cero. Una causa comun de errores de
ejecucion, que generalmente excede al programador y al usuario, son los recursos externos
al programa, por ejemplo si el programa intenta leer un archivo y el mismo se encuentra
dafiado. Los errores de ejecucién son llamados comtinmente excepciones.

Tanto a los errores de sintaxis como a los semanticos se los puede detectar y corregir durante
la construccién del programa ayudados por el intérprete y la ejecucion de pruebas. Pero no
ocurre esto con los errores de ejecucion, ya que no siempre es posible saber cudndo ocurrirdn y
puede resultar muy complejo (o incluso casi imposible) reproducirlos. Es por ello que el resto
de la unidad nos centraremos en cémo preparar nuestros programas para lidiar con este tipo
de errores. En particular, trataremos con una técnica llamada validacion, que sirve para tratar un
tipo especial de errores de ejecucion relacionado con los errores de entrada de usuario.



6.2. Validaciones 55

6.2 Validaciones

Las validaciones son técnicas que permiten asegurar que los valores con los que se vaya a
operar estén dentro de determinado dominio.

Estas técnicas son particularmente importantes al momento de utilizar entradas del usuario
o de un archivo (o entradas externas en general) en nuestro c6digo, y también se las utiliza para
comprobar precondiciones. Al uso intensivo de estas técnicas se lo suele llamar programacion
defensiva.

Si bien quien invoca una funcién debe preocuparse de cumplir con las precondiciones de
ésta, si las validaciones estan hechas correctamente pueden devolver informacién valiosa para
que el invocante pueda actuar en consecuencia.

Hay distintas formas de comprobar el dominio de un dato. Por ejemplo, se puede comprobar
el contenido; o que una variable sea de un tipo en particular.

También se debe tener en cuenta qué hard nuestro c6digo cuando una validacién falle, ya que
queremos darle informacién al invocante que le sirva para procesar el error. El error producido
tiene que ser facilmente reconocible.

En cualquier caso, lo importante es que el resultado generado por nuestro cédigo cuando
funciona correctamente y el resultado generado cuando falla debe ser claramente distinto.

6.2.1 Entrada del usuario

En el caso particular de una porcién de c6digo que trate con entrada del usuario, no se debe
asumir que el usuario vaya a ingresar los datos correctamente, ya que los seres humanos tienden
a cometer errores al ingresar informacion.

Por ejemplo, si se desea que un usuario ingrese un ntimero entero, debemos comprobar el
tipo de dato que ingresé. Python nos indica el tipo de una variable usando la funcién type.

def pedir_entero():
"""Solicita un valor entero y lo devuelve.
Si el valor ingresado no es entero, imprime un mensaje de error y retorna el
< string "Error".
i = input("Ingrese un numero entero: ")
if type(i) is not int:
print("El nUmero no es de tipo entero")
return("Error")
else
return int(i)

Esta funcién devuelve un valor entero, o imprime un mensaje de error y devuelve el string
“Error” si el usuario no ingresé un entero.

Sin embargo, esto no es satisfactorio: si el usuario no ingresa la informacién correctamente,
el programa podria no continuar, si dicha informacion fuese necesaria para la resolucién de la
tarea del programa. Podemos hacerlo més amigable haciendo que se vuelva a pedir al usuario
que ingrese la informacion:

def pedir_entero():
"""Solicita un valor entero y lo devuelve.
Mientras el valor ingresado no sea entero, vuelve a solicitarlo."""
while True:
valor = input("Ingrese un nimero entero: ")
if type(valor) is not int:



56 Unidad 6. Validacion

print("'{}' no es un nUmero entero.".format(valor))
else
return int(valor)

Podria ser deseable, ademas, poner un limite a la cantidad méxima de intentos que el usuario
tiene para ingresar la informacion correctamente y, superada esa cantidad méaxima de intentos,
retornar un valor especial para que sea manejada por el c6digo invocante o imprimir un mensaje
de error.

def pedir_entero():
"""Solicita un valor entero y lo devuelve.
Si el valor ingresado no es entero, da 5 intentos para ingresarlo
correctamente, y de no ser asi, imprime mensaje
de error de superacidén de intentos."""
intentos = 0
while intentos < 5:
valor = input("Ingrese un nimero entero: ")
if type(valor) is not int:
print("'{}' no es un nUmero entero.".format(valor))
else
return int(valor)
intentos += 1
print("Valor incorrecto ingresado en 5 intentos")

Por otro lado, cuando la entrada ingresada sea una cadena, no es esperable que el usuario
la vaya a ingresar en maytsculas o mintsculas; ambos casos deben ser considerados.

def lee opcion():
"""Solicita una opcién de menu y la devuelve.
while True:
opcion = input("Ingrese A (Altas) - B (Bajas) - M (Modificaciones): ")
if opcion.upper() in ("A", "B", "M"):
return opcion

6.2.2 Comprobaciones por aserciones

Cuando queremos validar que los datos provistos a una porcién de cédigo contengan la
informacién apropiada, ya sea porque esa informacién la ingres6é un usuario, fue leida de un
archivo, o porque por cualquier motivo es posible que sea incorrecta, es deseable comprobar que
el contenido de las variables a utilizar estén dentro de los valores con los que se puede operar.

Estas comprobaciones no siempre son posibles, ya que en ciertas situaciones puede ser muy
costoso corroborar las precondiciones de una funcién. Es por ello que este tipo de comproba-
ciones se realizan sélo cuando sea posible.

Por ejemplo, la funcién % no estd definida cuando el divisor es igual a 0. Es posible
utilizar assert para comprobar las precondiciones de la funcién. La instuccién assert de Python
es una ayuda para la depuracién del cédigo ya que prueba una condicién. Si la condicién es
verdadera, no hace nada y el programa simplemente continta ejecutdndose. Pero si la condicién
de asercion se evaltia como falsa, genera un error de ejecucién con un mensaje de error opcional.

1 def division de 1 por divisor(divisor):

2 """Calcula el cociente entre 1 y el divisor.

3 Pre: el divisor debe ser un ndmero distinto de 0

4 Post: se devuelve el valor del cociente entre 1 y el divisor

5



6.3. Resumen 57

6 assert isinstance(divisor, (int, float, complex)) and not isinstance(
< divisor, bool), "el divisor debe ser un niumero"

7 assert divisor !'= 0, "el divisor no puede ser igual a 0"

8 cociente = 1 / divisor

9 return cociente

6.3 Resumen

e Los errores que se pueden presentar en un programa son: de sintaxis (detectados por el
intérprete), de semantica (el programa no funciona correctamente), o de ejecucién.

e Antes de actuar sobre un dato en una porcién de cédigo, es deseable corroborar que se lo
pueda utilizar. Para ello se puede validar su contenido, su tipo o sus atributos.

e Cuando no es posible utilizar un dato dentro de una porcién de cédigo, es importante
informar el problema al c6digo invocante, lo que puede hacerse mediante un valor de
retorno especial.



Licencia y Copyright

Copyright © Rosita Wachenchauzer <rositaw@gmail.com>
Copyright © Margarita Manterola <margamanterola@gmail.com>
Copyright © Maximiliano Curia <maxy@gnuservers.com.ar>
Copyright © Marcos Medrano <mmedrano@fi.uba.ar>

Copyright © Nicolds Paez <nicopaez@computer.org>

Copyright © Diego Essaya <dessaya@gmail.com>

Copyright © Dato Simé <dato@net.com.org.es>

Copyright © Sebastidn Santisi <s@ntisi.com.ar>

El texto original Algoritmos y Programacion I, Aprendiendo a programar usando Python como he-
rramienta, 2da. Edicion fue adaptado y modificado por la Catedra de Introduccién a la Programacion
de la Universidad Nacional de Lujan.

Esta obra se distribuye bajo la Licencia Creative Commons Atribucién-Compartirlgual 4.0
Internacional.

Los iconos utilizados fueron disefiados por Freepik.

El logo de Python es una marca registrada de la Python Software Foundation.

La publicidad de Cacao Droste es de dominio ptblico, y fue descargada de Wikipedia.


http://creativecommons.org/licenses/by-sa/4.0/deed.es
http://creativecommons.org/licenses/by-sa/4.0/deed.es
http://www.freepik.com/
https://www.python.org/psf/
http://en.wikipedia.org/wiki/Image:Droste.jpg

	1 Conceptos básicos
	1.1 Computadoras y programas
	1.2 El mito de la máquina todopoderosa
	1.3 Cómo darle instrucciones a la máquina usando Python
	1.3.1 La terminal
	1.3.2 El intérprete interactivo de Python

	1.4 Valores y tipos
	1.5 Variables
	1.6 Funciones
	1.7 Construir programas y módulos
	1.8 Interacción con el usuario
	1.9 Estado y computación
	1.9.1 Depuración de programas


	2 Programas sencillos
	2.1 Construcción de programas
	2.2 Realizando un programa sencillo
	2.3 Piezas de un programa Python
	2.3.1 Nombres
	2.3.2 Expresiones
	2.3.3 No sólo de números viven los programas
	2.3.4 Instrucciones

	2.4 Una guía para el diseño
	2.5 Calidad de software

	3 Funciones
	3.1 Creación de funciones
	3.2 Documentación de funciones
	3.3 Imprimir versus devolver
	3.4 Cómo usar una función en un programa
	3.5 Alcance de las variables
	3.6 Devolver múltiples resultados
	3.7 Módulos
	3.7.1 Módulos estándar

	3.8 Resumen

	4 Decisiones
	4.1 Expresiones booleanas
	4.1.1 Expresiones de comparación
	4.1.2 Operadores lógicos

	4.2 Comparaciones simples
	4.3 Múltiples decisiones consecutivas
	4.4 Resumen

	5 Ciclos
	5.1 El ciclo definido
	5.2 Ciclos indefinidos
	5.3 Ciclo interactivo
	5.4 Ciclo con centinela
	5.5 Resumen

	6 Validación
	6.1 Errores
	6.2 Validaciones
	6.2.1 Entrada del usuario
	6.2.2 Comprobaciones por aserciones

	6.3 Resumen

	Licencia y Copyright

