
Introducción a la Programación
Aprendiendo a programar usando Python como

herramienta
Universidad Nacional de Luján

Contenidos

1 Conceptos básicos 4
1.1 Computadoras y programas . 4
1.2 El mito de la máquina todopoderosa . 5
1.3 Cómo darle instrucciones a la máquina usando Python 6

1.3.1 La terminal . 7
1.3.2 El intérprete interactivo de Python . 7

1.4 Valores y tipos . 9
1.5 Variables . 10
1.6 Funciones . 10
1.7 Construir programas y módulos . 11
1.8 Interacción con el usuario . 12
1.9 Estado y computación . 13

1.9.1 Depuración de programas . 14

2 Programas sencillos 16
2.1 Construcción de programas . 16
2.2 Realizando un programa sencillo . 17
2.3 Piezas de un programa Python . 19

2.3.1 Nombres . 19
2.3.2 Expresiones . 20
2.3.3 No sólo de números viven los programas 21
2.3.4 Instrucciones . 22

2.4 Una guía para el diseño . 22
2.5 Calidad de software . 23

3 Funciones 25
3.1 Creación de funciones . 25
3.2 Documentación de funciones . 27
3.3 Imprimir versus devolver . 28
3.4 Cómo usar una función en un programa . 29
3.5 Alcance de las variables . 31
3.6 Devolver múltiples resultados . 32
3.7 Módulos . 33

3.7.1 Módulos estándar . 34
3.8 Resumen . 34

CONTENIDOS 3

4 Decisiones 37
4.1 Expresiones booleanas . 37

4.1.1 Expresiones de comparación . 38
4.1.2 Operadores lógicos . 38

4.2 Comparaciones simples . 39
4.3 Múltiples decisiones consecutivas . 42
4.4 Resumen . 44

5 Ciclos 46
5.1 El ciclo definido . 46
5.2 Ciclos indefinidos . 48
5.3 Ciclo interactivo . 49
5.4 Ciclo con centinela . 50
5.5 Resumen . 53

6 Validación 54
6.1 Errores . 54
6.2 Validaciones . 55

6.2.1 Entrada del usuario . 55
6.2.2 Comprobaciones por aserciones . 56

6.3 Resumen . 57

Licencia y Copyright 58

Unidad 1

Algunos conceptos básicos

En esta unidad hablaremos de lo que es un programa de computadora e introduciremos
unos cuantos conceptos referidos a la programación y a la ejecución de programas. Utilizaremos
en todo momento el lenguaje de programación Python para ilustrar esos conceptos.

1.1 Computadoras y programas
En la actualidad, la mayoría de nosotros utilizamos computadoras permanentemente: para

mandar correos electrónicos, navegar por Internet, chatear, jugar, escribir textos.
Las computadoras se usan para actividades tan disímiles como predecir las condiciones me-

teorológicas de la próxima semana, guardar historias clínicas, diseñar aviones, llevar la contabi-
lidad de las empresas o controlar una fábrica. Y lo interesante aquí (y lo que hace apasionante a
esta carrera) es que el mismo aparato sirve para realizar todas estas actividades: uno no cambia
de computadora cuando se cansa de chatear y quiere jugar al solitario.

Muchos definen una computadora moderna como “una máquina que almacena y manipula
información bajo el control de un programa que puede cambiar”. Aparecen acá dos conceptos
que son claves: por un lado se habla de una máquina que almacena información, y por el otro
lado, esta máquina está controlada por un programa que puede cambiar.

Una calculadora sencilla, de esas que sólo tienen 10 teclas para los dígitos, una tecla para
cada una de las 4 operaciones, un signo igual, encendido y CLEAR, también es una máquina
que almacena información y que está controlada por un programa. Pero lo que diferencia a esta
calculadora de una computadora es que en la calculadora el programa no puede cambiar.

Un programa de computadora es una secuencia de instrucciones paso a paso que le indican a
una computadora cómo realizar una tarea dada. En la computadora uno puede modificar un
programa de acuerdo a la tarea que quiere realizar.

Las instrucciones se deben escribir en un lenguaje que nuestra computadora entienda. Los
lenguajes de programación son lenguajes diseñados especialmente para dar órdenes a una
computadora, de manera exacta y no ambigua. Sería muy agradable poder darle las órdenes
a la computadora en castellano, pero el problema del castellano, y de las lenguas habladas en
general, es su ambigüedad. Por ejemplo, si alguien nos dice “Comprá el collar sin monedas”, no sa-
bremos si nos pide que compremos el collar que no tiene monedas, o que compremos un collar
y que no usemos monedas para la compra. Habrá que preguntarle a quien nos da la orden cuál
es la interpretación correcta. Pero tales dudas no pueden aparecer cuando se le dan órdenes a
una computadora.

Este curso va a tratar precisamente de cómo se escriben programas para hacer que una

1.2. El mito de la máquina todopoderosa 5

computadora realice una determinada tarea. Vamos a usar un lenguaje específico, Python, por-
que es sencillo y elegante, pero éste no será un curso de Python sino un curso de programación.

Sabías que…

Existen cientos de lenguajes de programación, y Python es uno de los más utilizados en la industria
del software. Entre sus usos más frecuentes se destacan las aplicaciones web, computación científica
e inteligencia artificial. Muchas empresas hacen extensivo uso de Python, entre ellas gigantes como
Google, Yahoo!,NASA, Facebook yAmazon. Python también suele ser incluido como herramienta
de scripting embebido en ciertos paquetes de software, por ejemplo en programas de modelado y
animación 3D como 3ds Max y Blender, o videojuegos como Civilization IV.

1.2 El mito de la máquina todopoderosa
Muchas veces la gente se imagina que con la computadora se puede hacer cualquier cosa;

o que si bien hubo tareas que no eran posibles de realizar hace 50 años, sí lo serán cuando las
computadoras crezcan en poder (memoria, velocidad), y se vuelvan máquinas todopoderosas.

Sin embargo eso no es así: existen algunos problemas, llamados no computables que nunca
podrán ser resueltos por una computadora digital, por más poderosa que ésta sea. La compu-
tabilidad es la rama de la computación que se ocupa de estudiar qué tareas son computables y
qué tareas no lo son.

De la mano del mito anterior, viene el mito del lenguaje todopoderoso: hay problemas que
son no computables porque en realidad se utiliza algún lenguaje que no es el apropiado.

En realidad todas las computadoras pueden resolver los mismos problemas, y eso es inde-
pendiente del lenguaje de programación que se use. Las soluciones a los problemas computables
se pueden escribir en cualquier lenguaje de programación. Eso no significa que no haya lengua-
jes más adecuados que otros para la resolución de determinados problemas, pero la adecuación
está relacionada con temas tales como la elegancia, la velocidad, la facilidad para describir un
problema de manera simple, etc., nunca con la capacidad de resolución.

Los problemas no computables no son los únicos escollos que se le presentan a la compu-
tación. Hay otros problemas que si bien son computables demandan para su resolución un es-
fuerzo enorme en tiempo y en memoria. Estos problemas se llaman intratables. El análisis de
algoritmos se ocupa de separar los problemas tratables de los intratables, encontrar la solución
más barata para resolver un problema dado, y en el caso de los intratables, resolverlos de mane-
ra aproximada: no encontramos la verdadera solución porque no nos alcanzan los recursos para
eso, pero encontramos una solución bastante buena y que nos insume muchos menos recursos
(el orden de las respuestas de Google a una búsqueda es un buen ejemplo de una solución
aproximada pero no necesariamente óptima).

En este curso trabajaremos con problemas no sólo computables sino también tratables. En
la carrera aprenderemos a medir los recursos que nos demanda una solución, y empezaremos
a buscar la solución menos demandante en cada caso particular.

Algunos ejemplos de los problemas que encararemos y de sus soluciones:

Problema 1.1. Dado un número 𝑁 se quiere calcular 𝑁33.

6 Unidad 1. Conceptos básicos

Una solución posible, por supuesto, es hacer el producto 𝑁 ⋅ 𝑁 ⋯ 𝑁, que involucra 32 mul-
tiplicaciones.

Otra solución, mucho más eficiente es:
• Calcular 𝑁 ⋅ 𝑁.
• Al resultado anterior mutiplicarlo por sí mismo con lo cual ya disponemos de 𝑁4.
• Al resultado anterior mutiplicarlo por sí mismo con lo cual ya disponemos de 𝑁8.
• Al resultado anterior mutiplicarlo por sí mismo con lo cual ya disponemos de 𝑁16.
• Al resultado anterior mutiplicarlo por sí mismo con lo cual ya disponemos de 𝑁32.
• Al resultado anterior mutiplicarlo por 𝑁 con lo cual conseguimos el resultado deseado

con sólo 6 multiplicaciones.
Cada una de estas dos soluciones representa un algoritmo, es decir un método de cálculo,

diferente. Para un mismo problema puede haber algoritmos diferentes que lo resuelven, cada
uno con un costo distinto en términos de recursos computacionales involucrados.

Sabías que…

La palabra algoritmo no es una variación de logaritmo, sino que proviene de algorismo. En la antigüe-
dad, los algoristas eran los que calculaban usando la numeración arábiga y mientras que los abacistas
eran los que calculaban usando ábacos. Con el tiempo el algorismo se deformó en algoritmo, influen-
ciado por el término aritmética.

A su vez, el uso de la palabra algorismo proviene del nombre de un matemático persa famoso,
en su época y para los estudiosos de esa época, Abu Abdallah Muhammad ibn Mûsâ al-Jwârizmî,
que literalmente significa: “Padre de Ja’far Mohammed, hijo deMoises, nativo de Jiva”. Al-Juarismi,
como se lo llama usualmente, escribió en el año 825 el libro “Al-Kitâb al-mukhtasar fî hîsâb al-gabr
wa’l-muqâbala” (Compendio del cálculo por el método de completado y balanceado), del cual sur-
gió también la palabra “álgebra”.

Hasta hace no mucho tiempo se utilizaba el término algoritmo para referirse únicamente a for-
mas de realizar ciertos cálculos, pero con el surgimiento de la computación, el término algoritmo
pasó a abarcar cualquier método para obtener un resultado.

Problema 1.2. Tenemos que permitir la actualización y consulta de una guía telefónica.

Para este problema no hay una solución única: hay muchas y cada una está relacionada con
un contexto de uso. ¿De qué guía estamos hablando: la guía de una pequeña oficina, un pequeño
pueblo, una gran ciudad, la guía de la Argentina? Y en cada caso ¿de qué tipo de consulta
estamos hablando: hay que imprimir un listado una vez por mes con la guía completa, se trata
de una consulta en línea, etc.? Para cada contexto hay una solución diferente, con los datos
guardados en una estructura de datos apropiada, y con diferentes algoritmos para la actualización
y la consulta.

1.3 Cómo darle instrucciones a la máquina usando Python

1.3. Cómo darle instrucciones a la máquina usando Python 7

Sabías que…

Python fue creado a finales de los años 80 por un programador holandés llamado Guido van Ros-
sum, quien se desempeñó como líder del desarrollo del lenguaje hasta 2018.

La versión 2.0, lanzada en 2000, fue un paso muy importante para el lenguaje ya que era mucho
más madura, incluyendo un recolector de basura. La versión 2.2, lanzada en diciembre de 2001, fue
también un hito importante ya que mejoró la orientación a objetos. La última versión de esta línea
es la 2.7 que fue lanzada en noviembre de 2010 y estará vigente hasta 2020.

En diciembre de 2008 se lanzó la rama 3.0 (en este libro utilizamos la versión 3.7, de junio de
2018). Python 3 fue diseñado para corregir algunos defectos de diseño en el lenguaje, y muchos de
los cambios introducidos son incompatibles con las versiones anteriores. Por esta razón, las ramas
2.x y 3.x coexisten con distintos grados de adopción.

Atención

De forma tal de aprovechar al máximo este libro, recomendamos instalar Python 3 en una compu-
tadora, y acompañar la lectura probando todos los ejemplos de código y haciendo los ejercicios.

En https://www.python.org/downloads/ se encuentran los enlaces para descargar Python,
y en http://docs.python.org.ar/tutorial/3/interpreter.html hay más información acerca
de cómo ejecutar el intérprete en cada sistema operativo.

El lenguaje Python nos provee de un intérprete, es decir un programa que interpreta las ór-
denes que le damos a medida que las escribimos. La forma más típica de invocar al intérprete
es ejecutar el comando python3 en la terminal.

1.3.1 La terminal
La terminal o consola del sistema operativo permite ingresar órdenes a la computadora en for-

ma de líneas de texto. Los tres sistemas operativos más populares (Windows, Mac OS y Linux)
están equipados con una terminal. Está fuera del alcance de este apunte cubrir el uso detallado
de la terminal, pero para empezar será suficiente con saber cómo acceder a la misma.

Para abrir la terminal:

• En Windows, presionar las teclas Windows + R , luego escribir cmd y presionar Enter .

• En Mac OS, presionar las teclas + Espacio , luego escribir terminal y presionar Enter .

• En Linux (Ubuntu), presionar Ctrl + Alt + T .

La terminal debería mostrar algo como se ve en la Figura 1.1. En la figura se muestra la
terminal en un sistema operativo Linux; en otros sistemas operativos puede verse ligeramente
diferente, pero siempre debería mostrar un espacio de texto con un cursor para escribir.

1.3.2 El intérprete interactivo de Python
Una vez que accedimos a la terminal del sistema operativo, el próximo paso es abrir el in-

térprete de Python. Para eso, escribimos python3 y presionamos Enter .
La terminal debería mostrar algo como se ve en la Figura 1.2.

https://www.python.org/downloads/
http://docs.python.org.ar/tutorial/3/interpreter.html

8 Unidad 1. Conceptos básicos

Figura 1.1: La terminal en un sistema operativo Linux.

Figura 1.2: El intérprete de Python.

A partir de ahora vamos a mostrar el contenido de la terminal utilizando el siguiente forma-
to:

$ python3 1

Python 3.6.0 (default, Dec 23 2016, 11:28:25)
[GCC 6.2.1 20160830] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 2

1 Las líneas que comienzan con $ indican órdenes que le damos al sistema operativo (en
este caso la orden es python3, es decir abrir el intérprete de Python).

2 Para orientarnos, el intérprete de Python muestra los símbolos >>> (llamaremos a esto el
prompt), indicando que podemos escribir a continuación una sentenciau orden que será evaluada
por Python (en lugar de ser evaluada directamente por el sistema operativo).

Algunas sentencias sencillas, por ejemplo, permiten utilizar el intérprete como una calcula-
dora simple con números enteros. Para esto escribimos la expresión que queremos resolver luego
del prompt y presionamos la tecla Enter . El intérprete de Python evalúa la expresión y muestra
el resultado en la línea siguiente. Luego nos presenta nuevamente el prompt.

>>> 2+3
5
>>>

Python permite utilizar las operaciones +, -, *, /, // y ** (suma, resta, multiplicación, divi-
sión, división entera y potencia). La sintaxis es la convencional (valores intercalados con ope-
raciones), y se puede usar paréntesis para modificar el orden de asociación natural de las ope-
raciones (potencia, producto/división, suma/resta).

>>> 5*7

1.4. Valores y tipos 9

35
>>> 2+3*7
23
>>> (2+3)*7
35
>>> 10/4
2.5
>>> 10//4
2
>>> 5**2
25

1.4 Valores y tipos
En la operación 5 * 7 cuyo resultado es 35, decimos que 5, 7 y 35 son valores. En Python,

cada valor tiene un tipo de dato asociado. El tipo de dato del valor 35 es número entero.
Hay dos tipos de datos numéricos: los números enteros y los números de punto flotante.

Los números enteros (42, 0, -5, 10000) representan el valor entero exacto que ingresemos. Los
números de punto flotante (5.3, -98.28109, 0.0)1 son parecidos a la notación científica, alma-
cenan una cantidad limitada de dígitos significativos y un exponente, por lo que sirven para
representar magnitudes en forma aproximada. Según los operandos y las operaciones que ha-
gamos usaremos la aritmética de los enteros o de los de punto flotante.

Vamos a elegir enteros cada vez que necesitemos recordar un valor exacto: la cantidad de
alumnos, cuántas veces repito una operación, un número de documento, el dinero en una cuenta
bancaria2.

Cuando operamos con números enteros, el resultado es exacto:
>>> 1 + 2
3

Vamos a elegir punto flotante cuando nos interesemás lamagnitud y no tanto la exactitud, lo
cual suele ser típico en la física y la ingeniería: la temperatura, el seno de un ángulo, la distancia
recorrida, el número de Avogadro, el factorial de un número3.

Cuando hay números de punto flotante involucrados en la operación, el resultado es apro-
ximado:

>>> 0.1 + 0.2
0.30000000000000004

Además de efectuar operaciones matemáticas, Python nos permite trabajar con porciones
de texto, que llamaremos cadenas, y que se introducen entre comillas simples (') o dobles ("):

>>> '¡Hola Mundo!'
'¡Hola Mundo!'
>>> 'abcd' + 'efgh'
'abcdefgh'
>>> 'abcd' * 3
'abcdabcdabcd'

1Notar que se utiliza el punto decimal y no la coma decimal.
2¿Pero la moneda no tiene decimales?, ¡sí!, pero conviene representar el saldo como la cantidad total de centavos,

que es un número entero, ya que es muy importante almacenar la suma exacta que hay en la cuenta.
3¿Pero el factorial no es entero?, ¡sí!, pero si lo necesitamos, por ejemplo, para calcular un polinomio de Taylor, el

factorial figura como denominador y ahí nos importa más su magnitud que su valor exacto.

10 Unidad 1. Conceptos básicos

1.5 Variables
Python nos permite asignarle un nombre a un valor, de forma tal de “recordarlo” para usarlo

posteriormente, mediante la sentencia <nombre> = <expresión>.
>>> x = 8
>>> x
8
>>> y = x * x
>>> 2 * y
128
>>> lenguaje = 'Python'
>>> 'Estoy programando en ' + lenguaje
'Estoy programando en Python'

En este ejemplo creamos tres variables, llamadas x, y y lenguaje, y las asociamos a los valores
8, 64 y 'Python', respectivamente. Luego podemos usar esas variables como parte de cualquier
expresión, y en el momento de evaluarla, Python reemplazará las variables por su valor asocia-
do.

1.6 Funciones
Para efectuar algunas operaciones particulares necesitamos introducir el concepto de fun-

ción:
>>> abs(10)
10
>>> abs(-10)
10
>>> max(5, 9, -3)
9
>>> min(5, 9, -3)
-3
>>> len("abcd")
4

Una función es un fragmento de programaque permite efectuar una operación determinada.
abs, max, min y len son ejemplos de funciones de Python: la función abs permite calcular el valor
absoluto de un número, max y min permiten obtener el máximo y el mínimo entre un conjunto
de números, y len permite obtener la longitud de una cadena de texto.

Una función puede recibir 0 o más parámetros o argumentos (expresados entre entre parén-
tesis, y separados por comas), efectúa una operación y devuelve un resultado. Por ejemplo, la
función abs recibe un parámetro (un número) y su resultado es el valor absoluto del número.

función

parámetros
resultado

Figura 1.3: Una función recibe parámetros y devuelve un resultado.

1.7. Construir programas y módulos 11

Python viene equipado con muchas funciones, pero ya hemos dicho que, como programa-
dores, debíamos ser capaces de escribir nuevas instrucciones para la computadora. Los progra-
mas de correo electrónico, navegación web, chat, juegos, procesamiento de texto o predicción
de las condiciones meteorológicas de los próximos días no son más que grandes programas
implementados introduciendo nuevas funciones a la máquina, escritas por uno o muchos pro-
gramadores.

1.7 Construir programas y módulos
El intérprete interactivo es muy útil para probar cosas, acceder a la ayuda, inspeccionar el

lenguaje, etc, pero tiene una gran limitación: ¡cuando cerramos el intérprete perdemos todas las
definiciones! Para conservar los programas que vamos escribiendo, debemos escribir el código
utilizando algún editor de texto, y guardar el archivo con la extensión .py.

Sabías que…

El intérprete interactivo de python nos provee una ayuda en línea; es decir, nos puede dar la docu-
mentación de cualquier función o instrucción. Para obtenerla llamamos a la función help(). Si le
pasamos por parámetro el nombre de una función (por ejemplo help(abs) o help(range)) nos da-
rá la documentación de esa función. Para obtener la documentación de una instrucción la debemos
poner entre comillas; por ejemplo: help('for'), help('return').

En el código 1.1 se muestra nuestro primer programa, cuad2.py, que nos permite calcular la
suma de los cuadrados de dos números.

Código 1.1 cuad2.py: Imprime la suma de los cuadrados de dos números

1 n = 2
2 m = 3
3 print("La suma de los cuadrados de ", n, " y ", m, " es ", n*n+m*m)

En la última línea del programa introducimos una función nueva: print(). La función print
recibe uno o más parámetros de cualquier tipo y los imprime en la pantalla. ¿Por qué no había-
mos utilizado print hasta ahora?

En el modo interactivo, Python imprime el resultado de cada expresión luego de evaluarla:
>>> 2 + 2
4

En cambio, cuando Python ejecuta un programa .py no imprime absolutamente nada en la
pantalla, a menos que le indiquemos explícitamente que lo haga. Por eso es que en cuad2.py
debemos llamar a la función print para mostrar el resultado.

Para ejecutar el programa debemos abrir una consola del sistema y ejecutar python cuad2.
py:

$ python3 cuad2.py
La suma de los cuadrados de 2 y 3 es 13

12 Unidad 1. Conceptos básicos

1.8 Interacción con el usuario
Ya vimos que la función print nos permite mostrar información al usuario del programa.

En algunos casos también necesitaremos que el usuario ingrese datos al programa. Por ejemplo:

Problema 1.8.1. Escribir en Python un programa que pida al usuario que escriba su nombre, y
luego lo salude.

Código 1.2 saludar.py: Saluda al usuario posr su nombre

1 nombre = input("Por favor ingrese su nombre: ")
2 saludo = "Hola " + nombre + "!"
3 print(saludo)

Solución.

En el Código 1.2 usamos la función input para pedirle al usuario su nombre. input presenta
al usuario el mensaje que le pasamos por parámetro, y luego le permite ingresar una cadena
de texto. Cuando el usuario presiona la tecla Enter , input devuelve la cadena ingresada. Luego
concatenamos cadenas de caracteres para generar el saludo, y llamamos a print para mostrar
el saludo al usuario.

Para ejecutar el programa, nuevamente escribimos en la consola del sistema:
$ python3 saludar.py
Por favor ingrese su nombre: Alan
Hola Alan!

Problema 1.8.2. Escribir en Python un programa que haga lo siguiente:

1. Muestra un mensaje de bienvenida por pantalla.

2. Le pide al usuario que introduzca dos números enteros 𝑛1 y 𝑛2.

3. Imprime la suma de los cuadrados de los dos números enteros introducidos.

4. Muestra un mensaje de despedida por pantalla.

Solución. La solución a este problema se encuentra en el Código 1.3.

Código 1.3 suma_cuadrados.py: Imprime los cuadrados solicitados

1 print("Se calculará la suma de los cuadrados")
2

3 n1 = int(input("Ingrese un número entero: "))
4 n2 = int(input("Ingrese otro número entero: "))
5 suma = 0
6 suma = suma + n1*n1
7 suma = suma + n2*n2
8

9 print(suma)
10 print("Es todo por ahora")

Como siempre, podemos ejecutar el programa en la consola del sistema:

1.9. Estado y computación 13

$ python3 suma_cuadrados.py
Se calculará la suma de los cuadrados
Ingrese un número entero: 5
Ingrese otro número entero: 8
61
Es todo por ahora

En el Código 1.3 aparece una función que no habíamos utilizado hasta ahora: int. ¿Por qué
es necesario utilizar int para resolver el problema?

En un programa Python podemos operar con cadenas de texto o con números. Las represen-
taciones dentro de la computadora de un número y una cadena son muy distintas. Por ejemplo,
los números 0, 42 y 12345678 se almacenan como números binarios ocupando todos la misma
cantidad de memoria (típicamente 4 u 8 bytes), mientras que las cadenas "0", "42" y "12345678
" son secuencias de caracteres, en las que cada dígito se representa como un caracter y cada
caracter ocupa típicamente 1 byte.

La función input interpreta cualquier valor que el usuario ingresa mediante el teclado co-
mo una cadena de caracteres. Es decir, input siempre devuelve una cadena, incluso aunque el
usuario haya ingresado una secuencia de dígitos.

Por eso es que introducimos la función int, que devuelve el parámetro que recibe convertido
a un número entero:

>>> int("42")
42

1.9 Estado y computación
A lo largo de la ejecución de un programa las variables pueden cambiar el valor con el que

están asociadas. En un momento dado uno puede detenerse a observar a qué valor se refiere
cada una de las variables del programa. Esa “foto” que indica en un momento dado a qué valor
hace referencia cada una de las variables se denomina estado. También hablaremos del estado de
una variable para indicar a qué valor está asociada esa variable, y usaremos la notación n → 13
para describir el estado de la variable n (e indicar que está asociada al número 13).

Amedida que las variables cambian de valores a los que se refieren, el programa va cambian-
do de estado. La sucesión de todos los estados por los que pasa el programa en una ejecución
dada se denomina computación.

Para ejemplificar estos conceptos veamos qué sucede cuando se ejecuta el programa
suma_cuadrados.py:

Instrucción Qué sucede Estado
print("Se calculará la suma
de los cuadrados")

Se despliega el texto “Se calcula-
rá la suma de los cuadrados” en
la pantalla.

n1 = int(input("Ingrese
un número entero: "))

Se despliega el texto “Ingrese un
número entero: ” en la pantalla y
el programa se queda esperando
que el usuario ingrese un núme-
ro.

14 Unidad 1. Conceptos básicos

Supondremos que el usuario in-
gresa el número 3 y luego opri-
me la tecla Enter .
Se asocia el número 3 con la va-
riable n1.

n1 → 3

n2 = int(input("Ingrese otro
número entero: "))

Se despliega el texto “Ingrese
otro número entero:” en la pan-
talla y el programa se queda es-
perando que el usuario ingrese
un número.

n1 → 3

Supondremos que el usuario in-
gresa el número 5 y luego opri-
me la tecla Enter .
Se asocia el número 5 con la va-
riable n2.

n1 → 3
n2 → 5

suma = 0 Se asocia el número 0 con la va-
riable suma.

n1 → 3
n2 → 5
suma → 0

suma = suma + n1*n1 Se asocia a la variable suma, la su-
ma del cuadrado del valor de la
variable n1 con el valor de la va-
riable suma.

n1 → 3
n2 → 5
suma → 9

suma = suma + n2*n2 Se asocia a la variable suma, la su-
ma del cuadrado del valor de la
variable n2 con el valor de la va-
riable suma.

n1 → 3
n2 → 5
suma →
36

print(suma) Se imprime por pantalla el valor
de suma (36)

n1 → 3
n2 → 5
suma →
36

print("Es todo por ahora") Se despliega por pantalla elmen-
saje “Es todo por ahora”

n1 → 3
n2 → 5
suma →
36

1.9.1 Depuración de programas
Unamanera de seguir la evolución del estado es insertar instrucciones de impresión en sitios

críticos del programa. Esto nos será de utilidadpara detectar errores y también para comprender
cómo funcionan determinadas instrucciones.

Por ejemplo, podemos insertar llamadas a la función print en el Código 1.3 para inspeccio-
nar el contenido de las variables:

print("Se calculará la suma de los cuadrados")

n1 = int(input("Ingrese un número entero: "))
print("el valor de n1 es:", n1)
n2 = int(input("Ingrese otro número entero: "))

1.9. Estado y computación 15

print("el valor de n2 es:", n2)

suma = 0
print("el valor de suma es:", suma)
suma = suma + n1*n1
print("el valor de suma es:", suma)
suma = suma + n2*n2
print("el valor de suma es:", suma)

print(suma)
print("Es todo por ahora")

En este caso, la salida del programa será:
$ python3 suma_cuadrados.py
Se calculará la suma de los cuadrados
Ingrese un número entero: 5
el valor de n1 es: 5
Ingrese otro número entero: 8
el valor de n2 es: 8
el valor de suma es: 0
el valor de suma es: 25
el valor de suma es: 61
61
Es todo por ahora

Si utilizamos este método para depurar el programa, tendremos que recordar eliminar las
llamadas print una vez que terminemos.

Unidad 2

Programas sencillos

En esta unidad empezaremos a resolver problemas sencillos, y a programarlos en Python.

2.1 Construcción de programas
Cuando nos disponemos a escribir un programa debemos seguir una cierta cantidad de pa-

sos para asegurarnos de que tendremos éxito en la tarea. La acción irreflexiva (me siento frente
a la computadora y escribo rápidamente y sin pensar lo que me parece que es la solución) no
constituye una actitud profesional (e ingenieril) de resolución de problemas. Toda construcción
tiene que seguir una metodología, un protocolo de desarrollo.

Existenmuchasmetodologías para construir programas, pero en este curso aplicaremos una
sencilla, que es adecuada para la construcción de programas pequeños, y que se puede resumir
en los siguientes pasos:

1. Analizar el problema. Entender profundamente cuál es el problema que se trata de re-
solver, incluyendo el contexto en el cual se usará.

Una vez analizado el problema, asentar el análisis por escrito.

2. Especificar la solución. Éste es el punto en el cual se describe qué debe hacer el programa,
sin importar el cómo. En el caso de los problemas sencillos que abordaremos, deberemos
decidir cuáles son los datos de entrada que se nos proveen, cuáles son las salidas que
debemos producir, y cuál es la relación entre todos ellos.

Al especificar el problema a resolver, documentar la especificación por escrito.

3. Diseñar la solución. Éste es el punto en el cuál atacamos el cómo vamos a resolver el
problema, cuáles son los algoritmos y las estructuras de datos que usaremos. Analiza-
mos posibles variantes, y las decisiones las tomamos usando como dato de la realidad el
contexto en el que se aplicará la solución, y los costos asociados a cada diseño.

Luego de diseñar la solución, asentar por escrito el diseño, asegurándonos de que esté com-
pleto.

4. Implementar el diseño. Traducir a un lenguaje de programación (en nuestro caso, y por
el momento, Python) el diseño que elegimos en el punto anterior.

2.2. Realizando un programa sencillo 17

La implementación también se debe documentar, con comentarios dentro y fuera del código,
al respecto de qué hace el programa, cómo lo hace y por qué lo hace de esa forma.

5. Probar el programa.Diseñar un conjunto de pruebas para probar cada una de sus partes
por separado, y también la correcta integración entre ellas. Utilizar la depuración como
instrumento para descubir dónde se producen ciertos errores.

Al ejecutar las pruebas, documentar los resultados obtenidos.

6. Mantener el programa. Realizar los cambios en respuesta a nuevas demandas.

Cuando se realicen cambios, es necesario documentar el análisis, la especificación, el diseño,
la implementación y las pruebas que surjan para llevar estos cambios a cabo.

2.2 Realizando un programa sencillo
Al leer un artículo en una revista norteamericana que contiene información de longitudes

expresadas en millas, pies y pulgadas, queremos poder convertir esas distancias de modo que
sean fáciles de entender. Para ello, decidimos escribir un programa que convierta las longitudes
del sistema inglés al sistema métrico decimal.

Antes de comenzar a programar, utilizamos la guía de la sección anterior, para analizar,
especificar, diseñar, implementar y probar el problema.

1. Análisis del problema. En este caso el problema es sencillo: nos dan un valor expresado
en millas, pies y pulgadas y queremos transformarlo en un valor en el sistema métrico
decimal. Sin embargo hay varias respuestas posibles, porque no hemos fijado en qué uni-
dad queremos el resultado. Supongamos que decidimos que queremos expresar todo en
metros.

2. Especificación. Debemos establecer la relación entre los datos de entrada y los datos de
salida. Ante todo debemos averiguar los valores para la conversión de las unidades bási-
cas. Buscando en Internet encontramos la siguiente tabla:

• 1 milla = 1.609344 km
• 1 pie = 30.48 cm
• 1 pulgada = 2.54 cm

Atención

A lo largo de todo el curso usaremos punto decimal, en lugar de coma decimal, para repre-
sentar valores no enteros, dado que esa es la notación que utiliza Python.

La tabla obtenida no traduce las longitudes a metros. La manipulamos para llevar todo a
metros:

• 1 milla = 1609.344 m
• 1 pie = 0.3048 m

18 Unidad 2. Programas sencillos

• 1 pulgada = 0.0254 m

Si una longitud se expresa como 𝐿 millas, 𝐹 pies y 𝑃 pulgadas, su conversión a metros se
calculará como:

𝑀 = 1609.344 ∗ 𝐿 + 0.3048 ∗ 𝐹 + 0.0254 ∗ 𝑃

Hemos especificado el problema. Pasamos entonces a la próxima etapa.

3. Diseño. La estructura de este programa es sencilla: leer los datos de entrada, calcular la
solución, mostrar el resultado, o Entrada-Cálculo-Salida.
Antes de escribir el programa, escribiremos en pseudocódigo (un castellano preciso que se
usa para describir lo que hace un programa) una descripción del mismo:
Leer cuántas millas tiene la longitud dada
(y referenciarlo con la variable millas)

Leer cuántos pies tiene la longitud dada
(y referenciarlo con la variable pies)

Leer cuántas pulgadas tiene la longitud dada
(y referenciarlo con la variable pulgadas)

Calcular metros = 1609.344 * millas +
0.3048 * pies + 0.0254 * pulgadas

Mostrar por pantalla la variable metros

4. Implementación.Ahora estamos en condiciones de traducir este pseudocódigo a un pro-
grama en lenguaje Python:

Código 2.1 ametrico.py: Convierte medidas inglesas a sistema metrico

1 print("Convierte medidas inglesas a sistema metrico")
2

3 millas = int(input("Cuántas millas?: "))
4 pies = int(input("Y cuántos pies?: "))
5 pulgadas = int(input("Y cuántas pulgadas?: "))
6

7 metros = 1609.344 * millas + 0.3048 * pies + 0.0254 * pulgadas
8 print("La longitud es de ", metros, " metros")

5. Prueba. Probaremos el programa con valores para los que conocemos la solución:

• 1 milla, 0 pies, 0 pulgadas (el resultado debe ser 1609.344 metros).
• 0 millas, 1 pie, 0 pulgada (el resultado debe ser 0.3048 metros).
• 0 millas, 0 pies, 1 pulgada (el resultado debe ser 0.0254 metros).

La prueba la documentaremos con la sesión de Python correspondiente a las tres invoca-
ciones a ametrico.py.

2.3. Piezas de un programa Python 19

En la sección anterior hicimos hincapié en la necesidad de documentar todo el proceso de
desarrollo. En este ejemplo la documentación completa del proceso lo constituye todo lo escrito
en esta sección.

2.3 Piezas de un programa Python
Cuando empezamos a hablar en un idioma extranjero es posible que nos entiendan pese a

que cometamos errores. No sucede lomismo con los lenguajes de programación: la computado-
ra no nos entenderá si nos desviamos un poco de alguna de las reglas.

Por eso es que para poder empezar a programar en Python es necesario conocer los elemen-
tos que constituyen un programa en dicho lenguaje y las reglas para construirlos.

2.3.1 Nombres
Ya hemos visto que se usan nombres para denominar a los programas (ametrico) y para de-

nominar a las funciones dentro de unmódulo (main). Cuando queremos dar nombres a valores
usamos variables (millas, pies, pulgadas, metros). Todos esos nombres se llaman identificadores
y Python tiene reglas sobre qué es un identificador válido y qué no lo es.

Un identificador comienza con una letra o con guión bajo (_) y luego sigue con una secuencia
de letras, números y guiones bajos. Los espacios no están permitidos dentro de los identifica-
dores.

Los siguientes son todos identificadores válidos de Python:

• hola
• hola12t
• _hola
• Hola

Python distingue mayúsculas de minúsculas, así que Hola es un identificador y hola es otro
identificador.

Por convención, no usaremos identificadores que empiezan con mayúscula.

Los siguientes son todos identificadores inválidos de Python:

• hola a12t
• 8hola
• hola\%
• Hola*9

Python reserva 31 palabras para describir la estructura del programa, y no permite que se
usen como identificadores. Cuando en un programa nos encontramos con que un nombre no
es admitido pese a que su formato es válido, seguramente se trata de una de las palabras de
esta lista, a la que llamaremos de palabras reservadas. Esta es la lista completa de las palabras
reservadas de Python:

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield

20 Unidad 2. Programas sencillos

assert else import pass
break except in raise

2.3.2 Expresiones
Una expresión es una porción de código Python que produce o calcula un valor (resultado).

• La expresión más sencilla es un valor literal. Por ejemplo, la expresión 12345 produce el
valor numérico 12345.

• Una expresión puede ser una variable, y el valor que produce es el que tiene asociada
la variable en el estado. Por ejemplo, si x → 5 en el estado, entonces el resultado de la
expresión x es el valor 5.

• Usamos operaciones para combinar expresiones y construir expresiones más complejas:

– Si x es como antes, x + 1 es una expresión cuyo resultado es 6.
– Si en el estado millas → 1, pies → 0 y pulgadas → 0, entonces 1609.344 * millas +

0.3048 * pies + 0.0254 * pulgadas es una expresión cuyo resultado es 1609.344.
– La exponenciación se representa con el símbolo **. Por ejemplo, x**3 significa 𝑥3.
– Se pueden usar paréntesis para indicar un orden de evaluación: ((b * b) - (4 *

a * c)) / (2 * a).
– Igual que en la notación matemática, si no hay paréntesis en la expresión, primero

se agrupan las exponenciaciones, luego los productos y cocientes, y luego las sumas
y restas.

– Hay que prestar atención con lo que sucede con los cocientes:
∗ La expresión 6 / 4 produce el valor 1.5.
∗ La expresión 6 // 4 produce el valor 1, que es el resultado de la división entera

entre 6 y 4.
∗ La expresión 6 % 4 produce el valor 2, que es el resto de la división entera entre

6 y 4.
Como vimos en la sección 1.4, los números pueden ser tanto enteros (0, 111, -24,
almacenados internamente en forma exacta), como reales (0.0, 12.5, -12.5, repre-
sentados internamente en forma aproximada como números de punto flotante). Dado
que los números enteros y reales se representan de manera diferente, se comportan
de manera diferente frente a las operaciones. En Python, los números enteros se
denominan int (de integer), y los números reales float (de floating point).

• Una expresión puede ser una llamada a una función: si f es una función que recibe un
parámetro, y x es una variable, la expresión f(x) produce el valor que devuelve la función
f al invocarla pasándole el valor de x por parámetro.
Algunos ejemplos:

– input() produce el valor ingresado por teclado tal como se lo digita.
– abs(x) produce el valor absoluto del número pasado por parámetro.

Ejercicio 2.1. Aplicando las reglasmatemáticas de asociatividad, decidir cuáles de las siguientes
expresiones son iguales entre sí:

2.3. Piezas de un programa Python 21

a) ((b * b) - (4 * a * c)) / (2 * a)

b) ((b * b) - (4 * a * c)) // (2 * a)

c) (b * b - 4 * a * c) / (2 * a)

d) b * b - 4 * a * c / 2 * a

e) (b * b) - (4 * a * c / 2 * a)

f) 1 / 2 * b

g) b / 2

Ejercicio 2.2. Escribir un programa que le asigne a a, b y c los valores 10, 100 y 1000 respectiva-
mente y evalúe las expresiones del ejercicio anterior.

Ejercicio 2.3. Escribir un programa que le asigne a a, b y c los valores 10.0, 100.0 y 1000.0 res-
pectivamente y evalúe las expresiones del ejercicio anterior.

2.3.3 No sólo de números viven los programas
No sólo tendremos expresiones numéricas en un programa Python. También puede haber

expresiones que sean una cadena de caracteres (letras, dígitos, símbolos, etc.), por ejemplo "Ana".
Como en la sección anterior, veremos las reglas de qué constituyen expresiones con carac-

teres:

• Una expresión puede ser simplemente una cadena de texto. El resultado de la expresión
literal 'Ana' es precisamente el valor 'Ana'.

• Una variable puede estar asociada a una cadena de texto: si amiga → 'Ana' en el estado,
entonces el resultado de la expresión amiga es el valor 'Ana'.

• Se puede usar comillas simples o dobles para representar cadenas simples: 'Ana' y "Ana"
son equivalentes.

• Se puede usar tres comillas (simples o dobles) para representar cadenas que incluyenmás
de una línea de texto:
martin_fierro = """Aquí me pongo a cantar
al compás de la vigüela,
que al hombre que lo desvela
una pena estraordinaria,
como el ave solitaria
con el cantar se consuela."""

• Usamos operaciones para combinar expresiones y construir expresiones más complejas,
pero atención con qué operaciones están permitidas sobre cadenas:

– El signo + no representa la suma sino la concatenación de cadenas: Si amiga es como
antes, amiga + 'Laura' es una expresión cuyo valor es AnaLaura.

22 Unidad 2. Programas sencillos

Atención

No se puede sumar cadenas con números.
>>> amiga="Ana"
>>> amiga+'Laura'
'AnaLaura'
>>> amiga+3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects
>>>

– El signo * permite repetir una cadena una cantidad de veces: amiga * 3 es una ex-
presión cuyo valor es 'AnaAnaAna'.

Atención

No se pueden multiplicar cadenas entre sí
>>> amiga * 3
'AnaAnaAna'
>>> amiga * amiga
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can't multiply sequence by non-int of type 'str'

2.3.4 Instrucciones
Las instrucciones son las órdenes que entiende Python. En general cada línea de un progra-

ma Python corresponde a una instrucción. Algunos ejemplos de instrucciones que ya hemos
utilizado:

• La instrucción de asignación <nombre> = <valor>.
• La instrucción return <expresión>, que provoca que una función devuelva el valor resul-

tante de evaluar la expresión.
• La instrucción más simple que hemos utilizado es la que contiene una única <expresión>,

y el efecto de dicha instrucción es que Python evalúa la expresión y descarta su resul-
tado. El siguiente es un programa válido en el que todas las instrucciones son del tipo
<expresión>:
0
23.9
abs(-10)
"Este programa no hace nada útil :("

2.4 Una guía para el diseño
En su artículo “How to program it”, Simon Thompson plantea algunas preguntas a sus

alumnos que son muy útiles para la etapa de diseño:

2.5. Calidad de software 23

• ¿Has visto este problema antes, aunque sea de manera ligeramente diferente?

• ¿Conoces un problema relacionado? ¿Conoces un programa que pueda ser útil?

• Observa la especificación. Intenta encontrar un problema que te resulte familiar y que
tenga la misma especificación o una parecida.

• Supongamos que hay un problema relacionado, y que ya fue resuelto. ¿Puedes usarlo?
¿Puedes usar sus resultados? ¿Puedes usar sus métodos? ¿Puedes agregarle alguna parte
auxiliar a ese programa del que ya dispones?

• Si no puedes resolver el problema propuesto, intenta resolver uno relacionado. ¿Puedes
imaginarte uno relacionado que sea más fácil de resolver? ¿Uno más general? ¿Uno más
específico? ¿Un problema análogo?

• ¿Puedes resolver una parte del problema? ¿Puedes sacar algo útil de los datos de entrada?
¿Puedes pensar qué información es útil para calcular las salidas? ¿De quémanera se puede
manipular las entradas y las salidas de modo tal que estén “más cerca” unas de las otras?

• ¿Utilizaste todos los datos de entrada? ¿Utilizaste las condiciones especiales sobre los da-
tos de entrada que aparecen en el enunciado? ¿Has tenido en cuenta todos los requisitos
que se enuncian en la especificación?

2.5 Calidad de software
Los programas que hemos construido hasta ahora son pequeños y simples. Existen pro-

yectos de software profesionales de tamaños muy diversos, yendo desde programas sencillos
desarrollados por una única persona hasta proyectos gigantescos, con millones de líneas de
código y desarrollados durante años por miles de personas.

Sabías que…

Uno de los proyectos de código abierto más colosales es el núcleo del sistema operativo Linux. Fue
publicado por primera vez en 1991, y aun hoy sigue en desarrollo activo. El código fuente es pú-
blicoa, y cualquiera puede contribuir aportando mejoras. Hasta la versión 4.13 publicada en 2017
participaron más de 15 000 personas, creando en total más de 24 millones de líneas de código.

ahttps://github.com/torvalds/linux

Cuanto más grande es un proyecto de software, más difícil es su construcción y manteni-
miento, y más tenemos que prestar atención a la calidad con la que está construido. Presentamos
aquí una lista no completa de propiedades que contribuyen a la calidad, y algunas preguntas
que podemos hacer para medir cuánto contribuye cada factor:

• Confiabilidad: ¿El sistema resuelve el problema inicial en forma correcta? ¿Lo resuelve
siempre o a veces falla? ¿Cuántas veces falla en un período de tiempo?

• Testabilidad: ¿Qué tan fácil es probar que el sistema funciona correctamente? ¿Hay algún
proceso de pruebas automáticas o manuales?

• Performance: ¿Cuánto tarda el sistema en producir un resultado? ¿Cuántos recursos con-
sume (memoria, espacio en disco, etc.)?

https://github.com/torvalds/linux

24 Unidad 2. Programas sencillos

• Usabilidad: ¿Puede un nuevo usuario aprender a utilizar el sistema fácilmente? ¿Las ope-
raciones más comunes son fáciles de realizar?

• Mantenibilidad: ¿Qué tan legible y entendible es el código? ¿Qué tan fácil es modificar
el comportamiento del programa o agregar nuevas funcionalidades?

• Escalabilidad: ¿Cómo se comporta el sistema cuando se incrementa la demanda (canti-
dad de usuarios, cantidad de datos, etc.)?

• Portabilidad: ¿El sistema puede funcionar en diferentes plataformas (arquitecturas de
procesador, sistemas operativos, navegadores web, etc.)?

• Seguridad: ¿Los datos sensibles están protegidos de ataques informáticos? ¿Qué tan di-
fícil es para un atacante tomar el control, desestabilizar o dañar el sistema?

Por supuesto, cada proyecto es particular y algunos de las propiedades mencionadas ten-
drán más o menos prioridad según el caso. En particular en este curso nos concentraremos más
en que nuestros programas sean confiables y mantenibles, y también prestaremos atención a la
performance (sobre todo al comparar diferentes algoritmos).

Unidad 3

Funciones

3.1 Creación de funciones
En la primera unidad vimos que el programador puede definir nuevas instrucciones, que

llamamos funciones. Una función es un fragmento de programa que permite efectuar una ope-
ración determinada.

Una función puede recibir ninguno, uno o más parámetros (expresados entre paréntesis, y
separados por comas), efectúa una operación, y puede o no devolver un resultado.

función

parámetros
resultado

Figura 3.1: Una función recibe parámetros y devuelve un resultado.

Si queremos crear una función (que llamaremos hola_marta) que devuelve la cadena de tex-
to “Hola Marta! Estoy programando en Python.”, lo que debemos hacer es ingresar el siguiente
conjunto de líneas en Python:

>>> def hola_marta(): 1

... return "Hola Marta! Estoy programando en Python." 2

...
>>>

1 def hola_marta(): le indica a Python que estamos escribiendo una función cuyo nombre
es hola_marta, y los paréntesis indican que la función no recibe ningún parámetro.

2 La instrucción return <expresion> indica cuál será el resultado de la función.
La sangría1 con la que se escribe la línea return es importante: le indica a Python que estamos

escribiendo el cuerpo de la función (es decir, las instrucciones que la componen), que podría
estar formado por más de una sentencia. La línea en blanco que dejamos luego de la instrucción
return le indica a Python que terminamos de escribir la función (y por eso aparece nuevamente
el prompt).

Si ahora queremos que la máquina ejecute la función hola_marta, debemos escribir
hola_marta() a continuación del prompt de Python:

1La sangría puede ingresarse utilizando dos o más espacios, o presionando la tecla Tab . Es importante prestar
atención en no mezclar espacios con tabs, para evitar “confundir” al intérprete.

26 Unidad 3. Funciones

>>> hola_marta()
'Hola Marta! Estoy programando en Python.'
>>>

Se dice que estamos invocando a la función hola_marta. Al invocar una función, se ejecutan
las instrucciones que habíamos escrito en su cuerpo.

Nuestro amigo Pablo seguramente se pondrá celoso porque escribimos una función que
saluda aMarta, y nos pedirá que escribamos una función que lo salude a él. Y así procederemos
entonces:

>>> def hola_pablo():
... return "Hola Pablo! Estoy programando en Python."

Pero, si para cada amigo que quiere que lo saludemos debemos que escribir una función
distinta, parecería que la computadora no es una gran solución. A continuación veremos, sin
embargo, que podemos llegar a escribir una única función que se personalice en cada invoca-
ción, para saludar a quien queramos. Para eso están precisamente los parámetros.

Escribamos entonces una función hola que nos sirva para saludar a cualquiera, de la siguien-
te manera:

>>> def hola(alguien):
... return "Hola " + alguien + "! Estoy programando en Python."

La función hola recibe un único parámetro (alguien). Para llamar a una función debemos
asociar cada uno de los parámetros con algún valor determinado (que se denomina argumento).
Por ejemplo, podemos invocar a la función hola dos veces, para saludar aAna y a Juan, haciendo
que alguien se asocie al valor "Ana" en la primera llamada y al valor "Juan" en la segunda. La
función en cada caso devolverá un resultado que que se calcula a partir del argumento.

>>> hola("Ana")
'Hola Ana! Estoy programando en Python.'
>>> hola("Juan")
'Hola Juan! Estoy programando en Python.'

Problema 3.1.1. Escribir una función que calcule el cuadrado de un número dado.

Solución.
def cuadrado(n):

return n * n

Para invocarla, deberemos hacer:
>>> cuadrado(5)
25

Problema 3.1.2. Piensa un número, duplícalo, súmale 6, divídelo por 2 y resta el número que
elegiste al comienzo. El número que queda es siempre 3.

Solución. Si bien es muy sencillo probar matemáticamente que el resultado de la secuencia de
operaciones será siempre 3 sin importar cuál sea el número elegido, podemos aprovechar nues-
tros conocimientos de programación y probarlo empíricamente.

Para esto escribamos una función que reciba el número elegido y devuelva el número que
queda luego de efectuar las operaciones:

3.2. Documentación de funciones 27

def f(elegido):
return ((elegido * 2) + 6) / 2 - elegido

Tal vez el cuerpo de la función quedó poco entendible. Podemos mejorarlo dividiendo la
secuencia de operaciones en varias sentencias más pequeñas:

def f(elegido):
n = elegido * 2
n = n + 6
n = n / 2
n = n - elegido
return n

Aquí utilizamos una variable llamada n y luego en cada sentencia vamos reemplazando el
valor de n por un valor nuevo.

Las dos soluciones que presentamos son equivalentes. Veamos si al invocar a f con distintos
números siempre devuelve 3 o no:

>>> f(9)
3.0
>>> f(4)
3.0
>>> f(118)
3.0
>>> f(165414606)
3.0
>>> f(0)
3.0
>>> f(-15)
3.0

3.2 Documentación de funciones
Cada función escrita por unprogramador realiza una tarea específica. Cuando la cantidadde

funciones disponibles para ser utilizadas es grande, puede ser difícil recordar exactamente qué
hace cada función. Es por eso que es extremadamente importante documentar en cada función
cuál es la tarea que realiza, cuáles son los parámetros que recibe y qué es lo que devuelve, para
que a la hora de utilizarla sea lo pueda hacer correctamente.

Por convención, la documentación de una función se coloca en la primera línea del cuer-
po de la misma, como una cadena de caracteres (que, como vimos en la sección 2.3.4, es una
instrucción que no tiene ningún efecto). Dado que la documentación suele ocupar más de una
línea de texto, se acostumbra encerrarla entre tres pares de comillas.

Así, para la función vista en el ejemplo anterior:
def hola(alguien):

"""Devuelve un saludo dirigido a la persona indicada por parámetro."""
return "Hola " + alguien + "! Estoy programando en Python."

28 Unidad 3. Funciones

Sabías que…

Cuando una función definida está correctamente documentada, es posible acceder a su documenta-
ción mediante la función help provista por Python. Suponiendo que la función hola está definida
en el archivo saludo.py:

>>> import saludo
>>> help(saludo.hola)
Help on function hola in module saludo:

hola(alguien)
Devuelve un saludo dirigido a la persona indicada por parámetro.

De esta formano es necesariomirar el códigodeuna funciónpara saber lo que hace, simplemente
llamando a help es posible obtener esta información.

En la sección 3.7 se explica qué hace la instrucción import.

3.3 Imprimir versus devolver
Supongamos que tenemosunamedidade tiempo expresada enhoras,minutos y segundos, y

queremos calcular la cantidad total de segundos. Cuandonos disponemos a escribir una función
en Python para resolver este problema nos enfrentamos con dos posibilidades:

1. Devolver el resultado con la instrucción return.

2. Imprimir el resultado llamando a la función print.

A continuación mostramos ambas implementaciones:
def devolver_segundos(horas, minutos, segundos):

"""Transforma en segundos una medida de tiempo expresada en
horas, minutos y segundos"""

return 3600 * horas + 60 * minutos + segundos

def imprimir_segundos(horas, minutos, segundos):
"""Imprime una medida de tiempo expresada en horas, minutos y

segundos, luego de transformarla en segundos"""
print(3600 * horas + 60 * minutos + segundos)

Veamos si funcionan:
>>> devolver_segundos(1, 10, 10)
4210
>>> imprimir_segundos(1, 10, 10)
4210

Aparentemente el comportamiento de ambas funciones es idéntico, pero hay una gran dife-
rencia. La función devolver_segundos nos permite hacer algo como esto:

>>> s1 = devolver_segundos(1, 10, 10)
>>> s2 = devolver_segundos(2, 32, 20)
>>> s1 + s2
13350

En cambio, la función imprimir_segundos nos impide utilizar el resultado de la llamada para
hacer otras operaciones; lo único que podemos hacer es mostrarlo en pantalla. Por eso decimos

3.4. Cómo usar una función en un programa 29

que devolver_segundos es más reutilizable. Por ejemplo, podemos reutilizar devolver_segundos
en la implementación de imprimir_segundos, pero no a la inversa:

def imprimir_segundos(horas, minutos, segundos):
"""Imprime una medida de tiempo expresada en horas, minutos y

segundos, luego de transformarla en segundos"""
print(devolver_segundos(horas, minutos, segundos))

Contar con funciones es de gran utilidad, ya que nos permite ir armando una biblioteca de
soluciones a problemas simples, que se pueden reutilizar en la resolución de problemas más
complejos, tal como lo sugiere Thompson en “How to program it”.

En este sentido, más útil que tener una biblioteca donde los resultados se imprimen por
pantalla, es contar con una biblioteca donde los resultados se devuelven, para poder manipular
los resultados de esas funciones a voluntad: imprimirlos, usarlos para realizar cálculos más
complejos, etc.

En general, una función esmás reutilizable si devuelve un resultado (utilizando return) en lugar de
imprimirlo (utilizando print). Análogamente, una función es más reutilizable si recibe parámetros
en lugar de leer datos mediante la función input.

3.4 Cómo usar una función en un programa
Las funciones son útiles porque nos permiten encapsular y repetir una operación (puede

que con argumentos distintos) todas las veces que las necesitemos en un programa, sin tener
que reescribir la lista de pasos para realizar la operación cada vez.

Supongamos que necesitamos un programa que permita transformar tres duraciones de
tiempo en segundos:

1. Análisis: El programa debe pedir al usuario tres duraciones expresadas en horas, minu-
tos y segundos, y la tiene que mostrar en pantalla expresada en segundos.

2. Especificación:

• Entradas: Tres duraciones leídas de teclado y expresadas en horas, minutos y se-
gundos.

• Salidas: Mostrar por pantalla las duraciones ingresadas, convertida a segundos.
Para el juego de datos de entrada (ℎ, 𝑚, 𝑠) se obtiene entonces 3600ℎ + 60𝑚 + 𝑠, y se
muestra ese resultado por pantalla.

3. Diseño:

• Se tienen que leer por teclado tres datos y el juego de datos convertirlo a segundos.
En pseudocódigo:
Leer cuántas horas tiene el tiempo dado
(y referenciarlo con la variable h)

Leer cuántos minutos tiene tiene el tiempo dado
(y referenciarlo con la variable m)

Leer cuántos segundos tiene el tiempo dado
(y referenciarlo con la variable s)

30 Unidad 3. Funciones

Mostrar por pantalla 3600 * h + 60 * m + s

Pero la conversión a segundos es exactamente lo que hace nuestra función
devolver_segundos. Si la renombramos a a_segundos, podemos hacer que se di-
señe como:
Leer cuántas horas tiene la duración dada
(y referenciarlo con la variable h)

Leer cuántos minutos tiene tiene la duración dada
(y referenciarlo con la variable m)

Leer cuántas segundos tiene la duración dada
(y referenciarlo con la variable s)

Invocar la función a_segundos(h, m, s) y
mostrar el resultado en pantalla.

• El pseudocódigo final queda:
Leer cuántas horas tiene la duración dada
(y referenciarlo con la variable h)

Leer cuántos minutos tiene la duración dada
(y referenciarlo con la variable m)

Leer cuántos segundos tiene la duración dada
(y referenciarlo con la variable s)

Invocar la función a_segundos(h, m, s) y
mostrar el resultado en pantalla.

4. Implementación: A partir del diseño, se escribe el programa Python que se muestra en
el Código 3.1, que se guardará en el archivo tres_tiempos.py.

Código 3.1 tres_tiempos.py: Lee tres tiempos y los imprime en segundos

1 def a_segundos(horas, minutos, segundos):
2 """Transforma en segundos una medida de tiempo expresada en
3 horas, minutos y segundos"""
4 return 3600 * horas + 60 * minutos + segundos
5

6 def main():
7 """Lee tres tiempos expresados en horas, minutos y segundos,
8 y muestra en pantalla su conversión a segundos"""
9 h = int(input("Cuantas horas?: "))

10 m = int(input("Cuantos minutos?: "))
11 s = int(input("Cuantos segundos?: "))
12 print("Son", a_segundos(h, m, s), "segundos")
13

14 main()

Nota. En nuestra implementación decidimos dar el nombre main a la función principal del
programa. Esto no es más que una convención: “main” significa “principal” en inglés.

3.5. Alcance de las variables 31

5. Prueba: Probamos el programa con las ternas (1, 0, 0), (0, 1, 0) y (0, 0, 1):
$ python3 tres_tiempos.py
Cuantas horas?: 1
Cuantos minutos?: 0
Cuantos segundos?: 0
Son 3600 segundos
Cuantas horas?: 0
Cuantos minutos?: 1
Cuantos segundos?: 0
Son 60 segundos
Cuantas horas?: 0
Cuantos minutos?: 0
Cuantos segundos?: 1
Son 1 segundos

3.5 Alcance de las variables
Ya hemos visto que podemos definir variables, ya sea dentro o fuera del cuerpo de una

función. Definamos ahora la siguiente función:
>>> def suma_cuadrados(n, m):
... suma = cuadrado(n) + cuadrado(m)
... return suma
>>> y = suma_cuadrados(5, 6)

¿Qué pasa si intentamos utilizar la variable suma fuera de la función?
>>> suma
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'suma' is not defined
>>>

Las variables y los parámetros que se declaran dentro de una función no existen fuera de ella, y por
eso se las denomina variables locales. Fuera de la función se puede acceder únicamente al valor que
devuelve mediante return.

Veamos en detalle qué sucede cuando invocamos a la función mediante la instrucción:
>>> y = suma_cuadrados(5, 6)

1. Se invoca a suma_cuadrados con los argumento 5 y 6, y se ejecuta el cuerpo de la función
con la variable local n → 5 y n → 6.

2. La función declara una variable local suma → cuadrado(n) + cuadrado(m).
3. Cuando la ejecución llega a la línea return suma, la variable suma → 61. Por lo tanto, la

función devuelve el valor 61.
4. La función termina su ejecución, y con ella dejan de existir todas sus variables locales: n,

m y suma.
5. Se declara la variable y → 61, que es el valor que devolvió la función.

Si la función no devolviera ningún valor, la variable y no quedaría asociada a ningún valor2.
2Técnicamente, quedaría asociada con un valor especial llamado None.

32 Unidad 3. Funciones

3.6 Devolver múltiples resultados
Problema 3.1. Escribir una función que, dada una duración en segundos sin fracciones (repre-
sentada por un número entero), calcule la misma duración en horas, minutos y segundos.

Solución. La especificación es sencilla:
• La cantidad de horas es la duración informada en segundos dividida por 3600 (división

entera).

• La cantidad de minutos es el resto de la división del paso 1, dividido por 60 (división
entera).

• La cantidad de segundos es el resto de la división del paso 2.

• Es importante notar que si la duración no se informa como un número entero, todas las
operaciones que se indican más arriba carecen de sentido.

¿Cómo hacemos para devolvermás de un valor? En realidad lo que se espera de esta función
es que devuelva una terna de valores: si ya calculamos h, m y s, lo que debemos devolver es la
terna (h, m, s):

def a_hms(segundos):
"""Dada una duración entera en segundos

se la convierte a horas, minutos y segundos"""
h = segundos // 3600
m = (segundos % 3600) // 60
s = (segundos % 3600) % 60
return h, m, s

Esto es lo que sucede al invocar esta función:
>>> h, m, s = a_hms(3661)
>>> print("Son", h, "horas", m, "minutos", s, "segundos")
Son 1 horas 1 minutos 1 segundos

Sabías que…

Cuando la función debe devolver múltiples resultados, se empaquetan todos juntos en una n-upla
(secuencia de valores separados por comas) del tamaño adecuado.

Esta característica está presente en Python, Ruby, Haskell y algunos otros pocos lenguajes. En los
lenguajes en los que esta característica no está presente, como C, Pascal o Java, es necesario recurrir
a otras técnicas más complejas para poder obtener un comportamiento similar.

Respecto de la variable que hará referencia al resultado de la invocación, se podrá usar tanto
una n-upla de variables, como en el ejemplo anterior (en cuyo caso podremos nombrar en forma
separada cada uno de los resultados), o bien se podrá usar una sola variable (en cuyo caso se
considerará que el resultado tiene un solo nombre y la forma de una n-upla):

>>> hms = a_hms(3661)
>>> print(hms)
(1, 1, 1)

3.7. Módulos 33

Atención

Si se usa una n-upla de variables para referirse a un resultado, la cantidad de variables tiene que
coincidir con la cantidad de valores que se devuelven.

>>> x, y = a_hms(3661)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: too many values to unpack
>>> x, y, w, z = a_hms(3661)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: need more than 3 values to unpack

3.7 Módulos
A medida que los programas se hacen más grandes y complejos suele ser conveniente divi-

dirlos en módulos. Cada uno de los programas que escribimos hasta ahora están formados por
un único módulo, ya que cada archivo .py es un módulo.

Código 3.2 saludos.py: Módulo con funciones para saludar

def hola(nombre)
return "Hola, " + nombre

def adios(nombre)
return "Adiós, " + nombre

Código 3.3 main.py: Módulo principal del programa

import saludos

def main()
nombre = input("¿Cuál es tu nombre?")
print(saludos.hola(nombre))
print(saludos.adios(nombre))

main()

En Código 3.2 y Código 3.3 se muestra un ejemplo de un programa formado por dos módu-
los, saludos y main:

• El módulo saludos define dos funciones: hola y adios. Notar que lo único que hacemos es
definir funciones pero nunca las llamamos, justamente porque las vamos a invocar desde
el módulo main.

• Lo primero que hacemos en el módulo main es utilizar la instrucción de Python import
saludos, para indicar al intérprete que queremos utilizar las funciones definidas en el

módulo saludos. Luego las invocamos, con la diferencia de que tenemos que anteceder el

34 Unidad 3. Funciones

nombre de cada función con el nombre del módulo y un “.”, en este caso saludos.hola y
saludos.chau. Y finalmente llamamos a la función main().

Para ejecutar el programa lo hacemos con el comando python main.py. Cuando el intérprete
encuentre la instrucción import saludo automáticamente buscará el archivo saludos.py y lo
ejecutará.

3.7.1 Módulos estándar
Se dice que “Python viene con las baterías incluidas”. Esto es porque el intérprete incluye un

conjunto numeroso de módulos ya implementados con utilidades de uso general: matemática,
acceso al sistema operativo y la red, depuración, criptografía, compresión, interfaces gráficas…
¡Incluso hay una tortuga!

Sabías que…

El lenguaje de programación Logo, creado en 1967 y utilizado principalmente con fines educativos,
introdujo la idea de crear dibujos utilizando la metáfora de una tortuga que se mueve por la pantalla
obedeciendo a comandos simples.

El módulo turtle de Python nos permite crear dibujos usando un sistema muy similar al de
Logo:

import turtle

def movete_tortu():
turtle.forward(200)
turtle.right(144)

turtle.shape("turtle")
turtle.color('red', 'yellow')
turtle.begin_fill()
movete_tortu()
movete_tortu()
movete_tortu()
movete_tortu()
movete_tortu()
turtle.end_fill()
turtle.done()

La lista completa de módulos incluidos y sus respectivas instrucciones de uso se puede ver
en https://docs.python.org/3/library/index.html.

3.8 Resumen
• Una función puede recibir ninguno, uno o más parámetros. Adicionalmente puede leer

datos de la entrada del teclado.

• Una función puede no devolver nada, o devolver uno omás valores. Adicionalmente pue-
de imprimir mensajes para comunicarlos al usuario.

https://docs.python.org/3/library/index.html

3.8. Resumen 35

• No es posible acceder a las variables definidas dentro de una función desde el programa
principal. Si se quiere utilizar algún valor calculado en la función, será necesario devol-
verlo.

• Cuando una función realice un cálculo o una operación, es preferible que reciba los da-
tos necesarios mediante los parámetros de la función, y que devuelva el resultado. Las
funciones que leen datos del teclado o imprimen mensajes son menos reutilizables.

• Es altamente recomendable documentar cada función que se escribe, para poder saber
qué parámetros recibe, qué devuelve y qué hace sin necesidad de leer el código.

Referencia Python

def funcion(param1, param2, param3):

Permite definir funciones, que pueden tener ninguno, uno o más parámetros. El cuerpo de la
función debe estar un nivel de sangría más adentro que la declaración de la función.

def funcion(param1, param2, param3):
hacer algo con los parametros

Documentación de funciones
Si en la primera línea de la función se ingresa una cadena de caracteres, lamisma por convención

pasa a ser la documentación de la función, que puede ser accedida mendiante el comando help(
funcion).

def funcion():
"""Esta es la documentación de la función"""
hacer algo

return valor
Dentro de una función se utiliza la instrucción return para indicar el valor que la función debe

devolver. Una vez que se ejecuta esta instrucción, se termina la ejecución de la función, sin importar
si es la última línea o no. Si la función no contiene esta instrucción, no devuelve nada.

return valor1, valor2, valor3

Si se desea devolver más de un valor, se los empaqueta en una n-upla de valores. Esta n-upla
puede o no ser desempaquetada al invocar la función:

def f(valor):
operar
return a1, a2, a3

desempaquetado:
v1, v2, v3 = f(x)
empaquetado
v = f(y)

import modulo

Permite utilizar funciones y valores definidos en el módulo especificado. Las referencias deben
ser precedidas por el nombre del módulo y “.”.

36 Unidad 3. Funciones

>>> import math
>>> math.cos(2 * math.pi)
1.0

import modulo as variable

Hace lo mismo que import modulo, pero nos permite llamar al módulo con una variable nom-
brada por nosotros.

>>> import math as matematica
>>> matematica.cos(2 * matematica.pi)
1.0

from modulo import ref1, ref2, ...

Similar a import modulo, pero importando únicamente las funciones y valores especificados, y
además eliminando la necesidad de anteponer el nombre del módulo al utilizarlos:

>>> from math import cos, pi
>>> cos(2 * pi)
1.0

Unidad 4

Decisiones

Problema 4.1. Debemos leer un número y, si el número es positivo, debemos escribir en pantalla
el cartel “Número positivo”.

Solución. Especificamos nuestra solución: se deberá leer un número 𝑥. Si 𝑥 > 0 se escribe el
mensaje "Número positivo".

Diseñamos nuestra solución:

1. Solicitar al usuario un número, guardarlo en 𝑥.

2. Si 𝑥 > 0, imprimir "Número positivo"

Es claro que la primera línea se puede traducir como
x = int(input("Ingrese un número: "))

Sin embargo, con las instrucciones que vimos hasta ahora no podemos tomar el tipo de
decisiones que nos planteamos en la segunda línea de este diseño.

Para resolver este problema introducimos una nueva instrucción que llamaremos condicional
y tiene la siguiente forma:

if <expresión>:
<cuerpo>

donde if es una palabra reservada, la <expresión> es una condición y el <cuerpo> se ejecuta solo
si la condición se cumple.

Antes de seguir adelante explicando la instrucción if, debemos introducir un nuevo tipo de
dato que nos indicará si se da una cierta situación o no. Hasta ahora las expresiones con las que
trabajamos fueron de tipo numérica y de tipo texto; pero ahora la respuesta que buscamos es
de tipo sí o no.

4.1 Expresiones booleanas
Además de los tipos numéricos (int, float), y las cadenas de texto (str), Python introduce

un tipo de dato llamado booleano (bool). Una expresión booleana o expresión lógica puede tomar
dos valores posibles: True (sí) o False (no).

>>> n = 3 # n es de tipo 'int' y toma el valor 3
>>> b = True # b es de tipo 'bool' y toma el valor True

38 Unidad 4. Decisiones

4.1.1 Expresiones de comparación
En el ejemplo que queremos resolver, la condición que queremos ver si se cumple o no es

que x sea mayor que cero. Python provee las llamadas expresiones de comparación que sirven
para comparar valores entre sí, y que por lo tanto permiten codificar ese tipo de pregunta. En
particular la pregunta de si x es mayor que cero, se codifica en Python como x > 0.

De esta forma, 5 > 3 es una expresión booleana cuyo valor es True, y 5 < 3 también es una
expresión booleana, pero su valor es False.

>>> 5 > 3
True
>>> 3 > 5
False

Las expresiones booleanas de comparación que provee Python son las siguientes:

Expresión Significado
a == b a es igual a b
a != b a es distinto de b
a < b a es menor que b
a <= b a es menor o igual que b
a > b a es mayor que b
a >= b a es mayor o igual que b

A continuación, algunos ejemplos de uso de estos operadores:
>>> 6 == 6
True
>>> 6 != 6
False
>>> 6 > 6
False
>>> 6 >= 6
True
>>> 6 > 4
True
>>> 6 < 4
False
>>> 6 <= 4
False
>>> 4 < 6
True

4.1.2 Operadores lógicos
De la mismamanera que se puede operar entre números mediante las operaciones de suma,

resta, etc., también existen tres operadores lógicos para combinar expresiones booleanas: and
(y), or (o) y not (no).

El significado de estos operadores es igual al del castellano, pero vale la pena recordarlo:

4.2. Comparaciones simples 39

Expresión Significado
a and b El resultado es True solamente si a es True y b es True

de lo contrario el resultado es False
a or b El resultado es True si a es True o b es True (o ambos)

de lo contrario el resultado es False
not a El resultado es True si a es False

de lo contrario el resultado es False

Algunos ejemplos:

• a > b and a > c es verdadero si a es simultáneamente mayor que b y que c.
>>> 5 > 2 and 5 > 3
True
>>> 5 > 2 and 5 > 6
False

• a > b or a > c es verdadero si a es mayor que b o a es mayor que c.
>>> 5 > 2 or 5 > 3
True
>>> 5 > 2 or 5 > 6
True
>>> 5 > 8 or 5 > 6
False

• not a > b es verdadero si a > b es falso (o sea si a <= b es verdadero).
>>> 5 > 8
False
>>> not 5 > 8
True
>>> 5 > 2
True
>>> not 5 > 2
False

4.2 Comparaciones simples
Volvemos al problema que nos plantearon: Debemos leer un número y, si el número es po-

sitivo, debemos escribir en pantalla el mensaje "Número positivo".
Recordemos la instrucción if que acabamos de introducir y que sirve para tomar decisiones

simples. Dijimos que su formato general es:
if <expresión>:

<cuerpo>

cuyo efecto es el siguiente:
1. Se evalúa la <expresión> (que debe ser una expresión lógica).

2. Si el resultado de la expresión es True (verdadero), se ejecuta el <cuerpo>.

40 Unidad 4. Decisiones

<expresión> <cuerpo>True

False

Figura 4.1: Diagrama de flujo para la instrucción if.

Esto se puede representar en un diagrama de flujo, como el de la Figura 4.1.
Como ahora ya sabemos también cómo construir condiciones de comparación, estamos en

condiciones de implementar nuestra solución. Escribimos la función positivo() que hace lo
pedido:

def positivo():
x = int(input("Ingrese un número: "))
if x > 0:

print("Número positivo")

y la probamos:
>>> positivo()
Ingrese un número: 4
Número positivo
>>> positivo()
Ingrese un número: -25
>>> positivo()
Ingrese un número: 0

Problema 4.2. Necesitamos además un mensaje "Número no positivo" cuando no se cumple la
condición.

Modificamos la especificación consistentemente y modificamos el diseño:

1. Solicitar al usuario un número, guardarlo en 𝑥.

2. Si 𝑥 > 0, imprimir "Número positivo"

3. En caso contrario, imprimir "Número no positivo"

La negación de 𝑥 > 0 es ¬(𝑥 > 0) que se traduce en Python como not x > 0, por lo que
implementamos nuestra solución en Python como:

def positivo_o_no():
x = int(input("Ingrese un número: "))
if x > 0: 1

print("Número positivo")
if not x > 0: 2

print("Número no positivo")

Probamos la nueva solución y obtenemos el resultado buscado:
>>> positivo_o_no()
Ingrese un número: 4
Número positivo
>>> positivo_o_no()
Ingrese un número: -25
Número no positivo

4.2. Comparaciones simples 41

>>> positivo_o_no()
Ingrese un número: 0
Número no positivo

Sin embargo hay algo que nos preocupa: si ya averiguamos una vez, en 1 , si x > 0, ¿Es
realmente necesario volver a preguntarlo en 2 ?.

Existe una construcción alternativa para la estructura de decisión, que tiene la forma:
if <expresión>:

<cuerpo1>
else:

<cuerpo2>

donde if y else son palabras reservadas. Su efecto es el siguiente:

1. Se evalúa la <expresión>.

2. Si el resultado es True, se ejecuta el <cuerpo1>. En caso contrario, se ejecuta el <cuerpo2>.

Volvemos a nuestro diseño:

1. Solicitar al usuario un número, guardarlo en 𝑥.

2. Si 𝑥 > 0, imprimir "Número positivo"

3. En caso contrario, imprimir "Número no positivo"

En la Figura 4.2 se muestra el diagrama de flujo para la estructura if-else.

<expresión> <cuerpo1>

<cuerpo2>

True

False

Figura 4.2: Diagrama de flujo para la estructura if-else.

Este diseño se implementa como:
def positivo_o_no():

x = int(input("Ingrese un número: "))
if x > 0:

print("Número positivo")
else:

print("Número no positivo")

y lo probamos:
>>> positivo_o_no()
Ingrese un número: 4
Número positivo
>>> positivo_o_no()
Ingrese un número: -25
Número no positivo
>>> positivo_o_no()
Ingrese un número: 0
Número no positivo

42 Unidad 4. Decisiones

Es importante destacar que, en general, negar la condición del if y poner else no son in-
tercambiables, porque no necesariamente producen el mismo efecto en el programa. Notar qué
sucede en los dos programas que se transcriben a continuación. ¿Por qué se dan estos resulta-
dos?:

>>> def pn1():
... x = int(input("Ingrese un nro: "))
... if x > 0:
... print("Número positivo")
... x = -x
... if x < 0:
... print("Número no positivo")
...
>>> pn1()
Ingrese un nro: 25
Número positivo
Número no positivo

>>> def pn2():
... x = int(input("Ingrese un nro: "))
... if x > 0:
... print("Número positivo")
... x = -x
... else:
... print("Número no positivo")
...
>>> pn2()
Ingrese un nro: 25
Número positivo

4.3 Múltiples decisiones consecutivas
La decisión de incluir una decisión en un programa, parte de una lectura cuidadosa de la

especificación. En nuestro caso la especificación nos decía:

Si el número es positivo escribir un mensaje "Número positivo", de lo contrario es-
cribir un mensaje "Número no positivo".

Veamos qué se puede hacer cuando se presentan tres o más alternativas:

Problema 4.3. Si el número es positivo escribir un mensaje "Número positivo", si el número
es igual a 0 un mensaje "Igual a 0", y si el número es negativo escribir un mensaje "Número
negativo".

Una posibilidad es considerar que se trata de una estructura con dos casos como antes, sólo
que el segundo caso es complejo (es nuevamente una alternativa):

1. Solicitar al usuario un número, guardarlo en x.

2. Si 𝑥 > 0, imprimir "Número positivo"

3. De lo contrario:

(a) Si 𝑥 = 0, imprimir "Igual a 0"

(b) De lo contrario, imprimir "Número no positivo"

Este diseño se implementa como:
def pos_cero_o_neg():

x = int(input("Ingrese un número: "))
if x > 0:

print("Número positivo")
else:

if x == 0:
print("Igual a 0")

else:
print("Número negativo")

4.3. Múltiples decisiones consecutivas 43

Esta estructura se conoce como de alternativas anidadas ya que dentro de una de las ramas de
la alternativa (en este caso la rama del else) se anida otra alternativa.

Pero ésta no es la única forma de implementarlo. Existe otra construcción, equivalente a la
anterior pero que no exige sangrías cada vez mayores en el texto. Se trata de la estructura de
alternativas encadenadas, que tiene la forma

if <expresión_1>:
<cuerpo_1>

elif <expresión_2>:
<cuerpo_2>

...

...
elif <expresión_n>:

<cuerpo_n>
else:

<cuerpo_else>

donde if, elif y else son palabras reservadas.
En nuestro ejemplo:
def pos_cero_o_neg():

x = int(input("Ingrese un número: "))
if x > 0:

print("Número positivo")
elif x == 0:

print("Igual a 0")
else:

print("Número negativo")

El efecto de la estructura if-elif-else en este ejemplo se muestra en la Figura 4.3.

x > 0 Número positivoTrue

x == 0

False

Igual a 0True

Número negativo
False

Figura 4.3: Diagrama de flujo para una estructura if-elif-else.

44 Unidad 4. Decisiones

Sabías que…

No sólo mediante los operadores vistos (como > o ==) es posible obtener expresiones booleanas.
En Python, se consideran verdaderos los valores numéricos distintos de 0, las cadenas de caracteres
que no son vacías, y en general cualquier valor que no sea 0 o vacío. Los valores nulos o vacíos se
consideran falsos.

Así, en el ejemplo anterior la línea
elif x == 0:

también podría escribirse de la siguiente manera:
elif not x:

Además, en Python existe un valor especial llamado None que se utiliza comúnmente para re-
presentar la ausencia de un valor. Podemos preguntar si una variable v es None simplemente con:

if v is None:

O, como None también es considerado un valor nulo,
if not v:

4.4 Resumen
• Para poder tomar decisiones en los programas y ejecutar una acción u otra, es necesario

contar con una estructura condicional.

• Las condiciones son expresiones booleanas, es decir, cuyos valores pueden ser verdadero o
falso, y se las confecciona mediante operadores entre distintos valores.

• Mediante expresiones lógicas es posible modificar o combinar expresiones booleanas.

• La estructura condicional puede contar, opcionalmente, con un bloque de código que se
ejecuta si no se cumplió la condición.

• Es posible anidar estructuras condicionales, colocando una dentro de otra.

• También es posible encadenar las condiciones, es decir, colocar una lista de posibles con-
diciones, de las cuales se ejecuta la primera que sea verdadera.

Referencia Python

if <condición>:
Bloque condicional. Las acciones a ejecutar si la condición es verdadera deben tener un mayor

nivel de sangría.
if <condición>:

acciones a ejecutar si condición es verdadera

4.4. Resumen 45

else:
Un bloque que se ejecuta cuando no se cumple la condición correspondiente al if. Sólo se puede

utilizar else si hay un if correspondiente. Debe escribirse al mismo nivel que if, y las acciones a
ejecutar deben tener un nivel de sangría mayor.

if <condición>:
acciones a ejecutar si condición es verdadera

else:
acciones a ejecutar si condición es falsa

elif <condición>:
Bloque que se ejecuta si no se cumplieron las condiciones anteriores pero sí se cumple la con-

dición especificada. Sólo se puede utilizar elif si hay un if correspondiente, se lo debe escribir al
mismo nivel que if, y las acciones a ejecutar deben escribirse en un bloque de sangría mayor. Puede
haber tantos elif como se quiera, todos al mismo nivel.

if <condición1>:
acciones a ejecutar si condición1 es verdadera

elif <condición2>:
acciones a ejecutar si condición2 es verdadera

else:
acciones a ejecutar si ninguna condición fue verdadera

Operadores de comparación
Son los que forman las expresiones booleanas.

Expresión Significado
a == b a es igual a b
a != b a es distinto de b
a < b a es menor que b
a <= b a es menor o igual que b
a > b a es mayor que b
a >= b a es mayor o igual que b

Operadores lógicos
Son los utilizados para concatenar o negar distintas expresiones booleanas.

Expresión Significado
a and b El resultado es True solamente si a es True y b es True

de lo contrario el resultado es False
a or b El resultado es True si a es True o b es True (o ambos)

de lo contrario el resultado es False
not a El resultado es True si a es False

de lo contrario el resultado es False

Unidad 5

Ciclos

5.1 El ciclo definido
Problema 5.1.1. Supongamos que queremos calcular la suma de los primeros 5 números cua-
drados.

Solución. Dado que ya tenemos la función cuadrado de la Unidad 3, podemos aprovecharla y
hacer algo como esto:

>>> def suma_5_cuadrados():
suma = 0
suma = suma + cuadrado(1)
suma = suma + cuadrado(2)
suma = suma + cuadrado(3)
suma = suma + cuadrado(4)
suma = suma + cuadrado(5)
return suma

>>> suma_5_cuadrados()
55

Esto resuelve el problema, pero resulta poco satisfactorio. ¿Y si quisiéramos encontrar la
suma de los primeros 100 números cuadrados? En ese caso tendríamos que repetir la línea suma
= suma + cuadrado(...) 100 veces. ¿Se puede hacer algo mejor que esto?

Para resolver este tipo de problema (repetir un cálculo para los valores contenidos en un
intervalo dado) de una manera más eficiente, introducimos el concepto de ciclo definido. Un
ciclo definido es de la forma

for <nombre> in <expresión>:
<cuerpo>

El ciclo for es una instrucción compuesta ya que incluye una línea de inicialización y un
<cuerpo>, que a su vez está formado por una o más instrucciones.

Decimos que el ciclo es definido porque una vez evaluada la <expresión> (cuyo resultado
debe ser una secuencia de valores), se sabe exactamente cuántas veces se ejecutará el <cuerpo> y
qué valores tomará la variable <nombre>.

Para resolver el problema de sumar los cuadrados consecutivos en un intervalo necesitamos
un ciclo definido que tiene la siguiente forma:

5.1. El ciclo definido 47

for x in range(n1, n2):
<hacer algo con x>

Esta instrucción se lee como:

• Generar la secuencia de valores enteros del intervalo [𝑛1, 𝑛2), y
• Para cada uno de los valores enteros que toma x en el intervalo generado, se debe hacer

lo indicado por <hacer algo con x>.

La instrucción que describe el rango en el que va a realizar el ciclo (for x in range(...))
es el encabezado del ciclo, y las instrucciones que describen la acción que se repite componen el
cuerpo del ciclo. Todas las instrucciones que describen el cuerpo del ciclo deben tener una sangría
mayor que el encabezado del ciclo.

En nuestro ejemplo la secuencia de valores resultante de la expresión range(n1, n2) es el
intervalo de enteros [n1, n1+1, ..., n2-1] y la variable es x.

La secuencia de valores se puede indicar como:

• range(n). Establece como secuencia de valores a [0, 1, ..., n-1].
• range(n1, n2). Establece como secuencia de valores a [n1, n1+1, ..., n2-1].
• Se puede definir a mano una secuencia entre corchetes. Por ejemplo,

for x in [1, 3, 9, 27]:
print(x * x)

imprimirá los cuadrados de los números 1, 3, 9 y 27.

Solución. Usemos un ciclo definido para resolver el problema anterior demaneramás compacta:
>>> def suma_5_cuadrados():
... suma = 0
... for x in range(1, 6): 1

... suma = suma + cuadrado(x)

... return suma

1 Notar que en nuestro ejemplo necesitamos recorrer todos los valores enteros entre 1 y 5, y
el rango generado por range(n1, n2) es abierto en n2. Es decir, x tomará los valores n1, n1 + 1,
n1 + 2, …, n2 - 1. Por eso es que usamos range(1, 6).

Problema 5.1.2. Hacer una función más genérica que reciba un parámetro n y calcule la suma
de los primeros n números cuadrados.

Solución.

>>> def suma_cuadrados(n):
... suma = 0
... for x in range(1, n + 1):
... suma = suma + cuadrado(x)
... return suma

>>> suma_cuadrados(5)
55
>>> suma_cuadrados(100)
338350

48 Unidad 5. Ciclos

Supongamos ahora el siguiente problema:

Leer un número. Si el número es positivo escribir un mensaje “Numero positivo”,
si el número es igual a 0 un mensaje “Igual a 0”, y si el número es negativo escribir
un mensaje “Numero negativo”. El usuario debe poder ingresar muchos números y
cada vez que se ingresa uno debemos informar si es positivo, cero o negativo.

Utilizando los ciclos definidos vistos en las primeras unidades, es posible preguntarle al
usuario cada vez, al inicio del programa, cuántos números va a ingresar para consultar. La so-
lución propuesta resulta:

def muchos_pcn():
i = int(input("Cuantos numeros quiere procesar?: "))
for j in range(0, i):

x = int(input("Ingrese un numero: "))
if x > 0:

print("Numero positivo")
elif x == 0:

print("Igual a 0")
else:

print("Numero negativo")

Su ejecución es exitosa:
>>> muchos_pcn()
Cuantos numeros quiere procesar: 3
Ingrese un numero: 25
Numero positivo
Ingrese un numero: 0
Igual a 0
Ingrese un numero: -5
Numero negativo
>>>

Sin embargo, el uso de este programa no resulta muy intuitivo, porque obliga al usuario a
contar de antemano cuántos números va a querer procesar, sin equivocarse, en lugar de ingresar
uno a uno los números hasta procesarlos a todos.

5.2 Ciclos indefinidos
Para poder resolver este problema sin averiguar primero la cantidad de números a procesar,

debemos introducir una instrucción que nos permita construir ciclos que no requieran que se
informe de antemano la cantidad de veces que se repetirá el cálculo del cuerpo. Se trata de los
ciclos indefinidos, en los cuales se repite el cálculo del cuerpo mientras una cierta condición es
verdadera.

Un ciclo indefinido es de la forma
while <expresión>:

<cuerpo>

donde while es una palabra reservada, y la <expresión> debe ser booleana, igual que en las
instrucciones if. El <cuerpo> es, como siempre, una o más instrucciones de Python.

El funcionamiento de esta instrucción es el siguiente:

5.3. Ciclo interactivo 49

1. Evaluar la condición.
2. Si la condición es falsa, salir del ciclo.
3. Si la condición es verdadera, ejecutar el cuerpo.
4. Volver a 1.

En la Figura 5.1 se muestra el diagrama de flujo correspondiente al ciclo indefinido while.

<expresión>

<cuerpo>

True

False

Figura 5.1: Diagrama de flujo para el ciclo indefinido while.

5.3 Ciclo interactivo
¿Cuál es la condición y cuál es el cuerpo del ciclo en nuestro problema? Claramente, el cuer-

po del ciclo es el ingreso de datos y la verificación de si es positivo, negativo o cero. En cuanto
a la condición, es que haya más datos para seguir calculando.

Definimos una variable hay_mas_datos, que valdrá “Si” mientras haya datos.
Se le debe preguntar al usuario, después de cada cálculo, si hay o no más datos. Cuando el

usuario deje de responder “Si”, dejaremos de ejecutar el cuerpo del ciclo.
Una primera aproximación al código necesario para resolver este problema podría ser:
def muchos_pcn():

while hay_mas_datos == "Si":
x = int(input("Ingrese un numero: "))
if x > 0:

print("Numero positivo")
elif x == 0:

print("Igual a 0")
else:

print("Numero negativo")

hay_mas_datos = input("¿Quiere seguir? <Si-No>: ")

Veamos qué pasa si ejecutamos la función tal como fue presentada:
>>> muchos_pcn()
Traceback (most recent call last):
File "<pyshell#25>", line 1, in <module>
muchos_pcn()

File "<pyshell#24>", line 2, in muchos_pcn
while hay_mas_datos == "Si":

UnboundLocalError: local variable 'hay_mas_datos' referenced before assignment

El problema que se presentó en este caso, es que hay_mas_datos no tiene un valor asignado
en el momento de evaluar la condición del ciclo por primera vez.

50 Unidad 5. Ciclos

Es importante prestar atención a cuáles son las variables que hay que inicializar antes de ejecutar un
ciclo, para asegurar que la expresión booleana que lo controla sea evaluable.

Una posibilidad es preguntarle al usario, antes de evaluar la condición, si tiene datos; otra
posibilidad es suponer que si llamó a este programa es porque tenía algún dato para calcular, y
darle el valor inicial “Si” a hay_mas_datos.

Encararemos la segunda opción:
def muchos_pcn():

hay_mas_datos = "Si"
while hay_mas_datos == "Si":

x = int(input("Ingrese un numero: "))
if x > 0:

print("Numero positivo")
elif x == 0:

print("Igual a 0")
else:

print("Numero negativo")

hay_mas_datos = input("Quiere seguir? <Si-No>: ")

El esquema del ciclo interactivo es el siguiente:
hay_mas_datos hace referencia a "Si"
Mientras hay_mas_datos haga referencia a "Si":

Pedir datos
Realizar cálculos
Preguntar al usuario si hay más datos ("Si" cuando los hay)
hay_mas_datos hace referencia al valor ingresado

Ésta es una ejecución:
>>> muchos_pcn()
Ingrese un numero: 25
Numero positivo
Quiere seguir? <Si-No>: Si
Ingrese un numero: 0
Igual a 0
Quiere seguir? <Si-No>: Si
Ingrese un numero: -5
Numero negativo
Quiere seguir? <Si-No>: No

5.4 Ciclo con centinela
Un problema que tiene nuestra primera solución es que resulta poco amigable preguntarle

al usuario después de cada cálculo si desea continuar. Para evitar esto, se puede usar el método
del centinela: un valor arbitrario que, si se lee, le indica al programa que el usuario desea salir
del ciclo. En este caso, podemos suponer que si el usuario ingresa el caracter *, es una indicación
de que desea terminar.

El esquema del ciclo con centinela es el siguiente:
Pedir datos
Mientras el dato pedido no coincida con el centinela:

5.4. Ciclo con centinela 51

Realizar cálculos
Pedir datos

El programa resultante es el siguiente:
def muchos_pcn():

centinela = input("Ingrese un numero (* para terminar): ") 1

while centinela != "*":
x = int(centinela)
if x > 0:

print("Numero positivo")
elif x == 0:

print("Igual a 0")
else:

print("Numero negativo")

centinela = input("Ingrese un numero (* para terminar): ") 2

Notar que no podemos hacer centinela = int(input(...)) porque cuando el usuario in-
grese '*' la llamada a int fallaría (al no poder convertir '*' a un valor entero). Por eso es que
por un lado hacemos la llamada a input, y una vez que sabemos que el valor centinela no es
un '*', lo convertimos a entero llamando a int.

Y ahora lo ejecutamos:
>>> muchos_pcn()
Ingrese un numero (* para terminar): 25
Numero positivo
Ingrese un numero (* para terminar): 0
Igual a 0
Ingrese un numero (* para terminar): -5
Numero negativo
Ingrese un numero (* para terminar): *

El ciclo con centinela esmuy claro pero tiene un problema: hay una línea de código repetida,
marcada con 1 y 2 .

Si en la etapa de mantenimiento tuviéramos que realizar un cambio en el ingreso del dato
(por ejemplo, cambiar el mensaje) deberíamos estar atentos y corregir ambas líneas. En princi-
pio no parece ser un problema muy grave, pero a medida que el programa y el código se hacen
más complejos, se hace mucho más difícil llevar la cuenta de todas las líneas de código dupli-
cadas, y por lo tanto se hace mucho más fácil cometer el error de cambiar una de las líneas y
olvidar hacer el cambio en la línea duplidada.

El código duplicado suele incrementar el esfuerzo necesario para hacer modificaciones en la etapa
de mantenimiento. Es conveniente prestar atención en a etapa de implementación, y modificar el
código para eliminar la duplicación.

Veamos cómo eliminar el código duplicado en nuestro ejemplo. Lo ideal sería leer el dato
centinela en un único punto del programa. Una opción es extraer el código duplicado en una
función:

def leer_centinela():
return input("Ingrese un numero (* para terminar): ")

def muchos_pcn():

52 Unidad 5. Ciclos

centinela = leer_centinela()
while centinela != "*":

x = int(centinela)
if x > 0:

print("Numero positivo")
elif x == 0:

print("Igual a 0")
else:

print("Numero negativo")

centinela = leer_centinela()

Sabías que…

Desde hace mucho tiempo los ciclos infinitos vienen provocando dolores de cabeza a los programa-
dores. Cuando un programa deja de responder y se utiliza todos los recursos de la computadora,
suele deberse a que entró en un ciclo del que no puede salir.

Estos bucles pueden aparecer por una gran variedad de causas. A continuación algunos ejem-
plos de ciclos de los que no se puede salir, siempre o para ciertos parámetros. Queda como ejercicio
encontrar el error en cada uno.

def menor_factor_primo(x):
"""Devuelve el menor factor primo del número x."""
n = 2
while n <= x:

if x % n == 0:
return n

def buscar_impar(x):
"""Divide el número recibido por 2 hasta que sea impar."""
while x % 2 == 0:

x = x / 2
return x

5.5. Resumen 53

5.5 Resumen
• Además de los ciclos definidos, en los que se sabe cuáles son los posibles valores que

tomará una determinada variable, existen los ciclos indefinidos, que se terminan cuando
no se cumple una determinada condición.

• La condición que termina el ciclo puede estar relacionada con una entrada de usuario o
depender del procesamiento de los datos.

• Se puede utilizar el método del centinela cuando se quiere que un ciclo se repita hasta que
el usuario indique que no quiere continuar.

Referencia Python

for <nombre> in <expresión>:

Introduce un ciclo definido. Una vez evaluada la <expresión> (cuyo resultado debe ser una
secuencia de valores), se sabe exactamente cuántas veces se ejecutará el <cuerpo> y qué valores
tomará la variable <nombre>.

for <nombre> in <expresión>:
el cuerpo de ejecuta una cantidad definida de veces
<cuerpo>

while <condicion>:
Introduce un ciclo indefinido, que se termina cuando la condición sea falsa.
while <condición>:

acciones a ejecutar mientras condición sea verdadera

Unidad 6

Validación

6.1 Errores
En un programa podemos encontrarnos con distintos tipos de errores, pero a grandes rasgos

podemos decir que todos los errores pertenecen a una de las siguientes categorías.

• Errores de sintaxis: estos errores son seguramente los más simples de resolver, pues son
detectados por el intérprete (o por el compilador, según el tipo de lenguaje que estemos
utilizando) al procesar el código fuente y generalmente son consecuencia de equivoca-
ciones al escribir el programa. En el caso de Python estos errores son indicados con un
mensaje SyntaxError. Por ejemplo, si trabajando con Python intentamos definir una fun-
ción y en lugar de def escribimos dev.

• Errores semánticos: se dan cuando un programa, a pesar de no generar mensajes de error,
no produce el resultado esperado. Esto puede deberse, por ejemplo, a un algoritmo inco-
rrecto o a la omisión de una sentencia.

• Errores de ejecución: estos errores aparecen durante la ejecución del programa y su origen
puede ser diverso. En ocasiones pueden producirse por un uso incorrecto del programa
por parte del usuario, por ejemplo si el usuario ingresa una cadena cuando se espera
un número. En otras ocasiones pueden deberse a errores de programación, por ejemplo
si una función intenta realizar una división por cero. Una causa común de errores de
ejecución, que generalmente excede al programador y al usuario, son los recursos externos
al programa, por ejemplo si el programa intenta leer un archivo y el mismo se encuentra
dañado. Los errores de ejecución son llamados comúnmente excepciones.

Tanto a los errores de sintaxis como a los semánticos se los puede detectar y corregir durante
la construcción del programa ayudados por el intérprete y la ejecución de pruebas. Pero no
ocurre esto con los errores de ejecución, ya que no siempre es posible saber cuándo ocurrirán y
puede resultar muy complejo (o incluso casi imposible) reproducirlos. Es por ello que el resto
de la unidad nos centraremos en cómo preparar nuestros programas para lidiar con este tipo
de errores. En particular, trataremos con una técnica llamada validación, que sirve para tratar un
tipo especial de errores de ejecución relacionado con los errores de entrada de usuario.

6.2. Validaciones 55

6.2 Validaciones
Las validaciones son técnicas que permiten asegurar que los valores con los que se vaya a

operar estén dentro de determinado dominio.
Estas técnicas son particularmente importantes al momento de utilizar entradas del usuario

o de un archivo (o entradas externas en general) en nuestro código, y también se las utiliza para
comprobar precondiciones. Al uso intensivo de estas técnicas se lo suele llamar programación
defensiva.

Si bien quien invoca una función debe preocuparse de cumplir con las precondiciones de
ésta, si las validaciones están hechas correctamente pueden devolver información valiosa para
que el invocante pueda actuar en consecuencia.

Hay distintas formas de comprobar el dominio de un dato. Por ejemplo, se puede comprobar
el contenido; o que una variable sea de un tipo en particular.

También se debe tener en cuenta qué hará nuestro código cuando una validación falle, ya que
queremos darle información al invocante que le sirva para procesar el error. El error producido
tiene que ser fácilmente reconocible.

En cualquier caso, lo importante es que el resultado generado por nuestro código cuando
funciona correctamente y el resultado generado cuando falla debe ser claramente distinto.

6.2.1 Entrada del usuario
En el caso particular de una porción de código que trate con entrada del usuario, no se debe

asumir que el usuario vaya a ingresar los datos correctamente, ya que los seres humanos tienden
a cometer errores al ingresar información.

Por ejemplo, si se desea que un usuario ingrese un número entero, debemos comprobar el
tipo de dato que ingresó. Python nos indica el tipo de una variable usando la función type.

def pedir_entero():
"""Solicita un valor entero y lo devuelve.
Si el valor ingresado no es entero, imprime un mensaje de error y retorna el
↪ string "Error".
"""
i = input("Ingrese un número entero: ")
if type(i) is not int:

print("El número no es de tipo entero")
return("Error")

else
return int(i)

Esta función devuelve un valor entero, o imprime un mensaje de error y devuelve el string
”Error” si el usuario no ingresó un entero.

Sin embargo, esto no es satisfactorio: si el usuario no ingresa la información correctamente,
el programa podría no continuar, si dicha información fuese necesaria para la resolución de la
tarea del programa. Podemos hacerlo más amigable haciendo que se vuelva a pedir al usuario
que ingrese la información:

def pedir_entero():
"""Solicita un valor entero y lo devuelve.
Mientras el valor ingresado no sea entero, vuelve a solicitarlo."""
while True:

valor = input("Ingrese un número entero: ")
if type(valor) is not int:

56 Unidad 6. Validación

print("'{}' no es un número entero.".format(valor))
else

return int(valor)

Podría ser deseable, además, poner un límite a la cantidadmáximade intentos que el usuario
tiene para ingresar la información correctamente y, superada esa cantidad máxima de intentos,
retornar un valor especial para que seamanejada por el código invocante o imprimir unmensaje
de error.

def pedir_entero():
"""Solicita un valor entero y lo devuelve.
Si el valor ingresado no es entero, da 5 intentos para ingresarlo
correctamente, y de no ser así, imprime mensaje
de error de superación de intentos."""
intentos = 0
while intentos < 5:

valor = input("Ingrese un número entero: ")
if type(valor) is not int:

print("'{}' no es un número entero.".format(valor))
else

return int(valor)
intentos += 1

print("Valor incorrecto ingresado en 5 intentos")

Por otro lado, cuando la entrada ingresada sea una cadena, no es esperable que el usuario
la vaya a ingresar en mayúsculas o minúsculas; ambos casos deben ser considerados.

def lee_opcion():
"""Solicita una opción de menú y la devuelve."""
while True:

opcion = input("Ingrese A (Altas) - B (Bajas) - M (Modificaciones): ")
if opcion.upper() in ("A", "B", "M"):

return opcion

6.2.2 Comprobaciones por aserciones
Cuando queremos validar que los datos provistos a una porción de código contengan la

información apropiada, ya sea porque esa información la ingresó un usuario, fue leída de un
archivo, o porque por cualquiermotivo es posible que sea incorrecta, es deseable comprobar que
el contenido de las variables a utilizar estén dentro de los valores con los que se puede operar.

Estas comprobaciones no siempre son posibles, ya que en ciertas situaciones puede ser muy
costoso corroborar las precondiciones de una función. Es por ello que este tipo de comproba-
ciones se realizan sólo cuando sea posible.

Por ejemplo, la función 1
𝑑𝑖𝑣𝑖𝑠𝑜𝑟 no está definida cuando el divisor es igual a 0. Es posible

utilizar assertpara comprobar las precondiciones de la función. La instucción assertde Python
es una ayuda para la depuración del código ya que prueba una condición. Si la condición es
verdadera, no hace nada y el programa simplemente continúa ejecutándose. Pero si la condición
de aserción se evalúa como falsa, genera un error de ejecución con unmensaje de error opcional.

1 def division_de_1_por_divisor(divisor):
2 """Calcula el cociente entre 1 y el divisor.
3 Pre: el divisor debe ser un número distinto de 0
4 Post: se devuelve el valor del cociente entre 1 y el divisor
5 """

6.3. Resumen 57

6 assert isinstance(divisor, (int, float, complex)) and not isinstance(
↪ divisor, bool), "el divisor debe ser un número"

7 assert divisor != 0, "el divisor no puede ser igual a 0"
8 cociente = 1 / divisor
9 return cociente

6.3 Resumen
• Los errores que se pueden presentar en un programa son: de sintaxis (detectados por el

intérprete), de semántica (el programa no funciona correctamente), o de ejecución.

• Antes de actuar sobre un dato en una porción de código, es deseable corroborar que se lo
pueda utilizar. Para ello se puede validar su contenido, su tipo o sus atributos.

• Cuando no es posible utilizar un dato dentro de una porción de código, es importante
informar el problema al código invocante, lo que puede hacerse mediante un valor de
retorno especial.

Licencia y Copyright

Copyright © Rosita Wachenchauzer <rositaw@gmail.com>
Copyright © Margarita Manterola <margamanterola@gmail.com>
Copyright © Maximiliano Curia <maxy@gnuservers.com.ar>
Copyright © Marcos Medrano <mmedrano@fi.uba.ar>
Copyright © Nicolás Paez <nicopaez@computer.org>
Copyright © Diego Essaya <dessaya@gmail.com>
Copyright © Dato Simó <dato@net.com.org.es>
Copyright © Sebastián Santisi <s@ntisi.com.ar>

El texto original Algoritmos y Programación I, Aprendiendo a programar usando Python como he-
rramienta, 2da. Edición fue adaptado ymodificado por la Cátedra de Introducción a la Programación
de la Universidad Nacional de Luján.

Esta obra se distribuye bajo la Licencia Creative Commons Atribución-CompartirIgual 4.0
Internacional.

Los íconos utilizados fueron diseñados por Freepik.
El logo de Python es una marca registrada de la Python Software Foundation.
La publicidad de Cacao Droste es de dominio público, y fue descargada de Wikipedia.

http://creativecommons.org/licenses/by-sa/4.0/deed.es
http://creativecommons.org/licenses/by-sa/4.0/deed.es
http://www.freepik.com/
https://www.python.org/psf/
http://en.wikipedia.org/wiki/Image:Droste.jpg

	1 Conceptos básicos
	1.1 Computadoras y programas
	1.2 El mito de la máquina todopoderosa
	1.3 Cómo darle instrucciones a la máquina usando Python
	1.3.1 La terminal
	1.3.2 El intérprete interactivo de Python

	1.4 Valores y tipos
	1.5 Variables
	1.6 Funciones
	1.7 Construir programas y módulos
	1.8 Interacción con el usuario
	1.9 Estado y computación
	1.9.1 Depuración de programas

	2 Programas sencillos
	2.1 Construcción de programas
	2.2 Realizando un programa sencillo
	2.3 Piezas de un programa Python
	2.3.1 Nombres
	2.3.2 Expresiones
	2.3.3 No sólo de números viven los programas
	2.3.4 Instrucciones

	2.4 Una guía para el diseño
	2.5 Calidad de software

	3 Funciones
	3.1 Creación de funciones
	3.2 Documentación de funciones
	3.3 Imprimir versus devolver
	3.4 Cómo usar una función en un programa
	3.5 Alcance de las variables
	3.6 Devolver múltiples resultados
	3.7 Módulos
	3.7.1 Módulos estándar

	3.8 Resumen

	4 Decisiones
	4.1 Expresiones booleanas
	4.1.1 Expresiones de comparación
	4.1.2 Operadores lógicos

	4.2 Comparaciones simples
	4.3 Múltiples decisiones consecutivas
	4.4 Resumen

	5 Ciclos
	5.1 El ciclo definido
	5.2 Ciclos indefinidos
	5.3 Ciclo interactivo
	5.4 Ciclo con centinela
	5.5 Resumen

	6 Validación
	6.1 Errores
	6.2 Validaciones
	6.2.1 Entrada del usuario
	6.2.2 Comprobaciones por aserciones

	6.3 Resumen

	Licencia y Copyright

