Manual de

UML

‘No necesita capacitacion
formal en UML!

—$

0

Incluye EJEMPLOS que ilustran
la APLICACION de los CONCEPTOS
—$

Conciso y completo con un
LENGUAJE SENCILLO

Contiene PRUEBAS al término (et y
de cada capitulo y un EXAMEN final a

ﬁ Profesional

—\‘

MANUAL DE UML

www.FreeLibros.me

www.FreeLibros.me

MANUAL DE UML

PAUL KIMMEL

Traduccion

José Hernan Pérez Castellanos

Traductor profesional

i

MEXICO » BOGOTA « BUENOS AIRES « CARACAS « GUATEMALA
LISBOA « MADRID « NUEVA YORK ¢ SAN JUAN « SANTIAGO
AUCKLAND « LONDRES « MILAN « MONTREAL « NUEVA DELHI « SAN FRANCISCO
SINGAPUR « ST.LOUIS « SIDNEY ¢ TORONTO

www.FreeLibros.me

Director Editorial: Fernando Castellanos Rodriguez
Editor de desarrollo: Cristina Tapia Montes de Oca
Supervisor de produccién: Jacqueline Briefio Alvarez
Diagramacion: By Color Soluciones Grificas

MANUAL DE UML

Prohibida la reproduccion total o parcial de esta obra,
por cualquier medio, sin autorizacion escrita del editor.

McGraw-Hill
Interamericana

DERECHOS RESERVADOS © 2008 respecto a la primera edicién en espafiol por
McGRAW-HILL INTERAMERICANA EDITORES, S.A. de C.V.
A Subsidiary of The McGraw-Hill Companies, Inc.

Corporativo Punta Santa Fe

Prolongacion Paseo de la Reforma 1015 Torre A

Piso 17, Col. Desarrollo Santa Fe,

Delegacién Alvaro Obregén

C.P. 01376, México, D.F.

Miembro de la Cadmara Nacional de la Industria Editorial Mexicana, Reg. nim. 736

ISBN 970-10-5899-2

Translated from the 1st English edition of

UML DEMYSTIFIED

By: Paul Kimmel

Copyright © MMVI by The McGraw-Hill Companies, Inc. All rights reserved.
ISBN: 0-07-226182-X

1234567890 09765432108

Impreso en México Printed in Mexico

The McGraw-Hill Companies

www.FreeLibros.me

A la memoria de mi hermana Jennifer Anne
a quien solo se le concedieron 35 aiios.

www.FreeLibros.me

ACERCA DEL AUTOR

Paul Kimmel es arquitecto en jefe y uno de los fundadores de Software Concep-
tions, Inc. Ha estado disefiando e implementando software orientado a objetos
desde 1990, tiene mds de 12 afios de experiencia con los lenguajes de modelado,
y fue uno de los primeros en adoptar el Unified Modeling Language. Paul ha ayu-
dado a disefiar e implementar soluciones con el uso del uUML para algunas de las
mds grandes corporaciones del mundo, desde bancos internacionales, empresas
multinacionales de telecomunicaciones, empresas de logistica y embarque, ofi-
cinas del Departamento de Defensa hasta grupos gubernamentales, nacionales e
internacionales.

www.FreeLibros.me

CONTENIDO BREVE

Una imagen vale mas que mil lineas de codigo
El principio con casos de uso

Diagramacion de caracteristicas como procesos
Comportamientos con diagramas de interaccion
¢Cuales son las cosas que describen mi problema?
Como se relacionan las clases

Uso de los diagramas de esquemas de estado
Modelado de componentes

Ajuste y finalizacion

Visualizacion de su topologia de despliegue
Examen final

Bibliografia seleccionada

Indice

www.FreeLibros.me

17

47

81

101

131

157

175

185

197

209

225

227

www.FreeLibros.me

CONTENIDO

Reconocimientos XV
Introduccion Xvii
Una imagen vale mas que mil lineas de cédigo 1
Comprension de los modelos 2
Comprension del umL 3
La evolucion del disefio de software 3
Si nadie esta modelando, ;por qué debe
hacerlo usted? 5
Modelado y el futuro del desarrollo de software 5
Herramientas para modelado 5
Uso de los modelos 6
Creacion de diagramas 7
Revisidn de los tipos de diagramas 7
Hallar la linea final 12
¢Cuantos diagramas debo crear? 12
¢:Cuan grande debe ser un diagrama? 13
;Cuanto texto debe complementar mis modelos? 13
Obtenga una segunda opinion 13

_\@

www.FreeLibros.me

o’_

CAPITULO 2

CAPITULO 3

Manual de umL

Contraste de los lenguajes de modelado con el proceso

Examen

Respuestas

El principio con casos de uso

Como hacer el caso para los casos de uso

Establecimiento de prioridad de las capacidades

Comunicacién con los no tecnéfilos
Uso de los simbolos de los casos de uso
Simbolos de actores
Casos de uso
Conectores
Casos de uso de inclusion y de extensidn
Anotaciones en los diagramas de casos de uso
Creacion de los diagramas de casos de uso
¢Cuantos diagramas son suficientes?
Ejemplos de diagramas de casos de uso
Disefio controlado con casos de uso
Examen

Respuestas

Diagramacion de caracteristicas como procesos
Elaboracién de las caracteristicas como procesos
Un viaje hacia el codigo

Comprension de los usos de los diagramas
de actividades

Uso de lo simbolos de los diagramas de actividades
Nodo inicial
Flujo de control

Acciones

www.FreeLibros.me

14
16

17
18
19
20
21
21
21
22
25

32
34
34
43
bty
46

47
48
48

49
51
52
52
56

CAPITULO 4

Nodos de decision y de fusion
Bifurcaciones y uniones de transicion
Particion de la responsabilidad con carriles
Indicacion de las sefiales cronometradas
Configuracion de los parametros de entrada

Forma de mostrar las excepciones en los
diagramas de actividades

Terminacion de los diagramas de actividades
Creacion de los diagramas de actividades
Reingenieria del proceso

Reingenieria de una subactividad
Saber cuando renunciar
Examen

Respuestas

Comportamientos con diagramas de interaccion

Elementos de los diagramas de secuencia

Uso de las lineas de vida de objetos

Activacion de una linea de vida

Envio de mensajes

Adicion de restricciones y notas

Uso de marcos de interaccion
Comprension de lo que nos dicen las secuencias
Descubrimiento de objetos y mensajes

Elementos de los diagramas de colaboracion
(o comunicacién)

Igualacion del disefio con el cadigo
Examen

Respuestas

www.FreeLibros.me

62
63
63
67
70

70

72
73
74
77
77
79

82
83
84
85
87
87
91
92

94
96
97
99

Manual de umL

@,—

CAPITULO 5 ¢Cuales son las cosas que describen mi problema? 101
Elementos de los diagramas basicos de clase 102
Comprension de las clases y los objetos 103

Modelado de relaciones en los diagramas de clases 112

Estereotipado de las clases 117
Uso de paquetes 118
Uso de notas y comentarios 118
Restricciones 118
Modelado de primitivos 120
Modelado de enumeraciones 121
Indicacion de espacios de nombres 122
Cémo saber qué clases necesita 123
Uso de un enfoque ingenuo 124

Descubra otros beneficios del analisis de dominios 124

Examen 128
Respuestas 130
CAPIiTULO 6 Como se relacionan las clases 131
Modelado de la herencia 132
Uso de la herencia simple 132

Uso de la herencia mdltiple 135
Modelado de la herencia de interfaces 139
Boceto de diagrama 139

Uso de la realizacion 140
Descripcion de la agregacion y la composicion 143
Asociaciones y las clases asociaciones 145
Examen de las relaciones de dependencia 150
Adicion de detalles a las clases 153

www.FreeLibros.me

CAPITULO 7

CAPITULO 8

CAPITULO 9

Examen

Respuestas

Uso de los diagramas de esquemas de estado
Elementos de un diagrama de estado

Examen de los simbolos de estado

Examen de las transiciones
Creacion de maquinas de estado de comportamiento
Creacion de maquinas de estado de protocolo
Implementacion de diagramas de estado
Examen

Respuestas

Modelado de componentes

Introduccién del disefio basado en componentes
Disefio componentes-interfaz
Disefio a partir de las clases

Modelado de un componente

Especificacion de las interfaces proporcionadas
y requeridas

Examen de los estilos de modelado de componentes

Trazado de los diagramas de componentes
para consumidores

Trazado de los diagramas de componentes
para productores

Examen

Respuestas

Ajuste y finalizacion
Modelado de los hacer y los no hacer

No tenga esperando a los programadores

www.FreeLibros.me

153
155

157
158
159
164
166
167
168
172
174

175
177
177
177
178

179
180

180

182
183
184

185
186
187

CAPITULO 10

APENDICE A

Manual de umL

Trabaje de una macrovista hacia una microvista

Documente en forma econdmica
Encuentre un editor

Sea selectivo acerca de los diagramas
que elige crear

No dependa de la generacion del cédigo

Modele y estructure disminuyendo el riesgo

Si es obvio, no lo modele

Haga hincapié en la especializacion
Uso de patrones de estado conocidos
Refactorizacion de su modelo
Modo de agregar documentacion de soporte
Validacién de su modelo
Examen

Respuestas

Visualizacion de su topologia de despliegue
Modelado de nodos

Manera de mostrar artefactos en nodos
Adicién de trayectorias de comunicacion
Examen

Respuestas

Examen final
Respuestas
Bibliografia seleccionada

Indice

www.FreeLibros.me

187
187
188

188
188
188
189
189
189
192
192
193
193
195

197
198
201
204
206
207

209
223
225
227

RECONOCIMIENTOS

Bien entrada mi segunda década como escritor, tengo que agradecer a Wendy Ri-
naldi, de McGraw-Hill/Osborne, junto con Alexander McDonald y a mi agente Da-
vid Fugate, de Waterside, por esta oportunidad de escribir lo que creo que el lector
encontrard como un libro informativo, entretenido y facil de seguir sobre el Unified
Modeling Language.

También quiero manifestar mi agradecimiento a Eric Cotter, de Portland, Ore-
gon, al ofrecerse para proporcionar la edicion técnica para el Manual de umL. Eric
realizé un trabajo excelente al hallar mis equivocaciones y omisiones, asi como al
mejorar las explicaciones.

Doy las gracias a mis anfitriones en el Ministry of Transportation Ontario, de St.
Catharines, Ontario; colaborar con ustedes en el CIMS fue un proceso agradable y
el examen de mis modelos y disefios con ustedes proporcioné una excelente base
para este libro. Gracias también a Novica Kovacevic, Jennifer Fang, Rod, Mar-
co Sanchez, Chris Chartrand, Sergey Khudoyarov, Dalibor Skacic, Michael Lam,
Howard Bertrand y David He de Microsoft; fue un placer trabajar con y aprender
de todos ustedes.

En 2004, junto con Bill Maas, Paul Emery, Sainney Drammeh, Bunmi Akin-
yemichu y Ryan Doom, se form¢ el area Greater Lansing de .NET Users Group
(glugnet.org) y me gustaria mandar un saludo a todos los grandes miembros y pro-
motores de glugnet. Nos reunimos el tercer jueves de cada mes a las 6:00 p.M., en el
bello campus de la Michigan State University. Gracias a la MSU por permitir el uso
de sus excelentes instalaciones en el Engineering Building y el Anthony Hall.

Mientras estaba trabajando en Ontario, mi sustento me fue graciosamente su-
ministrado en Prudhommes, en Vineland, Ontario, en las salidas 55 y 57, y en el
Honest Lawyer, en St. Catharines, Ontario, Canada. Gracias a Lis, Jen, Cheriton,
Everett, Kathryn y Kim por los alimentos y la bebida para adultos, asi como al per-
sonal del Honest Lawyer, por el acceso inaldmbrico.

_\@

www.FreeLibros.me

Por tltimo, pero no porque sean los menos importantes, tengo una deuda de
gratitud con mi esposa Lori y mis cuatro hijos, Trevor, Douglas, Alex y Noah, que
representan el papel de mis mas importantes admiradores y partidarios. Una familia
es la mas grande de las bendiciones. (También me gustaria presentar al miembro
mas reciente de nuestra familia, Leda, un eficiente laboratorio de chocolate, quien
espera con paciencia a mis pies como un sutil recuerdo para empujarme de regreso
a la computadora e ir a hacer algo mds una que otra vez.)

www.FreeLibros.me

INTRODUCCION

A menudo, los nuevos inventos nacen sin necesidad y se documentan sobre serville-
tas mucho antes, si acaso, de que se proporcione una definicion autorizada y formal.
El Unified Modeling Language (UML) es precisamente uno de esos ejemplos. Los
aspectos individuales de lo que al final se convirtié en el UML los definieron Ivar
Jacobson, James Rumbaugh y Grady Booch, sin necesidad, mucho antes de que sus
colaboraciones individuales se consolidaran en una sola definicién.

Existe un problema mixto con las especificaciones formales y estdndar. En gene-
ral, para que un cuerpo augusto de cientificos ratifique algo debe estar definido sin
ambigiiedad y con rigor. Si busca la definicion del UML, encontrard metamodelos
que describen hasta el mas minimo detalle lo que es y lo que no es. El efecto es
muy semejante a leer informes del congreso: extensos, dridos, tediosos y con un
poquito de jugo ocasional. Piense en las definiciones formales, en comparacién
con las aplicaciones practicas, como esto: existen reglas rigurosas especificas que
definen algo tan sencillo como el dlgebra, pero usted no necesita conocerlas, aun
cuando realizamos algebra sencilla 0 nos apoyamos en ella en tareas cotidianas,
como bombear gasolina. Por ejemplo, precio por litro multiplicado por el niimero
de litros = precio total. Con una simple sustitucion de texto por caricter, podemos
crear ecuaciones aritméticas, p * g = t, que empiezan por parecerse a esas confusas
ecuaciones de la escuela, pero que las hacen convenientes, desde el punto de vista
rotacional, para determinar cualquier cantidad de ella. Lo que quiero decir es que
incluso las personas que se identificarian como desafiadas por las matemadticas las
aplican todos los dias para fines pricticos, sin siquiera pensar que lo que estin ha-
ciendo es resolver problemas matematicos.

Ese es el objetivo de este libro. Hay definiciones formales y rigurosas del UML y
existen por buenas razones, pero usted no necesita conocerlas para usar este lengua-
je de una manera practica. Los lingiiistas del uML deben conocerlo en lo mds intimo,
para definir con rigor, precisamente como los profesores de un idioma conocen la

_\®

www.FreeLibros.me

@, Manual de umL

gramadtica hasta lo mas profundo para poder ensefarlo, pero usted no necesita ser
un profesor de su idioma para comunicarse con eficacia. Esto es verdad también
para el UML; no necesita conocer todos los detalles acerca de €l para usarlo con
eficacia.

UML DesMitificado estd escrito de manera sencilla y estd disefiado para hacer que
este lenguaje sea practico, asi como una herramienta eficaz para comunicar analisis
y disefio de software.

Hay muchos libros sobre proceso, y el UML no define un proceso. Sin embargo,
este libro estd organizado de tal manera que si usted crea los tipos de modelos se-
glin se necesita, en el orden en el que aparecen en él, entonces puede contar con un
inicio practico de un proceso susceptible de usarse.

UML DesMitificado es un libro de tamafio modesto, pero es una recopilacion de
mads de una docena de afios de experiencia practica trabajando con algunas de las
mayores y mejor conocidas empresas del mundo, asi como con muchas bien cono-
cidas y no tan grandes empresas. El UML descrito en este libro es pragmético, prac-
tico y aplicable, ya sea que usted se encuentre estructurando aplicaciones pequeiias,
medianas o muy grandes. En pocas palabras, UML DesMitificado deja la pelusa y el
rigor de torre de marfil a otros textos y le dice a usted lo que necesita saber para usar
con éxito el UML al describir software.

www.FreeLibros.me

CAPITULO

A Una imagen
vale mas que mil
lineas de codigo

Las imigenes de pequefias personas formadas por palillos representan la forma
de comunicacién mds antigua registrada en la historia humana. Algo de este arte
rupestre se remonta a épocas tan antiguas como hace 75,000 afios. Lo que resulta
bastante extrafio es que nos encontramos al principio del moderno siglo Xx1y to-
davia estamos usando pequeias figuras de linea para transmitir informacién. Eso
es correcto; un pequefio hombre formado por palillos que llamamos Esaw es el
caricter central en uno de los lenguajes més recientes desarrollado por los humanos
(figura 1-1).

_\o

www.FreeLibros.me

Manual de umL

Esaw

Figura 1-1 Esaw, a quien se menciona como actor en el UML.

El lenguaje acerca del cual estoy hablando se llama Unified Modeling Language (Len-
guaje unificado de modelado), o uMmL. El UML es un lenguaje tanto como Pascal, C# (C
sharp), el alemdn, el inglés y el latin; y el uML posiblemente es uno de los lenguajes mds
recientes inventados por la humanidad, alrededor de 1997.

Como sucede con otros lenguajes, el UML fue inventado por necesidad. Es mds, como
con muchos lenguajes, en el UML se usan simbolos para transmitir significado. Sin embar-
go, a diferencia de los lenguajes organicos, como el inglés y el aleman, que evolucionan
con el transcurso del tiempo a partir del uso comin y la adaptacién, el uML fue inventado
por cientificos, lo cual, por desgracia, es un problema. Los cientificos son muy inteli-
gentes pero con frecuencia no son muy buenos para explicar las cosas a aquellos menos
cientificos. Aqui es en donde intervengo.

En este capitulo, revisaremos el origen y la evolucidon del umL; también hablaremos
acerca de como crear imagenes usando el UML, cudntas imagenes crear y qué tipos de
ellas, qué deben transmitir esas imdgenes y, lo mds importante, cudndo suspender el di-
bujo de imédgenes y empezar a escribir cédigo.

Comprension de los modelos

Un modelo es una coleccion de imdgenes y texto que representa algo; para nuestros fi-
nes, software. (Los modelos no tienen que representar software, pero ahora reduciremos
nuestro ambito a los modelos de software.) Un modelo es para el software lo que un plano
azul es para una casa.

Los modelos son valiosos por muchas razones especificas; en gran parte, constan de
imdgenes e, incluso, las imdgenes simples pueden transmitir méds informacién que una
gran cantidad de texto; por ejemplo, cddigo. Esto resulta coherente con el viejo adagio un
tanto modificado de que una imagen expresa un millar de lineas de c6digo. Los modelos
son valiosos porque es mas facil dibujar algunas imagenes sencillas que escribir cddigo
o incluso texto que describan lo mismo. Los modelos son valiosos porque es mas barato,
rapido y facil cambiar modelos que cambiar cédigo. La verdad simple es que barato, ra-
pido, fécil y flexible es lo que usted quiere cuando estd resolviendo problemas.

www.FreeLibros.me

Una imagen vale mas que mil lineas de codigo o

.

Desafortunadamente, si cada uno usa imdgenes diferentes para dar a entender lo mis-
mo, entonces las imdgenes se agregan a la confusién, en lugar de mitigarla. Aqui es en
donde entra el UML.

Comprension del umL

El uML es una definicidn oficial de un lenguaje pictérico con simbolos y relaciones co-
munes que tienen un significado comtun. Si todos los participantes hablan UML, entonces
las imégenes tienen el mismo significado para todos aquellos que las observen. Por lo
tanto, aprender UML es esencial para ser capaz de usar imagenes para experimentar bara-
ta, flexible y rdpidamente con las soluciones.

Es importante reiterar aqui que es mas rapido, mds barato y mds facil resolver proble-
mas con imagenes que con cddigo. La tnica barrera para obtener beneficios del modela-
do es aprender el lenguaje del mismo.

El uMmL es un lenguaje precisamente como lo son el inglés o el afrikaans. El umL
comprende simbolos y una gramética que define la manera en que se pueden usar estos
simbolos. Aprenda los simbolos y la gramatica, y sus imdgenes serdn comprensibles para
todo aquel que reconozca estos simbolos y conozca la gramatica.

Aunque, ;por qué el uML? Usted podria usar cualesquiera simbolos y reglas con el fin
de crear su propio lenguaje de modelado, pero el truco estaria en hacer que otros también
lo usaran. Si sus aspiraciones son inventar un mejor lenguaje de modelado, entonces no
me corresponde detenerlo. Debe saber que el UML se considera un estdndar y que lo que
este lenguaje es o no es lo define un consorcio de empresas que constituyen el Object
Management Group (0MG, Grupo de Administracién de Objetos). La especificacion del
UML estd definida y ha sido publicada por el oMG en www.omg.org.

La evolucion del diseno de software

Si siente que ha llegado tarde a la fiesta del UML, no se inquiete; en realidad, ha llegado
temprano. La verdad es que el uML ha llegado tarde a la fiesta de desarrollo del software.
Trabajo en todo Estados Unidos y converso con una gran cantidad de gente en muchas
empresas muy grandes de software, y el UML y el modelado apenas estdn empezando a
ponerse de moda. Esto queda ejemplificado de la mejor manera en las propias palabras de
Bill Gates después de su famosa “semana de reflexion” en 2004, en donde se informa que
habl6 acerca de la importancia creciente del andlisis y disefio formales (Iéase UML) en el
futuro. Este sentimiento lo apoya también la muy reciente compra de Visio, que incluye
las capacidades de modelado de umL, por parte de Microsoft.

www.FreeLibros.me

www.omg.org.

e Manual de umL

El uML representa una formalizacion del andlisis y el disefio, y la formalizacién siem-
pre parece llegar tarde. Considere los fabricantes de automéviles del siglo pasado. Al
principio del siglo pasado, todos los fabricantes de coches en Flint, Michigan, estaban
convirtiendo los carruajes ligeros tirados por un solo caballo en automéviles. Esto ocu-
rri6 mucho antes de que las grandes universidades, como la Michigan State University
(Msu), graduaran ingenieros mecanicos capacitados para construir automoviles y herra-
mientas de software, como programas para disefio con ayuda de computadora (CAD) que
son especialmente buenos en el dibujo de articulos complejos, como las partes de los au-
tomoviles. La evolucion de la ingenieria formalizada de los automdviles es consecuente
con la evolucién de la ingenieria formalizada del software.

Hace alrededor de 5000 afios, los chinos crearon una de las primeras computadoras:
el dbaco. Hace cerca de 150 afios, Charles Babbage inventé una maquina mecdanica de
calculo. En 1940, Alan Turing definié la maquina Turing de calculo, y Presper Eckert
y John Mauchly inventaron la Eniac. Después de las mdquinas de célculo, vinieron las
tarjetas perforadas y el andlisis y disefio estructurados de Grace Hopper para apoyar el
desarrollo de Cobol. En la década de 1960, se inventé Smalltalk, un lenguaje orientado a
objetos, y en 1986, Bjarne Stroustrop inventd lo que ahora se conoce como C++. No fue
sino hasta alrededor de este mismo periodo —la década de 1980— cuando hombres muy
inteligentes, como Ivar Jacobson, James Rumbaugh y Grady Booch, empezaron a definir
los elementos del andlisis y disefio modernos de software, lo que ahora llamamos el UML.

A finales de la década de 1980 y principios de la de 1990, las guerras sobre la nota-
cién del modelado estaban plenamente entabladas, con diferentes facciones apoyando
a Jacobson, Rumbaugh o Booch. Recuerde, no fue sino hasta 1980 cuando la persona
promedio pudo comprar y poseer una computadora personal (PC), y hacer algo ttil con
ella. Jacobson, Rumbaugh y Booch, cada uno por su lado, usaron simbolos y reglas di-
ferentes para crear sus modelos. Finalmente, Rumbaugh y Booch empezaron a colaborar
en relacion con los elementos de sus respectivos lenguajes de modelado, y Jacobson se
les uni6 en Rational Software.

A mediados de la década de 1990, se fusionaron los elementos de modelado de Rum-
baugh [Object Modeling Technique (omT, técnica de modelado de objetos)], Booch
(método de Booch) y Jacobson (Objectory and Use Cases, cajas objetos y de usos) —a
Rumbaugh, Jacobson y Booch se les mencionaba como “los tres amigos”— para formar
el proceso unificado de modelado. Poco tiempo después, se eliminé proceso de la espe-
cificacion del modelado y nacié el umL. Esto ocurrié hace muy poco tiempo, apenas en
1997. La especificacion uML 2.0 se estabilizé en octubre de 2004. Es correcto, ahora s6lo
estamos en la version 2.

Esto lleva a la pregunta: ;precisamente cudntas empresas estan usando el UML y, en
realidad, disefiando software con modelos? La respuesta es todavia muy pocas. Traba-
jo en toda Norteamérica y personalmente conozco ejecutivos en algunas empresas de
software con mucho éxito, y cuando les pregunto si estructuran el software con umL, la
respuesta es, casi siempre, no.

www.FreeLibros.me

Una imagen vale mas que mil lineas de codigo o

.

Si nadie esta modelando, ¢por qué debe hacerlo usted?

Una persona racional podria preguntar: ;por qué entonces, si Bill Gates estd ganando miles
de millones escribiendo software sin hacer un hincapié significativo en el modelado for-
mal, debo preocuparme acerca del UML? La respuesta es que casi el 80% de todos los pro-
yectos de software fallan. Estos proyectos sobrepasan sus presupuestos, no proporcionan
las caracteristicas que los clientes necesitan o desean o, lo que es peor, nunca se entregan.

La tendencia actual es llevar al exterior el desarrollo del software, hacia las naciones
en desarrollo o del tercer mundo. La idea basica es que si los ingenieros estadouniden-
ses especializados en software estan fallando, entonces si se paga una quinta parte a un
desarrollador euroasidtico de software esto permitird a las empresas intentar tener €xito
con una frecuencia cinco veces mayor. ;Qué estdn hallando estas empresas que estdn
llevando el desarrollo hacia el exterior? Estdn descubriendo que Estados Unidos tiene
algunos de los mejores talentos y recursos disponibles, y que la mano de obra barata en
lugares alejados sélo introduce problemas adicionales y tampoco es garantia de éxito. La
respuesta real que se necesita consumir mds tiempo en el andlisis y el disefio del software,
y esto significa modelos.

Modelado y el futuro del desarrollo de software

Un énfasis creciente en el andlisis y disefio formales no significa el fin del crecimiento de
la industria del software; significa que los dias del salvaje, salvaje oeste de las décadas
de 1980y 1990 llegardn al momento en que terminen; pero todavia estd el salvaje, salvaje
oeste de los hackers, alli en la tierra del software, y estard por algtn tiempo.

Lo que un énfasis creciente en el andlisis y disefio del software significa precisamente
ahora es que los profesionales capacitados en UML tienen una oportunidad dnica para
capitalizar este interés creciente en este lenguaje; también significa que, de manera gra-
dual, menos proyectos fallardn, la calidad del software mejorard y se esperard que mas
ingenieros en software aprendan el UML.

Herramientas para modelado

Hasta hace muy poco, el modelado ha sido un cautivo en una torre de marfil rodeada
por una guarnicion impenetrable de cientificos armados con metamodelos y herramien-
tas para modelar ridiculamente caras. El costo de una licencia para una herramienta
popular para modelar estaba en los miles de délares, lo que significé que el profesional
promedio debia gastar por una aplicacién para modelar tanto como lo que gast6 por toda
una computadora. Esto es ridiculo.

www.FreeLibros.me

G Manual de umL

Las herramientas para modelar pueden ser muy utiles, pero es posible modelar sobre
trozos de papel. Por fortuna, usted no necesita ir tan lejos. La ame o la odie, Microsoft
es muy buena para bajar el costo del software. Si tiene una copia de MSDN, entonces tiene
una herramienta casi gratuita para modelar: Visio. Esta es una buena herramienta, capaz
de producir de manera competente modelos UML de alta calidad, y no le destrozara su
presupuesto.'

Para mantenernos en el tema de este libro —desmitificar uML—, en lugar de hacer
saltar la banca en Together o Rose, usaremos el Visio de precio adecuado. Si el lector
quiere usar Rose xDE, Together o algun otro producto, sea bienvenido para hacerlo, pero
después de leer este libro vera que puede usar Visio y crear modelos profesionales, y
ahorrarse cientos o incluso miles de ddlares.

Uso de los modelos

Los modelos consisten en diagramas o imdgenes. Lo que se intenta con los modelos es
que sean mas baratos para producir y experimentar que con el cédigo. Sin embargo, si
usted trabaja arduamente sobre qué modelos trazar, cudndo suspender el dibujo y empe-
zar a codificar, o en si sus modelos son perfectos o no, entonces con lentitud observara
reducirse el costo y el valor en tiempo de los modelos.

Puede usar texto llano para describir un sistema, pero se puede transmitir mds informa-
cién con imdgenes. Podria seguir con ahinco la méxima de la eXtreme Programming (Xp,
programacion extrema) y codificar, volviendo a descomponer en factores conforme avan-
ce, pero los detalles de las lineas de c6digo son mucho mas complejos que las imagenes,
y los programadores se adhieren al c6digo pero no a las imdgenes. (Yo no comprendo
por completo la psicologia de esta adhesion al cédigo, pero en realidad existe. Sélo trate
de criticar en forma constructiva el cédigo de alguien mds y observe como se deteriora
la conversacion con rapidez hasta llegar al insulto.) Esto significa que una vez que se
escribe el codigo, es muy dificil obtener la aceptacién de su codificador o de un admi-
nistrador para hacerle modificaciones, en especial si el cédigo se percibe para trabajar.
Inversamente, la gente trabajard con mucho gusto de manera informal con los modelos y
aceptard sugerencias.

Por dltimo, debido a que en los modelos se usan simbolos sencillos, més personas
interesadas pueden participar en el disefio del sistema. Muestre a un usuario final un cen-
tenar de lineas de cddigo y escuchard el chillar de los grillos; muestre a ese usuario final
un diagrama de actividades, y esa misma persona le dira si ha captado usted la esencia de
co6mo se realiza correctamente esa tarea.

'Microsoft tiene un nuevo programa que le permite comprar MsDN Universal, el cual incluye Visio, por 375
dolares. Este es un valor especialmente bueno.

www.FreeLibros.me

Una imagen vale mas que mil lineas de codigo o

N

Creacion de diagramas

La primera regla de la creacion de modelos es que el c6digo y el texto consumen tiempo,
y no queremos pasar una gran cantidad de tiempo creando documentos de texto que nadie
leerd. Lo que si queremos hacer es captar con exactitud las partes importantes del pro-
blema y una solucién. Desafortunadamente, ésta no es una prescripcion para el niimero o
la diversidad de diagramas que necesitamos crear y no indica cuanto detalle necesitamos
agregar a esos diagramas.

Hacia el final de este capitulo, en la seccion “Hallar la linea final’, hablaré mas acerca de
como se sabe que se ha completado el modelado. En este momento, hablemos acerca
de los tipos de diagramas que tal vez queramos crear.

Revision de los tipos de diagramas

Existen varios tipos de diagramas que usted puede crear. Revisaré con rapidez los tipos
de diagramas que puede crear y los tipos de informacién que se pretende transmitir con
cada uno de estos diagramas.

Diagramas de casos de uso

Los diagramas de casos de uso son el equivalente del arte rupestre moderno. Los simbo-
los principales de un caso de uso son el actor (nuestro amigo Esaw) y el évalo del caso
de uso (figura 1-2).

Los diagramas de casos de uso son responsables principalmente de documentar los
macrorrequisitos del sistema. Piense en los diagramas de casos de uso como la lista de
las capacidades que debe proporcionar el sistema.

Diagramas de actividades

Un diagrama de actividades es la version UML de un diagrama de flujo. Los diagramas
de actividades se usan para analizar los procesos y, si es necesario, volver a realizar la
ingenieria de los procesos (figura 1-3).

Hallar alimento

Figura 1-2 El caso de uso “Hallar alimento”.

www.FreeLibros.me

Manual de umL

Salir de
la cueva

Buscar Evitar los
alimento depredadores

(Necesitar mas
alimento)
1

Regresar
ala cueva
Figura 1-3 Un diagrama de actividades en el que se muestra la manera en que Esaw camina

para hallar alimento.

Un diagrama de actividades es una herramienta excelente para analizar problemas que,
al final, el sistema debera resolver. Como una herramienta de analisis, no queremos em-
pezar resolviendo el problema en un nivel técnico mediante la asignacion de clases, pero
podemos usar los diagramas de actividades para entender el problema e incluso refinar
los procesos que comprenden el problema.

Diagramas de clases

Los diagramas de clases se usan para mostrar las clases de un sistema y las relaciones
entre ellas (figura 1-4). Una sola clase puede mostrarse en mds de un diagrama de clases
y no es necesario mostrar todas las clases en un solo diagrama monolitico de clases. El
mayor valor es mostrar las clases y sus relaciones desde varias perspectivas, de una ma-
nera que ayudard a transmitir la comprensién mas Ttil.

www.FreeLibros.me

Una imagen vale mas que mil lineas de codigo

Sustento Esaw

I

Agua Alimento

Figura 1-4 Un diagrama sencillo de clases, quizas uno de muchos, que transmite una faceta del
sistema que se estd disefiando.

Los diagramas de clases muestran una vista estdtica del sistema; no describen los
comportamientos 0 como interactian los ejemplos de las clases. Para describir los com-
portamientos y las interacciones entre los objetos de un sistema, podemos revisar los
diagramas de interaccion.

Diagramas de interaccion

Existen dos tipos de diagramas de interaccion: la secuencia y la colaboracion. Ambos
transmiten la misma informacion, empleando una perspectiva un poco diferente. Los
diagramas de secuencia muestran las clases a lo largo de la parte superior y los mensajes
enviados entre esas clases, modelando un solo flujo a través de los objetos del siste-
ma. Los diagramas de colaboracién usan las mismas clases y mensajes, pero organiza-
dos en una disposicion espacial. La figura 1-5 muestra un ejemplo sencillo de diagrama
de secuencia, y la 1-6 transmite la misma informacién con el uso de un diagrama de
colaboracion.

Un diagrama de secuencia implica un ordenamiento en el tiempo al seguir la secuen-
cia de mensajes desde arriba a la izquierda hasta abajo a la derecha. Debido a que en el
diagrama de colaboracién no se indica en forma visual un ordenamiento en el tiempo,
numeramos los mensajes para indicar el orden en el cual se presentan.

Algunas herramientas convertirdn de manera automatica los diagramas de interaccion
entre secuencia y colaboracion, pero no es necesario crear los dos tipos de diagramas. En
general, se percibe que un diagrama de secuencia es més fécil de leer y mds comun.

www.FreeLibros.me

_\o

Manual de umL

Esaw Canasta Fuego

T

i

| Adquirir

p el alimento

Vaciar a la (alimento)

| Caminar
! hacia la cueva

Abrir

N]

Tomar el alimento

Cocinar (alimento)

Trasladar (alimento)

Alimento cocinado
|
|
|
D Comer |
|
| |
| |
| |

Figura 1-5 Diagrama sencillo de secuencia en el que se demuestra cémo se recoge y prepara el
alimento.

N N

Diagramas de estado

Mientras que los diagramas de interaccién muestran los objetos y los mensajes que se
pasan entre ellos, un diagrama de estado muestra el estado cambiante de un solo objeto,
conforme éste pasa por un sistema. Si continuamos con nuestro ejemplo, entonces nos
enfocaremos sobre Esaw y como esta cambiando su estado a medida que busca con afan
el alimento, lo encuentra y lo consume (figura 1-7).

REecuerDE Desmitificado: el umL es un lenguaje. Como programar o hablar idiomas,

si no se usan con frecuencia, se pueden olvidar un poco. Es perfectamente aceptable
mejorar un idioma particular. La meta del modelado es captar la esencia del mismo y
disefiar con pericia y, finalmente, con tanta exactitud como sea posible, sin quedarse
atascado decidiendo acerca de los elementos del lenguaje. Desafortunadamente, las he-
rramientas del umL no son tan exactas como los compiladores en la descripcion de los
errores del lenguaje.

www.FreeLibros.me

Una imagen vale mas que mil lineas de codigo @

<&

Esaw

1: Reunir alimento
3: Caminar hacia la cueva
8: Comer el alimento

Canasta
o Canasta
27 2: Vaciar a Ia\
'P@/} ; Of/}e 4: Abrir
Zon 5: Tomar e] 41;
‘e Ve, omar el alimento
%, “,
e,

Fuego

Figura 1-6 Diagrama de colaboracién que transmite el mismo comportamiento de adquisicién
y consumo.

Diagramas de componentes

El uML define varios tipos de modelos, incluyendo modelos para andlisis, para disefio y
para implementacién. Sin embargo, nada hay que le fuerce a crear o mantener tres mode-
los para una aplicacién. Un ejemplo de un diagrama que podria encontrar en un modelo
de implementacion es de componentes. En un diagrama de componentes, éstos se mues-
tran —piense en subsistemas— en el producto final.

/ Salir de la cueva
Hambre Buscar

(Seguro para comer) / Encontrar alimento

Comida (Hambre)
@ (No tiene hambre)
Reposo

Figura 1-7 Diagrama de estado (o esquema de estado) que muestra el estado progresivo confor-
me Esaw busca con afan el alimento y come.

www.FreeLibros.me

@,—

Hallar

Manual de umL

Cubriré los diagramas de despliegue mas adelante en este libro, pero por ahora, apla-
zaré la cita de un ejemplo. En general, un diagrama de componentes es un poco semejan-
te a uno de clases, con simbolos de componentes.

Otros diagramas

Hay otros tipos o variaciones de diagramas que podemos crear. Por ejemplo, un diagrama
de topologia del despliegue le mostrard como se verd desplegado su sistema. Lo comtn
es que un diagrama de este tipo contenga simbolos que representen cosas, como servido-
res web, servidores de bases de datos y varios dispositivos diversos, asi como software
que constituye la solucién de usted. Este tipo de diagrama es mas comun cuando usted
estd estructurando sistemas distribuidos en 7 hileras.

Mas adelante, en este libro, le mostraré ejemplos de algunos de estos diagramas. Recuer-
de que, en el modelado, la clave consiste en modelar aspectos interesantes de su sistema
que ayuden a aclarar elementos que puedan no ser obvios, en oposicién a modelarlo todo.

la linea final

La parte mas dificil del modelado es que es tan nuevo que los modelos UML estan sujetos
a algo de las mismas guerras de los lenguajes que sufrieron los proyectos orientados a
objetos durante la dltima década. Le aliento a evitar estas guerras de lenguajes, ya que
principalmente son ejercicios académicos improductivos. Si se encuentra colgado acerca
de si algo es bueno o no en UML, entonces se estd dirigiendo hacia la paralisis del andlisis
(y del disefio).

La meta es ser tan exacto como sea posible en una cantidad razonable de tiempo. El
software mal disefiado es suficientemente malo, pero ninglin software es casi siempre
peor. Con el fin de determinar si ha concluido con un diagrama o modelo particular,
haga la pregunta: ;el diagrama o modelo transmite lo que entiendo, lo que quiero dar a
entender y mi intencion? Es decir, el diagrama o modelo es suficientemente bueno? La
exactitud es importante porque los demds necesitan leer sus modelos, y los errores idio-
maticos significan que esos modelos seran mas dificiles de leer para los demas.

¢Cuantos diagramas debo crear?

No existe respuesta especifica. Una pregunta mejor es: ;debo crear todo tipo de diagra-
mas? La respuesta a esta pregunta es no. Un refinamiento de esta respuesta es que resulta
util crear diagramas que resuelvan los problemas delicados de analisis y disefio, asi como
diagramas que la gente realmente leerd.

www.FreeLibros.me

Una imagen vale mas que mil lineas de codigo

¢Cuan grande debe ser un diagrama?

Determinar cudn grande necesita ser un modelo es otra buena cuestién para decidir. Si
un modelo dado es demasiado grande, entonces puede aumentar la confusién. Intente
crear modelos detallados, pero no demasiado. Como con la programacion, la creacion de
modelos UML requiere préctica.

Solicite retroalimentaciéon de diferentes grupos cuya opinién sea importante. Si los
usuarios finales piensan que un diagrama de andlisis capta de manera adecuada y correcta
el problema, entonces siga adelante. Si los programadores pueden leer una secuencia y
deducir cémo implementar esa secuencia, entonces siga adelante. Siempre puede agre-
gar detalles, si debe hacerlo.

¢ Cuanto texto debe complementar mis modelos?

Una idea fundamental del uso de imdgenes para modelar, en lugar de texto muy confuso,
es que las imagenes transmiten mas significado en menos espacio y son mds faciles de
manipular. Si agrega demasiado texto —restricciones, notas o documentos largos—, en-
tonces estd anulando la finalidad de esta notacién pictérica mds concisa.

El mejor lugar para el texto es el caso de uso. Un buen texto descriptivo en cada caso
de uso puede aclarar con precisiéon qué caracteristica apoya ese caso. En el capitulo 2
demostraré algunas buenas descripciones de los casos de uso.

Se recibird bien que agregue cualquier texto aclaratorio que necesite, pero la regla
general para el texto es andloga a la dada para los comentarios en c6digo: s6lo comente
cosas que estén razonablemente sujetas a interpretacion.

Por 1ltimo, trate de documentar todo en su herramienta de modelado, en oposicién a
un documento separado. Si encuentra que usted necesita o el cliente requiere un panora-
ma arquitectonico general escrito, aplace esto hasta después de que el software se haya
producido.

Obtenga una segunda opinion

Si se encuentra atascado en un diagrama particular, obtenga una segunda opiniéon. Con
frecuencia, dejar un diagrama a un lado durante un par de horas u obtener una segunda
opinién le ayudard a resolver aspectos acerca de un modelo. Puede ser que halle que el
usuario final de ese modelo entenderd lo que usted quiere decir o proporcionard mas
informacién que aclare la confusién, o bien un segundo par de ojos puede suministrar
una respuesta lista. Un elemento critico de todo software de desarrollo es construir cierta
inercia y captar los macroconceptos, o grandes conceptos, sin quedarse atascado o man-
tener esperando a los usuarios.

www.FreeLibros.me

_\Q

Manual de umL

@,—

Contraste de los lenguajes de modelado
con el proceso

En realidad, el uML empezé su vida como Unified Process (Proceso unificado). Los in-
ventores se dieron cuenta con rapidez de que los lenguajes de programacién no deter-
minan el proceso, ni debieran hacerlo los lenguajes de modelado. Por tanto, proceso y
lenguaje se dividieron.

Existen muchos libros sobre procesos. No pienso que un proceso represente el mejor
ajuste para todos los proyectos, pero quizas uno de los procesos mas flexibles es el Ra-
tional Unified Process (Proceso unificado racional). Mi enfoque en este libro es sobre el
UML, no sobre cualquier proceso particular. Estaré sugiriendo los tipos de modelos por
crear y lo que le dicen a usted, pero le aliento a que examine los procesos de desarrollo
por usted mismo. Considere examinar el Rational Unified Process (RUP), el proceso Agile,
eXtreme Programming (XP) e, incluso, Microsoft’s Services Oriented Architecture (SOA,
arquitectura orientada a servicios de Microsoft). [SOA es mds que un procedimiento arqui-
tectonico en el que se usan elementos como XML Web Services (Servicios web XML), pero
ofrece algunas buenas técnicas.]

No soy un experto en todos los procesos, pero enseguida doy un resumen que le dard
un punto de partida. El RUP es un aparador de actividades centradas en el umL, que define
macrofases iterativas en pequefias cascadas, incluyendo iniciacién, elaboracidn, cons-
truccion y transicion. xp es hackeo constructivo. En general, la idea se basa en estructurar
sobre lo que usted comprenda, esperar que las cosas cambien y usar técnicas como la
programacién de redes composicién en factores y para apoyar los cambios a medida que
usted aumenta su comprension. El soA de Microsoft depende de tecnologias como com+,
Remoting y los XML Web Services asi como de una separacién de las responsabilidades
por medio de los servicios. Agile es una nueva metodologia que no entiendo por comple-
to, pero que en el libro del Dr. Boehm, Balancing Agility and Discipline, se le compara
con XP, y sospecho que, desde el punto de vista conceptual, reside en alguna parte entre
RUP y XP.

Es importante tener presente que muchas personas o entidades que le ofrecen un pro-
ceso pueden estar intentando venderle algo, y algunas muy buenas ideas tienen que venir
de cada una de estas partes.

Examen

1. ¢Qué significa el acrénimo UML?
a. Uniform Model Language
b. Unified Modeling Language

www.FreeLibros.me

Una imagen vale mas que mil lineas de codigo @

c. Unitarian Mock-Up Language

d. Unified Molding Language

. El umL s6lo se usa para modelar software.

a. Verdadero

b. Falso

. {Cual es el nombre del proceso mas intimamente asociado con el umL?
a. El proceso de modelado

b. El Rational Unified Process

c. eXtreme Programming

d. Los métodos Agile

. {Cual es el nombre del cuerpo de normas que define el umL?

a. Unified Modeling Group

b. Object Modeling Group

c. Object Management Group

d. Los cuatro amigos

. Los diagramas de caso de uso se usan para captar las macrodescripciones de un sistema.
a. Verdadero

b. Falso

. Los diagramas de secuencia son diferentes de los de colaboracion (elija todo lo que
sea aplicable).

a. Los diagramas de secuencia son diagramas de interaccion; los diagramas de colabo-
racion no lo son.

b. Los diagramas de secuencia representan un ordenamiento en el tiempo, y los de
colaboracion representan clases y mensajes, pero no se implica el ordenamiento en
el tiempo.

c. El orden en el tiempo se indica numerando los diagramas de secuencia.
d. Ninguna de las anteriores.

. Un diagrama de clases es una vision dinamica de las clases de un sistema.
a. Verdadero

b. Falso

. Un buen modelo umL contendra por lo menos un diagrama de cada tipo.

a. Verdadero

b. Falso

www.FreeLibros.me

@ Manual de umL

9. (Cudl es el apodo del grupo de cientificos mas notablemente asociados con el
UML?

a. La pandilla de los cuatro
b. Los tres mosqueteros

c. Los tres amigos

d. El duo dindmico

10. Los diagramas de secuencia son buenos para mostrar el estado de un objeto a
través de muchos casos de uso.

a. Verdadero
b. Falso

Respuestas

(e}

e T A B ol o D A
o o o ®

._.
e
o O

www.FreeLibros.me

CAPITULO

El principio
con casos de uso

El Unified Modeling Language (UML) soporta el andlisis y disefo orientados a obje-
tos proporcionandole una manera de captar los resultados del andlisis y el disefio. En
general, iniciamos con la comprensién de nuestro problema; es decir, el andlisis. Un
tipo excelente de modelo para captar el andlisis es el diagrama de casos de uso.

La finalidad de un caso de uso es describir la manera en que se usard un sistema:
describir sus finalidades esenciales. La finalidad de los diagramas de casos de uso
es captar en forma visual las finalidades esenciales.

Un caso de uso bien escrito y bien representado en diagrama es una de las
clasificaciones de modelos individuales mds importantes que usted puede crear.
Esto es asi porque expresar con claridad, conocer y organizar los objetivos es sin-
gularmente importante para alcanzarlos con éxito. Existe un viejo proverbio que
dice: “Un viaje de mil millas empieza con un paso”, y existe un proverbio un poco
menos antiguo que dice: “Si no sabe hacia adénde va, entonces el viaje nunca
terminara.”

_\@

www.FreeLibros.me

@ Manual de umL

En este capitulo, hablaré acerca de una primera parte significativa de ese viaje —la
creacion de casos de uso— que cubrird

* Los simbolos usados para crear los diagramas de casos de uso

* Como crear los diagramas de casos de uso

» Cuantos diagramas de casos de uso crear

» Cuanto incluir en un diagrama de casos de uso

* Elnivel de detalle a incluir en un diagrama de casos de uso

» Como expresar las relaciones entre los casos de uso individuales

* La cantidad y el estilo de texto que es util para hacer anotaciones en los diagramas
de casos de uso

* De manera significativa, como establecer las prioridades de los casos de uso

Como hacer el caso para las casos de uso

Los diagramas de casos de uso parecen muy féciles; constan de figuras de linea, lineas y
6valos. La figura de palillos se llama actor y representa a alguien o algo que acttia sobre
el sistema. En el desarrollo de software, los actores son personas u otro software que ac-
tdia sobre el sistema. Las lineas son punteadas o continuas, con varias flechas o sin ellas,
que indican la relacién entre el actor y los 6valos. Estos tiltimos son los casos de uso y, en
el diagrama de casos de uso, los 6valos tienen algiin texto que proporciona una descrip-
cién bdsica. La figura 2-1 es un ejemplo sencillo de un diagrama de casos de uso.

Durante mucho tiempo los diagramas de casos de uso me fastidiaron porque parecian
demasiado sencillos para tener algtn valor. Un nifio de tres o cuatro afios con un crayén
y un pedazo de papel podria reproducir estas figuras de linea; sin embargo, su sencillez
es decepcionante.

Que un diagrama de casos de uso sea facil de crear es un elogio implicito para el UML.
Hallar los casos de uso correctos y registrar sus responsabilidades en forma correcta es la
decepcion. Hallar los casos de uso correctos y describirlos de manera adecuada es el pro-
ceso critico que impide que los listos ingenieros de software pasen por alto necesidades

Crear lista de trabajos

Patrén

Figura 2-1 Un diagrama de casos de uso muy sencillo.

www.FreeLibros.me

El principio con casos de uso @

criticas y que inventen de manera innecesaria. En pocas palabras, los diagramas de casos
de uso constituyen un macrorregistro de lo que usted quiere estructurar.

En el pérrafo anterior, usé el prefijo macro. Macro en este contexto sencillamente
significa “grande”. Los grandes objetivos, o macroobjetivos, son los que se mencionan
como los argumentos, o razones, poderosos de la empresa para hacer algo. En los diagra-
mas de casos de uso se captan los objetivos grandes, poderosos. En el texto de esos casos
se captan los detalles de apoyo.

Esto es lo que se me escapaba en las imédgenes de las figuras de linea de los diagramas
de casos de uso; perdia de vista que, sencillamente, al registrar lo que el sistema hard y
lo que no hard, registramos y especificamos el alcance de lo que se estd creando; tam-
bién perdia de vista que el texto que acompaiia los diagramas de casos de uso rellena los
espacios en blanco entre los macrotisos y los microdsos, en donde micro significa usos
“menores, de apoyo”.

Ademads de registrar los usos primarios y secundarios, los diagramas de casos de uso
nos proporcionan en forma implicita varias oportunidades significativas para administrar
el desarrollo, a lo cual entraré con més detalle a medida que avance el capitulo.

Establecimiento de prioridad de las capacidades

(Alguna vez ha escrito una lista de cosas por hacer? Una lista de cosas por hacer es una
lista de cosas que usted debe hacer o desea hacer. El acto de escribir la lista es un punto
de partida. En esencia, los casos de uso son listas de cosas por hacer. Una vez que ha cap-
tado los casos de uso, ha articulado lo que el sistema hara, y puede usar la lista para dar
prioridades a nuestras tareas. Tanto enunciar como organizar los objetivos son primeras
tareas muy criticas.

El valor de establecer prioridades para las capacidades de un sistema es que el software
es fluido. Permitame ilustrar, por medio de un ejemplo, lo que quiero decir. Es posible
crear, guardar, abrir e imprimir un documento de texto tanto con Notepad (Bloc de notas)
como con Word de Microsoft, pero la diferencia en el nimero de lineas de c6digo y el ni-
mero de caracteristicas entre estos dos programas es tremenda. Al establecer prioridades
de los usos, con frecuencia tenemos la oportunidad de hacer, con ventaja, malabarismos
con las caracteristicas, el presupuesto y el programa.

Suponga, por ejemplo, que mis objetivos primarios son ser capaz de crear, guardar,
abrir e imprimir un documento de texto. Suponga ademds que mis objetivos secundarios
son guardar el documento como texto llano, HyperText Markup Language (HTML, lengua-
je de marcado de hipertexto), y como texto enriquecido, es decir, formateo especial. Esta-
blecer prioridades de las capacidades significa que podria elegir enfocarme hacia los usos
primarios —crear, guardar, abrir e imprimir—, pero aplazar el soporte de HTML y texto
enriquecido. (Las caracteristicas en el software por lo comun se aplazan hacia versiones
posteriores, debido a las restricciones reales mencionadas con anterioridad, incluyendo
tiempo, presupuesto y un cambio en el entorno de la empresa.)

www.FreeLibros.me

@ Manual de umL

No tener tiempo suficiente y quedarse sin dinero son problemas directos. Los desarro-
lladores de software son rutinariamente optimistas, se distraen en salidas por la tangente
y pasan mds tiempo en reuniones que en la planeacién, y estas cosas gravan un presu-
puesto. Sin embargo, tomemos un momento para examinar un cambio en el entorno de
la empresa. Si nuestras necesidades originales fueron HTML, texto llano y texto enrique-
cido y hemos estado estructurando nuestro software en los dltimos cinco afios, resultaria
perfectamente plausible que un cliente dijera, a la mitad del curso del desarrollo, que
guardar un documento como eXtensible Markup Language (XML, lenguaje ampliable de
marcado) seria mds valioso que como texto enriquecido. De este modo, debido a un clima
tecnoldgico en evolucidn, a media corriente un cliente podria restablecer las prioridades
y demandar XML como mds importante que el texto enriquecido. Si no hubiéramos docu-
mentado nuestras necesidades primarias y secundarias, entonces podria ser un reto muy
grande determinar los trueques deseables, como cambiar el texto enriquecido por el XML.
Debido a que registramos con claridad los casos deseables de usos, podemos establecer
prioridades y hacer trueques valiosos, si es necesario.

Comunicacion con los no tecnoéfilos

Otra cosa que no perdi de vista acerca de los casos de uso es que su mera sencillez los
hace un medio ficil de transmisién para comunicarse con no tecnéfilos. A estas personas
las llamamos usuarios o clientes.

Los programadores que usan el hemisferio izquierdo de su cerebro en general detestan
a los usuarios. La idea basica es que si uno no puede leer el cdigo, entonces es tonto o,
por lo menos, mds tonto que aquellos que si pueden. El uML y los casos de uso cubren
la brecha entre los programadores que usan el hemisferio izquierdo del cerebro y los
usuarios no tecnoéfilos.

Una figura de palillos, una linea y un 6valo son suficientemente simplistas, cuando se
combinan con algin texto, para que todos los participantes puedan entender el significado.
El resultado es que los usuarios y clientes pueden observar los dibujos y leer el texto llano,
y determinar si los tecnélogos han, o no, registrado con exactitud y comprendido las ca-
racteristicas deseables. Esto también significa que los administradores —quienes pueden
no haber escrito cédigo en 10 aflos— y las direcciones técnicas pueden examinar el pro-
ducto final y, por inspeccién, garantizar que la inventiva desenfrenada no es la causa de los
programas no cumplidos ni de las caracteristicas ausentes. Demostrando esta disonancia
al continuar con mi primer ejemplo, suponga que, de cualquier manera, se implementa el
soporte de texto enriquecido porque el programador sabe cdmo almacenar y recuperar ese
tipo de texto. No obstante, debido a que el XML es mds reciente y el programador tiene me-
nos experiencia en trabajar con él, la caracteristica de escritura en XML se aplaza sin ma-
licia. Un administrador proactivo puede descubrir las necesidades de un cliente, segtn se
captan mediante los casos de uso, y apropiarse de salidas por la tangente improductivas.

www.FreeLibros.me

El principio con casos de uso @

Debido a que los casos de uso son visuales y sencillos, los usuarios y clientes pueden
suministrar retroalimentacion, y las personas que constituyen el puente entre los clientes
y los programadores, como los administradores, pueden determinar si las caracteristicas
que en realidad se estructuraron reflejan con exactitud los deseos de los usuarios.

Uso de los simbolos de los casos de uso

Los diagramas basicos de casos de uso constan de s6lo unos cuantos simbolos: el actor,
un conectory el évalo del caso de uso (figura 2-2). Tomemos unos cuantos minutos para
hablar de cdmo se usan estos simbolos y qué informacién transmiten.

Simbolos de actores

La figura de palillos, mencionada como actor, representa participantes en los casos de
uso. Los actores pueden ser personas o cosas. Si un actor es una persona, entonces, en
realidad, nunca se puede representar por medio de un cédigo. Si un actor es otro subsis-
tema, entonces se le puede observar como una clase o subprograma, pero todavia repre-
sentarse usando el simbolo de actor en los diagramas de casos de uso.

Los actores se descubren como resultado del andlisis. Conforme vaya identificando
los macrousos del sistema, identificard quiénes son los participantes para esos casos de
uso. En principio, registre cada actor a medida que se descubre, agregando un simbolo
de actor a su modelo y describiendo cudl es su papel. Nos preocuparemos acerca de la
organizacién y el refinamiento mds adelante, en la seccién titulada “Creacién de los
diagramas de casos de uso”.

Casos de uso

El simbolo del caso de uso se utiliza para representar capacidades. Al caso de uso se
le da un nombre y una descripcién mediante un texto. Este tltimo debe describir cémo
inicia y finaliza el caso de uso, e incluye una descripcion de la capacidad descrita por
el nombre de la misma, asi como escenarios de apoyo y requisitos no funcionales. En la
seccidn titulada “Creacion de los diagramas de casos de uso”, examinaremos ejemplos

-

Actor Conector Caso de uso

Figura 2-2 Los simbolos basicos de los diagramas incluyen al actor, al conector y al évalo del
caso de uso.

www.FreeLibros.me

@ Manual de umL

de nombres de casos de uso, y en la seccién titulada “Documentacién de un caso de uso
utilizando un borrador”, proporcionaré un borrador modelo que pueda usar para ayudarse
a escribir las descripciones de los casos de uso.

Conectores

Dado que los diagramas de casos de uso tienen multiples actores y en virtud de que los
casos de uso pueden estar asociados con los actores y con otros casos de uso, se utilizan
los conectores para indicar la manera en que ambos estan asociados. Ademas, los estilos
de conectores pueden cambiar para transmitir mds informacion acerca de la relacion
entre los actores y los casos de uso. Por tltimo, los conectores pueden tener adornos y
anotaciones que suministran incluso mds informacion.

Estilos de lineas para los conectores

Existen tres estilos basicos de lineas para los conectores. Un conector de linea simple se
llama asociacion y se usa para mostrar cudles actores estan relacionados con cudles casos
de uso. Por ejemplo, en la figura 2-1 se mostré que un patrén estd asociado con el caso de
uso “Crear lista de trabajos”.

Un segundo estilo de conector es una linea punteada con una flecha direccional (figura
2-3). Este estilo de conector se conoce como dependencia. La flecha apunta hacia el caso
de uso del que depende. Por ejemplo, suponga que a los patrones de www.motown-jobs.
com se les debe dar acceso para crear una lista de trabajos. Entonces podemos decir que
el caso de uso “Crear lista de trabajo” depende de un caso de uso “Entrar”. Esta es la
relacion que se ilustra en la figura 2-3.

Un tercer estilo de conector es una linea dirigida con un tridngulo hueco, al cual se le
conoce como generalizacion. La palabra generalizacion en el UML significa “herencia”.
Cuando mostramos una relacién de generalizacion entre dos actores o dos casos de uso,
estamos indicando que el actor o el caso de uso “hijos” son un caso del actor o uso basico
y algo mas. En la figura 2-4, se muestra una relacion de generalizacion entre dos actores y
dos casos de uso.

Crear lista de trabajos

Figura 2-3 El caso de uso “Crear lista de trabajos” depende de que el patrén obtenga acceso.

www.FreeLibros.me

www.motown-jobs.com
www.motown-jobs.com

El principio con casos de uso

_\®

Usuario

Crear lista de trabajos

Patron

rear lista de
trabajos por prio-
ridades

Figura 2-4 Diagrama de casos de uso en el que se muestran dos relaciones de generalizacién
entre dos actores y entre dos casos de uso.

En las relaciones de generalizacion, la flecha apunta hacia la cosa sobre la cual nos
estamos expandiendo. Existen varias maneras en las que usted puede describir esta rela-
cion en forma verbal —acerca de la cual usted debe saber—, pero desafortunadamente,
todos estos sinénimos pueden conducir a confusién verbal. Los siguientes enunciados
describen las relaciones de generalizacion que se muestran en la figura 2-4:

» El usuario es el objetivo y el patrén es la fuente.

* El patrdn es un usuario.

» El usuario es el subtipo y el patron es el supertipo.

» El patron se hereda del usuario.

* El usuario es el tipo padre y el patrén es el tipo hijo.

» El patron generaliza al usuario.

(En esta lista, puede sustituir la frase Crear lista de trabajos en todas partes en donde
vea la palabra Usuario, y sustituir la frase Crear lista de trabajos por prioridades en
todas las partes en donde vea la palabra Patron, para transmitir la relacién entre los dos
casos de uso.) El dltimo enunciado, en el cual se usa la palabra generaliza, es el més
exacto en el contexto del uML, pero vale la pena reconocer que todos los enunciados son
equivalentes.

www.FreeLibros.me

Manual de umL

@,—

Adornos de los conectores

Los diagramas umL fomentan el uso de menos texto porque las imagenes transmiten una
gran cantidad de informacion a través de una conveniente taquigrafia visual, pero los
diagramas UML no se abstienen por completo del texto; por ejemplo, los conectores pue-
den incluir texto que indique multiplicidad de los puntos extremos y texto que estereotipa
el conector.

Manera de mostrar la multiplicidad

En general, los conectores pueden tener notaciones de multiplicidad en cualquiera de sus
dos extremos. Las notaciones de multiplicidad indican el conteo posible de cada cosa.
Por ejemplo, un asterisco significa muchos; un asterisco préximo a un actor significa
que puede haber muchos ejemplos de ese actor. Aun cuando el UML permite hacer ano-
taciones de esta manera en los conectores de caso de uso, eso no es muy comun. Es mas
probable que usted vea estas marcas de notacion de conteo en diagramas del tipo de los
de clase, de modo que daré detalles sobre la multiplicidad en el capitulo 3.

Estereotipado de los conectores

Una notacién mds comun en los conectores es el estereotipo. Los estereotipos agregan
detalles a la relacion entre los elementos en un diagrama de caso de uso. Por ejemplo,
en la figura 2-3, introduje el conector de dependencia. Se puede usar un estereotipo para
ampliar el significado de este conector.

En la seccion titulada “Estilos de lineas para los conectores”, dije que un patrén puede
crear una lista de trabajos e ilustré esto con un actor patrén, un caso de uso “Crear lista
de trabajos” y un conector de asociacion; sin embargo, también dije que el patréon debe
obtener acceso. Cuando un caso de uso —“Crear lista de trabajos”— necesita los servi-
cios de otro caso de uso —“Entrar”— entonces se dice que el caso de uso dependiente
incluye el caso de uso del que depende. (En c6digo, una relacién incluir se implementa
como reutilizacion de codigo.)

Un estereotipo se muestra como texto entre los caracteres « y » (comillas angulares).
Por ejemplo, si decimos que “Crear lista de trabajos” incluye a “Entrar”, entonces pode-
mos representar un estereotipo incluir colocando una anotacién en el conector de depen-
dencia como se muestra en la figura 2-5.

Crear lista

de trabajos
Patrén

Figura 2-5 Ejemplo de un estereotipo incluir —usado para representar reutilizar— en la depen-
dencia entre “Crear lista de trabajos” y “Entrar”.

www.FreeLibros.me

El principio con casos de uso

_\@

Incluir y extender son conceptos importantes en los diagramas de caso de uso, de
modo que enseguida ampliaré lo relativo a estos temas.

Norta Estereotipo es un concepto generalmente iitil en el umL. La razon de esto es que
es permisible que usted introduzca y defina sus propios estereotipos. De esta manera,
puede extender el umL.

Caso de uso de inclusion y de extension

Una relacion de dependencia entre dos casos de uso significa que, de alguna manera,
el caso dependiente necesita al caso del que depende. Dos estereotipos de uso comin y
predefinidos que refinan las dependencias en los casos de uso son el incluir y el extender.
Tomemos un minuto para ampliar nuestros comentarios de introduccién sobre incluir, de
la seccion anterior, € introduzcamos extender.

SUGERENCIA Visio aplica un estereotipo extender en el conector de generalizacion para
dar a entender herencia. Existen variaciones entre el umL y las herramientas del mismo,
porque el umL es un estandar en evolucion y la implementacion de las herramientas
puede ir adelante o atrds de la definicion oficial del umL.

Mas sobre los estereotipos incluir

Una dependencia rotulada con el estereotipo incluir significa que, finalmente, el caso de
uso dependiente es para volver a usar el caso del que depende. El equipaje que va con el
estereotipo incluir es que el caso de uso dependiente necesitara los servicios del caso del
que depende y saber algo acerca de la realizacion de ésta, pero lo opuesto no es cierto.
El caso de uso del que se depende es una entidad completa y distinta que no debe de-
pender del caso dependiente. La concesion de acceso es un buen ejemplo. Resulta claro
que requerimos que un patrén tenga acceso para crear una lista de trabajos, pero también
pudimos obtener acceso por otras razones.

NoOTA En una dependencia incluir entre casos de uso, el caso dependiente también se
conoce como el caso de uso basico, y aquella de la que se depende también se conoce
como el caso de uso de inclusion. Aungue basico y de inclusion pueden ser términos mds
precisos, no parece que se empleen de manera comiin al hablar.

Poner tanto significado en una pequefia palabra como incluir es la razén por la cual
el uML puede transmitir una gran cantidad de significado en un diagrama sencillo, pero
también es la razén por la cual los modelos UML pueden representar un reto para crearse
y leerse. Una estrategia real a la que puede recurrir es agregar una nota en donde no esté

www.FreeLibros.me

@ Manual de umL

seguro acerca del uso de algtn aspecto idiomético del UML (vea, mds adelante, “Anota-
ciones en los diagramas de caso de uso”). Por ejemplo, si quiere describir la relacién
entre “Crear lista de trabajos” y “Entrar”, pero no estd seguro acerca de cudl conector o
cudl estereotipo usar, entonces podria usar una asociacién simple y una nota asociada al
conector que describa en texto llano lo que usted quiere dar a entender. La nota puede
actuar como un recordatorio para, mas adelante, regresar y buscar el UML preciso.

Uso de los estereotipos extender

El estereotipo extender se usa para agregar mas detalle a una dependencia, lo cual signi-
fica que estamos agregando mas capacidades (como ejemplo, vea la figura 2-6). Como
se muestra en la figura, decimos que “Registrar las listas vistas” extiende (y depende de)
“Ver lista”.

Nota En una relacion extendida, la flecha apunta hacia el caso de uso bdsico y el otro
extremo se conoce como el caso de uso de extension.

En la seccién anterior, no permitiriamos que un patrén creara una lista de trabajos
sin registrarse, pero en el caso del registro del caso de uso entrar es indiferente para la
reutilizacion del caso. En esta seccion, a el caso de uso ver lista no le importa que la es-
tén registrando; en otras palabras, la caracteristica registrar necesitard saber acerca de la
caracteristica ver lista, pero no en sentido contrario.

Una perspectiva valiosa aqui es quién podria estar interesado en el registro. Es eviden-
te que al “Solicitante de trabajo” tal vez no le interese cudntas veces se ha visto la lista,
pero un patrén previsor podria estar interesado en cuanto trafico estd generando su lista.
Pasemos ahora por un momento a un dominio diferente. Suponga que el “Solicitante de
trabajo” fuera el comprador de una casa y que la lista lo fuera de residencias. Ahora tanto
el comprador como el vendedor podrian estar interesados en el nimero de veces que se
ha visto la propiedad. Una casa que ha estado en el mercado durante meses puede tener

N
N
N

Solicitante de trabajo

Registrar las listas vistas

Figura 2-6 Seguir el rastro del nimero de veces que se ve una lista de trabajos es una extension
de “Ver lista”, como se describe mediante la dependencia y el estereotipo extender.

www.FreeLibros.me

El principio con casos de uso @

problemas. Sin embargo, en los dos escenarios, la lista es lo mas importante y el nimero
de veces que se ha visto es secundario. Esto ilustra la nocion de caso de uso de extension
como parecidas a las caracteristicas y, desde una perspectiva de mercadeo, las extensiones
podrian ser elementos que estén separados en un paquete opcional de caracteristicas.

SUGERENCIA Considere la alternativa, ya que se relaciona con un caso de uso de ex-
tension. Los casos de uso de extension son caracteristicas secundarias naturales. Si su
proyecto tiene un programa apretado, lleve hasta el final los casos de uso de extension,
Y, Si su tiempo se agota, entonces posponga los casos de uso de extension para una ver-
sion posterior.

Incluir y extender parecen algo semejantes, pero la mejor manera de tenerlos en orden
es recordar que “la relacién incluir es para volver a aplicar el comportamiento modelado
por otro caso de uso, en tanto que la relacién extender es para agregar partes a caso de
uso existentes asi como para modelar servicios opcionales del sistema” (Overgaard y
Palmkvist, 2005, p. 79).

Anotaciones en los diagramas de casos de uso

Considere el trabajo de un estendgrafo en un juicio. Los estendgrafos usan esas graciosas
madquinas estenograficas de escribir que producen una suerte de majaderias taquigraficas.
Podemos suponer con seguridad que si una maquina de escribir comun o un procesador
de palabras pudiera aceptar una entrada suficientemente rapida como para mantenerse al
ritmo del habla natural, entonces el estenégrafo nunca se hubiera inventado.

Los estendgrafos producen una taquigrafia que es mas condensada que el discurso al
hablar. El uML es como la taquigrafia para el cédigo y el texto, y las herramientas de mo-
delado del uML son semejantes a los estendgrafos. La idea es que los modelos se puedan
crear mas rapido que el codigo o mds rapido que escribir descripciones en forma de texto.
Dicho eso, a veces no hay un buen sustituto para el texto.

Si se encuentra en el predicamento de que sélo el texto parece resolver —o no esta
seguro del uML—, entonces siga adelante y agregue texto. Puede agregar texto mediante
la documentacién de sus modelos con caracteristicas de la mayoria de las herramientas de
modelado, agregando referencias URL a los documentos mds verbosos o agregando notas
directamente en los propios diagramas. Sin embargo, si agrega demasiado texto, entonces
de manera natural, tardard mas en completar el modelado y puede ser que se requiera un
esfuerzo mayor para entender el significado de cada uno de los diagramas.

Insercion de notas

El umL es una taquigrafia para una gran cantidad de texto y de c6digo, pero si lo necesita,
siempre puede agregar texto. Todos los diagramas, incluyendo los casos de uso, permi-

www.FreeLibros.me

Manual de umL

Ver lista es parte de un caso de uso mds grande, “Hallar
trabajo”, pero se encuentra aqui para ilustrar que estamos
registrando las listas vistas.

N
N «extender»

N
N
N

Solicitante de trabajo Registrar las listas

vistas

Figura 2-7 Nota que agrega texto llano para aclarar algin aspecto de un diagrama.

ten que se les agreguen anotaciones en forma de texto. Las notas se representan como un
trozo de papel con una punta doblada y una linea que une el cuadro de texto al elemento
que se le estd haciendo la anotacién (figura 2-7). Use las notas con moderacién, porque
pueden abarrotar un diagrama y hacerlo dificil de leer.

Modo de agregar documentacion de soporte

Todas las herramientas de modelado que he usado —Together, Rose, Rose XDE, Visio,
Poseidon para umL y la de Cayenne Software— permiten la documentacion del modelo.
Por lo comtin, esta documentacién toma dos formas: texto que se almacena en el modelo
y Uniform Resource Locators (URL, localizadores uniformes de recursos), que hacen
referencia a documentos externos (figura 2-8). El examen de las caracteristicas de su
herramienta particular le descubrird estas capacidades.

Mas importante es qué tipo de documentacion debe usted proporcionar. De manera
subjetiva, la respuesta es tan pequefia como aquella con la que pueda ponerse en marcha,
pero en general, los diagramas de caso de uso parecen necesitar lo maximo.

Los diagramas de caso de uso son bastante basicos con sus figuras de linea, pero son
bastante importantes porque registran las capacidades que tendré el sistema de usted. Una
buena informacion a incluir con sus diagramas de caso de uso es

» Un parrafo conciso en el que se describa como empieza el uso, incluyendo cuales-
quiera condiciones previas

» Un parrafo corto para cada una de las funciones primarias
» Un parrafo corto para cada una de las funciones secundarias

» Un parrafo corto para cada uno de los escenarios primarios y secundarios, los cua-
les ayuden a ubicar en un contexto la necesidad de las funciones

www.FreeLibros.me

El principio con casos de uso

_\®

' UML Use Case Properties lgl
Categories:
& Use Case
Extension Points Name: View Listing
Attributes
Operations Full path: [LML System 1::Static Model:: Top Package::¥iew Listing
Constrainks
Tagaed Values . 5 ~| I IsRgot [IsLeaf
wisibility: public *| [IsAbstract
Documentation:
Model documentation here
a cos

Figura 2-8 Mediante un doble clic sobre un elemento de modelo en Visio, puede afiadir docu-
mentacion que estd agregada en el modelo.

* Un parrafo para las necesidades no funcionales
* Puntos de insercioén en donde se usen cualesquiera otros casos de uso dependientes

* Un punto de finalizacion con las condiciones posteriores

Todos estos elementos suenan como una gran cantidad de trabajo, y pueden serlo. Sin
embargo, recuerde que los casos de uso son los fundamentos del andlisis, y es importante
que las documente tan cuidadosa y completamente como pueda. De igual importancia es
notar que usé las palabras conciso y corto de manera intencional. Por corto, quiero dar a
entender que es aceptable tener parrafos de una sola oracion.

Puede usar cualquier formato que le guste para documentar sus casos de uso. Si se
siente comodo con el formato de borrador, es muy fécil crear un borrador modelo con
base en la lista con vifietas que acabo de dar. Una buena practica es elegir un estilo para
su documentacion y adherirse a élI.

Tomemos un momento para explicar en detalle los elementos —segtn se describen en
la anterior lista con vifietas— de la documentacién del caso de uso. Tenga presente que
esto no es una ciencia exacta y que su documentacién de los casos de uso no necesita ser
perfecta.

Documentacion de un caso de uso utilizando un borrador

Puede usar texto de forma libre para documentar un caso de uso, pero encuentro que un
modelo de borrador sugiere la extension de la informacién y actia como un recordatorio
de los elementos necesarios para documentar cada caso en forma adecuada. A continua-

www.FreeLibros.me

@,—

Manual de umL

cion se presenta un modelo que incluye una breve descripciéon y un ejemplo para cada
seccidén. Vale la pena hacer notar que este estilo de documentacién no es parte del UML,
pero es un elemento ttil del modelado.

1. Titulo

a.

b.

Descripcion: Use aqui el nombre del caso de uso, pues facilita mucho el acopla-
miento de los diagramas de caso de uso con su documentacidn respectiva.

Ejemplo: Mantener lista de trabajos.

2. Inicios del caso de uso

a.

Descripcion: Describa con brevedad las circunstancias que llevan al caso de
uso, incluyendo las condiciones previas. Deje fuera los detalles de la implemen-
tacion, como “El usuario hace clic en un hipervinculo”, o las referencias a las
formas, los controles o los detalles especificos de la implementacion.

Ejemplo: Este caso de uso se inicia cuando un patréon, un agente de un patron o
el sistema quiere crear, modificar o eliminar una lista de trabajos.

3. Funciones primarias

a.

Descripcion: Los casos de uso no son necesariamente singulares. Por ejemplo,
“Administrar la lista de trabajos” es un caso de uso razonable y puede incluir
funciones primarias como leer un recipiente o escribir en ¢l. La clave aqui es
evitar demasiado pocas o demasiadas funciones primarias. Si necesita una bue-
na medida, podrian ser dos o tres funciones primarias por caso de uso.

Ejemplo: “cLaB la lista de trabajos.” Las funciones primarias de “Mantener la
lista de trabajos” son crear, leer, actualizar y borrar la lista de trabajos.

4. Funciones secundarias

a.

Descripcion: Las funciones secundarias son como un reparto de apoyo en una
pieza teatral. Por ejemplo, dado un caso de uso “Administrar la lista de traba-
jos”, actualizar, insertar, crear y borrar una lista de trabajos —Illamado cz4B por
crear, leer, actualizar y borrar— son excelentes funciones secundarias, parte de
un caso de uso mas grande. Si necesita una medida, entonces el doble de funcio-
nes secundarias que de primarias es bueno.

Ejemplos:

1) “Hacer caducar la lista de trabajos.” Treinta dias después de que la lista de
trabajos se pone a disposicion para ser vista, se dice que caduca. Una lista
que ha caducado no se borra, pero es posible que los usuarios, con excepcion
del propietario de la lista, ya no puedan verla.

2) “Renovar la lista de trabajos.” Se puede extender una lista por 30 dias adicio-
nales mediante el pago de una tarifa adicional.

www.FreeLibros.me

El principio con casos de uso @

3) “Hacer que una lista de trabajos sea prioritaria.” En cualquier momento, du-
rante la vida de una lista, su propietario puede elegir promoverla hacia lista
prioritaria, mediante el pago de una tarifa prorrateada por la parte consumida
del periodo de la misma.

4) “Registrar las listas vistas.” Cada vez que se ve una lista, se escribird una
entrada de registro, haciendo constar la fecha y la hora en que se vio la lista
y el protocolo de Internet (1P) del visitante.

5) “Examinar registros de las veces que se ha visto la lista.” En cualquier mo-
mento, el propietario puede ver la informacién registrada en relacién con sus
listas.

6) “Notificacién automatica de los registros de la vista de la lista.” El propie-
tario de una lista de trabajos puede elegir que se le envien por correo elec-
trénico los registros de las vistas de esa lista, con un intervalo especificado
por éL.

7) “Pagar por la lista.” Se pide al propietario que pague por cada lista, a menos
que ésta se ofrezca como un premio de promocion.

5. Escenarios primarios

a. Descripcion y ejemplo: Un escenario es un relato corto que describe las fun-
ciones en un contexto. Por ejemplo, dada una funcioén primaria “Crear lista de
trabajos”, podriamos escribir un escenario como éste: “La secretaria del Sr. Gar-
cia esta por jubilarse, y ¢l necesita contratar a alguien que la reemplace. Al Sr.
Garcia le gustaria una secretaria que mecanografie 100 palabras por minuto,
quiera trabajar s6lo cuatro horas al dia y cobrar 10 dolares por hora. Necesita
que la secretaria de reemplazo empiece a trabajar no después del 15 de enero.”
Considere por lo menos tantos escenarios primarios como funciones primarias
tenga. También considere un par de variaciones del escenario para las funciones
importantes. Esto ayudara a que piense acerca de su problema en formas creati-
vas. Hacer una lista de los escenarios en aproximadamente el mismo orden que
el de las funciones que describe el escenario es una practica util.

6. Escenarios secundarios

a. Descripcion y ejemplo: Los escenarios secundarios son relatos cortos que ponen
a las funciones secundarias en un contexto. Considere un escenario secundario
al que nos referiremos como “Hacer caducar lista de trabajos”. Demostrado
como un escenario, podriamos escribir: “El Sr. Garcia pago6 para que la lista se
publicara durante 30 dias. Después de 30 dias, la lista de trabajos se retirara y
se notificara al Sr. Garcia por correo electronico, dandole oportunidad de reno-
varla.” Podemos organizar los escenarios secundarios en un orden coherente
con las funciones secundarias que apoyan.

www.FreeLibros.me

@ Manual de umL
7. Necesidades no funcionales

a. Descripcion: Las necesidades no funcionales se encargan de com-
portamientos implicitos, como con qué rapidez sucede algo o
cuantos datos se pueden transmitir.

b. Ejemplo: Debe procesarse el pago de un patrén en un periodo no
mayor a 60 segundos, en tanto que él o ella, espera.

8. Finalizaciones de los casos de uso

a. Descripcion: En esta parte se describe lo que significa haber fina-
lizado para el caso de uso.

b. Ejemplo: El caso de uso ha finalizado cuando los cambios hechos
en la lista de trabajos se han mantenido y se ha hecho el pago.

Cuanta informacién incluya en la parte escrita de sus casos de uso en realidad es decision
de usted. El uML guarda silencio acerca de este asunto, pero un proceso como el RUP le pue-
de ofrecer alguna guia sobre el contenido, cantidad y estilo de la documentacién en texto.

Como nota final, resulta ttil registrar ideas acerca de las funciones y escenarios, inclu-
so si finalmente elige descartarlos. Por ejemplo, podriamos agregar una funcién secun-
daria que exprese que “El sistema permitird una renovacién semiautomadtica de una lista
de trabajos que estan caducando”, apoyada por el escenario “La lista del Sr. Garcia para
contratar una nueva secretaria esta proxima a caducar. Se notifica por correo electrénico
al Sr. Garcia que su lista esta préxima a caducar. Al hacer clic sobre un vinculo en el co-
rreo, la lista del Sr. Garcia se renueva en forma automatica usando la misma facturacion
e informacién de pago usadas con la lista original”.

Al registrar y conservar las ideas consideradas, es posible hacer un registro de las ideas
que se consideraron, pero puede ser que se lleven a cabo o que jamés se haga. Conservar
un registro de las posibilidades impide que usted repita una y otra vez las ideas conforme
los miembros del equipo vienen y se van.

Por tltimo, resulta ttil insertar referencias a los casos de uso del que se depende. En lu-
gar de, por ejemplo, repetir un caso de uso de inclusion, sencillamente haga una referencia
a ese caso en el punto en que se necesite. Por ejemplo, suponga que pagar por una lista de
trabajos requiere que un patrén tenga acceso; en lugar de repetir el caso de uso “Entrar”,
sencillamente hacemos una referencia a ella en donde se necesite; en este caso, podemos
hacer una referencia a “Entrar” cuando hablemos acerca de pagar por la lista de trabajos.

Creacion de los diagramas de casos de uso

Como mencioné al principio, los casos de uso son listas de disefios por hacer. Ya que
un dia feriado siempre estd precisamente a la vuelta de la esquina, una buena analogia

www.FreeLibros.me

El principio con casos de uso

_\®

comparativa es que definir casos de uso es como escribir una lista de tareas en orden para
preparar su casa para una gran visita de parientes. Por ejemplo, podria escribir “Desem-
polvar la sala”. Entonces decide que su hija de 10 afios hizo un buen trabajo la tltima
vez, de modo que le pide a ella que desempolve. En este caso, el nivel de detalle es
importante, porque sabe —si alguna vez ha desempolvado— que diferentes tipos de
cosas necesitan diferentes tipos de desempolvado: las chucherias pequefias se pueden
desempolvar con un plumero; las mesas para servir café y las de los extremos podrian
necesitar Pledge® y un pafio limpio y seco, y los ventiladores del techo podrian necesitar
la varita y el cepillo de una aspiradora. La clave en este caso es la diferencia entre lo que
describimos con un diagrama y lo que escribimos como parte de nuestro caso de uso.

Nota Podria preguntarse qué tiene que ver desempolvar con los casos de uso y el
software. La primera respuesta es que se pueden usar los modelos de caso de uso para
cosas que no son software, y la segunda parte es que el software se encuentra en un
niimero cada vez mayor de aparatos. Suponga que estabamos definiendo casos de uso
para un robot que limpia casas; entonces nuestras reglas para desempolvar podrian
ser ttiles. Y si se estd preguntando cudn probable podria ser el software para robots,
entonces considere la aspiradora Roomba®, un pequerio robot que vaga por un cuarto
aspirando los desperdicios y, segtin su material de mercadeo, incluso sabe cudndo re-
cargarse. Alguien tuvo que definir e implementar esas capacidades.

El caso de uso para desempolvar del parrafo anterior constaria de un actor, “Nifia”, un
conector de asociacion y un caso de uso “Desempolvar la sala” (figura 2-9). No hace falta
que el propio diagrama de casos de uso describa todas las microtareas necesarias de las
que consta “Desempolvar la sala”. Por ejemplo, “Encontrar Pledge y un pafio limpio y
seco” es una subtarea necesaria, pero en realidad, no es un caso de uso en y por si misma.
Los casos de uso buenos significan tener que hallar buenos actores y el nivel correcto de
detalle, sin hacer confusos los diagramas.

Después de que tenemos el diagrama de caso de uso, podemos agregar informacion
de soporte de la documentaciéon del modelo para nuestro caso de uso. Las funciones
primarias incluirian desempolvar las édreas clave, y las funciones secundarias incluirian
la preparacion, como hacerse de la aspiradora y hallar el Pledge. Los escenarios adecua-

Desempolvar la sala

Nifa

Figura 2-9 Caso de uso para un actor nifia y desempolvar una sala.

www.FreeLibros.me

Manual de umL

@,—

dos incluirian el manejo de areas problemas especificas, como desempolvar los marcos
de los cuadros y articulos de coleccién. Los requisitos no funcionales podrian incluir
“Terminar de desempolvar antes de que lleguen los abuelos”. No se preocupe acerca de
lograr diagramas perfectos ni de la documentacién del caso de uso; use el borrador para
ayudarse a considerar los detalles y los diagramas de caso de uso para obtener una buena
imagen de sus objetivos.

¢Cuantos diagramas son suficientes?

La suficiencia es un problema dificil. Si proporciona demasiados casos de uso, su mo-
delado puede continuar durante meses o incluso afios. También puede adentrarse en el
mismo problema con la documentacién de los casos de uso.

Nora Fui consultor en un proyecto para un departamento grande de la agencia de
defensa. Literalmente, la agencia habia estado trabajando sobre casos de uso por casi
dos aiios sin tener el fin a la vista. Aparte de que me parecio un proyecto interminable,
los expertos del dominio sentian que se estaban captando casos de uso erroneos o que
las casos de uso tenian poco o ningiin valor prdctico y explicativo. Los modelos no es-
taban logrando la marca. El objetivo es captar las caracteristicas esenciales del objeti-
vo de usted, y los modelos de casos de uso son una excelente manera de baja tecnologia
para hacer que se involucren expertos en el dominio que no son técnicos. Pasar por alto
el valor de incitacion al didlogo de los diagramas de casos de uso es perder la mitad del
valor de esos diagramas.

Una linea de base razonable es que las aplicaciones de mediana complejidad podrian
tener entre 20 y 50 buenos casos de uso. Si usted sabe que su problema es moderada-
mente complejo y tiene cinco casos de uso, entonces puede estar pasando por alto fun-
cionalidad critica. Por otra parte, si tiene cientos de casos de uso, entonces puede estar
subdividiendo macrocajas de uso practicas en microcajas.

Desafortunadamente, no existen reglas dificiles y rapidas. Definir las casos de uso co-
rrectos requiere practica y buen juicio que se adquiere con el transcurso del tiempo. Para
ayudarle a empezar a adquirir alguna experiencia, en la siguiente subseccién se demues-
tran algunos diagramas reales de casos de uso para www.motown-jobs.com.

Ejemplos de diagramas de casos de uso

Este libro es acerca del umL. La documentacion especifica de texto no es parte del
UML, de modo que limitaré los ejemplos de esta seccién a la creacién de los diagramas
de casos de uso. Puede usar su imaginacién y el borrador de la seccién titulada “Do-
cumentacién de un caso de uso usando un borrador” para practicar la escritura de las
descripciones de casos de uso.

www.FreeLibros.me

www.motown-jobs.com.

El principio con casos de uso @

Motown-jobs.com es un producto de mi empresa, Software Conceptions, Inc. Mo-
town-jobs es un sitio web para poner en contacto personas que buscan trabajo con quie-
nes los ofrecen; es un sitio web como dice.com, monster.com, computerjobs.com o ho-
tjobs.com y estd implementado en ASP.NET. Dejando todo esto aparte, Motown-jobs.com
se inici6 como una idea cuyas caracteristicas se captaron como un grupo de casos de uso.
Debido a que estaba estructurando el software para mi empresa, tuve que representar
el papel de experto en el dominio, siendo el dominio lo que se requiere para hacer coin-
cidir patrones con empleados. Dado que he estado buscando y hallando clientes para mi
empresa durante 15 afios, tengo algo de experiencia en esta area.

Hallar los casos de uso puede iniciar con una entrevista con su experto en el dominio,
o bien haciendo una lista. Como yo estaba representado el papel de entrevistador y entre-
vistado, sencillamente empecé con una lista de las cosas que pensaba que Motown-jobs.
com necesitaria ofrecer para ser util. He aqui mi lista:

* Los patrones o los agentes de los patrones querran publicar informacion acerca
de los trabajos que estan ofreciendo.

* Quienes estan buscando trabajo pueden querer publicar un curriculum vitae que
puedan ver los patrones potenciales.

» Los patrones o los agentes de los patrones querran buscar en forma activa en el sitio
web los curriculum vitae que se ajusten a las habilidades necesarias para llenar los
sitios vacantes en el trabajo.

* Quienes estan buscando empleo querran buscar en los puestos que se encuentran
en lista.

* Los patrones o los agentes de los patrones deberan pagar por las listas y por buscar
en los curriculum vitae, pero publicar curriculum vitae o buscar en las listas de
trabajos sera un servicio gratuito.

» Una fuente adicional de ingresos podria ser publicidad y servicios de estructura-
cion de curriculum vitae, de modo que el sitio web podra vender y tener espacio
para publicidad, y ayudar a los solicitantes de trabajo a crear su curriculum vitae.

Ademads de que escribir software es caro y de que también lo son el hardware, el soft-
ware del servidor y las conexiones de alta velocidad de Internet tanto para comprarlos
como para darles mantenimiento, ayudar a las empresas a encontrar empleados es un
servicio valioso, o, por lo menos, ésa es la premisa que se encuentra detrds de la estructu-
racién de Motown-jobs.com. Resolver acerca de cuanto cobrar por las listas y para atraer
anunciantes son funciones de negocios y de mercadeo, de modo que hablaré acerca de
eso en mi lista de casos de uso.

Ahora bien, claro que podria empefiarme en examinar todas las pequefias tareas de las
que consta cada una de las macrotareas —como publicar las vacantes de puestos de tra-
bajo—, pero la lista que tengo es un buen lugar para iniciar. Empecemos por diagramar
estas caracteristicas (figura 2-10).

www.FreeLibros.me

Manual de umL

Mantener la lista
de trabajos

Buscar en los cu-
rriculum vitae

Agente del patrén

Sistema
Mantener el anuncio

Anunciante

Mantener el cu-
rriculum vitae

Hallar
trabajo

Figura 2-10 Un primer paso en el diagrama de casos de uso para Motown-jobs.com.

Solicitante de trabajo

Observe en la figura 2-10 que capté mantener trabajos y hallar curriculo para la clasi-
ficacion patrén, mantener anuncios para la clasificacién anunciantes, publicar curriculo y
hallar trabajos para la clasificacién solicitantes de empleo y para administrar la factura-
cion para el sistema. Lo siguiente que puedo hacer es preguntar a las partes involucradas
si estos casos de uso captan la esencia de las caracteristicas que necesito.

Como un diagrama de caso de uso, a esto le doy una calificacién de C, pero es un ini-
cio. Lo siguiente que puedo hacer es revisar a los actores y a los propios casos de uso en
busca de redundancias, simplificaciones o detalles adicionales que se necesitan, y hacer
al diagrama los ajustes necesarios.

Definicion de los actores

En el diagrama de casos de uso de la figura 2-10, tengo los actores “Patrén” y “Agente
del patrén”; no obstante, para todas las intenciones y finalidades, estos dos actores hacen

www.FreeLibros.me

El principio con casos de uso @

las mismas cosas en relacion con el sistema y lo hacen de la misma manera; por consi-
guiente, puedo eliminar el “Agente del patrén” y renombrar al “Patrén” como “Propieta-
rio de la tarea”; con una descripcidn sencilla, “Propietario de la tarea”, se capta la idea de
que un trabajo en lista “lo posee” una parte responsable. En la figura 2-11, se muestra la
revision en el diagrama de casos de uso.

A continuacidn, parece bastante obvio que una lista de puestos de trabajo, un curri-
culum vitae y un anuncio son todos clasificaciones de listas, y las personas a quienes
pertenecen esos elementos son “Propietarios de listas”. Puede experimentar con estas re-
laciones usando la generalizacion. En la figura 2-12, se muestra el diagrama modificado
de casos de uso.

En la figura 2-12, se tratan los trabajos, los anuncios y los curriculum vitae todos como
listas que necesitan mantenerse. También se muestra que el sistema de facturacion estd
asociado con las listas y las busquedas de los curriculum vitae. En ciertos aspectos, la
figura 2-12 es una mejora, pero en otros es demasiado ingeniosa. Por ejemplo, describir

Buscar en los cu-
rriculum vitae

Propietario del trabajo

Mantener la lista
de trabajos

Mantener la
informacion sobre
facturacion

Mantener
el anuncio

Sistema

Anunciante

Mantener el cu-
rriculum vitae

Solicitante de trabajo

Figura 2-11 “Patrén” y “Agente del patrén” se convierten en un solo actor: “Propietario del
trabajo”.

www.FreeLibros.me

Manual de umL

Buscar en los cu-
rriculum vitae

Propietario del trabajo Mantener la lista

de trabajos

Mantener la
informacion sobre
facturacion

Mantener el anuncio

Sistema

Anunciante

Mantener el cu-
rriculum vitae

Solicitante de trabajo

Figura 2-12 Esta figura sugiere que los trabajos, los curriculum vitae y los anuncios son todos
listas que debe mantener un propietario de lista, asi como una asociacion entre el sistema de fac-
turacion y las listas y las buisquedas de los curriculum vitae.

a un solicitante de trabajo como un “Propietario de listas” sugiere que cada solicitante
de trabajo posee un curriculum vitae en lista. ;Qué sucede si un solicitante de trabajo no
quiere publicar un curriculum vitae? Ademads, dije que publicar un curriculum vitae es
un servicio gratuito, pero la implicacién es que el sistema de facturacion trate las listas
de curriculum vitae como un concepto susceptible de facturacion. ;Significa esto que es
susceptible de facturacion, pero que el costo es 0 délares? El diagrama revisado parece un
poco mads ingenioso y lleva tanto a preguntas como a respuestas. Quizds podria, ademas,
dividir “Listas” en “Listas susceptibles de facturacion” y “Listas gratuitas”. Esto podria
resolver la cuestion del sistema de facturacion, pero ;qué sucede acerca de los solicitan-
tes de trabajo que no publican curriculum vitae? Todavia debo resolver este problema.
Por ahora, regreso a los cuatro actores separados, en oposicion a los tres tipos de propie-
tarios de listas y el actor sistema (figura 2-13).

www.FreeLibros.me

El principio con casos de uso

Mantener la
informacion sobre
facturacion

Sistema

Buscar en los
curriculum vitae

Mantener
el anuncio

Anunciante

Propietario del trabajo
Mantener el
curriculum vitae

Mantener la lista
de trabajos

Solicitante de trabajo

Figura 2-13 Cuatro actores separados no relacionados que participan en casos de uso no rela-
cionados.

Me gusta la forma mas sencilla del diagrama de casos de uso de la figura 2-13; estd
menos abarrotada, es més ficil de seguir y me dice lo que necesito saber acerca de las
caracteristicas del sistema.

Division de los casos de uso en diagramas maltiples

Puede elegir tener un diagrama maestro de casos de uso y varios diagramas menores de
casos de uso o sélo varios diagramas menores. Usted decide. Los diagramas mds sen-
cillos son mas faciles de manejar y seguir, pero puede ser que no muestren cémo estan
relacionados los casos de uso. En general, prefiero los diagramas sencillos y separados
y crear un solo diagrama maestro, si estoy seguro de que al hacerlo obtendré algunos
beneficios especificos.

www.FreeLibros.me

@ Manual de umL

En mi ejemplo de Motown-jobs.com, tengo cuatro facetas significativas; tengo casos
de uso relacionados con el solicitante de empleo, casos de uso relacionados con el pro-
pietario del trabajo, casos de uso para los anunciantes y el sistema de facturacion. Para
examinar cada una de estas facetas del sistema, separaré estos casos de uso y los actores
que les incumben en diagramas separados y agregaré detalles. En las figuras 2-14 a la
2-17 se muestran los nuevos diagramas.

Al separar “Mantener la informacién sobre facturacién” en un caso de uso separado,
tengo espacio para agregar detalles. Por ejemplo, es razonable que el sistema de factu-
racion se interese s6lo en lo que es susceptible de facturacién y que un actor llamado
“Usuario registrado” pueda mantener elementos susceptibles de facturacién. Advierta
que agregué el caso de uso “Entrar”. Dado que necesito saber cudles usuarios estdn para
ser facturados, necesitaré un medio de registrar y autenticar.

En la figura 2-15, introduje la idea de que un solicitante de empleo también se conside-
ra como usuario registrado. Sin embargo, elijo requerir registro sélo si el usuario quiere
publicar un curriculum. Quiero saber cudles personas estdn proporcionando informacién
a nuestro sistema, pero no lo requiero de los navegadores casuales. Una vez mads, para
publicar algo en el sistema, requeriré que al usuario se le dé acceso y, de lo contrario, s6lo
ofrecer al usuario casual la oportunidad de registrarse. El concepto de usuario registrado
sugiere que necesito otro caso de uso “Mantener informacion de registros”. Esto puede
implementarse como un sencillo diagrama de casos de uso, con el actor “Usuario regis-
trado” y una asociacién al nuevo caso de uso.

Sistema

Mantener la
informacién sobre
facturacion

Mantener
elementos susceptibles
de facturacién

v Usuario

. . Ve
«mclulr»// registrado

7
7/
7/
e
7

Figura 2-14 En esta figura se muestra que un nuevo actor, llamado “Usuario registrado”, puede
mantener un elemento susceptible de facturacion, si ese usuario entra y el sistema de facturacién
se asocia con los elementos susceptibles de facturacion.

Administrador

www.FreeLibros.me

El principio con casos de uso

_\ﬁb

Usuario registrado

Mantener el
curriculum vitae

_ «incluir»

Hallar trabajo

Solicitante de trabajo
N

El registro s6lo se requiere si el usuario desea publicar un
curriculum vitae.

Figura 2-15 Vista ampliada de casos de uso relacionados con los solicitantes de trabajo.

En la figura 2-16, muestro que un anunciante es un usuario registrado y también in-
cluyo que “Mantener el anuncio” generaliza ‘“Mantener elementos susceptibles de fac-
turacién”. Dado que “Mantener elementos susceptibles de facturacion” también estd en
el diagrama de la figura 2-16, de igual manera sé que esto significa que estoy ligado con
los casos de uso de facturacién, registro y autenticacion (o concesién de acceso), pero de
manera intencional quité esos elementos del diagrama para no abarrotarlo.

En la figura 2-17, sefalo la dependencia entre “Mantener elementos susceptibles de
facturacion” y “Entrar” mostrando el conector de dependencia entre estos dos casos de
uso. Debe resultar obvio que, como “Buscar en los curriculum vitae” y “Mantener la lista
de trabajos” generalizan “Mantener elementos susceptibles de facturacion”, se requiere
la autenticacion para publicar trabajos y buscar en los curriculum vitae. El uso de un solo
conector simplifica el diagrama.

Ciertamente, sera bienvenido el que usted intente crear un solo diagrama maestro de ca-
sos de uso, pero no necesita hacerlo. Incluso en este sistema relativamente sencillo, un solo
modelo monolitico podria Gnicamente agregarse a la confusién; nuestro objetivo es redu-
cir la confusién y aumentar la comprension tan sencilla y directamente como sea posible.

www.FreeLibros.me

@,—

Manual de umL

antener elemen
tos susceptibles de

Usuario registrado

f

Mantener el anuncio

| «incluir»

Anunciante

Figura 2-16 Vista cada vez mas detallada de los casos de uso en los que intervienen los anun-
ciantes.

Pienso que estos cuatro modelos hacen esto, pero la exposicion ilustra en forma precisa la
clasificacion de temas que debera pesar al decidir en cudles modelos invertir su tiempo.

Manera de hallar la linea final

A medida que se evalien sus diagramas de casos de uso y su documentacién como texto
escrito, le surgiran otras ideas y las cosas que pasé por alto. Esto es de esperarse. Do-
cumente estas ideas, incluso si al final las descarta. También esté preparado para revisar
sus modelos a medida que cambien su comprension y la de sus clientes o el clima de
la empresa. Una comprensién creciente o un clima dindmico de la empresa significa
mds diagramas de casos de uso y revisiones a los ya existentes. Si anticipa la naturaleza
dindmica de la comprensién, entonces no tendra problema para continuar con los pasos
siguientes, en lugar de intentar crear un juego perfecto de casos de uso sin reflexionar.

El objetivo de crear diagramas de casos de uso es documentar los aspectos importantes
del sistema, para proporcionar a los usuarios una manera de baja tecnologia para evaluar
en forma visual sus comprensiones mutuas y, a continuacion, seguir adelante. El resulta-
do que deseamos es un juego de casos de uso “suficientemente bueno”, no perfecto.

www.FreeLibros.me

El principio con casos de uso

_\®

Mantener
elementos susceptibles fz
de facturacion

Usuario registrado

Buscar en los

|
|
|
|
I z 2z,
: curriculum vitae
|

|

«il‘lclluir»
|

Mantener la lista
de trabajos

@ Propietario del trabajo

Figura 2-17 En esta figura se muestra la relacion entre el propietario del trabajo y sus casos de
uso, incluyendo una descripcién clara de que se requiere la autenticacién y que ese propietario
esté administrando elementos susceptibles de facturacion.

Diseno controlado con casos de uso

Hasta ahora, he definido casos de uso significativos y los diagramas de casos de uso para
Motown-jobs.com. (Dejé fuera “Mantener informacién de los clientes”, pero sé que la
necesito.) Con base en la exposicion, debe resultar obvio que omiti tareas menores, por
ejemplo, leer listas en una base de datos y escribirlas para ésta. Sin embargo, esto queda
cubierto en “Mantener la lista de trabajos”. No necesito un diagrama separado de casos
de uso para mostrar que estoy “clabeando” —por CLAB, o sea, crear, leer, actualizar y
borrar— listas, anuncios o curriculum vitae, aunque resultard ttil describir estas cosas en
diagramas futuros, como los diagramas de secuencia (vea el capitulo 6 para obtener mas
informacién). Lo siguiente que me interesa realizar es el establecimiento de prioridades.

Demasiados proyectos pasan por alto por completo los casos de uso e ignoran el es-
tablecimiento de prioridades, pero los casos de uso existen para ayudarle a administrar
el alcance y para establecer prioridades. El término diseiio controlado por casos de uso
significa que expresamos lo que estamos estructurando en nuestros casos de uso con el
fin de limitar el alcance y evitar el desperdicio de tiempo, y establecemos prioridades
en lo que estructuramos empezando con las caracteristicas mds criticas y de prioridad
mas alta. Con demasiada frecuencia, los programadores estructuraran cosas agradables o
faciles como primeros didlogos “Acerca de” y campanas y silbidos innecesarios, porque
estdn examinando alguna nueva tecnologia, y esto es un factor significativo de por qué
fallan tantos proyectos.

www.FreeLibros.me

@ Manual de umL

Después de que haya definido sus casos de uso, querra establecer prioridades y ademas
disefiar e implementar una solucién para apoyar aquellos casos de uso con la prioridad
mds alta o que representan el riesgo mas significativo. (Coémo decide qué disefar y es-
tructurar primero? La respuesta es preguntele a su cliente qué es lo mds riesgoso, lo mds
importante o lo mas valioso y a continuacion enfoque sus energias en esos casos de uso.

NOTA La pregunta real que debe hacer a su cliente es: “; Qué caracteristicas podemos
estructurar primero de modo que si estamos fuera de tiempo y de presupuesto, todavia
tendremos un producto que pueda comercializarse?” Los clientes no siempre quieren
escuchar las preguntas dificiles, y usted deberd aplicar cierta diplomacia, pero hallar
la respuesta correcta a esta pregunta y actuar en términos de ella puede ser lo mds im-
portante que usted haga.

Para Motown-jobs.com, decidi —como cliente— que puedo presentarme en el mer-
cado con un servicio de listas de trabajo con base en una tarifa. Esto significa que si
implemento “Mantener la lista de trabajos”, “Buscar un trabajo” y “Mantener la infor-
macion sobre facturaciéon”, tendré un producto con el que puedo entrar al mercado. Esto
no significa que no querré estructurar en el sistema la publicacién de curriculum vitae, la
busqueda y el apoyo para la publicidad; sélo significa que éstas no son las caracteristicas
mas importantes.

Las prioridades que siguen son mas dificiles. ;Debo estructurar a continuacién la pu-
blicacién de curriculum vitae y la bisqueda, o la publicidad? La respuesta es que quiero
que los solicitantes de trabajo usen el servicio y los propietarios del trabajo vean que hay
una gran cantidad de tréfico e interés en mi sitio, de modo que apoyaré a continuacién
la publicacién de un curriculum vitae —el cual es un servicio gratuito pero critico— vy,
después, la buisqueda de curriculum vitae, el cual también es un servicio gratuito, pero
que depende de tener curriculum vitae para revisar. Por dltimo, apoyaré la publicidad, la
cual finalmente depende de tener trafico suficiente para interesar a los anunciantes.

Lo importante aqui es que la identificacién de mis casos de uso me ayudo a establecer
prioridades en mi lista de tareas e ilustra un camino critico para mi criterio de éxito mi-
nimo: vender anuncios de se solicitan empleados.

Examen

1. (Qué simbolo representa un caso de uso?

a. Una linea

b. Una linea dirigida

c. Una figura de palillos

d. Un o6valo que contiene texto

www.FreeLibros.me

El principio con casos de uso

. Un actor solamente puede serlo una persona.

a. Verdadero
b. Falso

. ¢ Qué simbolo representa una dependencia?

a. Una linea

b. Una linea con un triangulo que apunta hacia el elemento dependiente

c. Una linea punteada con una flecha que apunta hacia el elemento dependiente
d

. Una linea punteada con una flecha que apunta hacia el elemento del que se de-
pende

. (Como se indica un estereotipo sobre un conector?

a. Texto entre un par de comillas angulares
b. Texto llano proximo al conector

c. La palabra estereotipo dentro del simbolo de 6valo

. Se usa una relacion de inclusion para reutilizar el comportamiento modelado por
otro caso de uso.

a. Verdadero
b. Falso

. Se usa una relacion de extension para modelar caracteristicas opcionales del sistema.

a. Verdadero
b. Falso

. En el umr la generalizacion se refleja en la implementacion por

. polimorfismo.

a
b. agregacion.
c. herencia.

d. interfaces.

. Todas las capacidades de un sistema deben representarse por un caso de uso.
a. Verdadero

b. Falso

. En una relacién extendida, la flecha apunta hacia el

a. caso de uso basico.

b. caso de uso de extension.

www.FreeLibros.me

(46) Manual de umL
10. Es importante implementar primero los casos de uso féaciles para

garantizar que los primeros esfuerzos tengan éxito.

a. Verdadero
b. Falso

Respuestas

1. ¢
2. b
3.d
4. a
5. a
6. a
7. ¢
8. b
9. a
10. b

www.FreeLibros.me

CAPITULO

Diagramacion
de caracteristicas
COMO procesos

Este capitulo se refiere a los diagramas de actividades. Aun cuando lo que destaco
no es el proceso, el siguiente paso después de captar los casos de uso consiste en
empezar a describir como se llevaran a su término las caracteristicas representadas
por sus casos de uso. Los diagramas de actividades ayudaran a usted y a los usua-
rios a describir en forma visual la secuencia de acciones que le conduzcan a través
de la complecion de la tarea.

La meta es convergir hacia el c6digo en forma continua, partiendo de una com-
prension del espacio del problema en general y captando los problemas que resol-
veremos —los casos de uso— mediante la descripcién de cémo funcionan esas
caracteristicas y, al final, implementando la solucién. Los diagramas de actividades
constituyen una herramienta ttil de andlisis y se pueden usar para la reingenieria
del proceso; es decir, el redisefio del proceso. De esta manera, los diagramas de ac-
tividades constituyen un puente progresivo que conduce del andlisis hacia el disefio
y, por ultimo, a la implementacién. En este capitulo aprendera acerca de

* Los simbolos usados para crear los diagramas de actividades

e Coémo crear diagramas de actividades describiendo los casos de uso y los
escenarios como una serie de acciones

—@

www.FreeLibros.me

@ Manual de umL

* Modelar comportamientos simultaneos
» Refinar las actividades fisicas con diagramas de actividades
* Comprender cuando detener la creacion de los diagramas de actividades

Elaboracion de las caracteristicas como procesos

Pocas ideas son por completo nuevas. Los conceptos existentes se refinan, evolucionan
y maduran, llevandose con ellos algo de lo viejo y algo de lo nuevo; lo mismo es cierto
para los conceptos de andlisis y de disefio.

El analisis y el disefio estructurados hicieron hincapié en los diagramas de flujo. Un
diagrama de actividad en el Unified Modeling Language (UML) estd bastante cercano
a un diagrama de flujo; los simbolos son semejantes pero no los mismos; la utilidad es
semejante, pero existe una diferencia: los diagramas de actividades, a diferencia de los de
flujo, pueden modelar comportamiento paralelo.

Los diagramas de actividades son buenos diagramas de andlisis para los desarrolla-
dores, los usuarios, los que hacen pruebas y los administradores, porque usan simbolos
sencillos, texto llano y un estilo semejante al del conocido diagrama de flujo. Los diagra-
mas de actividades son buenos para ayudarle a captar, visualizar y describir un conjunto
ordenado de acciones, desde un principio hasta un final. Los diagramas de actividades se
crean como un conjunto finito de acciones en serie o una combinacién de acciones en
serie y en paralelo.

Un viaje hacia el codigo

Un principio bésico del andlisis y del disefio orientados a objetos es que queremos par-
tir de ideas y conceptos de alto nivel del espacio de problemas y movernos hacia un
espacio de bajo nivel de soluciones. El espacio de alto nivel de problemas también se
conoce como dominio de los problemas. El espacio de bajo nivel de soluciones se conoce
como el dominio de las soluciones. E1 UML es un lenguaje para captar y describir nuestra
comprensién a medida que avanzamos desde documentar un problema hasta codificar
una solucion.

Con base en la idea de trasladar nuestra comprension desde el concepto hasta el di-
seflo, los casos de uso constituyen una buena manera de captar las cosas que describen
nuestro problema. Por ejemplo, queremos hacer corresponder a los patrones con los
empleados potenciales proporcionando un tablero de listas de trabajos. Un caso de uso
que da soporte a esto es administrar las listas. Un paso siguiente en un sentido abstracto
consiste en describir como emprenderiamos la administraciéon de una lista. En esta co-
yuntura, todavia es demasiado pronto para empezar a hablar acerca de bases de datos y
lenguajes de programacion; en cambio, queremos hablar acerca de las actividades que
describen nuestro problema, y estas actividades constan de acciones.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

S

Nota En un nivel ideoldgico, andlisis y diseiio son procesos segiin los cuales descom-
pondremos un problema en problemas discretos menores, de tal manera que podamos
componer soluciones pequerias para cada problema discreto y, al final, orquestar las
soluciones pequeiias en un todo coherente. El uML es un lenguaje para descomponer un
problema y recomponerlo como la descripcion de una solucion. Un lenguaje como Vi-
sual Basic.NET es titil para implementar la descripcion de la solucion, y el proceso es la
forma en que la emprenderiamos.

Comprension de los usos de los diagramas de actividades

Los diagramas de actividades no son en realidad acerca de los métodos o clases. Todavia
es demasiado pronto para eso. La razén para que sea asi es porque las cosas técnicas,
como el polimorfismo, la herencia, los métodos y los atributos, en general, son conceptos
sin significado para los usuarios y, a veces, para los administradores.

Los diagramas de actividades constituyen un medio a través del cual podemos captar
la comprension de las personas a las que llamamos expertos del dominio. Por ejemplo,
si estd estructurando un sistema para administracion de carceles, entonces un experto
del dominio podria ser un oficial del penal, quien posiblemente no entienda la diferencia
entre un espacio de nombres, una clase y la interfaz, pero, como disefiador, puede ser que
usted no comprenda el significado de una compra de 50 cepillos de dientes por parte de
un recluso. Un diagrama de actividad puede ayudar.

Un relato verdadero —y por qué consultar puede resultar interesante— se encuentra
detrds de la metédfora de los cepillos de dientes. Mientras estaba trabajando para una car-
cel grande del condado en Oregon, tuve que escribir una aplicacién piloto para demostrar
ASP.NET en sus primeros dias. La aplicacion piloto seria finalmente parte de un sistema de
administracion de cuentas de los reclusos para la carcel. La idea bésica es que los prisio-
neros no pueden tener efectivo en su posesion, pero pueden tener dinero en una cuenta
para comprar articulos personales y golosinas. El condado administrd las cuentas. Algu-
nas de las reglas incluian limites sobre el nimero de barras de dulce que, digamos, un
diabético podria comprar, asi como un limite sobre el nimero de cepillos de dientes que
podian comprarse. Al no ser oficial del penal, me pareci6 extrafio que alguien comprara
mds de un cepillo de dientes y mds extrafio todavia por qué a alguien podria interesarle.
El problema es que cuando se les talla hasta que formen una punta o se les hace una ra-
nura con un trozo de hoja de rasurar encajada en forma segura en la punta y sostenida en
su lugar con una banda de caucho, un cepillo de dientes se puede convertir en un arma
formidable. (En realidad, sabia esto porque lo aprendi cuando fui policia militar o lo vi
en un episodio de “Oz” en HBO.)

En la prictica, este relato es ilustrativo del hecho de que aquellos que se encuentran
sobre el terreno —los expertos del dominio— conocerdn los detalles en los que usted
nunca pensard. Los diagramas de actividades son buenos para captar estos detalles en
un sentido general y de una manera en que los expertos del dominio pueden examinar,
aclarar y mejorar.

www.FreeLibros.me

@,—

Manual de umL

Trabajando hacia atras, partiendo de mi relato de administracion de cuentas de los
prisioneros, podria tener un caso de uso “Hacer compra” y un escenario que garantice
que la compra no viole una regla de seguridad. Podemos captar esto en un diagrama de
actividad con la llaneza suficiente como para que un oficial del penal nos pueda decir
si comprendimos el problema y lo hemos descompuesto en forma suficiente. En la figura

3-1, se muestra un diagrama de actividad para este escenario.

(Artl’culo w articulos)

/ Articulo agregado

(Articulo restringido)
Comprobar
cantidad

/ Articulo agregado

(Se sobrepasa la cantidad permitida)

v
Rechazar el Registrar la violacion
articulo a las restricciones

—

/ Articulo descartado

(No mas articulos)

Pagar
la cuenta

®

Figura 3-1 Diagrama de actividad que ilustra las restricciones sobre el tipo y el ndmero de

articulos que se pueden comprar estando en prision.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

.

Por ahora, no se preocupe acerca de qué significan las formas. Sélo advierta el texto
sencillo y el flujo sugerido por las flechas. La idea general es que de un solo vistazo
—quizds con un minimo de explicacion— este diagrama debe tener sentido para los
usuarios y desarrolladores sin distincién. En la siguiente seccién, empezaremos a exami-
nar lo que significan estos elementos y mas.

Uso de lo simbolos de los diagramas
de actividades

Los diagramas de actividades pueden ser sencillos diagramas de flujo que tienen un punto
de inicio y de finalizacién finitos, o diagramas mds complejos que modelen comporta-
miento paralelo y multiples subflujos, asi como que definan multiples terminaciones. En-
cuentro que trazar diagramas de actividades simples es una manera excelente de arrancar
y que agregar demasiados escenarios alternos en un solo diagrama lo hacen dificil de
manejar y de imprimir, asi como de entender.

Hacer que sus diagramas de actividades sean comprensibles puede ser mas importante
que hacer que el diagrama sea detallado o que abarque todo. Otro error es crear diagra-
mas de actividades para todos los casos de uso y escenarios. La creacién de diagramas
lleva tiempo, y una buena manera de enfocar su tiempo es trazando los diagramas de
aquellos aspectos que son més criticos para resolver su problema.

Considere un par de ejemplos. Los programas que almacenan datos por lo comiin lo
hacen en bases de datos en forma de relacion. Este comportamiento se llama comporta-
miento de crear, leer, actualizar 'y borrar (cLAB). Leer una base de datos o escribir en ella
se comprenden tan bien que yo no trazaria un diagrama para este comportamiento como
una actividad separada. (De hecho, en realidad la nocién de una base de datos no debe
mostrarse en un diagrama de actividad.) El comportamiento completo de leer y escribir
se podria captar en algin punto en una actividad, como una accién llamada traer y al-
macenar o leer y escribir. Por otra parte —tomado prestado del capitulo 2— si vamos a
hacer caducar una lista de trabajo de un cliente y queremos dar a ese cliente una oportuni-
dad de extender la lista, entonces esto es menos comun que el comportamiento CLAB, y yO
crearia un diagrama de actividad para examinar la secuencia de acciones; construyendo el
diagrama de la actividad “Hacer caducar la lista”, podria obtener la secuencia de acciones
precisamente correcta y esto podria ser el catalizador para mejorar la calidad del servicio.
Por ejemplo, podriamos hacer surgir la renovacién por medio de la caracteristica de co-
rreo electrénico que expusimos en el capitulo 2.

Si con anterioridad ha creado algunos diagramas de flujo con una herramienta como
Visio, entonces los diagramas de actividades le parecerdn bastante directos, pero tenga
presente que estos ultimos se pueden usar para modelar comportamiento mas rico que
los sencillos diagramas de flujo antiguos. Para crear diagramas de actividades, necesitara
aprender acerca de los simbolos y reglas que se aplican.

www.FreeLibros.me

@ Manual de umL

SUGERENCIA Puede concebir los simbolos y reglas de cualquier diagrama umiL como la
gramética visual para el lenguaje.

Nodo inicial

Todo diagrama de actividad tiene un simbolo nodo inicial. Este es un circulo relleno (vea
la parte superior de la figura 3-1). Es posible proporcionar un nombre y alguna documen-
tacion para el nodo inicial, pero en general, yo no lo hago.

El nodo inicial puede tener una linea de transicién saliendo de él. La linea de transi-
cién se llama flujo de control y se representa por medio de una flecha dirigida hacia fuera
del nodo inicial. Por claridad, en la figura 3-2 sélo se representan el nodo inicial y el flujo
de control. Puede colocar el nodo inicial en cualquier parte que le guste en el diagrama
y agregar el flujo de control también en cualquier parte que le guste sobre ese nodo. Al
vivir en el hemisferio occidental, tengo inclinacién a poner los puntos de arranque arriba
a la izquierda, y los de finalizacién abajo a la derecha.

Flujo de control

Como se mencion6 con anterioridad, un flujo de control es una flecha dirigida. Un flujo
de control también se conoce s6lo como flujo o estimulo. El flujo de control empieza en
el simbolo que pierde foco y apunta hacia la cosa que lo aumenta y se conecta con ésta.
Por ejemplo, un flujo de control podria originarse en un nodo inicial y terminar en una
accion, como se muestra en la figura 3-3.

Una manera usual de adornar un flujo de control es agregar una condicion guardidn.
Una condicién guardidn actiia como un centinela que requiere que se pase una prueba
antes de que el flujo continde. En codigo, por lo comtn esto se implementaria como una
prueba si condicional.

Uso de las condiciones guardianes

Sin desviar demasiado nuestra atencion de las condiciones guardianes, una accion —acer-
ca de la cual hablaremos mé4s en la seccidn titulada “Acciones”— es algo que sucede en el
flujo. Una accién, como el nodo inicial, es otro tipo de nodo. Los diagramas de activida-

Figura 3-2 El circulo relleno se llama nodo inicial —o punto de inicio del diagrama de activi-
dades— y la flecha dirigida se llama flujo de control.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos

Figura 3-3 Un nodo inicial, flujo de control y una accién.

des estdn compuestos por completo de diversos tipos de nodos y flujos (o estimulos). Una
condicién guardidn se muestra como texto entre corchetes y el lector puede concebirla
como un portero hacia el nodo siguiente (figura 3-4).

Si alguna vez el lector ha servido en alguna clase de milicia, entonces estd familiariza-
do con la nocién de una palabra o frase contraseia:

Guardian: “El gorrion es un presagio.”
Soldado de infanteria: “De muerte, que es lo tnico seguro junto con los impuestos.”
Guardian: “Puede pasar.”

Bien, cuando estuve en el ejército, las frases de contrasefia nunca fueron ingeniosas, pero
la idea es la misma. El guardidn representa una prueba que se debe pasar para continuar.
Lo que resulta muy extrafio es que las pruebas programéticas pueden ser bastante esoté-
ricas, pero el texto que usted escriba en sus condiciones guardianes dard mejor servicio a
su clientela si son sencillas. La figura 3-5 es un ejemplo practico de un nodo inicial, una
accion y un flujo con una condicién guardién.

En la figura, el nodo inicial realiza una transicion hacia la primera accién, “Hallar
cliente”. La condicion guardian es que se conoce mi fecha de disponibilidad. De ninguna
manera es bueno apilar clientes cuando no me queda tiempo disponible.

El diagrama de la figura 3-5 ilustra como un diagrama de actividad es una suerte de ag-
néstico cuando llega a la implementacién. La actividad parcial de la figura 3-5 podria es-
tar refiriéndose a un proceso fisico como buscar el sitio web Motown-jobs.com y llamar

?

(guardian)

Figura 3-4 Un nodo de control, flujo con guardidn y una accién genérica.

www.FreeLibros.me

_\®

Manual de umL

(Disponibilidad conocida)

Hallar cliente

Figura 3-5 Parte de un diagrama de actividades para hallar clientes.

a los clientes que pasaron o a un proceso de software que explora en forma automatica el
sitio web Motown-jobs.com a través de un servicio web y envia correos electrénicos a los
clientes que pasaron, notificindoles de mi disponibilidad. En todos los ejemplos de este
capitulo, verd m4s casos de condiciones guardianes.

Diferentes maneras de mostrar flujos

La manera mas comun de diagramar un flujo es usar un solo simbolo de flujo de control
conectado a dos nodos, pero ésta no es la tinica manera. Si su diagrama es muy complejo,
con una gran cantidad de estimulos que se traslapan, entonces puede usar un nodo co-
nector (figura 3-6). Un estimulo puede realizar una transicion desde una accion hacia un
objeto hacia una accién (figura 3-7) y entre dos clavijas (figura 3-8).

Uso de nodos conectores

No tiene usted que usar conectores, pero si sus diagramas se vuelven muy grandes o
complejos, entonces encontrard que sus flujos empiezan a traslaparse o que su actividad
se extiende hacia multiples paginas. El nodo conector es una buena manera de simplificar
los flujos que se traslapan o aquellos que se extienden hacia multiples paginas.

SUGERENCIA La version de Visio que usé para crear la figura 3-6 no soporta el nodo
conector; para crear este efecto, tuve que usar la herramienta Elipse (Ellipse). El re-
sultado es que el diagrama es visualmente correcto, pero Visio informard de un error.
Como ocurre con muchas herramientas, se debe aceptar conceder algo a cambio.

. Hacer contacto
Hallar cliente .
con el cliente

Conector

Figura 3-6 Se puede usar un nodo conector con el fin de simplificar los diagramas de activida-
des que se ven muy abarrotados.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos

. . Hacer contacto
Hallar cliente Cliente .
con el cliente

Figura 3-7 Insercién de un objeto cliente entre dos acciones relacionadas con clientes.

Para usar un nodo conector, trace un flujo que salga de un nodo y haga una transicién
hacia un conector. En donde se hace la conexion al nodo siguiente, dibuje un conector con
un flujo que salga de él y que haga la transicion hacia el siguiente nodo en el diagrama.

Los nodos conectores vienen en pares. Aseglrese de que las parejas de conectores
tengan el mismo nombre; nombrar a los conectores le ayudard a hacer corresponder los
puntos de conexidn cuando tenga multiples parejas de conectores en un solo diagrama.

Uso de objetos en los diagramas de actividades

Con anterioridad dije que la diagramacién de actividades se presenta demasiado pronto
en el andlisis como para entender cudles son los objetos; sin embargo, el UML permite
la adicién de objetos a los diagramas de actividades. Después de haber tenido una opor-
tunidad de hacer que los usuarios le proporcionen alguna retroalimentacién y haya cre-
cido su comprension del espacio de problemas, puede resultar util agregar objetos a sus
diagramas de actividades. La clave aqui es evitar la adicién de conceptos técnicamente
complejos demasiado pronto. Si se ha hundido en una discusién acerca de qué es un ob-
jeto o si éste se nombré o no en forma correcta, entonces eliminelo. Por otra parte, si el
objeto es muy obvio —como se presenta en la figura 3-7— y ayuda a la comprension de
todos, entonces agréguelo.

Resulta valioso tener presente quién es su clientela para cada clase de diagrama. En
general, concibo a los diagramas de actividades como herramientas de andlisis que los
usuarios finales leerdn para ayudarle a usted a comprender cémo hacen su trabajo; la
explicacién de conceptos orientados a objetos parece, por lo comun, ser una distraccion,
de modo que deje los objetos fuera de los diagramas de actividades.

Uso de clavijas

En el uML, las clavijas son andlogas a los parametros en la implementacion. El nombre o
valor de una clavija que sale de una accién debe concebirse como un parametro de salida

Cliente
. Hacer contacto
Hallar cliente .
con el cliente

Cliente

Figura 3-8 Una técnica avanzada incluye la conexion de dos clavijas en los nodos de accién con
un flujo de control.

www.FreeLibros.me

_\®

@ Manual de umL

hacia la accién siguiente. En las figuras 3-7 y 3-8 se transmite la misma informacion: que
un cliente interviene en este flujo. Las clavijas, como los objetos, pueden ser demasiado
detalladas por el uso cotidiano y pueden dar como resultado discusiones tangenciales con-
fusas cuando se trabajen los flujos con los clientes. Sin embargo, si estd explicando las
actividades a disefiadores o programadores, pueden resultar utiles para mostrar objetos.
En los figuras 3-7 y 3-8 resulta claro que los nombres de las acciones —*“Hallar clien-
te” y “Hacer contacto con el cliente”— sugieren que interviene un cliente. Dejando fuera
el objeto y las clavijas —vea la figura 3-9— todavia se sugiere con mucha claridad la
participacion de un cliente, sin el riesgo de explicaciones largas y tangenciales.

Acciones

Los nodos de accion son las cosas que usted hace o que suceden en un diagrama de
actividades, y un estimulo representa el camino que usted sigue para saltar de accion en
accion. Los nodos de accién tienen una forma un poco mds rectangular que los casos de
uso. Dos de los aspectos mds importantes de las acciones son el orden en el que ocurren y
el nombre que les asigne. El nombre debe ser corto y directo. El uso de parejas de nombre
y verbo en los nombres de las acciones puede ayudarle a hallar las clases y los métodos,
pero los nombres de las acciones no tienen sélo esta finalidad y, una vez mds, es bastante
temprano en el analisis y el disefio para quedarse colgado en los detalles de la implemen-
tacion, como las clases y los métodos.

Se permite que las acciones tengan uno o mas flujos de entrada y sélo uno de salida.
Si existe mds de un flujo de entrada, entonces la accidén no serd transicion hasta que todos
los flujos de entrada hayan alcanzado esa accién. Las acciones se pueden dividir en ca-
minos alternos con el uso del nodo de decision —al que se hace referencia en la seccién
titulada “Nodos de decision y de fusién”— o realizar una transicion hacia flujos paralelos
con el uso del nodo bifurcacion, —vea la seccidn titulada “Bifurcaciones y uniones de
transicion”— pero en realidad, para una accion inicamente debe agregarse un solo flujo
de salida, como un flujo saliente para una accidn.

Una buena regla empirica para la creacién de diagramas de actividades es describir
cémo empieza un caso de uso, cémo progresa y como finaliza, con todas las acciones
que deben completarse a lo largo del camino. Los nodos de decisién y de fusion y las bi-
furcaciones y uniones son medios para modelar comportamiento paralelo o alternaciones
con la propia actividad. Si los flujos alternos son muy complejos, entonces puede usar el
diagrama de subactividad para compartimentarla.

. Hacer contacto
Hallar cliente .
con el cliente

Figura 3-9 Este diagrama es mds sencillo que aquellos en los que se muestra un objeto o se usan
clavijas, pero todavia sugiere la participacién de un cliente.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos

Las acciones también pueden usar condiciones previas y posteriores con el fin de
indicar las condiciones necesarias antes y después de que ocurra la accién. Cortemos en
trozos estos aspectos —nombres, subactividades y condiciones— formando subseccio-
nes para examinar coémo anotamos cada aspecto de una accion.

Nombramiento de las acciones

Prefiero que las acciones tengan suficiente detalle —un nombre y un verbo— para des-
cribir lo que sucede y qué o quién interviene; por ejemplo, “Hallar cliente”, “Enviar
correo electrénico al cliente”, “Almacenar lista de trabajo”, “Cancelar lista” y “Borrar
curriculo”. Sin una tremenda cantidad de texto adicional, estos nombres me dicen qué
hace la accion y sobre qué actia. Esto es importante, porque un concepto esencial en el
UML es que se transmita una gran cantidad de informacién en forma visual, en oposicién
a hacerlo con una gran cantidad de texto.

Al final, los nombres y los verbos le ayudardn a encontrar las clases y los métodos,
pero es una buena idea diferir pensar acerca de los detalles de la implementacion todavia
durante un tiempo. Sencillamente queremos entender cémo nos desempefiaremos para
realizar una actividad, pero no cdmo la implementaremos.

Por ejemplo, en el capitulo 2, definimos un caso de uso “Administrar una lista de
trabajo”. Este es un caso de uso acerca del cual se puede argumentar que consta de
varias actividades, incluyendo “Publicar una lista de trabajo”. La publicacién de una
lista de trabajo es un escenario en el caso de uso “Administrar una lista de trabajo”, pero
“Publicar una lista de trabajo” no es una sola accién. Se puede argumentar que deberian
completarse varias acciones para captar toda la actividad. El siguiente es un ejemplo es-
crito que describe la publicacién de una lista de trabajo, seguido de un corto diagrama de
actividades (figura 3-10) que modela lo mismo:

* Proporcionar la descripcion del trabajo

* Entrar

» Proporcionar informacién acerca del pago
* Proceso de pago

* Almacenar la descripcion del trabajo

* Proporcionar confirmaciéon

Una vez que tenemos un diagrama inicial —mostrado en la figura 3-10— contamos
con una buena base para sostener una discusion acerca de la actividad. Podemos llevarla
al dominio de los expertos y preguntarles acerca de los detalles del diagrama de activi-
dades y evaluar esta informacién para determinar si necesitamos revisar el diagrama. Por
ejemplo, tal vez queramos verificar si se puede usar informacién valida acerca del pago
en relacién con el archivo o queremos informacién nueva acerca de ese pago. O, si el
usuario es nuevo, entonces puede ser que necesitemos agregar un punto de decisién que
permita al usuario registrarse y, a continuacién, entrar.

www.FreeLibros.me

_\Q

Manual de umL

Proporcionar descripcion
del trabajo

Entrar

(Autenticado)

Proporcionar informacién
acerca del pago
(Procesar el pago)

Almacenar la descripcion Proporcionar
del trabajo la confirmacion

Figura 3-10 Un modelo

en el que se muestra la accién requerida para publicar un trabajo.

Un beneficio real implicito aqui es que un intento razonable en un diagrama de activi-
dades capta la comprension del modelador y permite a otros proporcionar retroalimenta-

cién y desarrollar el fluj

0, agregando o eliminando detalles, segiin sea necesario.

Manera de agregar condiciones previas y posteriores

Se pueden agregar condiciones previas o posteriores a un modelo con el uso de una nota:
los simbolos de estereotipo con las palabras condicion previa o condicion posterior en

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

 XE
®

Proporcionar descripcién
del trabajo

Entrar

«condicién previa»
{Se registra el usuario}

~ (Autenticado)

Proporcionar informacién
acerca del pago
«condicién posterior»

{La informacion del pago es vdlida}
Procesar el pago

v
Almacenar la descripcion Proporcionar
del trabajo la confirmacion

Figura 3-11 Uso de una restriccion de condicion previa y de condicién posterior.

su interior y el nombre de la condicion. La nota se agrega a la accion a la cual se aplica la
condicién o las condiciones. Esto se conoce como disefio por contrato 'y, con frecuencia,
se implementa en el c6digo como una afirmacién combinada con una prueba condicional.
La figura 3-11 muestra una condicién previa y una posterior aplicadas a la accién “Pro-
porcionar informacién acerca del pago”.

En la figura 3-11, el diagrama requiere la condicion previa de que el usuario se registre
y la posterior de que la informacién del pago sea valida. Como sucede con el codigo,

www.FreeLibros.me

@ Manual de umL

existe mas de una manera de representar esta informacion. Por ejemplo, podriamos usar
una condicién guardidn antes y después de la accioén “Proporcionar informacién acerca
del pago” (figura 3-12), o podriamos usar un nodo de decision (vea “Nodos de decision
y de fusién”) para ramificar hacia una accidn de registrar, antes de permitir el suministro
de esa informacién, y podriamos tener una accion para validar la informacién antes men-
cionada, después de que se suministre (figura 3-13).

Proporcionar descripcion
del trabajo
(Entrar)

(Registrado; autenticado)

Proporcionar informacién
acerca del pago

(La informacion del pago es valida)

Procesar el pago

v
Almacenar la descripcion Proporcionar
del trabajo la confirmacién
v

Figura 3-12 Uso de guardianes para expresar una condicion previa y una posterior.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

Proporcionar descripcion
del trabajo
(Ent

(Autenticado)

(El usuario no se encuentra) Registrar

al usuario

acerca del pago

f
(Validar la informacién del pagk

(No es valida)

Proporcionar informacién)

(Es valida)

Procesar el pago

v
Almacenar la descripcion Proporcionar
del trabajo la confirmacion
v

Figura 3-13 Uso de un nodo de decision para indicar que los usuarios deben registrarse y pro-
porcionar informacién vélida del pago.

www.FreeLibros.me

@ Manual de umL

Estos tres diagramas —figuras 3-11, 3-12 y 3-13— transmiten la misma informacion.
La diferencia real es de estilo. Si quiere que el diagrama aparezca menos ocupado, trate
de usar la condicién guardian. Si el estilo de restriccion —de la figura 3-11— parece mas
significativo, entonces use ese estilo. Si quiere examinar el registro y la validacién de la
direccién, entonces use los estilos de nodos de decision de la figura 3-13, donde los nodos
de decision estan representados por los simbolos con forma de diamante.

Modelacion de las subactividades

A veces es facil agregar demasiado detalle a un solo diagrama de actividades, lo que lo
hace ocupado y confuso. Por ejemplo, si desarrollamos “Registrar al usuario” de la figura
3-13, para incluir todas las acciones necesarias para registrar los usuarios, como la obten-
cién de un nombre y contrasefa tinicos del usuario, y validar y almacenar la informacion
de la direccién de correo, entonces se puede perder el enfoque principal de la actividad
—creacion de una lista de trabajo y pagar por ella— en el ruido de todas las acciones y
estimulos adicionales.

Si, en cualquier caso, hallamos que los detalles de las subactividades hacen que un
diagrama sea demasiado confuso, o encontramos que queremos volver a usar las subac-
tividades, entonces podemos marcar una accion como una subactividad con una bifurca-
cién en su interior. (Visio no permite el simbolo de subactividad subsidiaria, de modo que
extraje uno de los garabatos de Paint de Microsoft y lo agregué a la accién “Registrar el
usuario” de la figura 3-13.)

SUGERENCIA Si quiere inventar o encuentra que un aspecto del umL no permite su herra-
mienta especifica de modelado, entonces considere la posibilidad de usar un estereotipo
o0 una nota para documentar lo que quiere usted dar a entender.

Nodos de decision y de fusion

En los diagramas de flujo, a los nodos de decisién y de fusion se les llamaba diamantes
de decision. Este simbolo con forma de diamante es uno de los elementos que hace que
el diagrama de actividades sea una reminiscencia de un diagrama de flujo. Los nodos
de decision y de fusién usan el mismo simbolo y transmiten la ramificacién y la fusién
condicionales.

Cuando el simbolo con forma de diamante se usa como nodo de decision —después
de “Entrar” en la figura 3-13— tiene un estimulo que entra al nodo y miltiples estimulos
saliendo de éste. Cuando se usa como nodo de fusion, hay miltiples estimulos entrando
y solamente uno saliendo. Un nodo de decisién s6lo toma un camino de salida, y uno de
fusién no tiene salida hasta que todos los flujos han llegado al mismo.

Las condiciones guardianes en un nodo de decision actdan como la Iégica si... de otro
modo y deben ser mutuamente excluyentes, lo cual por necesidad implica que si se sa-

www.FreeLibros.me

Diagramacion de caracteristicas como procesos

tisface una de ellas, entonces la otra debe fallar. Como se describe en la figura 3-13, pue-
de estipular las dos condiciones guardianes literalmente, o estipular una de ellas y usar
una guardidn [De otro modo] para la condicién alterna.

Un nodo de fusién marca el final del comportamiento condicional iniciado por un
nodo de decision. En la figura 3-13, no necesitamos un nodo de fusién porque reencami-
namos al usuario recientemente registrado de regreso a la accién “Entrar”. No obstante,
si quisiéramos ser un poco mds amables, podriamos sencillamente autenticar al nuevo
usuario en forma automadtica y seguir directamente a proporcionar la informacién acerca
del pago, en donde el usuario la dej6. Esta revision se muestra con el uso de un nodo de
fusion en la figura 3-14. (Observe que se modificaron las condiciones guardianes para el
nodo de decisién que esta después de la accidon “Entrar”, para mostrar el uso del estilo de
guardian [De otro modo].)

Bifurcaciones y uniones de transicion

Una bifurcacion existe para describir comportamiento paralelo, y se usa una union para
hacer convergir el comportamiento paralelo de regreso a un solo flujo. En el compor-
tamiento bifurcado no se especifica si ese comportamiento se intercala o no, o bien, si
ocurre en forma simultdnea; la implicacién es solamente que estdn ocurriendo acciones
bifurcadas en el transcurso de un intervalo compartido y concurrente. Se suele implemen-
tar el comportamiento bifurcado como comportamiento multiencaminado. (En la figura
3-13, se presenta un ejemplo de una bifurcacion después de la accién “Procesar el pago”
y una unién inmediatamente antes del nodo final.)

Cuando multiples flujos entran a una accion, ésta, de manera implicita, es una unioén y
el significado es que solo hay flujo saliente cuando todos los flujos entrantes han llegado
a la accién. Sus diagramas serdn mads claros si usa bifurcaciones y uniones de manera
explicita en donde quiera dar a entender que se muestra comportamiento paralelo.

En la figura 3-13, quisimos decir que podemos almacenar una descripcién del trabajo
y proporcionar al usuario una confirmacién, en forma simultanea o de manera concurren-
te, pero estas dos cosas deben ocurrir antes de que se considere que se ha completado la
actividad.

Particion de la responsabilidad con carriles

A veces usted quiere mostrar quién o qué es responsable de un parte de una actividad.
Puede hacer esto con carriles. Lo comun es que las herramientas de modelado muestren
los carriles como un cuadro con un nombre en la parte superior y que usted coloque cua-
lesquiera nodos y estimulos que pertenecen a esa cosa en ese carril. Usted puede tener
tantos carriles como sea conveniente, pero los carriles encajonados pueden dificultar la
organizacién de su diagrama de actividades.

www.FreeLibros.me

_\®

Proporcionar descrip-
cién del trabajo

Entrar

(De otro modo)

Registrar
al usuario

(Usuario encontrado)

(Autenticado)

Proporcionar informacién
acerca del pago

\
Validar la informacién
del pago

(No es valida)

(Es valida)

Procesar el pago

v

Almacenar la des- Proporcionar la
cripcion del trabajo confirmacién

Figura 3-14 Nodo de fusién usado para hacer convergir cuando se toma una rama después de
que se registra un nuevo usuario.

El uML versién 2 permite particiones verticales, horizontales y como rejilla, de modo
que la metéfora carril ya no es precisa. La terminologia real ahora es particion de la acti-
vidad, pero todavia se emplea la palabra carril en la conversacidon general y se usa en las
herramientas de modelado.

www.FreeLibros.me

Manual de umL

Diagramacion de caracteristicas como procesos

Usuario Sistema

Proporcionar descrip-
cién del trabajo
(Entrar)

De ot d .
(De otro modo) Registrar al

usuario

(Usuario encontrado)

e

(Autenticado)

Proporcionar informa- Validar la informacién
cion acerca del pago del pago

L

(No es valida)
(Es valida)

Procesar el pago

«

Almacenar la des- \ [Proporcionar la
cripcién del trabajo, confirmacién

Figura 3-15 Las acciones se dividen entre un usuario y el sistema.

Uso de los carriles

Si en la figura 3-14 queremos mostrar quién o qué es responsable de varias acciones,
entonces podemos agregar un carril (o particiéon) para lo que creemos que son las par-
ticiones. En el ejemplo, podriamos decir que la publicacién de un trabajo se divide en

www.FreeLibros.me

Manual de umL

@’_

Usuario Sistema Procesador del pago

Proporcionar descrip-
cién del trabajo
(Entrar)

(De otro modo)

Registrar al
usuario +

(Usuario e\ljcontrado)

(Autenticado)

Proporcionar informa-
cion acerca del pago

(No ew /

(Es valida)

Validar la informacion
- del pago

Procesar el pago

|
v
Almacenar la des-) (Proporcionar la
cripcion del trabajo / \ confirmacién

Figura 3-16 Subdivisioén adicional de las responsabilidades mediante el reemplazo de las ac-
ciones “Validar la informacion del pago” y “Procesar el pago” en una particién separada con el
nombre de “Procesador del pago”.

dos particiones: el usuario y el sistema, y agregamos un carril para cada particién (figura
3-15). Si decidimos que el procesamiento del pago representa una particion distinta, en-
tonces podriamos agregar una tercera particion y trasladar la accién de procesar el pago
hacia esa particion (figura 3-16).

www.FreeLibros.me

Diagramacion de caracteristicas como procesos

Como se hace con la programacion, puede dividir su andlisis y disefio en tantas par-
ticiones como quiera. Se debe aceptar dar algo a cambio por agregar particiones en los
modelos, precisamente como ha de aceptar dar algo a cambio por agregar particiones en
el cédigo. Partir los modelos puede ayudarle a organizar, pero todas esas particiones su-
gieren software partido que deberd orquestarse y reensamblarse para lograr las metas del
sistema.

Modelado de acciones que se extienden sobre las particiones

A veces una accién puede pertenecer a mas de una particiéon al mismo tiempo. Por
ejemplo, “Registrar al usuario” en realidad no pertenece al usuario o al sistema. Sabe-
mos, con base en las exposiciones anteriores, que “Registrar al usuario” es una actividad
subsidiaria que puede comprender al usuario que proporciona la informacién personal y
al sistema que valida la informacién de la direccién y almacena la informacién de ese
usuario. Sin embargo, el UML no permite que un nodo se extienda en mas de una particion
en una sola dimensién. Como resultado, usted debera elegir una particién para el nodo, y
esto también sugiere que sabemos lo que se cumple acerca de “Registrar al usuario”; es
decir, se puede descomponer en su propia actividad.

Uso de particiones multidimensionales

El modelado de particiones multidimensionales de actividades es un concepto relativa-
mente nuevo. Parece que algunas herramientas de modelado populares y de las que se
dispone en la actualidad no permiten diagramar particiones multidimensionales de acti-
vidades; sin embargo, puede simular una particion multidimensional en Visio agregando
dos carriles (particiones de la actividad) y hacer girar uno de ellos. (El resultado es un
diagrama semejante al de la figura 3-17.) Ahora que tenemos la mecdnica para crear una
particiéon multidimensional, podria usted preguntarse como se usa.

Una accién en una matriz de particiones de una actividad pertenece por completo a las
dos particiones. Suponga, por ejemplo, que como estamos preparandonos para vender lis-
tas de trabajos en Motown-jobs.com, decidimos usar PayPal para procesar los pagos. Po-
demos decir que “Procesar el pago” es parte tanto de nuestro “Procesador del pago” como
del sistema de procesamiento de pagos de PayPal, lo cual se refleja en la figura 3-17.

Indicacion de las seiales cronometradas

Hasta ahora no hemos hablado acerca de cudndo ocurren las cosas. Existen tres tipos de
sefiales que facilitan hablar acerca del tiempo en los diagramas de actividades. Estas son
la sefial de tiempo, la sefial de enviar y la sefial de aceptar. Una sefial indica que se ha
lanzado un evento exterior y ese evento inicia la actividad.

www.FreeLibros.me

_\@

Manual de umL

Procesador del pago PayPal

Procesar el pago

Procesador del pago

Figura 3-17 Particiones multidimensionales, en donde dos particiones en diferentes dimensio-
nes poseen una accién al mismo tiempo.

Se usa la forma de reloj de arena de la sefial de tiempo para especificar un intervalo
de tiempo. Por ejemplo, podriamos usar la sefial de tiempo para indicar que se iniciara la
actividad “Hacer caducar la lista” después de que la lista haya estado disponible durante
30 dias (figura 3-18). El simbolo de sefial de recibir es un rectdngulo con una muesca
cortada, y el de sefial de enviar es un rectdngulo con una punta sobresaliente, lo que hace
que los simbolos sefiales de recibir y de enviar luzcan un poco como las piezas de un
rompecabezas (una vez mas, mostrados en la figura 3-18).

Nora Toda herramienta tiene sus limitaciones. En Visio, por ejemplo, no existe simbo-
lo para una seiial de tiempo, de modo que inventé una, y las seiiales de enviar y recibir
se usan como una forma alternativa de documentar eventos. La implementacion de
Visio no es precisamente coherente con el uML; es importante no quedarse colgado en
estas pequeiias incoherencias por las que usted estd obligado a pasar. En vez de consu-
mir su tiempo en dibujar imdgenes para aspectos no soportados del umL, trate de usar
en su lugar una nota.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos

Borrar
la lista

Senial de

- Lista borrada
recibir

Archivar
la lista

_\@

Seial de tiempo

acer caducar
la lista

<no enviar la accién>> Senal
de

enviar

Crear lista
de trabajos

Enviar correo
electrénico al
propietario

Treinta dias después de que la lista se publica

Extender
la lista

Lista extendida

Procesar la informacion
del pago

(Extender)
Esperar (De otro
48 modo)
horas

Actualizar el estado
de la lista

Figura 3-18 Seiial de tiempo para hacer caducar una lista, dos sefiales de recibir para extender y
borrar una lista, y una sefial de enviar para notificar que una lista esta proxima a caducar.

Se entiende que el modelo de la figura 3-18 quiere dar a entender que 30 dias después
de que se publica una lista, se la hard caducar de manera automética, a menos que un
propietario notificado elija extenderla. Las sefales alternas incluyen un usuario que borra
una lista, lo cual hace que la lista se archive antes de quitarse, y un propietario que habla
por propia iniciativa para extender la lista antes de su caducidad. Si el propietario extien-

de la lista, entonces esto envia una sefial al sistema para que procese un pago adicional.

www.FreeLibros.me

Manual de umL

RYy——
Configuracion de los parametros de entrada

Los diagramas de actividades pueden tener parametros de entrada, como en la figura
3-18, en cada caso en que hablamos de hacer algo con una lista. Podriamos mostrar un
objeto “Lista” como entrada para cada accién en la figura. Tomando sélo una pequeifia
porcién de la figura 3-18, podemos mostrar la notacion y el simbolo para indicar que la
entrada a la accién es un objeto “Lista” (figura 3-19).

En tanto que los objetos de entrada pueden resultar ttiles para los desarrolladores, éste
es otro caso en donde pueden agregar confusion para la discusién de la actividad en un
sentido general y analitico. Al menos en el curso de las primeras fases del andlisis, consi-
dere aplazar la referencia especifica a los detalles de la implementacién, como las clases.

Forma de mostrar las excepciones en los diagramas
de actividades

El umL permite el modelado de excepciones. Una excepcidon se muestra como una linea
zigzagueante (0 “rayo”) con el nombre de la clase de la excepcion que la adorna. El ma-

aLista : Lista

Extender
la lista

<no recibir
la accion>

Procesar la informacion
del pago

Figura 3-19 Se muestra el objeto “Lista” como un pardmetro de entrada a la accién “Extender
la lista” y el diagrama de actividades que lo contiene.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos

Procesar la informacién
del pago

Validar el ndmero de \ Excepcion de expresion comin
la tarjeta de crédito /

Manejar la expresion comiin
de invalida

Figura 3-20 Modelado de una excepcion en un diagrama de actividades.

nejador de la excepcién se puede modelar como un nodo de accién con el nombre de la
accion en el mismo y el flujo de excepcidn conectado a una clavija de entrada en el nodo
de accién de la excepcion (figura 3-20).

El nodo que contiene el manejador de la excepcion no tiene flujo de retorno. Un ma-
nejador de excepcidn solo descuelga la accidon que causé que ocurriera el error. Es impor-
tante recordar que estamos captando flujo y acciones generales; en el curso de esta fase,
no necesitamos indicar cémo estamos manejando la excepcion.

Los conceptos como excepcidon, manejador de excepciones, despliegue de la pila y
rendimiento pueden agregarse de manera considerable a la confusién para los usuarios no
técnicos. Si puede agregar una excepcion y su nodo de accidn sin atascarse en discusio-
nes acerca de cémo se implementan los manejadores de excepciones o cémo funcionan,
entonces siga adelante y agréguelos a sus diagramas de actividades.

Terminacion de los diagramas de actividades

Cuando llegue al final de una actividad, agregue un nodo final de actividad. Si llega al
final de un flujo y no sucede algo mads, agregue un nodo final de flujo (figura 3-21). Puede
tener mds de un nodo final de actividad y de un nodo final de flujo en un solo diagrama
de actividades.

El diagrama de actividades de la figura 3-21 muestra que procesamos todas las listas
caducas hasta no tener mds y, para cada lista caduca, enviamos un correo electrénico al
propietario, ddndole una oportunidad de renovar la lista o dejarla caducar. Advierta que

www.FreeLibros.me

Manual de umL

Hacer caducar
la lista

(Mas listas caducas)

Enviar correo

electrénico
al propietario

(No mas listas

caducas)

(Extender)

Procesar el pago

Figura 3-21 Actividad en la que se muestra un nodo final de flujo y un nodo final de actividad.

cuando se ramifica el nodo de decisién, debido a que ya no hay més listas caducas, sen-
cillamente va hacia un extremo cerrado. Podria usted imaginarse esta suerte de actividad
implementada como un proceso asincrono, en donde cada lista caduca se expulsa de un
proceso para permitir que su propietario la renueve.

Creacion de los diagramas de actividades

Una decision tan importante como qué incluye un diagrama de actividades es qué diagra-
mar. Con demasiada frecuencia es facil mantenerse agregando modelos adicionales y
afladiendo mads detalles a los modelos existentes; no obstante, la implicacién es que mien-
tras usted estd modelando algo, alguien mads esta esperando para implementar su disefio
0, lo que es peor, mientras usted estd refinando sus disefios, algin pobre encargado de

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

S

implementar tendrd que modificar la implementacion de esos disefios. Por esta razon,
es importante hacer que sus diagramas de actividades sean relativamente sencillos;
limite la creacién de diagramas de actividades a lo importante, critico o a los aspectos
retadores de su problema, y evite tratar de hacerlos perfectos. Un buen modelo facil de
comprender y que se presenta oportunamente es mas valioso que un modelo perfecto
posterior; si es que existe tal cosa como un modelo perfecto.

Ejemplos de los diagramas de actividades que yo crearia para los casos de uso del
capitulo 2 podrian ser una actividad para “Mantener la lista de trabajo”, “Hacer caducar
la lista de trabajo” y “Mantener la informacion sobre facturacién”. En especial, estoy in-
teresado en entender los aspectos criticos del sistema, de manera particular aquellos para
los servicios que son elementos susceptibles de facturacion. Cosas comunes como buscar
o registrar estan suficientemente bien entendidas, de tal manera que es improbable que
yo creara un diagrama de actividad para ellas.

Seleccionar lo que debe modelarse y lo que no, es algo semejante a afiadir sal cuando
se estd cocinando: siempre puede agregar un poco mds, pero es dificil eliminar la sal si ha
afiadido demasiada. Lo mismo es verdad con el modelado: no puede recuperar el tiempo
consumido en modelar actividades obvias, pero siempre puede agregar diagramas de
actividades mas adelante, si es necesario.

Reingenieria del proceso

Es posible que el uso mas benéfico de los diagramas de actividades sea ayudar al per-
sonal que no pertenezca al dominio —por lo comin, los tecnélogos que implementardn
una solucién— a comprender este dominio. En lo anterior, estd implicito que, mientras
los expertos del dominio y los tecnélogos estdn intentando llegar a una comprensién
comun, existe una oportunidad de realizar la reingenieria del proceso. Tomemos un mo-
mento para revisar lo que se quiere dar a entender por reingenieria de procesos.

Con frecuencia, la gente realiza su trabajo de manera cotidiana sin jamds identificar un
proceso formal. El conocimiento del proceso lo tienen sélo los profesionales. A menudo,
estas mismas organizaciones reciben un choque al descubrir cudntos gastos generales y
desperdicio existe en la forma en que estdn organizadas. La reingenieria de procesos es
una suerte de pseudociencia que conlleva, en primer lugar, la documentacién de los pro-
cesos de una organizacion y, en segundo, a buscar maneras de optimizar esos procesos.

No soy un experto en reingenieria de procesos, pero existen ejemplos histéricos en
donde empresas bien conocidas han gastado una cantidad considerable de dinero y ener-
gia para refinar los procesos de sus empresas, y los resultados han conducido a cam-
bios amplios y arrasadores en la industria. Se puede hallar un ejemplo interesante en
Behind the Golden Arches, en el cual se detalla el camino de evolucién que condujo a
McDonald’s a aplicar la distribucién centralizada para sus franquicias.

www.FreeLibros.me

m Manual de umL

NOTA Resulta bastante irénico que el propio desarrollo de software sea un ejemplo de
un dominio en donde los profesionales han definido el proceso de una manera ad hoc.
Muchas empresas de software ahora estan empezando a darse cuenta de que estdan muy
atrasadas en relacion con un examen introspectivo de los procesos que siguen al pro-
ceso estructurado. ;Alguien en su organizacion ha usado alguna vez un diagrama de
actividades (o un diagrama de flujo) para documentar la manera en que se estructura
su software?

El desarrollo de software es un asunto de automatizar soluciones para los problemas.
En un sentido general, es una idea util documentar los procesos criticos del dominio y
examinar algunas optimizaciones posibles, antes de escribir el cddigo. Si se simplifica el
proceso, también se puede simplificar marcadamente la implementacion subsiguiente.

Reingenieria de una subactividad

He aqui un ejemplo que comprende una subactividad llamada “Verificacién de la cabina
interior”, que se relaciona con la inspeccion previa al vuelo de un avion pequeiio. La idea
que se encuentra detrds de la verificacion de la cabina interior es que estamos buscando
cosas necesarias o importantes en el interior del avién y realizando pasos para ayudar a
algunas verificaciones exteriores. Hay una probabilidad muy buena de que si pasamos
por alto algo, entonces podriamos realizar el despegue en condiciones inseguras o no
contar con recursos criticos durante una urgencia. (Si le molesta que esto no suene como
un problema de software, entonces sélo imagine que estamos documentando este proble-
ma para escribir software de simulacion o para realizar las pruebas.)

Uno de los aviones que vuelo es un Cessna 172 Skyhawk. La verificacién de la cabina
interior (descrita en la figura 3-22) consiste en

* Asegurarse de que el interruptor de ignicidn esté en posicion de apagado

* Hacer girar el interruptor maestro hacia la posicion de encendido de modo que
tengamos energia

* Bajar los alerones

» Verificar la existencia del registro, del certificado de que el avidn esta en condicio-
nes de volar, del peso y balance de la informacion y del manual de operaciones, el
cual incluye los procedimientos de urgencia

» Verificar los indicadores de nivel del combustible y el selector de este tltimo

» Hacer girar el interruptor maestro hacia la posicion de apagado

Como se muestra en el diagrama de actividades de la figura 3-22, los pasos se llevan
a cabo de manera consecutiva. (Esta es la manera en que realicé la inspeccion el primer

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

S

Verificar el interruptor
de ignicién

(Ignicién en posicién de apagado)

Girar el interruptor maestro a
la posicion de encendido
Bajar los
alerones
Verificar los documentos
(AROW)

Verificar el nivel
de combustible

Verificar el selector
de combustible

(Alerones por completo extendidos)

Girar el interruptor maestro
a la posicion de apagado

Figura 3-22 Nuestra comprension inicial es que cada una de las tareas de la actividad se realiza
en forma consecutiva.

par de veces que la llevé a cabo.) Un piloto experimentado (un experto del dominio) le
dird que se requieren unos cuantos instantes para que los alerones bajen, de modo que
algunas de las otras verificaciones se pueden llevar a cabo en forma simultanea. Podemos
ajustar el diagrama de actividades como se muestra en la figura 3-23.

www.FreeLibros.me

@ Manual de umL

Verificar el interruptor
de ignicién

(Ignicidn en posicién de apagado)

Girar el interruptor maestro
a la posicién de encendido

Qeriﬁcar los documentos (ARO@
Verificar el nivel Bajar los
de combustible alerones
Verificar el selector
de combustible

—+

(Alerones por completo extendidos)

Girar el interruptor maestro a
la posicion de apagado

Figura 3-23 Hacer que algunas tareas se realicen de manera simultdnea mejorara el tiempo para
la complecién de la actividad.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

S

Saber cuando renunciar

La aplicacién de las reglas de manera uniforme le ayudard a trabajar con eficiencia en
el transcurso de la fase de modelado del desarrollo. Con esto presente, recuerde que dije
que una idea importante es captar los caso de usos mds criticos y abordarlos primero. Lo
mismo se cumple para los diagramas de actividades. Identifique los casos de uso mas
criticos y cree los diagramas de actividades para aquellos que requieren algo de examen.
Por ejemplo, es necesaria la autenticacién de un usuario en Motown-jobs.com, pero éste
es un problema bien entendido. Yo no pasaria una gran cantidad de tiempo creando un
diagrama de actividades para esto y no trabajaria en €l antes que en aquellos relacionados
con mi caso de uso primario, “Administrar una lista de trabajo”.

Si no estd seguro de cudntos diagramas de actividades debe crear, entonces intente
crear un diagrama de actividades para cada una de las funciones primarias de sus casos
de uso mds importantes. Intente tener tanto acerca de la actividad modelada con tanta
rapidez y tanta exactitud como pueda. De inmediato, regrese para comprobar con sus
expertos del dominio y examine las actividades para ver si ha captado los puntos mds
sobresalientes.

Por tdltimo, no permita quedarse atascado aqui. Si no puede llegar a un consenso sobre
lo completo de una actividad particular, entonces déjela a un lado y acuerde en regresar
a ella. Puede haber otros elementos del problema que aumentaran su comprension, o la
de sus usuarios acerca del problema en general para resolver aquél que dejé a un lado. La
clave es no quedarse atascado demasiado pronto en cualquier problema particular.

Examen

1. Los sin6bnimos para transicion son

a. conector y flujo.

s

estimulo y flujo.

e

estimulo y conector.

d. accién y evento.

2. En general, los diagramas de actividades constan de

nodos y estimulos.
acciones y transiciones.
acciones, decisiones y flujos.

e e oo

simbolos y lineas.

www.FreeLibros.me

@ Manual de umL

3. Se puede mostrar una excepcion en un diagrama de actividades con un estimulo en
forma de rayo.

a. Verdadero
b. Falso

4. Enun nodo de decision y en uno de fusion se usan

a. simbolos diferentes.
b. simbolos idénticos.

c. simbolos idénticos o diferentes, dependiendo del contexto.

5. Los flujos multiples que entran a un nodo de accion constituyen
a. una fusion implicita.
b. una unién implicita.

6. Todo flujo espera en una fusiéon y una union hasta que todos los flujos hayan lle-
gado.

a. Verdadero
b. Falso

7. La metafora de carril ya no se usa

a. porque los carriles ya no son parte del umL.

b. porque las particiones pueden ser multidimensionales y no se ven como ca-
rriles.

c. Todavia se usa la metafora de carril.

d. Tanto b como c.

8. Pueden existir acciones en dos particiones de una actividad al mismo tiempo, en
dimension diferente.

a. Verdadero
b. Falso
9. Un nodo de decisién y uno de fusion se representan por

un ovalo.
un circulo.

un rectangulo.

e o oo

un diamante.

www.FreeLibros.me

Diagramacion de caracteristicas como procesos @

S

10. Los diagramas de actividades son diferentes de los de flujo porque los de activida-
des permiten

carriles.
comportamiento paralelo.

nodos de decision.

e e oo

acciones.

Respuestas

O 0 NN R WD =
c Ay AN o o s O

_.
e

www.FreeLibros.me

www.FreeLibros.me

CAPITULO

Comportamientos
con diagramas
de interaccion

Desmitificar significa “exponer algo, hacerlo directo o lanzar luz sobre ello” y en
cada capitulo se hace esto implicita o explicitamente. En este capitulo, me gustaria
empezar mostrandole el camino ahora mismo. Hay varios tipos de diagramas de
Unified Modeling Language (UML); algunos son redundantes y, definitivamente, no
necesita crear todo tipo de diagramas para tener un buen disefio. Existe mas de un
tipo de diagramas de interaccion y la regla de evitar la redundancia es de lo més
pertinente para este capitulo.

Los dos diagramas comunes de interaccién son los diagramas de secuencia y los
de colaboracion (o comunicacion). Estos diagramas le dicen exactamente lo mis-
mo. Las secuencias tienen un ordenamiento explicito en el tiempo y son lineales, y
las colaboraciones tienen un ordenamiento “rotulado” en el tiempo y son geométri-
cas. Sélo necesita uno u otro, pero definitivamente no ambos.

Me gustan los diagramas de secuencia; son mds comunes, muy ficiles de crear y
estdn organizados de manera natural, y no necesitamos indicar el ordenamiento en

——@

www.FreeLibros.me

Manual de umL

@,—

el tiempo mediante la anotacién de los mensajes. Como consecuencia, en este capitulo
haré hincapié en el diagrama de secuencia, pero hablaré con brevedad (y mostraré) los
diagramas de colaboracion para que usted se familiarice con ellos. (Si, finalmente, deci-
de que le gusta la organizacién geométrica de los diagramas de colaboracién, entonces
uselos. Sin embargo, recuerde que no necesita tanto secuencias como colaboraciones, y
muchas herramientas UML convertirdn con facilidad, en forma automatica, las secuencias
en colaboraciones y viceversa.)
En este capitulo, le mostraré cémo

* Identificar los elementos de los diagramas de secuencia

* Crear diagramas de secuencia y de colaboracion

» Comprender el ordenamiento en el tiempo de los diagramas de interaccion
» Usar los diagramas de interaccion para descubrir clases y métodos

* Modelar escenarios de éxito y falla con el uso de los marcos de interacciones intro-
ducidos en el umL version 2.0

» Usar secuencias para examinar el comportamiento de muchos objetos de uno a otro
lado del caso de uso

Elementos de los diagramas de secuencia

En todo diagrama sélo se usa un subconjunto de los simbolos y de la gramética que cons-
tituyen el UML. El aprendizaje acerca de esos simbolos y de la gramatica especifica es un
mal esencial. Es importante tener en cuenta que no necesita recordar todas las palabras
de un lenguaje para comunicarse en forma eficaz; no puedo recordar con precisiéon qué
significa solecismo, como en “porque es el solecismo de un principe pensar en controlar
el fin y, sin embargo, no soportar el medio”; pero es importante dominar un lenguaje para
emplearlo en forma creativa.

NotA Es importante recordar que el umL es un lenguaje en evolucion. Como con los
lenguajes hablados, se puede tener comunicacion eficaz con una comprension bdsica
del lenguaje. La clave es recordar que hay que dejar las leyes del lenguaje a otros. (En
este caso, deje las leyes del lenguaje al Object Management Group.)

Tomemos un par de minutos para examinar los simbolos y la gramatica utiles de
los diagramas de secuencia. Empezaremos con los elementos basicos y esenciales de los
diagramas de secuencia: las lineas de vida y los mensajes. (Vale la pena hacer notar que
se puede tener un didlogo aceptable con sélo estos dos elementos de los diagramas de
secuencia.)

www.FreeLibros.me

Comportamientos con diagramas de interaccion

Uso de las lineas de vida de objetos

Una linea de vida es un rectangulo con una recta vertical que desciende de ese rectdngulo.
La linea de vida representa un ejemplo de una clase, y la linea que desciende en forma ver-
tical es un lugar conveniente para sujetar mensajes entrantes y salientes. Agregar multiples
lineas de vida a un solo diagrama y sujetarles mensajes ordenados en el tiempo le permiten
mostrar todas las clases y los mensajes necesarios para completar un escenario descrito
por un caso de uso. Mediante la eliminacién de brechas ambiguas o evitando la repeticion
de clases y mensajes, puede obtener una solucién completa, un escenario a la vez.

Una linea de vida de un objeto toma forma como un objeto que representa una parte
de un papel en un caso de uso. Hablaré mas acerca de las lineas de vida conforme avan-
cemos; por ahora, s6lo observe el simbolo de la figura 4-1.

Las lineas de vida de objetos pueden representar actores u objetos. Todos los actores y
objetos pueden actualizarse o no como cddigo. Esto puede sonar confuso, pero no lo es.
Suponga, por ejemplo, que estamos estructurando un sistema de reservaciones de boletos
para una linea aérea. Un actor podria ser una persona que trabaje en el mostrador en la
terminal o en un quiosco [usado para e-tickets (boletos electrénicos)]. La persona es un
participante importante en la secuencia de emisién de boletos, pero no se representara
mediante el cddigo. Un quiosco también es un participante importante y, hasta cierto
punto, se representard mediante el cédigo. De este modo, podemos referirnos a un actor
llamado “Autoridad para emisién de boletos” y dar a entender que puede ser tanto la
persona como el quiosco.

En algunas herramientas de modelado se usa el actor con figura de palillos con una
linea de vida sujeta y, en otras, se usa un cuadro con una figura de palillos o el estereotipo
«actor». Mds importante que la notacion precisa es recordar que un actor puede realizarse
0 no como c6digo y que una linea de vida puede ser un actor.

alginObjeto

Figura 4-1 Una linea de vida de un objeto representa un ejemplo de una clase y una linea colo-
cada de manera conveniente para permitir la conexioén de objetos por medio de mensajes.

www.FreeLibros.me

_\®

@ Manual de umL

Una linea de vida también puede representar una clase actualizada. Lo que es impor-
tante saber es que una linea de vida es, en general, un nombre que se puede codificar o no
como una clase, pero que definitivamente, es algo que puede interactuar con el sistema
de usted, y que una linea de vida es también s6lo un rectdngulo con una linea vertical que
desciende de él.

Activacion de una linea de vida

Los objetos tienen una duracién. Por ejemplo, en lenguaje deterministico, como C++, un
objeto dura hasta que se llama al destructor. En un lenguaje no deterministico como C#
(pronunciado “C sharp”), un objeto dura hasta que se recoge la basura. Esto significa que
el programador en realidad no sabe cuando se va el objeto. Sin embargo, los modeladores
no estan por completo restringidos por el lenguaje de implementacion.

Desde nuestra perspectiva, s6lo nos preocupamos cuando empezamos a usar un objeto
y cuando terminamos de usarlo, a menos que éste represente un recurso finito. En ambos
casos, para los fines practicos, el simbolo de activacién representa la amplitud de la dura-
cién de un objeto. También es importante saber que un objeto se puede representar como
creado y destruido con el uso de una sola linea de vida.

El simbolo de activacion es un rectangulo vertical que reemplaza la linea de vida en
el transcurso de la duracion de la existencia de ese caso (figura 4-2), teniendo presente
que un objeto se puede crear y destruir muchas veces y que se usa una linea de vida para
representar todos los casos de esa clase en una secuencia. (Un poco mds adelante, hablaré

Agente de
reservaciones

T

|

|

|

|
_—

Simbolo de activacion

-
I
|
|
|
|
|
|
|

Figura 4-2 Una linea de vida con un simbolo de activacién anotado.

www.FreeLibros.me

Comportamientos con diagramas de interaccion

acerca de la destruccion deterministica.) Si queremos expresar mensajes anidados o re-
cursivos, entonces podemos apilar horizontalmente los simbolos de activacion.

Envio de mensajes

Los mensajes son lineas dirigidas que conectan lineas de vida. La linea se inicia en una
linea de vida, y la flecha apunta hacia aquella linea de vida que contenga el mensaje
invocado. El mensaje puede empezar y finalizar en la misma linea de vida; a esto se le
conoce como llamada anidada. Un tridngulo relleno representa un mensaje sincrono; un
tridngulo de palillos representa un mensaje asincrono, y se usa una linea punteada para
los mensajes de retorno. Incluidos como mensajes posibles, se encuentran los mensajes
hallados y los perdidos. Un mensaje hallado tiene un receptor conocido, pero el emisor
no se conoce; uno perdido tiene un emisor conocido, pero no receptor especificado. En la
figura 4-3, se muestra cada tipo de mensaje rotulado con claridad.

Objetol Objeto2

Mensaje sincrono

A4

- - ———————1

::> Mensaje anidado

|

|

|

: Mensaje asincrono

T

|

|

|

: Mensaje de retorno

[S T

| |

| |

: TT=~_ Mensaje de :

/7 .

|, _——="retorno anidado |

< [

| |

| |

| |
Mensaje hallado : :

| |

|

:

| Mensaje perdido

|—>

|

|

Figura 4-3 Simbolos de llamadas de los métodos sincrono y asincrono.

www.FreeLibros.me

_\(@

@ Manual de umL

También podemos especificar deconstruccion deterministica de objetos agregando un
circulo con una X en el origen del mensaje. Algunos lenguajes, como Visual Basic.NET
y Java, no permiten el borrado deterministico de objetos, pero un lenguaje como C++ lo
requiere. (Es posible que usted rara vez encuentre un mensaje de borrado, a menos que
sea critico que les recuerde a los desarrolladores que liberen recursos finitos.)

Suponga que en Motown-jobs.com queremos usar un esquema especifico de auten-
ticaciéon y autorizacidon. Podriamos crear una secuencia que describa como queremos
implementar el caso de uso “Entrar”’. Observe la secuencia en la figura 4-4 y vea si puede
seguirla de uno a otro lado. Después de la figura estd una descripcion de la secuencia.

En el objeto usuario se usa el estereotipo actor. (Podria usar también un simbolo de
actor.) El usuario no se realizard como c6digo, pero participa en la secuencia. Empezando
desde arriba a la izquierda y realizando nuestro camino hacia abajo a la derecha, fijamos
el nombre de usuario y la contrasefia, y a continuacidon enviamos el mensaje “Entrar”.
(Esto se interpreta como la forma para “Entrar”, teniendo un método llamado “Entrar”.)

«actor»
Usuario
|

FormaparaEntrar EnvolturadeCifrado DatosdelUsuario

| T
| |
| |
| |
. . | |
fijar_NombredeUsuario | |
| |
| |
| |
' :
|
fijar_Contrasefia | :
|
| |
| |
| |
| |
Entrar | |
| |
CifrarContrasefia J :
VI |
| |
| |
| |
Leer :
T gl
DatosdelUsuario :
‘‘‘‘‘‘‘‘‘‘ [
| |
| |
| |
> ValidarUsuario :
i |
Verdadero : :
____________ | |
| |
| |
T T | :
|
| |

Figura 4-4 Diagrama de secuencia para autenticar un usuario.

www.FreeLibros.me

Comportamientos con diagramas de interaccion

Enseguida, la contraseia proporcionada por el usuario se cifra y se compara con la con-
trasefia cifrada almacenada como parte de los DatosdelUsuario. Si ValidarUsuario tiene
éxito, entonces retornamos un mensaje Booleano Verdadero.

El diagrama de secuencia es bueno para mostrarnos como se orquestan los objetos y
se usan los actores de uno a otro lado de un caso de uso, pero no son buenos para mos-
trarnos como se implementa este comportamiento. Por ejemplo, pudimos usar el cifrado
con Secure Hash Algorithm 1 (sHAT, Algoritmo Seguro de Verificacién) con ingenio y
almacenar los datos del usuario con una contrasefia cifrada, pero la secuencia no aclara
esto. (Para obtener una resolucion en cuanto a cémo implementar una secuencia, consulte
la seccidn titulada “Comprension de lo que nos dicen las secuencias™.)

Adicion de restricciones y notas

Puede agregar notas y restricciones con el fin de ayudar a quitar ambigiiedad al signifi-
cado de aspectos particulares de sus diagramas de secuencia. El uML describe la manera
en que se agregan estos elementos, pero en la prictica, varian un poco, dependiendo de la
herramienta que use. Por ejemplo, podriamos agregar una nota al diagrama de la figura
4-4 que indique que estamos usando SHA1 y un valor de ingenio, y almacenando los datos
de la contrasefia s6lo en una forma cifrada (figura 4-5).

Las restricciones se pueden agregar como texto llano, pseudocédigo, cédigo real u Ob-
ject Constraint Language (OCL, lenguaje para restricciones de objetos). Las restricciones
en cddigo real o en ocL pueden ayudar a las herramientas UML de generacion de codigo a
generar lineas del mismo. En algunos procesos pesados de modelado, la habilidad para
generar codigo puede ser una necesidad, pero hasta la fecha, parece mas dificil crear
modelos UML que generan cédigo granular que escribir el propio cédigo. Usted debera
decidir por si mismo si necesita modelos moderadamente detallados o muy detallados.

SUGERENCIA Los modelos con los que se generan aplicaciones completas no son realis-
tas y resultan imprdcticos. Evite caer en la trampa de tratar de crear modelos perfectos
con detalle suficiente para escupir una aplicacion.

Uso de marcos de interaccion

Los marcos de interaccion (o fragmentos combinados) son nuevos en el UML version
2.0. Estos marcos son regiones rectangulares que se usan para organizar los diagramas
de interaccion (diagramas de secuencia y de tiempos). Los marcos de interaccién pueden
rodear un diagrama completo de interaccion o s6lo parte del mismo. Cada marco de in-
teraccion se etiqueta con una palabra especifica (o una abreviatura de esa palabra) y cada
tipo de marco de interaccion transmite alguna informacion especifica. En la tabla 4-1, se
definen los tipos actuales de marcos de interaccion.

www.FreeLibros.me

_\@

Manual de umL

’_

«actor»

Usuario
T

FormaparaEntrar EnvolturadeCifrado DatosdelUsuario

fijar_NombredeUsuario

fijar_Contrasefia

Entrar
CifrarContrasefia
|
!
Le'er
t >
DatosdellUsuario
————————————— Fo———————————
I
|
> ValidarUsuario
|
Verdadero

———— e

|
|
|
| /
|
|
|

Usar sHA e ingenio para cifrar/descifrar la contrasefia y s6lo almacenar
contrasefa cifrada.

Figura 4-5 Uso de notas para agregar detalles a sus diagramas de secuencia.

Alt Fragmentos alternativos (es decir, 16gica condicional); sélo condiciones guardianes que
evaldan para que se ejecute lo verdadero.

Bucle El guardian indica cudntas veces se ejecutara esta parte.

Neg Una interaccién invélida.

Opt Equivalente a un alt con una condicién (es decir, una condicién sin sentencia de otro
modo).

Par Los fragmentos se ejecutan en paralelo: piense en encaminamiento mdltiple.

Ref Hacer referencia a una interaccion definida en otro diagrama.

Regién Region critica; piense en no reentrante o s6lo un camino a la vez.

Rod Usado para rodear un diagrama completo de secuencia, si se desea.

Tabla 4-1 Tipos de marcos de interaccion.

www.FreeLibros.me

Comportamientos con diagramas de interaccion

El uML nacié para ampliarse. Si piensa en otra clase de marco, entonces uselo, siempre
que lo defina. Desviarse del UML estandarizado es algo que se hace con mucha frecuen-
cia, lo cual es coherente con la manera en que evolucionan todos los lenguajes. Existen
ejemplos de jerga que se adoptan en los lenguajes hablados constantemente.

Pasemos unos minutos observando los marcos de interaccion. La clave para usar los
marcos de interaccion es elegir el tipo de marco que necesita, especificar las condiciones
guardianes que determinan c6mo se ejecuta la interaccién que estd en el marco y agregar
el numero correcto de fragmentos (o divisiones del marco). Empecemos con el marco de
bucle, el cual, bisicamente, es una construccion del tipo para... a continuacion, para...
cada o mientras, como podria aparecer en un modelo UML (figura 4-6).

NoTA Antes, en este libro, dije que usaria Visio para demostrar que no necesita gastar
miles de dolares para crear modelos uML que se puedan usar. En la figura 4-6, se demues-
tra que podemos crear nuevos elementos para umL version 2.0 —por ejemplo, marco de
interaccion de bucle—, aun cuando Visio no los permita en forma directa. (La interaccion
de la figura se creo con herramientas sencillas de Visio para trazar lineas.) En el caso de
los marcos de interaccion, no he visto alguna herramienta actual del umL que soporte esta
construccion. La version actual de Rational para xpe y Visio no incluye marcos de inte-
raccion. Usted puede verificar las ofertas de Togethersoft y de Poseidon para umL.

patrén FormaWeb ListadeTrabajo SistemadeFacturacion
T T T T
! ' | |
| I | |
Bucle (mientras haya : i :
| mds trabajos) | |
i L I
. |
Introducir |
detalles del Crear :
trabajo :
|
|
Almacenar :
|
I
T T e |
I I ' I
| | ! |
| | |
| | ! .
: : PrepararFactura :

1

| I |

Figura 4-6 Marco de interaccion en el que se muestra el marco de bucle; estamos formando un
bucle mediante la creacién de multiples listas de trabajos.

www.FreeLibros.me

_\(@

@ Manual de umL

Leemos el diagrama de secuencia de la misma manera que antes, excepto que todos
los mensajes en el marco de bucle son parte del comportamiento repetitivo que describe
esta secuencia. (Una notacién de estilo mds antiguo era usar un asterisco como condicién
guardidn. En la figura 4-7, se muestra el mismo modelo usando el simbolo de multipli-
cidad [un asterisco]).

La clave para tener éxito al modelar es recordar que esto se hace en un mundo con res-
tricciones reales: presupuesto para las herramientas, tiempo disponible, la compatibilidad
de la herramienta, la definicién actual del umL, etc. No se atasque en las leyes del lengua-
je. Si su herramienta no soporta una construccion particular, invente. En la practica, yo no
pasaria tiempo para trazar en forma manual un marco de interaccién, si mi herramienta
no lo soporta; usaria la condicion guardidn asterisco.

En la figura 4-8, se muestra otro marco comun de interaccion, el marco alternativo.
Suponga que ofrecemos gratificaciones para los clientes que publican con frecuencia un
cierto nimero de trabajos. Puede ser que queramos pasar estos clientes a un sistema dife-
rente de facturacidn, quizas ofreciendo un descuento especial por volumen.

patrén FormaWeb ListadeTrabajo SistemadeFacturacién

T T T

| | |

| | |

| | |

| | |

| | |

| |]
| |

| |

- —l

(*) Introducir detalles del
trabajo

Crear

Almacenar

T
|
|
|
|
|

|
PrepararFactura

T -
| |
| |
| |
| |
| |
| |
| |
| |
| I
| |
| |
| |

Figura 4-7 La condicion guardian —[*]— por el nombre del mensaje “Introducir detalles del
trabajo” indica multiplicidad o repeticidn, en un estilo antiguo ideado para indicar un bucle.

www.FreeLibros.me

Comportamientos con diagramas de interaccion @

— <€

. . Sistemade SistemadeFacturacionpara
atrén FormaWeb ListadeTrabajo > :
patron e Facturacién ClientePreferente
T T T T T
! I I I I
t t | |
VA | | | |
Bucle 1 (mientras haya | 1 I I
: mds trabajos) : : :
1 .
| |
Introducir : :
detalles del Crear | |
trabajo : :
| |
| |
Almacenar | |
| |
| |
L L | |
T i I I I
! | | | |
! ! ! | |
. !		
alt (cliente preferente)		
: : PrepararFactura :		
I T T 1		
F—— - ————— t—-—————————=—-	- ————— + =	
!		
: PreparaIrFactura : :
I T 2 |
1 1 1 1

Figura 4-8 Ejemplo de un marco alternativo de interaccion.

Comprension de lo que nos dicen las secuencias

Los diagramas de secuencia de estilo mds antiguo tenian una naturaleza singular, pero
con los marcos de interaccién podemos transmitir de manera mds conveniente las al-
ternativas de comportamiento, comportamiento paralelo y bucles y, evidentemente,
secuencias relacionadas con referencias. Implicito en el ordenamiento de arriba a la
izquierda hacia abajo a la derecha de los diagramas de secuencia, se encuentra un or-
denamiento en el tiempo que muestra como un solo caso de uso queda soportado por
multiples objetos.

Las secuencias no necesitan ser complejas para ser utiles; lo mas importante son los
objetos de uno a otro lado de la horizontal y la linea de vida de cada uno de ellos, asi
como el orden y el nombre de los mensajes enviados entre los mismos. En realidad, usted
tiene la opcion de escalonar las lineas de vida, creando un efecto de dentado; en ocasio-
nes vera este estilo de secuencia. Escalonado o alineado horizontalmente, el efecto es el
mismo.

www.FreeLibros.me

Manual de umL

@,—

Nota Un modelo completo es subjetivo. En el Rational Unified Process (RuP, Proceso
racional unificado), es preferible contar con mds detalle. En el empleo de la metodolo-

gia Agile, se le alienta a crear modelos que sean apenas suficientemente buenos. Al final
—quizds dentro de 50 afios— se requerird que los modelos de software sean tan detallados
y tan rigurosos como los diagramas de alambrados electronicos, pero ese dia no estd aqui
todavia. Yo prefiero algo mds detallado que los modelos apenas suficientemente buenos
prescritos por la metodologia Agile, pero nunca tanto como para generar lineas de codigo.

Use diagramas de secuencia para mostrar la manera en que varios objetos sustentan
un caso de uso. Aun cuando las secuencias sean buenas como para mostrar como se
presentan los objetos en un caso de uso, no lo son en la descripcion del comportamiento
especifico. Si quiere modelar con mds detalle del que soporta una secuencia, entonces
considere usar un diagrama de actividad o el propio c6digo; modelar el c6digo en el nivel
de sentencia generalmente se capta de modo mads eficaz si se escribe el codigo. Si quiere
tener una vista ortogonal —muchos casos de uso, un solo objeto—, entonces necesita un
esquema de estado (vea el capitulo 8).

Descubrimiento de objetos y mensajes

Los casos de uso deben contener escenarios de éxito y de falla. En el umL versién 2.0,
puede usar la construccién de alternacién para mostrar lo que sucede cuando las cosas
van como se planed y qué hacer cuando las cosas van desorganizadas.

Los diagramas de secuencia también son buenos para ayudarle a descubrir las clases y
los métodos. Las clases se pueden identificar con facilidad como un nombre para el ejem-
plo de sus objetos, y los métodos son los mensajes que se invocan en un objeto. Puede no
ser evidente de inmediato cudles son los pardmetros para estos métodos, pero las clases y
los métodos son un buen principio.

Debido a la propia naturaleza de las secuencias, también pueden ser buenos para ayu-
darle a identificar las brechas. Por ejemplo, suponga que descubre que una secuencia
tiene una gran cantidad de notas para explicar lo que estd sucediendo. Esto puede indicar
que alli necesitan estar algunos objetos y mensajes bien nombrados que definan el com-
portamiento anotado. (En general, encuentro que las clases y los métodos bien nombra-
dos en el cédigo son preferibles a los comentarios que intentan aclarar los métodos largos
y los objetos bien nombrados, y los mensajes en los modelos son preferibles a una gran
cantidad de notas.) Permita que la secuencia se autoexplique hasta el punto en que sea
posible. Considere la figura 4-9, en la cual se muestra un disefio posible para el compor-
tamiento de busqueda para Motown-jobs.com.

En la figura, tenemos un solicitante de trabajo, una pagina de busqueda y algo llamado
motor de biisqueda. Este disefio no nos habla de la forma de los criterios de busqueda

www.FreeLibros.me

Comportamientos con diagramas de interaccion

Solicitante HallarunaPédgina Motorde
de trabajo deTrabajos Busqueda

Introducir criterios
de busqueda

Buscar

UN
[=9
@
a
&
o)
=
g

2
@
[=9
i)

Figura 4-9 Un mal disefio para la busqueda de los trabajos en lista.

o si los validamos o no. Nada sabemos acerca del motor de busqueda —qué hace y de
dénde recupera los datos— y no tenemos indicio acerca de la forma de los resultados.
Esta secuencia necesitaria varias notas y una gran cantidad de soporte verbal. Podemos
hacerlo mejor (figura 4-10).

En la secuencia revisada de busqueda, mostramos que estamos usando un objeto para-
metro —“CriteriosdeBusqueda”— para almacenar, validar y pasar la informacion de bus-
queda que hace entrar al usuario; también estamos describiendo que el motor de bisqueda
lee las listas de trabajo desde un objeto base de datos —en este punto, el objeto base de
datos sencillamente podria representar una capa de acceso a los datos— y este objeto pone
la informacion leida en una coleccién tipo de objetos “ListadeTrabajo”. La nueva secuen-
cia es algo que en realidad podemos implementar con muy poca ambigiiedad.

Otra caracteristica implicita de la nueva secuencia de la figura 4-10 es que los demds
ahora entenderan con claridad lo que pretendemos al usar objetos personalizados para la
“ListadeTrabajo”. Antes de proceder con la implementacién, podriamos tener una dis-
cusion acerca del disefio. Ademads, debido a que las piezas estian delineadas con mayor
claridad, podriamos dividir el trabajo entre los especialistas de uno a otro lado del equipo
de implementacion.

NOTA La especializacion del papel es al menos tan vieja como Wealth of Nations de Adam
Smith o las lineas de montaje de Henry Ford, pero, en realidad, apenas se estd captando en
la industria del software. En nuestra industria relativamente joven, todavia parece que se
prefieren las personas de conocimientos variados y los sufrimientos como resultado.

www.FreeLibros.me

Manual de umL

@,—

«actor» HallarunaPégina| Criterios Motorde BasedeDatos | |ListadeTrabaio ColecciéndeListas
.. . . L, ., p C S .
Solicitantedetrabajo deTrabajos deBisqueda Busqueda —— deTrabajos

: Introducir - :

| criterios de
bisqueda

Criterios

I I

| |

| |

| |
)	
Validar	
1	
1	

- Leer listas
Buscar(criterios) de trabajos

! (criterios)

Bucle (mientras mzis)I

|
Crear |

Agregar
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
I
|
|
|
|
N
I
|
|
|

T
|
Coleccion :
ColecciondeListasdeTrabajos deListas
_______________ deTrabajos T
|
|

Figura 4-10 Comportamiento de busqueda de Motown-jobs.com con un diagrama de secuencia
detallado.

Elementos de los diagramas de colaboracion
(o comunicacion)

Un diagrama de colaboracion —reapodado diagrama de comunicacién en el uML ver-
sién 2.0— transmite la misma informacién que un diagrama de secuencia. En donde el
ordenamiento en el tiempo es implicito en la disposicion lineal de un diagrama de se-
cuencia, indicamos explicitamente el orden en el tiempo numerando los mensajes en los
diagramas de colaboracion geométricamente organizados.

Los simbolos clave en los diagramas de colaboracién son el rectdngulo, llamado pa-
pel clasificador, y una linea que indica el mensaje, una vez mas llamada conector. El
papel clasificador representa los objetos. Los conectores representan objetos conectados
y una flecha nombrada indica el mensaje asi como el emisor y el receptor. En la figura
4-11, se muestra la secuencia de la figura 4-10 convertida a un diagrama de colaboracion.

Como puede ver, la colaboracidn tiene los mismos elementos pero pocos detalles. La
naturaleza compacta y la menor cantidad de elementos hacen que las colaboraciones

www.FreeLibros.me

Comportamientos con diagramas de interaccion

1: IntroducirCriteriosdeBisqueda —»

«actor» HallarunaPagina

Solicitantedetrabajo deTrabajos

g

2

&)

o &

o
I'd x ¢ @
MotordeBisqueda CriteriosdeBusqueda =
=
g
Lee
7y,
]SI"’SdeTr 7: Crear —p
ab%;

BasedeDatos ListadeTrabajo

ColecciéndeListasdeTrabajos

Figura 4-11 Busqueda de listas de trabajos representada en un diagrama de colaboracion.

sean convenientes al garabatear los disefios. Para leer el diagrama, parta del mensaje 1y
siga los mensajes por nimero. No se pretende que en los diagramas de colaboracion se
usen marcos de interaccion y, como resultado, no transmiten tanta informacioén como el
diagrama de secuencia.

Observe el esquema de numeracion de la figura 4-11. Siempre he usado un esquema
sencillo de numeracion, tal como el descrito en esta figura, pero el UML version 2.0 vélido
requiere un esquema de numeracién anidada. Un esquema sencillo de nimeros es 1, 2, 3,
4, etc. El esquema de nimeros anidados del uML versién 2.0 es 1.1, 1.2, 2.1, 2.2, etc. El
esquema de numeracion anidada estd disefiado para mostrar llamadas de mensajes anida-
dos, pero se puede salir de control con rapidez. Si quiere usar el sistema de numeracién
del uML versién 2.0, entonces los mensajes se renumerarian como sigue: 1 sigue siendo 1,
2 se convierte en 1.1, 3 se convierte en 1.1.1, 4 se convierte en 1.2, 5 se convierte en 2, 6
se convierte en 2.1, 7 se convierte en 2.2 y 8 se convierte en 2.3.

SUGERENCIA Considere usar los diagramas de colaboracion cuando trabaje sobre un
pizarron blanco o sobre servilletas, o donde sea que garabatee sus inspirados diserios.
La naturaleza compacta y el uso de pocos adornos de los diagramas de colaboracion
los hacen mds manejables cuando se diseiia en forma manual.

Los diagramas de colaboracién tienen otros elementos comunes como las notas, las
restricciones y los estereotipos; estos elementos se usan de la misma manera que en los
diagramas de secuencia.

www.FreeLibros.me

Manual de umL

‘:%E;"""""""‘
Igualacion del diseno con el codigo

Los diagramas de interaccion le proporcionan informacién suficiente como para empezar
a codificar. Los objetos son casos de clases, de tal manera que necesita definir una clase
para cada objeto. En general, los mensajes se igualan con los métodos, y el método se
coloca en la clase del receptor (no del llamador).

En general, he encontrado que con las secuencias tengo la mayor parte de la informa-
cién que necesito para empezar a escribir el c6digo. La manera en que se implementa el
codigo se basa en un par de factores: 1) la experiencia que usted tenga y 2) el lenguaje de
implementacion. Por ejemplo, “ListadeTrabajo” y “ColeccidndeListasdeTrabajos” repre-
sentan una clase y una coleccion de objetos de esa clase. Si tuviera que implementar esto
en C#, entonces “ColecciondeListasdeTrabajos” se podria heredar de “System.Collectio-
ns.CollectionBase”, y esa decisién impulsa su implementacion (vea la lista).

public class ListadeTrabajo

{}

public class ColeccibéndelListasdeTrabajos: System.Collectio-
ns.CollectionBase

{}
public ListadeTrabajo this [int index]
{
get{return (ListadeTrabajo)List[index];}
set{List[index] = value;}
}
public int Add (ListadeTrabajo value)
{
return List.Add(value);
}
}

Advierta que en esta lista heredo de una coleccion base especifica, defino una propiedad
llamada esfo y le agrego el método mostrado en la secuencia. Es importante notar que la
secuencia disefiada no indicd la propiedad esto o la clase padre; los diagramas de secuen-
cia no lo haran. En este caso el lenguaje de implementacion —C# y la .NET Framework
de Microsoft— impulsé esta parte de la decision. Advierta también que la lista de trabajo
nada nos dice; es una clase vacia. Bien, la “ListadeTrabajo” de la secuencia tampoco nos
dice nada. Los diagramas de secuencia no son buenos para la especificacion de detalles del
c6digo; sin embargo, arrancamos interfaces. En este punto, depende de la experiencia de
sus desarrolladores cudnto cédigo pueden escribir. Los desarrolladores menos experimen-
tados necesitardn mas detalles, y los més experimentados necesitaran menos. Yo tiendo
a modelar el detalle que es suficiente para mi audiencia; los desarrolladores realizan la
implementacion.

www.FreeLibros.me

Comportamientos con diagramas de interaccion

Para empezar a especificar mas detalles, como las propiedades, los métodos de soporte
y las relaciones de herencia, podemos usar diagramas de clase. En el capitulo 5 profun-
dizaremos mas acerca de los diagramas de clases.

Tenga presente que existe una gran cantidad de conocimiento implicito en esta etapa.
En primer lugar, debe usted saber que es posible que su disefio cambie; en segundo,
cosas tales como las colecciones de salida se basan en patrones y, como se demuestra
en la lista del cédigo, el lenguaje y el marco de referencia (framework) impulsan la im-
plementacidn; en tercero, existen muchos patrones de disefio comunes y populares (vea
Erich Gamma et al., Design Patterns, Reading, MA: Addison Wesley, 1995) y no siempre
es necesario hacer mucho mas que expresar que se usa un patrén; no se requiere en abso-
luto que usted cree modelos para patrones publicos bien conocidos; y lo dltimo pero no
lo menos importante, existe un tema conocido como refactorizacion. La refactorizacion
es un medio metddico de simplificacién del codigo; se deriva de una tesis doctoral de
William Opdike y un libro muy publicitado, escrito por Martin Fowler (vea Refactoring:
Improving the Design of Existing Code, Reading, MA: Addison Wesley, 1999). Cuando
se emplea la refactorizacién, puede significar en la practica que una decision respecto a
un disefio se puede mejorar en el transcurso de la implementacion. Si la refactorizacion
es mejor que el disefio, entonces siga adelante y modifique el cédigo, y sencillamente
actualice el modelo para reflejar el cambio.

Nota En las figuras 4-9 y 4-10, demostramos una refactorizacion en el diseiio cuando
introdujimos el objeto “CriteriosdeBiisqueda”. Esta refactorizacion se nombra “Intro-
ducir objeto pardmetro”, lo cual sencillamente reemplaza una larga lista de pardme-
tros con un solo caso de una clase de pardmetros que contiene esos valores. También
nos escurrimos en un patron de diserio, “Iterador”. La coleccion tipo que se imple-
mento como una respuesta para la coleccion tipo de los objetos “ListadeTrabajo” de
la figura 4-10 se hereda de la CollectionBase de .NET, la cual, a su vez, implementa un
patrén IEnumerable (una implementacion del patron iterador). Los disefios y las imple-
mentaciones buenos se basan en patrones y refactorizaciones. Los buenos modelos de
disefios se basan en un simple, exacto y directo uso del uML y en incorporar patrones de
disefio y refactorizaciones.

Examen

1. Un diagrama de secuencia es un ejemplo de
un diagrama de colaboracion.
un diagrama de interaccion.

un diagrama de clases.

e e oo

un diagrama de casos de uso.

www.FreeLibros.me

_\@

@ Manual de umL

2. Los diagramas de secuencia describen todos los objetos que soporta un solo caso
de uso.
a. Verdadero
b. Falso

3. Los diagramas de secuencia son buenos para mostrar como implementar lineas de
codigo.
a. Verdadero
b. Falso

4. Una diagrama de colaboracién y uno de comunicacion difieren
a. porque los diagramas de colaboracion muestran aquellos objetos que interac-
tuan y los de comunicacién muestran como se comunican los objetos.

b. no en lo absoluto; los diagramas de colaboracién fueron sencillamente renom-
brados en el umL version 2.0.

c. porque los diagramas de colaboracién son geométricos y los de comunicacion
son lineales.

d. Tanto a como c.

5. Los diagramas de secuencia pueden modelar comportamiento asincrono y de enca-
minamiento multiple.

a. Verdadero

b. Falso

6. Los marcos de interaccion usan una condicion guardian para controlar cuando y
cual fragmento del cuadro ejecutar.

a. Verdadero
b. Falso

7. El marco de interaccion alt, llamado operador de interaccion,

se usa para mostrar un fragmento invalido.
modela comportamiento opcional.

muestra logica condicional.

/e o oo

modela comportamiento paralelo.

www.FreeLibros.me

8.

10.

Comportamientos con diagramas de interaccion @

— <€

Un buen disefio debe incluir tanto diagramas de secuencia como de colabora-
cion.

a. Verdadero

b. Falso

Se usan simbolos de activacion para mostrar

. la duracion de un objeto en un diagrama de secuencia.

a
b. la duracién de un objeto en un diagrama de comunicacion.
c¢. cuando se crea un objeto.

d

. Ninguno de los anteriores.

En el umL version 2.0 valido se emplea
a. un esquema de numeracion anidada para mostrar ordenamiento en el tiempo
en un diagrama de secuencia.

b. un esquema de numeracion anidada para mostrar ordenamiento en el tiempo
en un diagrama de comunicacion.

c. un esquema de numeracion simple para mostrar ordenamiento en el tiempo en
un diagrama de secuencia.

d. un esquema de numeracion simple para mostrar ordenamiento en el tiempo en
un diagrama de colaboracion.

Respuestas

H
e

O 0 NNk W=

o & o 0 & o o o &

www.FreeLibros.me

www.FreeLibros.me

CAPITULO

;Cuales son las
cosas que describen
mi problema?

En este capitulo se introducen los diagramas de clases, los cuales constituyen la
vista mds comun y mds importante del disefio que usted creard; se les llama estdti-
cos porque no describen accién; lo que hacen es mostrarle cosas y sus relaciones.
Los diagramas de clases se disefian para mostrar todas las piezas de su solucién
—cudles piezas se relacionan con ésta o se usan como partes de totalidades nue-
vas— y deben transmitir un sentido del sistema que se estructurara en reposo.

Para comunicarse en un nivel técnicamente preciso en el idioma del Unified
Modeling Language (UML), es de gran ayuda aprender palabras como asociacion,
composicion, agregacion, generalizacion y realizacion, pero para comunicarse en
forma suficiente y de manera eficaz, todo lo que debe conocer son palabras senci-
llas para describir relaciones completas y parte de ellas; es decir, relaciones padres
y relaciones hijos, y ser capaz de describir cudntas cosas de un tipo estan relacio-
nadas con cudntas de otro. Introduciré los términos técnicos, pero no se atasque
intentando memorizarlos. Con la prictica, llegard un momento en que incorporard
el idioma UML a su lenguaje cotidiano.

——&

www.FreeLibros.me

@ Manual de umL

Un mito comiin es que si encuentra usted todos los nombres y todos los verbos que
describen su problema, entonces ha descubierto todas las clases y métodos que necesita-
ra. Esto es incorrecto. La verdad es que los nombres y los verbos que describen su pro-
blema de manera suficiente para un usuario son las clases mds féciles de hallar y pueden
ayudarle a completar un andlisis util del problema, pero finalizard disefiando y usando
muchas mads clases que son necesarias para llenar los espacios en blanco.

Este capitulo le mostrard como crear diagramas de clases y empezard ayudandole a
deducir cémo encontrar la mayoria o todas las clases que necesitard para disefiar una
solucion. Un concepto importante es que muy pocos disefios requieren que se descubran
todos los detalles antes de que resulte la programacion. (Unas cuantas agencias guberna-
mentales y empresas, como la NAsA y General Dyanamics, pueden tener requisitos rigidos
que estipulen la complecién de un disefio, pero en la mayoria de los casos esto conduce
a tiempos de produccién muy largos y un gasto excesivo.)

En este capitulo, le mostraré cémo usar los elementos de los diagramas de clases,
c6mo crearlos y cdmo captar con anticipacion algunas ideas; también le mostraré algunas
maneras de descubrir algunas clases y comportamientos menos obvios. El lector apren-
derd como

* Identificar y usar los elementos de los diagramas de clases
» Crear diagramas de clases simples pero ttiles
* Modelar algunas expresiones avanzadas

* Deducir la manera de descubrir clases y comportamientos de soporte menos obvios

Elementos de los diagramas basicos de clase

Tontamente, en la preparatoria no me gusté la clase de Literatura y me dejaron perplejo
las clases de gramatica. Por fortuna, en la universidad empecé a ver el error de mi modo
de pensar. Aun cuando no soy un experto en gramatica inglesa, la comprension de cosas
como preposiciones, frases prepositivas, conjunciones, objetos, sujetos, verbos, tiempos
verbales, adjetivos, adverbios, articulos, voz activa y voz pasiva, asi como palabras pose-
sivas plurales y singulares ayuda mucho al escribir estos pasajes. La razén por la que le
digo esto es que, por desgracia, la gramética es un componente del UML porque es un len-
guaje, pero la gramatica de éste es mucho mas facil que la del inglés. ;Cudnto mas facil
es la del uML? La respuesta es que los dos elementos mds importantes en los diagramas
de clases, como en otros diagramas, son un rectdngulo y una linea. Los rectdngulos son
clases y las lineas son conectores que muestran la relacién entre esas clases.

Los diagramas de clases del uML pueden parecer tan desafiantes como Hamlet de
Shakespeare o tan faciles como la prosa de Hemingway en El Sol también sale, pero
ambos pueden relatar una historia con igual propiedad. Como regla general, enféquese
en las clases y sus relaciones, y use elementos mds avanzados, los cuales también expon-

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_\QQ:)

dré, cuando sea necesario. Evite la idea de que los diagramas de clases deben decorarse
ampliamente para que sean ttiles.

Comprension de las clases y los objetos

El rectangulo en un diagrama de clases se llama clasificador. El clasificador puede decir-
le el nombre de la clase y el nombre de un ejemplo de esa clase, llamado objeto. Al final,
las clases incluirdn comportamientos y atributos, llamados también, en forma colectiva
caracteristicas. Los atributos pueden ser campos, propiedades o ambos. Los comporta-
mientos se considerardn como métodos (figura 5-1).

De modo significativo, en los diagramas de clases se usard el sencillo clasificador re-
presentando por la clase “Motocicleta” de la figura 5-1. Los otros tipos son importantes
y vale la pena examinarlos. Tomemos un momento para hacerlo.

SUGERENCIA Cuando empiece a captar clases en sus modelos, concibalos de modo con-
ceptual como una fase del andlisis, basta empezar solamente con clases y relaciones. Las
caracteristicas se agregan mds adelante.

Uso de clases sencillas

La clase (mostrada en la figura 5-1 como “Motocicleta”) es el elemento mas comtin en
el diagrama de clases. Las clases, a final de cuentas, son cosas en su andlisis y disefio, y
pueden ser cosas especificas del dominio o cosas de apoyo. Considere el ejemplo de los
dos pérrafos siguientes.

La Groves Motorsports de Mason, Michigan, vende motocicletas, ATV (vehiculos para
todo terreno), vehiculos automotores para nieve y accesorios. Si estuviéramos disefian-

«tipo de datos»
«interfaz» Cliente
KDX220R IVisitante
Ejemplo de Motocicleta Interfaz Entidad persistida

S
i__Tipo
«metaclase» Clasificar
Motocicleta MiMetaclase
+e()
Clase Clase de una clase Genérico o plantilla

Figura 5-1 Ejemplos de clasificadores en el UML.

www.FreeLibros.me

@ Manual de umL

do un sistema de inventario para Groves Motorsports, entonces el personal de ventas, los
compradores y los mecanicos podrian platicarnos acerca de las motocicletas, los ATV,
los vehiculos para nieve, las botas, los cascos y los articulos de ventas relacionados. Con
base en esta exposicion, podriamos deducir con facilidad clases iniciales como “Articu-
loparaVentas” y “Motocicleta”. Suponga ahora que debemos administrar el inventario
usando una base de datos en forma de relaciéon. Ahora necesitamos saber cudl tipo de base
de datos y cudles son las clases que describen cémo interactuamos con los articulos del
inventario, es decir, como lo leemos y escribimos.

El resultado es que un diagrama de clases puede tener clases que describen los articulos
de inventario, pero otros pueden describir elementos como promociones y ventas, finan-
ciamiento y administracién de articulos que no son para venta, pero que pueden ser parte
del inventario de articulos introducidos para mantenimiento. La parte dificil del disefio es
encontrar y describir estas relaciones. Una motocicleta todavia es una motocicleta ya sea
para venta o si se introduce para servicio, y podemos usar la misma clase ‘“Motocicleta”,
pero necesitaremos mostrar tipos diferentes de relaciones basadas en un ejemplo particular
de esa clase.

Uso de objetos

Un tipo de diagrama de clases es un diagrama de objetos. Los diagramas de objetos mues-
tran ejemplos de clases y sus relaciones. En el UML, un objeto se distingue de una clase
subrayando el nombre en el compartimiento superior del rectdngulo. Esto se ilustra en la
figura 5-1 por mi Kawasaki KDX 220R inspirada por la crisis de mediados de mi vida.

Uso de interfaces

A menudo los programadores tienen problemas con las interfaces (vea “Ivisitante” en la
figura 5-1). Las interfaces son equivalentes a clases abstractas puras. Al decir que una
interfaz es puramente abstracta, estoy afirmando que una interfaz no tendrd cédigo eje-
cutable. Las interfaces constituyen un elemento critico en los diagramas de clases y el
software; tomemos un momento para entender por qué.

Cuando uso herencia, quiero dar a entender que una cosa también puede concebirse
como otro tipo de cosa. Por ejemplo, tanto una motocicleta como un ATV son tipos de
vehiculos recreativos. Esta descripcion representa una relacion de herencia, y en la cual
no se usa una interfaz. Comparativamente, un control remoto envia sefiales infrarrojas
para cambiar los canales, atenuar el volumen, empezar a grabar o abrir y cerrar la puerta
de una cochera. Los aparatos que reciben estas sefiales pueden no estar relacionados. Por
ejemplo, tanto una TV como el abridor de la puerta de una cochera tienen una caracteristi-
ca de hacia arriba y hacia abajo, y los abridores de puertas de cocheras y las televisiones
se venden con controles remotos, pero el abridor de la puerta de un cochera no es un tipo
de television o viceversa, pero cada uno tiene la capacidad de realizar una operacién de

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_\QB

hacia arriba y hacia abajo. Hacia arriba y hacia abajo aumentan o disminuyen el volumen
de una television, o hacia arriba y hacia abajo suben y bajan la puerta de una cochera.
Esta capacidad que soporta hacia arriba y hacia abajo a través de un dispositivo de accién
remota es una interfaz o faceta relacionada de cada uno de los aparatos no relacionados.
La forma en que se implementa este comportamiento tampoco estd relacionada por com-
pleto, pero no necesita estarlo.

Las interfaces se usan cuando las partes de las cosas tienen facetas semanticamente
similares —comportamientos de hacia arriba y hacia abajo—, pero no tienen genealogia
relacionada.

Por convencién, usamos el estereotipo interfaz y colocamos el prefijo “I” a las inter-
faces, como se muestra en la figura 5-1. Considerando la interfaz “1visitante” de la figura
5-1, podriamos decir que los visitantes tienen una caracteristica tipo. Las pulgas pueden
visitar un perro, y su cufiado puede visitarlo a usted en su casa, pero una pulga es un tipo
de visitante de perro y su cufiado, Enrique, es un tipo de visitante familiar. Las pulgas y
Enrique no son tipos semejantes de cosas (ni con el juego de palabras acerca de los para-
sitos se pretende que haya semejanzas).

Uso de tipos de datos

Se suele usar el estereotipo de «tipo de datos» para mostrar datos sencillos como “En-
tero” (“Integer”). Si estuviera diseflando un lenguaje de programacidn, entonces sus
diagramas de clases podrian mostrar tipos de datos, pero en general, yo modelo estos
elementos como atributos de clases y clasificadores de reserva como “Motocicleta” y
“ListadeTrabajo”.

Uso de tipos parametrizados o genéricos

Los sinénimos pueden hacer que la vida sea confusa. En el UML, tipos parametrizados
significa lo mismo que genéricos en C# y Java, y plantillas en C++. Una clase parame-
trizada es aquella en la que, en el tiempo de ejecucion, se especifica un tipo de datos
primarios. Para entender las clases parametrizadas, considere un ejemplo clésico.

(Qué clasifica un algoritmo clasificador? La respuesta es que este tipo de algoritmo
puede clasificar cualquier cosa; nimeros, nombres, inventario, corchetes de impuestos
sobre la renta o listas de trabajos pueden todos ser clasificados. Al separar el tipo de datos
—mnitimero, cadena, “ListadeTrabajo”— del algoritmo, tiene un tipo parametrizado. Las
clases parametrizadas se usan para separar la implementacién del tipo de datos. En la
clase “Clasificar” de la figura 5-1 se muestra que en un tipo parametrizado se usa el rec-
tangulo con un rectangulo pequefio trazado con lineas punteadas en el que se especifica
el tipo de parametro.

Vale la pena hacer notar que usar bien las plantillas se considera una parte avanzada del
disefio de software y que existe una cantidad tremenda de software grande sin plantillas.

www.FreeLibros.me

@ Manual de umL

Uso de metaclases

Una metaclase es una clase de una clase. Esto parece haber evolucionado para manejar
el problema de obtencién de informacidn del tiempo de ejecucién acerca de las clases.
En la prictica, se puede hacer pasar una metaclase como un objeto. Las metaclases se
soportan de manera directa en lenguajes como Delphi; por ejemplo, dada una clase “Lis-
tadeTrabajo”, podriamos definir una metaclase y nombrarla (por convencién) “tlistade-
Trabajo”, pasando ejemplos de esta dltima como pardmetro. Se podria usar la metaclase
“rlistadeTrabajo” para crear ejemplos de “ListadeTrabajo”. En un lenguaje como C#,
las metaclases no se soportan en forma directa. En lugar de ello, en C# se usa un objeto
“Type” (“Tipo”) que representa la especie de un ejemplo de una metaclase universal; es
decir, toda clase tiene un metaobjeto asociado que conoce todo acerca de las clases de
ese tipo. Una vez mds, en C#, existe la clase “Type” para soportar el descubrimiento del
tiempo de ejecucion, dindmico, acerca de las clases.

Nora Existe otro concepto metadatos, que es semejante a la nocion de metaclases. Sin
embargo, metadatos son datos que describen datos y a menudo se usan para transmitir
informacion adicional relativa a datos; por ejemplo, a veces se usan metadatos para
describir valores vdlidos para los datos. Suponga que estuviera usted escribiendo un
sistema de contabilidad y que las fechas vdlidas de las facturas fueran del 1° de enero
de 1990 hasta los tiempos que corren. La mayoria de los tipos de fechas soportan fechas
muy anteriores a la de 1/1/1990, pero usted podria usar el objeto metadatos de fechas
con el fin de indicar que, para sus fines, las fechas vdlidas empezaron en 1/1/1990, en
lugar de la fecha mds antigua para el tipo de datos de su lenguaje.

Existen algunas aplicaciones practicas para las metaclases. En Delphi, las metaclases se
usan para soportar la creacion de un control que se arrastre desde el panel de control (caja de
herramientas) hasta una forma en el momento del disefio. En .NET, se usa el objeto “Type”
—un tipo de implementacién de la metaclase— para soportar dindmicamente la carga, la
creacion y el uso de objetos. Microsoft llama a esta capacidad ‘“Reflection” (‘“Reflexién’),
pero basicamente es una implementacion del idioma de metaclases. Como consecuencia,
cuando los disefiadores de Delphi y Visual Studio estaban disefiando sus respectivas he-
rramientas, puede ser que hayan usado el clasificador de metaclases en sus modelos UML,
suponiendo que usaron estos modelos. Es importante reconocer que precisamente como
diferentes herramientas UML soportardn diferentes niveles de compatibilidad de uML, los
diversos lenguajes soportardn varias decisiones de disefio de maneras distintas.

Decoracion de las clases

El simbolo de clasificador se divide en regiones rectangulares (vea la clase “Motocicleta”
en la figura 5-1). El rectangulo de mds arriba contiene el nombre de la clase y los este-
reotipos de la misma. La segunda regién rectangular, viniendo de arriba, contiene los atri-

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_\Q@

Motocicleta

—motor

+ObtenerSalidadePotencia()

Figura 5-2 Clase “Motocicleta” con un modificador de acceso privado en un atributo motor.

butos (figura 5-2). Como se muestra en la figura 5-2, la clase “Motocicleta” tiene un atribu-
to “motor”. El rectangulo de abajo contiene los comportamientos (o métodos). En la figura
5-2, la clase “Motocicleta” contiene un método llamado “ObtenerSalidadePotencia”.

Cada uno de los atributos y métodos se pueden decorar con modificadores de acceso.
(Recuerde que el término caracteristica significa en forma genérica “método o atribu-
to”.) Las caracteristicas se pueden decorar con los modificadores de acceso +, — o #. El
simbolo de mas (+) significa que una caracteristica es publica, o sea, disponible para
consumo externo. El simbolo de menos (—) significa que una caracteristica es privada, o
sea, para consumo interno, y el simbolo de nimero (#) significa que una caracteristica no
es publica ni privada. Por lo comun, el simbolo de nimero significa que una caracteris-
tica es para consumo interno o consumo por parte de las clases hijos. Este simbolo suele
igualarse a un miembro protegido. En general, las herramientas umL hardn en forma
predeterminada que los métodos sean publicos y los atributos privados.

Uso de atributos

En muchos lenguajes modernos se establece una distincién entre propiedades y campos.
Un campo representa lo que las clases de usted saben, y una propiedad representa una
funcién implicita para leer campos privados y escribir en ellos. No es necesario captar
tanto los campos como las propiedades; basta con capturar los campos.

Cuando agrega clases a sus diagramas de clases, agrega los campos y los hace privados.
Depende de quienes implementan sus disefios el agregar métodos de propiedad, si estan
soportados. Si su lenguaje no soporta propiedades, entonces, en el curso de la implemen-
tacidn, use métodos como get_Fieldl (obtener_Campol) y set_Fieldl (fijar_Campol)
para cada campo, con el fin de restringir el acceso a los datos de una clase.

SUGERENCIA Agregar campos privados y depender de un conocimiento implicito de que
los campos son accesados a través de métodos, ya sean piiblicos o privados, es una prdc-
tica recomendada pero no impuesta o parte del UML. Este estilo de implementacion de
disefio simplemente es considerada una buena prdctica.

Declaracion de atributos

Los atributos se muestran como una linea de texto; necesitan un modificador de acceso
para determinar la visibilidad. Los atributos necesitan incluir un nombre; pueden incluir

www.FreeLibros.me

@ Manual de umL

un tipo de datos y valor predeterminado, y pueden tener otros modificadores que indi-
quen si el atributo es s6lo de lectura, s6lo de escritura, estitico o algo mas.

En la figura 5-2, el atributo “motor” tiene un modificador de acceso privado y sélo un
nombre. Enseguida se dan algunas declaraciones mds completas de atributos que contie-
nen ejemplos de los elementos que expusimos:

—Tipo : TipodeMotor = TipodeMotor.DosTiempos
—Tamafio : cadena = “220cc”
—Marca : cadena = “Kawasaki” {sélo lectura}

En esta lista tenemos un atributo privado nombrado “Tipo”, cuyo tipo de datos es “Tipo-
deMotor”, y su valor predeterminado “TipodeMotor.DosTiempos”. Tenemos un atributo
nombrado “Tamafio” con un tipo de datos de “cadena” y un valor predeterminado de
“220cc”. Y el dltimo atributo es una cadena nombrada “Marca” con un valor predetermi-
nado de “Kawasaki”; el atributo “Marca” es de solo lectura.

Declaracion de atributos con asociacion

Los atributos también se pueden describir como una asociacion. Esto s6lo significa que
el atributo se modela como una clase con un conector entre la clase contenedora y la clase
del atributo. Pueden estar presentes todos los elementos mencionados con anterioridad,
sencillamente se disponen de manera diferente.

Considere el atributo “motor” que se muestra en la figura 5-2. Este atributo podria re-
ferirse a una asociacién a una clase “Motor” (figura 5-3); ademds, los atributos —*“Tipo”,
“Tamafio” y “Marca”— se podrian poner en una lista como miembros de la clase “Motor”.

Cuando use un atributo de asociacion, deje la declaracién del campo fuera de la clase.
El enlace de asociacion (mostrado como “motor”) en la figura 5-3 desempeifia ese papel;
no hay necesidad de repetir la declaracion en forma directa en la clase contenedora. El
conector de asociacién se nombra. Este nombre representa el nombre del campo: en la
figura 5-3, el nombre es “motor” y la clase es “Motor”. Los atributos de asociacién tam-
bién pueden contener una multiplicidad, 1a cual indica cudntos de cada elemento intervie-
nen en la asociacion. En el ejemplo, una motocicleta tiene un motor. Si la relacién fuera
“Aviones” y “Motores”, entonces podriamos tener un asterisco enseguida de la clase
“Motor” con el fin de indicar que los aviones pueden tener mas de un motor.

SUGERENCIA En algunas convenciones se usa un prefijo articulo para un nombre de aso-
ciacion, como “el” (“la”) o “un” (“una’), como en “elMotor” o “unMotor”.

Motocicleta Motor

—motor

1 1

Figura 5-3 Manera de mostrar el atributo “motor” usando una asociacion.

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_\@9

Motocicleta

—motor : Motor

Figura 5-4 Esta figura transmite una informacion idéntica a la que se muestra en la figura 5-4;
es decir, una motocicleta contiene un motor cuyo tipo es “Motor”.

El diagrama de clases de la figura 5-3 transmite una informacién idéntica a la del
diagrama de la figura 5-4. Los diagramas de clase pueden volverse con facilidad dema-
siado complejos si todos los atributos se modelan como asociaciones. Una buena regla
empirica es mostrar tipos simples como declaraciones de campo en la clase contenedora
y mostrar tipos compuestos (clases) como atributos de asociacion. En la figura 5-5, se
muestra como podemos detallar la clase “Motor” de modo mds completo, usando un atri-
buto de asociacion en lugar de sélo un campo “motor”. (En la figura 5-5, se agregan los
campos usados para describir un motor mencionado con anterioridad.)

En la figura 5-5, queremos decir que s6lo una motocicleta tiene un motor Kawasaki
de dos tiempos y 220cc. (Es posible que esto no sea cierto en la vida real, pero eso es lo
que transmite el modelo.)

NoTA Mencioné que el diagrama de la figura 5-5 significa que sélo una motocicleta tiene
un motor Kawasaki de dos tiempos y 220cc, pero que esta informacion puede ser inexacta.
Al hacerlo, de manera inadvertida volvi a ilustrar uno de los valores de los diagramas de
clases: un diagrama de clases es una imagen que significa algo, y los expertos pueden ob-
servarla y decirle a usted con rapidez si ha captado algo que se basa en hechos y es iitil.

Motocicleta —motor Motor

—Tamafio : cadena = 220cc
—Marca : cadena = Kawasaki

1 —-motorTipo

«enumeracion»
TipodeMotor

+DosTiempos = DosTiempos
+CuatroTiempos = CuatroTiempos

Figura 5-5 Este diagrama de clases contiene mas informacion acerca del motor de la motoci-
cleta al usar un atributo de asociacion para el motor y un segundo atributo de asociacion para los
tipos posibles de motores.

www.FreeLibros.me

@ Manual de umL

Arreglos de atributos y multiplicidad

Un solo tipo de atributo podria representar mas de uno de ese tipo. Esto implica la mul-
tiplicidad y, posiblemente, el ordenamiento de los atributos. Puede haber méds de uno de
algo; por ejemplo, se podrian modelar aviones de multiples motores como un avién con
un arreglo de motores, y los arreglos se pueden ordenar o desordenar. La multiplicidad
se indica con la mayor facilidad agregando un conteo a un atributo de asociacion, y los
atributos ordenados o desordenados se pueden anotar usando las palabras ordenado o
desordenado entre corchetes. En la tabla 5-1, se muestran los conteos posibles de multi-
plicidad y se proporciona una descripcion para cada uno.

Los indicadores de multiplicidad se usan en otros contextos y tienen el mismo sig-
nificado de conteo cuando se aplican a otros elementos UML junto con asociaciones de
atributos.

SUGERENCIA Si los valores superior e inferior son idénticos, entonces use un indicador
de multiplicidad de un solo valor, como 1, en lugar de 1..1.

Cuando se habla de multiplicidades, podria escuchar los términos opcional, aplicado a
multiplicidades con cota inferior a 1, obligatorio, si se requiere al menos uno, de un solo
valor, si s6lo se permite uno, y de valores miiltiples, si se usa un asterisco.

Indicacion de unicidad

Los atributos se pueden anotar para indicar unicidad. Por ejemplo, si un campo repre-
senta una clave en una tabla de verificacién o una clave primaria en una base de datos en
forma de relacién, entonces puede resultar dtil anotar ese atributo con los modificadores
{tnico} o {no tnico}. Por ejemplo, si quiere indicar que la “IDdelaListadeTrabajo” es un
campo con valor tinico, entonces lo definimos en la clase como sigue:

—IDdelaListadeTrabajo : entero {inico}

Si quiere indicar que el valor clave de una coleccién debe ser tnico, entonces use el
modificador {unico}. Si las claves se pueden repetir, entonces use {no unico}. Rara vez

1 Sélo 1

* Muchos

0.1 Ceroo 1

0..* Una cota inferior a cero y una superior a infinito; esto es equivalente a *

1.1 Uno y sélo uno; esto es equivalente a 1

1.% Una cota inferior de por lo menos uno y una superior de infinito

m, n Indicacién de una multiplicidad no contigua, como 3 o 5; ya no es valido en el uML

Tabla 5-1 Indicadores de multiplicidad.

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_‘ab

los modeladores tienen tanto tiempo que usan diagramas muy detallados que incluyen
{no ordenada} para dar a entender tabla de verificacién. En general, los modeladores sen-
cillamente expresan el tipo de datos del atributo, pero vale la pena saber que en el UML se
especifica ordenado contra no ordenado, y tnico contra no unico, y no arreglo o tabla de
verificacion. Los arreglos y las tablas de verificacion representan soluciones conocidas
de disefio, no aspectos del lenguaje UML.

Modo de agregar operaciones a las clases

Puede ser util pensar en el modelado como algo que pasa por un ciclo desde una macrovi-
sién de alto nivel hasta, en forma sucesiva, microvisiones de nivel inferior y, por dltimo,
al cédigo, la microvision mds detallada. La macrofase se puede concebir como una fase
del andlisis. En el curso de esta fase, podria bastar captar clases y relaciones conforme
usted empieza a entender el espacio del problema. Conforme mejora su comprension y
empieza a captar los detalles de una solucién —avanzando de una macrocomprension
hacia una microcomprensién més detallada— empieza a desarrollar el disefio. En esta
coyuntura, puede regresar a sus diagramas de clases y empezar a agregar operaciones
y atributos. Las operaciones, los comportamientos y los métodos se refieren, todos, a lo
mismo. En el uML, por lo general decimos operacion y al codificar, por lo general deci-
mos método.

Las operaciones se muestran en el rectingulo que estd mas abajo en un clasificador.
Las operaciones tienen un modificador de visibilidad como los atributos. Las operacio-
nes incluyen un tipo de datos de retorno; un nombre; una lista de pardmetros que incluye
nombres, tipos de datos y modificadores, y modificadores adicionales que pueden indicar
si una operacion es estatica, virtual o algo mas.

Como mencioné con anterioridad, no es necesario mostrar los métodos de propieda-
des. También puede ahorrar algo de tiempo al no desarrollar las operaciones no publicas
con gran detalle. En general, las operaciones publicas describirdn en forma suficiente los
comportamientos de la clase, y puede dejar los miembros no publicos a los dispositivos
de sus programadores.

Como en realidad yo no tengo una aplicacién que represente motocicletas o un inven-
tario de vehiculos para una tienda de vehiculos motorizados deportivos, cambiemos un
poco los ejemplos. En ocasiones, voy a Las Vegas y participo en un pequeio “BlackJack”
(figura 5-6). Debido a que me gusta entretenerme tanto como sea posible a cambio de mi
dinero, quise practicar “BlackJack™ de una manera en que me hiciera un mejor jugador.
Por tanto, escribi un juego de “BlackJack™ que proporcionaba sugerencias con base en
el mejor curso de la accion para ganar una mano. (Esta aplicaciéon estd terminada y el
codigo se encuentra en linea en www.softconcepts.com.) En ese ejemplo, hay muchas
clases, incluyendo una que representa la mano de un jugador como una lista de cartas.
En el clasificador de la figura 5-7, se muestran algunas de las signaturas de operaciones
usadas para implementar la clase “Mano” (“Hand”).

www.FreeLibros.me

www.softconcepts.com.

Manual de umL

BlackJack for Windows

Game Choices Help

Double

Flayer 20 Eiet: $25 00 Balance: $500.00 |Dealer: 22

Figura 5-6 El juego “BlackJack for Windows”.

Hand

+Add(in card : Card) : int
+New() : void
+GetTextHand() : string
+TextPrintHand() : void
+IsBlackJack() : bool
+IsBust() : bool
+BustedAtValue() : int
+GetHandValueLow() : int
+GetHandValueHigh() : int
+GetBestValue() : int
#GetHandWidth() : int
+GraphicPrintHand(in g : Graphics, in x : int, in y : int, in cardWidth : int, in cardHeight : int, in focused : bool) : void
+Stand() : void

+Dump() : void

Figura 5-7 Clasificador que muestra varias de las signaturas para la clase “Mano” (“Hand”).

Modelado de relaciones en los diagramas de clases

Los diagramas de clases constan principalmente de clasificadores con atributos y opera-
ciones asi como de conectores que describen las relaciones entre las clases. En alrededor
del 80% de sus diagramas de clases sdlo usard estas caracteristicas. Sin embargo, aun
cuando esto suena sencillo, se pueden usar estos diagramas para describir algunas rela-
ciones muy avanzadas. Por nombre, estas relaciones incluyen generalizacion, herencia,

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_\@)

realizacién, composicion, agregacion, dependencia y asociacion. Con mayor refinacion,
los conectores que describen estas relaciones pueden ser dirigidos o no dirigidos y bidi-
reccionales o no direccionales, y pueden expresar multiplicidad (precisamente como la
multiplicidad de los atributos). En esta seccién introduciré estos conectores, pero espera-
ré hasta el capitulo 6 para examinar ejemplos con més detalle.

Modelado de asociaciones

El conector de asociacion es una linea continua. Si es dirigida, entonces la linea continua
puede tener una flecha de figura de palillos en cualquiera de los dos extremos o en ambos.
Por ejemplo, en la seccién anterior impliqué que una “Mano” de blackjack estd compues-
ta de objetos “Carta” (“Card”). Podria modelar esta relacién agregando una clase “Carta”
a la clase “Mano” introducida en la figura 5-7 y conectando los clasificadores “Mano”
y “Carta” con un conector de asociacion. Vea la figura 5-5 en relacién con un ejemplo
visual de dos asociaciones, una entre “Motocicleta” y “Motor” y otro entre ‘“Motor” y
“TipodeMotor”.

Precisamente como en la figura 5-5, las asociaciones pueden expresar multiplicidad en
cualquiera de los dos extremos del conector. En la figura 5-5, se indica que una “Moto-
cicleta” estd asociada con un “Motor”, y en la 5-8 se indica que existe por lo menos una
mano y que cada una de éstas puede contener muchas cartas.

Si hay una flecha en cualquiera de los dos extremos de una asociacién (figura 5-8),
entonces se dice que la asociacidn es dirigida o direccional. El extremo con la flecha es el
objetivo o el objeto hacia el que se puede navegar. El extremo sin la flecha se llama fuen-
te. Navegacion sencillamente significa que la fuente —“Mano” de la figura 5-8— tiene
un atributo del tipo del objetivo —*“Carta”. Si la asociacion fuera bidireccional, entonces
“Mano” tendria un atributo “Carta”, y ésta tendria un atributo “Mano”. Si la asociacién
fuera no dirigida —no hay flechas— entonces se supone una asociacién bidireccional.

Modelado de agregacion y composicion

La agregacion y la composicion tienen que ver con las relaciones de totalidad y parte.
El conector para la agregacion es un diamante hueco, una recta y, de manera opcional,
una flecha de figura de palillos. El diamante se agrega al clasificador de totalidad y la
flecha al de parte. Un conector de composicion se parece al de agregacion, excepto que
el diamante est4 relleno.

Mano Carta

1.% *

Figura 5-8 “Mano” y “Carta” estan asociados de manera unidireccional, lo cual significa que
“Mano” tiene un atributo “Carta”.

www.FreeLibros.me

@ Manual de umL

Imaginarse como usar la agregacion y la composicion se puede decidir de manera muy
sencilla. La agregacion es azucar sintactica y no es diferente de una asociacién; usted no
la necesita. La composicidn es agregacion, excepto que la clase totalidad es responsable
de la creacion y de la destruccion de la clase parte, y esta ultima no puede existir en al-
guna otra relacioén al mismo tiempo. Por ejemplo, el motor de una motocicleta no puede
estar en una segunda motocicleta al mismo tiempo; eso es composiciéon. Como Fowler
dice: en una relacién de composicién hay una regla de “no compartir”, pero los objetos
parte se pueden compartir en las relaciones de asociacién y agregacion.

Antes de observar la figura 5-9, compare la agregacion (o asociacién) con la composi-
cién pensando en el popular juego de péquer Texas hold’em, en el cual cada jugador tiene
dos cartas y, a continuacion, se dan cinco cartas. Cada jugador forma la mejor mano po-
sible de cinco cartas usando sus dos cartas y las cinco compartidas. Es decir, la mano de
cada jugador es un agregado de cinco de las siete cartas, cinco de las cuales estan disponi-
bles para todos los jugadores; o sea que se comparten cinco cartas. Si fuéramos a escribir
una version en software del Texas hold’em usando nuestra abstraccion “Mano”, entonces
cada uno de los jugadores tendria una referencia hacia las cinco cartas compartidas. En la
figura 5-9, se muestra la agregacion a la izquierda y la composicién a la derecha.

Modelado de la herencia

Es importante tener presente que el UML es un lenguaje distinto, distinto de su lenguaje
favorito de programacién orientado a objetos y, en general, distinto de los lenguajes de
programacion orientados a objetos. Por tanto, para ser modelador con UML, necesita ser
multilingiie; los modeladores con UML necesitan hablar este lenguaje y, en realidad, ayu-
da hablar el lenguaje orientado a objetos que se usard para implementar el disefio. En el
idioma UML, la herencia es la generalizacion. Esto significa que los programadores pue-
den decir herencia cuando quieren decir generalizacion, y cuando dicen generalizacion,
puede ser que quieran decir herencia.

NOTA Desafortunadamente, las relaciones de herencia sufren de una plétora de siné-
nimos. Herencia, generalizacion y es un(a) se refieren a lo mismo. Las palabras padre
e hijo también se mencionan como superclase o clase base y subclase. Base, padre y
superclase significan lo mismo. Hijo y subclase significan lo mismo. Los términos que
escuche dependen de quién le estd hablando a usted. Para empeorar las cosas, a veces
estas palabras se usan en forma incorrecta.

Totalidad Parte Totalidad Parte
Ko>— > <>
1 1 1 1
agregacion composicion

Figura 5-9 La agregacién es semanticamente idéntica a la asociacién, y la composicion signifi-
ca que la clase compuesta es la tnica clase que tiene una referencia hacia la clase propietaria.

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_‘@

La generalizacion se refiere a una relacion del tipo es un(a) o de posibilidad de sustitu-
cion y se refleja en un diagrama UML de clases por medio de un conector de linea continua
con un tridngulo hueco en uno de los extremos. El tridngulo apunta hacia el padre y el
otro extremo se conecta al hijo.

En una relacion de herencia, la clase hijo recibe todas las caracteristicas de la clase
padre y, a continuacion, se pueden agregar algunas caracteristicas propias. El polimor-
fismo funciona porque las clases hijos son factibles de sustituirse por clases padres. La
posibilidad de ser sustituido significa que si se define una operacion o sentencia para
usar un argumento de un tipo padre, entonces cualquier tipo hijo se puede sustituir por
cualquier tipo padre. Considere un ejemplo de Motown-jobs.com (www.motown-jobs.
com). Si se define una clase “Lista” como una clase padre y “Curriculo”, “Trabajo” o
“Anuncio” se definen como clases hijo para “Lista” (padre), entonces en cualquier parte
en la que se defina un argumento “Lista”, se puede sustituir con uno de “Curriculo”,
“Trabajo” o “Anuncio”. En la figura 5-10, se muestra esta relacion.

Cualquier miembro publico o protegido de “Lista” se convierte en un miembro de
“Trabajo”, “Curriculo” y “Anuncio”. De manera implicita, los miembros privados son
parte de “Trabajo”, “Curriculo ” y “Anuncio”, pero estas clases hijos —y cualesquiera
clases hijos— no pueden tener acceso a los miembros privados de la clase padre (o clases
padres, si se soporta la herencia multiple).

Modelado de realizaciones

Las relaciones de realizacion se refieren a heredar de interfaces de realizacion o las
propias interfaces. El conector es casi idéntico a uno de generalizacién, excepto que la
linea de conexién es punteada con un tridngulo hueco, en lugar de ser continua y con
un tridngulo del mismo tipo. Cuando una clase realiza una interfaz, o se hereda de ésta,
basicamente la clase estd aceptando que proporcionard una implementacion para las ca-
racteristicas declaradas por esa interfaz. En la figura 5-11, se muestra la representacion
visual de una clase “Radio” que realiza la interfaz “rVolumen”. (Tenga presente que el

=1

prefijo “1” es sencillamente una convencion y no parte del UML.)

Lista

Curriculo Publicidad Trabajo

Figura 5-10 Esta figura muestra que “Curriculo”, “Trabajo” y “Publicidad” se heredan de “Lista”.

www.FreeLibros.me

www.motown-jobs.com.
www.motown-jobs.com.

Manual de umL

«interfaz»
1Volumen

+VolumenhaciaArriba()
+VolumenhaciaAbajo()

A
|
|
|
|
|
|
|
1
Radio Radio
1Volumen O——
Realizacion, estilo 1 Realizacion, estilo 2

Figura 5-11 La realizacion, o herencia de interfaz, se puede mostrar en cualquiera de los dos
estilos, como se ilustra en la figura.

Para ayudarle a familiarizarse con la herencia de interfaz, agregué un estilo alterno a
la derecha de la figura 5-11. Muchas herramientas de modelado soportan los dos estilos.
Elija un estilo y adhiérase a él. (Yo prefiero el de la izquierda de la figura 5-11, descrito
en el parrafo anterior.)

Modelado de dependencia

La relacion de dependencia es de cliente y proveedor. Una clase, el cliente, depende de
una segunda clase, el proveedor, para proporcionar un servicio. El simbolo para una re-
lacion de dependencia luce como una asociacién unidireccional, excepto que la linea es
punteada en lugar de continua (figura 5-12).

Suponga, por ejemplo, que decidimos soportar varios estilos de presentacion para los
usuarios de “BlackJack”. Podriamos ofrecer una consola, Windows o una interfaz grafica
web del usuario (GuI). A continuacién, podriamos definir un método “Imprimir” que de-
penda de una “ImpresoradeCartas” especifica. Si la “ImpresoradeCartas” es una impresora
grafica, entonces podriamos presentar un mapa de bits de la carta, pero si la “Impresora-
deCartas” es una impresora basada en DOS, entonces puede ser que s6lo escribamos texto
en la consola. En la figura 5-13, se muestra la relacién de dependencia combinada con
generalizacion para reflejar diversas clases de “ImpresoradeCartas’.

Carta ImpresoradeCartas

Figura 5-12 Esta figura muestra que la “Carta” depende de la “ImpresoradeCartas”, en donde
“Carta” es el cliente e “ImpresoradeCartas” es el proveedor.

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema? @

Carta ImpresoradeCartas
+Imprimir()
~
ImpresoraGrificadeCartas ImpresoradeCartascomoTexto ImpresoraWebdeCartas

Figura 5-13 La relacion de dependencia ahora incluye generalizacién que muestra tipos especi-
ficos de objetos “ImpresoradeCartas”.

SUGERENCIA Vale la pena hacer notar que en la figura 5-13 se introduce un concepto:
resulta una buena prdctica captar varias facetas de un diseiio en diagramas separados.
Por ejemplo, en esa figura, puede ser que no estemos mostrando todas las clases del
juego “BlackJack”, pero estamos mostrando relaciones iitiles entre la clase “Carta” y
las clases que suministran impresion.

Otra caracteristica util es que los conectores como la dependencia se asocian con
estereotipos predefinidos. Un estereotipo agrega significado. En el capitulo 6, examina-
remos los estereotipos, cuando examinemos con mayor detalle como se relacionan las
clases.

Estereotipado de las clases

El estereotipo es un medio por el cual el UML se puede extender y evolucionar. En forma
visual, los estereotipos aparecen entre comillas angulares («estereotipo»). Hay varios
estereotipos predefinidos para los simbolos de umL, como el clasificador; el lector tiene
la libertad de adoptar nuevos estereotipos, si surge la necesidad. En la figura 5-11, se
muestra un ejemplo en donde se uso el estereotipo «interfaz», con el fin de indicar que un
clasificador representa una interfaz.

SUGERENCIA Algunas herramientas de modelado del umL reemplazardn a los estereoti-
pos con simbolos especificos, cambiando la apariencia de un diagrama, aun cuando no
se altere el significado. Por ejemplo, tanto el clasificador con el estereotipo «interfaz»
como el circulo hueco de la figura 5-11 reflejan con exactitud la interfaz “iVolumen”.

www.FreeLibros.me

Manual de umL

@,—

Uso de paquetes

El simbolo paquete tiene la apariencia de una carpeta de archivos. Este simbolo (figura
5-14) se usa en forma genérica para representar un nivel mas elevado de abstraccién que
el clasificador. Aun cuando, por lo comun, un paquete se puede implementar como un
espacio de nombre o un subsistema, con un estereotipo, también se puede usar para la
organizacion general y sencillamente representar una carpeta de archivos.

SUGERENCIA Los espacios de nombres resolvieron un problema, acarreado durante
largo tiempo, de miiltiples equipos de desarrollo que usan nombres idénticos para
las clases. Una clase nombrada “Customer” (“Cliente”) en el espacio de nombre de
Softconcepts es distinta de “Customer” en el espacio de nombre de 18m.

En el juego “BlackJack” se usan las API contenidas en el cards.dll que vienen con
Windows (y se usa en juegos como el Solitario). Podriamos usar dos paquetes y una de-
pendencia para mostrar que el juego “BlackJack” depende de las AP1 del cards.dll.

Uso de notas y comentarios

La anotacién de diagramas es un aspecto importante del modelado. Los diagramas de
clases permiten el uso de la nota, pero vea si puede transmitir tanto significado como sea
posible sin agregar una gran cantidad de notas. (Vea la figura 5-15 en relacién con un
ejemplo del simbolo de nota con la punta doblada que se usa en el UML.)

Muchas herramientas soportan la documentacién del modelo que se almacena con
éste, pero que no se presenta en los diagramas. La documentacién especifica del modelo
mds alld de notas, comentarios y restricciones no es una parte real del umL, pero es un
buen auxiliar para la creacién de modelos.

Restricciones

En las restricciones se usa el mismo simbolo de punta doblada en todos los diagramas.
En realidad, las restricciones pueden ser una parte engafiosamente compleja del umL y
pueden incluir informacion que ayuda mucho a los generadores de codigo. Por ejemplo,
se pueden escribir restricciones en texto llano o en Object Constraint Language (OCL).
Aunque a todo lo largo de este libro proporcionaré ejemplos de restricciones, de manera
intencional omito una exposicién del ocL como no muy desmitificadora.

]]

————————————————— > «subsistema»
cards.dll

BlackJack

Figura 5-14 El diagrama muestra que el paquete “BlackJack” depende del paquete “cards.dll”,
en el cual se usa el estereotipo «subsistema.

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema? @

L

]]

————————————————— > «subsistema»
cards.dll

BlackJack

Cards.dll es una API de Windows. (Se usa para juegos como
Solitario.)

Figura 5-15 Se usa el rectangulo con la punta doblada para agregar notas o comentarios a los
elementos de los diagramas UML.

Para demostrar una restriccion, podemos agregar el simbolo correspondiente e intro-
ducir un texto de restriccion que exprese que el nimero de cartas en un “Monte” debe
ser 52 (figura 5-16). También es posible expresar esto sin una restriccion, cambiando la
multiplicidad del extremo de * al nimero 52. Otro ejemplo podria ser una restricciéon que

«enumeracion»

Palo
Monte —_unaCarta Carta —elPalo +Diamante = 1

+Basto =2
1 1 1 1 +Corazén =3
+Espada =4

«enumeracion»
Cara
+As=1
+Dos =2
+Tres =3
+Cuatro =4
+Cinco =5
+Seis =6
+Siete =7
I 1+Ocho=8
+Nueve =9
+Diez = 10
+Sota =10
+Reina = 10
+Rey = 10

(Nimero de cartas = 52)

—nominal Valor

Figura 5-16 En esta figura se ilustra como podemos mezclar las restricciones — “Niimero de
cartas = 52” en la figura— con otros elementos del diagrama para aumentar su precision.

www.FreeLibros.me

Manual de umL

@,—

«enumeracion»

Monte —unaCarta Carta —elPalo Palo

+Diamante = 1
+Basto =2
+Corazén =3
1 +Espada =4

1 1 1 1

(Ntmero de cartas B‘

=52)

Cara

—nominalValor | TomarValorAlto() : int
+TomarValorBajo() : int
1 PaY

As Dos Tres

Figura 5-17 Diagrama de clases de la figura 5-16 modificado para captar el hecho de que las
cartas pueden tener valores nominales dindmicos (int = entero).

exprese algo acerca del valor nominal o el nimero y variedad de palos, y también podria-
mos expresar estos elementos con enumeraciones.

En la figura 5-16, inclui la restriccién de que el nimero de cartas en un “Monte” debe
ser 52, una enumeracion para indicar que hay cuatro palos y una enumeracién para in-
dicar que existen 14 valores nominales posibles unicos. Desafortunadamente, la figura
todavia queda corta, porque en el juego “BlackJack” el as no tiene un valor sencillo tni-
co. Un andlisis de este modelo con un experto en el dominio podria revelar con rapidez
un problema posible con el uso de una enumeracion para “Cara”. Debido al valor dual
del as, podemos elegir volver a disefar la solucion para usar una clase —“Cara”— y una
generalizacién —valores nominales especificos, como “As”, “Dos”, “Tres”, etc.— para
resolver el problema de los ases (figura 5-17).

Modelado de primitivos

El uML define primitivos como “Integer”, “Boolean”, “String” y “UnlimitedNatural”
(“Entero”, “Booleano”, “Cadena” y “Naturalllimitado”) para usarse en la especificacion
del propio UML, pero la mayoria de los lenguajes y herramientas definen sus propios ti-
pos primitivos. El lector puede modelar primitivos usando un clasificador, el estereotipo
«primitivo» y el nombre del tipo.

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema? @

=&

«primitivo»
Nimerolmaginario

+Real : flotar
+Imaginario : cadena =i

+operador+(en lhs : Nimerolmaginario, en rhs : Nimerolmaginario) : Nimerolmaginario

La parte imaginaria i representa la raiz cuadrada de —1. ll‘

Figura 5-18 Los nimeros imaginarios son nimeros reales multiplicados por el nimero imagi-
nario i, el cual representa la raiz cuadrada de —1.

En general, los primitivos se modelan como atributos de otras clases. Sin embargo, en
algunos casos usted tal vez deseard definir sus propios primitivos —siendo un ejemplo
el nimero imaginario candnico (figura 5-18)—; existen algunos lenguajes, por ejemplo,
Common Language Specification (CLS, especificacion de lenguaje comin) de Microsoft
para .NET, en donde aparentemente los tipos primitivos en realidad representan objetos y
se tratan como tales.

A veces resulta util desarrollar primitivos, y es aceptable modelarlos como una clase
usando el conector de asociacién, como demostré con anterioridad en este capitulo. El
diagrama de la figura 5-18 documenta un “Nimerolmaginario” y desarrolla lo que repre-
sentan las partes real e imaginaria, asi como la incorporacién de un operador sobrecarga-
do —una funcién operador— para el tipo primitivo.

SUGERENCIA Los lenguajes como C++, C#y, recientemente, incluso Visual Basic.NET
soportan la sobrecarga de operadores, esto significa que los comportamientos para
operadores como +, —, *y/ se pueden definir para tipos nuevos. El modelado de tipos
primitivos y los lenguajes que soportan la sobrecarga de operadores pueden ser muy
titiles si el lector necesita definir tipos de datos extendidos en su solucion.

Modelado de enumeraciones

Las enumeraciones son valores nombrados que tienen una semdntica que significa mayor
que su valor subyacente. Por ejemplo, se podrian usar los enteros 1, 2, 3 y 4 para repre-
sentar los palos en un monte de cartas de juego, pero una enumeracion tipo “Palo” que
contiene cuatro valores nombrados transmite mds significado (vea la figura 5-17).

www.FreeLibros.me

Manual de umL

«enumeracion»

Carta Carta Palo
—elPalo .
—Palo : int +Diamante = 1
- Basto =2
+EsVilido() : byt 1 1 +
i 1 00 : byte +Corazoén =3
: +Espada=4
|
|
|
|
|
|
|
{Palo >= 1y Palo <=4} Il‘
Un atributo semanticamente débil, Palo Un atributo semanticamente fuerte

Figura 5-19 El entero “Palo” de la izquierda necesita explicacion por el camino de una restric-
ci6on con el fin de limitar y aclarar los valores posibles del entero, en tanto que la enumeracién
semanticamente mas fuerte del “Palo” que se da a la derecha no necesita esa explicacion.

Muchos lenguajes modernos soportan un sistema fuerte de tipos. Esto significa que, si
usted define un argumento de enumeracion, entonces sélo los valores definidos por esa
enumeracion son apropiados, y el compilador impone el uso de los valores del tipo mds
significativos semanticamente. En contraste con el uso de un tipo del tipo subyacente
—por ejemplo, enteros para representar palos— que permitirian cualquier valor de ese
tipo subyacente, las enumeraciones transmiten mas informacién y rigor en el cédigo, y
mds informacién en los modelos UML. En la figura 5-19 se ilustra este contraste.

Nota A veces los modeladores y programadores hacen concesiones. Por ejemplo, po-
demos saber que una enumeracion bien nombrada puede transmitir mds significado,
pero, de todas maneras, elegir no usar tipos semdnticamente mds fuertes. Suponga
que, como el cereal Lucky Charms, los diamantes, bastos, corazones y espadas podrian
evolucionar en el futuro; un monte de cinco cartas podria incluir tréboles. Si fuéramos
a usar una enumeracion, entonces tendriamos que abrir el respaldo del codigo en ese
tiempo futuro y redefinir la enumeracion. Sin embargo, si usamos un entero y almace-
namos el rango de valores en una base de datos, entonces podriamos extender o cam-
biar los valores posibles de “Palo” ejecutando un comando SQL UPDATE. Saber acerca
de estos tipos de juicios de valor y hacerlos es una de esas cosas que hacen que el de-
sarrollo de software sea un reto.

Indicacion de espacios de nombres

El espacio de nombre es una invencion reciente en los lenguajes oop. El espacio de nom-
bre es una manera de agrupar elementos del cédigo. El problema se origind a medida que
las empresas de software empezaron a usar las herramientas de otro mas ampliamente

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema? @

=&

BlackJack::Carta

Figura 5-20 A menudo, los paquetes se codifican como espacios de nombres y se muestran en
los diagramas UML en el lado izquierdo del operador de resoluciéon de alcance, dos puntos dobles.

hasta que se hizo mds comtn que el vendedor A produjera software util con entidades
nombradas de manera semejante a las del vendedor B. El espacio de nombre es una solu-
cién que permite que dos o mds elementos nombrados en forma idéntica coexistan en la
misma solucién; el espacio de nombre establece una distincién entre estos elementos.

Con frecuencia, los paquetes son representaciones visuales de espacios de nombres, y
éstos se pueden mostrar en diagramas para distinguir los elementos con el mismo nombre
de clasificador. Se usa el operador de alcance :: para concatenar un espacio de nom-
bre con un elemento en ese espacio. Los espacios de nombres se pueden anidar, herma-
nar o disponer en cualquier manera jerarquica razonable en el contexto de un problema.
Si la clase “Carta” se define como un elemento en el espacio de nombre “BlackJack”,
entonces podemos captar esto agregando esa clase al paquete “BlackJack”, como se ilus-
tra en la figura 5-20.

Como saber qué clases necesita

Existen dos modalidades para el desarrollo de software orientado a objetos: consumo y
produccion. Los equipos pueden trabajar en colaboracién en cualquiera de las dos moda-
lidades o en ambas, pero no entender si las habilidades de un equipo soportan el consumo
de objetos, la produccion de éstos, o ambas cosas, puede conducir a problemas.

Es perfectamente aceptable usar componentes, controles y objetos por otros y armar
una solucién tan bien como sea posible. La analogia mds cercana a este estilo de desarrollo
es la manera en que los programadores de C++ consideran a los programadores de Visual
Basic (aunque esta creencia puede ser un poco injusta). En esta modalidad, un equipo se
da cuenta de que su concepcién de como usar los objetos es buena, pero que su propia pro-
duccién de objetos es defectuosa. Una segunda modalidad aceptable es que un equipo sabe
que es conocedor de los patrones de disefio y de la refactorizacion, y tiene una historia de
éxitos en la arquitectura de soluciones orientadas a objetos, incluyendo la produccién
de sus propios objetos. Las dos modalidades son aceptables, pero es importante saber en
cudl de ellas tiene usted la mayor oportunidad de éxito. (Como dijo Harry el Sucio: “Un
hombre debe conocer sus limitaciones.”) Si va a tener éxito en la creacion de modelos
UML que describan algo mds que las clases creadas por expertos, entonces necesitard saber
como hallar las clases, asi que hablemos de eso durante unos cuantos minutos.

www.FreeLibros.me

Manual de umL

@’_

Nota En 2005, el autor Richard Mansfield, en un editorial publicado en DevX.com,
desafio a oo (orientado a objetos) como un paradigma vdlido. Dejando a un lado todos
los chistes acerca de perros viejos y nuevas bromas, Mansfield se anoté un punto de
manera accidental. La cuestion es que si usted conoce 00 suficientemente bien como
para consumirlo pero trata de producirlo, entonces es posible que 0o sea decepcionan-
te. Sospecho que muchos proyectos oo fallan porque los consumidores competentes de
00 no son productores tan competentes del mismo. La produccion de objetos de calidad
es dificil en el mejor de los casos, y sin conocimiento previo de patrones y refactoriza-
cion, asi como sin experiencia, puede ser imposible producir un 0o bueno.

Hallar las clases correctas es lo mds dificil que el lector hard; es mucho més dificil que
trazar los diagramas. Si encuentra las clases correctas, bastan servilletas para modelar. Si
no puede hallar las clases correctas, entonces no importa cuanto dinero gaste en herra-
mientas; es posible que sus disefios den por resultado implementaciones fallidas.

Uso de un enfoque ingenuo

Cuando aprendi acerca de 00, fue por aprender primero C++ por mi mismo, un proceso
muy doloroso, y entonces di la vuelta para leer acerca de 00. Lo primero que aprendi
fue que se trataba de hallar los nombres y después asignarles verbos. Los nombres se
convierten en clases y los verbos en métodos. Esta es la parte ficil, pero es posible que
produzca sélo alrededor del 20% de las clases que usted necesitara.

Si el andlisis sélo conduce a los nombres y verbos descritos por el dominio, entonces
habra un déficit de clases y se requerird gran cantidad de habilidad en computacién (hac-
king, “hackeo”). No obstante, empezar con los nombres y los verbos del dominio es un
buen inicio.

Descubra otros beneficios del analisis de dominios

Ademas de las cosas que los expertos de sus clientes le digan, también necesitara concebir
cOmo poner estas cosas a la disposicion de sus clientes y, en casi todas las circunstancias,
guardar la informacién que proporcionen los usuarios. Estos fragmentos de informacién
se conocen en forma genérica como clases: de frontera, de control y de entidad. Una
clase frontera es aquella que se usa para conectar elementos exteriores al sistema con ele-
mentos del interior. Las clases de entidad representan datos. Por lo comun, las entidades
representan datos que persisten, como los que el lector podria encontrar en una base de
datos, y las clases de control administran otras clases o actiian sobre ellas. Por lo general,
los usuarios le dicen a usted mucho acerca de las clases de entidad, y esto puede ayudar
a definir las GuI con base en como completan ellos las tareas, pero debe trabajar mucho
mads para hallar las clases de control y frontera.

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_‘@

SUGERENcIA Si alguna vez ha trabajado como analista, no diga: “Me ha hablado acerca
de las clases de entidad; hdbleme ahora de las clases de frontera.” El andlisis es una
tarea importante y es posible que no deba dejarse a aquellos que usan protectores de
ldpices en los bolsillos de sus chalecos. Las habilidades interpersonales y un enfoque de
baja tecnologia, en tono de conversacion, producen un buen intercambio de ideas.

Una perspectiva importante es saber que los expertos de la empresa le dirdn mucho
acerca de los datos que tienen que almacenar, algo acerca de los procesos que siguen
para obtener los datos y un poco acerca de una buena manera de capturar esos datos
en una computadora. Una segunda perspectiva importante es que los usuarios —los
asignados para explicar las cosas a los ingenieros especialistas en software se llaman
expertos del dominio— pueden hacer una gran cantidad de cosas que no tienen sentido
para los que se encuentran fuera. Desde un punto de vista racional, esto significa que
un ingeniero de procesos puede ser que nunca haya trabajado con su organizacion para
examinar qué es lo que hace esa organizacién y como lo hace, y para determinar si
existe una mejor manera de hacerlo. El resultado es que puede ser que usted obtenga
una gran cantidad de informacién que no se pueda traducir bien en software —lo que
se llama una razon baja seiial-a-ruido—, pero el experto del dominio puede sentir que
es importante.

SuGerenNcia Cuando se llega al andlisis, el mejor consejo que puedo ofrecer es comprar
una pluma cara y un cuaderno de notas forrado en piel, enfrascarse activamente en

la conversacion y tomar copiosas notas. Ademds de hacer que los usuarios se sientan
halagados de que se les esté poniendo una atencion tan espléndida, es dificil saber con
tanta prontitud en el andlisis qué constituye la sefial y qué el ruido, de modo que una
gran cantidad de informacion es buena.

Habiendo aprendido de los usuarios acerca de las clases de entidad, su trabajo es con-
cebir cudles son las clases fronteras y de control, y cémo modelarlas. El modelado es mas
facil, de modo que empecemos alli.

Bastante sencillo, una clase entidad esta constituida por datos y suele tener larga vida
o persistir, y las clases de entidad se pueden modelar afiadiendo el estereotipo «entidad»
al simbolo de clase o usando el simbolo de clase entidad, del que se dispone en muchas
herramientas de modelado (figura 5-21). Una clase de control es un cédigo transitorio
que, en general, controla otras clases o actia sobre ellas, y es responsable de transportar
los datos entre las clases de entidad y las clases de frontera. Las clases de control se
modelan agregando el estereotipo «control» a una clase o usando el simbolo de clase
(también mostrado en la figura 5-21). Las clases de frontera suelen encontrarse entre
subsistemas. Estas se pueden modelar como se muestra en la figura 5-21 o adornando una
clase con el estereotipo «frontera».

www.FreeLibros.me

Manual de umL

Frontera

Control

Entidad

Figura 5-21 Los simbolos rectangulares para las clases y los estereotipos se pueden reemplazar
con simbolos que representan especificamente las clases de frontera, control y entidad.

Una inclinacion de cabeza para los ejercicios crc

Las fichas de responsabilidades y colaboradores de las clases (CRC, class responsability
and collaborator) constituyen un concepto que comprende un uso de baja tecnologia de
fichas de 3 x 5. La idea es que un grupo de personas interesadas se retinan y escriban, en
la parte superior de una ficha, las clases que han descubierto. Debajo escriben una lista
de responsabilidades, y a un lado de las responsabilidades escriben los colaboradores de
clase necesarios para apoyar esas responsabilidades. Si no existe ficha para una respon-
sabilidad, entonces se crea una nueva ficha.

La idea bésica que se encuentra detras del uso de pequeiias fichas es que son dema-
siado pequefias como para contener una gran cantidad de comportamientos, lo cual esta
dirigido a una divisién razonable de las responsabilidades.

La creacién de fichas CrC es una buena idea, pero puede ser que el lector quiera traer
un experto para hacer caminar su grupo a través de este paso el primer par de veces.
Como ése es un consejo practico, pero no puedo meter un experto en CRC en este libro,
hablaré acerca de alternativas, las cuales se describen en las tres subsecciones proximas.

Manera de hallar clases de entidad

Como mencioné con anterioridad, las clases de entidad representan los datos que necesi-
tard almacenar. También abarcan entidades 16gicas. Por lo comtin, una entidad l6gica esta
constituida por vistas o por el resultado de consultas heterogéneas; por ejemplo,

seleccionar campol, campo2 del cliente, pedidos en donde pedido.clienteid = cliente.id

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema?

_‘@

De manera simplista, esta consulta produce un resultado proveniente de cliente y pedi-
dos, lo cual representa una entidad l6gica cliente - pedidos.

Hallar entidades y entidades l6gicas es relativamente facil, debido a que la teoria de la
base de datos relacional estd bastante bien comprendida, y las bases de datos relacionales
constan de un depdsito significativamente recurrente para las entidades. El lector necesi-
tard entidades para tablas simples y vistas heterogéneas compuestas por tablas multiples.
De ese punto en adelante, las entidades se modelan sencillamente como clases. Puede
usar un estereotipo «tabla» si las entidades representan tablas, o ningtin estereotipo par-
ticular si usa clases personalizadas.

Modo de hallar clases de control

Las clases de control representan el puente entre las clases de entidad y las clases de
frontera, y la l6gica de la empresa entre ellas. La manera en que implemente estas clases
depende de su estilo de implementacion. Si selecciona un estilo de implementacién, en-
tonces la manera de hallar las clases de entidad se puede derivar desde alli.

Suponga que la herramienta de implementacién que usted selecciona predefine cla-
ses como filas, tablas y conjuntos de datos. Si elige usar las clases de su herramienta,
entonces sus clases de entidad se compondran de esas clases, y las clases que forman el
puente hacia sus clases de entidad se definirdn por medio del marco de referencia de su
herramienta. Por otra parte, si selecciona clases de entidad personalizadas, entonces éstas
serdn andlogas a filas, tablas y conjuntos de datos, pero las clases de control todavia seran
las clases del marco de referencia que lee su almacén de persistencia y escribe en él o a
partir de €l, por lo comin una base de datos.

Las clases de control pueden administrar la manera en que los datos se ponen en orden
para las clases de entidad, la manera en que se ponen en orden para las clases de presen-
tacion y la manera en que se ponen en orden para otros sistemas, a través de las clases
de frontera. Existen muchos patrones que incluyen patrones de control general; la clave
es reconocerlos. Un patrén famoso se llama controlador de la vista del modelo (mvc,
model view controller). En el Mvc, el modelo se representa por objetos de la empresa, la
GUI es la vista de usted, y las clases de control entre ellos representan su controlador. La
implementacién del Mvc o el reconocimiento de una implementacion del mismo requiere
estudio y practica adicionales. Por ejemplo, Microsoft considera que las padginas ASP.NET
en .NET son una implementacién del mvc. La pagina ASPx o HTML es la vista, el contro-
lador es el codigo que se encuentra detrds de la pagina y el modelo estd constituido por
los objetos cuyos datos se muestran en esa pagina. La implementacién de un patrén Mmvc
personalizado en este contexto seria redundante. Existen muchos libros sobre patrones;
Design Patterns (Reading, MA: Addison-Wesley, 1995), escrito por Erich Gamma es un
buen lugar para empezar.

www.FreeLibros.me

@ Manual de umL

Nora Hay muchos patrones de diseiio que pueden guiarlo cuando busca clases de fron-
tera, control o entidad. Una clave aqui es seleccionar un estilo de implementacion y
adherirse a él. El lector puede componer una solucion hallando primero las entidades
—Illamado composicion de la base de datos— o hallando objetos de la empresa —llama-
do composicién de objetos—, o diseiiando primero las Gui —llamado composicion de la
presentacion o, a veces, mencionada como habilidad en la computacion (“hackeo”) —.
Cualquiera de estos estilos de composicion pueden tener éxito, pero algunos de ellos fun-
cionan mejor que otros, dependiendo del tamaiio y complejidad del problema. Desafor-
tunadamente, no hay un solo mejor estilo para todas las circunstancias, y las opiniones
sobre este tema varian mucho.

Modo de hallar las clases frontera

Las clases frontera se usan para formar puentes hacia los subsistemas. En este caso, el
objetivo es aislar su sistema de la interaccion directa con subsistemas externos. De esta
manera, si el subsistema externo cambia, su implementacion s6lo necesitard cambiar en
las clases fronteras. Aqui pueden ayudar un buen conocimiento de los patrones y un es-
tudio de los sistemas que han tenido éxito.

Este libro es acerca del UML y no pretende que ser un how-to sobre el disefio de soft-
ware. Sin embargo, un recorrido por la bibliografia le conducira a algunos libros excelen-
tes sobre el UML y el disefio de software.

Examen

1. Se usa el mismo simbolo basico para las interfaces y las clases.
a. Verdadero
b. Falso

2. Al agregar clases a un diagrama, usted debe

. mostrar propiedades, campos y métodos.

a
b. mostrar solo propiedades y campos.
c. mostrar propiedades y métodos.

d

. mostrar campos y métodos.

3. Un atributo se puede modelar como una caracteristica de una clase,
pero no como una clase asociacion.

a. Verdadero
b. Falso

www.FreeLibros.me

¢Cuales son las cosas que describen mi problema? @

=&

. Al modelar atributos, se

. requiere que modele métodos atributos.

a
b. recomienda que no muestre métodos atributos.

e

recomienda que muestre los campos subyacentes para esos atributos.
d. Ninguno de los anteriores.
. Tanto los tipos simples como los complejos se deben modelar como

. atributos.

a
b. clases asociacion.

e

atributos y clases asociacion.

o

Los tipos simples se modelan mejor como atributos, y los complejos se modelan
mejor como asociaciones.

. Una asociacion unidireccional tiene una flecha en uno de los extremos, conocido
como la fuente; el otro extremo se conoce como el objetivo.

a. La fuente tendra un campo cuyo tipo es el del objetivo.

b. El objetivo tendra un campo cuyo tipo es la fuente.

c. Ninguno de los dos.

. (Una agregacion y una asociacion son

a. semanticamente semejantes?

b. directamente opuestas?

. (Cual es la diferencia mas importante entre una agregacion y una composicion?
a. Composicion significa que la clase totalidad, o compuesta, serd responsable de
la creacion y destruccion de la parte o clase contenida.

b. Agregacion significa que la clase agregada totalidad sera responsable de la crea-
cion y destruccion de la parte o clase contenida.

c. Composicion significa que la clase totalidad, o compuesta, es la Ginica clase que
puede tener un caso de la clase parte en cualquier momento dado.

d. Agregacion significa que la clase totalidad, o agregada, es la tnica clase que
puede tener un caso de la clase parte en cualquier momento dado.

e. ayc
f byd

www.FreeLibros.me

@ Manual de umL
9. Generalizacion significa

a. polimorfismo.
b. asociacion.
c¢. herencia.

d. composicion.

10. A una asociacion se le da nombre. El nombre es

a. el tipo de la clase asociada.

b. el nombre implicado de la asociacion y representa el nombre de
un campo.

c. una dependencia.

d. una generalizacion.

11. El «primitivo» se usa en conjuncién con el simbolo de clase. Este
introduce

tipos simples existentes.
tipos nuevos semanticamente simples.

tipos complejos existentes.

/e o

tipos nuevos semanticamente complejos.

Respuestas

l. a
2.d
3. b
4. b
5. a
6. a
7. e
8. ¢
9. b
10. b
11. b

www.FreeLibros.me

CAPITULO

Como se relacionan
las clases

En el capitulo 5, se introdujeron los diagramas de clases como vistas estaticas de su
sistema. Por vista estdtica, quiero decir que las clases s6lo estdn ahi, pero sus clases
definen las cosas que se usan para examinar comportamientos dindmicos descritos
en diagramas de interaccion y esquemas de estado.

Debido a que las clases y los diagramas de clases contienen elementos centrales
para el sistema del lector, ampliaré el uso basico de los simbolos y las relaciones
bésicas del capitulo 5. En este capitulo, se examinardn relaciones méds avanzadas e
informacion mas detallada de las clases, estudiando

» Diagramas con un mayor numero de elementos

» Relaciones anotadas, incluyendo la multiplicidad

* Modelado de clases abstractas e interfaces

* Lamanera de agregar detalles a los diagramas de clases

* La comparacion de la clasificacion con la generalizacion

www.FreeLibros.me

Manual de umL

@,—

Modelado de la herencia

Existen beneficios al heredar, asi como retos. Una clase hijo hereda todas las caracteristi-
cas de su clase padre. Cuando se define un atributo en una clase particular, es incorrecto
repetir el atributo en las clases hijos. Si repite un método en la clase hijo, entonces estd
describiendo la anulacién del método. En el Unified Modeling Language (UML), ademads
de anular, puede redefinir los métodos; esto se soporta en algunos lenguajes, pero puede
conducir a confusion. La anulacién de los métodos es central para el polimorfismo; use
la redefinicién de métodos con moderacion.

Cuando hereda clases, sus clases hijos heredan las restricciones definidas por todos los
antepasados. Cada elemento tiene la unién de las restricciones que define y las restriccio-
nes definidas por sus antepasados.

El lector tiene varias opciones de herencia que explicaré en esta seccion. En esta sec-
cion, se consideraran la herencia simple y la multiple, y se comparara la generalizacién
con la clasificacion. Para evitar arboles profundos de herencia, también explicaré la he-
rencia de interface y composicion en las dos secciones que siguen.

Uso de le herencia simple

La herencia simple es la forma mads facil de herencia. Una clase hijo que hereda de una
clase padre hereda todas las caracteristicas de esta dltima, pero sélo tiene acceso direc-
to para los miembros publicos y protegidos. La herencia, llamada generalizacion en el
UML, se indica por una sola linea que se extiende de la clase hijo a la clase padre, con un
tridngulo hueco fijado a esta ultima. Si multiples clases heredan de la misma clase padre,
entonces puede usar una sola linea unida que se conecte a esta ultima.

Generalizacion contra clasificacion

En el capitulo 5, introduje una prueba facil para determinar si existe una relaciéon de
herencia. Esta se llama es una prueba. Esta prueba sola puede ser engafiosa y conducir
a resultados incorrectos. Es una prueba implica transitividad estricta. Por ejemplo, si la
clase B es una hija de la clase A, y la clase C es una hija de la B, entonces la clase C es
una hija de la clase A. (Decimos que la clase C es una nieta de la clase A o que la A es una
antepasada de la C.) No obstante, la transitividad implicada por la prueba es una no es
estrictamente correcta.
Supongamos que tenemos las proposiciones verdaderas que siguen:

Pablo es un programador de C#.

Programador C# es una descripcién de trabajo.
Pablo es una persona.

Programador de C# es una persona.

www.FreeLibros.me

Como se relacionan las clases @

“Pablo es un programador de C#” funciona. “Un programador de C# es una persona”
funciona y ‘“Programador de C# es una descripcion de trabajo” funciona, pero “Pablo es
una descripcién de trabajo” no funciona. El problema es que Pablo es un ejemplo de pro-
gramador de C#. Esta relacion se describe como una clasificacion de Pablo el programa-
dor de C#, pero la generalizacién (es decir, la herencia) se usa para describir relaciones
entre subtipos. Por lo tanto, tenga cuidado al usar es una como un solo determinante de
la herencia. Una prueba mds precisa es determinar si algo describe un ejemplo (clasifica-
cion) o un subtipo (generalizacién).

Si la clase B es un subtipo de la A, entonces tiene usted una herencia. Si la relacion
describe una clasificacién —es decir, describe un contexto o papel en el cual algo es cier-
to— entonces tiene un relacidn de clasificacion. Las clasificaciones se pueden manejar
mejor con las asociaciones.

Clasificacion dinamica
La exposicion anterior sugiere que la herencia a veces se aplica mal. Regresando a nuestro
ejemplo, Pablo es un programador describe un papel, o clasificacién, més precisamente
que una generalizacion, porque Pablo también es un esposo, un padre y un pagador de
impuestos. Si hubiéramos tratado de generalizar a Pablo como todas esas cosas a través
de la herencia, hubiéramos tenido que usar herencia multiple, y las relaciones hubieran
sido bastante complejas.

La forma de modelar y captar la clasificacion es a través de la asociacién. De hecho,
podemos usar un patrén de comportamiento de estado para captar la dindmica y los pa-
peles cambiantes que describen a una persona o la manera como se comporta el ejemplo
Pablo en un contexto dado. Usando una asociacién y, de modo especifico, el patrén de
comportamiento de estado, podemos implementar la clasificaciéon dindmica; es decir,
podemos cambiar el comportamiento de Pablo con base en el contexto o el papel que esté
representando en un momento dado.

El patron de comportamiento de estado se implementa con el uso de una asociaciéon
y generalizacion. Sin tratar de reproducir la discusiéon completa acerca de este patrén
—econsulte Design Patterns, escrito por Erich Gamma et al.— podemos hacer un resu-
men. El patron de comportamiento de estado se llama patrén de comportamiento por-
que describe la manera en que actda algo. Los otros tipos generales de patrones son de
creacion —coOmo se crea algo— y estructural —cémo se organiza algo—. El patrén se
llama de estado porque describe como se comporta algo con base en el estado. En nuestro
ejemplo, usariamos este patrén para describir cémo se comportan las personas con base
en alguna condicion: el estado. Por ejemplo, cuando Pablo esta en el trabajo, se comporta
como un programador de C#. Cuando Pablo estd en casa, se comporta como un esposo al
interactuar con su esposa y como padre cuando interactia con sus hijos.

Si modelamos en forma incorrecta la clasificacién de Pablo con el uso de la generali-
zacion, entonces creariamos un modelo como el de la figura 6-1, mostrando toda la he-

www.FreeLibros.me

@ Manual de umL

rencia. Sin embargo, si modelamos los papeles de Pablo de modo mads preciso con el uso
de la asociacién, tendriamos un modelo mejor (vea la figura 6-2).

En la figura 6-1, se intenta mostrar que una “Persona” es un ejemplo de “Programa-
dor”, “Esposo” y “Padre”. En realidad, esto implica que deberia crearse un tipo diferente
de objeto para Pablo, dependiendo del contexto. Sin embargo, en realidad, Pablo siempre
es una persona y las personas representan papeles: a veces, una persona es un esposo; a
veces, un padre; a veces, un trabajador, y asi sucesivamente. El papel de la asociacién
significa que Pablo siempre es un ejemplo de “Persona”, pero el papel de una persona
cambia en forma dindmica. La clase en cursivas, “Papel”, significa que el papel es abs-
tracto y la asociacion “papel” (en mindsculas) en realidad es un caso de “Programador de
C#”, “Esposo” o “Padre”.

El patrén de comportamiento de estado se implementa principalmente por la rela-
cién entre “Persona” y la clase abstracta “Papel”. Lo que esta faltando para completar
el patréon son los comportamientos abstractos que es necesario definir por persona e
implementarse por generalizaciones del papel. Por ejemplo, “Persona” podria tener un
método llamado “ProcederconPaciencia” y ese método se declararia en “Papel” y se
implementaria llamédndolo “papel”. Se implementaria ‘“ProcederconPaciencia”, es decir,
el comportamiento de “Persona” nombrado “ProcederconPaciencia”, por medio de una
subclase especifica de “Papel”. Por ejemplo, en el papel de “Programador de C#”, si
usted les grita a los clientes, entonces puede perder su trabajo; pero gritarle a su esposa
puede dar por resultado que usted duerma en el sofa. El subtipo especifico del papel de-
termina el comportamiento, sin cambiar el ejemplo de “Persona”.

Persona
~
Programador de C# Esposo Padre
T | T
Pablo

Figura 6-1 Diagrama uML de clases en el que se muestra una generalizacion rigida donde el
objeto “Pablo” intenta reflejar de manera incorrecta “Padre”, “Esposo” y “Programador de C#”.

www.FreeLibros.me

Como se relacionan las clases

Persona —papel Papel
1 1.*
AN
Pablo
Programador de C# Esposo Padre
+ProcederconPaciencia() +Disciplinar()
+EscribirCodigo() +ComprarRegalos() +Amar()
+RecogerChequedePago() || +Reparar() +Ensefiar()

Figura 6-2 Un segundo diagrama UML de clases en el que se usa la asociacién para un papel que
refleja como se comportan las personas en ciertos papeles.

Nota En la compleja sociedad de hoy en dia, modelar las relaciones familiares, por
ejemplo, para el gobierno estatal, podria ser excesivamente dificil. Los nifios tienen
muiltiples padres y madres, a veces el sexo de los dos padres es idéntico y algunas per-
sonas tienen trabajos miiltiples y familias nucleares. Sin embargo, esto ilustra que algo
tan aparentemente sencillo, como la gente y sus papeles, puede ser muy complejo, de-
pendiendo del dominio del problema.

Si el género va bien con el contexto de nuestro disefio, entonces podriamos clasificar
todavia mds “Esposo” y “Padre” asociado con una enumeracion, “Género” (figura 6-3).
La clave es no modelar todo lo que podria; en lugar de ello, modele lo que necesite mode-
lar con el fin de describir el problema de manera suficientemente adecuada para su espacio
de problema.

Uso de la herencia miltiple

La herencia sencilla puede ser dificil porque la prueba es un(a) no es por completo sufi-
ciente. La generalizacién implica subtipo, pero el lector podria implementar relaciones
de subtipo con el uso de la composicién o asociacion. La herencia simple representa,
ademads, un reto porque la clasificacion significa que usted estd hablando de un caso y
es un(a) parece funcionar durante las discusiones verbales, pero puede ser incorrecta o
demasiado rigida para implementar.

www.FreeLibros.me

Manual de umL

@,—

Persona —papel Papel
1 1..%
AN
Pablo
Programador de C# Esposo Padre

+ProcederconPaciencia() || +Disciplinar()

+EscribirCédigo() +ComprarRegalos() +Amar()

+RecogerChequedePago()

+Reparar() +Ensefiar()
1 1
«enumeracién»
—esposo £
P Género 1
L— +Masculino —
1 +Femenino —padre

Figura 6-3 Abstraccién del género a partir de los papeles de esposo y padre.

La herencia miltiple es incluso mas dificil porque todavia tenemos los problemas de
generalizacion y clasificacion, y éstos se exacerban al tener mds de un supertipo. Cuando
un subtipo hereda de mds de un supertipo, se entiende que aquél contiene la unién de
todas las caracteristicas de todas sus clases padres. Hasta ahora todo va bien. Se presenta
un problema cuando mas de un supertipo introduce una caracteristica que tiene el mismo
nombre que la de otro supertipo. Por ejemplo, la clase C hereda de la B y de la A, y tanto
la clase A como la B introducen una operacién nombrada “Foo”. ;Por cudl version de
Foo se resuelve “C.Foo()”, por “A.Foo() o por “B.Foo()? Aun cuando el uML soporta la
resolucion dindmica de conflictos, la mayoria de las implementaciones de herencia mil-
tiple requieren que el programador resuelva el conflicto. Esto significa que el programa-
dor debe decidir que “C.Foo()” llama a “A.Foo()”, “B.Foo()” o tanto a “A.Foo()” como
a “B.Foo()” (figura 6-4). Una buena practica al usar la herencia multiple es resolver los
conflictos de nombre de manera explicita.

Queda indicada la herencia multiple cuando una clase tiene més de un supertipo in-
mediato. Albert Broccoli e Ian Fleming, el mismo par que produjo los filmes de James
Bond, produjeron la pelicula Chitty Chitty Bang Bang. En la pelicula, el auto también
era una nave sobre colchdn de aire, propulsada por un chorro de agua y un avién. En un

www.FreeLibros.me

Como se relacionan las clases

_‘@

Clase A Clase B

+Foo() +Foo()

T T

Clase C

+Foo() |F—-——————1

{A.Foo()}

Figura 6-4 Resuelva de manera explicita los conflictos de nombres en las clases con herencia
muiltiple, lo que se muestra aqui con el uso de una restriccion.

diagrama de clases, esto se podria modelar como una clase (la llamaremos “CCBB”) que
se herede de “Bote”, “Automovil” y “Avidn”. El problema surge porque en cada modo se
us6 una forma diferente de propulsién; como consecuencia, “cCBB.Propulsar()” podria ser
dificil de resolver en un modelo, e igualmente dificil de implementar.

Norta El lector podria pensar que los vehiculos anfibios y el verbo propulsar resultan
un poco forzados, pero con base en la experiencia real, le puedo decir que, en la actua-
lidad, esos conceptos existen en los diserios. Sin embargo, yo solo tengo conocimiento
de ejemplos reales en aplicaciones militares.

Debido a las dificultades técnicas reales con la herencia multiple, muchos lenguajes
poderosos, como C# y Java, no soportan el idioma. Otra razén por la que la herencia mul-
tiple no se soporta en forma universal es que usted puede simular este tipo de herencia
mediante la composicion y la promocion de caracteristicas constituyentes, o a través de
herencia multiple de interfaces. Desde la perspectiva del umL, la composicién y las carac-
teristicas constituyentes que la revisten significan que “CCBB” seria un auto y contendria
los objetos avién y bote, y las caracteristicas de bote y avién se harfan disponibles en
forma indirecta redefiniendo las caracteristicas al nivel de auto. Entonces se implementa-
rian estas caracteristicas al invocar las caracteristicas compuestas internamente de bote o
avion. Por ejemplo, “ccBB.Volar” invocaria el método interno “Avién. Volar”. La herencia
multiple de interfaces tan sélo significa que una clase implementara todas las caracteris-
ticas definidas por todas las interfaces realizadas.

Evite la herencia miltiple, incluso si es soportada en el lenguaje de implementacién que
usted elija o, de lo contrario, use la composicién o la herencia de interfaz. En la figura 6-5,

www.FreeLibros.me

Manual de umL

Vehiculo

+Propulsar()
N

Avién Bote Automévil

~
Monomotor de aterrizaje| | Nave de colchén de aire
—avion 1 —bote 1
1 CCBB
S e
+Volar()
+Rozar()

1

Figura 6-5 En esta figura, mostramos que “ccBB” hereda de “Automovil”, pero usa la composi-
cién para mostrar sus capacidades de bote y avidn.

se muestra una manera en que podriamos trazar un diagrama de clases para ilustrar las
caracteristicas aerodindmicas y anfibias de ccBB. En la figura, entendemos que el diagra-
ma quiere decir que “cCBB” crea un ejemplo de “Nave sobre colchén de aire” nombrada
“bote” y un ejemplo de “Aeronave monomotor de aterrizaje” nombrada “aviéon”. “Ro-
zar()” se implementaria al llamar “bote.Propulsar”, y se implementaria “Volar()” al lla-
mar “avion.Propulsar”.

Otra opcidn seria definir tres interfaces: “Avién”, “Automévil” y “Bote”. Cada una
de estas interfaces podria definir métodos, “Volar”, “Conducir” y “Propulsar”. Entonces
“ccBB” podria implementar cada una de estas interfaces.

La solucidn que se muestra en la figura 6-5 no es perfecta, y puede no ser atractiva para
todos; no obstante, es importante tener presente que nos estamos esforzando por lograr
modelos suficientemente buenos o susceptibles de lograrse, no perfectos.

www.FreeLibros.me

Como se relacionan las clases

_\QD
Modelado de la herencia de interfaces

Existen tres actividades primarias asociadas con el modelado. Los modeladores necesitan
concebir con rapidez una solucién para los problemas y, a menudo, en situaciones de gru-
po. Los modeladores tienen que usar las herramientas UML y esto, con frecuencia, lo hace
una persona en aislamiento o en un grupo pequefio y, por ultimo, en general se solicita
documentacién de apoyo en forma de texto. Escribir la documentacion arquitecténica
estd més alld del alcance de este libro, pero tanto el modelado en grupo, sobre servilletas
y pizarrones blancos, como el uso de las herramientas UML son importantes. A veces,
pienso que los pizarrones blancos y las servilletas son mds importantes que las herra-
mientas UML, porque el modelado en grupo hace intervenir a mas personas y no estoy por
completo convencido de que los modelos UML reales sean leidos por cualesquiera que no
sean los modeladores y programadores y, en ocasiones, s6lo por los programadores.

Boceto de diagrama

Trazar un esbozo de los modelos puede resultar conveniente porque es ficil de hacer y se
puede obtener retroalimentacidn del grupo que observa y cambiar el dibujo. Sin embar-
go, si intenta usar sobre un boceto la formalidad y las caracteristicas de las herramientas
UML, se quedard atascado en el dibujo de imagenes bonitas, en lugar de en la solucién de
los problemas. Por esta razon, es aceptable usar notaciones abreviadas y simbolos mas
pequefios, y no importa si sus rectingulos no son perfectos sobre un pizarrén.

Por ejemplo, en el UML, usamos cursivas para indicar que una clase es abstracta. Sobre
un boceto, podemos usar una abreviatura para la palabra clave abstracta (A), para dar a
entender que una clase es abstracta. En lugar de escribir el estereotipo «interfaz» para las
interfaces, podemos usar «I» o la paleta de caramelo. Suponga que estamos discutien-
do las propiedades del vuelo en un escenario de grupo. Podriamos definir una interfaz
“IAptoparaVolar” con los métodos ‘“TenerResistenciaalMovimiento”, “TenerSustenta-
ciéon”, “TenerEmpuje” y “TenerPeso”, y mostrar que un paracaidas implementa estas
operaciones (aun cuando es muy dificil simular un boceto en un libro). En la figura 6-6,
se muestra como podriamos presentar el UML sobre un pizarrén; en la 6-7 se muestra el
mismo UML captado en nuestra herramienta de modelado.

La figura 6-7 es mas clara y mejor que el uML, pero muchos modeladores, en especial
aquellos con poca experiencia en el UML, reconoceran que las dos presentaciones repre-
sentan la misma solucién. Ademds, la sola explicacién de qué es la paleta de caramelo
satisfard a los principiantes, y es mucho mads facil de dibujar sobre un pizarrén.

Nota “Sustentacion”, “Resistencia al movimiento”, “Peso” y “Empuje” son los valores
necesarios para los principios del vuelo descritos por la fisica de Bernoulli y Newton. En
realidad, estas propiedades vinieron a colacion cuando estaba exponiendo soluciones para

www.FreeLibros.me

Manual de umL

Paracaidas
TenerPeso
TenerSustentacion
TenerResistenciaal

Movimiento
TenerEmpuje

JAproparalolar

Figura 6-6 Se muestra realizada la interfaz “1AptoparaVolar” por medio de “Paracaidas”, como
podriamos dibujarla sobre un pizarrén.

un sistema de evitacion de colisiones de compariero contra compafiero entrelazados, para
los paracaidas de alta velocidad que usan los paracaidistas de gran altitud, o Halo.

La cuestién es que, en una situacién dindmica de grupo, resulta de ayuda ser rapido,
porque se puede botar una gran cantidad de informacién, a veces toda a la vez. El uso de
una notacién abreviada puede no dar siempre como resultado un UML perfecto, pero el
lenguaje es una herramienta para entender y resolver problemas, y es el medio, no el fin.
Usted siempre puede trazar un UML bonito cuando la reunién haya terminado.

Uso de la realizacion

Si la generalizacidn se usa en exceso, entonces es posible que la realizacién se use menos
de lo debido. Realizacion significa herencia de interfaces y se indica al usar una clase con
el estereotipo «interfaz» y un conector con una linea punteada conectada a un tridngulo
hueco. El tridngulo se fija a la interfaz, y el otro extremo se fija a la clase que implemen-
tara la interfaz.

El simbolo de la paleta de caramelo dibujado a mano en la figura 6-6 todavia se usa en
algunas herramientas de modelado y se trata de una forma abreviada que se puede reco-
nocer junto con un conector de linea continua para la herencia de interfaces. La dificultad
en el uso de simbolos multiples para dar a entender lo mismo es que hace que el lenguaje
sea mas dificil de entender y, si se usa de manera imprecisa, puede conducir a afectar el

«interfaz»
+ IAptoparaVolar

Paracaidas

+TenerSustentacion() : double
+TenerResistenciaalMovimiento() : double
+TenerPeso() : double

+TenerEmpuje() : double

Figura 6-7 EIl mismo diagrama que se muestra en la figura 6-6, presentado en Visio (double =
doble).

www.FreeLibros.me

Como se relacionan las clases @

lenguaje por parte de los pequefios del umL. La afectacion del lenguaje es casi siempre
un desperdicio de tiempo, excepto para los académicos.

Relaciones de proveedor y relaciones requeridas

En el umL, la paleta de caramelo se usa en realidad para mostrar relaciones entre inter-
faces y clases. La paleta significa que la clase fijada proporciona la interfaz. Una mitad
de paleta de caramelo o una linea con un semicirculo significa que se requiere una inter-
faz. Si aplicamos los simbolos para las relaciones requeridas y del proveedor a nuestro
ejemplo del paracaidas, entonces podemos modelar nuestros paracaidas de alta velocidad
proporcionando “1AptoparaVolar” (a la izquierda) y requiriendo “iNavegable” a la dere-
cha (figura 6-8).

En la figura 6-8, el propio paracaidas tiene propiedades de vuelo, incluyendo “Susten-
tacion”, “Empuje”, “ResistenciaalMovimiento” y “Peso”, aun cuando el “Empuje” sea
probablemente O, pero un paracaidas navegable puede depender de un dispositivo GPS
(Global Positioning System; Sistema de posicionamiento global) que sabe acerca de la
longitud y latitud y un altimetro que sabe acerca de la altitud (y de la velocidad y direc-
cion del viento). También podriamos mostrar la relacion idéntica usando el conector de
realizacion para “1AptoparaVolar” y el de dependencia para “INavegable” (figura 6-9). Si
estd usted interesado en hacer hincapié en las relaciones, entonces puede usar paletas de
caramelos; si quiere hacer hincapié en las operaciones, entonces el simbolo de clase con
los estereotipos es una mejor seleccion.

Reglas para la herencia de interfaces

La idea basica que se encuentra detrds de las interfaces es que una interfaz describe
una especificacion de comportamiento, sin proporcionar los comportamientos, como la
navegabilidad. En nuestro ejemplo del paracaidas, s6lo estamos diciendo que nuestros
paracaidas de alta velocidad que evitan las colisiones interactuaran con un dispositivo
que actia como una ayuda para la navegacién, quizds incrementando la resistencia al
movimiento. La presencia de la interfaz no prescribe cudl es el dispositivo; s6lo impone
los comportamientos que soporta ese dispositivo.

SUGERENCIA El uso de un adjetivo —por ejemplo, atributo se convierte en atributivo— para
los nombres de interfaces es una prdctica comiin. A veces un diccionario resulta 1itil.

Paracaidas

1AptoparaVolar O —————C 1Navegable

Figura 6-8 “IAptoparaVolar” es una interfaz proporcionada por “Paracaidas”, ¢ “iNavegable”
muestra una interfaz requerida por ‘“Paracaidas”.

www.FreeLibros.me

Manual de umL

@,—

«interfaz»
1Navegable

«interfaz»

IAptoparaVolar - —————--—-4 f-——————————

|
Paracaidas :
|

Figura 6-9 En esta figura, se ilustran las mismas relaciones que las descritas en la 6-8; especifi-
camente, que “Paracaidas” realiza “1AptoparaVolar” y depende de “iNavegable”.

Las interfaces no proporcionan comportamientos; sélo estipulan cuéles deben ser. La
regla es que debe implementarse una interfaz mediante la realizacion o herencia. Esto
significa que

* Dada la interfaz A, la clase B puede implementar todos los compor-
tamientos descritos por esa interfaz.

* Dadas las interfaces A y B, la cual hereda de la A, la clase C puede
implementar todos los comportamientos descritos por aquéllas.

* Dada la interfaz A y las clases B y C, en donde la clase C hereda de
la B, o ésta se compone de la C, las clases B y C juntas implementan
todos los comportamientos descritos por la interfaz A. En el esce-
nario de composicion, B realiza A, y en el escenario de herencia, C
realiza A.

Suponiendo que la especificacion de comportamiento “INavegable” incluyera ‘“Tener-
Longitud()”, “TenerLatitud()” y “TenerAltitud()”’, entonces, en el primer escenario, “INave-
gable” podria realizarse por medio de un dispositivo que pudiera determinar la longitud, la
latitud y la altitud. En el segundo escenario, “iNavegable” podria heredar de una interfaz
“ideAltitud”, y las dos interfaces se realizarian por un solo dispositivo de orientacién
tridimensional. Por dltimo, en el tercer escenario, “INavegable” podria definir las tres
posiciones tridimensionales e implementarse por generalizacién o composicién, como
se muestra en la figura 6-10. (S6lo para satisfacer mi curiosidad, en realidad existe un
dispositivo de ese tipo —el Garmin eTrex Summit GPS con brijula electrénica y altimetro.
Yo quiero uno.)

Una vez mas, vale la pena hacer notar que los tres escenarios descritos satisfacen de
manera adecuada el requisito de navegabilidad. El escenario real que disefio depende
de las clases de las que dispongo o de qué es conveniente. Si ya tengo parte de la in-
terfaz realizada por otra clase, entonces podria obtener el resto a través de herencia de
composicién. Recuerde que el disefio no necesita ser perfecto, pero los modelos deben
describir de modo adecuado lo que usted quiere dar a entender. Siempre puede cambiar
su modo de pensar, si debe hacerlo.

www.FreeLibros.me

Como se relacionan las clases

GPS

TenerLongitud()
+TenerLatitud()

«interfaz»
Navegable GpsConAltimetro
+TenerLongitud() E———————=—"-
+TenerLatitud() +TenerAltitud()
+TenerAltitud()

Figura 6-10 Implementacion de una interfaz a través de una herencia.

Descripcion de la agregacion y la composicion

La agregacion logra una mencién aqui porque es el término que se usa mds a menudo en
el disefio de software orientado a objetos cuando se habla acerca de la composicidn, es
decir, cuando se habla acerca de una clase que estd compuesta por otras. Se usa el término
agregacion, pero se quiere dar a entender composicion. Como dije con anterioridad, el
conector agregacion —compuesto por un diamante hueco y una linea continua— tiene un
significado ambiguo que no es diferente de una asociacion, y se prefiere asociacion.

En la composicién se usa un diamante relleno y una linea continua. Cuando use la
composicidn, significa que la clase que representa la totalidad, o clase compuesta, contiene
aquél y solo el caso de la clase que representa la parte; también significa que la clase tota-
lidad es responsable de la duracién de la clase parte.

La composicidn significa que la clase compuesta debe garantizar que se crean todas
sus partes y se fijan a la compuesta, antes de que ésta esté por completo construida. En
tanto exista la clase compuesta, se puede implementar el confiar que ninguna de sus
partes sea destruida por cualquier otra entidad, Cuando se destruye la compuesta, debe
destruir las partes, o puede eliminar en forma explicita las partes y llevarlas hacia algin
otro objeto. La multiplicidad de la compuesta siempre es 1 0 0.1.

Para demostrar la composicion, podemos modificar la relacién que se ilustra en la fi-
gura 6-10. En este figura, demostré como satisfacer una interfaz a través de herencia, pero
el nombre de la clase hijo “GpsConAltimetro”, suena como una relacion de composicion.
La palabra con me sugiere composiciéon mds que herencia. Para satisfacer la interfaz, po-
demos definir “GpsConAltimetro” como la compuesta, definir “Altimetro” como la parte
y promover el método “TenerAltitud” desde “Altimetro”. En la figura 6-11, se muestra
la revision, y la siguiente lista muestra cémo podriamos fragmentar cada uno de estos
elementos en C#.

www.FreeLibros.me

Manual de umL

@’_

} GpsConAltimetro
«interfaz»
1Navegable
K —————— —— —

+TenerLongitud() +TenerLongitud()

+TenerLatitud() +TenerLatitud() 1

+TenerAltitud() +TenerAltimetro()

~altimetro Altimetro
1 +TenerAltitud()

Figura 6-11 Figura 6-10 revisada para usar la composicion con el fin de agregar el comporta-
miento del altimetro.

public interfaz INavegable

{

double TenerLongitud() ;
double TenerLatitud() ;
double TenerAltitud() ;

}

public class Altimetro
{
/// <summary>
/// Return meters MSL (mean sea level)
/// </summary>
/// <returnss</returnss>
public double TenerAltitud()
{
return O;
}
}

public class GPSConAltimetro : INavegable
{

private Altimetro altimeter;

public GPSConAltimetro ()

altimeter = new Altimetro() ;

}

www.FreeLibros.me

Como se relacionan las clases @
#region INavegable Members

public double TenerLongitud ()

{

return O;

}

public double TenerLatitud()

{

return O;

}

public double TenerAltitud()

{

return altimeter.TenerAltitud() ;

}

#endregion

En esta lista, podemos ver que “GpsConAltimetro” contiene un campo privado “alti-
metro”. El constructor crea un caso del altimetro, y “TenerAltitud” usa ese altimetro para
retornar la altitud. Debido a que C# es un lenguaje de “basura recolectada”, no necesi-
tamos mostrar un destructor de manera explicita que libere el caso de la parte altimetro.
(Ahora todo lo que queda por hacer es implementar los comportamientos.)

Asociaciones y las clases asociaciones

En el capitulo 5, se introdujo la asociacién. Tomemos un momento para recapitular y,
enseguida, introduciré algunos conceptos avanzados relativos a las asociaciones.
Cuando vea un campo en una clase, ésa es una asociacion. Sin embargo, a menudo una
asociacion en un diagrama de clases se limita a las clases, en lugar de a tipos simples. Por
ejemplo, un arreglo de valores cardinales se podria mostrar como un campo de arreglo o
como una asociacién hacia el tipo cardinal, con una multiplicidad de 1 en el extremo que
representa la clase que contiene el arreglo, y una multiplicidad de muchos (*) en el tipo
cardinal. Ademas, los campos y las asociaciones soportan navegabilidad, posibilidad de
cambiarse y ordenamiento. Ese mismo arreglo de tipos cardinales se podria representar
fijando la flecha de palillos conectada al tipo cardinal. Si quisiéramos indicar que el arre-
glo fuera de sélo lectura —quizds después de la inicializacion— entonces colocariamos
el modificador {s6lo lectura} en el campo y en la asociacién. El significado es el mismo.

www.FreeLibros.me

Manual de umL

@,—

ClaseConArreglo —valores Cardinal

1 *
(ordenado)
Figura 6-12 Podemos agregar modificadores y detalles a las asociaciones precisamente como

las agregariamos a los campos.

Si el arreglo estuviera ordenado, entonces podriamos colocar el modificador {ordenado}
en el campo del arreglo o en la asociacion. En la figura 6-12, se muestra nuestro arreglo
de valores cardinales representado con el uso de una asociacion directa de valores cardi-
nales ordenados (clasificados).

Si una asociacién tiene caracteristicas, entonces podemos usar una clase asociacion.
Piense en una clase asociacion como una tabla de vinculacién en una base de datos en
forma de relacién, pero es una tabla de vinculacién con comportamientos. Por ejemplo,
podemos indicar que un “Patrén” estd asociado con sus “Empleados”. Si quisiéramos
indicar que “Empleados” es una coleccién que se puede ordenar, entonces podemos agre-
gar una clase asociacion llamada “ListadeEmpleados” y mostrar el método “Clasificar”
en esa clase (figura 6-13).

En nuestro ejemplo, podemos elegir el uso de una asociacion para reflejar que los pa-
trones y los empleados estdn asociados, en lugar de que un patrén es una clase compuesta
formada por empleados. Esto también funciona muy bien porque muchas personas tienen
mas de un patrén.

Una clase asociacién tiene un conector de asociacion fijo a una asociacién entre las
clases que vincula. En el ejemplo, la clase “Patrén” tendria un campo cuyo tipo es “Lista-
deEmpleados”, y éste tiene un método “Clasificar” y estd asociado con los objetos “Em-
pleados” (o los contiene). Si dejamos la clase de vinculacién “ListadeEmpleados” fuera
del modelo y todavia mantuviéramos la relaciéon uno a muchos, entonces se supondria
que existe alguna suerte de coleccidn, pero el programador tendria la libertad de idear
esta relacion. La clase de vinculacion aclara la relacion con mayor precision.

Patrén —empleado Empleado

ListadeEmpleados

+Clasificar()

Figura 6-13 Una clase asociacién que muestra que la clase “ListadeEmpleados” vincula en
forma indirecta “Patrén” con “Empleados”.

www.FreeLibros.me

Como se relacionan las clases @

También podriamos modelar la relacién usando por asociacién el “Patrén” a la “Lis-
tadeEmpleados” y la “ListadeEmpleados” al “Empleado”. El diagrama de la figura 6-14
muestra que, basicamente, las tres variaciones son lo mismo.

La parte superior de la figura 6-14 implica un arreglo o coleccién y, con instruccio-
nes sencillas, como “Usar una coleccion con tipo de los objetos Empleado”, suele ser
suficiente para realizar una implementacién adecuada. Los dos diagramas de abajo en la
figura 6-14 proporcionan un poco mds de informacién e indican propiedad del compor-
tamiento de clasificacién, pero la implementacion de cualquiera de las tres figuras debe
ser casi idéntica.

Suponga ademas que elegimos mostrar cémo se tuvo acceso a un empleado especifico
de la coleccion por medio de un tipo, quizds un nimero de identificacién del empleado.
Por ejemplo, dado un ndmero de identificacién del empleado, podriamos indicar que
uno de esos nimeros conduce a un empleado Unico. Esto se conoce como asociacion
calificada y se puede modelar agregando la clase del calificador, como se muestra en la
figura 6-15.

Patron Empleado
—empleado
1 *
(ordenado)
Patrén Empleado
—empleado
1 k

ListadeEmpleados

+Clasificar()

Patrén ListadeEmpleados Empleado
—empleados —empleado

1 1 +Clasificar() 1 *

Figura 6-14 Tres variaciones que reflejan una relacién uno a muchos entre un “Patrén” y
“Empleados”.

www.FreeLibros.me

Manual de umL

@,—

Patro Emplead
atron ipdelEmpleado —empleado mpreaco

«sefial»-farley() 1 *

El calificador es indelEmpleado

Figura 6-15 El calificador que da como resultado un empleado tnico es el “Ibde]lEmpleado”.

Cuando vea un calificador, esperara verlo usado como un parametro que da como re-
sultado un caso especifico del tipo asociado. La siguiente lista de c6digo muestra como
podemos implementar ese cédigo en Visual Basic.NET usando una coleccion con tipo de
objetos “Empleado”, una clase nombrada “ipdelEmpleado” y un indexador.

Imports System.Collections

Public Class Patrdn
Private empleados As ListadeEmpleados

Public Sub New /()
empleados = New ListadeEmpleados
End Sub

End Class

Public Class ListadeEmpleados
Inherits System.Collections.CollectionBase

Default Public Property Item(ByVal id As IDdelEmpleado) As Empleado
Get
Return GetEmpleado (id)
End Get
Set (ByVal Value As Empleado)
SetEmpleado (Value, id)
End Set
End Property

Public Function Add(ByVal value As ListadeEmpleados) As Integer
Return List.Add(value)
End Function

Private Function Indexof (ByVal value As IDdelEmpleado) As Integer
Dim i As Integer

For i = 1 To List.Count
If (CType(List (i), Empleado) .ID.IsEqual (value)) Then
Return i
End If
Next

www.FreeLibros.me

Como se relacionan las clases @

Throw New IndexOutOfRangeException("id not found")
End Function

Private Function GetEmpleado (ByVal id As IDdelEmpleado) As Empleado
Return List (Indexof (id))
End Function

Private Sub SetEmpleado (ByVal value As Empleado,
ByVal id As IDdelEmpleado)
List (Indexof (id)) = value
End Sub
End Class

Public Class Empleado
Private FName As String
Private FID As IDdelEmpleado

Public Property Name () As String
Get
Return FName
End Get
Set (ByVal Value As String)
FName = Value
End Set
End Property

Public Property ID() As IDdelEmpleado
Get
Return FID
End Get
Set (ByVal Value As IDdelEmpleado)
FID = Value
End Set
End Property
End Class

Public Class IDdelEmpleado
Private ssn As String

Public Sub New(ByVal value As String)
ssn = value
End Sub

Public Function IsEqual (ByVal value As IDdelEmpleado) As Boolean
Return value.ssn.ToUpper () = ssn.ToUpper ()
End Function
End Class

Incluso si no estd familiarizado con Visual Basic.NET, puede observar los encabeza-
dos de las clases y ver todas las clases que se muestran en la figura 6-15 (la cual incluye

www.FreeLibros.me

Manual de umL

@,—

Patron Empleado
- IDdelEmpleado —empleado
LT
«senal»-farley() 1 *
ListadeEmpleados System.Collections.CollectionBase
—D

Figura 6-16 En el diagrama revisado se usa una clase asociacién para introducir la generaliza-
cién que muestra que “ListadeEmpleados” hereda de “System.Collections.CollectionBase™.

EE RT3

“Patron”, “Empleado”, “ipdelEmpleado” y la implicada “ListadeEmpleados”). [El he-
cho de que “ListadeEmpleados” herede de “System.Collections.CollectionBase” es co-
nocimiento especializado que se requiere en cualquier lenguaje o marco de referencia
particular. El lector tiene la opcién de mostrar la generalizacion de “CollectionBase” por
“ListadeEmpleados”, lo cual podria usted agregar al diagrama (figura 6-16), si sus desa-
rrolladores necesitaran que se les lleve un poco mas de la mano.]

El factor de decisién que me ayuda a elegir cudnto detalle agregar es mi audiencia
de programadores. Si mis compafieros programadores son muy experimentados en el
lenguaje y marco de referencia de implementacién que se seleccionen, entonces podria
dejar fuera detalles acerca de como implementar la colecciéon de empleados. Para los
programadores nuevos, puede resultar de ayuda mostrar la informacién agregada en la
figura 6-16. En la practica, con programadores muy nuevos, suelo agregar mas detalles y,
a continuacion, codificar un ejemplar que les muestre cémo implementar la construccion,
en este caso una coleccién con tipo especifica para Visual Basic.NET.

Nota Incluso los diagramas umL detallados no siempre resultan claros para todos. Por
esta razon, suele ser un detalle importante que los modeladores sepan como implementar
los diagramas que crean en la plataforma objetivo que se elija o, por lo menos, que una
persona del equipo pueda traducir a codigo los aspectos avanzados de los diagramas UML.

Examen de las relaciones de dependencia

Una dependencia es una relacion de cliente y proveedor, también conocidos como fuente
y objetivo. La relacion de dependencia es una linea punteada con una flecha de palillos
en el extremo. La flecha se fija al proveedor, también llamado objetivo. Yo prefiero los
términos fuente y objetivo, ya que objetivo facilita recordar hacia cudl de los extremos
apunta la flecha.

Una dependencia en un diagrama de clases significa que la fuente depende del objetivo
de alguna manera. Si el objetivo cambia, entonces la fuente resulta afectada. Esto significa

www.FreeLibros.me

Como se relacionan las clases @

que si cambia la interfaz del blanco, entonces resultard afectada la implementacién de la
fuente. Las dependencias no son transitivas. Por ejemplo, si una clase A depende de una
clase B y esta tltima depende de la clase C, entonces si cambia la interfaz de la C, puede
ser que tenga que cambiarse la implementacion de la B, pero no necesariamente la inter-
faz de ésta. No obstante, si las dependencias son ciclicas —la clase A depende de la B, la
cual depende de la C, la cual, a su vez, depende de la A— entonces los cambios a la clase
C pueden tener un efecto ciclico que produzca cambios muy dificiles, lo que conduce a
una implementacion fragil. Como regla general, evite las dependencias complicadas y
ciclicas.

Las asociaciones dirigidas, la composicion y la herencia implican una dependencia. Si
la clase A tiene una asociacion dirigida con la B, entonces la clase A depende de la B. Si la
clase B hereda de la A, entonces la B depende de la A. La asociacion y la generalizacion
son relaciones mas precisas con sus propias connotaciones; use la dependencia cuando
no es aplicable uno de los tipos més especificos de relaciones.

Por dltimo, antes de que examinemos algo de los estereotipos predefinidos que se
aplican a las dependencias, no trate de mostrar todas las relaciones de dependencia; sélo
trace las dependencias que son importantes.

En la tabla 6-1, se muestran los estereotipos predefinidos para las dependencias. Con
frecuencia, la implicacién de una dependencia resulta clara por su contexto, pero estos

acceder Referencia privada hacia otro contenido del paquete.

ligar Describe un nuevo elemento que se crea cuando se asigna el parametro de la plantilla.
llamar Un método en la fuente llama a un método en el objetivo.

crear La fuente crea un ejemplo del objetivo.

derivar Se deriva un objeto de otro.

ejemplificar | La fuente crea un ejemplo del objetivo.

permitir La fuente puede tener acceso a los miembros privados del objetivo (por ejemplo,
implementada como una relacién de amigo en algunos lenguajes).

realizar La fuente implementa la interfaz del objetivo. (El conector de realizacion es una mejor
seleccion.)

refinar La fuente refina el objetivo. Esto se usa para tener la posibilidad de rastreo entre los
modelos (por ejemplo, entre un modelo de andlisis y uno de disefio).

enviar Indica un emisor y un receptor de una sefial.

sustituir Se puede sustituir el blanco por la fuente. (Esto es semejante a cémo una subclase puede
ser sustituida por su superclase.)

rastrear Usado para vincular elementos del modelo.

usar La fuente necesita el blanco para completar su implementacién.

Tabla 6-1 Lista de estereotipos para las relaciones de dependencia definidas por el UML Version
2.0.

www.FreeLibros.me

@ Manual de umL

estereotipos existen para que exprese con claridad el uso que usted pretende. (Después de
la tabla hay una breve descripcién de cada una de las relaciones de dependencia.)

A menudo, basta con trazar el conector de dependencia ocasional en el c6digo e imple-
mentar lo que quiere usted dar a entender. Los siguientes parrafos se extienden un poco
sobre las relaciones de dependencia descritas en la tabla 6-1.

La dependencia “acceder” soporta la importacion de paquetes en forma privada. Algu-
nos de estos conceptos son nuevos en el UML version 2.0, y éste es uno que no he tenido
ocasioén de usar. El ejemplo mds cercano que se podria aplicar aqui es la diferencia entre
las cldusulas de uso de interfaz y de implementacién en Delphi. En esencia, Delphi so-
porta importacion privada en sus cldusulas de uso de la implementacion.

Si alguna vez ha leido The C++ Programming Language, escrito por Bjarne Strous-
trop, entonces habr4 leido el discurso sobre las clases plantilla. En C con clases, las plan-
tillas se originaron como una construccién semanal con tipo ideada usando la sustitucién
y macros. El resultado fue que el nuevo nombre creado por la concatenacién del tipo
cadena condujo a una nueva clase. Con las plantillas, el resultado es el mismo. Cuando
define el pardmetro para los tipos parametrizados —plantillas o genéricos— tiene una
nueva entidad. “Ligar” existe con el propdsito de modelar este caso.

“Llamar” llama de manera directa un método de la clase objetivo. “Crear” indica que
la fuente crea un ejemplo del objetivo. El lector podria ver esta relacion en conjuncién
con el patrén fabrica. El dnico propésito de una fabrica es realizar todos los pasos nece-
sarios para crear el objeto correcto.

“Derivar”, “realizar”, “refinar” y “rastrear” son dependencias abstractas; existen para
representar dos versiones de la misma cosa. Por ejemplo, la dependencia “realizar” im-
plica la misma relacién que una realizacion; es decir, la implementacién de una interfaz.
“Rastrear” se usa para conectar elementos del modelo conforme evolucionan; por ejem-
plo, usar casos para las realizaciones de casos de uso.

“Ejemplificar” también se podria usar para indicar que la fuente crea ejemplos del
objetivo. Un ejemplo mejor se relaciona con la informacidén del tipo en el tiempo de eje-
cucidn o la reflexién en .NET. Podriamos mostrar que se usa una metaclase (o el ejemplo
del objeto “Tipo” en .NET) para crear un ejemplo de una clase.

El estereotipo “permitir” se usa para indicar que la fuente puede invocar miembros
no publicos del objetivo. Esta relacién la soporta el modificador “Friend” (“Amigo”) en
lenguajes como Visual Basic y a través de reflexion dindmica.

Una sefial es como un evento que ocurre fuera de secuencia. Por ejemplo, cuando
usted estd dormido y la alarma empieza a sonar, €sta es una sefal para despertar. El
estereotipo “‘sefial”” se usa para indicar que ha sucedido algo que necesita una respuesta.
Piense en evento.

El estereotipo “sustituir” se aplica cuando la fuente se puede sustituir con el blanco.
La forma mas clara de sustitucion es una clase hijo en lugar de una clase padre. Por tlti-
mo, el estereotipo “usar” es comun. “Usar” sencillamente implica que la fuente necesita
que se complete el objetivo. “Usar” es una forma mas generalizada de “llamar”, “crear”,
“ejemplificar” y “enviar”.

www.FreeLibros.me

Como se relacionan las clases

_\ﬁ)
Adicion de detalles a las clases

Como se dice, el mal se encuentra en los detalles. Los diagramas de clases pueden incluir
una gran cantidad de informacién que se transmite por medio de caracteres de texto,
fuentes y qué es lo que se incluye, asi como qué se excluye. Yo prefiero ser explicito
hasta el punto que sea posible, pero no verboso, y estar presente en persona para resolver
las ambigiiedades en el transcurso de la implementacién. En esta seccidn, quiero sefialar
unos cuantos detalles que el lector puede buscar y algunos atajos respetables que puede
tomar para asegurarse de que entiende los diagramas UML creados por otros y que los
otros entienden los diagramas de usted. Debido a que estas directrices bdsicas son mas o
menos cortas, se encuentran en una lista como proposiciones.

» Las caracteristicas subrayadas indican caracteristicas estaticas.

* Las propiedades derivadas se demarcan por medio de una diagonal antes del nom-
bre de la propiedad. Por ejemplo, dadas las propiedades “horas trabajadas” y “sala-
rio por hora”, podemos derivar el salario, el cual apareceria como “/salario”.

* Los nombres de clases en cursivas indican clases abstractas. Una clase abstracta
tiene algunos elementos sin implementacion y depende de subclases para una im-
plementacion completa.

* Campos del modelo; las propiedades se implican en lenguajes que soportan pro-
piedades. En lenguajes que no soportan propiedades, los métodos con los prefijos
“get 7y “set ” conducen al mismo resultado.

» Las restricciones especifican condiciones anteriores (pre) y posteriores (post).
Use las restricciones para indicar el estado en el cual debe estar un objeto cuando
se introduce un método y se hace salir otro. La construccion “asercion” soporta
este estilo de programacion.

* Cuando esta modelando operaciones, trate de mantener un nimero minimo de ope-
raciones publicas, use campos privados y permita el acceso a los campos a través
de propiedades (si se soportan) o de métodos de acceso (si no se soportan las pro-
piedades).

Examen

1. Una subclase tiene acceso a los miembros privados de una superclase.
a. Verdadero
b. Falso

www.FreeLibros.me

@ Manual de umL

2. Siuna clase hijo tiene mas de una clase padre y cada padre introduce
una operacion con el mismo nombre,

a. el programador debe resolver el conflicto de nombre en forma ex-
plicita.

b. todos los lenguajes que soportan herencia multiple resuelven los
conflictos de manera implicita.

c. Ninguna de las anteriores. No se permiten los conflictos.
3. (Cual(es) de las proposiciones siguientes es (son) verdadera(s)?

. La generalizacion se refiere a subtipos.

. La clasificacion se refiere a subtipos.

a
b
c. La generalizacion se refiere a ejemplos de objetos.
d. La clasificacion se refiere a ejemplos de objetos.

e

. Ninguna de las anteriores

4. Realizar

a. significa heredar de una clase padre.
b. significa implementar una interfaz.

c. significa promover los miembros constituyentes en una clase com-
puesta.

d. esun sinénimo de agregacion.

5. Siun lenguaje no soporta herencia multiple, entonces se puede tener
una aproximacion del resultado por medio de

. una asociacion y la promocion de propiedades constituyentes.

a
b. realizacion.

c. composicion y la promocion de propiedades constituyentes.
d

. agregacion y la promocion de propiedades constituyentes.
6. La clasificacion dindmica —en donde un objeto se cambia en el tiem-
po de ejecucion— se puede modelar usando

a. generalizacion.
b. asociacion.

c. realizacion.
d

. composicion.

www.FreeLibros.me

Como se relacionan las clases @
7. Una clase “asociacion” se menciona como una clase de vinculacion.

a. Verdadero
b. Falso

8. Un calificador de “asociacion”

a. se usa como una precondicidon a una asociacion.

o

representa el papel de un parametro usado para retornar un objeto unico.

e

se usa como una precondicion posterior a una asociacion.

d. es lo mismo que una asociacion dirigida.

9. Seleccione las proposiciones correctas.

a. Una interfaz proporcionada significa que una clase implementa una interfaz.
b. Una interfaz requerida significa que una clase depende de una interfaz.

c. Una interfaz proporcionada significa que una clase depende de una interfaz.
d

. Una interfaz requerida significa que una clase implementa una interfaz.

10. Cuando un simbolo de clasificador se encuentra en cursivas,

significa que el simbolo representa un objeto.
significa que el simbolo representa una clase abstracta.

significa que el simbolo representa una interfaz.

/e e o

significa que el simbolo es un valor derivado.

Respuestas

© 0 ©® NNk wdb =

[

www.FreeLibros.me

www.FreeLibros.me

CAPITULO

Uso de los
diagramas de
esquemas de estado

Histdricamente, la diferencia entre los esquemas de estado y los diagramas de acti-
vidades ha sido un embrollo. En el Unified Modeling Language (UML) version 2.0,
los esquemas de estados entran en posesion de la suya como un diagrama distinto
y separado.

Los esquemas de estados (también conocidos como mdquinas de estado) son
buenos para mostrar el estado de un objeto sobre muchos casos de uso y para defi-
nir protocolos que describen una orquestacién correcta de los mensajes, tal y como
se podria necesitar para tener acceso a las bases de datos o para conectividad por
el Transmission Control Protocol (Tcp; Protocolo de Control de la Transmision).
De manera ideal, los esquemas de estado son adecuados para describir el com-
portamiento de las interfaces de los usuarios y de los controladores de dispositi-
vos para sistemas de tiempo real. En tanto que los diagramas de interaccidn son
buenos para la comprension de los sistemas, los esquemas de estados son buenos para
la indicacién precisa del comportamiento. Si usted estd trabajando en sistemas de
tiempo real o con controladores de dispositivos fisicos, entonces puede usar con fre-
cuencialos esquemas de estados. Sinembargo, un nimero enorme de aplicaciones son

——&

www.FreeLibros.me

@ Manual de umL

empresariales, basadas en interfaces graficas del usuario (y las bases de datos, asi como
muchos programadores, usan herramientas modernas de desarrollo rapido de aplicacio-
nes para crear prototipos de interfaces, en lugar de definir sus comportamientos usando
esquemas de estados). [No estoy juzgando acerca de si los prototipos deben crearse sin
los esquemas de estados, pero la creacion de prototipos de interfaces graficas del usuario
(Gu1) no es parte del UML.]

Parte de la desmitificacién del UML es asegurarse de que usted sabe que no necesita
usar todos los elementos del modelo, crear toda suerte de diagramas o modelar todos los
aspectos de un sistema. Adhiérase a la modelacion de elementos que sean complicados y
en donde el examen del modelo puede conducir a una mejor solucién. Por ejemplo, si estd
usando un marco de referencia bien comprendido como ADO.NET, es innecesario crear
diagramas de protocolos que muestren cémo abrir una conexion, leer datos y cerrarla.
Estos procesos estan prescritos por el marco de referencia, y el tiempo que se consuma
en la creacion del modelo podria usarse mejor en otra parte. Dicho esto, en ocasiones
querrd o necesitard esquemas de estados; en este capitulo le mostraré los elementos de
estos esquemas y algunos ejemplos. El lector aprendera

» Acerca de los elementos que se usan para crear esquemas de estados
e Coémo crear esquemas de estados
» La diferencia entre los esquemas de estados de comportamiento y de protocolo

* Formas comunes de implementar esquemas de estados

Elementos de un diagrama de estado

Lo més sencillo acerca del uML es que la mayoria de los diagramas se componen de
simbolos y lineas sencillos. Esto se cumple en los esquemas de estados, los cuales se
componen de manera significativa de simbolos llamados estados y lineas llamadas tran-
siciones. La sencillez de los simbolos es la parte mas facil del modelado; la identificacion
de los problemas, la captacion de las soluciones y la captura de esta comprension son los
aspectos del modelado con UML que pueden hacer que modelar sea tan complejo como
programar.
Tres cosas para recordar son

* Conocer todos los simbolos y la gramatica no implica que deba usarlos todos.

* Es esencial modelar los aspectos importantes del sistema, asi como modelar aque-
llos que no son obvios.

* No necesita toda suerte de diagrama para toda suerte de problema; sea selectivo.

Dicho esto, ampliemos nuestro conocimiento del uML y consideremos los diversos
simbolos para los esquemas de estados que evolucionaron a partir de su relacion entre-
mezclada con los diagramas de actividades.

www.FreeLibros.me

Uso de los diagramas de esquemas de estado

Examen de los simbolos de estado

Existen varios simbolos de estados; el mds comun es el rectingulo con esquinas redon-
deadas o estado simple. De manera significativa, los esquemas de estados constan de es-
tados y transiciones simples, pero hay otros estados que representan papeles importantes
aunque menos prominentes.

En esta seccion, explicaré los estados simples con actividades comunes y para hacer;
estados compuestos ortogonales y no ortogonales; estados inicial, de terminacién y final;
las conexiones, las selecciones y los estados de historia; los estados subméquinas y los
superestados, asi como los puntos de entrada y de salida.

Uso de los estados inicial, final y de terminacion

Recuerde que los esquemas de estados y los diagramas de actividades tienen una historia
compartida; como consecuencia, aun cuando en el UML version 2.0 sus definiciones estan
delineadas con mayor claridad, los esquemas de estados y los diagramas de actividades
todavia tienen algunos simbolos en comtin. Tres estados —inicial, final y terminal— usan
los mismos simbolos que se encuentran en los diagramas de actividades, pero desempe-
flan papeles adecuados para los esquemas de estados.

El estado inicial es un circulo relleno que representa un pseudoestado en las mdquinas
de estados de protocolo —vea “Creacién de maquinas de estado de protocolo” mds ade-
lante— en el UML version 2.0. Puede usar el estado inicial en los esquemas de estados en
general, pero no es de uso comun. En el estado final se usa el mismo simbolo —un circulo
relleno con un contorno circular— como actividad final en los diagramas de actividades y
se usa para indicar el fin de un esquema de estados; vea “Creacion de maquinas de estado
de comportamiento” mds adelante. Los estados finales no tienen transiciones salientes;
no tienen actividades de entrada, salida o para hacer; no hacen referencia a submdaquinas,
y no estan divididos en regiones. (Estos conceptos se describen abajo.) El estado final es
un punto extremo sin elaboracién. El estado de terminacion es una X usada en las maqui-
nas de estados de protocolos; piense en él como en un extremo muerto.

Uso de la conexion y los estados de seleccion

Un estado de seleccion es un pseudoestado que se usa en las maquinas de estado de
protocolos. Una seleccién se parece a un diamante de decisién y desempefia un papel
semejante al de una decision en los diagramas de actividades. Una seleccion tiene una
sola transicion entrante y mas de una saliente. Las transiciones salientes se toman de-
pendiendo de cudl condicién guardidn evalda lo que es verdadero. Si mds de un guardian
evalia lo que es verdadero, entonces se toma una transicion arbitraria, pero por lo menos
un guardidn debe evaluar lo verdadero (figura 7-1).

Una conexién es un circulo relleno, como el del estado inicial, y se usa para combinar
varias transiciones entrantes en una sola saliente, o para dividir una sola transicién en-
trante en multiples transiciones salientes (figura 7-2).

www.FreeLibros.me

_\@9

Manual de umL

Guardian

(pruebal)

Transicién entrante Transiciones salientes

(prueba2)

Figura 7-1 Estado de seleccién en el que se muestran una sola transiciéon entrante y dos salien-
tes, cada una con una condicién guardidn.

El mayor problema al usar notaciones y simbolos de estilo antiguo es que si usted trata
de generar cddigo, es posible que la herramienta le informe de un error. Sin embargo, el
estado de los generadores de codigo todavia es incierto, y cada herramienta tiene algunas
limitaciones relativas a la especificacion formal del uMmL.

En virtud de la historia compartida del esquema de estados con los diagramas de ac-
tividad, el lector podria ver conexiones modeladas usando los simbolos de bifurcacién y
de unién que se emplean en los diagramas de actividad. Tanto la bifurcacién/unién como
la conexidn con sus transiciones entrantes y salientes indican con claridad el intento de
transiciones que se dividen o combinan.

Uso de los estados de historia superficial y profunda

Una historia superficial se indica por medio de un circulo con una H, y una profunda
se indica por medio de un circulo con una H*. Las historias se usan en las maquinas
de estados de protocolos. Se usa una historia superficial para representar un subesta-
do reciente para un estado compuesto, y se usa una profunda para representar una
historia recursiva de subestados. (Para obtener mas informacion, consulte la siguiente
seccion sobre los estados compuestos.)

Si una maquina de estados realiza una transicion hacia un estado de historia, entonces
se activa y ejecuta el estado mads reciente. Piense en los estados de historia como en un me-
dio de modelar deshacer, rehacer o hacer pausa en los comportamientos y reanudarlos.

Figura 7-2 Conexién en la que se muestran multiples transiciones entrantes con una sola sa-
liente.

www.FreeLibros.me

Uso de los diagramas de esquemas de estado

Puerta cerrada Puerta abierta
Calentamiento entrada/Luz Enc
entrada/Emisién de salida/Luz Apag
microondas, Luz Enc,

Temporizador Apag

salida/No emisién de
microondas, Luz Apag,
Temporizador con
tiempo transcurrido

Figura7-3 Estado compuesto en el que se muestra una historia superficial —circulo H— la cual
indica que el estado del microondas se almacena cuando la puerta se abre.

En la figura 7-3, se muestra un estado compuesto —vea “Comparacién de los estados
simples y compuestos” mas adelante— que representa un horno de microondas. Cuando la
puerta esta cerrada, podriamos estar calentando, o el horno sélo podria estar apagado (off).
Cuando estamos calentando, un temporizador, una luz y el emisor de microondas estan
encendidos (on); cuando salimos del modo de calentamiento, el temporizador, la luz y el
emisor se apagan. Si la puerta se abre, entonces la luz se enciende y se almacena una histo-
ria antes de la transicion al estado de APAGADO. Se pretende que la historia permita reanudar,
en el punto del tiempo transcurrido en el temporizador, si arrancamos de nuevo el horno.
En la primera parte del siglo pasado, se descubrié que las microondas podian rebotar de
los objetos y se usaron para detectar la direccion y el alcance. Se intent6 que la aplicacién
original fuera para detectar los messerschmitts alemanes durante la Segunda Guerra Mun-
dial. El doctor Percy Spencer, en Raytheon, descubrié de manera accidental que el emisor
de microondas fundi6 algo de chocolate que tenia en su bolsillo. A continuacién, Spencer
probd con algunas semillas de maiz para producir “palomitas” en una bolsa de papel, y se
descubri6 el horno de microondas. Debido a su aplicacion original como radar, al horno
se le llam¢ “estufa de radar” y, finalmente, el nombre se cambid por horno de microon-
das. La primera estufa de radar tenia 6 pies (1.80 m) de altura y cost6 5,000 délares.

Uso de las actividades de estado

Los estados son activos o inactivos. Un estado se vuelve activo cuando se ejecuta su acti-
vidad de entrada. Un estado se vuelve inactivo después de que se ejecuta su actividad de
salida. (En la figura 7-3, el lector puede ver ejemplos de actividades de entrada y salida.)
Se puede ver una buena demostracién de una implementacién de actividades de entrada y
salida en eventos escritos para cuando un control aumenta foco y pierde foco. Por ejem-
plo, cuando abrimos la puerta de un refrigerador, se enciende una luz y, cuando cerramos
la puerta, la luz se apaga.

Los estados pueden contener actividades adicionales. Estas se dividen en categorias:
comunes y de hacer. Una actividad comiin es algo que sucede de manera instantanea. Una

www.FreeLibros.me

@ Manual de umL

actividad con el prefijo “hacer/” se conoce como actividad de hacer. Las actividades de
hacer suceden durante un tiempo. Por ejemplo, una actividad comtn se podria completar
en unas cuantas instrucciones de maquina que no se pueden interrumpir, o quizas podria
durar mds, si ocurriera dentro de una seccion critica de camino. Una actividad de hacer
sucede en el curso de muchas instrucciones y puede ser interrumpida, por ejemplo, por
un evento.

Considere la aplicacion Visual SourceSafe de la figura 7-4. Si hace clic en un nodo
de alto nivel y elige la opcidn “Get Latest Version” (“Obtener la versién mds reciente”),
entonces podria estar esperando un tiempo, porque copiar cientos o miles de archivos
de un almacén de cdédigo fuente, a través de una red, hasta una estacién de trabajo toma
tiempo. En forma concienzuda, esa operacion de larga ejecucion debe ser susceptible de
interrumpirse. Con el uso de una simple actividad de hacer en un estado, se indica que
ésta es una parte que se pretende del disefio.

Comparacion de los estados simples y compuestos

Un estado simple es aquél sin subestructura. No tener subestructura significa que el esta-
do no estd dividido en regiones y que no hay subestados. Un estado compuesto (también
llamado superestado) tiene una estructura interna que puede incluir regiones y si incluye
subestados. El estado “Puerta cerrada” de la figura 7-3 es compuesto; también es un es-
tado no ortogonal.

Estado compuesto no ortogonal significa que hay subestados anidados y sélo uno esta
activo en un momento. Por ejemplo, en la figura 7-3, s6lo “Calentamiento” o “Apag”
estd activo en un momento. Un estado compuesto ortogonal estd dividido en regiones
que se ejecutan en forma concurrente. En cada region, s6lo un subestado estd activo en
un momento.

La figura 7-3 es un ejemplo de un estado compuesto no ortogonal. Para crear un esta-
do compuesto ortogonal, divida el simbolo de estado en regiones y coloque subestados
en sus regiones respectivas. La figura 7-5 muestra un estado compuesto ortogonal que
representa el congelador de un refrigerador. El enfriamiento y la congelacién suceden
en forma concurrente en compartimientos separados, pero el encendido de la luz sucede
cuando se abre cualquiera de las dos puertas.

SUGERENCIA Visio no realiza un gran trabajo de administracion de estados compuestos;
soporta subestados compuestos agregando un esquema de estados hijo vinculado cuan-

/ Obtener lo mds reciente hacer/Obtener los archivos

mas recientes

Figura 7-4 Estado con una “hacer/actividad Obtener la version mds reciente”; el “hacer/” signi-
fica que este estado se puede interrumpir.

www.FreeLibros.me

Uso de los diagramas de esquemas de estado

/ Puerta cerrada \
\
Puerta abierta

/Cerrar puerta

Entrada/Luz Enc

Abri t
y’ Salida/Luz Apag

Figura 7-5 Estado compuesto ortogonal que representa enfriamiento y congelacién simultaneos.

do usted agregue un estado compuesto a un diagrama. Las caracteristicas avanzadas,
como los subestados compuestos ortogonales, tienen soporte en las herramientas mds
avanzadas (y mds caras). Vale la pena pagar el precio de admision a ese tipo de he-
rramientas, si usted usa con frecuencia caracteristicas avanzadas que no encuentra en
herramientas como Visio.

La figura 7-3 se creo laboriosamente usando ms-Paint, en tanto que la 7-5 se cre6 con
mucha mayor rapidez usando Rational XDE. Yo realizo una gran cantidad de modelado,
de modo que vale la pena el precio de admision para usar este paquete, pero en algunos
proyectos, he usado Visio y funciona bien para el modelado cotidiano. Las herramientas
buenas son la marca de un buen artesano, pero gastar una gran cantidad de dinero no es
garantia de éxito.

Uso de las actividades internas

Las actividades internas son como autotransiciones; consulte “Examen de las transicio-
nes” mds adelante. Una actividad interna es una respuesta que sucede en forma interna
y que dispara una actividad sin la ejecucion de una actividad de entrada o salida. En las
actividades internas se usa el mismo evento, guardian y actividad que en las transiciones.
Mas adelante hablaré mas acerca de las transiciones.

Vinculacion con las submaquinas

En lugar de repetir los diagramas de esquemas de estados (mdquina de estados), usted
quiere volver a usar los diagramas. Esto se aplica a las maquinas de estados. El umML
soporta el modelado de subméquinas mediante el nombramiento de la maquina de subes-
tados después del nombre del estado, separada por un nombre de clase. (Esto se parece a
la sentencia de declaracion de nombre de clase variable en C++.) Por ejemplo,

mystate : MyStateMachine

indica que “MyState” (MiEstado) es un ejemplo de la maquina de estados nombrada
“MyStateMachine”.

www.FreeLibros.me

@ Manual de umL

Si estd usando Visio, entonces puede usar la notaciéon de nombre, dos puntos y ma-
quina de estados para hacer referencia a una maquina de subestados. Otras herramientas
——como Rational XDE, mencionada con anterioridad— soportan un simbolo especial para
las submdaquinas y vinculard en forma dindmica la submaquina de referencia.

Examen de las transiciones

Las transiciones son lineas dirigidas que conectan estados. Las transiciones pueden ocurrir
con base en algtin mecanismo de disparo —por lo comin, implementado como eventos—y
pueden procesarse o no con base en una condicién guardidn, lo que da como resultado al-
gun efecto. Esta suerte de relacion de causa y efecto ilustra por qué las maquinas de estados
pueden resultar ttiles para modelar interfaces del usuario. En esta seccién, se examinaran
los mecanismos de disparo, ejemplos de condiciones guardianes y la manera de especifi-
car los efectos. También completaremos la exposicion acerca de las transiciones internas
y externas introducidas en la seccién “Uso de actividades internas”.

Especificacion de los disparadores

Una transicion tiene un estado fuente, un evento de transicion, un guardidn, un efecto y
un estado objetivo. Antes de salir del estado fuente, ocurre la actividad de salida. Cuando
ocurre el disparo de la transicidn, se puede realizar una prueba con una condicién guar-
dian para determinar si se toma la transiciéon. Una transicién tomada da como resultado
un efecto. Por ultimo, se ejecuta la actividad de entrada del objetivo. La linea dirigida
que representa la transicion se rotula con el evento opcional de disparo, el guardidn y el
efecto. Si finalizan las actividades en un estado, entonces el resultado se conoce como
transicion sin disparo o de complecion.

A los disparadores, o eventos, que significan una transicion se les da la categoria de
eventos de llamada, de cambio, de sefial y temporizador. Un evento de llamada especi-
fica una llamada sincrona de un objeto. Un evento de cambio representa un cambio en
el resultado de una expresion booleana. Un evento de sefial indica un mensaje explicito,
nombrado sincrono, y un evento temporizador es un disparador que ocurre después de un
intervalo especifico de tiempo. El disparador es el primer elemento, si estd presente, fijo
a una transicion.

SUGERENCIA Algunas herramientas pueden colocar prefijos a tipos especificos de transi-
ciones, con etiquetas como “cudndo”, en el caso de Visio y eventos de cambio.

Especificacion de las condiciones guardianes

Las condiciones guardianes se colocan entre corchetes y deben evaluarse para una con-
dicién booleana susceptible de probarse. (He visto la notacién para las condiciones guar-
dianes en otros diagramas, como los diagramas de actividad y de interaccion.) Si estd

www.FreeLibros.me

Uso de los diagramas de esquemas de estado @

—

presente una condicién guardian, entonces se evalia y debe conducir a un valor verdade-
ro para que se complete la transicion.

Las condiciones guardianes deben ser relativamente sencillas y no deben conducir a
efectos secundarios. Por ejemplo “[x > 0] es una buena condicién guardidn, pero “incre-
mentar x durante la evaluacién como [x++ > 0] es un guardidn con efectos secundarios
porque se cambia el valor de x cada vez que se ejecuta el guardidn.

Nora El modelado formal evoluciond después de prdcticas formales de codificacion.
Muchas buenas prdcticas, como no escribir codigo condicional con efectos secundarios,
las prdcticas especulares deseables en el cédigo y, en general, los modelos, finalizan
como codigo.

Especificacion de los efectos

Los disparadores, los guardianes y los efectos son opcionales. El tltimo elemento de un
simbolo de transicién es el efecto opcidn (o actividad). El efecto es alguna actividad que
se debe realizar cuando se dispara la transicién. La signatura de una transicion, incluyen-
do un disparador, un guardiin y el efecto, es

Event [Guard] / Effect

También podria ver eventos mencionados como disparadores 'y efectos a los que se les da
el nombre de actividades. Aunque muchos sinénimos pueden ser confusos, estas palabras
son suficientemente cercanas como para transmitir su finalidad.

Segtn la especificacién formal, puede haber muchos disparadores, un guardiian y una
actividad. Soportar cero para muchos disparadores significa que mds de un evento pue-

Ignicion A
A (gnicién Apag) Mezcla fijada Calentamiento del car-
pag como rica burador fijado en frio

Cebar
Girar la ignicién a Enc
(Area de la hélice despejada) Interruptor (Ignicién Apag)
Arranque maestro Enc (Cebo adentro y
¥ . cerrado
RS salida/Faro Enc
& —_
cuando: Arrancado rb\‘\‘b@
S
>
&

(Motor funcionando W
entrada/Soltar la ignicién
salida/Ajustar ahogador en vacio

Figura 7-6 Diversas transiciones que muestran elementos opcionales.

www.FreeLibros.me

Manual de umL

@,—

de dar como resultado una transicién. Soportar un solo guardidn no significa que éste no
pueda tener multiples predicados (subexpresiones que conducen a un resultado boolea-
no), y un solo efecto no significa que éste no puede ser un efecto compuesto. (Ademas, el
estado objetivo también puede realizar muchas actividades.) En la figura 7-6, se muestran
varias transiciones con algunos de los elementos descritos en esta seccion, o todos ellos.

En la figura, estamos mostrando una méquina de estados que refleja el estado de un
avién monomotor entre los estados de apagado y de marcha en vacio. La méaquina de
estados modela el motor como un sistema complejo con una progresion de transiciones
y estados, siendo el estado final que el motor se encuentra funcionando y marchando en
vacio.

Nota En un sistema digital, resulta fdcil hacer que se ejecuten cosas como “la ignicion
debe estar en posicion de apagado antes de que el interruptor maestro se haga girar a la
de encendido”, pero en un sistema analogico, podriamos con facilidad hacer girar una

hélice en un Cuisinart humano. Como modeladores, nuestro trabajo es captar las reglas;
a veces, no se puede hacer que se ejecuten las reglas, en especial en sistemas analogicos.

Revision de los tipos de transicion

Habl¢ de varias clases de transiciones. Déme un momento para revisarlas aqui.

Una transicién de entrada ocurre cuando se entra primero a un estado, antes que su-
ceda cualquier otra cosa en ese estado. Una transicion de salida es lo dltimo que sucede
antes de salir de un estado. Una transicién externa puede ser una autotransicién o una
transicion hacia otro estado. Una autotransicién ocurre cuando se sale de un estado y se
vuelve a entrar al mismo. En la figura 7-6, se muestra una autotransicién cuando falla el
estado de “Arranque” y regresamos al mismo estado para hacer otro intento. Por dltimo,
una transicion interna es una respuesta a un evento que no da como resultado un cambio
de estado. Las transiciones internas no causan la ejecucién de una actividad de entrada
o de salida.

Creacion de maquinas de estado de comportamiento

Las méaquinas de estados de comportamiento son para modelar el comportamiento pre-
ciso y se implementan como cédigo. Como consecuencia, en las maquinas de estados de
comportamiento se usan la mayoria de los elementos de los que se dispone para la crea-
cion de esquemas de estados (o diagramas de maquinas de estados). En el uML versién 2.0
se definen con precision los elementos que se pretende se usen en las maquinas de esta-
dos de protocolo y las que estdn dirigidas a las maquinas de estados de comportamiento;
sin embargo, si necesita un elemento en una de comportamiento, entonces usela, incluso
si no estd dirigida de manera especifica para una maquina de este tipo.

www.FreeLibros.me

Uso de los diagramas de esquemas de estado @

cambiar el evento i

cuando: Selector de
combustible Enc

Embrague encas-
trado

Parada

Oprimir interruptor de detencién

Estado inicial
arand®

Dar con el pie al arrancador (Embrague encastrado)
llamar evento

transicion/(guardidn)
En funciona-
miento

estado simple
Figura 7-7 Maquina de estados de comportamiento en la que se realiza un ciclo a través de los
estados de parada y funcionando en mi motocicleta.

En la figura 7-7, se ponen juntos muchos de los elementos y se describe una maquina
deestados de comportamiento. Estamaquina empieza con unamotocicletaenel estado de
parada y las transiciones hacia los estados previo al arranque y en funcionamiento,
incluyendo un camino para regresar al estado de parada. (El texto en cursivas rotula
varios elementos del diagrama.)

Una clave para construir una maquina de estados de comportamiento es determinar
cudnta informacién poner en su modelo. El modelo de la figura 7-7 podria describir
informacién suficiente para un arranque estando montado en una motocicleta, pero si
necesitaramos entender también como funcionaron los sistemas de combustible, trans-
mision e ignicidn, entonces este diagrama seria insuficiente. Como con la programacion,
la sentencia “Divide et impera” (Divide y manda) también se aplica aqui. Lo que quiero
decir por dividir y conquistar es que es posible que modeldramos los diversos subsiste-
mas —ignicion, combustible y transmisién— por separado y usaramos referencias a las
maquinas de subestados para incorporar esos elementos en el diagrama de la figura 7-7.
La premisa es que nuestro diagrama es un buen punto de partida, pero agregar demasiados
elementos, lo que conduce a un solo diagrama monolitico, posiblemente sea méds complejo
que aquello que se puede captar de una sola mirada. Los diagramas complejos contrarres-
tan el valor del modelado.

Creacion de maquinas de estado de protocolo

Las maquinas de estados de protocolo tienen que ver con una serie de secuencias légicas
predecibles. No quiere decir que estas miquinas tengan que implementarse, pero son
para describir el orden de las transiciones y los estados. Por esta razén, las maquinas
de estados de protocolo se usan para describir interfaces. Debido a que las interfaces no
tienen definiciones, muchos de los elementos que usted usa en las maquinas de estados
de comportamiento sencillamente no se necesitan en las de protocolo.

www.FreeLibros.me

Manual de umL

Crear (\ Abrir
. o Creado Abierto

Conectar

Recuperacién de Leer

datos

Conectado

Destruir

Figura7-8 Maquina de estados de protocolo en la que se muestra la secuencia ldgica y confiable
de eventos que tienen que ocurrir para usar de manera correcta todas las veces una conexion a una
base de datos.

Considere el uso ordenado de una base de datos. Podemos decir que se crea una co-
nexion hacia esa base, se abre la conexion, se recuperan los datos y se cierra la conexion.
Esto describe un protocolo que se puede implementar como una interfaz (o interfaces)
para tener una secuencia logica predecible y confiable de pasos —un protocolo— con el
fin de garantizar que una conexion se usa con correccion todas las veces. En la figura 7-8,
se muestra la maquina de estados de protocolo que se describe aqui.

Se puede usar una maquina de estados de protocolo para mostrar a los desarrollado-
res, en un nivel alto, cémo usar en forma correcta todas las veces las partes del sistema.
Mediante la definicién de una interfaz con estos elementos, les daria un medio de seguir
el protocolo. La maquina de estados que se muestra en la figura 7-8 se podria usar como
una ayuda de adiestramiento para garantizar que un recurso valioso, como la conexién
a una base de datos, no se use en forma incorrecta.

Implementacion de diagramas de estado

Los diagramas de actividad muestran como se soporta un solo caso de uso. Los diagra-
mas de interaccién muestran el ordenamiento en el tiempo de la creacién de objetos y
mensajes enviados, pero no son buenos para mostrar cémo se implementan los objetos.
Las méaquinas de estados muestran un objeto conforme cubre varios casos de uso y estin
disefiadas para mostrar como se deben implementar los objetos. Quizas una de las razo-
nes por las que parece que estas miquinas se usan con menos frecuencia que los diagra-
mas de interaccion es porque aquéllas estdn mds cercanas al cédigo que los otros tipos de

www.FreeLibros.me

Uso de los diagramas de esquemas de estado

diagramas, y cuanto mds proximos se encuentran al cédigo, mas tentados se sienten los
programadores a empezar a codificar.

En el desarrollo de software de alta ceremonia, puede haber un mandato que imponga
el nimero y variedad de diagramas por crear. (He trabajado en un par de ellos, pero son
raros.) En virtud de que las mdquinas de estados estan cercanas a las lineas del cédigo, yo
sOlo crearia estas maquinas para tipos riesgosos, complicados o raros de subsistemas. La
produccién de prototipos GUI funciona de maravilla para la mayoria de las aplicaciones y
tiene un efecto apaciguador sobre los usuarios. Las maquinas de estados que representan
GUI no parecen satisfacer la necesidad para tener una evidencia tangible del progreso, asi
como para prototipos interactivos, visualmente estimulantes.

Dicho esto, Fowler (2000) expresa que una maquina de estado se puede implementar en
una de tres maneras: conmutador anidado, el patrén de comportamiento de los estados y
las tablas de estados. Una sentencia de conmutador anidado es exactamente como suena:
se evalda algtin valor semantico constante, y una serie de sentencias si... condicionales, se
selecciona la caja o conmutador de sentencia que determina cudl bloque de ramales del
cddigo se debe ejecutar. Usar un conmutador anidado es la manera menos orientada a
objetos de implementar una maquina de estados. La segunda eleccion que se da en la lista
es el patrén de estados. El patron de estados define comportamientos abstractos, y la mé-
quina de estados se implementa llamando ejemplos especificos de subclases de la clase
de estados abstractos. Esta es una manera poderosa orientada a objetos de implementar
el comportamiento de estados. Por dltimo, podemos usar tablas externas de estados. En
una tabla de estados se almacena la fuente, el disparador, el guardidn, el efecto y la in-
formacion del objetivo en una base de datos, archivo XML o algo semejante. Aun cuando
no es un procedimiento orientado a objetos, es el més flexible porque podemos cambiar
la tabla de estados sin modificar, reestructurar y redesplegar el cédigo.

En la lista siguiente se muestra cémo podriamos implementar el comportamiento del
horno de microondas (de la figura 7-3), usando una sentencia de conmutador. Aunque
este cddigo es funcional, puede ser el més dificil de implementar, leer y mantener.

using System;
namespace HornodeMicroondas
{
public enum EstadodelaPuerta{ Cerrada, Abierta };
public enum Estadodelaluz{ Apag, Enc };
public enum EstadodelEmisordeMicroondas{ Off, On };
public enum EstadodelTemporizador{ Apag, EnPausa, Enc };

class Classl
private EstadodelaPuerta puerta;
private EstadodelalLuz luz;
private EstadodelEmisordeMicroondas emisor;
private EstadodelTemporizador temporizador;

www.FreeLibros.me

_\@9

@ Manual de umL

[STAThread]

static void Main(stringl[] args)
{

}

public EstadodelaPuerta Puerta
{

get{ return puerta; }

set{ puerta = value; }

}

public EstadodelaLuz Luz
{
get{ return luz; }
set{ luz = value; }

public EstadodelEmisordeMicroondas Emisor
get{ return emisor; }
set{ emisor = value; }

}

public EstadodelTemporizador Temporizador
{

get{ return temporizador; }

set{ temporizador = value; }

}

public void AbrirPuerta ()

{

CambiarEstadodelaPuerta (EstadodelaPuerta.Abierta) ;

}

public void CerrarPuerta ()

{

CambiarEstadodelaPuerta (EstadodelaPuerta.Cerrada) ;

}

private void CambiarEstadodelaPuerta (EstadodelaPuerta estadodelaPuerta)

{

switch (estadodelaPuerta)
{
case EstadodelaPuerta.Cerrada:
puerta = EstadodelaPuerta.Cerrada;
switch (temporizador)
{
case EstadodelTemporizador.Apag:
luz = EstadodelalLuz.Apag;
break;
case EstadodelTemporizador.EnPausa:
temporizador = EstadodelTemporizador.Enc;
emisor = EstadodelEmisordeMicroondas.Enc;
luz = EstadodelaLuz.On;
break;

www.FreeLibros.me

Uso de los diagramas de esquemas de estado

case EstadodelTemporizador.Enc:
throw new Exception("su cerebro estéd siendo escalfado");

}

break;

case EstadodelaPuerta.Abierta:
switch (temporizador)

{

case EstadodelTemporizador.Apag:
break;

case EstadodelTemporizador.Enc:
emisor = EstadodelEmisordeMicroondas.Apag;
temporizador = EstadodelTemporizador.EnPausa;
break;

case EstadodelTemporizador.EnPausa:

break;

}

luz = Estadodelaluz.Enc;
puerta = EstadodelaPuerta.Abierta;
break;

Podriamos implementar las reglas en una tabla y leerla para cada transicién (tabla 7-1).
Aunque seria improbable que cambidramos los estados del microondas después del des-
pliegue, este procedimiento es de uso comtn en los portales de aplicaciéon de la Web,
como dotnetnuke o IBUYSPY.

La lista anterior de cddigo funciona bastante bien porque podemos codificar con facili-
dad las relaciones anidadas que reflejan los subestados de “Calentamiento” y “Apag”. La
tabla 7-1 no es por completo satisfactoria, porque tenemos que llevar a la superficie los
subestados anidados con el fin de captar los comportamientos deseados cuando la puerta
esta cerrada y reanudamos el ataque nuclear a los alimentos. (El significado es bastante
claro en la tabla; podriamos agregar una columna adicional para indicar con claridad los
subestados.) Vea el capitulo 9, en relacién con un ejemplo del patrén de comportamiento
de los estados.

Vale la pena hacer notar que el patrén de estados, un conmutador o una tabla externa
no implementaran una maquina completa de estados. Estas tres opciones representan un
procedimiento general, pero el cddigo basico y otros patrones también son ttiles aqui.
Por ejemplo, podemos usar el patrén de comportamiento Memento para facilitar la cap-
tura y restablecer el estado interno de un objeto. Vea el capitulo 9, para obtener mas in-
formacion sobre los patrones y consiga un ejemplar de Design Patterns, escrito por Erich
Gamma et al.

www.FreeLibros.me

_‘ab

@,—

Manual de umL

Fuente Disparador Guardian Efecto Objetivo
Puerta cerrada Abrir puerta Luz Enc Puerta abierta
Puerta abierta Cerrar puerta Luz Apag Puerta cerrada
Calentamiento Abrir puerta Luz Enc, Puerta abierta
Emisor Apag,
Temporizador en pausa
Apag Abrir puerta Luz Enc Puerta abierta
Puerta abierta Cerrar puerta Luz Enc, Calentamiento
Emisor Enc,
Temporizador Enc
Puerta abierta Cerrar puerta Luz Apag Apag

Tabla 7-1 Esta tabla se podria exteriorizar en una base de datos o en un archivo XML, para
permitir que se cambien los comportamientos después del despliegue.

Examen

1. Los esquemas de estado (o diagramas de maquinas de estado) son
buenos para

a. trazar diagramas de sistemas.
b.
c
d

trazar diagramas de objetos y mensajes para un solo caso de uso.

. comprender un solo caso de uso.

. especificar el comportamiento de un objeto a través de varios casos de uso.

2. Las maquinas de estado son especialmente utiles en el examen de las Gui y de los
controladores de tiempo real.

a.
b.

Verdadero
Falso

3. Se usa una conexion para

a. combinar varias transiciones entrantes en una sola transicion saliente.
b.
c
d

dividir una sola transicion entrante en varias transiciones salientes.

. Tanto a como b

. Ninguna de las anteriores

4. Se usan los pseudoestados de historia para restablecer los estados anteriores.

a.
b.

Verdadero

Falso

www.FreeLibros.me

10.

Uso de los diagramas de esquemas de estado

. Una actividad comun se ejecuta

a. en el transcurso de un tiempo, y una de hacer se ejecuta de inmediato, pero se
puede interrumpir.

b. de inmediato, y una de hacer se ejecuta en el transcurso de un tiempo y se
puede interrumpir.

c. en el transcurso de un tiempo y se puede interrumpir, y una de hacer se ejecu-
ta en el transcurso de un tiempo.

d. en el transcurso de un tiempo, y una de hacer se ejecuta también en el transcur-
so de un tiempo; so6lo que esta ultima se puede interrumpir.

. Las transiciones son lineas dirigidas rotuladas con

. un evento disparador opcional, un guardian y un efecto.

a

b. un evento disparador, un guardian opcional y un efecto.
c. un evento disparador, un guardian y un efecto opcional.
d

. opcionalmente, un evento disparador, un guardian y un efecto.

. Las transiciones internas hacen que se ejecuten una actividad de entrada y una de

salida.

a. Verdadero
b. Falso

. Las autotransiciones hacen que se ejecuten una actividad de entrada y una de sa-

lida.

a. Verdadero
b. Falso

. Un estado compuesto ortogonal

a. estd dividido en regiones, y s6lo se puede activar una de ellas a la vez.
b. esta dividido en regiones, y solo se puede activar un subestado a la vez.

c. esta dividido en regiones, y solo se puede activar un subestado por regién a
la vez.

d. estd compuesto de una sola region, y se pueden activar multiples subestados en
forma simultanea.

Un estado compuesto no ortogonal

a. esta compuesto de regiones, y s6lo se puede activar una de ellas a la vez.
b. no esta dividido en regiones, y s6lo se puede activar un subestado a la vez.

www.FreeLibros.me

_\@)

@ Manual de umL

c. no estd dividido en regiones, y se pueden activar multiples subestados a la
vez.

d. esta dividido en regiones, y se puede activar un subestado por region a la vez.

Respuestas

O I = N S R S
0 & o v o M 0 o A

_‘
e

www.FreeLibros.me

CAPITULO

i Modelado de
componentes

Cuanto tenia 15 afios, compré mi primer auto por 325 délares. Adelante; riase;
en 1981, un auto de 325 ddlares era tan malo como usted pueda imaginar. Por
supuesto, siendo industrioso, empecé a hallar maneras de restaurarlo y hacerlo tan
respetable para el camino en tanto yo supiera como hacerlo. Una de las primeras
cosas de las que me di cuenta acerca de este cubo oxidado Cutlass Oldsmobile 1974
—ademds de que el asiento delantero no quedaba fijo, lo que causaba que se fuera
por completo hasta delante, cuando me detenia, y por completo hasta atrds, cuando
aceleraba, del agujero del tamaifio de un balén de futbol en el radiador y de los neu-
maticos de cuatro tamafios diferentes— era que se necesitaba reemplazar la banda
del motor, con trayectoria en serpentina. Pensé que reemplazar una banda con estas
caracteristicas era una tarea que podia manejar.

——®

www.FreeLibros.me

@ Manual de umL

Después de llevarme el auto a casa, me enfrasqué en el reemplazo de la banda. Empecé
por quitar el radiador, la bomba de agua y el alternador. El lector se imagina el cuadro.
Me di cuenta de que éste era un trabajo mas grande de lo que podria ser capaz de hacer y
resolvi llevar el auto al taller de reparaciones de la Firestone que estaba en la carretera. El
muchacho del taller aflojé el alternador, lo hizo girar hacia dentro, deslizé la banda sobre
el ventilador y el alternador, regresé el alternador a su lugar, apreté los pernos y termind
en 10 minutos. So6lo recibi mi primera leccidn, con un costo de 35 délares, de lo que vale
el conocimiento.

(Por qué le relaté esta historia? La respuesta es que cuando le digo que es posible que
repase de modo superficial este capitulo y tal vez no necesite los diagramas de compo-
nentes, créame.

Para modelar componentes, usamos muchos de los mismos simbolos y conectores que
hemos expuesto en los capitulos anteriores, pero existe una diferencia. Los componentes
son trozos auténomos de cédigo —piense en subsistema— que se pueden volver a usar
desplegandolos de manera independiente. (Los componentes no tienen que ser grandes,
pero en general, son mucho mds que una sola clase o un par de clases vagamente relacio-
nadas.) En general, los componentes tienen multiples interfaces suministradas y requeri-
das y se encuentran en aplicaciones grandes y complejas con docenas o cientos de clases
del dominio. Por tanto, si estd estructurando una simple aplicacién cliente-servidor, un
sitio web bdsico o una aplicacién de Windows para un solo usuario, entonces es posible
que no necesite diagramas de componentes. Si estd estructurando una solucién empre-
sarial con cientos de clases del dominio y elementos susceptibles de volver a usarse,
entonces podria necesitar diagramas de componentes.

No toda clase es de dominio. Las clases de arreglos, colecciones e interfaces graficas
de los usuarios (GUI) no son clases del dominio. Las clases del dominio son las que cap-
tan el problema de este tltimo: estudiante, registro, clases en una aplicacién de matricula;
reservaciones, personas, procesos, tiempo servido en la aplicacion de administracién de
una prision, y depdsitos, retiros y cuentas en un sistema bancario. Si tiene cientos de estos
tipos de clases, entonces puede ser que necesite diagramas de componentes.

Ejemplos obvios de componentes muy complejos incluyen cosas como aplicaciones
de Microsoft Office, Enterprise Java Beans, COM+ y CORBA. Quizds componentes menos
complejos podrian incluir el componente de persistencia en la base personalizada de
datos del lector.

Dicho esto, lo aliento a que s6lo vea superficialmente este capitulo, pero debe leerlo
por completo si sabe que estd estructurando un sistema grande o estd intentando orga-
nizar los esfuerzos de un equipo grande; un panorama general del sistema le ayudard
a orquestar los esfuerzos de todos los desarrolladores. En este capitulo, se mostrara la
mecanica directa de creacion de los diagramas de componentes. Para obtener directrices
excelentes sobre las circunstancias de estructuracién de los diagramas de componentes,
consulte The Object Primer: Agile Model-Driven Development with umL 2.0, de Scott
Ambler, 3a. edicion. En este capitulo aprendera

www.FreeLibros.me

Modelado de componentes @

» Como describir los componentes
» Como especificar las interfaces suministradas y requeridas

* A alternar las maneras para especificar un componente con base en el detalle que
quiere transmitir

Introduccion del diseno basado en componentes

Existen dos métodos generales para derivar componentes: el método componentes-inter-
faz, y el método que privilegia el desarrollo de clases. Cualquiera de ellos es ttil. Permi-
tame explicar cémo funcionan y el porqué de su utilidad.

Diseno componentes-interfaz

Conocido también como método de arriba hacia abajo, es el mas recomendado por al-
gunos especialistas. Este enfoque implica que primero se definen los componentes
—es decir, las grandes piezas del sistema— y después las interfaces correspondien-
tes. Una vez que los componentes y las interfaces se han definido, es posible dividir la
implementacién del sistema entre los participantes, organizdndolos en varios grupos o
equipos encargados de construir cada componente. Como todos los involucrados estan
de acuerdo respecto de como construir las interfaces, los desarrolladores son libres de
implementar como deseen las partes internas del componente.

Considero que este método puede resultar si el equipo estd utilizando muchos compo-
nentes bien establecidos con interfaces de dominio publico. Sin embargo, definir todos
los nuevos componentes desde esta perspectiva puede constituir todo un reto.

Por otro lado, utilizar el enfoque “de arriba hacia abajo” implica el compromiso de
instaurar un estilo de implementacion complejo, ya que los sistemas basados en compo-
nentes constan de hasta tres o cinco interfaces de soporte, y pasan por clases para todas
las clases dominio. (Esta es la razén por la que los componentes representan interfaces
discretas y bien definidas, resultantes de las clases por las que pasan.)

En consecuencia, el problema del método componentes-interfaz radica en que es ne-
cesario disefiar (e implementar) cinco clases de soporte para cada clase dominio, razén
por la cual los sistemas basados en componentes pueden resultar caros, riesgosos y muy
demandantes por lo que se refiere al tiempo de desarrollo.

Diseno a partir de las clases

El método a partir de las clases (conocido también como método de abajo hacia arriba)
significa que antes que nada se definen las clases —por ejemplo, las que resuelven el pro-

www.FreeLibros.me

@ Manual de umL

blema del negocio— y después la estructura. El resultado es que se dedica una importante
cantidad de esfuerzo a la resolucién del problema, en lugar de dedicarlo al disefio de una
arquitectura complicada.

Utilizando las clases dominio y el método a partir de las clases se tiende mds a la
resolucién del problema, aunque siempre es posible derivar componentes de las clases
dominio en caso de que la complejidad de la solucién se incremente o se identifique un
grupo de clases que pueda depurarse y reutilizarse con més facilidad si se les encapsula
en componentes.

Cualquiera de los métodos descritos puede funcionar. En el caso de aplicaciones pe-
quefias o medianas es probable que no se requieran muchos componentes, de manera que
un disefio a partir de las clases darfa buenos resultados. Por lo que se refiere a las aplica-
ciones de tipo empresarial, que demandan una guia experimentada, tal vez seria mejor el
disefio componentes-interfaz.

Vale la pena considerar que es mas facil cambiar de decision en aquellos modelos que
estén codificados. Por lo tanto, si usted crea modelos podra explorar y cambiar rapida-
mente sus decisiones en materia de disefio. Esta premisa es vélida también por lo que
respecta a los diagramas de componentes.

Modelado de un componente

En el Unified Modeling Language (UML), el simbolo de componente se cambi6 del sim-
bolo dificil de manejar de la figura 8-1 a uno de clasificador —un rectangulo— con el
estereotipo de «componente» (figura 8-2) o un pequefio icono que luce como el de la
figura 8-1, en la esquina superior derecha del propio simbolo.

Tenemos que acomodarnos con algunas herramientas UML que no son por completo
compatibles con el UML versidn 2.0. El clasificador de la figura 8-2 muestra las secciones
de atributos y operaciones del propio simbolo. Esto es aceptable.

Si su herramienta soporta el simbolo de estilo antiguo (mostrado en la figura 8-1),
entonces también puede usarlo. Aparentemente, la razén para el cambio de simbolo es
que los rectdngulos sobresalientes del estilo antiguo dificultaban el dibujo y la fijacién
de conectores.

Componentel

Figura 8-1 Simbolo de componente del estilo antiguo del umL.

www.FreeLibros.me

Modelado de componentes

«componente»
Componentel

Figura 8-2 Simbolo revisado de componente en el UML version 2.0.

_\@9

Especificacion de las interfaces
proporcionadas y requeridas

En el capitulo 6, introdujimos las interfaces proporcionadas y requeridas. Una interfaz
proporcionada se representa por la paleta de caramelo que se extiende desde la interfaz, y
una interfaz requerida se representa por media paleta que se extiende desde la interfaz. En
términos sencillos, una interfaz proporcionada es aquella que el componente define, y una
interfaz requerida es la que necesita que se complete. En la figura 8-3, se ilustra parte de
un sistema financiero que muestra el componente de administracién de cuentas y la capa
de persistencia (por lo comin, base de datos).

No se quede atascado en las limitaciones de su herramienta de modelado. Es mds que
probable que, si su herramienta genera c6digo, entonces lo generara con base en el uso
correcto de los simbolos para el subconjunto de la version del UML que su herramienta so-
porta. Por ejemplo, en la figura 8-3, vemos los rectangulos sobresalientes mas pequefios,
y tuvimos que fabricar la imagen de rétula para las interfaces requerida y suministrada, lo
cual, para esta version del UML, en realidad funciona para frustrar la herramienta.

Si su herramienta tiene la misma limitacién que Visio 2003 —Ia cual no soporta la
mitad de la paleta— entonces podria indicar las relaciones de interfaz suministrada y
requerida usando el conector de dependencia (figura 8-4).

Nora A los conectores de mitad de paleta y de paleta completa y a los clasificadores
se les menciona en forma metaférica como diagrama de alambrado. Si alguna vez el
lector ha visto un diagrama de alambrado, entonces podria ver las semejanzas.

Persistencia
Cuenta O
Administracion de cuentas Persistencia

Figura 8-3 El componente “AdministradordeCuentas” proporciona la interfaz “Cuenta” y re-
quiere la interfaz “Persistencia”.

www.FreeLibros.me

Manual de umL

@,—

Cuenta Administracion
de cuentas \
\
. Y
Persistencia
Persistencia

Figura 8-4 Uso de una dependencia, en lugar de la mitad de la paleta de caramelo, para modelar
una interfaz requerida cuando el UML version 2.0 no estd por completo soportado por su herra-
mienta de modelado.

Examen de los estilos de modelado de componentes

Existen diferentes maneras de trazar el diagrama del mismo componente con base en la
informacién que queremos mostrar. Si un diagrama es para un implementador, entonces
tal vez usted quiera mostrar un diagrama de caja blanca —con los detalles internos mos-
trados— de un componente. Si el diagrama es para un consumidor, entonces s6lo necesita
mostrar las interfaces proporcionadas y requeridas. Si quiere mostrar la implementacion
de las interfaces proporcionadas, entonces puede usar un clasificador y dependencias,
porque los clasificadores son mejores para mostrar los detalles de implementacién de las
interfaces.

En esta seccion, revisaremos algunas variaciones de los diagramas de componentes,
incluyendo diagramas con mds elementos. (Para esta seccion del capitulo, cambié a Po-
seidon para el UML version 3.1, que tiene mejor soporte para los diagramas de componen-
tes del uML version 2.0 que cualquiera de las copias de Rational XDE o Visio. Cuando se
modela una aplicacién o un sistema real, le aliento a que use la herramienta y la notacién
mads facilmente disponibles. Sin embargo, en un formato de libro, el cambio de herra-
mientas le da a usted una idea de algo de la variedad que hay por ahi.)

Trazado de los diagramas de componentes para consumidores

Cuando esta creando diagramas de componentes para consumidores —otros programado-
res que usardn los componentes— todo lo que necesitard mostrarles es una vista de caja
negra del componente. Una vista de caja negra de un componente proporciona los detalles
de las interfaces proporcionadas y requeridas. Si su herramienta lo soporta, puede usar un
simbolo de componente y hacer una lista de las interfaces proporcionadas y requeridas,
incluyendo las signaturas expuestas de los métodos, o puede mostrar los clasificadores con
el estereotipo «interfaz». La mayoria de las herramientas soportan las realizaciones, las
dependencias y los clasificadores, de modo que este ultimo estilo es el mas facil de crear.

www.FreeLibros.me

Modelado de componentes @

Una interfaz proporcionada es aquella en la que el componente realiza; por tanto,
al usar clasificadores, la paleta de caramelo se convierte en el conector de realizacion.
Una interfaz requerida es aquella en la cual el componente depende; por tanto, al usar
clasificadores, la media paleta de caramelo se convierte en el conector de dependen-
cia con un estereotipo «usar». En la figura 8-5, estd un diagrama de caja negra en el
que se muestran las interfaces proporcionadas “1ExceptionxMLPublisher” (“1Publicador-
xmLdeExcepciones”) e “1ExceptionPublisher” (“rPublicadordeExcepciones™) y la inter-
faz requerida “1ConfigSectionHandler” (“IManejadordeConfigSecciones”). (Este es un
diagrama parcial de componentes del Exception Management Appliccation Block; Bloc
de aplicacién de administracién de excepciones para .NET ofrecido por Microsoft y que
se usa en Motown-jobs.com.)

En la figura 8-5, el lector sabe que el componente “ExceptionManagement” reali-
za “1ExceptionxMLPublisher” e “IExceptionPublisher”, los cuales son elementos que el
consumidor serd capaz de usar. El lector también sabe que algo llamado “1ConfigSectio-
nHandler” es algo que el componente necesita.

Nota Si usted estd interesado en .NET 'y los bloques de aplicaciones, entonces puede
obtener mds informacion en www.microsoft.com. Los bloques de aplicaciones son bd-
sicamente componentes que resuelven problemas susceptibles de volver a usarse, en un
nivel mds alto de abstraccion que sencillamente clases en un marco de referencia.

Si el contexto es desconocido, entonces este diagrama no proporciona informacion
suficiente, pero una vez que colocamos el componente en un contexto —en este caso,
en el marco de referencia .NET—, los tipos de datos y las interfaces requeridas quedan a
disponibilidad del consumidor.

«interfaz» l- - - 4 «componente»

1ExceptionxMLPublisk ExceptionManagement

+Publish(exceptioninfo:XmIDocument,configSeettings:Name ValueCollection):void

AV

«interfaz»

. . « »
1ExceptionPublisher usar

+Publish(exception:Exception,additionallinfo:Name ValueCollection,configSettings:Name ValueCollection):void

I

I

I

I

I

I
v

«interfaz»
1ConfigSectionHanler

+Create(parent:Object,configTextObject,section: XmINode):void

Figura 8-5 Interfaces suministradas y requeridas modeladas con el uso de conectores de reali-
zacion y de dependencia, asi como clasificadores, para elaborar la definicion.

www.FreeLibros.me

www.microsoft.com.

Manual de umL

TYy—
Trazado de los diagramas de componentes para productores

Si estamos trazando diagramas de componentes para productores —aquellos que imple-
mentaran el componente— entonces necesitamos mas informacién. Para los productores,
necesitamos mostrar los componentes, las clases y las relaciones internas que el imple-
mentador de los componentes deberd crear como c6digo. A esto es a lo que me estoy
refiriendo como vista de caja blanca, o detalles internos.

Podemos desarrollar el diagrama de componentes de la figura 8-5 y agregar detalles
internos acerca del componente “ExceptionManagement”. En la figura 8-6, se muestran
las interfaces proporcionadas y requeridas como paletas de caramelo y se amplia el enfo-
que sobre los elementos internos del componente.

En la figura 8-6, se muestran las mismas interfaces proporcionadas y requeridas, pero
nuestra vista original de caja blanca muestra ahora como soportamos algunos de los ele-
mentos externos. Aunque puede ser que esta vista todavia no proporcione todos los detalles
necesarios para implementar el componente ‘“ExceptionManagement”, podriamos agregar
atributos y operaciones a los clasificadores y combinar el diagrama de componentes con
otros diagramas, como los esquemas de estados, los diagramas de clases y las secuencias.
En forma colectiva, los diversos diagramas explicarian la manera de implementar el com-
ponente.

Vale la pena hacer notar que estamos expresando la misma suerte de relaciones que
hemos visto antes en los diagramas de clases. También vale la pena hacer notar que los
componentes, como las clases, pueden contener elementos anidados, como los compo-
nentes anidados.

«componente»

ExceptionManagment

DefaultPublisher ExceptionManager

O

1ExceptionPublist

O—

1ExceptionxMLPublisher

+Publish(exception:Exception):void

ExceptionManagerSectionHandler Ve

|\

1ConigSectionHandler

Figura 8-6 En esta figura, se cambia el enfoque para destacar la vista interna, o caja blanca, del
componente.

www.FreeLibros.me

Modelado de componentes @

Para experimentar con el modelado de componentes, encuentre un dominio con el que
esté familiarizado o una solucidn existente, como la base de datos de muestra de Nor-
thwind. Vea si puede describir una vista de arriba hacia abajo de una versién en componen-
tes de los elementos de un sistema para la plena satisfaccion de los pedidos de los clientes.
(Por supuesto, puede usar cualquier dominio muestra con el cual esté familiarizado.)

Examen

1. Todo modelo debe contener por lo menos un diagrama de componentes.
a. Verdadero
b. Falso

2. Un método de arriba hacia abajo para los diagramas de componentes significa que
usted

a. define primero los componentes y, a continuacion, descompone esos componen-
tes en sus partes constituyentes.

b. define las partes constituyentes y, a continuacion, coloca los componentes en la
parte superior de esas partes constituyentes.

c. Ninguna de las anteriores

3. Un método a partir de clases o de abajo hacia arriba para disefiar puede ser valioso
porque (seleccione todo lo que sea aplicable)

a. los componentes en realidad no se necesitan.

b. usted logra mas traccion al resolver primero los problemas del dominio.
c. la estructuracion de infraestructura es cara y tardada.
d

. en un momento posterior, las clases del dominio siempre pueden organizarse en
componentes.

4. Los simbolos de los componentes se pueden representar usando un clasificador con
el estereotipo «componentey.

a. Verdadero
b. Falso
5. Una interfaz proporcionada se puede representar por medio de una paleta de cara-
melo con nombre
a. o por la mitad de una paleta de caramelo.
b. o por una dependencia en un clasificador con el estereotipo «interfazy.
c. 0 por un estereotipo «interfaz» en un clasificador con un conector de realizacion.
d

. solo usando la paleta de caramelo.

www.FreeLibros.me

@,—

10.

Manual de umL

Una interfaz requerida es aquella que realiza el componente.
a. Verdadero
b. Falso

Una interfaz requerida se puede representar por medio de la mitad de una paleta
de caramelo con nombre

a. o por una paleta de caramelo.

b. o por una dependencia en un clasificador con el estereotipo «interfazy.

c. 0 por un estereotipo «interfaz» en un clasificador con un conector de realiza-
cion.

d. solo usando la mitad de una paleta de caramelo.

Los componentes pueden contener componentes anidados.

a. Verdadero

b. Falso

Como regla general, usted s6lo usa componentes y diagramas de componentes
para sistemas con 100 o mas clases del dominio.

a. Verdadero, pero ésta es una directriz general. Los componentes pueden ayu-
darle a organizar una solucion y a estructurar elementos susceptibles de volver-
se a usar que se pueden vender por separado.

b. Falso, porque la estructuracion de componentes siempre es mas barata a largo
plazo.

Para cada clase del dominio en una arquitectura basada en componentes, usted
puede necesitar de tres a cinco clases de soporte.

a. Verdadero
b. Falso

Respuestas

vk N

b 6. b
a 7. b
b,cyd 8. a
a 9. a
c 10. a

www.FreeLibros.me

CAPITULO

Ajuste y finalizacion

He trabajado en proyectos con presupuestos desde menos de 5 millones de délares
que inclufan 20,000 horas-hombre, hasta proyectos con presupuestos de mas de
1,000 millones de délares y cientos de miles de horas-hombre. En algunos de estos
proyectos casi no se us6 modelado y disefio formales y, en otros, se usé tanto mo-
delado y disefio que todo el impetu llegd a perderse. La leccién es que demasiada
poca formalidad puede dar por resultado un producto mediocre, de mala calidad, y
demasiada formalidad puede hacer que un proyecto se atore o se cancele.

También vale la pena mencionar que he trabajado para compaiiias enormes que
no modelan en absoluto, pero entregan software constantemente. Uno tiene que pre-
guntarse si el éxito de esos proyectos estd relacionado con cudnto dinero tuvieron
que arrojar al problema esas empresas y también si el software hubiera sido mejor,
mads rapido y mds barato si se hubiera modelado y disefiado un poco.

La respuesta se encuentra en alguna parte entre los dos extremos. En general,
los modelos de software necesitan ser tan completos y precisos como lo que se esta
disefiando. Por ejemplo, si estd construyendo algo tan complejo como una casa
para un perro, entonces es probable que no necesite mucho en el camino de los mo-
delos. Para algo tan complejo como una casa, es posible que necesite modelos tan
complejos como un plano azul. Conocer el tamaiio, el nimero de habitaciones y los
materiales de construccion le ayudard a dimensionar y presupuestar un proyecto,
dejando al mismo tiempo algo de espacio para la invencién. Por ejemplo, las varia-
ciones en los artefactos luminosos, el color de la pintura, el estilo del alfombrado
y la colocacién precisa de las tomas de electricidad se pueden dejar (dentro de lo
razonable) al ingenio de los especialistas. Para las casas, los especialistas son los

——&

www.FreeLibros.me

@ Manual de umL

carpinteros, los electricistas, los colocadores de techos y los plomeros; para el software,
los especialistas son los programadores, los probadores, los DBA (database administra-
tors; administradores de bases de datos) y los disefiadores de la interfaz grafica para los
usuarios (GUI).

La realidad es que casi todo el software es mds complejo que una casa, y mucho de él
se esta estructurando sin planos azules (modelos UML) que describirian de manera ade-
cuada la casa de un perro. La razén es que el modelado del software es nuevo y dificil.
Ademads, el cédigo se puede compilar, depurar, ejecutar y probar con resultados super-
ficialmente mensurables. Como contraste, los modelos no se compilan y s6lo se pueden
“depurar” en forma manual, y no se ejecutan, y no hay manera sencilla de ponerlos a
prueba. Yo apostaria a que muy pocas empresas de software estin realizando revisiones
técnicas del cédigo con éxito; olvidese acerca de las revisiones técnicas del Unified Mo-
deling Language (UML).

Lo que todo esto significa es que si usted estd leyendo esto, entonces se encuentra
adelante de muchos de sus semejantes en términos de la préctica del modelado del soft-
ware; también significa que la definicion de un proceso y encontrar un equilibrio entre
demasiado mucho y demasiado poco modelado son importantes. En este libro, he dado
algunos apuntadores practicos, en el contexto del modelado y disefio con UML, que me
han ayudado en el pasado. Estos apuntadores se basan en algunos proyectos que han te-
nido éxito y en algunos que han fallado. Para ayudarle a imaginarse como completar sus
modelos, hablaré acerca de

» Unas cuantas cosas basicas que hacer y no hacer
 El uso de patrones y refactorizaciones conocidos
* Cuando y como agregar documentacion de soporte

¢ La validacion de sus modelos

Modelado de los hacer y los no hacer

Pensé en nombrar esta seccién “Las mejores practicas de modelado”, pero los hacer y los
no hacer me parecen mas desmitificadores.

A principio de la década de 1990, inicié¢ el modelado usando lo notacién booleana.
En aquellos dias, habia unos cuantos lugares en donde usted podia aprender un lenguaje
como C++ de un profesional experimentado y casi ninguna parte en donde aprender
modelado. Esto significa que, al principio, los pocos libros que pude conseguir y mis
propios errores fueron los Unicos profesores de los que dispuse. Después de mas de 12
afios, he mejorado, pero todavia existen unos cuantos expertos auténticos en modelado
y, hasta donde puede decir, muchas universidades todavia no estan ofreciendo curriculos
para arquitectos en software (o incluso modeladores en UML); este conocimiento todavia

www.FreeLibros.me

Ajuste y finalizacion @

es nuevo. Como consecuencia, el consejo que puedo darle se basa en mi propio estudio
intenso y en muchos afios de sentir mi camino. Es evidente que esto sugiere que el exper-
to de su comunidad puede no estar de acuerdo con mi opinién. Usted conoce mejor a su
propia gente que yo; si piensa que algo no funcionard o que mi consejo es cuestionable,
entonces busque a esos pocos viejos sabios a quienes todos reconocen como expertos: Ja-
mes Rumbaugh, Ivar Jacobson, Grady Booch, Erich Gamma y Martin Fowler. Hoy unos
cuantos otros, pero ya tiene el panorama. Cuando tengo preguntas acerca del modelado
con UML, éstos son los amigos hacia quienes también recurro.

No tenga esperando a los programadores

La primera regla es: no tenga a los programadores esperando los modelos. Esto signifi-
ca que debe realizar una gran cantidad de disefio antes de armar su equipo principal de
programacioén. Resultard 1til que disponga de unos cuantos programadores para ayudarle
en la creacidn de su prototipo, pero no cree el equipo por completo hasta que tenga bien
encaminados un plan del proyecto y algo del andlisis y el disefio.

Por desgracia, la mayoria de los proyectos no se organizan de este modo. Llega el
equipo completo y, de inmediato, empieza la presion para que todos trabajen, incluyendo
los programadores. Intente crear modelos con el detalle suficiente como para tener tra-
bajando a los programadores, pero no tan detallados que los tenga atascados esperando.
Esto es dificil de hacer.

Trabaje de una macrovista hacia una microvista

Trabaje primero sobre aspectos del “gran panorama”. Por ejemplo, identifique primero
las partes grandes del sistema —GUI web, macrolenguaje personalizado, servicios web
y persistencia de las bases de datos— antes de trabajar sobre las clases y las lineas del
codigo. Si quiere concebir las partes y la forma en que se ajustan entre si, entonces el
trabajo se puede dividir en subsistemas. Este es un procedimiento de arriba hacia abajo,
pero soporta una division del trabajo y le da un contexto para el trabajo mds pequefio y
mads detallado.

Documente en forma economica

La mayor parte de la documentacion es parte de la microvista. Al modelar, tenga presente
que el UML es un lenguaje taquigrafico para el texto. (Usted podria disefiar un sistema
completo en texto llano, jcorrecto?) Analice y disefie una solucién tan completa como se
necesite, sin agregar una cantidad de notas y documentacién. A menudo, los diagramas
adicionales pueden aclarar un diagrama con tanta rapidez como un texto largamente de-
sarrollado.

www.FreeLibros.me

Manual de umL

También puede guardar algo de la documentacidn para el final del proyecto, si sus
modelos son dificiles de entregar. Si su cliente (interno o externo) no esta pagando por
lo modelos, entonces consumir recursos para pulirlos puede ser un desperdicio de su
tiempo y de su dinero.

Encuentre un editor

Ser un buen modelador con UML no es lo mismo que ser un buen escritor. Ademads de
tener un segundo par de ojos para mirar sus diagramas UML, tenga escondido un buen
conocimiento del espafiol para revisar su documentacién. Una vez mas, s6lo haga esto si
los modelos son dificiles de entregar.

Sea selectivo acerca de los diagramas que elige crear

(Por qué la pollita cruzé la carretera? Es posible que la respuesta sea porque pudo. No
cree diagramas porque puede; sélo cree aquellos que resuelven problemas interesantes y
s6lo aquellos que en realidad se necesitan. Este enfoque también le ayudara a eliminar el
problema de los programadores en espera.

No dependa de la generacion del codigo

James McCarthy advierte acerca de dejarse llevar por la imaginaciéon —dejar salir nues-
tro alocamiento—, pero si alguien le dice que debe modelar, modele, modele y déle un
golpecito al interruptor para generar un ejecutable, entonces déjese llevar. Nos encontra-
mos a una década o dos de que el apoyo a la tecnologia y a la educacion generd aplicacio-
nes. Nunca he visto este trabajo de aproximacién y he hablado con varios consultores de
Rational, quienes estdn de acuerdo conmigo. La generacion de cédigo es una buena idea,
pero nos falta mucho por recorrer para automatizar la generacion de software.

Modele y estructure disminuyendo el riesgo

El software suele tener unas cuantas cajas muy importantes de la empresa y un montén
de cajas de soporte de esa empresa. El principio guia es estructurar primero las partes
mas dificiles y mas importantes del software. El ataque a los problemas dificiles le ayuda
a evitar sorpresas desagradables y, con frecuencia, se puede embarcar el software si las
cajas importantes de la empresa estdn apoyadas, incluso cuando los adornos adicionales
no son tan grandes. En mi experiencia, éste es uno de los errores mas grandes que se
cometen en los proyectos: estructurar primero las cosas faciles.

www.FreeLibros.me

Ajuste y finalizacion

—F
Si es obvio, no lo modele

Los bloques, los componentes, las herramientas de terceras partes y los marcos de refe-
rencia de las aplicaciones se encuentran fuera de su control; todo lo que puede hacer es
usarlos; a menos que usted también posea esos elementos, lo cual es raro. No desperdicie
el tiempo modelando lo que no posee. Si debe modelar herramientas de terceras partes
para ayudar a los desarrolladores a usarlas, entonces modélelas como cajas negras: todo
lo que necesita es modelar su presencia e interfaces, y sélo necesita modelar las interfa-
ces que en realidad estd usando. Si, por ejemplo, sus desarrolladores pueden usar ADO.
NET o el Data Access Application Block (Bloc de aplicacion de acceso a datos), entonces
sencillamente indique que lo estd usando. Eso es suficiente.

Haga hincapié en la especializacion

Otra equivocacion es la generalizacion de los miembros del equipo. Los equipos de soft-
ware constan de personas con aptitudes y conocimientos variados, pero existe una canti-
dad tremenda de documentacion y evidencia histéricas acerca de que la especializacion
es algo bueno: Wealth of Nations de Adam Smith, las lineas de montaje de Henry Ford y
la antigua frase latina “Divide et impera”. Considerar en primer lugar la divisién del pro-
blema, la intensidad del enfoque, la especializacion y la estructuracién de los elementos
criticos le llevara a recorrer gran parte del camino al éxito.

Uso de patrones de estado conocidos

Los patrones no son una idea original o nueva. La aplicacién de los patrones en soft-
ware parece tener su origen en un libro de 1977 titulado A Pattern Language, escrito por
Christopher Alexander et al. Lo extrafio es que este libro es acerca del disefio de ciudades
y poblados pequefios, y patrones como espacios verdes. El patrén de espacios verdes
significa que los poblados deben tener parques.

Evidentemente, es una extrapolacion inteligente convertir un libro acerca del disefio de
ciudades en un concepto que revolucione el software —esto no sucede de cualquier otra
manera que no sea por extrapolacién— pero se ha demostrado que el buen uso de patro-
nes ayuda a lograr un buen software. La pregunta es: dado que los patrones de software
estan documentados, ;necesita usted agregarlos a sus diagramas UML cuando los use en
sus disefios? La respuesta es posiblemente.

Los patrones de software son plantillas, pero existe cierta latitud en cémo implemen-
tarlos. Cada vez que se emplea un patrén, el lector tendrd nombres diferentes de cla-
ses basados en el dominio de la solucién, y muchos patrones se pueden implementar de

www.FreeLibros.me

@ Manual de umL

maneras diferentes. Por ejemplo, los eventos y los manejadores de eventos son una im-
plementacién del patrén observador, pero €sta no es precisamente la manera en que esta
documentado el observador. Microsoft considera las paginas Asp y detrds del cédigo para
ASP.NET como una implementacién del controlador de visién de modelos (Mvc, model-
view-controller), pero usted no vera ASP.NET mencionado en la definicién del patrén. Por
consiguiente, la respuesta es si, en muchos casos; si usa un patrén, entonces debe incor-
porarlo en sus modelos para colocarlo en el contexto de su dominio del problema. Sin
embargo, si tiene un equipo muy experimentado, entonces sencillamente podria decirles
a los desarrolladores que usen aqui el patréon mvc, de observador o de estado.

SUGERENCIA Una buena sugerencia es identificar los patrones cuando los use. La identifi-
cacion de los patrones de diserio bien documentados eliminard o por lo menos mitigard
la necesidad de que duplique esa documentacion en sus diserios.

Una buena regla empirica es que el buen software se basa en patrones. La clave es
aprender acerca de los patrones de disefio, concebir las dreas clave en donde ayudarén al
disefio de usted y, a continuacidn, incorporarlos en sus disefos.

En la figura 9-1, se demuestra cémo podemos modelar el patrén de comportamiento
de estados, pidiendo prestado del horno de microondas del capitulo 7. En este ejemplo,
se demuestra como podemos modelar un patrén conocido en donde sé6lo los nombres
cambian. En la figura 9-2, se muestra el modelo clasico de patrén de observador, y en la
figura 9-3 se muestra una variacion de este patrén que refleja las variaciones en el modelo
clasico pero, no obstante, de observador.

Horno de microondas Estado del horno
de microondas

+Abrir():void +estado +Abrir():void
+Cerrar():void +Cerrar():void
: PN JaN
|
|
|
estado.Abrir() Estado abierto Estado cerrado

Figura 9-1 Esta figura es una implementacion clasica del patrén de comportamiento de estados
para el ejemplo del horno de microondas del capitulo 7.

www.FreeLibros.me

Ajuste y finalizacion

_‘@b

Sujeto
Observador
+Attach(observador:Observador):void .
+Detach(observador:Observador):void +Update():void

+Notify():void

Sujeto concreto

Observador concreto

+GetState():void
+SetState():void

Figura 9-2 Diagrama clésico del patrén de observador, también conocido como publicar-sus-
cribir.

Advierta que en el ejemplo clésico del observador (vea la figura 9-2), no se usa una
interfaz; sin embargo, en la figura 9-3 usé una interfaz. El resultado es que cualquier cosa
puede implementar “1Escucha” y desempenar el papel de escucha. Esta implementacién
es util en los lenguajes de herencia sencilla y también es ttil para mover mensajes por
una aplicacién de una manera unificada. La razon para agregar este modelo e indicar que
es una implementacién de observador es que se trata de una implementacién diferente
a la clasica, pero la documentacién para el observador todavia ayuda a aclarar la razén
fundamental para su uso.

Difusor Coleccion de Escuchas
+Difundir(mensaje:String):void +Add(escucha:Escucha):void
+Add(escucha:Escucha):void

foreach(escucha en
ColecciondeEscuchas) «interfaz» Escucha
if(escucha.get_Escuchando()) 1Escucha < ———1
escucha.Escuchar(mensaje) «Property»+get_Escuchando():booleano
«Property»+set_Escuchando

+Escuchar(mensaje:String):void

Figura 9-3 Variacion del patrén de comportamiento de observador que menciono como difun-
dir-escuchar, lo cual estd muy préximo a la nocién de publicar-suscribir del observador.

www.FreeLibros.me

Manual de umL

@,—

Refactorizacion de su modelo

Este libro no es el mejor foro para ensefiar los patrones de disefio o la refactorizacion.
El umL es distinto a los patrones, pero éstos se describen con el uso del uML y el texto
de otros libros. La refactorizacion es diferente tanto del uML como de los patrones. Aun
cuando existe cierto traslape entre los patrones y las refactorizaciones —por ejemplo,
tanto Singleton como Factory son patrones de creacién asi como refactorizaciones—, la
refactorizacion es algo que, en general, se realiza después de que se ha escrito el cédigo,
para mejorar el disefio del cédigo existente. Dicho esto, no hay razén para que usted no
pueda refactorizar sus modelos.

Suponga, por ejemplo, que tiene una signatura de mensaje en un diagrama de interac-
cion que tiene varios parametros. Antes de liberar el diagrama a sus programadores, podria
aplicar la refactorizacion “IntroduceParameterObject” (“IntroducirPardmetroObjeto”).
Esta refactorizacion sencillamente dice convertir una signatura larga de un método en una
corta, mediante la introduccion de una clase que contenga todos los parametros necesarios
para un método en particular y cambiar ese método para que acepte un caso de esa clase.

No hay necesidad de hacer otra cosa que no sea introducir la clase pardmetro y cam-
biar la signatura del método, pero tendria que saber acerca de la refactorizacién y la
justificacion para hacer este cambio. Para aprender mas acerca de la refactorizacién, lea
Refactoring: Improving the Design of Existing Code, escrito por Martin Fowler, y obten-
ga asi mas informacidn sobre este tema.

Los patrones y las refactorizaciones no son parte del uML, pero le ayudardn a crear
mejores diagramas UML. Los buenos disefios no necesitan tener un UML gramdticamente
perfecto, pero los patrones y las refactorizaciones hardn que sus disefios sean mejores.

Modo de agregar documentacion de soporte

Muchas herramientas de modelado aceptardn cualquier documentacién que usted cree
y combine con sus diagramas y produciran documentacion de alta calidad para el mo-
delo —en general, HyperText Markup Language (HTML)— con referencias cruzadas e
indexado. Sin embargo, si usa una herramienta como Excel, Word, Bloc de notas o algo
junto con la herramienta UML para crear su documentacidn, entonces estd anulando esta
caracteristica de la mayoria de las herramientas.

Le recomiendo que transmita con imdgenes tanto significado como sea posible. La ra-
z6n sencilla es que las imdgenes transmiten mas informacién en un formato conciso que
resmas de texto. Si necesita texto, entonces intente con restricciones y notas en el mode-
lo, pero manténgalas en un minimo. Por tltimo, si debe agregar mucha documentacion,
no retrase a los programadores mientras la escribe. Tendrd suerte si los programadores
incluso leen sus modelos —Ia verdad hiere— dejando en paz el texto largamente desarro-

www.FreeLibros.me

Ajuste y finalizacion @

llado. Por desgracia, muchos programadores se sienten perfectamente felices si codifican
lo que les viene a la mente o cualquier cosa que hayan codificado en su tltimo proyecto,
Los modelos complicados pueden finalizar siendo ignorados.

En general, para la posteridad, me gusta incluir un panorama general arquitectonico
escrito, en un documento separado, que describe el sistema en un alto nivel. Algunas per-
sonas sencillamente no pueden o no leerdn los modelos —piense en los administradores
0, incluso, en futuros programadores—, pero yo creo estos documentos cerca del final del
proyecto cuando todos los demads estan ocupados depurando y haciendo pruebas.

Tenga presente que el UML y el modelado son sélo una faceta del desarrollo del soft-
ware. El modelado debe ayudar, no obstaculizar, el proceso en su conjunto.

Validacion de su modelo

Muchas herramientas validardn los modelos en forma automadtica. Por desgracia, cada
herramienta es diferente y cada una de ellas parece soportar aspectos diferentes del UML.
El lector puede volverse loco tratando de eliminar los errores de los que informen las he-
rramientas de validacién de los modelos UML. Yo no consumiria mi tiempo aqui. Punto.

Su tiempo serd mejor empleado codificando ejemplos que muestren a los desarrolla-
dores cdmo implementar el modelo, ensefiando a los desarrolladores la manera de leer
los modelos y recorriendo los modelos con los desarrolladores para ver si tienen sentido
y se pueden implementar. En general, en el momento en que usted y los desarrolladores
se encuentren felices con un diagrama en particular, el programa tiene la mayor parte de
lo que su diagrama describe codificado de todos modos.

Por dltimo, precisamente como no embarcaria c6digo con advertencias y errores, tam-
poco quiero embarcar modelos con advertencias o errores. Si la validacién de un modelo
informa de un error, esto suele significar que estoy usando una caracteristica de manera
incoherente con la implementacién del UML que mi herramienta especifica soporta. Antes
de ponerle un listén a mi modelo y seguir con alguna otra cosa, trataré de resolver las
discrepancias de las que informan las herramientas de validacion. No obstante, histdrica-
mente, los clientes por lo comun no han estado dispuestos a pagar por este esfuerzo.

Examen

1. Un modelo s6lo esta completo cuando contiene por lo menos uno de cada tipo de
diagrama.

a. Verdadero
b. Falso

www.FreeLibros.me

@,—

10.

Manual de umL

Los diagramas de componentes son absolutamente necesarios.
a. Verdadero
b. Falso

. Debo seleccionar un procedimiento de arriba hacia abajo o a partir de clases para

modelar, pero no puedo combinar las técnicas.

a. Verdadero

b. Falso

Se ha argumentado que la especializacion conduce a ganancias en la producti-
vidad.

a. Verdadero
b. Falso

. Los patrones de disefio son parte de la especificacion UML.

a. Verdadero
b. Falso

. La refactorizacion no es parte de la especificacion umL.

a. Verdadero
b. Falso

. La mayoria de los expertos estan de acuerdo en que los patrones y las refactoriza-

ciones mejoraran la implementacion del software.
a. Verdadero
b. Falso

El umL es un estandar y todos estan de acuerdo en que debe usarse.
a. Verdadero
b. Falso

Es esencial usar una herramienta para validar los modelos.
a. Verdadero
b. Falso

Todas las herramientas de modelado del umML son capaces de generar de manera
eficaz aplicaciones enteras, completas.

a. Verdadero
b. Falso

www.FreeLibros.me

Ajuste y finalizacion

Respuestas

e R A U ol O
o oo ® » o s o o o

_.
S

www.FreeLibros.me

www.FreeLibros.me

CAPITULO

Visualizacion
de su topologia
de despliegue

Topologia de despliegue significa, sencillamente, la forma en que lucira su sistema
cuando lo ponga en uso. Para esto, puede construir un diagrama de despliegue. Este
tipo de diagramas muestran al lector los elementos 16gicos, sus ubicaciones fisicas
y cOmo se comunican estos elementos, asi como el nimero y variedad de elementos
fisicos y légicos.

Use diagramas de despliegue para mostrar en donde estd su servidor web y si
tiene mas de uno; uselos para mostrar donde estd su servidor de bases de datos y
si tiene mas de uno, asi como cual (cuales) es (son) la(s) relacion (relaciones) del
(de los) servidor(es) con los otros elementos. Este tipo de diagramas pueden mos-
trar como estdn conectados estos elementos, cudles protocolos estdn usando para
comunicarse y cudles sistemas operativos o dispositivos fisicos, incluyendo las
computadoras y otros dispositivos, estan presentes.

——&@

www.FreeLibros.me

@ Manual de umL

Resulta clara la implicacién de que, si no cuenta con la mayoria de estos elementos,
entonces es posible que no necesite crear un diagrama de despliegue. Si estd creando una
aplicacion simple que es tnica o, incluso, una simple aplicacién de base de datos para un
solo usuario, un sitio web, una aplicacion de consola o un servicio, entonces puede pasar
por alto la creacién de un diagrama de despliegue.

Los diagramas de despliegue no son dificiles de crear, en general no contienen un gran
nimero de elementos y s6lo se necesitan para aplicaciones de complejidad mediana a
grande. Estos diagramas son buenos para la visualizacion del panorama de su despliegue,
para sistemas con multiples elementos. Desde luego, usted es libre para crear un diagra-
ma de despliegue para todo modelo, pero ésta es un drea en donde podria economizar.

Modelado de nodos

Los nodos son cajas tridimensionales que representan dispositivos fisicos que pueden
ser computadoras, aunque no necesariamente, o entornos de ejecucion que pueden ser
computadoras, sistemas operativos o entornos de autocontencién, como COM+, IIS 0 un
servidor Apache.

Los dispositivos fisicos por lo comun incluyen computadoras, pero pueden incluir
cualquier dispositivo fisico. Al trabajar en un proyecto para Lucent Technologies, hace
algunos afios, estuve escribiendo software para teléfonos de hoteles: mover los ajustes te-
lefénicos de teléfono a teléfono y controlar los sistemas de conmutacién. En mi diagrama
de despliegue, mostré las computadoras, los teléfonos y los conmutadores telefonicos.
Mas recientemente, estuve trabajando en un proyecto para Pitney Bowes. Estaba escri-
biendo un armazén de embarque multinacional para soportar el concepto de transportador
universal. En gran parte de ese armazdn se usé MsMQ —formacion de cola de mensajes
con cOM+—, de modo que el diagrama de despliegue reflejé nodos que representaban un
entorno de ejecucién COM+.

Leyenda de Merlin

Figura 10-1 Nodo con un solo nombre en un diagrama de despliegue del Unified Modeling
Language (UML).

www.FreeLibros.me

Visualizacion de su topologia de despliegue

Servidor webl

Servidor web

{ndmero desplegado =2}

Servidor web2

Figura 10-2 En este diagrama, se muestra una etiqueta que indica que existen dos servidores
web (izquierda) y dos servidores web de nodo fisico a la derecha.

El simbolo bésico para un nodo es un cubo tridimensional con el nombre en el mismo
(figura 10-1). Si usted quisiera modelar varios nodos del mismo tipo, entonces podria
usar una etiqueta que indique el nimero de casos de ese nodo, o podria agregar multiples
nodos al diagrama. En la figura 10-2, se muestra como podria modelar una granja web
con el uso de la etiqueta de nodos mudltiples a la izquierda y los simbolos de esos nodos
a la derecha.

Ademas de usar etiquetas para indicar la multiplicidad de los nodos, podemos usarlas
para indicar informacién acerca del nodo. Por ejemplo, en nuestro ejemplo del servidor
web, podriamos indicar que todos los nodos estan ejecutando el servidor s y Windows
2003. En la figura 10-3, se muestran estas etiquetas adicionales.

Servidor web
{nimero desplegado = 2}
{sistema operativo = windows 2003}

{servidor web =115 6.0}

Figura 10-3 Diagrama de despliegue parcial en el que se muestran nodos mdltiples y detalles
acerca del sistema operativo y de la version del servidor web.

www.FreeLibros.me

_\@9

Manual de umL

@,—

SUGERENCIA La pc virtual es una herramienta que uso para tener miiltiples computado-
ras logicas en una sola computadora. Es una manera excelente para probar software beta
o tener una mdquina limpia para despliegue local, como el de una aplicacion web para
hacer la prueba acerca de dependencias y el montaje y la configuracion apropiados.

Por ultimo, podemos agregar uno o dos estereotipos a un nodo —«dispositivo» o «en-
torno de ejecucién»— para indicar si estamos hablando acerca de un dispositivo fisico
o de un entorno de ejecucion. En la figura 10-4, se ilustra un diagrama alternativo en el
que se muestra un solo servidor web que ejecuta un entorno de ejecucién en un ejemplo
de pc virtual.

Nora Un reto interesante y recurrente es que, en los proyectos a largo plazo, los desa-
rrolladores vienen y se van. En general, el resultado de una transicion es que alguien
que ha permanecido en el proyecto tiene que dedicar una tarde o todo un dia ayudando
al recién llegado a configurar su mdquina. Un proyecto de instalacion o un diagrama
de despliegue para el entorno de desarrollo podrian ser tan titiles como un diagrama de
despliegue para un sistema de produccion. (Si tiene un poco de tiempo adicional, intén-
telo y vea como funciona.)

PC virtual

Servidor web

{sistema operativo = Windows xP}

{servidor web = Apache}

Figura 10-4 Nodo en el que se muestra la pc virtual usada como un entorno de ejecucion.

www.FreeLibros.me

Visualizacion de su topologia de despliegue @

&

Manera de mostrar artefactos en nodos

Los artefactos son las cosas que estd desplegando. (Si estd combinando el desarrollo de
hardware y software, entonces también podria desplegar sus propios nodos, pero sélo
estoy hablando acerca de software.) Los artefactos se modelan usando el simbolo de clase
y un estereotipo «artefacto». Los artefactos pueden ser EXE, DLL, archivos HTML, docu-
mentos, archivos .JAR, ensamblajes, guiones (scripts), archivos binarios o cualquier otra
cosa que despliegue como parte de su solucién. Por lo comiin, los artefactos binarios son
componentes y podemos usar una etiqueta para especificar cudl componente representa
un artefacto. En la figura 10-5, se muestra un artefacto que representa un .DLL y, en la 10-
6, se muestra como colocariamos ese artefacto en un nodo.

De manera tradicional, podria usted encontrar cierto traslape entre los diagramas de
componentes y los de despliegue. Por ejemplo, si un artefacto implementa un componen-
te, puede mostrar el componente implementado como una etiqueta, o puede agregar el
componente al nodo que muestra la dependencia entre el artefacto y el componente. En
la figura 10-7, se muestra la etiqueta de componente usada para indicar que el artefacto
mostrado implementa el componente usado “AdministraciéndeExcepciones”, y en la fi-
gura 10-8 se muestra lo mismo con el uso de la dependencia mas verbosa fija al simbolo
de un componente. (El estereotipo «manifestar» significa que el artefacto es una mani-
festacién del componente.)

Nora También se pueden usar dependencias entre los artefactos, para indicar que un
artefacto depende de un segundo. Esto apoya la nocion de referencias en .NET, se usa en
Delphi e incluye C++. Por ejemplo, el “AdministraciondeExcepciones.dll” tiene una
dependencia del “Sistema.dll” (no mostrada) que contiene la clase “RegistrodeEven-
tos” en .NET.

Como una alternativa para colocar varios diagramas anidados de clases en un solo
nodo, el UML permite hacer listas de artefactos como texto. Por ejemplo, un sitio web ba-
sado en ASP.NET contendrd un binario, varios archivos .ASPX que contienen HTML Y ASP, y
quizas otros documentos o elementos, como un guién. Usar el simbolo de clase para mas
de un par de artefactos dard por resultado que el nodo sea ridiculamente grande. Haga una
lista de los artefactos como texto, si hay muchos de ellos. En la figura 10-9, se muestra
c6mo podemos hacer una lista de varios artefactos en un solo nodo.

«artefacto»
motown-jobs.dll

Figura 10-5 Artefacto que representa un binario que es el ejecutable que soporta un sitio web.

www.FreeLibros.me

@,—

Manual de umL

Servidor web

{sistema operativo = Servidor Windows 2003 }

{servidor web =118 6.0}

«artefacto»
motown-jobs.dll

Figura 10-6 En los diagramas de despliegue, los artefactos se despliegan hacia los nodos, de

modo que podemos mostrar un artefacto anidado en un nodo.

Servidor web

{servidor web =115 5.5}

«artefacto»

AdministraciéndeExcepciones.dll

{componente = AdministraciondeExcepciones }

Figura 10-7 La especificacién del componente en un artefacto implementa el uso de una eti-

queta.

www.FreeLibros.me

Visualizacion de su topologia de despliegue

Servidor web

{servidor web =115 5.5}

«componente»
AdministraciondeExcepciones

«manifestar»

f—— >

«artefacto»
AdministraciondeExcepciones.dll

Figura 10-8 Especificacion de la dependencia de un componente mediante un simbolo de com-
ponente.

Si estuviéramos desplegando el archivo .DLL del sitio web en una granja web, entonces
cada nodo de servidor web seria idéntico. En este caso, seria mds ficil usar la etiqueta de
nimero desplegado, en un solo nodo, en lugar de repetir cada nodo y trazar los diagramas
de nodos idénticos.

Técnicamente, puede agregar la combinacién de nodos, componentes y artefactos que
necesite, y puede variar los estilos —texto o simbolos— con base en cudntos elementos
tiene un nodo. Sin embargo, tenga presente que si tiene demasiados elementos, enton-
ces el diagrama puede volverse dificil de leer. Si tiene un diagrama complicado de des-
pliegue, entonces intente la implementacién de una macrovista con nodos, artefactos y
conectores, y una microvista que amplie los aspectos importantes del macrodiagrama.
Muestre los detalles en una o mas microvistas asociadas con el macrodiagrama de des-
pliegue. Por ejemplo, considere mostrar los artefactos en el servidor web y, si quiere ex-
pandir la relacidn entre el artefacto “AdministraciondeExcepciones.dll”, el componente
“AdministraciéndeExcepciones” y la clase “RegistrodeEventos”, entonces cree una vista
separada de este aspecto del sistema.

www.FreeLibros.me

Manual de umL

Servidor web

{ndmero desplegado = 2}

{sistema operativo = Windows 2000}

«artefacto» motown-jobs.dll
«artefacto» PublicarTrabajo.aspx

«artefacto» Entrar.aspx

«artefacto» HallarTrabajo.aspx

Figura 10-9 El uML también permite el uso de texto para hacer listas de artefactos.

Adicion de trayectorias de comunicacion

Si usted sélo tiene un nodo, entonces no necesita un diagrama de despliegue; si tiene mds
de uno, entonces posiblemente quiera un diagrama de despliegue y querrd mostrar como
se conectan y comunican esos nodos.

Hay dos tipos de conectores que se usan entre los nodos y los artefactos en un diagra-
ma de despliegue. La asociacion representa una trayectoria de comunicacioén entre los
nodos; muestra los nodos que se comunican y se puede usar un rétulo sobre esa asocia-
cién para mostrar los protocolos de comunicaciones entre nodos. Ademds, se puede dibu-
jar un artefacto fuera de un nodo (un buen procedimiento para Visio, el cual no permite
anidar artefactos en los nodos) y fijarlo a ese nodo con una dependencia y un estereotipo
«desplegar». La dependencia desplegar entre un artefacto y un nodo significa lo mismo
que un artefacto anidado o un artefacto en una lista como texto: que ese tipo de artefacto
se despliega en ese tipo de nodo.

En la figura 10-10, se demuestra como podemos externar los artefactos como una
manera alternativa de mostrar en dénde se despliegan esos artefactos y, de manera adi-
cional, también se muestran los nodos y las trayectorias de comunicacién entre éstos. Las
trayectorias de comunicacion se rotulan si existe algin lugar interesante de comunicacién
entre los nodos.

Como ocurre con todos los diagramas, puede agregar notas, restricciones y documen-
tacion. También puede agregar tanto o tan poco detalle como prefiera. He encontrado
que, con cualquier diagrama, cuando ha pasado el punto en donde el significado puede

www.FreeLibros.me

Visualizacion de su topologia de despliegue

Servidor web]
Servidor Pasaporte

{servidor web =118 5.5}
http/tcp
{sistema operativo = Windows 2000 }

«desplegar» «desplegar» o ~

N
|
|
|
!
|
|
|
1

«desplegar»

«artefacto»

«artefacto» Entrar.aspx

motown-jobs.dll

«artefacto»
AdministraciondeExcepciones.dll

Figura 10-10 En esta figura, se muestra que los tres artefactos estan desplegados en el servidor
web y que el nodo de este servidor se comunica con el servidor pasaporte a través de HTTP/TCP.

ser entendido a primera vista, ese diagrama empieza a perder su valor para el lector. Una
buena practica es mantener algo de enfoque. Si quiere mostrar el sistema entero desple-
gado, entonces muestre los nodos y las conexiones. Si quiere desarrollar un solo nodo,
entonces cree un nuevo diagrama y agregue detalles para ese nodo. ;Puede imaginar lo
dificil que serfa leer un sencillo mapa del mundo si contuviera informacién acerca de la
navegacion aérea, asi como los estados, las ciudades, los pueblos, los caminos, las vias
férreas, los rios, las veredas, las sendas y la topografia? Piense en los diagramas UML
como mapas de su software, con niveles variables de detalle: diferentes tipos de mapas
proporcionan diferentes tipos y niveles de detalle.

Ahora, habiendo dicho todo esto, debe haber una manera para que, como modelador
de un sistema, pueda usted articular estos pasos en el proceso. Los diagramas de desplie-
gue son una faceta para un entorno de despliegue de aplicaciones vivientes. El monitoreo
de la salud y las pruebas de rendimiento proporcionan al modelador retroalimentacion
continua acerca de que su trabajo estd funcionando. Podria seguir adelante un largo tre-
cho acerca de esto, pero siento que dejar caer una pequefia sugerencia podria invitarle a
pensar mds acerca del producto final en lugar de sélo dibujar imdgenes. La integracién
de esos artefactos con el cddigo real y ver los frutos de su labor es absolutamente gratifi-
cante. Esto es interesante, pero no esta relacionado en forma directa con el UML; tiene que
ver con la incorporacion de “otras” herramientas en un proceso.

www.FreeLibros.me

_\QQ

Manual de umL

@,—
Examen

1. Un nodo siempre representa un dispositivo fisico.
a. Verdadero
b. Falso

2. Un nodo puede representar (seleccione todo lo que sea aplicable)
a. una computadora.
b. cualquier dispositivo fisico.
c. un contexto de ejecucion, como un servidor de aplicaciones.

d. Todo lo anterior

3. Los estereotipos que se aplican a los nodos pueden ser (seleccione todo lo que sea
aplicable)

a. «dispositivoy.
b. «componentey.
c. «entornodeejecuciony.

d. «manifestary.

4. Se usan etiquetas para agregar detalles a un nodo.
a. Verdadero
b. Falso

5. Un servidor de bases de datos es un ejemplo de un nodo.
a. Verdadero
b. Falso

6. (Cual simbolo usan los artefactos?
a. De paquete
b. De clase
c. De actividad
d. De objeto

7. Un artefacto se puede representar como texto en un nodo, una clase en un nodo y
con un conector de realizacion y un simbolo externo de clase.

a. Verdadero
b. Falso

www.FreeLibros.me

Visualizacion de su topologia de despliegue @

&

8. El conector y el estereotipo para un artefacto mostrado fuera de un nodo es

a. de realizacion y manifestar.
b. de dependencia y desplegar.
c. de asociacion y desplegar.

d. de dependencia y manifestar.

9. Cuando se muestra un artefacto conectado a un componente, ;cual estereotipo se
aplica?

. «desplegar»
. «usar

a
b
¢. «manifestar»
d

. «extiende»

10. ¢Cual conector se usa para mostrar comunicacion entre los nodos?

. De dependencia

a
b. De generalizacion
c. De asociacion

d

. De vinculo

Respuestas

—_
IS

ayc

o

X ®» 2 kDN
o o <

o

,_‘
e
o

www.FreeLibros.me

www.FreeLibros.me

APENDICE

i Examen final

1. (Qué significa el acronimo umL?
a. Uniform Model Language
b. Unified Modeling Language
c. Unitarian Mock-Up Language
d. Unified Molding Language
2. El umL s6lo se usa para modelar software.
a. Verdadero
b. Falso
3. (Cual es el nombre del proceso mas intimamente asociado con el umL?

a. El proceso de modelado

b. El Rational Unified Process
c. eXtreme Programming
d

. Los métodos Agile

www.FreeLibros.me

@,—

4.

10.

Manual de umL

(Cudl es el nombre del cuerpo de normas que define el umL?
a. Unified Modeling Group

b. Object Modeling Group

c. Object Management Group

d. Los cuatro amigos

. Los diagramas de casos de uso se usan para captar las macrodescripciones de un

sistema.
a. Verdadero
b. Falso

Diferencie entre los diagramas de secuencia y los de colaboracion (elija todo lo
que sea aplicable).

a. Los diagramas de secuencia son diagramas de interaccion; los diagramas de
colaboracion no lo son.

b. Los diagramas de secuencia representan un ordenamiento en el tiempo; los de
colaboracion representan clases y mensajes, pero no se implica el ordenamien-
to en el tiempo.

c. El orden en el tiempo estd indicandose al numerar los diagramas de secuencia.
d. Ninguno de las anteriores

. Un diagrama de clases es una vision dindmica de las clases de un sistema.

a. Verdadero

b. Falso

Un buen modelo umL contendra por lo menos un diagrama de cada tipo.
a. Verdadero

b. Falso

(Cual es el apodo del grupo de cientificos que se asocia de manera mas notable
con el umL?

a. La pandilla de los cuatro
b. Los tres mosqueteros

c. Los tres amigos

d. El duo dindmico

Los diagramas de secuencia son buenos para mostrar el estado de un objeto a
través de muchos casos de uso.

a. Verdadero
b. Falso

www.FreeLibros.me

I1.

12.

13.

14.

15.

16.

17.

Examen final

(,Qué simbolo representa un actor?

a. Una linea

b. Una linea dirigida

c. Una figura de palillos

d. Un o6valo que contiene texto

Un actor puede ser una persona o algo que actiia sobre un sistema.

a. Verdadero

b. Falso

(Qué simbolo representa una asociacion? (Seleccione la mejor respuesta.)
a. Una linea.

b. Una linea con un triangulo que apunta hacia el elemento dependiente.
c. Una linea punteada con una flecha que apunta hacia el elemento dependiente.

d. Una linea punteada con una flecha que apunta hacia el elemento del que se
depende.

Los estereotipos son mas comunes en
a. los actores.

b. los conectores.

c. los casos de uso.

d. Ninguno de los anteriores

Se usa una relacion de inclusion para modelar caracteristicas opcionales en las
que se reutiliza el comportamiento modelado por otro caso de uso.

a. Verdadero
b. Falso

Se usa una relacion de extension para modelar el comportamiento captado por
otro caso de uso.

a. Verdadero

b. Falso

Generalizacion es sinonimo de
a. polimorfismo.

b. agregacion.

herencia.

e o

interfaces.

www.FreeLibros.me

@’_

18.
19.

20.

21.

22.

23.

24.

25.

Manual de umL

Toda capacidad de un sistema debe representarse por un caso de uso.
a. Verdadero

b. Falso

En una relacion de inclusion, la flecha apunta hacia el

a. caso de uso basico.

b. caso de uso de inclusion.

Es importante implementar primero los casos de uso dificiles para mitigar pronto
el riesgo.

a. Verdadero

b. Falso

Sindnimos para transicion son conector y flujo.

a. Verdadero

b. Falso

En general, los diagramas de actividades constan de (elija todo lo aplicable)
a. nodos.

b. transiciones.

c. decisiones.

d. estimulos.

Las excepciones no se permiten en los diagramas de actividades.
a. Verdadero

b. Falso

En un nodo de union y en uno de fusion se usan

a. simbolos diferentes.

b. simbolos idénticos.

c. simbolos idénticos o diferentes, dependiendo del contexto.

d. Todos los simbolos de nodos son los mismos

Los flujos multiples que entran a un nodo de accion no son

a. una fusion implicita.

b. una union implicita.

www.FreeLibros.me

26.

27.

28.

29.

30.

31.

32.

Examen final

Los flujos esperan en una fusion hasta que

a. todos los flujos hayan llegado.

b. el primer flujo haya llegado.

c. usted le dice que salga.

d. Depende

La metafora de carril todavia se usa

a. Verdadero

b. Falso

Pueden existir acciones solo en una particion de la actividad al mismo tiempo.
a. Verdadero

b. Falso

Un nodo de unioén y bifurcacion se representa por
a. un d6valo.

b. un circulo.

c. un rectangulo.

d. un diamante.

Los diagramas de actividades son idénticos a los de flujo.
a. Verdadero

b. Falso

Un diagrama de colaboracion es un ejemplo de

a. un diagrama de secuencia.

b. un diagrama de clases.

c. un diagrama de actividad.

d. un diagrama de interaccion.

Un diagrama de colaboracion muestra como evoluciona el estado de un objeto
sobre muchos casos de uso.

a. Verdadero

b. Falso

www.FreeLibros.me

@,—

33.
34.

35.

36.

37.

38.

39.

Manual de umL

A los diagramas de colaboracion se les dio el nuevo nombre de diagramas de co-
municacion en el umL version 2.0.

a. Verdadero
b. Falso

Los diagramas de secuencia no se pueden usar para modelar comportamiento
asincrono y de encaminamiento multiple.

a. Verdadero
b. Falso

En los marcos de interaccion se usa un (o una) (llene el espa-
cio en blanco) para controlar cuando y cudl fragmento del cuadro ejecutar.

a. fusion

b. uniéon

c. guardian

d. mensaje asincrono

El marco de interaccion alt se usa para

a. modelar un comportamiento opcional.

b. modelar un comportamiento de encaminamiento multiple.
c. modelar légica condicional.

d. captar condiciones de error.

Los diagramas de secuencia y los de comunicacién muestran vistas complemen-
tarias.

a. Verdadero

b. Falso

Un simbolo de activacion muestra

a. la duracion de un objeto en un diagrama de comunicacion.
b. la creacion de un objeto.

c. la duracion de un objeto en un diagrama de secuencia.

d. la destruccion de un objeto.

Un esquema de numeracion anidada es umL valido que se usa en
a. diagramas de secuencias.

b. diagramas de actividades.

c. casos de uso.

d. diagramas de comunicacion.

www.FreeLibros.me

Examen final @

. Los diagramas de secuencias son perfectos para modelar lineas de codigo.
a. Verdadero

b. Falso

. Se usa el mismo simbolo basico para las enumeraciones y las interfaces.
a. Verdadero

b. Falso

. Al agregar clases a un diagrama, usted debe mostrar campos y

a. métodos.

b. so6lo campos.

c. propiedades.

d. propiedades y métodos.

. Una propiedad se puede modelar como una caracteristica de una clase y
a. una subclase.

b. una clase de asociacion.

c. una clase dependiente.

d. una interfaz.

. Al modelar atributos, se

a. requiere que modele métodos atributos.

b. recomienda que no muestre métodos atributos.

c. recomienda que muestre los campos subyacentes para esos atributos.
d. Ninguno de los anteriores

. Los tipos simples se deben modelar como caracteristicas y los complejos como
(seleccione la mejor)

a. caracteristicas también.

b. clases asociacion.

c. atributos.

d. caracteristicas o clases asociacion.

. Una asociacion unidireccional tiene una flecha en uno de los extremos, conocido
como la fuente. El otro extremo se conoce como el objetivo.

a. Verdadero
b. Falso

www.FreeLibros.me

@,—

47.

48.

49.

50.

S1.

52.

Manual de umL

Una agregacion es lo mas semejante a una

a. herencia.

b. asociacion.

c. composicion.

d. generalizacion.

(Cual es la diferencia mas importante entre una agregacion y una composicion?

a. Composicion significa que la clase totalidad, o compuesta, sera responsable de
la creacion y destruccion de la parte o clase contenida.

b. Agregacion significa que la clase agregada totalidad sera responsable de la
creacion y destruccion de la parte o clase contenida.

c. Composicion significa que la clase totalidad, o compuesta, es la unica clase
que puede tener un caso de la clase parte en cualquier momento dado.

d. Agregacion significa que la clase totalidad, o agregada, es la unica clase que
puede tener un caso de la clase parte en cualquier momento dado.

e. ayc

f. byd

Realizacion significa

a. polimorfismo.

b. asociacion.

c. herencia de interfaz.

d. composicion.

Una asociacion nombrada se modela como un(a)
a. método.

b. propiedad.

c. campo y una propiedad.

d. dependencia.

Una subclase tiene acceso a los miembros protegidos de una superclase.
a. Verdadero

b. Falso

Una clase hijo s6lo puede tener una clase padre.
a. Verdadero

b. Falso

www.FreeLibros.me

53.

54.

55.

56.

57.

58.

Examen final

(Cual de las proposiciones siguientes es falsa?

a. La generalizacion se refiere a subtipos.

b. La clasificacion se refiere a subtipos.

c. La generalizacion se refiere a ejemplos de objetos.

d. La clasificacion se refiere a ejemplos de objetos.

e. Ninguna de las anteriores

La realizacion se refiere a

a. herencia de clase.

b. herencia de interfaz.

c. promover los miembros constituyentes en una clase compuesta.
d. agregacion.

Se puede tener una aproximacion de herencia multiple a través de
a. una asociacion y la promocion de propiedades constituyentes.
b. una realizacion.

¢. una composicion y la promocion de propiedades constituyentes.
d. una agregacion y la promocion de propiedades constituyentes.

La clasificacion dinamica —en donde un tipo de objeto se cambia en el tiempo de
ejecucion— se puede modelar usando

a. generalizacion.
b. asociacion.
c. realizacion.
d. composicion.
A una clase asociacion no se le menciona como una clase de vinculacion.
a. Verdadero
b. Falso
Un parametro usado para retornar a un tipo tinico se conoce como
una realizacion.

a
b. un calificador asociacion.

134

una condicidn posterior a una asociacion.

o

una asociacion dirigida.

www.FreeLibros.me

@,—

59.

60.

61.

62.

63.

64.

65.

Manual de umL

Seleccione las proposiciones correctas.

a. Una interfaz proporcionada significa que una clase implementa una interfaz.
b. Una interfaz requerida significa que una clase depende de una interfaz.

c. Una interfaz proporcionada significa que una clase depende de una interfaz.
d. Una interfaz requerida significa que una clase implementa una interfaz.
Cuando un simbolo de clasificador esta subrayado, significa que

a. el simbolo representa un objeto.

b. el simbolo representa una clase abstracta.

c. el simbolo representa una interfaz.

d. el simbolo es un valor derivado.

Los esquemas de estados (o diagramas de maquinas de estados) son buenos para
a. trazar diagramas de sistemas.

b. trazar diagramas de objetos y mensajes para un solo caso de uso.

c. comprender un solo caso de uso.

d. especificar el comportamiento de un objeto a través de varios casos de uso.

No se deben usar las maquinas de estados para examinar las interfaces graficas de
los usuarios (Gur) y los controladores de tiempo real.

a. Verdadero

b. Falso

Se usa una conexion para

a. combinar varias transiciones entrantes en una sola transicion saliente.
b. dividir una sola transicion entrante en varias transiciones salientes.

¢. Tantoacomob

d. Ninguna de las anteriores

Se usan los pseudoestados de historia para restablecer los estados anteriores.
a. Verdadero

b. Falso

Una actividad de hacer se ejecuta

a. en el transcurso de un tiempo, y una comin se e¢jecuta de inmediato, pero se
puede interrumpir.

b. de inmediato, y una comun se ejecuta en el transcurso de un tiempo y se puede
interrumpir.

www.FreeLibros.me

66.

67.

68.

69.

70.

71.

Examen final @
c. en el transcurso de un tiempo y se puede interrumpir, y una comun se ejecuta de inmediato.

d. en el transcurso de un tiempo, y una comun se ejecuta de inmediato, pero no se puede inte-
rrumpir.

Las transiciones son lineas dirigidas rotuladas con

a. un disparador opcional, un evento y un efecto.

b. un disparador, un evento opcional y un efecto.

c¢. un disparador, un evento y un efecto opcional.

d. opcionalmente, un disparador, un evento y un efecto.

Las transiciones externas hacen que se ejecuten una actividad de entrada y una de
salida.

a. Verdadero
b. Falso

Las autotransiciones hacen que se ejecuten una actividad de entrada y una de sa-
lida.

a. Verdadero

b. Falso

Un estado compuesto ortogonal

a. esta dividido en regiones y so6lo se puede activar una de ellas a la vez.

b. esta dividido en regiones y solo se puede activar un subestado a la vez.

c. estd dividido en regiones y so6lo se puede activar un subestado por region a la vez.

d. estd compuesto de una sola regidn, y se pueden activar multiples subestados en forma simul-
tanea.

Un estado compuesto no ortogonal

a. estd compuesto de regiones, y s6lo se puede activar una de ellas a la vez.

b. no esté dividido en regiones, y solo se puede activar un subestado a la vez.

¢. no esta dividido en regiones, y se pueden activar multiples subestados a la vez.
d. esta dividido en regiones, y se puede activar un subestado por region a la vez.
Todo modelo debe contener por lo menos un diagrama de componentes.

a. Verdadero

b. Falso

www.FreeLibros.me

@’_

72.

73.

74.

75.

76.

77.

78.

Manual de umL

Un método de abajo hacia arriba para los diagramas de componentes significa que
usted

a. define primero los componentes y los descompone en partes constituyentes.

b. define las partes constituyentes y coloca los componentes en la parte superior
de esas partes constituyentes.

c¢. Ninguno de las anteriores

Un método de abajo hacia arriba para disefiar puede ser valioso porque (seleccio-
ne todo lo que sea aplicable)

a. los componentes en realidad no se necesitan.

b. usted logra mas traccion al resolver primero los problemas del dominio.
c. la estructuracion de infraestructura es cara y tardada.
d

. las clases del dominio siempre se pueden organizar en componentes en un mo-
mento posterior.

Los simbolos de los componentes se pueden representar usando un clasificador
con el estereotipo «componente».

a. Verdadero
b. Falso

Una interfaz requerida se puede representar por medio de la mitad de una paleta
de caramelo con nombre

a. o por una paleta de caramelo.

b. o por una dependencia en un clasificador con el estereotipo «interfazy.
c. o por la conexion a una interfaz con una dependencia.

d. solo usando la mitad de la paleta de caramelo.

Una interfaz proporcionada es aquella que realiza un componente.

a. Verdadero

b. Falso

Una interfaz requerida se puede representar por medio de la mitad de una paleta
de caramelo con nombre y es equivalente a una dependencia entre un componente
y una interfaz.

a. Verdadero

b. Falso

Los componentes pueden no contener componentes anidados.
a. Verdadero

b. Falso

www.FreeLibros.me

79.

80.

81.

82.

83.

&4.

85.

86.

87.

Examen final

Como regla general, usted sélo usa componentes y diagramas de componentes
para sistemas con 100 o mas clases del dominio.

a. Verdadero, pero ésta es una directriz general. Los componentes pueden ayudarle a organizar
una solucion y a estructurar elementos susceptibles de volver a usarse que se pueden vender

por separado.

b. Falso, porque la estructuracion de componentes siempre es mas barata a largo plazo.

Para cada clase del dominio en una arquitectura basada en componentes, usted
puede necesitar de dos a tres clases de soporte.

a. Verdadero
b. Falso

Un modelo soélo esta completo cuando contiene por lo menos uno de cada tipo de
diagrama.

a. Verdadero

b. Falso

Los diagramas de componentes s6lo son necesarios para los sistemas grandes.
a. Verdadero

b. Falso

Debo seleccionar un método de arriba hacia abajo o de abajo hacia arriba para
modelar, pero no puedo combinar las técnicas.

a. Verdadero
b. Falso

Se ha argumentado que la especializacion conduce a ganancias en la producti-
vidad.

a. Verdadero

b. Falso

Los patrones de disefio no son parte de la especificacion umL.
a. Verdadero

b. Falso

La refactorizacion es parte de la especificacion UML.

a. Verdadero

b. Falso

Unos cuantos expertos estan de acuerdo en que los patrones y las refactorizacio-
nes mejoraran la implementacion del software.

a. Verdadero
b. Falso

www.FreeLibros.me

_\@b

@’_

88.
&9.

90.

91.

92.

93.

94.
95.

96.

Manual de umL

El uMmL es un estandar, y todos estan de acuerdo en que debe usarse.
a. Verdadero

b. Falso

Es esencial usar una herramienta para validar los modelos.

a. Verdadero

b. Falso

Todas las herramientas de modelado del umL son capaces de generar de manera
eficaz aplicaciones enteras, completas.

a. Verdadero

b. Falso

Un nodo siempre representa un dispositivo fisico.

a. Verdadero

b. Falso

Un nodo puede representar (seleccione todo lo que sea aplicable)
a. una computadora.

b. cualquier dispositivo fisico.

¢. un contexto de ejecucion, como un servidor de aplicaciones.
d. Todo lo anterior

Los estereotipos que se aplican a los nodos son (seleccione todo lo que sea apli-
cable)

a. «dispositivoy.

b. «componentey.

c. «entornodeejecuciony.

d. «manifestar».

No se usan etiquetas para agregar detalles a un nodo.
a. Verdadero

b. Falso

Un servidor de bases de datos es un ejemplo de un nodo.
a. Verdadero

b. Falso

(Cual simbolo usan los artefactos?

a. De paquete

b. De clase

www.FreeLibros.me

Examen final @

c. De actividad
d. De objeto

97. Un artefacto se puede representar como texto en un nodo, una clase en un nodo
y con un conector de realizacion y un simbolo externo de clase.

a. Verdadero
b. Falso

98. El conector y el estereotipo para un artefacto mostrado fuera de un nodo es
a. de realizacion y manifestar.
b. de dependencia y desplegar.
c. de asociacion y desplegar.
d. de dependencia y manifestar.

99. Cuando se muestra un artefacto conectado a un componente, ;cual estereotipo se
aplica?
a. «desplegar»
b. «usar»
c. «manifestar
d. «extiende»

100. ;Cual conector se usa para mostrar comunicacion entre los nodos?

a. De dependencia
b. De generalizacion
c. De asociacion

d. De vinculo

Respuestas

1. b 7. b 13. a
2. b 8. b 14. b
3.b 9. ¢ 15. b
4. ¢ 10. b 16. b
5. a 11. ¢ 17. ¢
6. b 12. a 18. b

www.FreeLibros.me

19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

o a o o [2] o

o

© o o o

o

o o o

47. ¢

48. 7

49. ¢

50. ¢

51. a

52. b

53. byec
54. b

55.
56.
57.
58.
59.
60.
61.
62.
63.
64. a
65. ¢
66. d
67. a
68. a
69.
70.
71.
72.
73.
74.

c o o o

o

yb

o o e

o

(e

o o o o

,cyd

o

www.FreeLibros.me

75.
76.
T1.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.

Manual de umL

o 0 o o o o o o @& o o o o o o o o ©
<
(@]

on

o o o o

BIBLIOGRAFIA
SELECCIONADA

Ambler, Scott. The Object Primer: Agile Model-Driven Development whith umL
2.0, 3a. ed. New York: Wiley, 2004.

Booch, Grady. Object Solutions. Reading, MA: Addison-Wesley, 2005.

Booch, Grady, Ivar Jacobson y James Rumbaugh. The Unified Modeling Language,
2a. ed. Reading, MA: Addison-Wesley, 2005.

Eriksson, Hans-Erik, Magnus Penker, Brian Lyons y David Fado. vmt 2 Toolkit.
Indianapolis: Wiley, 2004.

Fowler, Martin. umi Distilled Third Edition: A Brief Guide to the Standard Object
Modeling Language. Reading, MA: Addison-Wesley, 2004.

Love, John F. McDonald’s: Behind the Arches. New York: Bantam, 1995.

Overgaard, Gunnar y Karen Palmkvist. Use Cases: Patterns and Blueprints. Rea-
ding, MA: Addison-Wesley, 2005.

www.FreeLibros.me

www.FreeLibros.me

INDICE

Simbolos

— simbolo (menos), 107

simbolo (nimero), 107

+ simbolo (mas), 107

«y » (comillas angulares), 24

A
A Pattern Language (Christopher Alexander),
189
Accién, nodos de (diagramas de actividades), 52,
53, 56-62
adicién de condiciones previas/condiciones
posteriores, 58-62
modelado de las subactividades, 62
nombramiento de las acciones, 57-58
Aceptar, sefial de (diagramas de actividades), 67
Activacion de las lineas de vida, 84-85
Actividad, nodo final de (diagramas de
actividades), 71-72
Actividad, particiones de la (V. Carriles
[diagramas de actividades])
Actividades (diagramas de esquemas de estados),
165
Actividades comunes, 161
Actividades de hacer, 161-162
Actividades internas (diagramas de esquemas de
estados), 163

Actor, simbolos de, 7, 21
definicion, 36-39
Esaw
funcion de los, 18
lineas de vida fijas a los, 83, 84
Agile, proceso, 14, 92
Agregacion, relaciones de, 112-114, 143
(V. también Composicion,
relaciones de)
Alexander, Christopher, 189
Ambler, Scott, 176
Anotaciones:
diagramas de casos de uso, 27-28
(V. también Documentacion
[diagramas de casos de uso])
diagramas de clases, 118
Antepasado (como término), 132
Arreglos:
de asociaciones, 145-147
de atributos, 110, 111
Artefactos (diagramas de despliegue), 201-204,
205
Asociacion calificada, 147
Asociacion dirigida, 146, 151
Asociacién dirigida/direccional, 113
Asociacion, relaciones de, 145-150
casos de uso, 22
diagramas de clases, 108-109, 112, 113

_\@

www.FreeLibros.me

@,—

Atributos, 103
arreglos y multiplicidad, 110, 111
con asociacion, 108-109
declaracion de, 107-108, 107-109
decoracién de los, 106-107
en un simbolo de clasificador, 106-107
primitivos como, 121
unicidad de los, 110-111
uso de, 107-111

B

Babbage, Charles, 4

Balancing Agility and Discipline (Barry Boehm),
14

Behind the Golden Arches, 73

Bifurcacion, nodos de (diagramas de
actividades), 56, 63

Boehm, Barry, 14

Booch, Grady, 4, 187

Broccoli, Albert, 136

Bucle, marco de, §9-90

Busqueda, motor de, 92-93

C
C++, 4
Cambio, eventos de, 164
Campos, 107, 145
Caracteristica(s):
como procesos, 48
de clases, 103
significado del término, 106-107
simbolos de identificacion de, 107
Carriles (diagramas de actividades), 63-68
Casos de uso de diagramas muiltiples, 39-43
Casos de uso, diagramas de (casos de uso), 7,
17-44
adicién de documentacion de soporte a los,
28-29
anotacion de los, 27-32
como listas de cosas por hacer, 19
comunicacion con los, 20

Manual de umL

conectores en los, 22-25
creacion de los, 32-34
decision sobre el nimero de, 34
definicién de los actores en los, 36-39
divisién de los, en multiples diagramas,
39-43
ejemplo usando los, 34-43
escenarios de éxito y falla en los, 92
establecimiento de prioridades de las
capacidades con los, 19-20
finalidad de los, 17
impulsién del disefio con, 43-44
insercion de notas en los, 27-28
objetivo de los, 42
sencillez de los, 18-19
sencillez engafiosa de las, 18-19
simbolo de caso de uso, 21
simbolos de actor en los, 21
texto con los, 13, 19
uso de directrices para documentar, 29-32
y la documentacion de sus ideas, 42
Casos de uso, 6valos de los, 7, 18
Casos de uso, simbolos de (en los diagramas de
casos de uso), 21
Chitty Chitty Bang Bang (pelicula), 136-137
CLAB (crear, leer, actualizar y borrar),
comportamiento, 51
Clase base, 114
Clases asociacion, 146-150
calificadas, 147
dirigidas, 146, 151
Clases entidades, 124-127
Clases fronteras, 124-125, 128
Clases, diagramas de, 8-9, 101-128
adicion de detalles a las clases, 153
adicién de operaciones a las clases,
111-112
atributos, 107-111
caracteristicas, 103
clases de control, 127
clases entidades, 126-127

www.FreeLibros.me

clases fronteras, 128

clasificador, 103-107

comentarios, 118

decoracion de las clases, 106-107

enumeraciones, 121-122

espacios de nombres, 122-123

estereotipos, 117

identificacion de las clases necesarias,
123-128

interfaces, 104-105

metaclases, 105-106

notas, 118-119

objetos, diagramas de, 104

paquetes, 118

primitivos, 120-121

relaciones en los, 111, 113-117

restricciones, 118-120

tipos de datos, 105

tipos genéricos, 105

tipos parametrizados, 105

Clases:

adicion de detalles a las, 153
asociacion, 146-150
caracteristicas de las, 103
clasificadores, 103-107

de control, 124, 125, 127
decoracion de las, 106
descubrimiento de las, 102
dominio, 176

en los diagramas de clases, 8-9
entidades, 124-127

fronteras, 124-125, 128

linea de vida que representa, 84
metaclases, 105-106
relaciones entre (V. Relaciones)

_\@9

Clasificador, papel del (diagramas de
colaboracion), 94
Clasificadores, 103-107
atributos en los, 106-107
operaciones en los, 111
paleta de caramelo, media y completa, 179
Clavijas (en los diagramas de actividades),
55-56
Clientes, comunicacion con los, 20
Cobol, 4
Codificacioén, iniciacion de la, 96-97
Colaboracién (comunicacién), diagramas de, 9,
11, 82, 94-95
Comentarios (diagramas de clases), 118
Comillas angulares (« y »), 24
Complecion, transicién de, 164
Componentes, 176
Componentes, diagramas de, 11-12, 175-182
especificacion de las interfaces, 179-180
método de disefio de abajo hacia arriba, 178
método de disefio de arriba hacia abajo, 177
para los consumidores, 180-181
para los productores, 182-183
Comportamiento de estado, patrén de, 133-136,
190-191
Comportamiento, maquinas de estados de, 159,
166-167
Comportamientos, 103
Composicion, relaciones de, 112-114, 143-145
Computadoras, historia de las, 4
Comunicacidn, diagramas de (V. Colaboracién,
diagramas de)
Comunicacion, trayectorias de (diagramas de
despliegue), 204-205
Condiciones guardianes:

Clasificacién dindmica, 133-136 diagramas de actividades, 52-54, 58-62
Clasificacion, algoritmos de, 105 diagramas de esquemas de estados,
Clasificacion: 164-165

dinamica, 133-136
generalizacién en comparacién con,
132-133

diagramas de secuencia, 90
Condiciones posteriores (diagramas de
actividades), 56, 58-62

www.FreeLibros.me

@,—

Condiciones previas (diagramas de actividades),
56, 58-62
Conectores:
diagramas de casos de uso, 22-25
diagramas de clases, 112-117
diagramas de colaboracion, 94
diagramas de despliegue, 204
estereotipos asociados con los, 117
paleta de caramelo, media y completa, 179
Conexidn, estado de, 159-160
Conmutador anidado, declaracion de, 169
Consumidores, diagramas de componentes para
los, 180-181
Control, clases de, 124-125, 127
Control, flujo de (diagramas de actividades),
52-53
Controlador de visién del modelo (Mmvc), 127
CRC, fichas (V. Responsabilidad y colaborador
de las clases, fichas de)
Creacidn, patrones de, 133
Crear, leer, actualizar y borrar (CLAB),
comportamiento, 51

D
Datos, tipos de, 105
De arriba hacia abajo, procedimiento de disefio
de, 177
Decision, diamantes de (diagramas de flujo), 56,
62-63
Decisién, nodos de (diagramas de actividades),
56, 62-63
Decoracion de las clases, 106-107
Dependencia, relaciones de, 150-152
casos de uso, 22, 25-27, 32
diagramas de clases, 112, 116-117
estereotipos ampliar, 26-27
estereotipos incluir, 25-26
estereotipos para las, 151-152
insercion de referencias a las, 32
Desarrollo del software, llevar al exterior el, 5

Manual de umL

Design Patterns (Erich Gamma), 97, 127, 133, 171
Despliegue de aplicaciones vivientes, entorno de,
205
Diagramas de actividades, 7-8, 47-77
acciones que se extienden sobre las
particiones, 67
bifurcaciones, 63
carriles, 63-68
condiciones guardianes, 52-54
condiciones previas y condiciones
posteriores, 58-62
creacion de los, 72-73
determinacion del ndmero de, 77
diagramas de flujo en comparacién con los,
48,51
ejemplos de, 51
en la reingenieria de procesos, 73-76
flujo de control, 52-53
manera de mostrar las excepciones en los.
70-71
manera de mostrar los flujos en los, 54-56
meta de los, 47
nodo inicial, 52
nodos de accion, 56-62
nodos de decision, 62-63
nodos de fusion, 62-64
nombramiento de las acciones, 57-58
pardmetros de entrada, 70
particion de la responsabilidad, 63-68
particiones multidimensionales, 67-68
sefial de tiempo, 67-69
subactividades, 62
terminacion de los, 71-72
uniones, 63
usos de los, 48-51
Diagramas de flujo:
diagramas de actividades en comparacion
con los, 48, 51
diamantes de decision en los, 62
Diagramas estaticos, 101, 131 (V. también
Clases, diagramas de)

www.FreeLibros.me

Diagramas redundantes, 8§1-82
Diagramas, 7-12
cuando crear los, 12
de actividades, 7-8
de casos de uso, 7
de clases, 8-9
de componentes, 11-12
de estados, 10-11
de interaccion, 9-10
de topologia del despliegue, 9-10
eleccion de los, 188
tamafo y complejidad de los, 13
texto que suplementa los, 13
Directrices (como documentacion de los casos de
uso), 29-32
Disefio impulsado por los casos de uso, 43-44
Disefio por contrato, 58-59
Diseiflo, patrones de, 127, 133-134
Disefio:
de abajo hacia arriba, 178
de arriba hacia abajo, 177
impulsado por casos de uso, 43-44
Disparadores, 164, 165
Documentacién (diagramas de casos de uso),
13, 28-32,42
de necesidades primarias y secundarias, 20
directrices para la, 29-32
formas de la, 28
notas como, 27-28
Documentacién (en general):
(V. también Comentarios; Notas)
cantidad de, 187-188
con los modelos, 192-193
edicién de la, 188
Dominio, clases del, 176
Dominio, expertos del, 49, 125

E

Eckert, Presper, 4

Edicion de la documentacion, 188
Enumeraciones (diagramas de clases), 121-122

_\@b

Es un(a), relaciones de, 114-115, 132-133
Esaw, 1-2, 10-11
Espacios de nombres (diagramas de clases), 118,
122-123
Especializacién (equipos para desarrollo de
software), 189
Esquemas de numeracion anidada, 95
Establecimiento de prioridades de las
capacidades, con los diagramas de casos de
uso, 19-20
Estado final, 159
Estado inicial, 159
Estados activos, 161-162
Estados compuestos, 162-163
Estados inactivos, 161
Estados no ortogonales, 162
Estados ortogonales, 162-163
Estados simples, 162
Estados, esquemas de, diagramas de
(diagramas de estados/maquinas de estados),
10-11, 157-171
actividades internas, 163
estado de conexion, 159-160
estado de historia profunda, 160-161
estado de historia superficial, 160-161
estado de seleccion, 159, 160
estado de terminacion, 159
estado final, 159
estado inicial, 159
estados activos/inactivos, 161-162
estados de historia, 160-161
estados simples/compuestos, 162-163
implementacién de los, 168-171
maquinas de estados de comportamiento,
166-167
maquinas de estados de protocolo, 167-168
simbolos para los, 158-159
transiciones, 164-166
vinculacion con las submdaquinas, 163
Estados, patrones de, 169, 171, 189-191
Estados, simbolo de, 158

www.FreeLibros.me

@,—

Estereotipos, 24-25
diagramas de clases, 117
extender, 26-27
incluir, 25-26
para dependencias, 151-152
tipos de datos, 105
Estimulo (V. Control, flujo de)
Eventos temporizadores, 164
Excepciones (diagramas de actividades),
70-71
Excepciones, manejador de (diagramas de
actividades), 70-71
Extension, casos de uso de, 25-27
eXtreme Programming (xp), 6, 14

F

Fleming, Ian, 136

Flujo (V. Control, flujo de)

Flujo, nodo final del (diagramas de actividades),
71-72

Fowler, Martin, 97, 187, 192

Fragmentos combinados (V. Interacciones,
marcos de)

Fuente (del conector), 113, 150

Fusién, nodos de (diagramas de actividades),
62-64

G
Gamma, Erich, 97, 127, 133, 171, 187
Gates, Bill, 3
Generalizacion, relaciones de:
(V. también Herencia, relaciones de)
casos de uso, 22-23
diagramas de clases, 112, 114, 115
Genéricos, 105
Gramatica, 102-103

H

Herencia de interfaz, 139-143
Herencia multiple, 135-138
Herencia simple, 132

Manual de umL

Herencia, 104-105
multiple, 135-138
simple, 132, 135
Herencia, relaciones de, 132-143
(V. también Generalizacidn, relaciones de)
diagramas de clases, 112, 114-115
herencia de interfaz, 139-143
herencia maltiple, 135-138
herencia simple, 132
patrén de comportamiento de estado,
133-135
Hijo (como término), 114, 132
Historia profunda, estado de, 160-161
Historia superficial, estado de, 160-161
Historia, estados de, 160-161
Hopper, Grace, 4
Hornos de microondas, 161

I
Idiomas, 10
Inclusion, caso de uso de, 25-26
Ingenieria automovilistica, 4
Interaccidn, diagramas de, 9-10, 81-97
diagramas de colaboracién (comunicacién),
82,94-95
diagramas de colaboracion, 9-11
diagramas de secuencia, 9-10, 8§2-94
y escritura del cédigo, 96-97
Interaccion, marco alternativo de, 90-91
Interacciones, marcos de (fragmentos
combinados), 87-91
Interfaces proporcionadas, 141, 179
Interfaces requeridas, 141, 179, 180
Interfaces:
diagramas de clases, 104-105
implementacién de las, 142
proporcionadas, 141, 179
requeridas, 141, 179-180
Interfaz, herencia de, 139-143
(V. también Generalizacion, relaciones de)
interfaces proporcionadas, 141

www.FreeLibros.me

interfaces requeridas, 141
modelado en pizarrén blanco, 139-140
reglas para la, 141-143

J
Jacobson, Ivar, 4, 187

L

Lectura-escritura, comportamiento de, 51

Lineas de vida (diagramas de secuencia), 83-84
activacién de las, 84-85
escalonamiento de las, 91

Listas de cosas por hacer, diagramas de casos de

uso como, 19
Llamada anidada, 85
Llamada, eventos de, 164

M

Macrofase (modelado), 111

Macroprocedimiento, 19, 97

Mansfield, Richard, 124

Mas (+), simbolo, 107

Mauchly, John, 4

McCarthy, James, 188

McDonald’s, 73

Menos (-), simbolo, 107

Mensajes (diagramas de secuencia):
definicidn, 85
descubrimiento de los, 92-94
envio de, 85-87
hallados, 85
perdidos, 85

Mensajes hallados, 85

Mensajes perdidos, 85

Metaclases, 105-106

Metadatos, 106

Métodos:
comportamientos como, 103
decoracion de los, 106-107
descubrimiento de los, 102
uso del término, 111

_@

Microfase (modelado), 111
Microprocedimiento, 19, 187
Microsoft:
SOA, 14
y el costo del software, 6
Modelado, herramientas para el, 5-6, 13
Modelado, lenguajes de:
desarrollo de los, 4
proceso en comparacion con los, 14
Modelado:
(V. también los temas especificos)
actividades primarias asociadas con el, 139
expertos en, 187
los hacer y los no hacer para el, 186-189
macrofases y microfases enel, 111
meta del, 10
razones para el, 5
uso de patrones conocidos de estados,
189-191
y el desarrollo futuro del software, 5
Modelos:
adicion de documentacién a los, 192-193
definicién de, 2
evaluacion de la complecion del, 12
notas en los, 118
refactorizacion, 192
texto que suplementa a los, 13
uso de los, 6
validacion de los, 193
valor de los, 2
Motown-jobs.com (ejemplo), 34-44
buisqueda del disefo para, 92-94
condiciones guardianes, 53-54
definicién de los actores, 36-39
diagrama de secuencia para, 86
divisién en diagramas multiples, 39-43
MSDN, 6
Multiplicidad:
atributos, 110
conectores, 24
MVC (controlador de visién del modelo), 127

www.FreeLibros.me

@,—

N
Navegacion, 113
Nieto (como término), 132
Nodo inicial (diagramas de actividades), 52
Nodos (diagramas de despliegue), 198-200
Nodos conectores (diagramas de actividades),
54-55
Nombramiento de las acciones (diagramas de
actividades), 57-58
Notas:
diagramas de casos de uso, 27-28
(V. también Documentacién [diagramas
de casos de uso])
diagramas de clases, 118-119
diagramas de secuencia, 87-88
Numeracién, esquemas de, 95
Numero (#), simbolo, 107

0
Object Constraint Language (ocL), 87, 118
Object Management Group (OMG), 3
Objetivo (del conector), 150-151
Objetos, diagramas de, 104
Objetos, lineas de vida de (diagramas de
secuencia), 83-84, 84-85
Objetos:
Descubrimiento de, con los diagramas de
secuencia, 92-94
En los diagramas de actividades, 55
OCL (V. Object Constraint Language)
OMG (Object Management Group), 3
Opcién, efecto (diagramas de esquemas de
estados), 165-166
Opdike, William, 97
Operaciones, 111
Orientados a objetos, andlisis y disefio:
principio bésico del, 48
reto para el, 124
soporte UML parael, 17
Outsourcing del desarrollo de software, 5
Ovalos (V. Casos de uso, 6valos de los)

Manual de umL

P

Padre (como término), 114

Paleta de caramelo, completa, 179

Paleta de caramelo, media, 179

Papel, especializacion del, 93

Paquete, simbolo de, 118

Particiones (V. Carriles [diagramas de
actividades])

Particiones multidimensionales de la actividad,
67-68

Patrones estructurales, 133

Plantillas (C++)

Polimorfismo, 115, 132

Posibilidad de ser sustituido, 115

Primitivos (diagramas de clases), 120-121

Problema, dominio del, 48

Proceso unificado de modelado, 4

Proceso(s):

caracteristicas como, 48
lenguajes de modelado en comparacién con
el, 14

Proceso, reingenieria del, 73

Productores, diagramas de componentes para,
182-183

Propiedad, 107

Protocolo, maquinas de estado de, 159-160,
167-168

R
Radar, estufa de, 161
Rational Unified Process (rRupP), 14, 92
Realizacion, relaciones de:

diagramas de clases, 112, 115-116
Refactoring (Martin Fowler), 97, 192
Refactorizacion, 97, 192
Reingenieria del proceso, 73-76
Relaciones:

de agregacion, 112-114, 143

de asociacion, 22, 108-109, 112-113,

145-150
de composicién, 112-114, 143-145

www.FreeLibros.me

de dependencia, 25-27, 32, 112, 116-117,
150-152
de es un(a), 114-115, 132-133
de generalizacién, 22-23, 112, 114-115
de herencia, 112, 114-115, 132-143
de realizacién, 112, 115-116
en los casos de uso, 22-23, 25-27, 32
en los diagramas de clases, 111, 113-117
Responsabilidad y colaborador de las clases
(cre), fichas de, 125-126
Restricciones:
diagramas de clases, 118-120
diagramas de secuencia, 87
Retroalimentacion, 13
Reutilizacién de los diagramas, 163
Roomba®, aspiradora, 33
Rose XDE, 6
Rumbaugh, James, 4, 187
RUP (V. Rational Unified Process)

S
Secuencia, diagramas de, 9-10, 82-94
activacion de las lineas de vida, 84-85
descubrimiento de objetos/mensajes con
los, 92-94
envio de mensajes, 85-87
lineas de vida de objetos, 83-84
marcos de interacciones, 87-91
notas, 87-88
restricciones, 87
utilidad de los, 91-92
Selecciodn, estado de, 159-160
Sefial a ruido, razén baja, 125
Senal a ruido, razén, 125
Seiial de enviar (diagramas de actividades),
67, 69
Senal, 152
Seinial, eventos de 164
Service Oriented Architecture (soa), 14
Smalltalk, 4
SOA (Service Oriented Architecture), 14

_@

Sobrecarga de operadores, 121
Software, disefio de:
(V. también Modelado)
complejidad del, 186
evolucion del, 3-5
Solucién, dominio de la, 48
Spencer, Percy, 161
Stroustrop, Bjarne, 4, 152
Subactividad(es):
en los diagramas de actividades, 62
reingenieria, 74-76
Subclase, 114
Submadquinas, vinculacioén con las, 163
Superclase, 114
Superestado (V. Estados compuestos)

T
Tabla de estados, 169
Terminacion, estado de, 159
Texto (diagramas de casos de uso), 13, 19, 28, 32
(V. también Documentacion [diagramas de
casos de uso])
The C++ Programming Language (Gjarne,
Stroustrop), 152
The Object Primer (Scott Ambler), 176
Tiempo, sefiales de (diagramas de actividades),
67-69
Tipos parametrizados, 105
Together, 6
Topologia del despliegue, diagramas de, 12,
197-205
artefactos, manera de mostrar en los,
201-205
nodos en los, 198-200
trayectorias de comunicacion, 204-205
Transicién sin disparador, 164
Transiciones (diagramas de esquemas de
estados), 158, 164-166
Trazo de diagramas sobre pizarrén blanco,
139-140
Turing, Aolan, 4

www.FreeLibros.me

Manual de umL

@,—

U estados compuestos, 162
Unified Modeling Language (UML), 2 estereotipo extender, 25
como un lenguaje, 2-3, 82 marco de interaccion, 89
comunicacion precisa en el, 102 nodos conectores con, 54-55
desarrollo del, 4 simulacién de la sefial de tiempo, 68
descomposicién/recomposicion de simulacién de particién multidimensional,
problemas con, 49 67
gramatica del, 103 subactividades, 62
y evolucién del disefio de software, 3-5 vinculacién con las submaquinas, 163
Unified Process, 14 y la mitad de una paleta de caramelo, 179
Uniform Resource Locators (URL), 28
Unién, nodos de (diagramas de actividades), 63 X
Usuarios, comunicacién con los, 20 XP (V. eXtreme Programming)
v
Validacion de los modelos, 193
Visio, 3, 6

adicion de documentacién, 29

www.FreeLibros.me

www.FreeLibros.me

www.FreeLibros.me

	Manual de UML
	Página legal
	Contenido
	Reconociemiento
	Introducción
	1. Una imagen vale más que mil (...)
	Comprensión de los modelos
	Comprensión del UML
	La evolución del diseño de software
	Si nadie está modelando, ¿por qué debe hacerlo usted?

	Modelado y el futuro del desarrollo de software
	Herramientas para modelado
	Uso de los modelos
	Creación de diagramas
	Revisión de los tipos de diagramas

	Hallar la línea .nal
	¿Cuántos diagramas debo crear?
	¿Cuán grande debe ser un diagrama?
	¿Cuánto texto debe complementar mis modelos?
	Obtenga una segunda opinión
	Contraste de los lenguajes de modelado con el proceso
	Examen
	Respuestas

	2. El principio con casos de uso
	Cómo hacer el caso para las casos de uso
	Establecimiento de prioridad de las capacidades
	Comunicación con los no tecnó.los

	Uso de los símbolos de los casos de uso
	Símbolos de actores
	Casos de uso
	Conectores
	Caso de uso de inclusión y de extensión
	Anotaciones en los diagramas de casos de uso

	Creación de los diagramas de casos de uso
	¿Cuántos diagramas son su.cientes?
	Ejemplos de diagramas de casos de uso

	Diseño controlado con casos de uso
	Examen
	Respuestas

	3. Diagramación de características como procesos
	Elaboración de las características como procesos
	Un viaje hacia el código
	Comprensión de los usos de los diagramas de actividades
	Uso de lo símbolos de los diagramas de actividades
	Nodo inicial
	Flujo de control
	Acciones
	Nodos de decisión y de fusión
	Bifurcaciones y uniones de transición
	Partición de la responsabilidad con carriles
	Indicación de las señales cronometradas
	Configuración de los parámetros de entrada
	Forma de mostrar las excepciones en los diagramas de actividades
	Terminación de los diagramas de actividades
	Creación de los diagramas de actividades
	Reingeniería del proceso
	Reingeniería de una subactividad

	Saber cuándo renunciar
	Examen
	Respuestas

	4. Comportamientos con diagramas de interacción
	Elementos de los diagramas de secuencia
	Uso de las líneas de vida de objetos
	Activación de una línea de vida
	Envío de mensajes
	Adición de restricciones y notas
	Uso de marcos de interacción

	Comprensión de lo que nos dicen las secuencias
	Descubrimiento de objetos y mensajes
	Elementos de los diagramas de colaboración (o comunicación)
	Igualación del diseño con el código
	Examen
	Respuestas

	5. ¿Cuáles son las cosas que describen mi problema?
	Elementos de los diagramas básicos de clase
	Comprensión de las clases y los objetos
	Modelado de relaciones en los diagramas de clases
	Estereotipado de las clases
	Uso de paquetes
	Uso de notas y comentarios
	Restricciones

	Modelado de primitivos
	Modelado de enumeraciones
	Indicación de espacios de nombres
	Cómo saber qué clases necesita
	Uso de un enfoque ingenuo
	Descubra otros bene.cios del análisis de dominios

	Examen
	Respuestas

	6. Cómo se relacionan las clases
	Modelado de la herencia
	Uso de le herencia simple
	Uso de la herencia múltiple
	Modelado de la herencia de interfaces
	Boceto de diagrama
	Uso de la realización

	Descripción de la agregación y la composición
	Asociaciones y las clases asociaciones
	Examen de las relaciones de dependencia
	Adición de detalles a las clases
	Examen
	Respuestas

	7. Uso de los diagramas de esquemas de estado
	Elementos de un diagrama de estado
	Examen de los símbolos de estado
	Examen de las transiciones
	Creación de máquinas de estado de comportamiento
	Creación de máquinas de estado de protocolo
	Implementación de diagramas de estado
	Examen
	Respuestas

	8 Modelado de componentes
	Introducción del diseño basado en componentes
	Diseño componentes-interfaz
	Diseño a partir de las clases

	Modelado de un componente
	Especicación de las interfaces proporcionadas y requeridas
	Examen de los estilos de modelado de componentes
	Trazado de los diagramas de componentes para consumidores
	Trazado de los diagramas de componentes para productores

	Examen
	Respuestas

	9. Ajuste y finalización
	Modelado de los hacer y los no hacer
	No tenga esperando a los programadores
	Trabaje de una macrovista hacia una microvista
	Documente en forma económica
	Encuentre un editor
	Sea selectivo acerca de los diagramas que elige crear
	No dependa de la generación del código
	Modele y estructure disminuyendo el riesgo
	Si es obvio, no lo modele
	Haga hincapié en la especialización
	Uso de patrones de estado conocidos
	Refactorización de su modelo
	Modo de agregar documentación de soporte
	Validación de su modelo
	Examen
	Respuestas

	10. Visualización de su topología de despliegue
	Modelado de nodos
	Manera de mostrar artefactos en nodos
	Adición de trayectorias de comunicación
	Examen
	Respuestas

	Apéndice: Examen final
	Respuestas

	Bibliografía seleccionada
	Índice

