

Producir Software de Código
Abierto

Como Llevar a Buen Puerto un Proyecto
de Código Libre

Karl Fogel
Rafael Martilotti
Alejandro Ayuso

José Manuel Puerta Peña
Pedro Andrés Bonilla Polo

Aldo Vadillo Batista
Francisco Urbano García
Christian López Espínola
Emilio Casbas Jimenez

Producir Software de Código Abierto: Como Llevar a Buen
Puerto un Proyecto de Código Libre
por Karl Fogel, Rafael Martilotti, Alejandro Ayuso, José Manuel Puerta Peña, Pedro Andrés Bonilla Po-
lo, Aldo Vadillo Batista, Francisco Urbano García, Christian López Espínola, y Emilio Casbas Jimenez
Copyright © 2005, 2006, 2007 Karl Fogel, Rafael Martilotti, Alejandro Ayuso, Francisco Urbano Gar-
cía, José Manuel Puerta Peña, Pedro Andrés Bonilla Polo, Christian López Espínola, Emilio Casbas un-
der a CreativeCommons Attribution-ShareAlike (3.0) license.

Dedicatoria
Este libro está dedicado a dos queridos amigos sin los cuales esta obra no hubiera sido posible: Karen
Underhill y Jim Blandy.

i

Tabla de contenidos
Prefacio .. vi

¿Por qué escribir éste libro? ... vi
¿Quíen debería leer éste libro? .. vi
Fuentes ... vii
Reconocimientos .. viii
Disclaimer .. ix

1. Introducción ... 1
La Historia ... 3

El Florecimiento del Software Propietario y del Software Libre 4
#Libre# vs #Abierto# ... 7

La situación de Hoy ... 9
2. Primeros Pasos .. 11

Empezando con lo que se tiene .. 12
Escoger un buen nombre .. 13
Tener los objetivos claros ... 14
Declara que el proyecto es libre ... 15
Lista de características y requerimientos .. 15
Estado del desarrollo .. 16
Descargas .. 16
Control de versiones y acceso al Bug Tracker ... 17
Canales de comunicación .. 18
Pautas de Desarrollo .. 18
Documentación ... 19
Ejemplos de salidas y capturas ... 21
Hosting enlatado ... 21

Escogiendo una licencia y aplicándola ... 22
Las licencias "Haz lo que quieras" .. 22
Licencia GPL ... 22
Cómo aplicar una licencia a nuestro software ... 22

Ajustar el tono .. 23
Evitar discusiones privadas ... 24
Echad a volar la mala educación .. 25
Practicad revisiones visibles del código ... 26
Al abrir un proyecto cerrado, hay que ser sensible acerca de la magnitud de los cam-
bios .. 27

Anunciar ... 28
3. Infraestructura Técnica ... 30

Lo que necesita un proyecto .. 31
Listas de correo .. 32

Prevenir el Spam ... 33
Identificación y Administración de cabeceras ... 35
El gran debate del Reply-To .. 37
Archivo ... 39
Software .. 40

Control de Versiones ... 41
Vocabulario ... 41
Escoger un sistema de control de versiones .. 44
Utilizando el sistema de control de versiones .. 44

Seguimiento de errores ... 50
Interacción con las Lista de Correo ... 52
Pre-filtrado del gestor de fallos .. 52

IRC / Sistemas de Chat en Tiempo Real .. 54
Bots .. 55

ii

Archivando IRC .. 56
Wikis .. 56
Sitio Web .. 57

Soluciones de hospedaje ... 57
4. Infraestructura Social y Política .. 60

Dictadores Benevolentes .. 61
¿Quién puede ser un Buen Dictador Benevolente? ... 61

Democracia basada en el Consenso ... 62
Control de Versión Significa que Uno Puede Evitar el Estrés 63
Cuando No Se Puede Tener Consenso, Vote ... 63
Cuando Se Debe Votar ... 64
¿Quién Vota? ... 65
Encuestas Versus Votaciones .. 66
Vetos .. 66

Tomando Nota de Todo .. 66
5. Dinero ... 68

Tipos de participación .. 69
Contratos Indefinidos ... 70
Appear as Many, Not as One ... 71
Be Open About Your Motivations .. 72
Money Can't Buy You Love .. 73
Contracting .. 74

Review and Acceptance of Changes .. 76
Funding Non-Programming Activities ... 76

Quality Assurance (i.e., Professional Testing) ... 77
Legal Advice and Protection ... 78
Documentation and Usability .. 78
Providing Hosting/Bandwidth .. 79

Marketing .. 79
Remember That You Are Being Watched .. 79
Don't Bash Competing Open Source Products ... 80

6. Communications .. 82
Tú eres lo que escribes ... 82

Estructura y formato .. 83
Contenido .. 84
Tono ... 85
Reconociendo la grosería .. 86
Caras .. 87

Evitando los obstáculos corrientes .. 89
No envíes un correo sin un propósito .. 89
Hilos productivos vs Hilos Improductivos .. 90
Cuanto más blando sea el tema, más largo será el debate 91
Evitando las Guerras Santas .. 92
El efecto "Ruido Minoritario" .. 94

Gente difícil ... 94
Tratando con gente difícil ... 95
Estudio del caso .. 95

Manejando el crecimiento ... 97
Sobresaliente uso de los archivos ... 98
Codifying Tradition ... 100

No Conversations in the Bug Tracker .. 103
Publicity .. 104

Announcing Security Vulnerabilities ... 105
7. Packaging, Releasing, and Daily Development .. 111

Release Numbering ... 111
Release Number Components .. 112
The Simple Strategy .. 114
The Even/Odd Strategy .. 115

Producir Software de Código Abierto

iii

Release Branches .. 115
Mechanics of Release Branches ... 116

Stabilizing a Release .. 117
Dictatorship by Release Owner .. 118
Change Voting ... 118

Packaging .. 120
Format .. 121
Name and Layout .. 121
Compilation and Installation .. 123
Binary Packages ... 124

Testing and Releasing .. 125
Candidate Releases .. 126
Announcing Releases ... 126

Maintaining Multiple Release Lines .. 126
Security Releases .. 127

Releases and Daily Development ... 127
Planning Releases ... 128

8. Coordinando a los Voluntarios ... 130
Conseguir el Máximo de los Voluntarios ... 130

Delegar ... 131
Halagos y Críticas ... 133
Prevén la Territorialidad ... 134
El Ratio de Automatización ... 135
Treat Every User as a Potential Volunteer .. 138

Share Management Tasks as Well as Technical Tasks .. 140
Patch Manager .. 140
Translation Manager .. 141
Documentation Manager .. 142
Issue Manager .. 143
FAQ Manager .. 144

Transitions ... 144
Committers .. 146

Choosing Committers .. 147
Revoking Commit Access ... 147
Partial Commit Access ... 148
Dormant Committers ... 148
Avoid Mystery ... 149

Credit ... 149
Forks .. 150

Handling a Fork .. 151
Initiating a Fork .. 152

9. Licencias, Copyrights y Patentes ... 154
Terminología .. 154
Aspectos de las licencias .. 156
La GPL y compatibilidad entre licencias .. 157
Eligiendo una licencia .. 158

La MIT / X Window System License .. 158
La GNU General Public License .. 159
¿Qué tal la licencia BSD? ... 160

Asignación y propiedad del Copyright ... 160
No hacer nada .. 161
Contributor License Agreements .. 161
Transfer of Copyright .. 162

Dual Licensing Schemes ... 162
Patents .. 163
Recursos adicionales .. 165

A. Sistemas de Control de Versiones Libres ... 167
B. Gestor de fallos libres .. 171

Producir Software de Código Abierto

iv

C. Why Should I Care What Color the Bikeshed Is? ... 174
D. Ejemplo de Instrucciones para Informar sobre Fallos ... 178
E. Copyright .. 180

Producir Software de Código Abierto

v

1Los términos "código abierto" y "libre" son sinónimos esenciales en éste contexto; son discutidos en mayor profundidad en el
“#Libre# vs #Abierto#”, en Capítulo 1, Introducción.

Prefacio
¿Por qué escribir éste libro?

Ahora cuando estoy en una fiesta, la gente no se queda con la mirada en blanco cuando les digo que es-
cribo software libre. "Oh sí, código abierto ¿cómo Linux?" me dicen mientras asiento con aprovación.
"¡Sí, exactamente! Eso es lo que hago." Es agradable no estar más completamente aislado. Antes, la si-
guiente pregunta era predecible: "¿Cómo ganas dinero haciendo eso?" Para responder, resumiría así la
economía del código abierto: que existen organizaciones interesadas en que cierta clase de software
exista, pero que no necesitan vender copias, sólo quieren asegurarse de que esté disponible y mantenido,
como una herramienta en lugar de como un servicio.

En cambio, últimamente, la siguiente pregunta no siempre ha tenido que ver con el dinero. El Business
Case del software Open Source 1 ya no es tan misterioso, y muchos no-programadores ya entienden—o
al menos no se sorprenden—que haya gente empleada en ello a tiempo completo. En su lugar, la pregun-
ta que voy escuchando cada vez más es "¿Cómo funciona todo esto?"

No tenía una respuesta satisfactoria lista y cuan más duro intentaba pensar en una, más me daba cuenta
de cuan complejo realmente es el tema. Llevar un proyecto de software libre no es exactamente como di-
rigir un negocio (imaginemos tener que negociar constantemente la naturaleza de nuestro producto con
un grupo de voluntarios, muchos de los cuales ¡ni siquiera conocemos!). Tampoco es, por varias razo-
nes, como llevar una organización sin ánimo de lucro tradicional o un gobierno. Es similar a todas ellas,
pero poco a poco he llegado a la conclusión de que el software libre es sui generis. Existen muchas co-
sas con las que puede ser comparado por su utilidad, pero con ninguna puede ser igualado. En realidad,
asumir que el software libre puede ser dirigido es iluso. Un proyecto de software libre puede ser iniciado
y puede ser influenciado, fuertemente, por algunas partes interesadas. Pero sus activos no pueden ser he-
chos propiedad de un sólo dueño, así que mientras haya gente en alguna parte—cualquier parte— intere-
sada en continuar con el proyecto, no puede ser cancelado unilateralmente. Todos tienen poder infinito;
nadie tiene poder. Una dinámica muy interesante.

Es por esto que quería escribir éste libro. Los proyectos de software libre han permitido a una nueva cul-
túra evolucionar, un ethos en el cual la libertad de hacer que el software haga cualquier cosa que desea-
mos sea el eje central, sin embargo, el resultado de ésta libertad no es la dispersión de los individuos, ca-
da uno trabajando por su cuenta en el código, sino la colaboración entusiasta. De hecho, ser un coopera-
dor competente es en si, una de las cualidades mas valoradas en el software libre. Dirigir uno de estos
proyectos es abordar un tipo de cooperación hipertrofiada, donde la habilidad de, no sólo trabajar con
otros, pero de ingeniar nuevas maneras de trabajar en conjunto, pueden producir beneficios tangibles pa-
ra el desarrollo. Este libro intenta describir las técnicas con las que esto se puede lograr. No es de ningu-
na manera completo, pero al menos es un inicio.

El buen software libre es ya en si mismo un objetivo y espero que aquellos lectores que vengan buscan-
do como lograrlo esten satisfechos con lo que van a encontrar aquí. Pero más allá de esto, espero trans-
mitir algo del doloroso placer de trabajar con un equipo motivado de desarrolladores de código abierto y
de la interacción con los usuarios en la maravillosa manera directa que el Open Source anima. Participar
en un proyecto de software libre exitoso es divertido y en última instancia es esto lo que mantiene a todo
el sistema funcionando.

¿Quíen debería leer éste libro?

vi

Este libro está enfocado a desarrolladores y directores quienes esten considerando iniciar un proyecto de
software libre o que ya hayan iniciado uno y esten planeado qué hacer ahora. Tambien debería ser útil
para aquellas personas que quieren participar en un proyecto Open Source y que nunca lo han hecho.

El lector no necesita ser un programador, pero debe conocer conceptos básicos de ingéniera informática
como código fuente, compiladores y parches.

Experiencia anterior con software Open Source como usuario o desarrollador no es necesaria. Quienes
hayan trabajado en proyectos de software libre con anterioridad probablemente encuentren algunas par-
tes del libro algo obvias y quizas deseen saltar esas secciones. Dado que potencialmente existe una am-
plia audiencia experimientada, he hecho un esfuerzo para etiquetar claramente cada sección y decir
cuando algo puede ser omitido por quienes ya estan familiarizados en la materia.

Fuentes
Mucha de la materia prima para éste libro viene de trabajar durante cinco años con el proyecto Subver-
sion (http://subversion.tigris.org/). Subversion es un sistema de código abierto para el control de versio-
nes, escrito desde cero con la intención de reemplazar a CVS como el sistema de control de versiones de
facto utilizado por la comunidad Open Source. El proyecto fue iniciado por la empresa en la que trabajo,
CollabNet (http://www.collab.net/), a principios del año 2000 y gracias a Dios, CollabNet entendio des-
de el inicio a llevarlo como un esfuerzo colaborativo y distribuido. Desde el principio tuvimos muchos
desarrolladores voluntarios; hoy somos unos 50 en el proyecto, de los cuales sólo unos pocos son em-
pleados de CollabNet.

Subversion es de muchas maneras un clásico ejemplo de un proyecto Open Source y termine aproximan-
dome más de lo que originalmente esperaba. Parte de esto fue una cuestión de conveniencia: cada vez
que necesitaba un ejemplo de un fenómeno en partícular, usualmente podía recordar alguno sobre Sub-
version. Pero tambien fue una cuestión de verificación. Aunque estoy inmerso en otros proyecto de soft-
ware libre a diversos niveles, y que converso con amigos y conocidos envueltos en muchos otros, rapi-
damente me he dado cuenta que al escribir para la imprenta, todas las afirmaciones deben ser veríficadas
con hechos. No deseaba hacer declaraciones acerca de situaciones presentes en otros proyectos basando-
me sólo en lo que podía leer en las listas de correo. Si alguien intentase algo así con Subversion sé que
sólo estaria en lo correcto la mitad de las veces y equivocado la otra mitad. Así que al buscar inspiración
o ejemplos en proyectos con los que no tenía experiencia directa, intentaba primero hablar con algún in-
formador, alguien en quien confiará para explicarme qué estaba sucediendo realmente

Subversion ha sido mi trabajo durante los ultimos cinco años pero he estado involucrado en el software
libre durante otros doce. Otros proyectos que han influenciado éste libro son:

• El proyecto de la Free Software Foundation GNU Emacs, un editor de texto del cual mantengo algu-
nos páquetes pequeños

• Sistema de versiones concurrentes, del íngles Concurrent Version System (CVS) en el que trabajé in-
tensamente en 1994#1995 con Jim Blandy y en el que sigo trabajando intermitentemente desde enton-
ces.

• La colección de proyectos Open Source conocidos como la Fundación de Software Apache, especial-
mente en el Apache Portable Runtime (APR) y en el servidor Apache HTTP.

• OpenOffice.org, las bases de datos Berkeley de Sleepycat y MySQL; No he estado envuelto personal-
mente en estos proyectos, pero los he observado y, en algunos casos, hablado con personas en ellos.

• GNU Debugger (GDB) (igual que con los anteriores).

• Proyecto Debian (igual que con los anteriores).

Prefacio

vii

http://subversion.tigris.org/
http://www.collab.net/

Ésta no es la lista completa, por supuesto. Como muchos de los programadores de Open Source, man-
tengo varios frentes abiertos en diferentes proyectos, sólo para tener una visión del estado general. No
los voy a nombrar a todos aquí, pero seran mencionados a lo largo del libro cuando sea apropiado.

Reconocimientos
Éste libro me tomó cuatro veces el tiempo que esperaba para escribirlo, y durante mucho tiempo sentia
como si un piano estuviese suspendido sobre mi cabeza a cada lugar al que iba. Sin la ayuda de mucha
gente, no habría podido completarlo y seguir cuerdo.

Andy Oram, mi editor en O'Reilly fue el sueño de todo escritor. Aparte de conocer el tema intimamente
(él sugirió muchos de los temas), tiene el raro don de saber lo que se intenta decir y ayudar a encontrar la
manera correcta de decirlo. Ha sido un honor trabajar con él. Gracias tambien a Chuck Toporek por pa-
sarle ésta propuesta a Andy Right desde el principio.

Brian Fritzpatrick revisó casí todo el material mientras lo escribía, lo que no sólo hizo el libro mejor, pe-
ro me mantuvo escribiendo cuando quería estar en cualquier lugar menos frente a un ordenador. Ben Co-
llins-Sussman y Hike Pilato tambien revisaban de vez en cuando el progreso y siempre se contentaban
con discutir—algunas veces en profundidad—cualquier tema que intentaba cubrir esa semana. Tambien
se daban cuenta cuando reducia la marcha y gentilmente me regañaban cuando era necesario. Gracias
tios.

Biela Coleman estaba escribiendo su tésis al mismo tiempo que yo escribía éste libro. Ella sabe lo que
significa sentarse cada día a escribir, dandome un ejemplo de inspiración como un oido amigo. Tambien
tiene una fascinante vista antropologica del movimiento free software, dandome ídeas y referencias que
podría utilizar en el libro. Alex Golub—otro antropólogo con un pie en el mundo del software libre—fue
un apoyo excepcional que me ayudo inmensamente.

Micah Anderson de alguna manera nunca parecio oprimido por su propio trabajo de escritor, el cual me
inspiraba en alguna forma enfermiza y envidiable, pero siempre estuvo listo con su amistad, conversa-
ción y (al menos en una ocasión) soporte técnico. ¡Gracias Micah!

Jon Trowbridge and Sander Striker gave both encouragement and concrete help—their broad experience
in free software provided material I couldn't have gotten any other way.

Thanks to Greg Stein not only for friendship and well-timed encouragement, but for showing the Sub-
version project how important regular code review is in building a programming community. Thanks al-
so to Brian Behlendorf, who tactfully drummed into our heads the importance of having discussions pu-
blicly; I hope that principle is reflected throughout this book.

Thanks to Benjamin "Mako" Hill and Seth Schoen, for various conversations about free software and its
politics; to Zack Urlocker and Louis Suarez-Potts for taking time out of their busy schedules to be inter-
viewed; to Shane on the Slashcode list for allowing his post to be quoted; and to Haggen So for his enor-
mously helpful comparison of canned hosting sites.

Thanks to Alla Dekhtyar, Polina, and Sonya for their unflagging and patient encouragement. I'm very
glad that I will no longer have to end (or rather, try unsuccessfully to end) our evenings early to go home
and work on "The Book."

Thanks to Jack Repenning for friendship, conversation, and a stubborn refusal to ever accept an easy
wrong analysis when a harder right one is available. I hope that some of his long experience with both
software development and the software industry rubbed off on this book.

CollabNet was exceptionally generous in allowing me a flexible schedule to write, and didn't complain
when it went on far longer than originally planned. I don't know all the intricacies of how management
arrives at such decisions, but I suspect Sandhya Klute, and later Mahesh Murthy, had something to do
with it—my thanks to them both.

Prefacio

viii

The entire Subversion development team has been an inspiration for the past five years, and much of
what is in this book I learned from working with them. I won't thank them all by name here, because
there are too many, but I implore any reader who runs into a Subversion committer to immediately buy
that committer the drink of his choice—I certainly plan to.

Many times I ranted to Rachel Scollon about the state of the book; she was always willing to listen, and
somehow managed to make the problems seem smaller than before we talked. That helped a
lot—thanks.

Thanks (again) to Noel Taylor, who must surely have wondered why I wanted to write another book gi-
ven how much I complained the last time, but whose friendship and leadership of Golosá helped keep
music and good fellowship in my life even in the busiest times. Thanks also to Matthew Dean and Do-
rothea Samtleben, friends and long-suffering musical partners, who were very understanding as my ex-
cuses for not practicing piled up. Megan Jennings was constantly supportive, and genuinely interested in
the topic even though it was unfamiliar to her—a great tonic for an insecure writer. Thanks, pal!

I had four knowledgeable and diligent reviewers for this book: Yoav Shapira, Andrew Stellman, Dava-
num Srinivas, and Ben Hyde. If I had been able to incorporate all of their excellent suggestions, this
would be a better book. As it was, time constraints forced me to pick and choose, but the improvements
were still significant. Any errors that remain are entirely my own.

My parents, Frances and Henry, were wonderfully supportive as always, and as this book is less techni-
cal than the previous one, I hope they'll find it somewhat more readable.

Finally, I would like to thank the dedicatees, Karen Underhill and Jim Blandy. Karen's friendship and
understanding have meant everything to me, not only during the writing of this book but for the last se-
ven years. I simply would not have finished without her help. Likewise for Jim, a true friend and a hac-
ker's hacker, who first taught me about free software, much as a bird might teach an airplane about fl-
ying.

Disclaimer
Los pensamientos y opiniones expresadas en este libro son propias. No representan los puntos de vista
de CollabNet o del proyecto Subversion.

Prefacio

ix

1El sitio de hosting SourceForge.net, tiene 79 225 proyectos registrados a mediados de abril de 2004. Por supuesto que este núme-
ro no se acerca para nada al número total de proyectos en Internet, sólo el número que usa SourceForge.

Capítulo 1. Introducción
La mayoría de los proyectos de software libre fracasan.

Tratamos de no prestar mucha atención a los fracasos. Solamente los proyectos exitosos llaman la aten-
ción, y hay tantos proyectos de software1 que aún cuando solo un pequeño porcentaje tiene éxito, el re-
sultado es de una apreciable cantidad de proyectos. Pero tampoco prestamos atención a los fracasos por-
que no los contamos como un evento. No existe un momento puntual en el que un proyecto deja de ser
viable; simplemente se los deja de lado y se deja de trabajar en ellos. Puede haber un momento en que se
hace un cambio final al proyecto, pero quienquiera que lo haga, normalmente no sabe en ese momento
que ese cambio fue el último. Tampoco hay una definición clara del momento en que un proyecto se
acaba. ¿Podrá ser cuando se haya dejado de trabajar en él por seis meses? ¿O cuando su base de usuarios
deja de crecer, sin antes haber excedido la base de programadores? ¿Y qué pasaría si los programadores
de un proyecto lo abandonan porque se dan cuenta que estaban duplicando el trabajo de algún otro— y
si se unen todos en el otro proyecto, y lo amplían para incluir ahí su esfuerzo realizado? ¿Acaso el pri-
mer proyecto finalizó, o simplemente cambió de lugar de residencia?

Dada ésta complejidad, es imposible obtener un número preciso para un promedio de fracasos. Pero la
evidencia de lo que ha ocurrido en más de un decenio con proyectos con fuente abierta y curioseando un
poco en SourceForge.net y otro poco en Google, se llega siempre a la misma conclusión: el porcentaje
es muy alto, probablemente algo así como el 90–95%. Este numero crece aún más si se incluyen los pro-
yectos que sobreviven pero son disfuncionales: aquellos que producen un código que funciona, pero no
son placenteros ni amigables, o no progresan tan rápidamente ni son tan confiables como tendrían que
ser.

En este libro se habla de cómo evitar los fracasos. Se examina no solamente cómo se hacen bien las co-
sas, sino también cómo se hacen mal, para que se puedan reconocer desde el comienzo, y se corrijan los
problemas. Tengo la esperanza que después de que se lea este libro, se adquiera un repertorio de técnicas
no sólo para evitar los errores comunes en el desarrollo de programas de fuente abierta, sino también pa-
ra manejar el crecimiento y el mantenimiento de un proyecto exitoso. El éxito no es un juego para que
haya un solo ganador, y este libro no busca producir un solo ganador que salga airoso de una competi-
ción. Así pues, una parte importante de impulsar un proyecto de fuente abierta es trabajar en armonía
con otros proyectos relacionados entre si. Y a la larga, cada proyecto exitoso contribuye al bienestar de
todo el mundo del software libre.

Sería muy tentador afirmar que los proyectos de software libre fracasan por las mismas razones que los
proyectos de software propietario. Ciertamente el software libre no tiene el monopolio de los requisitos
descabellados, las especificaciones vagas, del manejo pobre de los recursos, fases de diseño insuficien-
tes, y tantas otras complicaciones ya conocidas en la industria del software. Se va a hablar mucho de es-
tos asuntos en este libro, y ahora hay que tratar de no multiplicar las referencias a dichos asuntos. Más
bien se intentará describir los problemas particulares al software libre. Cuando un proyecto de software
libre se estanca, a menudo es porque los programadores (o la dirección) no caen en cuenta de los proble-
mas típicos del desarrollo de software de fuente abierta, aunque pareciera que estan muy bien preparados
para las dificultades más conocidas del desarrollo de software de fuente cerrada.

Uno de los errores más comunes es tener expectativas desproporcionadas sobre los beneficios propios de
la fuente abierta. Una licencia abierta no es una garantía de tener una legión de programadores activos
que de repente se ofrecen para el proyecto, ni tampoco un proyecto con problemas se cura por el sólo he-
cho de pasarlo a fuente abierta. De hecho es todo lo contrario: abrir un proyecto puede agregar una serie
de complicaciones, y resultar a corto plazo más costoso que manejarlo dentro de casa. Abrirlo va a signi-
ficar acomodar el código para que sea comprensible a gente extraña, estableciendo un sitio en la red y

1

una lista de correos, y a menudo redactando la documentación del proyecto por primera vez. Todo esto
significa mucho trabajo. Y además, si aparece algún programador interesado, habrá que soportar el peso
agreqado de contestar sus preguntas por un tiempo, antes de ver el beneficio que se recibe por su presen-
cia. Como dijo el programador Jaime Zawinski comentando los días ajetreados cuando se lanzaba el pro-
yecto Mozilla:

La fuente abierta anda, pero no es definitivamente la panacea. Hay que advertir con
cautela que no se puede encarar un proyecto moribundo, rociarlo con el polvo mágico
de la #fuente abierta# y tener de repente todo en funcionamiento. El software es difí-
cil. Las cosas no son tan simples.

(de http://www.jwz.org/gruntle/nomo.html)

Una equivocación relacionada es escatimar en la presentación y el empaquetado, creyendo que esto se
puede hacer después, cuando el proyecto esté encaminado. La presentación y el empaquetado compren-
den una amplia serie de tareas, todas en torno a reducir la barrera de ingreso al proyecto. Hacer un pro-
yecto atractivo para un no iniciado significa documentarlo para el usuario y el programador, establecer
un sitio web para los recien llegados, automatizar cuanto sea posible la compilación e instalación del
software, etc. Desgraciadamente muchos programadores dan a este trabajo una importancia secundaria
comparado con el código. Hay un par de razones para esto. De entrada se puede percibir como trabajo
no productivo, porque aparentemente beneficia más a los que no están familiarizados con el proyecto.
De cualquier modo, los que desarrollan el código no necesitan realmente del empaquetado. Ya conocen
como instalar, administrar y usar el software, porque ellos lo escribieron. En segundo lugar, los conoci-
mientos para hacer bien la presentación y el empaquetado son a menudo completamente diferentes a los
que se requieren para escribir el código. La gente tiende a concentrarse en lo que más sabe, aún cuando
podría ser más útil al proyecto que se dediquen un poco a lo que no les resulta tan familiar. En el Capítu-
lo 2, Primeros Pasos se trata la presentación y el empaquetado en detalle, y explica por qué es importan-
te que sean una prioridad desde el comienzo del proyecto.

Después se introduce la falacia de que no se requiere una dirección del proyecto cuando es de fuente
abierta, o a la inversa, que las mismas prácticas de gestión usadas para un proyecto hecho en casa van a
funcionar bien en un proyecto de fuente abierta. El manejo de un proyecto de fuente abierta no siempre
resulta visible, pero cuando éste es exitoso tiene lugar detrás de las bambalinas de una u otra forma. Un
pequeño experimento mental será suficiente para mostrar por qué. Un proyecto de fuente abierta consis-
te en una colección de programadores al azar —los que ya de por sí son gente con categorías indepen-
dientes— que muy probablemente nunca se van a encontrar juntos, y que quizás tienen objetivos perso-
nales muy diferentes para trabajar en el proyecto. El experimento consiste en imaginar sencillamente
qué va a pasarle a dicho grupo sin dirección. Si no creemos en milagros, el proyecto va a colapsar y di-
luirse muy rápidamente. Las cosas no funcionarán simplemente por si solas, por más que los deseos sean
grandes. Pero la administración, aún cuando sea muy activa, es a menudo informal, sutil, y de bajo per-
fil. Lo único que mantiene unido al grupo de desarrollo es el convencimiento compartido de que juntos
pueden hacer más que individualmente. Entonces el objetivo de la dirección es mayormente asegurar
que continúen con ese convencimiento, estableciendo estándares de comunicación, cuidando que los
programadores útiles no queden marginados debido a idiosincrasias personales, y en general procurando
que el proyecto sea un lugar acogedor para los programadores. Las técnicas específicas para realizar esto
se discuten a lo largo de este libro.

Finalmente, hay una categoría general de los problemas que podría llamarse #fallas de orientación cultu-
ral.# Hace diez años, o quizás sean sólo cinco, hubiera sido prematuro hablar de una cultura global de
software libre, pero ahora ya no es así. Lentamente ha emergido una cultura visible, y aún cuando esta
no es monolítica —por lo menos es tan propensa al disentimiento interno y al corporativismo como cual-
quier cultura limitada geográficamente— tiene ciertamente un núcleo básico consistente. Los proyectos
de fuente abierta más exitosos muestran algo o el total de las características de ese núcleo. Se premian
ciertos tipos de conductas y se castigan otros. Se crea una atmósfera que incita a la participación espon-
tánea, a veces a expensas de una coordinación central. Se tienen conceptos de lo que es ser amable o ser
rudo que difieren substancialmente de lo que prevalece fuera. Lo más importante es que los participantes
que son asiduos tienen ya interiorizados esos conceptos y comparten un cierto consenso sobre la conduc-
ta que es aceptable. Los proyectos no exitosos a menudo se desvían apreciablemente de ese núcleo, a ve-

Introducción

2

http://www.jwz.org/gruntle/nomo.html

ces intencionalmente, y no tienen un consenso sobre lo que razonablemente constituye una conducta
predeterminada. Esto quiere decir que cuando surgen los problemas la situación se viene abajo rápida-
mente, porque los participantes carecen de un conjunto de reflejos culturales determinados que les per-
mita resolver sus diferencias.

Este libro es una guía práctica, no un estudio antropológico o un libro de historia. Sin embargo, un cono-
cimiento efectivo de los orígenes del software libre actual es una base esencial para cualquier consejo
práctico. Una persona que entienda esta cultura puede viajar sin límites en este mundo de la fuente abier-
ta, encontrándose con muchas variaciones en costumbres y dialectos, y a la vez estar en la condición de
participar cómoda y efectivamente en cualquier lado. Por el contrario, una persona que no entiende esta
cultura encontrará que el proceso de organizar y participar en un proyecto es algo difícil y lleno de sor-
presas. Puesto que el número de gente que desarrolla software libre sigue creciendo a grandes saltos, ha-
brá muchos en ésta última categoría— ésta es mayormente una cultura de inmigrantes recientes, y conti-
nuará así por mucho tiempo. Si crees que eres uno de estos, en el próximo título se presentarán algunos
antecedentes útiles para las discusiones que vendrán después, tanto en este libro como en Internet. (Por
otro lado, si ya has trabajado en proyectos de fuente abierta por algún tiempo, puede ser que conozcas
mucho sobre esta historia, y y sea mejor saltar a la siguiente sección.)

La Historia
Compartir el software tiene tanta historia como el software mismo. En los primeros tiempos de los orde-
nadores, los fabricantes se dieron cuenta que vendrían avances competitivos en la innovación del hard-
ware y no prestaron mucha atención al software como una ventaja para el desarrollo de sus negocios.
Muchos de los usuarios de las primeras máquinas eran científicos o técnicos que podían modificar y am-
pliar el software que incluía la máquina. A veces los usuarios distribuían sus aportes no solamente al fa-
bricante, sino también a otros usuarios que tenían máquinas similares. A menudo los fabricantes tolera-
ban esto, e incluso lo estimulaban: para ellos cualquier mejora en el software, fuera cual fuese su proce-
dencia, contribuía a que las máquinas resultasen más atractivas para otros usuarios potenciales.

Aunque esta primera época se parece de muchas maneras a la cultura actual del software libre, difiere
fundamentalmente en dos aspectos: primero que había poca estandarización del hardware— era un mo-
mento de mucha innovación en el diseño de los ordenadores, pero la diversidad en las arquitecturas ha-
cía que cualquier cosa resultara incompatible con la otra. Así que el software que se escribía para una
máquina generalmente no servía para otra. Los programadores se inclinaban hacia una arquitectura en
particular o familia de arquitecturas y en ellas se hacían expertos (mientras que hoy se adquiere expe-
riencia en un lenguaje de programación o una familia de lenguajes y se espera que esa experiencia se
pueda luego transferir a cualquier hardware en que se vaya a trabajar). Puesto que un experto se inclina-
ba a sólo un tipo de ordenador, la acumulación de sus conocimientos tenía el efecto de hacer más atracti-
vo ese ordenador tanto para él como para sus colegas. Por lo que los fabricantes tenían gran interés en
difundir tanto como pudieran la codificación y el conocimiento de alguna máquina específica.

En segundo lugar Internet no existía. Aunque tenían menos restricciones legales que hoy para compartir,
había más restricciones técnicas: Hablando comparativamente, los medios para transmitir datos de un la-
do a otro eran dificiles y engorrosos. Había algunas pequeñas redes locales, aptas para compartir infor-
mación entre empleados del mismo laboratorio de investigación o compañía. Pero quedaban por superar
una serie de trabas si se quería compartir con alguien, estuviere donde estuviere. Estas trabas se supera-
ban en muchos casos. A veces eran grupos varios que se contactaban independientemente, enviándose
discos o cintas por correo, y a veces eran los fabricantes mismos que servían como centrales de inter-
cambio de los aportes individuales. También ayudaba que muchos de los que desarrollaban los primeros
ordenadores trabajasen en las universidades, en donde era costumbre publicar los avances. Pero la reali-
dad de la transmisión de datos implicaba que siempre que se los quería compartir se topaba con un impe-
dimento que era proporcional a la distancia (física u organizacional) que el software tenía que viajar. Era
imposible compartir algo con todo el mundo sin resistencias, tal como se puede hacer hoy.

El Florecimiento del Software Propietario y del Software

Introducción

3

2Stallman usa la palabra "hacker" con el significado de "alguien que ama la programación y disfruta si hace algo inteligente" y no
con el sentido más reciente de "alguien que se conecta como un intruso en los ordenadores"

Libre
A medida que maduraba la industria ocurrían simultáneamente algunos cambios interrelacionados. La
gran diversidad de los diseños del hardware finalmente cedieron el paso a unos pocos ganadores
—ganadores por tener una tecnología superior, o una comercialización superior, o una combinación de
ambas cosas. Al mismo tiempo, no coincidente en su totalidad, el desarrollo de los así llamados lengua-
jes de programación de #alto nivel# significaba que se podía escribir un programa de una sóla vez en un
lenguaje, y luego traducirlo automáticamente (#compilarlo#) para que funcione en diferentes tipos de or-
denadores. Las consecuencias de esto no se quedaron perdidas en los fabricantes de hardware: un usua-
rio podía ahora emprender un mayor esfuerzo de ingeniería de software sin encerrarse en una arquitectu-
ra particular. Cuando esto se combinaba con la disminución gradual de las diferencias en la calidad de
funcionamiento entre los ordenadores, y mientras los diseños menos eficientes eran eliminados, un fabri-
cante que se centraba en el hardware como único beneficio podía divisar una disminución de sus ganan-
cias en el futuro. La potencia de computación pura se convertía en un bien fungible, mientras que el soft-
ware se convertía en el diferenciador. Aparecía como una buena estrategia vender software, o al menos,
tratarlo como parte integral de las ventas del hardware.

Esto significó que los fabricantes tuvieran que ser más estrictos defendiendo los derechos de copia de los
códigos. Si los usuarios hubieran continuado simplemente con su costumbre de compartir y modificar
los códigos de manera libre y gratis, hubieran instalado en forma independiente las mejoras que ahora
empezaban a ser vendidas como #valor agregado# por los proveedores. Peor aún, el código compartido
podría haber caído en las manos de los competidores. La ironía de esto es que ocurría al mismo tiempo
que Internet estaba ganando terreno. Justamente, cuando se hacía técnicamente posible compartir el soft-
ware y se caían los obstáculos, los cambios en el mundo de los negocios hacían del compartir algo eco-
nómicamente indeseable, por lo menos desde el punto de vista propio de una compañía. Los proveedores
imponían sus controles, ya sea negando el acceso al código a los usuarios que corrían el programa en sus
máquinas, o mediante acuerdos de no difundir el código, lo que hacía que el compartir fuera imposible.

Una resistencia conciente

Mientras se extinguía el mundo del intercambio de códigos se cristalizaba una contra reacción al menos
en la mente de un programador. Richard Stallman trabajaba en el laboratorio de inteligencia artificial en
el Instituto Tecnológico de Massachussets en la década de 1970 e inicios de 1980, la época y el lugar de
oro para la costumbre de compartir los códigos. El laboratorio de IA tenía una fuerte "ética de hackers"2

y no sólo se estimulaba al personal de los proyectos sino que era de esperar que todos los avances he-
chos en el sistema fueran compartidos. Como luego escribiría Stallman:

No le llamábamos #software libre# a nuestro software porque ese término no existía;
pero era precisamente eso. Toda vez que alguien de otra universidad quería llevar y
usar un programa, nosotros se lo ofrecíamos con gusto. Si se veía que alguien usaba
un programa distinto e interesante, se le podía pedir el código fuente, para poder
leerlo, cambiarlo o fusionar partes de él en un programa nuevo.

(de http://www.gnu.org/gnu/thegnuproject.html)

Esta comunidad edénica colapsó con Stallman poco después de 1980, cuando los cambios que venían
ocurriendo en el resto de la industria finalmente alcanzaron al laboratorio de IA. Una compañía que se
iniciaba incorporaba a muchos de los programadores del laboratorio para trabajar en un sistema operati-
vo similar al que habían desarrollado allí, pero ahora bajo una licencia exclusiva. Al mismo tiempo, el
laboratorio de IA adquiría nuevos equipos que llegaban con un sistema operativo de marca registrada.

Stallman vio la gran trama de lo que estaba sucediendo:

Los ordenadores modernos de la época, como el VAX o el 68020, venían con sus siste-

Introducción

4

http://www.gnu.org/gnu/thegnuproject.html

3Siglas que significan "GNU No es Unix" donde GNU significa... lo mismo.
4 Un sistema operativo libre para ordenadores compatibles con IBM, llamado 386BSD, había aparecido poco antes que Linux. Sin
embargo, era mucho mas difícil conseguir un 386BSD y hacerlo funcionar. Linux tuvo tanta resonancia no solo porque era libre,
sino porque realmente tenía una probabilidad alta de hacer arrancar al ordenador una vez que se instalaba.

mas operativos propios, pero ninguno era un software libre: se debía firmar un acuer-
do de no revelar los contenidos para poder recibir una copia ejecutable.

Lo cual significaba que el primer paso para usar un ordenador era prometer que no
había que ayudar al vecino. La comunidad de cooperación estaba prohibida. La regla
que establecían los dueños del software propietario era: "si compartes con tu vecino,
eres un pirata. Si quieres cambios, nosotros los haremos, si nos lo pides.#

Y por su personalidad peculiar decidió ofrecer resistencia a esta nueva ola. En lugar de continuar traba-
jando en el diezmado laboratorio de IA, o aceptar el trabajo de escribir código en alguna de las compa-
ñías nuevas, en las que su trabajo iba a quedar encerrado en una caja, renunció al laboratorio y comenzó
el proyecto GNU y la Fundación de Software Libre (FSF por sus siglas en Inglés). El objetivo del
GNU3era desarrollar un sistema operativo y un conjunto de aplicaciones completamente libres y abier-
tas, donde nunca se impediria a la gente hackear o compartir sus cambios. En esencia, estaba empeñado
en recrear lo que se había destruido del laboratorio de IA, pero a una escala global, y sin las vulnerabili-
dades que ponían a la cultura del laboratorio de IA en un estado de posible desintegración.

Además de trabajar en el nuevo sistema operativo, Stallman inventó una licencia de copyright cuyos tér-
minos garantizaban que los códigos permanecerían gratis en perpetuidad. La Licencia Pública General
GNU es una ingeniosa pieza de judo legal: dice que los códigos pueden ser copiados y modificados sin
ninguna restricción y que ambas copias y trabajos derivados (a saber, las versiones modificadas) deben
ser distribuidas bajo la misma licencia que el original, sin poner restricciones adicionales. En efecto, se
usan las leyes del copyright para conseguir un efecto contrario al que apunta el copyright tradicional: en
lugar de limitar la distribución del software, prohíbe que nadie, ni siquiera el autor, lo limite. Para Stall-
man, esto era mejor que si hubiera puesto su código en el dominio público. Si hubiera estado en el domi-
nio público, cualquier copia podría haber sido incorporada a los programas propietarios (como ya se sa-
bía que había sucedido con códigos que tenían licencias permisivas). Aunque una incorporación como
éstas no hubiera disminuido la disponibilidad de los códigos originales, hubiera significado que los es-
fuerzos de Stallman iban a beneficiar al enemigo— al software propietario. La Licencia Pública General
puede entenderse como una forma de proteccionismo del software libre, porque impide que el software
no-libre se aproveche de los códigos que están bajo esta licencia. La Licencia Pública General y su rela-
ción con otras licencias del software libre se discuten en detalle en el Capítulo 9, Licencias, Copyrights y
Patentes.

Con la ayuda de nuevos programadores, alguno de los cuales compartían la ideología de Stallman y
otros que simplemente querían ver abundante código disponible en forma gratuita, el Proyecto GNU co-
menzó entregando versiones libres para reemplazar muchos de los componentes críticos de sistemas
operativos. Gracias a la estandarización expandida del hardware y software para ordenadores, se hizo
posible usar los reemplazos GNU en sistemas no-libres, y mucha gente lo hizo. El editor de texto de
GNU (Emacs) y el compilador C (GCC) tuvieron especial éxito, ganando muchos seguidores leales, no
por términos ideológicos, sino simplemente por los méritos técnicos. Alrededor del año 1990, GNU ha-
bía producido la mayor parte de un sistema operativo libre, con excepción del núcleo —la parte por la
que realmente la máquina arranca y se hace responsable de manejar la memoria, el disco y otros recursos
del sistema.

Desafortunadamente el proyecto GNU había elegido un diseño de núcleo que resultó más difícil de im-
plementar de lo esperado. La consiguiente demora impedía que la Fundación de Software Libre ofrecie-
ra la primera versión de un sistema operativo enteramente libre. La pieza final fue instalada en su lugar
por Linus Torvalds, un estudiante de computación finlandés quien con la ayuda de voluntarios de todo el
mundo había completado un núcleo libre usando un diseño más conservador. Le llamó Linux, y cuando
fue combinado con los programas GNU existentes tuvo como resultado un sistema operativo completa-
mente libre. Por primera vez se podía arrancar un ordenador y hacerlo trabajar sin usar ningún software
propietario.4

Introducción

5

5Preferían que se llamara "X Windows System", pero en la práctica se le llama comunmente "X Windows", porque tres palabras es
demasiado complicado.

Muchas partes del software de este nuevo sistema operativo no fueron producidas por el proyecto GNU.
De hecho, el GNU no fue el único grupo que trabajaba para producir un sistema operativo libre (por
ejemplo, el código que luego fue NetBSD y FreeBSD estaba ya en desarrollo en ese momento). La im-
portancia de la Fundación de Software libre no solamente residía en los códigos que se escribían, sino en
el tratamiento político del tema. Al hablar del software libre como una causa en lugar de una convenien-
cia, era casi imposible que los programadores no tomasen una postura política de ello. Aún los que no
estaban de acuerdo con la Fundación de Software Libre tuvieron que enfrentar la causa, aunque más no
sea para proponer una posición diferente. La efectividad que tuvo la Fundación de Software Libre en el
proceso de difusión residió en la vinculación del código al mensaje, por medio de la Licencia Pública
General y de otros textos. Al mismo tiempo que se difundían los códigos, se distribuía también el men-
saje.

Resistencia accidental

Habían muchas otras cosas sucediendo en la escena naciente del software libre, sin embargo, pocas eran
tan explícitas ideológicamente como el Proyecto GNU de Stallman. Una de los sucesos mas importantes
fue la Berkeley Software Distribution (BSD), una reimplementación gradual del sistema operativo Unix,
que hasta finales de la década de los 70' había sido un proyecto de investigación sin restricciones de
AT&T— hecho por programadores de la Universidad de Berkeley en California. Este grupo BSD no hi-
zo una declaración política sobre la necesidad de que los programadores se unan y compartan unos con
otros, pero practicaron la idea con talento y entusiasmo, coordinando un esfuerzo de desarrollo distri-
buido masivamente en el cual fueron reescritos los recursos de línea de comando y las bibliotecas del
Unix y eventualmente también el núcleo del sistema operativo, en su mayoría por voluntarios que los to-
maban de borradores. El proyecto BSD resultó un primer ejemplo de desarrollo de un software libre no-
ideológico, y también sirvió como campo de entrenamiento para muchos desarrolladores que continua-
rían activos en el mundo del software libre.

Otro proyecto de desarrollo cooperativo fue el X Window System, un entorno gráfico de computación li-
bre y transparente en la red, desarrollado en el MIT a mediados de la década de 1980 en coparticipación
con empresas que tenían el interés común de estar en condiciones de ofrecer a sus clientes un sistema
operativo con ventanas. Lejos de oponerse al software propietario, la licencia X permitía deliberadamen-
te que se hicieran extensiones propietarias encima del nucleo libre — cada miembro del consorcio que-
ría tener la oportunidad de mejorar la distribucion X predeterminada y consiguientemente ganar una
ventaja competitiva con respecto a los otros miembros. El X Windows5 era un software libre, pero fun-
damentalmente como una manera de nivelar el campo de juego entre intereses de las empresas competi-
doras, y no por el deseo de poner fin a la dominación del software propietario. Todavía hay otro ejem-
plo, el TeX de Donald Knuth, un sistema de tipografía, que se alimentaba del proyecto GNU. Ofreció
una versión bajo una licencia que permitía que cualquiera modifique y distribuya el código, pero que no
se llamara "TeX" a no ser que superara una serie de tests de compatibilidad muy estrictos (este es un
ejemplo de una clase de licencias libres "protectoras de marcas registradas" de las que se hablará más en
el Capítulo 9, Licencias, Copyrights y Patentes) Knuth no estaba tomando partido para un lado ni para el
otro en la cuestión del software libre contra el propietario, solo necesitaba un sistema mejor de impre-
sión para cumplir con su objetivo real —un libro sobre programación de ordenadores— y no encontró
escollos para presentar al mundo su sistema una vez que estuvo hecho.

Aún sin tener un listado completo de proyectos y licencias, se puede afirmar con seguridad que para el
fin de la década de los 80' había una buena cantidad de software libre y una amplia variedad de licen-
cias. La diversidad de licencias reflejaba una diversidad de motivaciones correspondientes. Incluso algu-
nos de los programadores que eligieron la Licencia Pública General de GNU estaban mucho menos mo-
tivados ideológicamente que el proyecto GNU mismo. Aunque disfrutaban trabajando en el software li-
bre, muchos desarrolladores no consideraron que el software propietario era una lacra social. Había
quienes sentían un impulso moral de liberar al mundo del #acaparamiento de software# (un término que
usaba Stallman para el software no libre), pero otros estaban más motivados por un entusiasmo técnico,
o por el placer de trabajar con colaboradores de pensamiento afín, o simplemente por el deseo humano
de la gloria. Pero las motivaciones disparatadas no intervinieron en forma destructiva en todo este con-

Introducción

6

6Se podría cobrar algo por repartir las copias del softwre libre, pero puesto que no se puede parar a los que lo reciben si éstos quie-
ren ofrecerlo gratis después, el precio vuelve a cero inmediatamente.
7 El código fuente del Navegador de Netscape apareció eventualmente bajo una licencia de fuente abierta, en 1998, vino a ser la
base del navegador Mozilla. Ver http://www.mozilla.org/.

fín. Esto se explica en parte porque, en oposición a los que acontece en otras formas creativas como la
prosa o las artes visuales, el software debe superar pruebas semi-objetivas para ser considerado un éxito:
debe funcionar y estar razonablemente libre de errores. Esto otorga a todos los participantes del proyecto
una especie de pie de igualdad común, una razón y un encuadre para trabajar juntos sin preocuparse mu-
cho de otros títulos que no sean los conocimientos técnicos.

Además, los desarrolladores tenían otra razón para permanecer juntos: acontecía que el mundo del soft-
ware libre estaba produciendo códigos de muy alta calidad. En algunos casos se podía demostrar que
eran técnicamente superiores a las alternativas del software no libre que se les acercaban; en otros casos
eran al menos comparables y por supuesto, costaban menos. Mientras que solo unos pocos pudieron es-
tar motivados para usar software libre por razones estrictamente filosóficas, la gran mayoría se sentía fe-
liz de usarlos porque cumplían mejor con las tareas. Y entre los usuarios, algún porcentaje estaba siem-
pre listo para donar su tiempo y habilidad para ayudar a mantener y mejorar el software.

Esta tendencia de producir buenos códigos no era ciertamente universal, pero se repetía por todas partes
con frecuencia en aumento en los proyectos de software libre. Las empresas que dependían fuertemente
del software lo empezaron a notar gradualmente. Muchos de ellos descubrieron que ya estaban usando
software libre en las operaciones de todos los días, sólo que no lo sabían (los gerentes de alto rango no
siempre saben todo lo que ocurre en las dependencias de la tecnología informática). Las corporaciones
comenzaron a tomar cartas activas en los proyectos del software libre, contribuyendo con tiempo y equi-
pos, y a veces subvencionando directamente al desarrollo de programas libres. Estas inversiones podían,
en el mejor de los casos, devolverles muchas horas de tiempo extra. Las subvenciones solo pagaban a
una cantidad pequeña de programadores expertos para que dedicaran su trabajo de tiempo completo, pe-
ro cosechaban los beneficios de las contribuciones de todos, incluso de voluntarios no pagos, y progra-
madores pagados por otras corporaciones.

#Libre# vs #Abierto#
Cuando las corporaciones prestaron mayor atención a los programadores de software libre se enfrenta-
ron con nuevas formas de presentación. Una de ellas fue la palabra #libre#. Al escuchar por primera vez
el término #software libre# muchos pensaron erróneamente que solamente significaba #software de cos-
to cero#. Es verdad que todo software libre tiene un costo cero6, pero no todo el software gratis es libre.
Por ejemplo, durante la guerra de los navegadores de la década de los '90 Netscape y Microsoft repartían
gratis sus navegadores en la disputa por ganar la mayor participación en el mercado. Ninguno de estos
navegadores era libre en el sentido que tiene el "software libre". No se dispone del código fuente, y si se
lo tuviera, no se tiene el derecho de modificarlo o redistribuirlo.7 Lo único permitido era bajar los pro-
gramas ejecutables y hacerlos funcionar. Los navegadores no eran más libres que los softwares empa-
quetados y comprimidos que se compran en un negocio; sólo que el precio era mas bajo.

Esta confusión en la palabra #libre# se debe a una desafortunada ambigüedad de lenguaje, en este caso
del inglés. En otras lenguas romances aparece la diferencia entre precio bajo y libertad porque existen
las palabras gratis y libre que se distinguen con facilidad. Pero siendo el inglés el lenguaje puente dentro
de Internet, pasó esto a significar que un problema con el inglés era también un problema para los de-
más. Este malentendido suscitado por la palabra #libre# era tan penetrante para los angloparlantes que
los programadores de software desarrollaron una formula estándar que repetían: "Es libre (free) como la
libertad, no como la cerveza gratis (free)" Aún ahora, tener que explicar esto una y otra vez resulta fati-
gante. Muchos programadores sentían, no sin razón, que la palabra ambigua (en inglés) #libre# (free) es-
taba obstaculizando la comprensión del público en relación a este software.

Pero este problema se profundizó más aún. La palabra #libre# llevaba consigo una inevitable connota-
ción moral: si la libertad era un bien en si mismo, no era importante si el software era mejor o más con-
veniente para ciertos asuntos o ciertas circunstancias. Estos últimos efectos aparecían como secundarios,
por otras motivaciones que no eran en el fondo ni técnicas ni comerciales, sino morales. Más todavía, la

Introducción

7

http://www.mozilla.org/

8El sitio web de la OSI es http://www.opensource.org/.

postura de #libre como la libertad# llevaba a una flagrante incoherencia de las corporaciones que sub-
vencionaban algunos programas libres para algunas áreas de sus negocios, pero continuaban comerciali-
zando software propietario en otras.

Estos dilemas llovían sobre de una comunidad que ya estaba aplastada por una crisis de identidad. Los
programadores que escriben actualmente el software libre no se sienten necesariamente identificados
con el objetivo central #si lo hay- del movimiento del software libre. Sería engañoso decir que las opi-
niones van de un extremo al otro, porque esto implicaría la falsedad de imaginar que nos movemos en
una línea de pensamiento, cuando en realidad es una distribución multidimensional. Sin embargo, si es-
tamos dispuestos a obviar las sutilezas, por el momento pueden diferenciarse dos amplias categorías. Un
grupo se alinea bajo el punto de vista de Stallman, para quien la libertad de participar y modificar es lo
mas importante, y por lo tanto si no se habla de libertad se está esquivando el núcleo principal de la
cuestión. Otros piensan que el software es el argumento más importante a su favor, y se sienten incómo-
dos con la proclamación del software propietario como algo inherentemente malo. Algunos de los pro-
gramadores de software, auque no todos, creen que el autor (o el empleador, en el caso de trabajo paga-
do) debería tener el derecho de controlar las cláusulas de la distribución y que no se necesita agregar un
juicio moral en la selección de algunas cláusulas particulares.

Por mucho tiempo no se necesitó examinar o articular estas diferencias, pero el éxito floreciente del soft-
ware libre hizo que esta cuestión fuera inevitable. En 1998 un grupo de programadores creó el término
fuente abierta como una alternativa para "libre" y fueron ellos quienes crearon la Iniciativa por el Códi-
go Abierto(OSI por sus siglas en Inglés). 8 La Iniciativa por el Código Abierto creía que el término "soft-
ware libre" llevaba a una confusión potencial, y que la palabra "libre" era justamente un síntoma del pro-
blema general: que el movimiento necesitaba un programa de mercado para lanzarlo en el mundo de las
grandes empresas, y que hablar de moral y de los beneficios sociales del compartir no iba a tener vuelo
en las salas de las empresas. Tomando sus propias palabras:

La Iniciativa por el Código Abierto es un programa de mercado para el software li-
bre. Significa fundar el #software libre# sobre bases sólidas y prácticas más que en
una discusión acalorada. La sustancia ganadora no ha cambiado, sí en cambio la ac-
titud de perdedores y su simbolismo. ...

La aclaración que debe hacerse a muchos técnicos no es acerca del concepto de fuen-
te abierta, sino sobre el nombre. ¿Por qué no llamarle, como se ha hecho tradicional-
mente, software libre?

Una razón definitiva es que el término #software libre# se confunde fácilmente de ma-
nera que lleva a terrenos conflictivos. ...

Pero la verdadera razón del cambio de cartel es una razón de comercialización. Esta-
mos ahora tratando de lanzar nuestro concepto al mundo corporativo. Tenemos un
producto ganador, pero nuestra posición, en el pasado, ha sido terrible. El término
"software libre" se ha malentendido entre las personas de negocios, quienes confun-
den el deseo de compartir con una conducta anticomercial, o peor todavía, con un ro-
bo.

Los CEOs y CTOs de grandes corporaciones ya establecidas nunca compraran "soft-
ware libre." Pero si manteniendo la misma tradición, la misma gente y las mismas li-
cencias de software libre y les cambimos el nombre poniéndole #código abierto#, en-
tonces sí lo compraran.

Algunos hackers encuentran esto difícil de creer, porque son técnicos que piensan en
concreto, con términos substanciales, y no entienden la importancia de la imagen de
algo cuando uno lo está vendiendo.

Para el mercado la apariencia es la realidad. La apariencia de que estamos dispues-

Introducción

8

http://www.opensource.org/

tos a bajarnos de nuestras barricadas y a trabajar con el mundo corporativo importa
tanto como la realidad de nuestras conductas o convicciones, y de nuestro software.

(de http://www.opensource.org/advocacy/faq.php y
http://www.opensource.org/advocacy/case_for_hackers.php#marketing)

En este libro aparecen las puntas de muchos icebergs de la controversia. Se refiere a #nuestras convic-
ciones#, pero discretamente evita decir con exactitud de que convicciones se trata. Para algunos, puede
ser la convicción de que el código desarrollado en concordancia con un proceso abierto será un código
mejor; para otros pudiera ser la convicción de que toda información debiera ser compartida. Aparece el
uso del término #robo# para referirse (posiblemente) al copiado ilegal —una costumbre que muchos ob-
jetan alegando que pese a todo no es un robo si el propietario original todavía tiene el artículo. Hay una
sospecha inquietante que el movimiento de software libre podría ser acusado por equivocación de anti-
comercialismo, aunque queda por examinar detenidamente la cuestión de si esta acusación tendría algu-
na base en los hechos.

Esto no quiere decir que el sitio web de la OSI sea incoherente o engañoso. No lo es. En realidad es un
ejemplo de lo que la OSI reclama como perdido por el movimiento de software libre. Una buena comer-
cialización, donde #buena# significa viable en el mundo de los negocios. La Iniciativa de Fuente Abierta
brindó a mucha gente exactamente lo que buscaban —un vocabulario para referirse al software libre co-
mo una metodología de desarrollo y una estrategia para los negocios, en lugar de una cruzada moral.

La aparición de la Iniciativa por el Código Libre cambió el panorama del software libre. Formalizó una
dicotomía que por mucho tiempo no tuvo un nombre, y al hacerlo forzaba al movimiento a reconocer
que tenía una política interna al mismo tiempo que una externa. Hoy, el efecto es que ambos lados han
tenido que encontrar un terreno común, puesto que la mayoría de los proyectos incluye a programadores
de ambos campos, como también otros participantes que no encajan claramente en una categoría. Esto
no impide que se hable de motivaciones morales —por ejemplo, a veces aparecen convocatorias con re-
caídas en la tradicional #ética de hackers#. Pero es raro que un desarrollador de software libre / fuente
abierta entre a cuestionar abiertamente las motivaciones básicas de otros. La contribución encubre al
contribuyente. Si alguien escribe un buen código, no se le pregunta si lo hace por razones morales o por-
que su empleador le paga, o porque está engrosando su currículum, o lo que sea. Se evalúa la contribu-
ción en términos técnicos, y se responde con fundamentos técnicos. Inclusive organizaciones políticas
como el proyecto Debian, cuyo objetivo es ofrecer un entorno computacional 100% libre (#libre como la
libertad#), no tienen peros para integrarse con el código no libre y cooperar con programadores que no
comparten exactamente los mismos objetivos.

La situación de Hoy
Cuando se maneja un proyecto libre, no se necesita hablar todos los días sobre esos enfoques filosóficos.
Los programadores no pretenden que todos los integrantes del proyecto estén de acuerdo con sus puntos
de vista en todos los aspectos (aquellos que insisten en hacerlo se encuentran rápidamente incapacitados
para trabajar en cualquier proyecto). Pero se necesita estar advertido que la cuestión de #libre# contra
#fuente abierta# existe, en parte para evitar decir cosas que pueden enemistarlo a uno con algún otro par-
ticipante, y en parte porque un entendimiento con los demás y sus motivaciones es la mejor manera, y
—en cierto sentido— la única manera de llevar adelante el proyecto.

El software libre es una cultura por elección. Para trabajar con éxito en esta cultura hay que entender por
qué hay personas que la eligen en primer lugar. Las técnicas coercitivas no tienen efecto. Si hay alguien
que no se siente cómodo en un proyecto, recurre a otro. El software libre se distingue incluso entre las
comunidades de voluntarios por sus inversiones limitadas. Muchos de los participantes nunca se encuen-
tran cara a cara, y simplemente hacen donación de algún tiempo cada vez que se sienten motivados. Los
conductos normales que conectan a los seres humanos entre si y se concretan en grupos duraderos se re-
ducen a un pequeño canal: la palabra escrita, trasmitida por cables eléctricos. Por esto puede llevar mu-
cho tiempo para formar un grupo dedicado y unido. Y a la inversa, es muy fácil que un proyecto pierda
un voluntario potencial en los cinco primeros minutos de haberse encontrado. Si el proyecto no impacta

Introducción

9

http://www.opensource.org/advocacy/faq.php
http://www.opensource.org/advocacy/case_for_hackers.php#marketing

con una buena impresión, raras veces los recién llegados le darán una segunda oportunidad.

La transitoriedad real o potencial de las relaciones es quizás la tarea más desalentadora que se debe en-
frentar en un nuevo proyecto. ¿Qué va a persuadir a toda esa gente a permanecer juntos el tiempo sufi-
ciente necesario para producir algo útil? La respuesta es tan compleja como para ocupar el resto de este
libro, pero si se tiene que expresar en una sola frase, sería la siguiente:

Las personas deben sentir que su conexión con un proyecto, y su influencia sobre él,
es directamente proporcional a sus contribuciones.

Ningún desarrollador, real o potencial, debe sentir que no es tenido en cuenta o es discriminado por ra-
zones que no sean técnicas. Con claridad, los proyectos con apoyo de empresas y/o desarrolladores pa-
gos tienen que ser especialmente cuidadosos en este aspecto, como se expresa en detalle en el Capítu-
lo 5, Dinero. Por supuesto, esto no quiere decir que si no hay apoyo de empresas no hay nada de que
preocuparse. El dinero es sólo uno de los tantos factores que pueden afectar el éxito de un proyecto.
Otras cuestiones son el lenguaje que se va a elegir, la licencia, cuál será el proceso de desarrollo, qué ti-
po de infraestructura hay que instalar, cómo promocionar efectivamente el arranque del proyecto, y mu-
chas otras cosas más. El contenido del próximo capítulo será cómo dar el primer paso con el pié correcto
al comenzar un proyecto.

Introducción

10

Capítulo 2. Primeros Pasos
El clásico modelo de cómo los proyectos de software libre deben iniciar fue propuesto por Eric Ray-
mond, en un artículo ahora famoso sobre procesos de código abierto titulado La catedral y el bazar. Él
escribió:

Todos los trabajos buenos en software comienzan tratando de paliar un problema per-
sonal de quien los programa

(de http://www.catb.org/~esr/writings/cathedral-bazaar/)

Es de notar que Raymond no estaba diciendo que los proyectos de código abierto no sólo suceden cuan-
do cierto individuo tiene una necesidad. En cambio, nos está diciendo que los buenos programas son re-
sultado de que un programador tenga un interés personal en ver el problema resulto. La relevancia de es-
to para el software libre ha sido que ésta necesidad personal sea frecuentemente a motivación para ini-
ciar un proyecto de software libre.

Esto sigue siendo la manera cómo muchos de los proyectos libres se inician, pero menos ahora que en
1997, cuando Raymond escribió esas palabras. Hoy, tenemos el fenómeno de organizaciones
—incluidas corporaciones con fines de lucro—iniciando desde cero, proyectos Open Source centraliza-
dos y a gran escala. El desarrollador solitario, tecleando algo de código para resolver un problema local
y luego dándose cuenta de que los resultados tienen un mayor aplicación, sigue siendo la fuente de mu-
chos software libre, pero esa no es la única historia.

De todas formas, el objetivo de Raymond sigue siendo profundo. La condición esencial es que los pro-
ductores de software libre tengan un interés directo en su éxito, porque ellos mismos lo utilizan. Si el
software no hace lo que se supone debería hacer, la persona u organización que lo han producido senti-
rán insatisfacción en su labor diaria. Por ejemplo, el proyecto OpenAdapter
(http://www.openadapter.org/), el cual fue iniciado por el banco de inversiones Dresdner Klienwort
Wasserstein es un marco de trabajo para la integración de sistemas de información financieros dispares,
poco de esto puede ser considerado como un problema personal de un programador. En particular éste
problema surge directamente de la experiencia de la institución y sus socios, por lo cual si el proyecto
falla en aliviarlos, ellos lo sabrán. Este arreglo produce buenos programas porque el bucle de críticas flu-
ye en la dirección correcta. El programa no está siendo escrito para ser vendido a alguien más, es solo
para que sean ellos quienes resuelvan sus problemas. Está siendo desarrollado para resolver su propio
problema, luego compartiéndolo con todo el mundo como si el problema fuera una enfermedad y el soft-
ware la medicina, la cual debe ser distribuida para erradicar la epidemia.

Este capítulo trata de cómo introducir un nuevo proyecto de software libre al mundo, pero muchas de
sus recomendaciones sonarán familiares a una organización sanitaria distribuyendo medicinas. Los obje-
tivos son muy similares: quieres dejar claro lo que hace la medicina, hacerla llegar a las manos correctas
y asegurarte de que aquellos quienes la reciben saben como usarla. Pero con el software, también deseas
incitar a algunos de los receptores a unirse al esfuerzo de investigación para mejorar la medicina.

La distribución del software libre es una tarea a dos bandas. El programa necesita usuarios y desarrolla-
dores. Estas dos necesidades no tienen por que estar en conflicto, pero si que añaden cierta complejidad
a la presentación inicial de un proyecto. Alguna información es útil para las dos audiencias, alguna sólo
lo es para alguna u otra. Ambos tipos de información deben suscribirse al principio de las presentaciones
en escala, esto es, el grado de detalle con el que se presenta cada etapa debe corresponder directamente a
la cantidad de tiempo y esfuerzo puesto por el lector. Un mayor esfuerzo debe tener siempre una mayor
recompensa. Cuando los dos no se relacionan conjuntamente, las personas pueden perder rápidamente su
fe y perder el impulso.

El corolario a esto es:las apariencias importan. Los programadores en particular, no desean creer esto.
Su amor por la sustancia sobre la forma es casi un punto de orgullo profesional. No es un accidente que
tantos desarrolladores exhiban una antipatía hacia los trabajos en marketing y en relaciones públicas o

11

http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.openadapter.org/

que diseñadores gráficos profesionales usualmente se sientan horrorizados de lo que los desarrolladores
ingenian.

Esto es penoso, ya que hay situaciones en las que la forma es la sustancia y la presentación de proyectos
es una de estas. Por ejemplo, lo primero que un visitante descubre sobre un proyecto es como se ve su si-
tio web. Esta información es absorbida antes de que el contenido en si sea comprendido—antes de que
cualquier línea haya sido leída o enlaces pulsados. Aunque parezca injusto, las personas no pueden evi-
tar el formarse una opinión inmediatamente después de la primera impresión. La apariencia del sitio se-
ñala si se ha tomado cuidado en la organización de la presentación del proyecto. Los humanos tenemos
una antena extremadamente sensible para detectar el empeño en el cuidado. Muchos de nosotros pode-
mos decir con sólo un vistazo si un sitio web ha sido ensamblado rápidamente o ha sido diseñado con
cuidado. Ésta es la primera pieza de información que el proyecto muestra y la impresión que cree será
asociada al resto del proyecto por asociación.

Aunque mucho de éste capítulo habla acerca del contenido con el que se debería iniciar el proyecto, re-
cuerde que la presentación también importa. Ya que el sitio web debe funcionar para dos tipos diferentes
de visitantes—usuarios y desarrolladores— hay que ser directo y conciso. A pesar de que este no es el
lugar para un tratado general acerca de diseño web, un principio es suficientemente importante para me-
recer nuestra atención, particularmente cuando sirve a múltiples audiencias: la gente debe tener una idea
de a donde lleva un enlace antes de pulsar en el. Por ejemplo, debe ser obvio que con sólo ver el enlace a
la documentación para los usuarios, que les lleve a la documentación para los usuarios, sin mencionar la
documentación para los desarrolladores. Dirigir un proyecto se basa parcialmente en suministrar infor-
mación, pero también en suministrar comodidad. La mera presencia de ofrecer ciertos estándares, en lu-
gares obvios, tranquiliza a usuarios y desarrolladores quienes están decidiendo si desean involucrarse.
Dice que este proyecto funciona, ha anticipado las preguntas que la gente puede hacer y ha hecho un es-
fuerzo en responderlas sin la necesidad del más mínimo esfuerzo por parte del visitante. Al dar ésta aura
de preparación, el proyecto envía un mensaje: "Su tiempo no será malgastado si se involucra", lo que es
exactamente lo que la gente desea escuchar.

Primero investiga
Antes de iniciar un proyecto Open Source hay un importante advertencia:

Siempre investiga si existe un proyecto que hace lo que deseas. Las posibilidades son muy buenas de
que cualquier problema que desees resolver ahora alguien más lo haya deseado resolver con anteriori-
dad. Si han sido capaces de resolverlo y han liberado bajo una licencia libre entonces hoy, no será nece-
sario inventar la rueda. Existen excepciones claro: si deseas iniciar un proyecto como experiencia educa-
tiva, el código pre-existente no es de ayuda o quizás el proyecto que deseas iniciar es muy especializado
y sabes que no existe la posibilidad de que alguien más lo haya hecho ya. Pero generalmente, no hay ne-
cesidad en no investigar ya que las ganancias pueden ser grandiosas. Si los buscadores más utilizados no
muestran nada, intenta tus búsquedas en: http://freshmeat.net/(un sitio sobre noticias de proyectos open
source y del cual hablaremos un poco más adelante), en http://www.sourceforge.net/ y en el directorio
de proyectos de la Free Software Foundation http://directory.fsf.org/.

Incluso si no se encuentra exactamente lo que estamos buscando, podría encontrar algo parecido, a lo
que tiene más sentido unirse a ese proyecto y añadir funcionalidad en lugar de empezar desde cero por si
mismo.

Empezando con lo que se tiene
Has investigado, sin encontrar nada que realmente se adapte a tus necesidades, y decides iniciar un nue-
vo proyecto.

¿Ahora qué?

Lo más difícil acerca de lanzar un proyecto de software libre es transformar una visión privada a una pú-
blica. Tú y tu organización quizás sepan exactamente lo que deseas pero expresar ese objetivo de una

Primeros Pasos

12

http://freshmeat.net/
http://www.sourceforge.net/
http://directory.fsf.org/

manera comprensiva al resto del mundo tiene su trabajo. De hecho, es esencial, que te tomes tu tiempo
para hacerlo. Tú y los otros fundadores deben decidir sobre qué va realmente el proyecto—eso es, deci-
dir sus limitaciones, lo que no podrá hacer como lo que sí—y escribir una declaración de objetivos. Ésta
parte no suele ser usualmente difícil, aunque puede revelar afirmaciones y desacuerdos sobre la naturale-
za del proyecto, lo cual esta bien: mejor resolver esto ahora que luego. El próximo paso es empaquetar el
proyecto para el consumo público, y esto es, básicamente, trabajo puro y duro.

Lo que lo hace laborioso es porque consiste principalmente en organizar y documentar lo que ya todo el
mundo sabe—todos aquellos involucrados en el proyecto hasta ahora. Así que, para las personas traba-
jando ya, no existen beneficios inmediatos. Estos no necesitan de un fichero README que resuma el pro-
yecto ni de un documento de diseño o manual de usuario. No necesitan de un árbol de código cuidadosa-
mente ordenado conforme a los estándares informales, ampliamente utilizados para las distribuciones de
fuentes. De cualquier forma como esté ordenado el código fuente estará bien, porque ya estarán acos-
tumbrados de todas formas, y si el código funciona, saben cómo usarlo. Ni siquiera importa si las afir-
maciones fundamentales sobre la arquitectura del proyecto siguen sin documentar, ya están familiariza-
dos con lo que deben hacer.

En cambio, los recién llegados, necesitan de todas estas cosas. Afortunadamente, no las necesitan todas
a la vez. No es necesario proporcionar todos los recursos posibles antes de tomar un proyecto público.
Quizás en un mundo perfecto, todo nuevo proyecto open source empezaría su vida con un riguroso do-
cumento de diseño, un manual de usuario completo (marcando especialmente las características planea-
das pero que aun no han sido implementadas), código empaquetado hermosamente y portable, capaz de
ejecutar en cualquier plataforma y así sucesivamente. En realidad, cuidar de todos estos detalles consu-
miría demasiado tiempo, y de todas maneras, es trabajo con el que podrían ayudar voluntarios una vez
que el proyecto esté en marcha.

Por otro lado, lo que sí es necesario, es que se realice una inversión apropiada en la presentación, de for-
ma que los recién llegados puedan superar el obstáculo inicial de no estar familiarizados con el proyecto.
Pensemos en ello como en el primer paso en un proceso de inicio (bootstrapping), llevar al proyecto a un
tipo de activación de energía mínima. He escuchado llamar a este umbral como hacktivation energy: la
cantidad de energía que debe aportar un recién llegado antes de recibir algo a cambio. Mientras menor
sea ésta energía, mejor. La primera tarea es hacer descender ésta hacktivation energy a niveles que ani-
men a la gente a involucrarse.

Cada una de las siguientes secciones, describen un aspecto importante de iniciar un nuevo proyecto. Es-
tán presentadas casi en el mismo orden en el que un nuevo visitante las encontraría, aunque claro, el or-
den en el cual sean implementadas puede ser diferente. Incluso pueden ser tratadas como una lista de ta-
reas. Cuando se inicie un proyecto, asegúrese de revisar la lista y de que cada uno de los elementos sean
cubiertos, o al menos asegurar cierta comodidad con las posibles consecuencias de dejar alguna aparte.

Escoger un buen nombre
Coloque se en la posición de alguien que acaba de escuchar acerca de su proyecto, quizás por alguien
quien fortuitamente tropezó con éste mientras buscaba por alguna aplicación para resolver un problema.
Lo primero que encontraran será el nombre del proyecto.

Un nombre genial no hará que automáticamente el proyecto tenga éxito, y un nombre malo no significa
que éste acabado—bueno, en realidad un mal nombre probablemente podría hacer eso, pero empecemos
asumiendo que nadie está activamente intentando hacer que su proyecto falle. De todos modos, un mal
nombre puede desacelerar la adopción del programa porque la gente no se lo tome seriamente o porque
simplemente les cueste recordarlos.

Un buen nombre:

• Da cierta idea de lo que el proyecto hace, o al menos está relacionado de una manera obvia, como si
alguien conoce el nombre y sabe lo que hace, después lo recordaran rápidamente.

Primeros Pasos

13

• Es fácil de recordar. Veamos, no hay nada de falso en el hecho de que el ingles se a convertido en el
lenguaje por defecto de Internet: "fácil de recordar" significa "fácil para alguien que sepa leer en in-
gles de recordar." Nombres que son calambures dependientes en la pronunciación de ingleses nativos,
por ejemplo, serán opacos para muchos lectores no nativos en ingles. Si el calambur es particularmen-
te llamativo y memorable, quizás sí valga la pena. Sólo recuerde que muchas personas al ver el nom-
bre no lo escucharán en sus mentes de la misma manera que un ingles nativo lo haría.

• No tiene el mismo nombre que otro proyecto y no infringe ninguna marca comercial. Esto es por bue-
nos modales, y tener un buen sentido legal. No desea crear confusiones de identidad. Ya es bastante
difícil mantenerse al día con todo lo que hay disponible en la red, sin tener diferentes cosas con el
mismo nombre.

Los enlaces mencionados anteriormente en “Primero investiga” son muy útiles en descubrir si algún
otro proyecto ya tiene el mismo nombre en el que estábamos pensando. Podemos encontrar buscado-
res gratuitos de marcas registradas en http://www.nameprotect.org/ y http://www.uspto.gov/.

• Está disponible como un nombre de dominio .com, .net, y .org. Hay que escoger alguno, proba-
blemente .org, para promocionarse como el sitio oficial para el proyecto. Los otros dos deben reen-
viar allí simplemente para evitar que terceras partes creen una confusión de identidad sobre el nombre
del proyecto. Incluso si piensa en hospedar el proyecto en otro sitio (vea “Hosting enlatado”) puede
registrar los dominios específicos del proyecto y direccionarlos al sitio del hospedaje. Ayuda mucho a
los usuarios tener que recordar sólo un URL.

Tener los objetivos claros
Una vez que se ha encontrado el sitio del proyecto, lo siguiente que la gente hace es buscar por una des-
cripción rápida, una declaración de objetivos, para poder decidir (en menos de 30 segundos) si están o
no interesados en aprender más. Esto debe estar en un lugar prioritario en la página principal, preferible-
mente justo debajo del nombre del proyecto.

La declaración de los objetivos debe ser concreta, limitada y sobre todo, corta. Aquí tenemos un buen
ejemplo, de http://www.openoffice.org/:

Crear, como una comunidad, una suite ofimática líder a nivel internacional, que fun-
cione en las mayores plataformas y proporcionar acceso a toda la funcionalidad y da-
tos a través de API's basadas en componentes abiertos y un formato de ficheros basa-
do en XML.

En pocas palabras, han logrado la máxima puntuación, sobretodo al basarse en los conocimientos pre-
vios de los lectores. Al decir "como una comunidad", señalan que ninguna corporación dominará el de-
sarrollo. "Internacional" significa que la aplicación permitirá a personas con múltiples lenguas y locali-
dades trabajar. "En las mayores plataformas significa que será portable a Unix, Macintosh y Windows.
El resto señala que las interfaces abiertas y formatos de ficheros fáciles de comprender son una parte im-
portante de sus objetivos. De buenas a primeras, no intentan declarar ser una alternativa libre a Micro-
soft Office, aunque seguramente la mayoría puede leer entre lineas. Aunque ésta declaración de objeti-
vos pueda parecer demasiado amplia a primera vista, el hecho es que está bien circunscrita: las palabras
"suite ofimática " significan algo muy concreto para aquellos familiarizados con este tipo de programas.
Otra vez, el asumir sobre los conocimientos previos del lector (en este caso probablemente de MS Offi-
ce) permite mantener la declaración concisa.

El ámbito de una declaración de objetivos depende en gran parte de quien la escriba, no sólo del progra-
ma que intenta describir. Por ejemplo, tiene sentido para OpenOffice.org utilizar las palabras "como una
comunidad", porque el proyecto fue iniciado, y sigue estando patrocinado, por Sun Microsystems. Al in-
cluir esas palabras, Sun esta indicado sensibilidad a preocupaciones de que intente dominar el proceso
de desarrollo. Con este tipo de cosas, simplemente demostrar un conocimiento ambiguo del potencial de
un problema ayuda enormemente a evitar el problema completamente. Por otra parte, aquellos proyectos

Primeros Pasos

14

http://www.nameprotect.org/
http://www.uspto.gov/
http://www.openoffice.org/

que no son patrocinados por una sola corporación probablemente no tengan que utilizar este lenguaje,
después de todo, el desarrollo comunitario es la norma, así que normalmente no debería haber ninguna
razón para señalar esto como una parte de los objetivos.

Declara que el proyecto es libre
Aquellos que sigan interesados después de leer la declaración de objetivos querrán más detalles, quizás
un poco de documentación para usuarios o desarrolladores, y eventualmente querrán descargar algo. Pe-
ro antes que nada, necesitaran estar seguros de que es open source.

La página principal debe poner claramente y sin ambigüedades que el proyecto es open source. Esto
puede parecer obvio, pero es sorprendente cuantos proyectos se olvidan de esto. He visto sitios de pro-
yectos de software libre donde la página principal no sólo no decía bajo cual licencia libre se distribuía
la aplicación sino que ni siquiera declaraban que el software fuese libre. A veces, estas piezas cruciales
de información eran relegadas a la página de descargas o a la página de los desarrolladores o a algún
otro lugar el cual requería más de un enlace para llegar. En casos extremos, la licencia no se mostraba en
ninguna parte del sitio—la única forma de encontrarla era descargando la aplicación e investigando.

No cometáis estos errores. Una omisión como ésta puede haceros perder muchos desarrolladores y usua-
rios potenciales. Declarad desde el principio, justo debajo de la declaración de objetivos, que el proyecto
es "software libre" u "open source", y mostrad la licencia exacta. Una guía rápida para escoger una li-
cencia se encuentra en “Escogiendo una licencia y aplicándola” más adelante en éste capítulo, y algunos
detalles sobre las licencias serán discutidos en el Capítulo 9, Licencias, Copyrights y Patentes.

Llegados a este punto, nuestro visitante hipotético ha determinado— probablemente en un minuto o me-
nos—que está interesado en utilizar, digamos, al menos cinco minutos más investigando el proyecto. La
próxima parte describe qué debería encontrar durante esos cinco minutos.

Lista de características y requerimientos
Debería haber una breve lista de las características que el software soporta (si algo aun no ha sido com-
pletado, se puede listar de todas formas, pero señalando "planeado" o "en progreso") y el tipo de entor-
no necesario para ejecutar la aplicación. Hay que pensar en ésta lista como algo que daríamos a alguien
que requiere un resumen de nuestro programa. Por ejemplo, la declaración de objetivos podría decir:

Crear un controlador y sistema de búsqueda con una API, para ser utilizada por pro-
gramadores suministrando servicios de búsqueda para grandes colecciones de fiche-
ros de texto.

La lista de características y requerimientos daría detalles que permitirían esclarecer el alcance de la de-
claración de objetivos:

Características

• Búsquedas en texto plano, HTML y XML

• Búsqueda de palabras o frases

• (planeado) Emparejando borroso (Fuzzy Matching)

• (planeado) Actualización incremental de índices

• (planeado) Indexado de sitios web remotos

Requerimientos:

Primeros Pasos

15

• Python 2.2 o mayor

• Espacio en disco suficiente para contener los índices (aproximadamente 2x el ta-
maño original de los datos)

Con ésta información, los lectores podrán rápidamente tener una idea de si éste programa tiene alguna
esperanza de trabajar para ellos, y también pueden considerar involucrarse como desarrolladores.

Estado del desarrollo
La gente siempre quiere saber cómo va un proyecto. Para proyectos nuevos, desean saber la separación
entre las promesas del proyecto y la realidad del momento. Para proyectos maduros, desean saber cuan
activamente es mantenido, cuan seguido sacan nuevas versiones, la facilidad para reportar fallos, etc.

Para responder a estas dudas, se debe suministrar una página que muestre el estado del desarrollo, listan-
do los objetivos a corto plazo del proyecto y las necesidades (por ejemplo, quizás se estén buscando de-
sarrolladores con un expertos en un tema en particular). Ésta página también puede dar una historia de
versiones anteriores, con listas de las características, de manera que los visitantes obtengan una idea de
cómo el proyecto define su "progreso" y de cuan rápidamente se hacen progresos de acuerdo a esas defi-
niciones.

No hay que asustarse por parecer no estar preparado y no caer en la tentación de inflar el estado del de-
sarrollo. Todos saben que el software evoluciona por etapas; no hay que avergonzarse en decir "Esto es
software alfa con fallos conocidos. Ejecuta, y funciona algunas veces, así que uselo bajo su responsabili-
dad." Este lenguaje no asustará el tipo de desarrolladores que son necesarios en esta etapa. En cuanto a
los usuarios, una de las peores cosas que un proyecto puede hacer es atraer usuarios antes de que el soft-
ware éste listo para estos. Una reputación por inestabilidad y fallos es muy difícil de hacer desaparecer
una vez adquirida. La paciencia da sus frutos a largo plazo; siempre es mejor que el software sea más es-
table de lo que espera el usuario ya que las sorpresas gratas producen el mejor boca a boca.

Alfa y Beta

El término alfa usualmente significa, la primera versión, con lo que los usuarios pueden realizar
todos el trabajo teniendo todas la funcionalidad esperada, pero que se sabe tiene fallos. El princi-
pal propósito de el software alfa es generar una respuesta, de forma que los desarrolladores sepan
en qué trabajar. La próxima etapa, beta, significa que han sido resueltos todos los fallos más im-
portantes, pero que aun no ha sido intensivamente probado como para ser la versión oficial. El
propósito de las betas es la de convertirse en la versión oficial, asumiendo que nuevos fallos no
sean encontrados, o de suministrar un feedback para los desarrolladores para que logren la versión
oficial más rápido. La diferencia entre alfa y beta es más una cuestión de juicio.

Descargas
EL software debe poder ser descargable como código fuente en formatos estándares, paquetes binarios
(ejecutables) no son necesarios, a menos que el programa tenga requerimientos muy complicados para
su compilado o dependencias que hagan hacerlo funcionar sea muy laborioso para la mayoría de las per-
sonas. (¡Aunque si es éste es el caso, el proyecto va a tenerlo muy difícil atrayendo programadores de to-
das maneras!)

El mecanismo de distribución debe de ser de lo más conveniente, estándar y sencillo posible. Si se estu-
viese intentando erradicar una enfermedad, no distribuiría la medicina tal que requiriese de una jeringui-
lla especial para administrarse. De igual manera, un programa debe ser conforme a métodos de compila-
ción e instalación estándar; entre más se desvíe de estos estándares, mayor será la cantidad de usuarios y

Primeros Pasos

16

desarrolladores potenciales que se den por vencidos y abandonen el proyecto confundidos.

Esto parece obvio, pero muchos proyectos no se molestan en estandarizar sus procedimientos de instala-
ción hasta mucho después, diciéndose a si mismos que esto lo pueden hacer en cualquier momento: "Ya
resolveremos todas esas cosas cuando el código éste casi listo." De lo que no se dan cuenta es de que al
dejar de lado el trabajo aburrido de terminar los procedimientos de compilado e instalación, en realidad
están ralentizando todo—porque desalientan a los programadores que de otra manera habrían contribui-
do al código. Más dañino aun, no saben que están perdiendo a todos esos desarrolladores, porque el pro-
ceso es una acumulación de eventos que no suceden: alguien visita un sitios web, descarga el programa,
intenta compilarlo, falla, deja de intentarlo y abandona. ¿Quién sabrá que ocurrió exceptuando a ésta
persona? Nadie en el proyecto se dará cuenta que el interés y la buena voluntad de alguien a sido silen-
ciosamente malgastada.

Las tareas aburridas con un alto beneficio siempre deben ser hechos al principio y disminuyendo de ma-
nera significativa las barreras de entrada a un proyecto utilizando buenos paquetes brindan altos benefi-
cios.

Cuando se lanza un paquete descargable, es vital que se le dé un número de versión único a éste lanza-
miento, de manera que la gente pueda comparar dos versiones cualquiera diferentes y saber cual reem-
plaza a cual. Una discusión detallada sobre la numeración de versiones puede ser encontrada en
“Release Numbering”, y detalles sobre la estandarización de los procedimientos de compilado e instala-
ción serán cubiertos en “Packaging”, ambos en el Capítulo 7, Packaging, Releasing, and Daily Develop-
ment.

Control de versiones y acceso al Bug Tracker
Descargar paquetes con el código fuente está bien para aquellos que sólo desean instalar y utilizar un
programa, pero no es suficiente para aquellos que desean buscar fallos o añadir nuevas mejoras. Instan-
táneas nocturnas del código fuente pueden ayudar, pero esto no es suficiente para una prospera comuni-
dad de desarrollo. Estas personas necesitan de acceso en tiempo real a los últimos cambios, y la manera
de proporcionarles esto es utilizando un sistema de control de versiones (version control system). La
presencia de fuentes controladas, accesibles anónimamente es una señal de—para ambos, usuarios y
programadores—que éste proyecto ésta haciendo un esfuerzo en proporcionar todo lo necesario para que
otros participen. Si no se puede ofrecer control de versiones desde el principio, comunique la intención
de montarlo pronto. La infraestructura de control de versiones es discutida en detalle en “Control de
Versiones” en el Capítulo 3, Infraestructura Técnica .

Lo mismo se aplica para el seguimiento de errores del proyecto. La mayor importancia que se le dé a és-
ta base de datos, lo mejor que parecerá el proyecto. Esto puede parecer contra intuitivo, pero hay que re-
cordar que el número de fallos registrados, en realidad depende en tres cosas: el número absoluto de
errores presentes en el programa, el número de usuarios utilizándolo y la conveniencia con la cual esos
usuarios registran nuevos fallos. De estos tres factores, los dos últimos son más significativos que el pri-
mero. Cualquier aplicación con suficiente tamaño y complejidad tiene una cantidad arbitraria de fallos
esperando a ser descubiertos. La verdadera cuestión es, cuan bien serán registrados y priorizados estos
errores. Un proyecto con una base de datos de fallos amplia y bien mantenida (errores importantes son
atacados rápidamente, fallos duplicados son unificados, etc.) generan una mejor impresión que un pro-
yecto sin una o vacía.

Claro está, que si un proyecto está empezando, que la base de datos de fallos contenga algunos pocos, y
no hay mucho que se pueda hacer al respecto. Pero si la página donde se indica el estado del proyecto,
enfatiza en la juventud del proyecto y si las personas mirando los fallos pueden observar que muchos de
estos han sido incluidos recientemente, pueden asumir que el proyecto tiene una proporción saludable
de entradas y no serán alarmados por el mínimo absoluto de fallos registrados.

Hay que señalar que los bug trackers no sólo son usados para fallos en los programas pero también para
peticiones de mejoras, cambios en la documentación, tareas pendientes y mucho más. Los detalles de
ejecutar un sistema de seguimiento de fallos será cubierto en “Seguimiento de errores” en el Capítulo 3,

Primeros Pasos

17

Infraestructura Técnica, así que no vamos a entrar en detalles. Lo importante desde la perspectiva de la
presentación está en tener un bug tracker y asegurarse de que es visible desde la página principal del
proyecto.

Canales de comunicación
Usualmente los visitantes desean saber cómo pueden contactar con los seres humanos detrás del proyec-
to. Hay que suministrar direcciones de listas de correo, salas de chat, canales en IRC y cualquier otro fo-
ro donde aquellos involucrados puedan ser contactados. Hay que dejar claro que los autores del proyecto
están suscritos a estas listas, de manera que la gente vea una forma de dar feedback a los desarrolladores.
La presencia de estos en las listas no implica obligación alguna de responder a todas las preguntas que se
formulan o de implementar todas las peticiones. A la larga, muchos de los usuarios probablemente ni si-
quiera se unan a los foros de todas maneras, pero estarán conformes con saber que podrían si fuese ne-
cesario.

En la primeras etapas de cualquier proyecto, no existe la necesidad de que haya una diferenciación entre
los foros de los usuarios y los de los desarrolladores. Es mejor tener a todos los involucrados en el pro-
yecto hablando en conjunto en una sala. Dentro de los primeros en adoptar el proyecto, la distinción en-
tre usuario y desarrollador será muchas veces borrosa, hasta tal punto que la distinción no se puede hacer
y la proporción entre programadores y usuarios usualmente es mayor al principio que al final. Mientras
que no se puede asumir que todos quienes utilicen el programa sean programadores que quieren modifi-
carlo, sí se puede asumir que al menos estan interesados en seguir las discusiones sobre el desarrollo y
en obtener una visión de la dirección del proyecto.

Ya que éste capítulo es sólo sobre iniciar un proyecto, es suficiente decir que al menos estos foros de co-
municación deben existir. Luego en “Manejando el crecimiento” en el Capítulo 6, Communications, exa-
minaremos dónde y cómo montar estos foros, cómo deben ser moderados o cualquier otro tipo de direc-
ción y cómo separar los foros de usuarios de los foros de los desarrolladores, cuando llegue el momento,
sin crear un espacio infranqueable.

Pautas de Desarrollo
Si alguien considera contribuir al proyecto, buscará por pautas de desarrollo. Estas pautas son más socia-
les que técnicas: explican como los desarrolladores interactúan entre ellos y con los usuarios y última-
mente como hacer las cosas.

Este tema es tratado en detalle en “Tomando Nota de Todo” en Capítulo 4, Infraestructura Social y Polí-
tica, pero los elementos básicos de unas pautas de desarrollo son:

• enlaces a los foros para la interacción de los desarrolladores

• instrucciones en cómo reportar fallos y enviar parches

• alguna indicación de cómo el desarrollo es usualmente llevado a cabo—es el proyecto una dictadura
benevolente, una democracia o algo más

Ningún sentido peyorativo es intencional por lo de "dictadura" por cierto. Es perfectamente aceptable
ser un tirano donde un desarrollador en particular tiene el poder de veto sobre todos los cambios. Mu-
chos proyectos exitosos funcionan de ésta manera. Lo importante es que el proyecto sea consciente de
esto y lo comunique. Una tiranía pretendiendo ser una democracia desalentara a las personas; una tiranía
que dice serlo funcionará bien siempre que el tirano sea competente y de confianza.

Un ejemplo de unas pautas de desarrollos particularmente exhaustivas están en
http://svn.collab.net/repos/svn/trunk/www/hacking.html o en
http://www.openoffice.org/dev_docs/guidelines.html tenemos unas pautas más amplias que se concen-
tran más en la forma de gobierno y el espíritu de participación y menos en temas técnicos.

Primeros Pasos

18

http://svn.collab.net/repos/svn/trunk/www/hacking.html
http://www.openoffice.org/dev_docs/guidelines.html

Proveer una introducción a la aplicación para los programadores es otro tema y será discutido en
“Documentación para Desarrolladores” más adelante en éste capítulo .

Documentación
La documentación es esencial. Debe haber algo para que la gente lea, aunque sea algo rudimentario e in-
completo. Esto entra de lleno en la categoría antes referida y usualmente es la primera área donde un
proyecto falla. Conseguir una declaración de objetivos y una lista de requerimientos, escoger una licen-
cia, resumir el estado de desarrollo—son todas tareas relativamente pequeñas que pueden ser completa-
das y a las que usualmente no es necesario volver una vez terminadas. La documentación, por otra parte,
nunca está terminada realmente, lo cual puede que sea una de las razones por las cuales se retrase su ini-
cio.

La cuestión más insidiosa sobre la utilidad de la documentación es que es inversamente proporcional pa-
ra quienes la escriben y para quienes la leen. Lo más importante de la documentación para un usuario
inicial es lo más básico: cómo configurar la aplicación, una introducción de cómo funciona y quizás al-
gunas guías para realizar las tareas más comunes. Pero a la vez son estas cosas las más sabidas por aque-
llos quienes escriben la documentación— tan bien sabidas que puede ser difícil para estos ver las cosas
desde el punto de vista de los lectores, dificultando listar los pasos que (para los escritores) parecen tan
obvios que no merecen especial atención.

No existe una solución mágica para éste problema. Alguien debe sentarse y escribir todo esto para luego
presentárselo a un usuario nuevo tipo y probar la calidad. Hay que utilizar un formato simple y fácil de
modificar como HTML, texto plano, Tex o alguna variante de XML—algo que sea conveniente para
mejoras rápidas, ligeras e imprevisibles. Esto no es sólo para eliminar cualquier trabajo innecesario a los
escritores originales realizar cambios incrementales, sino que también para quienes se unan al proyecto
después y desean trabajar en la documentación.

Una manera de asegurarse de que la documentación básica inicial se hace, es limitando su alcance. Al
menos de ésta manera no parecerá que se está escribiendo una tarea sin fin. Una buena regla es seguir
unos criterios mínimos:

• Avisar al lector claramente el nivel técnico que se espera que tenga.

• Describir clara y extensivamente cómo configurar el programa y en alguna parte al inicio de la docu-
mentación comunicarle al usuario cómo ejecutar algún tipo de prueba de diagnóstico o un simple co-
mando para confirmar que todo funciona correctamente. La documentación inicial es a veces más im-
portante que la documentación de uso. Mientras mayor sea el esfuerzo invertido en instalar y tener
funcionando la aplicación, mayor será la persistencia en descubrir funcionalidades avanzadas o no do-
cumentadas. Cuando alguien abandona, abandonan al principio; por ello, las primeras etapas como la
instalación, necesiten la mayor ayuda.

• Dar un ejemplo estilo tutorial de como realizar alguna tarea común. Obviamente, muchos ejemplos
para muchas tareas sería mejor, pero si el tiempo es limitado, es mejor escoger una tarea en específico
y llevar al usuario de la mano paso por paso. Una vez que se ve que la aplicación puede ser utilizada ,
empezarán a explorar qué más es lo que puede hacer—y si se tiene suerte empezar a documentarlo
ellos mismos. Lo que nos lleva al siguiente punto...

• Indicar las áreas donde se sabe que la documentación es incompleta. Al mostrar a los lectores que se
es consciente de las deficiencias, nos alineamos con su punto de vista. La empatía les da confianza en
que no van a tener que luchar para convencer al proyecto de su importancia. Estas indicaciones no ne-
cesitan representar promesa alguna de completar los espacios en blanco en una fecha en particu-
lar—es igualmente legitimo tratarlas como requisitos abiertos para ayudantes voluntarios.

Ese último criterio es de una especial importancia, y puede ser aplicado al proyecto entero, no sólo a la
documentación. Una gestión exacta de las deficiencias conocidas es la norma en el mundo Open Source.

Primeros Pasos

19

No se debe exagerar en las faltas del proyecto, solo identificarlas escrupulosa y desapasionadamente
cuando sea necesario (sea en la documentación, en la base de datos de fallos o en discusiones en la lista
de correos). Nadie verá esto como derrotismo por parte del proyecto, ni como una responsabilidad explí-
cita. Ya que cualquiera que utilice la aplicación descubrirá sus deficiencias por si mismos, es mejor que
estén psicológicamente preparados—entonces parece que el proyecto tiene un sólido conocimiento acer-
ca de como va progresando.

Manteniendo un FAQ (Preguntas Más Frecuentes)

Un FAQ (del ingles "Frequently Asked Questions") puede ser uno de las mejores inversiones que
un proyecto puede hacer en términos de beneficios educativos. Los FAQs están enfocados a las
preguntas que desarrolladores y usuarios podrían formular—opuesto a aquellas que se espera que
hagan—por lo cual un FAQ bien cuidado tiende a dar a aquellos quienes lo consultan exactamen-
te lo que están buscando. Por lo general es el primer lugar en el que se busca cuando se encuen-
tran con un problema, incluso con preferencia sobre el manual oficial y es probablemente el docu-
mento más propenso a ser enlazado desde otros sitios.

Desafortunadamente, no se puede hacer un FAQ al principio del proyecto. Los buenos FAQs no
son escritos, crecen. Son por definición documentos reactivos, evolucionando con el tiempo como
respuesta al uso diario del programa. Ya que es imposible anticipar correctamente las preguntas
que se podrían formular, es imposible sentarse a escribir un FAQ útil desde cero.

Así que no hay que malgastar el tiempo en intentarlo. En cambio, podría ser útil crear una planti-
lla casi en blanco del FAQ, de forma que haya un lugar obvio donde las personas contribuyan con
preguntas y respuestas después de que el proyecto esté en progreso. En ésta etapa lo más impor-
tante no es tenerlo todo completo, sino la conveniencia: si es sencillo agregar contenido al FAQ,
la gente lo hará. (Un mantenimiento correcto de un FAQ es un problema no trivial e intrigante y
es discutido más a fondo en “FAQ Manager” en el Capítulo 8, Coordinando a los Voluntarios.)

Disponibilidad de la documentación

La documentación debe ser accesible desde dos sitios: en línea (directamente desde el sitio web), y en la
distribución descargable de la aplicación (consultar “Packaging” en el Capítulo 7, Packaging, Releasing,
and Daily Development). Debe estar en línea y navegable porque a menudo se lee la documentación an-
tes de descargar el programa por primera vez, como una ayuda en la decisión de descargarlo o no. Pero
también debe acompañar al programa, bajo la premisa de que la descarga debe suministrar todo lo nece-
sario para utilizar el paquete.

Para la documentación en línea, hay que asegurarse de que hay un enlace que muestra toda la documen-
tación en una página HTML (indicando algo como "monolito" o "todo-en-uno" o "sólo un gran fichero"
al lado del enlace, de tal manera que se sepa que puede tardar un poco en cargar). Esto es muy útil por-
que a veces sólo desean buscar una sola palabra o frase en la documentación. Generalmente, las perso-
nas ya saben qué es lo que están buscando, sólo que no recuerdan en cual sección está. Para estas perso-
nas, nada es más frustrante que encontrar una página para la tabla de contenidos, luego otra diferente pa-
ra la introducción, luego otra diferente para las instrucciones de instalación, etc. Cuando las páginas es-
tán divididas de esta manera, la función de búsqueda de sus navegadores es inútil. Este estilo de páginas
separadas es útil para quienes ya saben cual es la sección que necesitan, o que desean leer toda la docu-
mentación de principio a fin en secuencia. Pero esta no es la forma más común en que la documentación
es leída. Ocurre más a menudo que alguien que conoce algo básico de la aplicación vuelve para buscar
una palabra o frase. Fallar al suministrarles un sólo documento en el que se puedan realizar búsquedas,
es hacerles la vida más dura

Documentación para Desarrolladores

La documentación para los desarrolladores es escrita para ayudar a los programadores a entender el có-

Primeros Pasos

20

digo y puedan arreglarlo o extenderlo. Esto es algo diferente a las pautas de desarrollo discutidas ante-
riormente, que son más sociales que técnicas. Estas pautas para los desarrolladores le dicen a los progra-
madores como deben desenvolverse entre ellos. La documentación les dice como deben desenvolverse
con el código en si mismo. Por conveniencia las dos vienen juntas en un sólo documento (como sucede
con el ejemplo anterior http://svn.collab.net/repos/svn/trunk/www/hacking.html) pero no es obligatorio.

A pesar de que la documentación para los desarrolladores puede ser de mucha ayuda, no existe ninguna
razón para retrasar un lanzamiento por hacerla. Es suficiente para empezar que los autores originales es-
tén disponibles (y dispuestos) a responder a preguntas sobre el código. De hecho, tener que responder la
misma pregunta varias veces es una motivación muy común para escribir dicha documentación. Pero an-
tes de que sea escrita, determinados contribuyentes serán capaces de desenvolverse con el código ya que
la fuerza que hace que las persones utilicen su tiempo en leer el código base es que éste código les resul-
ta útil. Si las personas tienen fé en ello, ninguna cantidad de documentación hará que vengan o los man-
tendrá.

Así que si hay tiempo para escribir documentación sólo para una audiencia, que sea para los usuarios.
Toda la documentación para los usuarios es, en efecto, documentación para desarrolladores también.
Cualquier programador que vaya a trabajar en un proyecto necesita estar familiarizado con su uso. Lue-
go, cuando se vea a los programadores preguntando las mismas preguntas una y otra vez, habrá que to-
marse el tiempo de escribir algunos documentos aparte sólo para estos.

Algunos proyectos utilizan wikis para su documentación inicial o incluso para su documentación princi-
pal. En mi experiencia, esto es efectivo si y sólo si, el wiki es editado activamente por algunas personas
que se ponen de acuerdo en como la documentación debe ser organizada y la voz que debe tener. Más en
“Wikis” en el Capítulo 3, Infraestructura Técnica.

Ejemplos de salidas y capturas
Si el proyecto implica una interfaz gráfica para el usuario o si produce una salida gráfica o distintiva, ha-
brá que poner algunos ejemplos en el sitio web del proyecto. En el caso de las interfaces, esto significa
capturas. Para salidas, pueden ser capturas o sólo ficheros. Ambos dotan al usuario de gratificación ins-
tantánea: una sola captura puede ser más convincente que párrafos de texto descriptivo y cháchara de lis-
tas de correo, porque una captura es la prueba indiscutible de que el programa funciona. Puede que tenga
fallos, quizás sea difícil de instalar o que la documentación esté incompleta, pero esa captura sigue sien-
do la prueba de que con el esfuerzo necesario, se puede hacer funcionar.

Capturas

Ya que hacer las capturas puede ser algo desalentador, aquí tenéis unas instrucciones básicas so-
bre como hacerlas. Utilizando The Gimp (http://www.gimp.org/), pinchad en Archivo-
>Adquirir->Captura de pantalla, escoged Capturar una sola ventana o Toda la pantalla, luego pin-
chad en Capturar. La próxima vez que pinche la ventana o la pantalla será capturada como una
imagen en The Gimp Recortad y cambiad el tamaño de la imagen según sea necesario siguiendo
las instrucciones en http://www.gimp.org/tutorials/Lite_Quickies/#crop.

Existen muchas otras cosas que se pueden poner en el sitio web del proyecto, si se tiene el tiempo, o si
por alguna razón u otra son especialmente apropiadas: página de noticias, historia, enlaces relacionados,
función de búsqueda, enlace para donaciones, etc. Ninguno de estos es necesarios al principio, pero hay
que tenerlos en mente para el futuro.

Hosting enlatado
Existen algunos sitios que proveen hosting gratuito e infraestructura para proyectos open source: un área
web, control de versiones, gestor de errores, zona de descargas, salas de chat, backups regulares, etc.
Los detalles varían entre sitio y sitio, pero los servicios básicos son ofrecidos por todos. Al utilizar uno

Primeros Pasos

21

http://svn.collab.net/repos/svn/trunk/www/hacking.html
http://www.gimp.org/
http://www.gimp.org/tutorials/Lite_Quickies/#crop

de estos sitios, se obtiene mucho por nada, dando a cambio, obviamente, el control sobre la experiencia
del usuario. Quien provee el hosting decide cuales programas el sitio acepta y puede controlar o al me-
nos influenciar el aspecto de las páginas del proyecto.

Vaya a “Soluciones de hospedaje” en el Capítulo 3, Infraestructura Técnica para una discusión más de-
talladas acerca de las ventajas y desventajas del hosting enlatado y una lista de sitios que lo ofrecen.

Escogiendo una licencia y aplicándola
Esta sección está concebida para ser una guía rápida y amplia sobre como escoger una licencia. Leed el
Capítulo 9, Licencias, Copyrights y Patentes para entender en detalle las implicaciones legales de dife-
rentes licencias y como la licencia escogida puede afectar la capacidad de otras personas de mezclar el
programa con otros.

Existen muchas licencias libres de donde escoger. Muchas de ellas no necesitamos tenerlas en conside-
ración aquí, ya que han sido escritas para satisfacer las necesidades legales específicas de alguna corpo-
ración o persona, así que no serian apropiadas para nuestro proyecto. Por ello nos vamos a restringir a
las más usadas. En la mayoría de los casos, querrás escoger una de ellas.

Las licencias "Haz lo que quieras"
Si se está conforme con que el código del proyecto sea potencialmente usado en programas propietarios,
entonces se puede utilizar una licencia estilo MIT/X. Es la más sencilla de muchas licencias mínimas que
no hacen más que declarar un copyright nominal (sin restringir la copia) y especificar que el código vie-
ne sin ninguna garantía. Id a “La MIT / X Window System License” para más detalles.

Licencia GPL
Si no desea que el código sea utilizado en aplicaciones propietarias utilice la Licencia Pública General o
GPL (del ingles General Public License) (http://www.gnu.org/licenses/gpl.html). La GPL es probable-
mente la licencia para software libre más utilizada a nivel mundial hoy en día. Esto es en si mismo una
gran ventaja, ya que muchos usuarios potenciales y voluntarios ya estarán familiarizados con ella, por lo
cual, no tendrán que invertir tiempo extra en leer y entender la licencia utilizada. Más detalles en “La
GNU General Public License” en el Capítulo 9, Licencias, Copyrights y Patentes.

Cómo aplicar una licencia a nuestro software
Una vez que ha sido escogida una licencia, se debe exponer en la página principal del proyecto. No se
tiene que incluir el texto de la licencia aquí, sólo hay que dar el nombre de la licencia y un enlace al tex-
to completo de ésta en otra página.

Esto informa al público bajo cual licencia se pretende publicar la aplicación. Para ello, el programa en si
debe incluir la licencia. La manera estándar de hacer esto es poniendo el texto completo en un fichero
llamado COPYING (o LICENSE) y luego colocar un aviso al principio de cada fichero con el código
fuente, listando la fecha del copyright, titular y licencia y explicando donde encontrar el texto completo
de la misma.

Hay muchas variaciones de éste patrón, así que miraremos a un sólo ejemplo. La GPL de GNU indica
que se debe colocar un aviso como éste al principio de cada fichero con código fuente:

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

Primeros Pasos

22

http://www.gnu.org/licenses/gpl.html

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

No específica que una copia de la licencia adjuntada al programa está en el fichero COPYING, pero co-
múnmente es en éste donde se pone (Se puede cambiar lo anterior para indicar esto directamente). Esta
plantilla también nos da una dirección física a donde solicitar una copia de la licencia. Otro método muy
común es suministrar un enlace a una página web que contiene la licencia. Sólo hay que utilizar el senti-
do común y señalar algún sitio donde se crea habrá una copia permanente de la licencia. Por lo general,
el aviso que se coloca al principio de cada fichero con código fuente no debe ser exacto al anteriormente
expuesto, siempre y cuando se empiece con el mismo aviso de copyright, titular y fecha, se especifique
el nombre de la licencia y se deje claro donde encontrar la licencia completa.

Ajustar el tono
Hasta ahora hemos cubierto tareas que se hacen sólo una vez durante el proyecto: escoger la licencia,
acomodar el sitio web inicial, etc. Pero los aspectos más importantes al empezar un nuevo proyecto son
dinámicos. Escoger la dirección para la lista de correos es fácil; asegurarse de que las conversaciones en
ésta se mantengan en contexto y sean productivas es otro tema. Si el proyecto es abierto después de años
de desarrollo cerrado propio, sus procesos de desarrollo cambiaran y habrá que preparar a los desarrolla-
dores existentes para éste cambio.

Los primeros pasos son los más duros, porque los precedentes y las expectaciones sobre la conducta fu-
tura aun no se han definido. La estabilidad de un proyecto no viene de políticas formales, sino de un co-
nocimiento colectivo compartido muy difícil de definir y que se desarrolla con el tiempo. A veces exis-
ten unas reglas escritas, pero tienden a ser un destilado de los acuerdos intangibles y siempre cambiantes
que realmente guían el proyecto. Las políticas escritas no definen la cultura del proyecto mas que descri-
birla, he incluso así, sólo se aproximan.

Hay algunas razones por las cuales las cosas funcionan de ésta manera. El crecimiento y los grandes
cambios no son tan dañinos para la acumulación de las normas sociales como se puede pensar. Mientras
que el cambio no ocurra demasiado rápido, hay tiempo para que los novatos aprendan como funcionan
las cosas y después de que aprendan, ellos mismos ayudaran a reforzar este funcionamiento. Considere-
mos cómo las canciones infantiles sobreviven a lo largo de los siglos. Hay niños hoy en día cantando ca-
si las mismas rimas que los niños de hace cien años, aunque no haya ninguno vivo hoy en día que haya
vivido entonces. Los más pequeños escuchan estas canciones de otros niños mayores y cuando son ma-
yores, las cantarán frente a otros niños menores que ellos. Conscientemente los niños no están iniciando
un programa de transmisión, por supuesto, pero la razón por la cual las canciones sobreviven es nada
más y nada menos porque son transmitidas regular y repetidamente. La escala de tiempo de un proyecto
de software libre quizás no sea medido en siglos (aún no lo sabemos) pero las formas de transmisión son
las mismas. Aunque el índice de cambios es más rápido y debe ser compensado con un esfuerzo delibe-
rado de comunicación más activo.

A este esfuerzo le ayuda el hecho de que las personas por lo general se presentan esperando y buscando
normas sociales. Así es como los humanos estamos construidos. En cualquier grupo unido por un mismo
objetivo, las personas que se unen, instintivamente buscan conductas las cuales los marcarán como parte
del grupo. El objetivo temprano de sentar precedentes es hacer de esas conductas de grupo útiles para el
proyecto; una vez establecidas serán perpetuas por si mismas.

A continuación hay algunos ejemplos específicos de lo que se puede hacer para establecer buenos prece-

Primeros Pasos

23

dentes. No se supone que sea una lista exhaustiva, mas es una ilustración de la idea de que establecer un
ambiente de colaboración desde el principio ayuda enormemente al proyecto. Físicamente, cada desarro-
llador puede que trabaje en solitario, pero se puede hacer mucho para hacerlo sentir como si todos estu-
viesen trabajando juntos en la misma habitación. Mientras mayor sea ésta sensación mayor será el tiem-
po que quieran invertir en el proyecto. He escogido estos ejemplos en particular porque han surgido en
el proyecto de Subversion (http://subversion.tigris.org/), en el cual participé y observé desde sus inicios.
Pero estas no son únicas a Subversion, situaciones como estas surgen en casi todos los proyectos open
source, y deben ser tomadas como oportunidades para empezar de la manera correcta.

Evitar discusiones privadas
Incluso después de haber hecho público el proyecto, usted y los otros fundadores del proyecto se encon-
trarán a menudo intentado resolver preguntas difíciles vía comunicaciones privadas dentro de un circulo
interno. Esto es especialmente cierto en los primeros días del proyecto, cuando hay tantas decisiones im-
portantes que tomar y usualmente pocos voluntarios cualificados para resolverlas. Todas las obvias des-
ventajas de una lista pública de discusión se perfilan palpablemente frente a ti: el retraso inherente en las
conversaciones por correo, la necesidad de dejar que se forme un consenso, las dificultades de tratar con
voluntarios crédulos que piensan que entienden todos los problemas pero que no es así (todo proyecto
tiene de estos; a veces son el voluntario estrella del próximo año, a veces permanecen ingenuas durante
el resto del proyecto), la persona que no puede entender por qué quieres resolver el problema X cuando
es obviamente una parte del más grande problema Z y muchos otros. La tentación de tomar decisiones a
puerta cerrada y presentarlas como faits accomplis, o al menos como firmes recomendaciones de un blo-
que unido e influyente serian geniales la verdad.

No lo hagas.

Por muy lentas y engorrosas que puedan ser las discusiones publicas, casi siempre son preferibles a lar-
go plazo. Tomar decisiones importantes en privado es como esparcir repelente anti-voluntarios sobre el
proyecto. Ningún voluntario serio se quedaría mucho tiempo en un ambiente donde un consejo secreto
toma todas las grandes decisiones. Además, las discusiones publicas tienen efectos secundarios benefi-
ciosos que durarán más que cualquier pregunta técnica que fuese el problema:

• La discusión ayudará a entrenar y educar a nuevos desarrolladores. Nunca se sabe cuantos ojos están
viendo una conversación así; Incluso si muchas de las personas no participan, muchas podrían estar
monitorizando silenciosamente, deduciendo información acerca de la aplicación.

• La discusión te entrenará en el arte de explicar temas técnicos a personas que no están tan familiariza-
das con el programa. Esta es una capacidad que requiere de práctica y no se puede entrenar hablando
con personas que ya saben lo mismo que tu.

• La discusión y sus conclusiones estarán disponibles en un archivo público para siempre, evitando que
futuras discusiones caigan en los mismos problemas. Más en “Sobresaliente uso de los archivos” en el
Capítulo 6, Communications.

Finalmente, existe la posibilidad de que alguien en la lista haga una contribución real a la conversación,
ingeniando una idea nunca antes anticipada. Es difícil decir cuan probable es que esto suceda; depende
en la complejidad del código y el nivel de especialización requerida. Pero si se me permite utilizar evi-
dencia anecdótica, apostaría a que esto es más probable de lo que podemos esperar. En el proyecto Sub-
version, nosotros (los fundadores) creíamos encontrarnos ante una serie compleja y profunda de proble-
mas, en los cuales habíamos estado pensando durante meses, y francamente, dudábamos de que alguien
en la recientemente creada lista de correos fueses a dar alguna contribución útil a la discusión. Así que
tomamos el camino más fácil y empezamos a lanzar ideas técnicas a diestra y siniestra en correos priva-
dos, hasta que alguien observando el proyecto 1 descubrió lo que estaba pasando y pidió que se moviera
la discusión a la lista pública. Torciendo un poco los ojos, lo hicimos—y fuimos asombrados por la can-
tidad de comentarios inspiradores y sugerencias que rápidamente resultaron. En muchos casos ofrecien-

Primeros Pasos

24

http://subversion.tigris.org/

1No hemos llegado a la sección de los agradecimientos aún, pero sólo para practicar lo que luego voy a enseñar: el nombre del ob-
servador era Brian Behlendorf, y fue él quien no indicó la importancia de mantener todas las discusiones públicas a menos de que
existiera alguna necesidad de privacidad

do ideas que no se nos habían ocurrido anteriormente. Al final resultó que había gente muy inteligente en
esa lista, sólo estaban esperando el anzuelo apropiado. Es cierto que las discusiones tomaron más tiempo
de haberlas hechas en privado, pero eran mucho más productivas, lo cual hacía que valiera la pena el
tiempo extra.

Sin entrar en generalizaciones como "el grupo es siempre más listo que el individuo" (ya hemos conoci-
do muchos grupos para saberlo) debe ser apuntado que hay ciertas actividades en las que un grupo so-
bresale. Las revisiones distribuidas masivas son una de estas. Generar un gran número de ideas rápida-
mente es otra. La calidad de las ideas depende en la calidad del pensamiento que se ha aplicado a estas,
por supuesto, pero no vas a saber qué clase de pensadores hay hasta que los estimules con problemas de-
safiantes.

Naturalmente, hay discusiones que deben ser llevadas a cabo en privado; a lo largo de éste libro veremos
algunos ejemplos. Pero el principio que debe guiar siempre es: Si no existe razón alguna para que sea
privada, debe ser pública.

Hacer que esto suceda requiere acciones. No es suficiente con simplemente asegurarse de que todos los
comentarios van a la lista pública. También hay que atenerse a las conversaciones privadas innecesarias
en la lista. Si alguien intenta iniciar una conversación privada, y no existe razón alguna para que así sea,
entonces es de tu incumbencia el abrir la discusión apropiada inmediatamente. Ni siquiera intentes co-
mentar el tema original hasta que se haya direccionado exitosamente la conversación a un sitio público,
o asegurado que el tema era necesariamente privado. Si se hace esto consistentemente, las personas se
darán cuenta rápidamente y empezara# a utilizar los foros públicos por defecto.

Echad a volar la mala educación
Desde el primero momento de la existencia pública de un proyecto se deberá mantener una política de
tolerancia cero ante la mala educación o las actitudes insultantes en los foros. Tolerancia cero no implica
esfuerzos técnicos per se. No se deben eliminar personas de la lista de correos cuando ataquen a otros
usuarios, o quitarles sus accesos para realizar commits porque hayan hecho comentarios peyorativos.
(En teoría, habría que llegar a tomar estas acciones, pero sólo después de que todas las otras vías hayan
fallado—lo cual, por definición, no significa que sea al principio del proyecto.) Tolerancia cero simple-
mente significa nunca permitir que este tipo de conductas pasen desapercibidas. Por ejemplo, cuando al-
guien envía un comentario técnico mezclado con un ataque ad hominem contra otros desarrolladores del
proyecto, es imperativo que tu respuesta sea primero dirigida a ese ataque ad hominem como un tema
aparte y sólo después entrar en el tema técnico.

Desafortunadamente es muy fácil y típico, que conversaciones constructivas terminen en una guerra. Las
personas dirán cosas en un correo electrónico que nunca dirían cara a cara. Los temas de discusión sólo
ayudan a ampliar éste efecto: en cuestiones técnicas, la gente cree a menudo que sólo existe una sola res-
puesta correcta para la mayoría de las preguntas y que el desacuerdo ante la respuesta sólo puede ser ex-
plicado por la ignorancia o la estupidez. Hay una corta distancia entre llamar la propuesta técnica de al-
guien estúpida y llamar a esa persona estúpida. De hecho, es difícil definir cuando un debate técnico lo
deja de ser y se convierte en ataques personales, por lo cual una respuesta drástica y el castigo no son
buenas ideas. En su lugar, cuando creas que lo estas viviendo, envía un mensaje que remarque la impor-
tancia de mantener la discusión amistosa, sin acusar a nadie de ser deliberadamente venenoso. Este tipo
de "política amable" de mensajes tienen la desafortunada tendencia a parecer consejos de un profesor de
kindergarten sobre la buena conducta en el aula:

Primero, vamos a dejar a un lado los comentarios (potenciales) ad hominem por fa-
vor; por ejemplo, decir que el diseño para la capa de seguridad de J es "simple e ig-
norante de los principios de la seguridad informática." Quizás sea cierto o no, pero
en cualquier caso no es la manera de mantener una discusión. J hizo su propuesta de
buena fe y estoy seguro de que M no deseaba insultar a J, pero las maneras han sido
inadecuadas y lo único que deseamos es mantener las cosas constructivas.

Primeros Pasos

25

2Comunmente es así como las revisiones del código se hacen en los proyectos open source, por lo menos. En proyectos más cen-
tralizados, la revisión del código puede significar que muchas personas se sienten juntas y lean impresiones del código fuente, bus-
cando por problemas y patrones específicos.

Ahora, vamos con la propuesta de J. Creo que J tenía razón en decir que...

Por muy artificial que parezcan respuestas como estas, tienen un efecto notable. Si se llama la atención
constantemente acerca de estas malas actitudes, pero no se pide una disculpa o conocimiento de la parte
ofensora, entonces se deja a la gente calmarse y mostrar una mejor cara comportándose con más decoro
la próxima vez—y lo harán. Uno de los secretos para hacer esto con éxito es nunca hacer de la discusión
el tema principal. Siempre debe ser tratado a parte, una breve introducción a la mayor parte de tu res-
puesta. Hay que señalar que "aquí no hacemos las cosas de ésta manera" y luego continuar con el tema
real, de manera que no dejemos nada a lo que los demás puedan responder. Si alguien protesta diciendo
que no merecían ese reproche, simplemente hay que negarse a entrar en una disputa sobre esto. O no res-
pondas (si crees que sólo están liberando tensión y que no requiere de una respuesta) o responde discul-
pándote por haber sobreactuado y que es difícil detectar matices en el correo electrónico, y ahora de
vuelta al tema principal. Nunca insistas en un reconocimiento, público o privado, de alguien que se haya
comportado inadecuadamente. Si deciden por voluntad propia enviar una disculpa, genial, pero solicitar
que lo hagan en contra de su voluntad, sólo causará resentimiento.

El objetivo principal es de hacer que la buena educación se vea como una de las actitudes del grupo. Es-
to ayuda al proyecto, porque otros desarrolladores pueden ser espantados (incluso de proyectos que les
gustan y en los que quieren ayudar) por una flame war. Quizás ni siquiera se llegue a saber que han sido
espantados; pueden estar merodeando las listas de correo, descubrir que se necesita de un grueso pelaje
para participar en el proyecto y decidir en contra de involucrarse de cualquier manera. Mantener los fo-
ros amistosos es una estrategia de supervivencia a largo plazo y es más fácil mientras el proyecto siga
siendo pequeño. Una vez sea parte de la cultura general, no será necesario ser la única persona promo-
cionando esto. Será mantenido por todos.

Practicad revisiones visibles del código
Una de las mejores formas de fomentar una comunidad productiva de desarrollo es hacer que cada uno
pueda ver el código de los demás. Una infraestructura técnica es necesaria para hacer esto efectivamen-
te—en particular, se deben activar los correos con los avisos de cambios; más detalles en “Correos de
cambios”. El efecto de los correos electrónicos con los cambios es que cada vez que se envíe un cambio
al código fuente, un correo es enviado mostrando un registro y las diferencias de los cambios (mirad diff
en “Vocabulario”). La revisión del código es la práctica de revisar los correos con cambios mientras van
llegando, buscando fallos y posibles mejoras. 2

Revisar el código sirve varios propósitos simultáneamente. Es el ejemplo más obvio de revisión en no-
dos en el mundo del open source y directamente ayuda a mantener la calidad del programa. Cada fallo
que se envía junto a un programa llego allí después de ser comprometido y no haber sido detectado; es
por esto que mientras más ojos estén revisando los cambios, menos fallos serán empaquetados. Pero in-
directamente, las revisiones tienen también otro propósito: confirmar a las personas que lo que hacen
importa, porque obviamente nadie se tomaría el tiempo de revisar un cambio a menos que le importara
su efecto. La gente realiza una mejor labor cuando saben que otros van a tomarse el tiempo de evaluarla.

En el proyecto Subversion, no hicimos de la revisión del código una práctica regular. No existía ninguna
garantía de que después de cada commit éste sería revisado, aunque a veces alguien se interesa en un
cambio que se realiza sobre una parte del código en el que se tiene particular interés. Fallos que deberían
y podrían haber sido detectados, se colarón. Un desarrollador llamado Greg Stein, quien sabia la impor-
tancia de las revisiones del código de trabajos anteriores, decidió que iba a ser él quien diera el ejemplo
revisando cada línea de uno y cada uno de los commits que hayan llegado al repositorio. Cada vez que
alguien envía un cambio era seguido de un correo electrónico de Greg a las lista de los desarrolladores,
diseccionándolos, analizando posibles problemas y ocasionalmente elogiando ingeniosas piezas de códi-
go. De ésta manera, estaba atrapando fallos y prácticas poco óptimas de programación que de otra mane-
ra habrían pasado desapercibidas. Deliberadamente, nunca se quejó de ser la única persona revisando ca-

Primeros Pasos

26

da commit, a pesar de que esto le tomaba una gran cantidad de tiempo, pero siempre alababa las revisio-
nes de código cada vez que tenía oportunidad. Muy pronto, otros, yo incluso, empezamos a revisar los
cambios regularmente también. ¿Cuál era nuestra motivación? No había sido porque Greg consciente-
mente nos avergonzó hacia esto. Nos había probado que revisar el código era una manera muy valiosa
de utilizar nuestro tiempo y que se podía contribuir tanto al proyecto revisando los cambios de otros co-
mo escribiendo código nuevo. Una vez demostrado esto, se volvió una conducta anticipada, hasta el
punto en el que cada commit que no generaba alguna reacción hacía que quien la realizaba se preocupa-
ra e incluso que preguntase a la lista si alguien había tenido la oportunidad de revisarlo aun. Luego, Greg
consiguió un trabajo que no le dejaba mucho tiempo libre para Subversion y tuvo que dejar de hacer re-
visiones regulares. Pero llegados a éste punto, el habito se había integrado en el resto de nosotros tanto,
que parecía como algo que se hacía desde tiempos inmemoriables.

Hay que empezar a realizar las revisiones desde el primer commit. El tipo de problemas que son más fá-
ciles de descubrir con sólo revisar las diferencias son las vulnerabilidades de seguridad, desbordamien-
tos de memoria, comentarios insuficientes o documentación del API, errores off-by-one, emparejamien-
tos mal hechos y otros problemas que requieren de un mínimo de contexto para encontrar. Aunque in-
cluso problemas a larga escala como el fallar en abstraer patrones repetitivos a un sólo sitio sólo se pue-
den descubrir después de llevar mucho tiempo realizando revisiones regularmente, porque el recuerdo de
diferencias anteriores ayuda a revisar las diferencias presentes.

No hay que preocuparse al no poder encontrar nada sobre lo que comentar o de saber lo suficiente acerca
de todas las áreas del código. Usualmente habrá algo que decir sobre casi todos los cambios; incluso
donde no hay nada que criticar, se puede encontrar algo que elogiar. Lo importante es dejar claro a cada
programador, que lo que hacen se ve y es entendido. Por supuesto, el revisar código no absuelve a los
desarrolladores de la responsabilidad de revisar y probar su código antes de enviar los cambios; nadie
debe depender en las revisiones para encontrar cosas que debería haber encontrado.

Al abrir un proyecto cerrado, hay que ser sensible acer-
ca de la magnitud de los cambios

Si se reabre un proyecto existente, uno que ya tiene desarrolladores activos acostumbrados a trabajar en
un ambiente de código cerrado, habrá que asegurarse de que todos entienden que grandes cambios se
avecinan—y asegurarte de que entiendes como se siente desde su punto de vista.

Intenta imaginar como la situación se presenta ante ellos: antes, todas las decisiones sobre el código y
diseño eran hechas con un grupo de programadores quienes conocían el software más o menos al mismo
nivel, quienes compartían la misma presión de los mismos directores y quienes conocían entre todos sus
fuerzas y debilidades. Ahora se les pide que expongan su código al escrutinio de extraños al azar, quie-
nes formarán un juicio basado sólo en el código, sin la conciencia de las presiones bajo las cuales se to-
maron ciertas decisiones. Estos forasteros harán muchas preguntas, preguntas que harán que los desarro-
lladores existentes se den cuenta que la documentación en la que se han esclavizado tan duramente sigue
siendo inadecuada (esto es inevitable). Para cerrar con broche de oro, todos estos forasteros son entida-
des desconocidas y sin cara. Si alguno de los desarrolladores ya se siente de por si inseguro sobre sus ha-
bilidades, imaginemos como éste sentimiento es exacerbado cuando recién llegados empiezan a señalar
fallos en el código que han escrito, y aun peor, frente a sus colegas. A menos que se tenga un equipo con
programadores perfectos, esto es inevitable—de hecho, puede que le suceda a todos ellos al principio.
Esto no es porque sean malos programadores; es solo que todo programa de cierto tamaño tiene fallos y
una revisión distribuida descubrirá algunos de estos fallos (Id a “Practicad revisiones visibles del códi-
go” anteriormente en éste capítulo). En algún momento, los recién llegados no serán sujetos a muchas
revisiones al principio, ya que no pueden contribuir con código hasta que estén más familiarizados con
el proyecto. Para tus desarrolladores, podrá parecer que todas las críticas van hacia ellos y no por su par-
te. Por esto, existe el peligro de que los viejos programadores se sientan asediados.

La mejor manera de prevenir esto, es advertir a todos acerca de lo que se avecina, explicarlo, decirles
que el desconcierto inicial es perfectamente normal y asegurar que todo va a mejorar. Algunas de estas
advertencias deberán hacerse en privado, antes de que el proyecto se haga público. Pero también puede
llegar a ser útil recordarle a la gente de las listas publicas que ésta es una nueva dirección en el desarro-

Primeros Pasos

27

llo del proyecto y que tomará algo de tiempo adaptarse. Lo mejor que se puede hacer es enseñar con el
ejemplo. Si no ves a tus desarrolladores respondiendo suficiente preguntas a los nuevos, decirles que de-
ben responder más preguntas no será de gran ayuda. Quizás no tengan aún una noción acerca de que re-
quiere una respuesta y de que no, o puede que no sepan como dar diferentes prioridades a escribir códi-
go y las nuevas tareas de comunicación exterior. La manera de hacerlos participantes es hacerlo uno
mismo. Hay que estar en las listas publicas y responder algunas preguntas. Cuando no se tenga la expe-
riencia necesaria en una materia para responder a una pregunta entonces transfierela visiblemente a un
desarrollador quien pueda responderla—y vigila para asegurarte de que continua con una respuesta. Na-
turalmente será tentador para los desarrolladores más antiguos enfrascarse en discusiones privadas ya
que a esto es a lo que están acostumbrados. Asegurate de suscribirte a las listas internas en las cuales es-
tas discusiones puedan dar lugar, de manera que puedas pedir que la discusión se continúe en las listas
publicas inmediatamente.

Existen otros asuntos a largo plazo con abrir un proyecto cerrado. Capítulo 4, Infraestructura Social y
Política explora técnicas para mezclar exitosamente desarrolladores asalariados y voluntarios y en Capí-
tulo 9, Licencias, Copyrights y Patentes se discute la necesidad de ser diligente al abrir una base de códi-
go que puede contener programas que han sido escritos o que pertenecen a otras personas.

Anunciar
Una vez que el proyecto está presentable—no perfecto, sólo presentable—se está listo para anunciarlo al
mundo. Esto es un proceso bastante sencillo: id a http://freshmeat.net/, pulsamos en Submit en la barra
de navegación superior y rellenad el formulario anunciando el nuevo proyecto. Freshmeat es el sitio que
todos miran a la espera de anuncios sobre nuevos proyectos. Sólo hace falta atrapar unas cuantas mira-
das allí para que noticias sobre el proyecto sean esparcidas de boca en boca.

Si se conocen listas de correos o grupos de noticias donde el anuncio del proyecto sea un tema de inte-
rés, entonces publicalo allí, pero hay que tener cuidado en publicar sólo una vez en cada foro y dirigir a
las personas a los foros del proyecto para más discusiones (configurando la cabecera Reply-to). Los
comentarios en los foros deben ser cortos y directos al grano:

To: discuss@lists.example.org
Subject: [ANN] Scanley full-text indexer project
Reply-to: dev@scanley.org

Este es un sólo mensaje para anunciar la creación del proyecto
Scanley, un indexador y buscador de texto open source con
un extenso API para el uso de programadores quienes desean
crear servicios de búsqueda en grandes colecciones de
ficheros de texto. Scanley ejecuta, está siendo desarrollado
activamente y buscamos nuevos desarrolladores y testers.

Sitio Web: http://www.scanley.org/

Características:
- Busca texto plano, HTML y XML
- Búsqueda de palabras o frases
- (planeado) Búsquedas borrosas
- (planeado) Actualización incremental de los índices
- (planeado) Indexación de sitios web remotos

Requerimientos:
- Python 2.2 o mayor
- Suficiente espacio en disco para contener los índices
(aproximadamente dos veces el tamaño ocupado en disco)

Para más información, visitad scanley.org

Gracias

Primeros Pasos

28

http://freshmeat.net/

-J. Random

(Más información “Publicity” enCapítulo 6, Communications para consejos sobre como anunciar lanza-
mientos posteriores u otros eventos.)

Existe un debate en el mundo del software libre sobre si es necesario empezar con código funcional o si
el proyecto puede empezar a beneficiarse aun cuando está en la fase de diseño y discusión. Solía pensar
que empezar con código funcional era el factor más importante, que esto es lo que separaba proyectos
exitosos de los juguetes y que solo desarrolladores serios se verían atraídos que hacia algo concreto ya.

Esto resulto no ser del todo cierto. En el proyecto Subversion, empezamos con un documento de diseño,
un núcleo de desarrolladores interesados e interconectados, mucha fanfarria y nada de código funcional.
Para mi completa sorpresa, el proyecto recibió participantes activos desde el principio y para el momen-
to en que teníamos algo funcional ya habían unos cuantos desarrolladores voluntarios involucrados pro-
fundamente. Subversion no es el único ejemplo; el proyecto Mozilla también fue iniciado sin código
funcional y ahora es un navegador exitoso y popular.

En vista de ésta evidencia debo retirar mi afirmación sobre que es necesario tener código funcional para
lanzar un proyecto. EL código funcional sigue siendo la mejor base para el éxito y una buena regla del
pulgar sería esperar a tener el código antes de anunciar el proyecto. Por otra parte, pueden haber circuns-
tancias cuando un anuncio temprano puede tener sentido. Si creo que al menos un documento de diseño
bien desarrollado o algún otro tipo de marco de trabajo, es necesario— claro que puede ser modificado
en base a las respuestas publicas, pero debe haber algo tangible, en el que las personas puedan hincar sus
dientes.

Cuando sea que se anuncie un proyecto, no hay que esperar una horda de voluntarios listos para unirse
inmediatamente. Usualmente, el resultado de anunciar es que se obtiene algunas preguntas casuales, al-
gunas otras personas se unen a la lista de correos y aparte de esto, todo continua como antes. Pero con el
tiempo, podréis notar un incremento gradual en la participación tanto de usuarios como de nuevo código
de voluntarios. Anunciar es solo plantar una semilla, puede tomar un largo tiempo para que la noticia se
extienda. Si el proyecto recompensa constantemente a quienes se involucran, las noticias se extenderán,
pues la gente desea compartir algo cuando han encontrado algo bueno. Si todo va bien, la dinámica de
las redes exponenciales de comunicación lentamente transformaran el proyecto en una compleja comu-
nidad donde no se conoce el nombre de todos y no se puede seguir cada una de las conversaciones. Los
próximos capítulos son acerca de como trabajar en éste ambiente.

Primeros Pasos

29

1De su libroEl mes mítico del hombre, 1975. Más en http://en.wikipedia.org/wiki/The_Mythical_Man-Month y en
http://en.wikipedia.org/wiki/Brooks_Law.

Capítulo 3. Infraestructura Técnica
Los proyectos de software libre dependen en la tecnología que aportan la captura selectiva e integral de
información. Mientras mejor se sea usando estas tecnologías y persuadiendo a otros para utilizarlas, ma-
yor será el éxito del proyecto. Esto se vuelve más cierto mientras el proyecto crece. Un buen manejo de
la información es lo que previene a un proyecto open source de colapsar bajo el peso de la Ley de
Brook,1 la cual afirma que asignar fuerza de trabajo adicional a un proyecto retrasado lo demorará aún
más. Fred Brooks observó que la complejidad de un proyecto se incrementa alcuadradodel número de
participantes. Cuando solo unas pocas personas están involucradas, todos pueden hablar entre todos fá-
cilmente, pero cuando cientos de personas están involucradas, ya no es posible que cada uno de los indi-
viduos se mantengan constantemente al tanto de lo que todos los demás están haciendo. Si dirigir bien
un proyecto de software libre se trata de hacer que todos se sientan como si estuviesen trabajando juntos
en la misma habitación, es obvio preguntar: ¿Qué sucedería si todas las personas en una habitación ates-
tada de gente hablase a la vez?

Este problema no es nuevo. En una habitación no metafórica atestada, la solución es un procedimiento
parlamentario : guías formales acerca de como tener discusiones en tiempo real en grupos grandes, co-
mo asegurarse de que las disensiones más importantes no se pierdan entre comentarios irrelevantes, co-
mo formar subcomites, como reconocer cuando se toman decisiones, etc. Las partes más importantes en
un procedimiento parlamentario especifican como deben interactuar los grupos con su sistema de mane-
jo de información. Algunos comentarios se hacen para el registro, otros no. El registro mismo es sujeto a
manipulación directa y se entiende que no es una transcripción literal de lo que ha ocurrido, sino que es
una representación a lo que el grupo está dispuesto a acordar sobre lo sucedido. El registro no es mono-
lítico, sino que toma diferentes formas para diferentes propósitos. Comprende los minutos de encuentros
individuales, una colección completa de todos los minutos de todos los encuentros, sumarios, agendas y
sus anotaciones, reportes de comités, reportes de corresponsales no presentes, listas de acción, etc.

Dado que Internet no es realmente una habitación, no debemos preocuparnos acerca de replicar aquellas
partes de los procesos parlamentarios que mantiene a algunas personas calladas mientras las demás ha-
blan. Pero cuando nos referimos a técnicas de manejo de la información, proyectos open source bien di-
rigidos son como procesos parlamentarios en esteroides. Ya que todas las comunicaciones en los proyec-
tos open source suceden por escrito, sistemas muy elaborados han evolucionado para enrutar y etiquetar
apropiadamente los datos, para minimizar las repeticiones de forma que se eviten divergencias espurio-
sas, para almacenar y buscar los datos, para corregir información incorrecta u obsoleta y para asociar
bits dispares de información con cada uno mientras que nuevas conexiones son observadas. Los partici-
pantes activos en los proyectos open source integran muchas de estas técnicas y a menudo realizaran
complejas labores manuales para asegurar que la información sea dirigida correctamente. Pero todo el
esfuerzo depende al final de un sofisticado soporte informático. Tanto que sea posible, los mismos me-
dios de comunicación deben realizar éste enrutamiento, etiquetado y registro y debería mantener la in-
formación al alcance de los humanos de la manera más conveniente posible. En la práctica, por supues-
to, los humanos siguen necesitando intervenir en muchos puntos durante el proceso y también es impor-
tante que estos programas hagan ésta intervención lo más conveniente. Pero por lo general, si los huma-
nos se encargan de etiquetar y enrutar información acertadamente desde su primera entrada en el siste-
ma, entonces el software debería estar configurado para dar el máximo uso posible a esa metadata.

El consejo de éste capítulo es intensamente práctico, basado en las experiencias con aplicaciones y pa-
trones específicos. Pero el objetivo no es sólo enseñar una colección particular de técnicas. Es también
demostrar, utilizando pequeños ejemplos, la actitud general que mejor fomentará el correcto uso de los
sistemas de manejo de información en el proyecto. Esta actitud incluye una combinación de habilidades
técnicas y don de gentes. Las habilidades técnicas son esenciales porque las aplicaciones de manejo de
información siempre requieren cierta configuración y además una cierta cantidad de mantenimiento y
puesta apunto mientras nuevas necesidades vayan surgiendo (por ejemplo, mirad la discusión de como
manejar el crecimiento del proyecto en “Pre-filtrado del gestor de fallos” más adelante en éste capítulo).
El don de gentes es necesario porque la comunidad humana también requiere de cierto mantenimiento:

30

http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://en.wikipedia.org/wiki/Brooks_Law

no siempre es inmediatamente obvio como utilizar estas herramientas para obtener una ventaja completa
y en algunos casos los proyectos tienen convenciones conflictivas (por ejemplo, la discusión de como
crear cabeceras Reply-to en los mensajes salientes de las lista de correos, en “Listas de correo”). To-
dos los involucrados en el proyecto van a necesitar ser animados, en el momento correcto de la forma
correcta, para que sigan manteniendo la información del proyecto bien organizada. Mientras más involu-
crado esté el contribuyente, más complejas y especializadas serán las técnicas que se esperará que apren-
dan.

El manejo de información no tiene soluciones rápidas ya que existen demasiadas variables. Pueden que
finalmente se tenga todo configurado justo como se desea y tener a la mayoría de la comunidad partici-
pando pero luego el crecimiento del proyecto hace de estas practicas no escalables. El puede que el cre-
cimiento del proyecto se estabilice y que la comunidad de usuarios y desarrolladores acuerden una rela-
ción confortable con la infraestructura técnica pero llega alguien e inventa un nuevo servicio de manejo
de información completo y pronto muchos de los recién llegados empezarán a preguntar que por qué no
es utilizado en el proyecto— por ejemplo, esto está sucediendo mucho últimamente en proyectos de
software libre que son anteriores a la invención del Wiki (más en http://en.wikipedia.org/wiki/Wiki).
Muchas cuestiones son materia de juicio, incluyendo las desventajas entre la conveniencia de aquellos
generando información y la conveniencia de aquellos quienes la consumen o entre el tiempo requerido
para configurar el software de manejo de la información y los beneficios que le brinda al proyecto.

Cuidado con la tentación de automatizar demasiado, esto es, automatizar cosas que realmente requieren
de atención por parte de los humanos. La infraestructura técnica es importante, pero lo que hace que los
proyectos de software libre funcionar es el cuidado—y la expresión inteligente de éste cuidado—de los
humanos involucrados. Principalmente, la infraestructura técnica está para ofrecer medios convenientes
para hacer esto.

Lo que necesita un proyecto
La mayoría de los proyectos open source ofrecen al menos un mínimo y estándar conjunto de herramien-
tas para manejar información:

Sitio Web
Principalmente, conducto de información centralizado en un sentido del proyecto para el público. El
sitio web puede también servir como una interfaz para otras herramientas del proyecto.

Listas de Correo
Usualmente es el foro de comunicación más activo del proyecto y el "medio de registro."

Control de Versiones
Permite a los desarrolladores realizar cambios al código convenientemente, incluso retroceder y ex-
portar cambios. Le permite a todos mirar lo que está sucediendo con el código.

Gestión de fallos
Permite a los desarrolladores mantener un registro de en qué están trabajando, coordinandose entre
ellos y planear lanzamientos. Permite que todo el mundo pueda realizar búsquedas acerca del estado
de los fallos y registrar información (p.e. recetas reproducibles) acerca de fallos en particular. Puede
ser utilizado para seguir no solo fallos, sino también lanzamientos, tareas, nuevas características,etc.

Chat en tiempo real
Un sitio para discusiones rápidas, sencillas e intercambios de preguntas/respuestas. No siempre se
archiva completamente.

Cada una de estas herramientas está dirigida a distintas necesidades, pero sus funciones están también
interrelacionadas y se debe hacer que estas herramientas trabajen en conjunto. Más abajo examinaremos
como podemos lograr esto y más importante aun como hacer que las personas se acostumbren a usarlas.
El sitio web no se discute hasta el final, ya que actúa más como un pegamento para otros componentes

Infraestructura Técnica

31

http://en.wikipedia.org/wiki/Wiki

que como una herramienta en sí.

Se pueden evitar muchos dolores de cabeza por escoger y configurar estas herramientas si en su lugar
utilizamos un hosting enlatado : un servicio que ofrece todas las herramientas necesarias para un pro-
yecto open source ya listas para su uso gracias a plantillas y empaquetado. Más en “Soluciones de hos-
pedaje” a continuación en éste mismo capítulo para una discusión más profunda acerca de ventajas y
desventajas de estas soluciones.

Listas de correo
Las listas de correo son el pan y la mantequilla de las comunicaciones del proyecto. Si algún usuario es
expuesto a algún foro aparte de las paginas web, probablemente sea la lista de correos del proyecto. Pero
antes de trabajar con las listas en si mismas, deben tomar experiencia con la interfaz—esto es, el meca-
nismo por el cual se pueden unir ("suscribirse a") a la lista. Esto nos brinda la regla número uno de las
listas de correo:

No intentes dirigir las listas de correo a mano—consigue un software de manejo de
listas.

Será tentador dejar esto de lado. Configurar un software para listas de correo puede parecer demasiado
difícil al principio. Manejar listas pequeñas de bajo tráfico a mano puede parecer seductor al principio:
sólo hay que montar una lista de suscripción que te reenvía todo y cuando alguien envía un mensaje, se
agrega (o elimina) su dirección de correo en algún tipo de fichero de texto que almacena todas las direc-
ciones de la lista. ¿Qué podría ser más sencillo?

El truco está en hacer un buen manejo de las listas de correo—lo cual no es lo que la gente espera— no
es nada sencillo. No es solo sobre suscribir y de suscribir usuarios cuando lo solicitan. También es sobre
moderar para prevenir SPAM, ofrecer la lista resumida en lugar de mensaje por mensaje, proporcionar
una lista estándar e información del proyecto a través de auto respuestas y muchas otras cosas. Un ser
humano monitorizando las direcciones de suscripción es solo una pequeña parte del mínimo de funcio-
nalidad e incluso así, no es la forma más segura y puntual que un software podría ofrecer.

Un software para el manejo de listas de correo usualmente ofrece las siguientes características:

Suscripción a través de correos o basada en web
Cuando un usuario se suscribe a la lista, debería recibir una respuesta de bienvenida sin demora, ex-
plicándole como seguir interactuando con el software y (más importante) con eliminar la suscrip-
ción. Esta respuesta automática puede ser modificada para contener información específica del pro-
yecto, por supuesto, como el sitio web, localización del FAQ, etc.

Suscripción al modo de resúmenes o al modo de mensaje por mensaje
En modo resumen, el suscriptor recibe un correo conteniendo toda la actividad de la lista en ese día.
Para aquellos quienes desean seguir la lista indirectamente, sin participar, el modo resumen es a me-
nudo el preferible, porque les permite revisar todos los temas a la vez y evitar las distracciones de
los correos que llegan en momentos al azar.

Características para la moderación
Moderar es revisar los mensajes para asegurar que: a) no es SPAM y b) en tema, antes de que lle-
guen a la lista. La moderación incluye necesariamente a seres humanos, pero el software puede ha-
cer mucho para hacerlo más sencillo. Se discute más acerca de la moderación luego.

Interfaz Administrativa
Entre otras cosas, le permite a un administrador eliminar direcciones obsoletas fácilmente. Esto pue-
de hacerse urgentemente cuando la dirección del receptor empieza a enviar respuestas automáticas
del tipo "Ya no tengo ésta dirección de correo" a la lista en respuesta a cada mensaje. (Algunas apli-

Infraestructura Técnica

32

caciones para listas de correo pueden incluso detectar esto por si mismas y eliminar la suscripción
de ésta persona automáticamente.)

Manipulación de las cabeceras
Muchas personas tienen sofisticados filtros y reglas de respuestas configuradas en sus clientes de
correo. Las aplicaciones de listas de correo pueden añadir y manipular ciertas cabeceras estándar de
las que estas personas se puedan beneficiar (más detalles a continuación).

Archivo
Todos los mensajes enviados a las listas son almacenados y hechos públicos en la web. Alternativa-
mente, algunas aplicaciones de software para listas de correo ofrecen interfaces especiales para co-
nectar alguna herramienta externa de archivo como MHonArc (http://www.mhonarc.org/). Al igual
“Sobresaliente uso de los archivos” en Capítulo 6, Communications se discute que el archivo es cru-
cial.

El objetivo de todo esto es sencillamente enfátizar que la administración de las listas de correo es un
problema complejo sobre el cual se ha pensado mucho y que está casi resuelto. Ciertamente no es nece-
sario convertirse en un experto, pero hay que reseñar que siempre hay lugar para el aprendizaje y que la
administración de las listas ocupara algo de atención de vez en cuando durante la duración del proyecto.
A continuación examinaremos algunos de los problemas más comunes que podemos encontrar al confi-
gurar las listas de correo.

Prevenir el Spam
Entre el momento cuando ésta frase es escrita y cuando es publicada, el problema a lo largo y ancho de
Internet el problema del Spam probablemente sea el doble de severo—o al menos parecerá que es así.
Hubo una época, no mucho tiempo atrás, cuando se podía administrar una lista de correos sin la necesi-
dad de tomar medidas para prevenir el Spam. Algún mensaje extraviado ocasional aparecía pero con tan
poca frecuencia que solo era una molestia de bajo nivel. Esa época ya es historia. Hoy, las listas de co-
rreo que no toman medidas preventivas en contra del Spam se verá sumergida rápidamente en correo ba-
sura hasta el punto de ser inútil. Prevenir el Spam es una prioridad.

La prevención de Spam se divide en dos categorías: prevenir que mensajes basura aparezcan en la lista y
prevenir que la lista sea utilizada como fuente de nuevas direcciones de correo para los spammers. La
primera es la más importante, así que la examinaremos primero.

Filtrado de los mensajes

Existen tres técnicas básicas para prevenir mensajes basura y muchas aplicaciones para listas ofrecen las
tres. Lo mejor es utilizarlas en tandem:

1. Sólo permitir automáticamente mensajes de los suscriptores a la lista.

Esto es efectivo hasta cierto punto y necesita de poca administración ya que usualmente es sólo cues-
tión de cambiar algunos puntos en la configuración de la aplicación de listas. Hay que apuntar que
aquellos mensajes que no son aprobados automáticamente no deben ser desechados. En su lugar, de-
ben ser moderados por dos razones. Primero, se deben permitir mensajes de quienes no están suscri-
tos. Alguna persona con una pregunta o sugerencia no debería tener que suscribirse a la lista para en-
viar un solo mensaje. Segundo, incluso quienes están suscritos envían mensajes desde cuentas dife-
rentes de la que han utilizado para suscribirse. Las direcciones de correo electrónico no son un méto-
do eficaz para identificar a las personas y no debe ser utilizado para esto.

2. Filtrar los mensajes utilizando un programa de filtro de spam.

Si la aplicación de listas de correo lo permite (la mayoría lo hace) se pueden filtrar los mensajes utili-
zando un filtro anti-spam. El filtrado automático de Spam no es perfecto, y nunca lo será, ya que exis-

Infraestructura Técnica

33

http://www.mhonarc.org/

te un pulso sin fin entre los spammers y los escritores de filtros. A pesar de esto, se puede reducir
enormemente la cantidad de Spam que llega a la cola de moderación y dado que mientras más larga
sea ésta cola, se necesitaran más tiempo examinándola, así que cualquier filtrado automático es bene-
ficioso.

No hay lugar suficiente para unas instrucciones detalladas sobre como configurar filtros de Spam.
Habrá que consultar la documentación de la aplicación de listas de correo para esto (en “Software”
más adelante en éste capítulo). Las aplicaciones para listas vienen con características para la preven-
ción de Spam, pero quizás sería una buena idea añadir una solución de un tercero. He tenido buenas
experiencias con estas dos: SpamAssassin (http://spamassassin.apache.org/) y SpamProbe
(http://spamprobe.sourceforge.net/). Esto no es una crítica contra otros filtros anti spam open source
que al parecer son muy buenos también. Sucede que sólo he tenido la oportunidad de utilizar estos
dos y estar satisfecho con ellos.

3. Moderación.

Para aquellos correos que no son automáticamente aceptados por su virtud de ser enviados por un
suscriptor a la lista y que pasan a través del filtro anti-spam, si es que lo hay, la ultima fase es la mo-
deración: el correo es enrutado a una dirección especial, donde alguien lo examina y lo confirma o
rechaza.

Confirmar un mensaje se puede hacer de dos formas: se puede aceptar el mensaje sólo una vez o se le
puede indicar a la aplicación que acepte éste y todos los mensajes futuros de éste remitente. Casi
siempre deseamos hacer lo último de manera que podamos reducir la carga futura en la moderación.
Los detalles sobre como confirmar esto, varían entre sistemas pero usualmente es una cuestión de res-
ponder a una dirección en especial con el comando "aceptar" (lo que significa que sólo se aceptará és-
te mensaje) o "permitir" (permitir éste y todos los mensajes futuros).

Rechazar un mensaje se hace simplemente ignorando el correo de moderación. Si la aplicación nunca
recibe confirmación de que algo es un mensaje valido entonces no pasará a la lista, así que con solo
ignorar el correo de moderación creará el efecto deseado. En algunos casos, existe la opción de res-
ponder con los comandos "rechazar" o "denegar" para que automáticamente se desaprueben los men-
sajes del remitente sin siquiera pasarlos por la moderación. Raramente existe una razón para hacer es-
to ya que la moderación es por lo general para prevenir el spam y los spammers no suelen utilizar una
misma dirección dos veces.

Hay que asegurarse de que la moderación sólo se utiliza para filtrar el spam y mensajes fuera de contex-
to, como cuando alguien envía un correo a la lista equivocada. El sistema de moderación por lo general
ofrece una manera de responder directamente al remitente pero es mejor no utilizarlo para responder a
preguntas que realmente pertenecen a la lista, incluso si se sabe la respuesta inmediatamente. De hacer
esto, se privaria a la comunidad del proyecto de una visión exacta de que tipo de preguntas la gente hace
y privarlos de la oportunidad de responder ellos mismos a preguntas y/o ver las respuestas de otros. La
moderación de las listas debe ser estrictamente para mantenerlas libres de basura y de correos fuera de
contexto, nada más.

Ocultar las direcciones en los archivos

Para prevenir que los spammers utilicen las listas de correo como una fuente de direcciones, una técnica
muy común es la de ocultar las direcciones de correo de la gente en el registro, reemplazándolas como
por ejemplo:

jrandom@somedomain.com

por

Infraestructura Técnica

34

http://spamassassin.apache.org/
http://spamprobe.sourceforge.net/

jrandom_AT_somedomain.com

o

jrandomNOSPAM@somedomain.com

o algo similar igual de obvio (para un humano). Ya que los recolectores de direcciones por lo general
funcionan reptando por paginas web—incluyendo el archivo de nuestra lista de correo— y buscando se-
cuencias conteniendo "@", modificar las direcciones es una forma para que sean invisibles o inútiles pa-
ra los spammers. Esto no hace nada para prevenir que se envié spam desde la lista, por supuesto, pero si
evita que se incremente la cantidad de spam enviado directamente a las cuentas personales de los usua-
rios de la lista.

Ocultar las direcciones puede ser algo controversial. A algunas personas les puede gustar mucho y se
sorprenderán si el registro no lo hace automáticamente. Otras pueden pensar que es demasiado inconve-
niente (porque los humanos también tenemos que traducir las direcciones antes de utilizarlas). Algunas
veces las personas afirman que es inefectivo, porque los recolectores en teoría pueden compensar cual-
quier patrón de modificación consistente. No obstante, hay que señalar que existe evidencia empírica de
que ocultar las direcciones es efectivo, como se puede ver en
http://www.cdt.org/speech/spam/030319spamreport.shtml.

Lo ideal sería que la aplicación administrativa de la lista diese la posibilidad de escoger a cada indivi-
duo, utilizando una cabecera si/no especial o configurándolo en las preferencias de la cuenta del suscrip-
tor. Sin embargo, no conozco ninguna aplicación que permita hacer esto para cada suscriptor o para cada
mensaje, así que por ahora el administrador de la lista debe tomar la decisión en nombre de todos
(asumiendo que el archivador ofrece ésta característica, lo cual no es siempre así). Yo me inclino ligera-
mente hacia ocultar las direcciones. Algunas personas son muy cuidadosas para evitar enviar sus direc-
ciones de correo electrónico en paginas web o en cualquier lugar donde un recolector de spam pueda
verla, y podrían ser decepcionante que todo ese cuidado sea perdido gracias al registro de la lista de co-
rreo. Mientras tanto, la inconveniencia al ocultar las direcciones que impone en los usuarios del registro
es muy pequeña, dada la trivialidad de transformar las direcciones al formato correcto si se necesita con-
tactar con esa persona. Pero hay que seguir pensando en que, al final, sigue siendo una lucha sin fin: pa-
ra cuando haya leído esto, los recolectores podrían haber evolucionado hasta el punto de reconocer la
mayoría de formas comúnmente utilizadas para ocultar y tendremos que pensar en algo más.

Identificación y Administración de cabeceras
Por lo general, los suscriptores de las listas mueven estos correos a una carpeta específica para el pro-
yecto, separados de su otro correo personal. Sus clientes de correo hacen esto automáticamente al exa-
minar las cabeceras de los mensajes. La cabecera son los campos que se encuentran en la parte superior
de los correos, los cuales indican el remitente, destinatario, asunto, fecha e información variada sobre el
mensaje. Cabeceras certeras son bien conocidas y obligatorias:

From: ...
To: ...
Subject: ...
Date: ...

Otras son opcionales, aunque de cierta manera estándar. Por ejemplo, no es estrictamente requerido que
un correo electrónico tenga la cabecera

Reply-to: sender@email.address.here

Infraestructura Técnica

35

http://www.cdt.org/speech/spam/030319spamreport.shtml

pero muchas lo tienen, porque da al destinatario una manera a prueba de errores de responder al remiten-
te (es especialmente útil cuando el remitente ha tenido que enviar un correo desde una dirección diferen-
te a la cual las respuestas deben ser dirigídas).

Algunos clientes de correo ofrecen una interfaz fácil de usar para rellenar correos basados en patrones en
la cabecera Asunto. Esto lleva a que la gente pida que la lista de correo añada automáticamente un prefi-
jo a todos los Asuntos, de forma que puedan configurar sus clientes para que busquen esos prefijos y ar-
chivar los correos en el directorio correcto. La idea es que el autor original escribiría:

Asunto: Trabajando en la versión 2.5

pero el correo aparecería en la lista así:

Asunto: [discuss@lists.example.org] Trabajando en la versión 2.5

Aunque la mayoría de las aplicaciones de administración de listas ofrecen la opción de hacer esto, yo re-
comiendo no utilizarla. El problema que resuelve puede ser resuelto de otras formas menos intrusas y los
costes de utilizar espacio en el campo del Asunto son demasiado grandes. Los usuarios experimentados
de las listas de correos revisan el asunto de los correos entrantes del día para decidir acerca de qué van a
leer y qué van a responder. Fijar el nombre de la lista al Asunto puede mover hacia la derecha el verda-
dero Asunto y fuera de la pantalla, haciéndolo invisible. Esto oculta información necesaria para aquellos
quienes dependen en la decisión de cuales correos van a abrir, reduciendo la funcionalidad conjunta de
la lista para todos.

En lugar de sobrecargar el Asunto, hay que enseñar a los usuarios para que saquen ventajas de otras ca-
beceras estándar, empezando con el campo "Para", el cual debería contener el nombre de la lista de co-
rreos:

To: <discuss@lists.example.org>

Cualquier cliente de correo capaz de filtrar los mensajes basándose en el Asunto debe ser capaz de filtrar
utilizando el campo Para facilmente.

Existen otras cabeceras opcionales pero estándar para las listas de correo. Filtrar utilizándolos es incluso
más fiable que utilizar las cabeceras "Para" o "Cc" dado que estas cabeceras son añadidas a todos los
mensajes por el programa de administración de la lista, así que algunos usuarios están contando con su
presencia:

list-help: <mailto:discuss-help@lists.example.org>
list-unsubscribe: <mailto:discuss-unsubscribe@lists.example.org>
list-post: <mailto:discuss@lists.example.org>
Delivered-To: mailing list discuss@lists.example.org
Mailing-List: contact discuss-help@lists.example.org; run by ezmlm

La mayoría se explican en si mismos. En http://www.nisto.com/listspec/list-manager-intro.html se expli-
can mejor o en http://www.faqs.org/rfcs/rfc2369.html para una especificación formal más detallada.

Hay que señalar como estas cabeceras implican que si se tiene una lista de correos llamada "list" enton-
ces se tienen también unas direcciones administrativas "list-help" y "list-unsubscribe". Además de estas,
es normal tener "list-subscribe" para unirse y "list-owner" para contactar con el administrador de la lista.
Dependiendo en la aplicación administrativa que se use, estas y/o otras direcciones administrativas va-
rias pueden ser configuradas; la documentación debería detallar esto. A menudo una explicación com-

Infraestructura Técnica

36

http://www.nisto.com/listspec/list-manager-intro.html
http://www.faqs.org/rfcs/rfc2369.html

pleta de todas estas direcciones especiales es enviada a cada nuevo suscriptor como parte de un mensaje
de bienvenida automático. Probablemente usted mismo reciba una copia de esto correo de bienvenida. Si
no lo ha recibido, pida una copia a alguien, de manera que pueda saber qué están recibiendo los nuevos
suscriptores. Mantenga la copia a mano de manera que pueda responder preguntas acerca del funciona-
miento de la lista, o mejor aun, ponerlo en una página web en alguna parte. Así, cuando alguien pierda
su copia de las instrucciones y pregunte cómo pueden eliminarse de la lista, se les facilita la URL.

Algunas aplicaciones para listas de correos ofrecen la opción de agregar al final de cada mensaje las ins-
trucciones para eliminar la suscripción. Si ésta opción está disponible, usela. Solo causa algunas lineas
extra por mensaje en un sitio inofensivo y puede ahorrar mucho tiempo al reducir el número de gente
que escriba —o peor aún, que escriban a la lista—preguntando cómo eliminar la suscripción.

El gran debate del Reply-To
Antes en “Evitar discusiones privadas” hice incapie en la importancia de asegurar que las discusiones se
mantengan en foros públicos y hable acerca de porque a veces tomar medidas activas es necesario para
prevenir que algunas conversaciones deriven a hilos privados. Este capítulo es acerca de todo lo relacio-
nado con preparar el software de comunicación del proyecto para que realice la mayor cantidad de traba-
jo posible. Así que, si la aplicación para la administración de las listas de correo ofrece una manera auto-
mática de encausar las discusiones a la lista, habría que pensar que habilitarla es la opción correcta.

Bueno, quizás no. Existe tal característica, pero tiene algunas desventajas muy importantes. Usarla o no
es uno de los debates más calientes en la administración de las listas de correo—admitamoslo, no es una
controversia que vaya a aparecer en las noticias, pero se puede iniciar de vez en cuando en los proyectos
de software libre. A continuación, voy a describir esta característica, proponer los argumentos de cada
posición y hacer la mejor recomendación que puedo.

Esta característica en si misma es muy sencilla: la aplicación para las listas puede, si lo deseamos, auto-
máticamente establecer la cabecera Reply-To en todos los mensajes para dirigir todas las respuestas a la
lista. Así que, sin importar lo que escriba el remitente en este campo (o si ni siquiera lo establecen) para
cuando los suscriptores a la lista vean el mensaje, éste contendrá la dirección de la lista en la cabecera:

Reply-to: discuss@lists.example.org

Esto puede parecer algo bueno, porque virtualmente todos los clientes de correo prestan atención a esta
cabecera y ahora cada vez que alguien responda a algún mensaje, su respuesta será automáticamente di-
rigida a la lista, no sólo a quien ha enviado el mensaje que se responde. Por supuesto que el remitente
puede manualmente modificar esto, pero lo importante es que por defecto las respuestas son enviadas a
la lista. Este es un ejemplo perfecto de como utilizar la tecnología para animar la colaboración.

Desafortunadamente, existen algunas desventajas. La primera es conocida como el problema No puedo
llegar a casa: a veces, el remitente original establece su dirección de correo real en el campo Reply-To
porque por alguna razón u otra envían correos utilizando una dirección diferente a la que utilizan para
recibirlos. Las personas que envían y reciben correos desde el mismo sitio no tienen éste problema y
quizás se sorprendan de que siquiera existe. Pero para quienes utilizan configuraciones de correo inusua-
les o quienes no pueden controlar como se forma el campo From de su dirección de correo electrónico
(quizás porque envían correos desde sus trabajos y no tienen ninguna influencia sobre el departamento
de sistemas) el utilizar el campo Reply-To quizás sea la única manera que tienen para asegurarse de que
las respuestas a sus mensajes les llegan (encuentran el camino a casa). Así que si la aplicación de las lis-
tas sobre escribe esto, esta persona puede que nunca vea las respuestas a sus mensajes.

La segunda desventaja se refiere a las expectativas y en mi opinión, el argumento más fuerte en contra
del cambio del Reply-To. La mayoría de los usuarios experimentados de correo electrónico están acos-
tumbrados a dos métodos básicos de responder: Responder a todos y Responder al remitente. Todos los
clientes de correo tienen botones separados para estas dos acciones. Sus usuarios saben que para respon-
der a todos los incluidos en la lista, deben escoger, responder a todos y que para responder sólo al remi-

Infraestructura Técnica

37

tente en privado, deben seleccionar Responder al remitente. Aunque se desee animar a que la gente res-
ponda a la lista siempre que sea posible, existen ciertas circunstancias cuando un mensaje privado al re-
mitente es prerrogativo—por ejemplo, desean compartir información confidencial, algo que sería inapro-
piado para una lista pública.

Ahora consideremos lo que sucede cuando la lista sobre escribe la cabecera Reply-To original del remi-
tente. Quien responde pulsa la opción de Responder al remitente, con la esperanza de enviar un mensaje
privado al autor original. Porque esta es la conducta esperada y quizás esta persona no se moleste en
examinar cuidadosamente la dirección del destinatario en el nuevo mensaje. Redacta su correo privado,
un mensaje confidencial, uno que puede diga algo embarazoso acerca de alguien de la lista y pulsa el bo-
tón de enviar. Inesperadamente el mensaje llega a la lista unos minutos después. Cierto, en teoría debe-
ría haber revisado cuidadosamente el destinatario y no debería haber asumido nada acerca del campo
Reply-To. Pero por lo general este campo se compone con su dirección de correo personal (o en su lu-
gar, los clientes de correo lo hacen) y muchos usuarios asiduos del correo electrónico dan esto por segu-
ro. De hecho, cuando alguien determina deliberadamente el campo Reply-To a alguna otra dirección, co-
mo la de la lista, usualmente señalan esto en el contenido del mensaje, de forma que quienes respondan
no se sorprendan de lo que sucede cuando lo hacen.

Dada la posibilidad de consecuencias muy severas de esta conducta inesperada, mi preferencia es la de
configurar la aplicación de la lista para que nunca toque la cabecera Reply-To. Este caso de cuando se
utiliza la tecnología para animar la colaboración tiene, a mi parecer, efectos colaterales potencialmente
peligrosos. Por otro lado, existen argumentos concretos del otro lado de este debate. Sea lo que sea que
se escoja, puede que en ocasiones algunas personas pregunten por qué no se ha escogido el otro camino.
Dado que esto no es algo que se quiere sea el principal tema de discusión en la lista, puede ser conve-
niente tener una respuesta preparada del tipo que sea más propensa a poner fin a la discusión en lugar de
animarla. Hay que asegurarse de no insistir en que esta decisión, sea cual sea, es obviamente la única co-
rrecta (incluso cuando se crea que esto es así). En cambio, hay que señalar que este es un viejo debate,
que existen buenos argumentos de cada lado, que ninguna decisión iba a satisfacer a todos los usuarios y
que por esto se ha tomado la mejor decisión que se podía. Amablemente se pide que el tema no vuelva a
surgir a menos que alguien tenga algo realmente nuevo que decir, entonces hay que mantenerse alejado
y esperar a que muera por causas naturales.

Alguien podría sugerir una votación. Se puede permitir esto si se quiere, pero personalmente no creo que
contar manos sea una solución satisfactoria en este caso. El castigo para alguien que se vea sorprendido
por este comportamiento es demasiado (accidentalmente enviar un correo privado a la lista publica) y las
molestias para todos los demás es pequeña (ocasionalmente recordarle a alguien que deben responder a
la lista) por esto no está claro de que la mayoría, aunque sean la mayoría, deban poner a una minoría ba-
jo ese riesgo.

No he llegado a tocar todos los aspectos acerca de este tema, sólo los que me han parecido de especial
importancia. Para una discusión completa, se pueden leer los siguientes documentos, los cuales son
siempre citados cuando se entra en el debate:

• Leave Reply-to alone, por Chip Rosenthal

http://www.unicom.com/pw/reply-to-harmful.html

• Set Reply-to to list, por Simon Hill

http://www.metasystema.net/essays/reply-to.mhtml

A pesar de las benignas preferencias indicadas anteriormente, no creo que exista una única respuestas
correcta y he participado felizmente de muchas listas que cambiabanel Reply-To. Lo mejor que se puede
hacer, es centrarse en alguna de las dos vías desde el principio e intentar no verse enredado en debates
sobre esto despues.

Dos fantasías

Infraestructura Técnica

38

http://www.unicom.com/pw/reply-to-harmful.html
http://www.metasystema.net/essays/reply-to.mhtml

2 Poco después de que este libro apareciera, Michael Bernstein [http://www.michaelbernstein.com/] me escribió para comentarme
lo siguiente: "Existen otros clientes de correos que implementan una función de responder a la lista a parte de Mutt. Por ejemplo,
Evolution tiene una combinación de teclas, pero no un botón (Ctrl+L)."
3Desde que escribí esto, he aprendido que existe al menos un sistema de gestión de listas que ofrece esta característica: Siesta
[http://siesta.unixbeard.net/]. Hay un artículo sobre este en http://www.perl.com/pub/a/2004/02/05/siesta.html

Algún día, alguien tendrá la brillante idea de implementar una opción Responder a la lista en su cliente
de correo. Podría utilizar alguna de las cabeceras para listas mencionadas antes para descubrir la direc-
ción de la lista de correos y luego direccionar las respuestas directamente a la lista, ignorando cualquier
otro destinatario, ya que probablemente muchos estén suscritos a la lista de todas formas. Eventualmen-
te, otros clientes implementarán esta característica y todo el debate desaparecerá. (De hecho, el cliente
de correos Mutt [http://www.mutt.org/] ofrece esta opción.2)

Una mejor solución sería que el tratamiento del campo Reply-To fuese una opción por suscriptor. Quie-
nes deseen que la lista modifique sus cabeceras Reply-To (ya sea en sus mensajes o en los de otros) po-
dría solicitarlo, y quienes no lo desean, se les deja tranquilos. Aunque no conozco ninguna aplicación
para listas de correo que permita esto para cada suscriptor. Así que por ahora, parece que estamos atados
a una configuración global.3

Archivo
Los detalles técnicos para configurar un archivo para la lista de correos son específicos de la aplicación
utilizada y están fuera del alcance de este libro. Al escoger o configurar un archivador, es conveniente
considerar lo siguiente:

Actualización rápida
A menudo la gente querrá ser referida a un mensaje enviado durante la ultima hora o dos. Si es posi-
ble, el archivador deberá archivar cada mensaje instantáneamente, de tal manera de que cuando el
mensaje aparezca en la lista de correos, ya esté en el archivo. Si esa opción no esta disponible en-
tonces al menos hay que intentar configurar el archivado para que se realice cada hora o así. (Por
defecto, algunos archivadores ejecutan el proceso de actualización cada noche, pero en la práctica
esta demora es demasiado larga para una lista de correos.

Estabilidad referencial
Una vez que un mensaje es archivado bajo una URL en particular, debe ser accesible desde esa
URL para siempre. Incluso si el archivo es reconstruido o restaurado de un respaldo, cualquier URL
que haya sido hecha publica debe permanecer igual. Las referencias estables hacen posible que los
buscadores de Internet sean capaces de indexar el archivo, lo cual es una gran ventaja para los usua-
rios que buscan respuestas. Las referencias estables son también importantes porque los mensajes
de la lista y los hilos son enlazados desde el gestor de fallos (“Seguimiento de errores”) más ade-
lante en este capítulo o en la documentación de otros proyectos.

Lo ideal sería que la aplicación de la lista de correos incluya la URL del mensaje archivado o al me-
nos la porción de la URL específica del mensaje en una cabecera cuando este es distribuido. De esta
manera la gente que haya recibido el mensaje podrá conocer su lugar en el archivo sin la necesidad
de visitar el archivo, lo cual es de gran ayuda, ya que cualquier actividad que implique el uso del na-
vegador web es automáticamente un consumo de tiempo. Que alguna aplicación de listas de correos
ofrece esta posibilidad no lo sé. Desafortunadamente, los que he utilizado no la tienen. Pero esto es
algo que hay que buscar (o si desarrolla una aplicación de listas, esta es una característica que debe
considerar implementar, por favor).

Respaldos (Backups)
Debe ser obvio como respaldar el archivo y la receta para restaurarlo no deben ser muy complicada.
En otras palabras, no hay que tratar el archivo como una caja negra. Debe conocer donde se almace-
nan los mensajes y como restaurar las páginas del archivo del almacén si alguna vez es necesario.
Estos archivos contienen datos muy preciados—un proyecto que los pierde, pierde buena parte de
su memoria colectiva.

Infraestructura Técnica

39

http://www.mutt.org/
http://www.mutt.org/
http://www.michaelbernstein.com/
http://www.michaelbernstein.com/
http://siesta.unixbeard.net/
http://siesta.unixbeard.net/
http://www.perl.com/pub/a/2004/02/05/siesta.html

Soporte de los hilos
Desde cualquier mensaje debe ser posible ir al hilo (grupo de mensajes relacionados) al que pertene-
ce el mensaje. Cada hilo debe tener su propia URL también, separado del URL de los mensajes del
hilo.

Búsquedas
Un archivo que no permita búsquedas—tanto en el cuerpo de los mensajes como por autor o según
el asunto—es casi inútil. Hay que señalar que algunos archivadores permiten búsquedas al remitir la
labor a un buscador externo como Google [http://www.google.com/]. Esto es aceptable, pero por lo
general, las búsquedas directas son más finas, porque permiten a quien busca, especificar que los re-
sultados sean mostrados, por ejemplo, según el asunto y no según el cuerpo del mensaje.

Lo anterior es sólo una lista técnica para ayudar a evaluar y configurar un archivador. Hacer que la gente
de hecho utilice el archivo como ventaja para el proyecto es discutido en capítulos posteriores en parti-
cular en “Sobresaliente uso de los archivos”.

Software
Aquí hay algunas herramientas open source para la gestión de las listas de correo y su archivo. Si el hos-
ting del proyecto ya tiene una configuración por defecto, quizás no sea necesario siquiera decidir cual
herramienta utilizar. Pero si se tiene que instalar una, existen algunas posibilidades. Las que he utilizado
son Mailman, Ezmlm, MHonArc e Hypermail, lo cual no significa que no haya otras que sean igual de
buenas (y por supuesto, probablemente existan otras que no he logrado encontrar, así que no considere
esto como una lista completa).

Aplicaciones de gestión de listas de correo:

• Mailman — http://www.list.org/

(Tiene un archivador incorporado y la posibilidad de conectarse a archivadores externos.)

• SmartList — http://www.procmail.org/

(Para ser utilizado con el sistema de procesamiento de correos Procmail.)

• Ecartis — http://www.ecartis.org/

• ListProc — http://listproc.sourceforge.net/

• Ezmlm — http://cr.yp.to/ezmlm.html

(Diseñado para funcionar conQmail [http://cr.yp.to/qmail.html] .)

• Dada — http://mojo.skazat.com/

(A pesar del bizarro intento de su sitio web, es un software libre, liberado bajo la licencia GNU GPL.
También tiene un archivador incluido.)

Software para el archivo de las listas de correo:

• MHonArc — http://www.mhonarc.org/

• Hypermail — http://www.hypermail.org/

• Lurker — http://sourceforge.net/projects/lurker/

Infraestructura Técnica

40

http://www.google.com/
http://www.google.com/
http://www.list.org/
http://www.procmail.org/
http://www.ecartis.org/
http://listproc.sourceforge.net/
http://cr.yp.to/ezmlm.html
http://cr.yp.to/qmail.html
http://cr.yp.to/qmail.html
http://mojo.skazat.com/
http://www.mhonarc.org/
http://www.hypermail.org/
http://sourceforge.net/projects/lurker/

• Procmail — http://www.procmail.org/

(Software que acompaña a SmartList, un sistema de procesado general de correos que puede, aparen-
temente, ser configurado como un archivo.)

Control de Versiones
Un sistema de control de versiones (o sistema de control de revisiones) es una combinación de tecnolo-
gías y practicas para seguir y controlar los cambios realizados en los ficheros del proyecto, en particular
en el código fuente, en la documentación y en las páginas web. Si nunca antes se ha utilizado un control
de versiones, lo primero que hay que hacer es conseguir a alguien que sí lo haya hecho y hacer que se
una al proyecto. Hoy en día todo el mundo espera que al menos el código fuente del proyecto este bajo
un control de versiones y probablemente no se tomen el proyecto seriamente si no se utiliza este sistema
con un mínimo de competencia.

La razón por la cual el control de versiones es universal es porque ayuda virtualmente en todos los as-
pectos al dirigir un proyecto: comunicación entre los desarrolladores, manejo de los lanzamientos, admi-
nistración de fallos, estabilidad entre el código y los esfuerzos de desarrollo experimental y atribución y
autorización en los cambios de los desarrolladores. El sistema de control de versiones permite a una
fuerza coordinadora central abarcar todas estas áreas. El núcleo del sistema es la gestión de cambios:
identificar cada cambio a los ficheros del proyecto, anotar cada cambio con meta-data como la fecha y el
autor de la modificación y disponer esta información para quien sea y como sea. Es un mecanismo de
comunicación donde el cambio es la unidad básica de información.

Aun no hemos discutido todos los aspectos de utilizar un sistema de control de versiones ya que es un
tema tan extenso que será introducido según el tópico a lo largo de este libro. Ahora, vamos a concen-
trarnos en seleccionar y configurar un sistema de control de versiones de forma que fomentemos un de-
sarrollo cooperativo.

Vocabulario
En este libro no podemos enseñar como utilizar el control de versiones si nunca antes lo ha utilizado, pe-
ro sería imposible continuar sin conocer algunos términos clave. Estos son útiles independientemente del
sistema particular utilizado: son definiciones básicas y verbos sobre la colaboración en red y serán utili-
zados a lo largo del libro. Incluso si no existiera ningún sistema de control de versiones, el problema del
control de los cambios aun existiría y estas palabras nos dan un lenguaje para hablar acerca de este pro-
blema consistentemente.

"Versión" Versus "Revisión"

El termino versión es a veces utilizado como un sinónimo para "revisión", pero aquí no voy a uti-
lizarla de esta forma, ya que se puede confundir fácilmente con "versión" en el sentido de una ver-
sión de un programa—así que, el número de lanzamiento o edición como en "Versión 1.0". Y
aunque la frase "control de versiones" es un estándar, continuare utilizándolo como sinónimo para
"control de revisiones" y para "control de cambios".

commit
Realizar un cambio en el proyecto. Formalmente, almacenar un cambio en la base de datos del con-
trol de versiones de forma que pueda ser incorporado en lanzamientos futuros del proyecto. "Com-
mit" puede ser utilizado como un verbo o como un sustantivo. Como un sustantivo, es esencialmen-
te un sinónimo de "cambio". Por ejemplo: "He commited una reparación para un fallo reportado en
Mac OS X que hacia que el servidor se colgara. Jóse ¿podrías por favor revisarlo y verificar que no

Infraestructura Técnica

41

http://www.procmail.org/

estoy haciendo mal la asignación?"

Mensaje de registro
Un pequeño comentario añadido a cada commit que describe el tipo y el propósito del commit. Los
mensajes de registro forman parte de los documentos más importantes de cualquier proyecto ya que
son un puente entre el lenguaje altamente técnico de los cambios individuales en el código y el len-
guaje más orientado al usuario de características, resolución de fallos y progreso del proyecto. Más
adelante vamos a ver la forma de distribuir estos mensajes a la audiencia apropiada y también
“Codifying Tradition” en Capítulo 6, Communications discutimos como ENCOURAGE a los vo-
luntarios para que escriban mensajes de registro útiles y concisos.

update
Solicitar los cambios (commits) que han realizado otros en la copia local del proyecto, esto actuali-
za esta copia a la ultima versión. Es una operación muy común ya que la mayoría de los desarrolla-
dores actualizan su código varias veces al día y así saben que están ejecutando casi lo mismo que
los otros desarrolladores, así que si se descubre un fallo es muy posible que este aun no haya sido
resuelto. Por ejemplo: "Hey, he notado que el código del índice está fallando en el último byte. ¿Es
esto un nuevo fallo?" "Sí, pero fue resuelto la semana pasada—prueba actualizar para resolverlo."

repositorio
Una base de datos en la que los cambios son almacenados. Algunas versiones de sistemas de control
de versiones son centralizados, es decir, existe un único repositorio maestro, el cual almacena todos
los cambios en el proyecto. Otros sistemas son descentralizados, cada desarrollador tiene su propio
repositorio y los cambios pueden ser intercambiados entre repositorios arbitrariamente. El sistema
de control de versiones mantiene un registro de las dependencias entre estos cambios y cuando llega
el momento de realizar un lanzamiento, un conjunto particular de cambios es aprobado para ese lan-
zamiento. La cuestión de cual sistema es mejor es otra de las guerras santas del desarrollo de soft-
ware. Intentad no caer en la trampa de discutir sobre esto en las listas de correo del proyecto.

checkout
El proceso de obtener una copia del proyecto desde el repositorio. Por lo general, un checkout pro-
duce un árbol de directorios llamado "copia funcional" desde el cual los cambios serán enviados de
vuelta al repositorio original. En algunas versiones descentralizadas de sistemas de control, cada co-
pia funcional es en si mismo un repositorio y los cambios son empujados (o atraídos) a cualquier re-
positorio que este dispuesto a aceptarlos.

copia funcional
El árbol de directorios privado de cada desarrollador que que contiene el código fuente del proyecto
y posiblemente las páginas web u otros documentos. Una copia funcional también contiene un pe-
queña cantidad de meta-data administrada por el sistema de control de versiones, informando a la
copia funcional cual es repositorio central de procedencia, la revisión de los ficheros presentes, etc.
Generalmente, cada desarrollador tiene su propia copia funciona en la cual realiza y prueba los cam-
bios y desde la cual envía sus commits (cambios).

revisión, cambio, conjunto de cambios
Una revisión es usualmente una encarnación específica de un fichero o directorio en particular. Por
ejemplo, si el proyecto se inicia en la revisión 6 del fichero F y alguien envía un cambio al fichero
F, esto produce la revisión 7 de F. Algunos sistemas también utilizan revisión (revision), cambio
(change) o conjunto de cambios (changeset) para referirse a un conjunto de cambios enviados juntos
como una unidad conceptual.

Estos conceptos pueden tener distintos significados técnicos en cada sistema de control de versio-
nes, pero en general, la idea es siempre la misma: dar un sistema para comunicar de manera precisa
la historia de cambios en un fichero o conjunto de ficheros (inmediatamente antes y después de que
se ha corregido un fallo). Por ejemplo: "Eso se ha resuelto en la revisión 10" o "Se ha corregido eso
en la revisión 10 del fichero foo.c."

Cuando se habla sobre ficheros o una colección de ficheros sin especificar una revisión en particu-
lar, por lo general se asume que nos referimos a la revisión disponible más reciente.

Infraestructura Técnica

42

diff
Una representación contextual de un cambio. Un diff muestra las lineas que han sido modificadas,
como y además, algunas lineas contextuales rodeándolas a cada lado. Un desarrollador familiariza-
do con el código puede, con leer un diff de ese código, entender lo que hace el cambio e incluso de-
tectar fallos.

etiqueta (tag)
Una etiqueta para una colección particular de ficheros en una revisión específica. Los tags son utili-
zados para preservar capturas interesantes del proyecto. Por ejemplo, un tag es hecho para cada lan-
zamiento público, de forma que cada persona pueda obtener, directamente desde el sistema de con-
trol de versiones, el conjunto exacto de ficheros/revisiones que componen el lanzamiento. Algunos
tags comunes son como Release_1_0, Delivery_00456, etc.

rama (branch)
Es una copia del proyecto, bajo el control de versiones, pero aislado, de forma que los cambios rea-
lizados en esta rama no afecten al resto del proyecto y vice versa, excepto cuando los cambios sean
deliberadamente "unidos" de un lado al otro. Las ramas también son conocidas como "lineas de de-
sarrollo". Incluso cuando un proyecto no tiene ramas específicas se considera que el desarrollo se
esta produciendo en la rama principal, también conocida como "línea primaria" o "trunk".

Las ramas o branches, permiten aislar diferentes lineas de desarrollo de si mismas. Por ejemplo, una
rama puede ser utilizada para un desarrollo experimental que sería demasiado inestable para la rama
principal. O al contrario, una rama puede ser utilizada como sitio para estabilizar una versión para
lanzamiento. Durante el proceso de lanzamiento, el desarrollo regular se mantendría ininterrumpida
en la rama principal. Mientras tanto, en la rama de lanzamiento, ningún cambio es aceptado excepto
aquellos aprobados por el responsable del lanzamiento. De esta manera, realizar un lanzamiento no
tiene porque interferir con el trabajo de desarrollo que se está realizando. Para más información
“Las ramas para evitar cuellos de botella” más adelante en el capítulo para una discusión más deta-
llada sobre las ramas.

merge
Mover un cambio de una rama a otra, lo que incluye unir desde la rama principal a otra rama o vice
versa. De hecho, estos son las uniones más comunes y es rara la ocasión en la que esto se hace entre
dos ramas no principales. Para más información sobre los merge “Singularidad de la información”.

"Merge" tiene otro significado: es lo que hace el sistema de control de versiones cuando se encuen-
tra con que dos personas han realizado cambios en un mismo fichero sin relación alguna. Ya que es-
tos cambios no interfieren entre ellos, cuando alguna de estas personas actualizan su copia del fiche-
ro (el cual ya contiene los cambios) los cambios de la otra persona serán unidos automáticamente.
Esto sucede muy a menudo, especialmente en proyectos con múltiples personas realizando cambios
en el mismo código. Cuando dos cambios diferentes están relacionados, el resultado es un "conflic-
to".

conflicto
Sucede cuando dos o más personas intentan realizar diferentes cambios en la misma porción de có-
digo. Todos los sistemas de control de versiones detectan estos conflictos automáticamente y notifi-
can a al menos uno de los humanos involucrados de que sus cambios entran en conflicto con los de
alguien más. Es entonces tarea de esta personas resolver el conflicto y comunicar esa resolución al
sistema de control de versiones.

bloqueo (lock)
Declaración de un intento exclusivo para cambiar un fichero o directorio en particular. Por ejemplo,
"No puedo enviar cambios a las paginas web ahora mismo, ya que parece que Alfredo las tiene blo-
queadas mientras arregla sus imágenes de fondo." No todos los sistemas de control de versiones
ofrecen la posibilidad del bloqueo y aquellos que sí lo permiten, no es necesario que se utilice. Esto
es porque el desarrollo paralelo y simultaneo es la norma y bloquear a la gente para que no puedan
modificar los ficheros es contrario a la idea del sistema.

Infraestructura Técnica

43

4Más información en http://cia.vc/stats/vcs y para evidencia sobre su crecimiento en
http://subversion.tigris.org/svn-dav-securityspace-survey.html .

El modelo del sistema de control de versiones que requiere el bloqueo de ficheros suele ser llamado
bloqueo-modificación-desbloqueo y el modelo que no requiere del bloqueo es llamado copia-
modificación-unión. Una excelente explicación en profundidad y comparaciones puede ser encon-
trada en http://svnbook.red-bean.com/svnbook-1.0/ch02s02.html. En general, el modelo de copia-
modificación-unión es el mejor para el desarrollo open source y todos los sistemas de control de
versiones discutidos en este libro soportan este modelo.

Escoger un sistema de control de versiones
Hasta ahora, los dos sistemas de control de versiones más populares en el mundo del software libre son
Concurrent Versions System (CVS), http://www.cvshome.org/) y Subversion (SVN,
http://subversion.tigris.org/).

CVS lleva largo tiempo y los desarrolladores más experimentados ya están familiarizados con el. Hace
más o menos lo necesario y ya que ha sido popular durante mucho tiempo es probable que no se termine
discutiendo su utilización. A pesar de todo, CVS tiene algunas desventajas. No ofrece facilidad para ha-
cer referencia a cambios en múltiples ficheros, no permite renombrar o copiar ficheros dentro del siste-
ma de control (así que puede ser muy doloroso reorganizar el código después de iniciar el proyecto), el
soporte para las uniones es algo pobre, no trabaja muy bien con ficheros muy grandes o con ficheros bi-
narios y algunas operaciones son lentas cuando muchos ficheros están involucrados.

Ninguno de estos fallos de CVS son fatales y sigue siendo muy popular. Sin embargo, durante los últi-
mos años Subversion ha venido ganando terreno, especialmente con nuevos proyectos. 4. Si esta inician-
do un nuevo proyecto, recomiendo Subversion.

Por otra parte, dado que estoy involucrado en el proyecto Subversion, mi objetividad puede ser razona-
blemente cuestionable y durante los últimos años han ido surgiendo un número de nuevos sistemas de
control de versiones open source. Podemos encontrar una lista de todos los sistemas que conozco en
Apéndice A, Sistemas de Control de Versiones Libres según su popularidad. Como muestra esta lista,
escoger un sistema de control de versiones puede convertirse en una interminable tarea de investigación.
Posiblemente esta decisión ya haya sido tomada por el sitio donde hospedamos el proyecto, liberándo-
nos de esta carga, pero si es necesario tomar una decisión, lo mejor es consultar con otros desarrollado-
res, indagar un poco para tener una idea de las distintas experiencias que haya tenido la gente y luego es-
coger uno y mantenerse con este. Cualquier sistema de control de versiones estable y listo para entornos
de producción será suficiente, no hay que preocuparse demasiado sobre tomar una decisión equivocada.
Si simplemente no se puede decidir, entonces la opción es Subversion. Es relativamente fácil de apren-
der y es probable que se mantenga como el estándar por unos años más.

Utilizando el sistema de control de versiones
Las recomendaciones realizadas en esta sección no están enfocadas hacia un sistema de control de ver-
siones en particular y debería ser sencillo implementarlas en cualquiera. La documentación específica
del sistema debe ofrecer los detalles necesarios.

Versiones de todo

No solo hay que mantener el código del proyecto bajo el control de versiones también las paginas web,
documentación, FAQ, notas de diseño y cualquier cosa que pueda ser necesario editar. Todo esto hay
que mantenerlo cerca del código, en el mismo árbol que el repositorio. Se deben mantener versiones de
cualquier pieza de información que pueda cambiar y archivar la que no cambie. Por ejemplo, un correo
electrónico, una vez enviado, no cambia, por lo tanto, mantener versiones de este no tiene sentido (a me-
nos que se convierta en una parte importante de la documentación).

Infraestructura Técnica

44

http://svnbook.red-bean.com/svnbook-1.0/ch02s02.html
http://www.cvshome.org/
http://subversion.tigris.org/
http://cia.vc/stats/vcs
http://subversion.tigris.org/svn-dav-securityspace-survey.html

5Alexey Mathotkin tiene una opinión diferente sobre el tema de controlar las versiones de los ficheros configure en un artículo
llamado "configure.in and version control" en http://versioncontrolblog.com/2007/01/08/configurein-and-version-control/.

La razón de mantener versiones de todo en un mismo sitio, es para que la gente sólo tenga que aprender
un sistema para realizar cambios. A menudo, un voluntario se iniciara modificando algunas paginas web
o partes de la documentación, para luego pasar a realizar pequeñas contribuciones al código, por ejem-
plo. Cuando el proyecto utiliza el mismo sistema para todo tipo de cambios, las personas sólo tendrán
que aprender THE ROPES una vez. Mantener las versiones juntas significa que nuevas características
pueden ser añadidas junto a la actualización de la documentación, y que al crear ramas del código, se
crearan ramas de la documentación, etc.

No hace falta mantener los ficheros generados bajo el sistema de control de versiones ya que no son da-
tos editables generados por otros programas. Por ejemplo, algunos sistemas de compilado generan los fi-
cheros configure basandose en una plantilla configure.in. Para realizar cambios al fichero
configure bastaría con modificar configure.in y volver a generarlo. Entonces, sólo el fichero
configure.in es un fichero editable. Sólo es necesario mantener versiones de las plantillas—si se
hace con los ficheros generados, la gente se olvidará de volver a generarlos cuando realicen algún cam-
bio en las plantillas y las resultantes inconsistencias crearan una mayor confusión. 5

La regla de que todos los datos editables deben ser mantenidos bajo el control de versiones tiene una ex-
cepción desafortunada: el gestor de fallos. La base de datos de fallos almacena una gran cantidad de da-
tos editables pero generalmente, por razones técnicas, no se puede mantener bajo el control de versiones
principal. (Algunos gestores tienen características primitivas de control de versiones, pero independiente
de repositorio principal del proyecto.)

Navegabilidad

El repositorio del proyecto debe ser accesible desde Internet. Esto no solo significa la habilidad de vi-
sualizar la ultima revisión de los ficheros del proyecto, pero permitir volver atrás en el tiempo y ver en
revisiones anteriores, mirar las diferencias entre revisiones, leer los mensajes de registro para cambios
específicos, etc.

La navegabilidad es importante porque es un ligero portal a los datos del proyecto. Si el repositorio no
es accesible desde un navegador web entonces alguien que desea inspeccionar un fichero en particular
(por ejemplo, para mirar si una mejora ha sido incluida en el código) tendrá que instalar el mismo pro-
grama utilizado por el sistema de control de versiones, lo cual convierte una simple consulta de dos mi-
nutos en una tarea de medio hora o más.

También implica URLs CANONICAL para visualizar revisiones específicas de un fichero y para la ulti-
ma revisión en cualquier momento. Esto puede ser muy útil durante discusiones técnicas o para indicar
alguna documentación a la gente. Por ejemplo, en lugar de decir "Para ayudas sobre como encontrar fa-
llos en el servidor, mirad el fichero www/hacking.html en vuestra copia funcional" se puede decir "Para
ayudas sobre como encontrar fallos en el servidor, mirad
http://svn.collab.net/repos/svn/trunk/www/hacking.html," dando una URL que siempre lleva a la ultima
revisión del fichero hacking.html. La URL es mejor porque no es nada ambigua y evita la cuestión
de si existe una copia funcional actualizada.

Algunos sistemas de control de versiones incluyen un mecanismo que permite la navegación del reposi-
torio, mientras que otros dependen de herramientas de terceros. Tres de estas herramientas son ViewCVS
(http://viewcvs.sourceforge.net/), CVSWeb (http://www.freebsd.org/projects/cvsweb.html), and WebSVN
(http://websvn.tigris.org/). La primera trabaja muy bien con CVS y con Subversion, la segunda sólo con
CVS y la tercera sólo con Subversion.

Correos de cambios

Cada commit al repositorio debería generar un correo electrónico mostrando quien ha hecho el cambio,
cuando, cuales ficheros y directorios han cambiado y como. Este correo debe ser dirigido a una lista de
correos separada de las listas a las que envían los humanos. Los desarrolladores y todos aquellos intere-

Infraestructura Técnica

45

http://versioncontrolblog.com/2007/01/08/configurein-and-version-control/
http://viewcvs.sourceforge.net/
http://www.freebsd.org/projects/cvsweb.html
http://websvn.tigris.org/

sados deben ser animados para suscribirse a las lista de commits ya que es la manera más efectiva de
mantenerse al día con lo que sucede en el proyecto al nivel del código. Aparte de los obvios beneficios
técnicos de la revisión por la comunidad (“Practicad revisiones visibles del código”), los correos con los
cambios ayudan a crear un sentido de comunidad porque establecen un ambiente compartido en el que la
gente puede reaccionar ante diferentes eventos (commits) que saben son visibles a otros tambien.

La configuración específica para habilitar estos correos varia dependiendo de la versión del sistema de
control de versiones pero a menudo existe un script o paquete que facilita esto. Si se tiene algún proble-
ma para encontrar estos, intente buscar en la documentación el tema relacionado con los hooks, específi-
camente el post-commit hook, también llamado loginfo hook en CVS. Los Post-commit hooks son tareas
automatizadas que se ejecutan como respuesta a los cambios enviados (commits). El hook es ejecutado
por un cambio individual, se rellena con la información acerca del cambio y luego es liberada esa infor-
mación para ser utilizada como se desee—por ejemplo, para enviar un correo electrónico.

Con los sistemas de correos con cambios ya listos para usar, quizás sea necesario modificar alguna de
las siguientes conductas:

1. Algunos de estos sistemas no incluyen el diff en el correo que envían sino que enlazan con una URL
para poder ver el cambio en la web utilizando el sistema de navegación del repositorio. Aunque esta
bien dar una URL para que se pueda revisar el cambio luego, también es muy importante que el co-
rreo del commit incluya los diff. Leer el correo electrónico ya es parte de la rutina de la gente, así que
si el contenido es visible allí mismo en el correo, los desarrolladores podrán revisar el commit en el
mismo sitio sin la necesidad de abandonar sus clientes de correo. Si tienen que seguir un enlace a una
página de revisiones, muchos no lo pulsarán, ya que esto requiere de una nueva acción en lugar de
una continuación de lo que ya estaban haciendo. Por si fuera poco, si el lector desea preguntar algo
acerca del cambio, es mucho más fácil responder al mensaje incluyendo el texto original y simple-
mente realizar anotaciones en el diff, en lugar de tener que visitar una página web y tomarse la moles-
tia de copiar y pegar partes del diff en el navegador web al cliente de correo.

(Por supuesto que si el diff es gigantesco, como cuando una gran parte de código nuevo ha sido aña-
dido al repositorio, entonces tiene sentido omitir la parte del diff y ofrecer sólo la URL. Muchos de
los sistemas permiten hacen esto automáticamente. Si el utilizado en el proyecto no es capaz de hacer
esto, entonces sigue siendo mejor incluir los diffs completos. La conveniencia de la revisión y los co-
mentarios es una piedra angular del desarrollo cooperativo, algo demasiado importante para olvidar.)

2. Los correos con los cambios deben tener su cabecera Reply-To direccionada hacia la lista regular de
desarrollo, no a la lista de los cambios, de esta manera cuando alguien revise un cambio y escriba una
respuesta, esta debe ser dirigida automáticamente a la lista de desarrolladores, donde los temas técni-
cos son discutidos normalmente. Existen varias razones para esto, primero, se quiere mantener todas
las discusiones técnicas en la lista, porque es allí donde la gente espera que sucedan y porque así ésta
es la única lista que será necesario archivar. Segundo, puede que existan partes interesadas no suscri-
tas a la lista de cambios. Tercero, la lista de cambios es publicitada como una lista para los commits y
no como una lista para los commits y las discusiones técnicas ocasionadas. Quienes se han suscrito
sólo a la lista de cambios, no se han suscrito a nada más que commits, al enviarles correos con mate-
rial sin relación utilizando ésta vía, es una violación del contrato implícito. Cuarto, algunas personas
escriben programas que procesan los correos con los cambios (para publicarlos en una página web,
por ejemplo). Estos programas están preparados para manejar correos con un formato consistente y
son incapaces de trabajar con correos escritos por humanos.

Hay que señalar que ésta recomendación no contradice las recomendaciones anteriores en “El gran
debate del Reply-To”. Siempre esta bien que el remitente del mensaje configure la cabecera Reply-to.
En este caso, el remitente es el sistema de control de versiones y su Reply-to lo configura de tal ma-
nera que indique que el lugar apropiado para responder es la lista de desarrollo y no la lista de cam-
bios

Infraestructura Técnica

46

CIA: Otro mecanismo de publicación de cambios

Los correos con los cambios no son la única forma de propagar las noticias de los cambios. Re-
cientemente, otro mecanismo llamado CIA (http://cia.navi.cx/) ha sido desarrollador. Este es un
distribuidor y AGGREGATOR de estádisticas de cambios. El uso más popular de CIA es el de
enviar notificaciones de los commits a un canal IRC de forma que las personas en el canal pueden
ver los commits en tiempo real. Aunque es una utilidad menos técnica que los correos electróni-
cos, ya que los observadores puede que estén o no conectados cuando las alertas sobre nuevos
cambios llegan al canal, esta técnica tiene una inmensa utilidad social. La gente tiene la sensación
de pertenecer a algo vivo y activo, y siente que pueden ver el progreso que se está haciendo ante
sus propios ojos.

El programa de notificaciones del CIA es invocado por el post-commit hook, da formato al com-
mit en un mensaje XML y lo envia al servidor central (por lo general cia.navi.cx). Este ser-
vidor luego distribuye la información a los otros foros.

CIA también puede ser configurado para enviar feeds RSS
[http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html]. Más detalles en la documentación
en http://cia.navi.cx/.

Para ver un ejemplo de CIA en acción conectese a irc.freenode.net, y al canal
#commits.

Las ramas para evitar cuellos de botella

Los usuarios inexpertos del control de versiones pueden sentirse temerosos de crear ramas y uniones.
Esto sea probablemente un efecto colateral de la popularidad de CVS: su interfaz de ramas y uniones
puede ser poco intuitivo, así que muchas personas han aprendido a evitar estas operaciones por comple-
to.

Si se encuentra entre estas personas, decidase ahora mismo a conquistar cualquier miedo que pueda te-
ner y tómese el tiempo de aprender cómo funcionan las ramas y las uniones. No son operaciones muy
complicadas una vez que se acostumbra a ellas y se vuelven muy importantes mientras el proyecto ad-
quiere más desarrolladores.

Las ramas son muy importantes porque convierten un recurso escaso—espacio de trabajo en el código
del proyecto—en uno abundante. Normalmente, todos los desarrolladores trabajan juntos en la misma
caja de arena, construyendo el mismo castillo. Cuando alguien desea añadir un nuevo puente levadizo,
pero no puede convencer a los demás de que sería una mejora, entonces las ramas hacen posible que va-
ya a una esquina aislada donde probar su puente. Si el esfuerzo tiene éxito, puede invitar a otros desarro-
lladores para que evalúen el resultado. Si todos están de acuerdo en que el resultado es bueno, pueden
hacer que el sistema de control de versiones mueva ("merge") el puente levadizo de la rama del castillo a
la rama principal del castillo.

Es fácil ver como esta habilidad ayuda al desarrollo colaborativo, ya que la gente necesita de cierta liber-
tad para probar cosas nuevas sin sentir que están interfiriendo con el trabajo de otros. Igual de importan-
te es cuando el código debe ser aislado del CHURN usual de desarrollo de manera que un fallo sea repa-
rado o un lanzamiento sea estabilizado (más en “Stabilizing a Release” y en “Maintaining Multiple Re-
lease Lines” en Capítulo 7, Packaging, Releasing, and Daily Development) sin la preocupación de se-
guir un blanco en movimiento.

Hay que utilizar las ramas libremente y fomentar su uso entre otros. Pero también hay que asegurarse de
que una rama en particular se mantenga activa exactamente durante el tiempo que sea necesaria. Incluso
quienes no trabajan en la rama principal mantienen una visión periférica de lo que está sucediendo en és-
ta. Esta visión es deseable, por supuesto, y los correos con cambios deben salir de estas ramas como de
cualquier otra. Pero las ramas no deben convertirse en un mecanismo que divida a la comunidad de de-

Infraestructura Técnica

47

http://cia.navi.cx/
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://cia.navi.cx/

sarrolladores. Con raras excepciones, el objetivo eventual de la mayoría de las ramas debe de ser su
unión a la rama principal y desaparecer.

Singularidad de la información

Las uniones tienen un corolario importante: nunca se debe enviar el mismo cambio dos veces, es decir,
un cambio dado sólo debe ser introducido al sistema de control de versiones solo una vez. La revisión (o
conjunto de revisiones) en la que el cambio es introducido es su identificador único desde ese momento.
Si debe ser aplicado a otras ramas aparte de la cual en la que ha sido hecho, entonces deberá ser unido
desde su punto de entrada original a sus otros destinos —al contrario de enviar cambios textualmente
idénticos, que tendrían el mismo efecto en el código, pero harían del mantenimiento eficaz y de la ges-
tión de lanzamientos una tarea imposible.

Los efectos prácticos de este consejo difieren entre sistemas de control de versiones. En algunos siste-
mas, las uniones son eventos especiales, fundamentalmente distintos de los commits y acarrean sus me-
ta-datos propios. En otros, el resultado de las uniones son enviadas de la misma manera que los cambios
son enviados así que la mejor manera de distinguir una unión de un nuevo cambio es leyendo los mensa-
jes de registro. El mensaje de registro de una unión no repite el mensaje de registro del cambio original,
en cambio, sólo indica que es una unión y da la identificación de la revisión del cambio original, con co-
mo mucho una línea de sumario del sus efectos. Si alguien desea ver el mensaje de registro completo,
deberá consultar la revisión original.

La razón por la cual es importante evitar la repetición de los mensajes de registro es que estos pueden
ser editados después de que se hayan enviado. Si un mensaje de registro es repetido en el destino de cada
unión, entonces incluso si alguien edita el mensaje original, deja todos los otros mensajes sin corre-
gir—lo cual sólo puede causar confusión a largo plazo.

El mismo principio se aplica al retirar un cambio. Si esto llegara a suceder, entonces el mensaje de regis-
tro para la retirada solo debe indicar que una revisión en particular está siendo retirada, no debe describir
el cambio en el código resultante, pues la semántica del cambio se puede intuir al leer el mensaje de re-
gistro original del cambio. Por supuesto, el mensaje de registro del retiro también debe indicar la razón
por la cual ese cambio ha sido retirado, pero no debe duplicar nada del mensaje de registro del cambio
original. Si es posible, hay que volver y editar el mensaje de registro original para señalar que ha sido re-
tirado.

Todo lo anterior implica que se debe utilizar una sintaxis consistente al referirnos a las revisiones. Esto
es de gran ayuda no sólo en los mensajes de registro, sino en los correos electrónicos, en el gestor de fa-
llos y en todas partes. Si se esta utilizando CVS, recomiendo "directorio/
al/fichero/del/proyecto/rama:REV", donde REV es un número de revisión en CVS como
"1.76". Si se esta utilizando Subversion, la sintaxis estándar para la revisión 1729 es "r1729" (el directo-
rio de los ficheros no es necesario porque Subversion utiliza números globales para las revisiones). En
otros sistemas, existe por lo general una sintaxis estándar para expresar el nombre del conjunto de cam-
bios. Cualquiera que sea la sintaxis apropiada para el sistema utilizado, hay que animar a la gente a que
lo utilicen al referirse a algún cambio. El uso consistente en el nombre de los cambios permiten que el
mantenimiento del proyecto sea mucho más sencillo (como ya veremos en Capítulo 6, Communications
y en Capítulo 7, Packaging, Releasing, and Daily Development), y dado que mucho de este manteni-
miento será realizado por voluntarios, debe ser lo más sencillo posible.

Más información en “Releases and Daily Development” Capítulo 7, Packaging, Releasing, and Daily
Development.

Autorizaciones

Muchos de los sistemas de control de versiones ofrecen la posibilidad por la cual a ciertas personas se
les permite o no, realizar cambios en áreas específicas del repositorio. Siguiendo el principio de que
cuando a las personas se les entrega un martillo empiezan a buscar clavos para golpear, muchos proyec-
tos utilizan esta característica con ABANDON, permitiendo cuidadosamente el acceso solo a las áreas

Infraestructura Técnica

48

donde tienen permiso de enviar cambio y asegurándose de que no lo puedan hacer en ningún otro sitio.
(Más información en “Committers” Capítulo 8, Coordinando a los Voluntarios sobre como los proyec-
tos deciden quienes pueden hacer cambios y donde.)

Probablemente hayan pequeños daños implementar un control así de estricto, pero una política un poco
más relajada también esta bien. Algunos proyectos utilizan un sistema basado en el honor: cuando a una
persona se le permite la posibilidad de realizar cambios, aunque sea a una pequeña área del repositorio,
lo que reciben es una contraseña que les permite realizar cambios en cualquier otro sitio del repositorio y
sólo se les pide que mantengan sus cambios en su área. Hay que recordar que no existe ningún peligro
aquí: de todas formas, en un proyecto activo, todos los cambios son revisados. Si alguien hace un cam-
bio donde no debía, alguien más se dará cuenta y dirá algo. Es muy sencillo si un cambio debe ser recti-
ficado—todo está bajo el control de versiones de todas formas, así que sólo hay que volver atras.

Existen varias ventajas en tal aproximación tan relajada. Primero, mientras los desarrolladores se vayan
expandiendo en las diferentes áreas (lo cual harán a menudo si siguen en el proyecto), no es necesario un
trabajo administrativo extra de tener que dar y quitar privilegios. Una vez que la decisión es tomada, la
persona puede empezar a enviar sus cambios a la nueva área sin problemas.

Segundo, la expansión se puede filtrar mejor, ya que generalmente, quienes realizan cambios en el área
X y desean expandirse al área Y sólo tienen que empezar a enviar sus cambios contra Y y solicitar su re-
visión. Si alguien con acceso a cambios al área Y recibe alguno de estos parches y lo aprueba, puede pe-
dir que el cambio sea enviado directamente (mencionando el nombre de quien ha revisado/aprobado el
cambio en el mensaje de registro). De esta manera, el commit vendrá de quien ha hecho el cambio, lo
cual es preferible desde un punto de vista administrativo y de credibilidad.

Por último, y quizás la razón más importante, al utilizar un sistema basado en el honor, se crea una at-
mósfera de confianza y respeto mutuo. Al darle a alguien permiso para enviar cambio a un subdominio
se hace una declaración acerca de su preparación técnica—la cual dice: "Hemos visto que tienes la capa-
cidad para realizar cambios en cierto dominio, así que a por ello". Pero imponer controles estrictos en las
autorizaciones dice: "No sólo estamos juzgando tus limitadas capacidades, sino que también sospecha-
mos de tus intenciones." Este no es el tipo de declaraciones que se desean hacer si pueden ser evitadas.
Incluir a alguien dentro del grupo de desarrolladores del proyecto es una oportunidad de iniciarlos en un
circulo de confianza mutua. Una buena manera de hacer esto es dar más poder del que se supone deben
tener e informarles que es su responsabilidad mantenerse dentro de los límites impuestos.

El proyecto Subversion ha operado bajo este sistema por más de cuatro años, con 33 desarrolladores con
privilegios completos y 43 con privilegios parciales. La única distinción que el sistema fuerza esta entre
quienes envían cambios y quienes no, otras divisiones son mantenidas sólo por humanos. Incluso así,
nunca hemos tenido ningún problema con que alguien realice un cambio deliberado fuera de su dominio.
Una que otra vez han habido inocentes mal entendidos sobre la extensión de los privilegios de alguna
persona, pero siempre es resuelto rápida y amigablemente.

Obviamente, en situaciones donde esto es poco práctico se debe depender en controles estrictos en las
autorizaciones, pero dadas situaciones son raras. Incluso cuando hay millones de lineas de código y
ciento o miles de desarrolladores, un commit hecho a cualquier módulo del código sigue siendo revisado
por quienes trabajan en dicho módulo y son quienes pueden reconocer si quien lo ha intentado hacer
puede hacerlo. Si una revisión regular no está sucediendo entonces el proyecto tiene problemas más im-
portantes con los cuales lidiar que el sistema de autorizaciones.

Para concluir, no hace falta pasar mucho tiempo con las autorizaciones del sistema de control de versio-
nes a menos que se tenga una razón en específico. Usualmente esto no trae beneficios tangibles y confiar
en el control humano tiene sus ventajas.

Por supuesto que nada de esto significa que las restricciones mismas son poco importantes. Sería malo
para un proyecto el animar a las personas a realizar cambios en áreas para las cuales no están cualifica-
das. Incluso en algunos proyectos, el acceso ilimitado tiene un status especial: implica derecho de voto
en cuestiones que atañen al proyecto por completo. Este aspecto político del acceso es discutido en ma-
yor profundidad en “¿Quién Vota?” en Capítulo 4, Infraestructura Social y Política.

Infraestructura Técnica

49

Seguimiento de errores
El seguimiento de errores es un tema muy amplio y varios aspectos de este son discutidos a lo largo de
este libro. Aquí intentare concentrarme principalmente en las consideraciones técnicas y en la instala-
ción, pero para llegar a esto, debemos empezar con una política de preguntas: exactamente ¿qué tipo de
información va a ser mantenida en el sistema de seguimiento?.

El término seguimiento de errores puede generar confusión ya que estos sistemas se utilizan frecuente-
mente para seguir solicitudes para nuevas características, tareas que se efectúan sólo una vez, parches no
solicitados—en realidad se utilizan para cualquier cosa que pueda tener estados distinguibles de comien-
zo y final, con estados opcionales de transición entre estos y que acumulan información a lo largo de su
existencia. Por esta razón, los sistemas de seguimiento de fallos también son llamados de seguimiento de
temas, de defectos, de solicitudes, trouble ticket system, etc. Más información en Apéndice B, Gestor de
fallos libres donde hay una lista de programas.

En este libro continuare utilizando "gestor de fallos" para la aplicación que hace el seguimiento, porque
es así como la mayoría de la gente lo llama y utilizare issue al referirme a un punto en particular en la
base de datos del gestor de fallos. Esto nos permitirá distinguir entre los buenos y malos comportamien-
tos que el usuario se puede encontrar (el fallo en si mismo) y el registro en el gestor del descubrimiento,
diagnostico y eventual resolución del fallo. Hay que recordar que aunque la mayoría de las entradas sean
fallos, también pueden ser otras tareas.

El clásico ciclo de vida se parece al siguiente:

1. Alguien crea una entrada. Ofrecen un resumen, una descripción inicial (incluyendo como reproducir
el fallo si es posible. En “Treat Every User as a Potential Volunteer” en Capítulo 8, Coordinando a
los Voluntarios hay ejemplos de como se puede animar la correcta creación de reportes de fallos) y
cualquier otra información que el gestor solicite. Quien crea la entrada puede ser un desconocido al
proyecto—los reportes de fallos y las solicitudes de características provienen tanto de los usuarios co-
mo de los desarrolladores.

Una vez enviada, la entrada entra en un estado llamado abierto porque ninguna acción ha sido toma-
da aun. Algunos gestores etiquetan las nuevas entradas como sin verificar o como sin iniciar. No está
asignada a nadie, o en algunos sistemas, es asignada a un usuario fantasma que representa la falta de
una asignación real. Llegado a este punto, la entrada se encuentra en el área de espera: ha sido regis-
trada, pero aun no ha sido integrada en la conciencia del proyecto.

2. Otros leen la entrada, añaden comentarios y quizás soliciten el esclarecimiento de algunos puntos a
quien realizo la entrada.

3. El fallo es reproducido. Este puede que sea el momento más importante en su ciclo vital, ya que in-
cluso que el fallo aun no ha sido resuelto, el hecho de que alguien haya podido reproducirlo además
de quien creo la entrada prueba que es genuino y, no menos importante, confirma al creador de la en-
trada que ha contribuido al proyecto reportando un fallo real.

4. El fallo es diagnosticado: su causa es identificada, y si es posible, es estimado el esfuerzo requerido
para repararlo. Hay que asegurarse de que todo esto es registrado en la entrada, ya que en el case en
que quien haya hecho el diagnostico abandona el proyecto (lo cual sucede a menudo con desarrolla-
dores voluntarios), alguien más debe ser capaz de continuar con su trabajo.

Llegados a este punto, o a veces en uno de los anteriores, puede que algún programador ya se haya
"adueñado" de la entrada y se lo asigne a si mismo (el proceso es examinado en mayor detalle en
“Distingue claramente entre pedir y asignar” en Capítulo 8, Coordinando a los Voluntarios). La prio-
ridad de la entrada puede que también sea fijada en esta etapa. Por ejemplo, si el fallo es tan severo
que debería retrasar el próximo lanzamiento, debe ser identificado desde el principio y el gestor debe
proporcionar un mecanismo para hacer esto.

Infraestructura Técnica

50

5. La entrada es programada para su resolución. Esto no implica necesariamente fijar una fecha para
cuando debe ser resuelta. A veces sólo significa decidir para cual próximo lanzamiento (no necesaria-
mente la siguiente) el fallo debe estar corregido o decidir si debe o no bloquear un lanzamiento en
particular. Incluso nos podemos olvidar de planificar la reparación del fallo si es algo que se puede
hacer rapidamente.

6. El fallo es reparado (o la tarea es completada, o el parche es aplicado o lo que sea). El cambio o con-
junto de cambios que arreglan el fallo deben ser registrados en un comentario en la entrada, después
de lo cual ésta es cerrada o marcada como resuelta.

Existen variaciones en este ciclo. A veces el problema es cerrado seguidamente después de ser archiva-
do, porque resulta que no es un fallo, sino que es un malentendido por parte del usuario. Mientras el pro-
yecto vaya ganando usuarios, más y más de estas entradas invalidas aparecerán, y los desarrolladores las
cerraran con respuestas cada vez menos respetuosas. Hay que intentar protegerse de ésta tendencia, pues
no le hace ningún bien a nadie, porque el usuario en cada caso no es responsable de las entradas invali-
das previas. Esta tendencia estadísticas sólo es divisada por los desarrolladores, no por los usuarios. (En
“Pre-filtrado del gestor de fallos” más adelante en este capítulo, examinaremos algunas técnicas para re-
ducir el número de entradas invalidas.) También puede suceder que varios usuarios estén experimentan-
do el mismo malentendido una y otra vez, lo cual significa que algún aspecto de la aplicación necesita
volver a ser diseñada. Este tipo de patrones son los más sencillos de ver cuando se utiliza un gestor de
entradas que monitorice la base de datos de fallos. Más en “Issue Manager” en Capítulo 8, Coordinando
a los Voluntarios.

Otra variación muy común de este ciclo de vida es cuando la entrada es cerrada al ser un duplicado poco
después del paso 1. Un duplicado aparece cuando alguien crea una entrada para un problema ya conoci-
do por el proyecto. Los duplicados no están limitados a entradas abiertas: es posible que un fallo haya
reaparecido después de haberlo reparado (esto es conocido como regresión), por lo cual, la vía preferida
es usualmente reabrir la entrada original y cerrar cualquier nuevo reporte como duplicado de este. El sis-
tema de gestión de fallo debe mantener un seguimiento de esta relación bidimensional, de forma que la
información en los duplicados este disponible en la entrada original y vice versa.

Una tercera variación es cuando los desarrolladores cierran la entrada pensando que ya ha sido resuelta y
el usuario que la ha reportado rechaza esa reparación y es reabierta. Por lo general esto es porque el de-
sarrollador no tiene la capacidad de reproducir el fallo o porque no han probado su reparación siguiendo
la misma receta para la reproducción descrita por el usuario.

A parte de estas variaciones existen pequeños detalles de este ciclo de vida que pueden variar depen-
diendo de la aplicación de seguimiento. Pero la forma básica es la misma e incluso cuando el ciclo de vi-
da no es sólo para el software open source, tiene implicaciones acerca de cómo los proyectos utilizan sus
sistemas de control de fallos.

Implícito en el paso 1, el sistema es una cara tan publica del proyecto, como lo pueden ser las listas de
correo o las paginas web. Cualquiera puede crear una entrada, cualquiera puede ver una entrada y cual-
quiera puede navegar la lista de entradas abiertas. De tal manera que nunca se sabe cuantas personas es-
tán interesadas en ver el progreso en una entrada en particular. Aunque el tamaño y la capacidad de la
comunidad de desarrolladores constriñe la frecuencia con la que los problemas son atacados, el proyecto
debe al menos intentar reconocer cada entrada mientras vayan llegando. Incluso si el problema persiste
por un tiempo, una repuesta anima al usuario a mantenerse involucrado porque siente que un humano ha
visto lo que ha hecho (recordad que rellenar una entrada requiere mucho más tiempo que un correo elec-
trónico). Incluso mejor, una vez que una entrada es vista por un desarrollador, entra en la conciencia del
proyecto, en el sentido en que este puede mantenerse al acecho de otras instancias del mismo problema,
puede comentarlo con otros desarrolladores, etc.

La necesidad de reacciones oportunas implica dos cosas:

• El sistema de seguimiento debe conectarse a la lista de correos de manera que cada cambio a una en-

Infraestructura Técnica

51

trada, incluyendo su redacción inicial, genere un correo describiendo lo sucedido. Esta lista de correos
es, a veces, diferente de la lista de desarrollo ya que quizás, no todos los desarrolladores quieran reci-
bir correos automáticos con fallos, pero (al igual que con los correos con cambios) la cabecera Reply-
to debe ser fijada a la lista de desarrollo.

• El formulario donde se rellena la entrada debe almacenar la dirección de correo electrónico de quien
la reporta, de forma que pueda ser contactada para solicitar más información. (No obstante, no debe
requerir la dirección ya que algunas personas prefieren realizar el reporte anónimamente. Más infor-
mación sobre el anonimato en “Anonimato y participación” a continuación en este capítulo.

Interacción con las Lista de Correo
Hay que asegurarse de que el gestor de fallos no se convierte en un foro de discusiones. Aunque es im-
portante mantener una presencia humana en el gestor, no está preparado para discusiones en tiempo real.
Hay que pensar en éste como un archivador, una forma de organizar hechos y referencias a otras discu-
siones, principalmente aquellas que suceden en las listas de correo.

Hay dos razones por las cuales es importante hacer esta distinción. Primero, el gestor de fallos es un sis-
tema más engorroso que las lista de correo (o que salas de chat). Esto no es porque estén mal diseñados,
es sólo que sus interfaces han sido diseñadas para capturar y presentar estados discretos, no discusiones.
Segundo, no todo el mundo que este involucrado en una discusión sobre una entrada en particular, esta
revisando el gestor de fallos frecuentemente. Parte de una buena gestión de fallos (más en “Share Mana-
gement Tasks as Well as Technical Tasks” en Capítulo 8, Coordinando a los Voluntarios) está en asegu-
rarse de que cada problema es llevado a la atención de las personas indicadas en lugar de requerir que
todos los desarrolladores monitoricen todos los problemas. En “No Conversations in the Bug Tracker”
en Capítulo 6, Communications, veremos como asegurarnos de que la gente no desvíe accidentalmente
las discusiones de los foros apropiados hacia el sistema de gestión de fallos.

Algunos gestores pueden monitorizar listas de correos y automáticamente registrar todos los correos que
son acerca de un problema conocido. Por lo general, hacen esto reconociendo el número de identifica-
ción de la entrada en el asunto de los correos, como parte de una línea especial, así los desarrolladores
pueden aprender a incluir estas lineas en sus correos para atraer la atención del gestor. El sistema puede
guardar el correo completo o (incluso mejor) registrar un enlace al correo en el archivo regular de la lista
de correos. De cualquier forma, ésta es una habilidad muy útil, así que si el sistema utilizado la aporta
hay que utilizarla y hay que recordarle a la gente que la utilice.

Pre-filtrado del gestor de fallos
Muchas de las bases de datos de fallos sufren eventualmente del mismo problema: una cantidad devasta-
dora de fallos duplicados o inválidos hechos por usuarios bien intencionados pero sin experiencia o poco
informados. El primer paso para combatir esta tendencia es, por lo general, colocar un vistoso aviso en
la página principal del gestor de fallos, explicando como saber si un bug es realmente un bug, como bus-
car si el bug ya está incluido y finalmente, como reportar efectivamente si aun se cree que es un nuevo
fallo.

Esto reducirá el nivel de ruido por un tiempo, pero mientras el número de usuarios vaya creciendo, el
problema regresara eventualmente. Ningún individuo puede ser culpado de esto, ya que cada uno está
intentando contribuir en beneficio del proyecto e incluso cuando su primer reporte no sea de verdadera
utilidad, se desea animarlos para que continúen involucrándose y para que puedan hacer mejores repor-
tes en el futuro. Mientras tanto, el proyecto necesita mantener en lo posible la base de datos libre de ba-
sura.

Las dos cosas que tendrán el máximo efecto a la hora de prevenir este problema son: asegurarnos de que
hay gente vigilando el gestor de fallos quienes tienen el conocimiento suficiente para cerrar problemas
como inválidos o duplicados mientras vayan llegando y requiriendo (o fomentando duramente) a los
usuarios que confirme su reporte con otras personas antes de reportarlos en el gestor.

Infraestructura Técnica

52

La primera técnica parece ser utilizada universalmente. Incluso proyectos con gigantescas bases de datos
de fallos (digamos, el gestor de Debian en http://bugs.debian.org/, el cual contenía 315,929 reportes al
momento de escribir este libro) siguen ordenando todo de tal manera que todos puedan ver los reportes
mientras llegan. Puede que sea una persona diferente dependiendo de la categoría del problema. Por
ejemplo, el proyecto Debian es una colección de paquetes de software, de manera que el proyecto auto-
máticamente enruta cada reporte a la persona que mantiene el paquete específico. Por supuesto, a veces
los usuarios no identifican bien la categoría a la que pertenece el problema, con el resultado de que el re-
porte es enviado a la persona equivocada, quien entonces deberá redireccionarlo. No obstante, lo impor-
tante es que la carga sigue siendo distribuida—cada vez que un usuario crea correcta o incorrectamente
al reportar, la vigilancia de las entradas sigue siendo distribuida más o menos uniformemente entre los
desarrolladores, de manera que cada reporte es respondido en un tiempo justo.

La segunda técnica esta menos extendida, probablemente sea porque es más difícil de automatizar. La
idea esencial es que cada nuevo reporte es apadrinado hacia la base de datos. Cuando un usuario cree ha-
ber encontrado un bug, se le pide que lo describa en una de las listas de correo o en algún canal de IRC
para que reciba confirmación de alguien de que en realidad es un fallo. Al introducir este segundo par de
ojos puede prevenir muchos reportes falsos. A veces esta segunda persona puede identificar que este
comportamiento no es un fallo o que ha sido resuelto recientemente. O puede que este familiarizado con
los síntomas gracias a problemas anteriores, evitando un duplicado al señalar al usuario el viejo reporte.
A veces es tan sencillo como preguntar al usuario "¿Has revisado el gestor de fallos para asegurarte de
que no ha sido reportado ya?" Muchas personas no piensan en esto, pero se contentan con hacer la bús-
queda sabiendo que hay alguien a la expectativa de que lo hagan.

El sistema de apadrinamiento puede mantener la limpieza de los reportes en la base de datos, pero tam-
bién tiene algunas desventajas. Muchas personas harán los reportes sin consultar, al no buscar o despreo-
cupándose de las instrucciones de buscar a un padrino para el nuevo reporte. Aun así, es necesario que
los voluntarios sigan vigilando las bases de datos y dado que la mayoría de los nuevos usuarios que re-
portan fallos no entienden la dificultad de mantenerlas, no es justo reprenderlos duramente por ignorar
las directrices. Aun así, los voluntarios deben ser vigilantes y ejercitar restricciones en como se rechazan
reportes sin apadrinar de vuelta a quien lo haya hecho. El objetivo es entrenar a cada reportero para que
utilice el sistema de apadrinamiento en el futuro, de tal manera que haya una siempre creciente fondo de
gente quienes entienden el sistema de filtrado de fallos. Al encontrarnos con un reporte sin padrino, los
pasos ideales a tomar son:

1. Inmediatamente responder el reporte, agradeciendo al usuario por hacerlo, pero dirigiéndolo a las di-
rectrices de apadrinamiento (las cuales deberían, por supuesto, estar publicadas en un lugar promi-
nente del sitio web.)

2. Si el reportes es claramente valido y no un duplicado, hay que aprobarlo de todas formas y de esta
manera que inicie su ciclo de vida normal. Después de todo, quien ha realizado el reporte ya ha sido
informado sobre el apadrinamiento, así que no tiene sentido perder el trabajo ya hecho al cerrarlo co-
mo invalido.

3. Si el problema no es claramente valido, hay que cerrarlo, pero solicitando que sea reabierto si reciben
la confirmación por parte de un padrino. Cuando lo hagan, deberán colocar una referencia al hilo de
confirmación (por ejemplo, una URL en el archivo de la listas de correo).

Hay que recordar que a pesar de que este sistema mejorara la proporción señal/ruido en la base de datos
de problemas a lo largo del tiempo, nunca pondrá fin a los reportes inválidos. La única manera de evitar
esto por completo es cerrar el gestor de fallos a todos quienes no sean desarrolladores—una cura que ca-
si siempre es peor que la enfermedad. Es mejor aceptar que la limpieza de reportes inválidos siempre se-
rá una parte de la rutina de mantenimiento del proyecto e intentar obtener la mayor cantidad de ayuda
para hacerlo.

Más en “Issue Manager” en el Capítulo 8, Coordinando a los Voluntarios.

Infraestructura Técnica

53

http://bugs.debian.org/

6No es un requerimiento ni tampoco se espera ninguna donación a Freenode, pero si usted o el proyecto se lo pueden permitir, por
favor considerelo. Son una caridad exenta de impuestos en EE.UU. y proveen de un servicio muy valioso.
7Para establecer el tópico del canal se utiliza el comando "/topic. Todos los comandos en IRC empiezan con el signo "/". Si no
se está familiarizado con la utilización y administración de IRC id a http://www.irchelp.org. Hay un excelente tutorial en
http://www.irchelp.org/irchelp/irctutorial.html.

IRC / Sistemas de Chat en Tiempo Real
Muchos proyectos ofrecen salas de chat utilizando Internet Relay Chat (IRC), foros donde los usuarios y
desarrolladores pueden hacerse preguntas y obtener respuestas instantáneas. Mientras que se puede lle-
var un servidor de IRC para nuestro sitio web, por lo general no vale la pena. En cambio podemos hacer
lo que todo el mundo: crear canales de IRC en Freenode (http://freenode.net/). Freenode proporciona el
control necesario para administrar los canales IRC del proyecto, 6mientras que nos evita la molestia de
tener que mantener un servidor de IRC.

Lo primero que hay que hacer es decidir un nombre para el canal. La opción más obvia es utilizar el
nombre del proyecto—si es que se encuentra disponible en Freenode. Si no, se puede utilizar algo lo
más parecido al nombre del proyecto y que sea en lo posible, fácil de recordar. Hay que publicitar la dis-
ponibilidad del canal en el sitio web del proyecto, de manera que un visitante con una duda pueda verlo
rápidamente. Por ejemplo, esto aparece en un contenedor prominente en la parte de arriba de la página
principal de Subversion:

Si está utilizando Subversion, le recomendamos que se una a la lista
users@subversion.tigris.org y lea el Libro de Subversion
[http://svnbook.red-bean.com/] y el FAQ [http://subversion.tigris.org/faq.html]. Tam-
bién puede comentar sus dudas en IRC en el canal #svn en irc.freenode.net

Algunos proyectos tienen varios canales, uno para cada tema. Por ejemplo, un canal para problemas de
instalación, otro para dudas sobre su uso, otro para charlas sobre el desarrollo, etc. (“Manejando el creci-
miento” en el Capítulo 6, Communications se discute como dividirse en múltiples canales). Cuando el
proyecto es joven, sólo debe haber un canal en el que todos hablan juntos. Luego, mientras el proyecto
vaya creciendo, la separación de canales será necesaria.

¿Cómo podrá la gente encontrar todos los canales disponibles y además, en cuales entrar? ¿Y al entrar,
cómo sabrán los criterios de la sala?

La respuesta a todo esto es publicándolo en el tópico del canal.7 El tópico del canal es un breve mensaje
que ven todos los usuarios cuando entran en el canal. Da una guía rápida para los recién llegados y apun-
ta a información necesaria. Por ejemplo:

Ha entrado en #svn

El tema para #svn es Foro para usuarios de Subversion. Más información en
http://subversion.tigris.org/. || Las discusiones sobre el desarrollo
están en #svn-dev. || Por favor, no pegue transcripciones muy largas,
para ello utilice un sitio como http://pastebin.ca/ || Noticias:
Subversion 1.1.0 ha salido, más en http://svn110.notlong.com/

Es algo tosco, pero informa a quienes entran al canal lo que necesitan saber. Dice exactamente para lo
que es el canal, muestra la página web del proyecto (en caso de que alguien entre al canal sin antes haber
visitado el sitio web del proyecto), menciona canales relacionados y da algunas directivas sobre el pega-
do.

Sitios de pegado

Infraestructura Técnica

54

http://freenode.net/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://subversion.tigris.org/faq.html
http://subversion.tigris.org/faq.html
http://www.irchelp.org
http://www.irchelp.org/irchelp/irctutorial.html

Un canal de IRC es un espacio compartido: todos pueden ver lo que todos escriben. Normalmente
esto es algo bueno, ya que permite que la gente entre en una conversación cuando creen que tie-
nen algo para contribuir y permite a los espectadores aprender leyendo. Pero puede tornarse pro-
blemático cuando alguien suministra una gran cantidad de información a la vez, como la trans-
cripción de una sesión de debugging, porque al pegar muchas lineas de texto en el canal se inte-
rrumpen las conversaciones de otros.

La solución a esto es el uso de los llamados sitios de pegado pastebin o pastebot. Al requerir una
gran cantidad de datos de alguien, pida que no los pegue en el canal, sino que vayan a (por ejem-
plo) http://pastebin.ca, peguen la información necesaria allí y suministren el nuevo URL resultan-
te al canal de IRC. Así cualquiera puede visitar la URL y revisar los datos que allí se encuentran.

Existen muchos sitios gratuitos de pegado disponibles, demasiados para una lista comprensiva,
pero aquí hay algunos que he utilizado: http://www.nomorepasting.com/, http://pastebin.ca/,
http://nopaste.php.cd/ http://rafb.net/paste/ http://sourcepost.sytes.net/,
http://extraball.sunsite.dk/notepad.php, y http://www.pastebin.com/.

Bots
Many technically-oriented IRC channels have a non-human member, a so-called bot, that is capable of
storing and regurgitating information in response to specific commands. Typically, the bot is addressed
just like any other member of the channel, that is, the commands are delivered by "speaking to" the bot.
For example:

Muchos canales técnicos de IRC tienen un miembro no humano, un tal llamado bot, el cual es capaz de
almacenar y regurgitar información en respuesta a comandos específicos. El bot se parece a un miembro
más del canal, esto es, los comandos se hacen llegar "hablándole" al bot. Por ejemplo:"

<kfogel> ayita: learn diff-cmd = http://subversion.tigris.org/faq.html#diff-cmd
<ayita> Thanks!

Esto le ha dicho al bot (el cual está en el canal como ayita) que recuerde cierto URL como la respuesta a
la pregunta "diff-cmd". Ahora podemos dirigirnos a ayita pidiendole al bot que le diga a otro usuario
acerca de diff-cmd:

<kfogel> ayita: tell jrandom about diff-cmd
<ayita> jrandom: http://subversion.tigris.org/faq.html#diff-cmd

Lo mismo puede ser logrado con un comando más corto:

<kfogel> !a jrandom diff-cmd
<ayita> jrandom: http://subversion.tigris.org/faq.html#diff-cmd

El conjunto exacto de comandos y conductas difieren entre bots. El ejemplo anterior utiliza ayita
(http://hix.nu/svn-public/alexis/trunk/), del cual existe una instancia en #svn en Freenode. Otros bots
son Dancer (http://dancer.sourceforge.net/) y Supybot (http://supybot.com/). No son necesarios privile-
gios específicos en el servidor para ejecutar un bot. Un bot es un programa cliente; cualquiera puede fi-
jar y dirigirlo para que escuche en un servidor/canal en particular.

Si el canal del proyecto tiende a recibir las mismas preguntas una y otra vez, recomiendo utilizar un bot.
Sólo un pequeño porcentaje de usuarios del canal adquirirán la habilidad necesaria para manejar el bot,

Infraestructura Técnica

55

http://pastebin.ca
http://www.nomorepasting.com/
http://pastebin.ca/
http://nopaste.php.cd/
http://rafb.net/paste/
http://sourcepost.sytes.net/
http://extraball.sunsite.dk/notepad.php
http://www.pastebin.com/
http://hix.nu/svn-public/alexis/trunk/
http://dancer.sourceforge.net/
http://supybot.com/

pero serán los que sí lo hagan quienes responderán a una cantidad desproporcionada de preguntas, por-
que el bot permite que sean respondidas con mayor eficiencia.

Archivando IRC
Aunque es posible archivar todo lo que sucede en los canales de IRC, no es algo necesario. Las conver-
saciones en IRC pueden ser públicas, por lo que muchas personas piensan en ellas como conversaciones
informales semi-privadas. Los usuarios puede que no cuiden la gramática y a veces expresen opiniones
(por ejemplo, acerca del software o sobre otros desarrolladores) que no querrán que sean preservadas
eternamente en un archivo en línea.

Por supuesto que existen extractos que deberían ser preservados. Muchos de los clientes de IRC pueden
registrar conversaciones a un fichero bajo demanda por el usuario, o si esto falla, se puede copiar y pe-
gar la conversación del IRC a otro foro permanente (a menudo, el bug tracker). Pero el registro indiscri-
minado puede incomodar a algunos usuarios. Si se archiva todo, hay que declararlo claramente en el tó-
pico del canal y proporcionar una URL del archivo.

Wikis
Un wiki es un sitio web que permite a cualquier visitante editar o extender su contenido; el término "wi-
ki" (una palabra Hawaiana que significa "rápido" o "super-rápido") también es usado para la aplicación
que permite este tipo de edición. Los wikis fueron inventados en 1995, pero su popularidad alzo vuelo a
partir del año 2000 o 2001, impulsado parcialmente por el éxito de la Wikipedia
(http://www.wikipedia.org/), un enciclopedia de contenido libre basada en un wiki. Imaginemos un wiki
como algo entre IRC y las páginas web: los wikis no trabajan en tiempo real, así que la gente tiene la po-
sibilidad de deliberar y pulir sus contribuciones, pero a la vez son muy sencillos de utilizar, facilitando
más la edición que una página web.

Los wikis no son aun equipamiento estándar para los proyectos open source, pero probablemente pronto
lo serán. Dado que son una tecnología relativamente nueva y la gente aún experimenta con las diferentes
maneras de utilizarlos, sólo ofreceré algunas precauciones —llegados a este punto, es más fácil analizar
los usos equivocados de los wikis en lugar de analizar sus exitos.

Si decide ofrecer un wiki, hay que poner un gran esfuerzo en tener una organización clara de las paginas
y un diseño visual atractivo, de manera que los visitantes (p.e. editores potenciales) instintivamente se-
pan como incluir sus contribuciones. Igual de importante, hay que publicar estos estándares en el mismo
wiki, de manera que la gente tenga un lugar a donde ir en busca de orientación. Muy a menudo, los ad-
ministradores de los wikis caen en la trampa de creer que porque hordas de visitantes añaden individual-
mente contenido de alta calidad al sitio, el resultado de todo esto debe ser también de la más alta calidad
y esto no es como funcionan los sitios web. Cada página individual o párrafo puede que sea bueno al ser
considerado individualmente, pero no será tan bueno si está encuadrado dentro de un todo desorganiza-
do o confuso. Demasiadas veces, los wikis sufren de:

• Falta de principios de navegación. Un sitio web bien organizado hace que los visitantes se sientan
como si supieran donde se encuentran en todo momento. Por ejemplo, si las paginas están bien dise-
ñadas, la gente puede intuir las diferencias entre una región con la "tabla de contenidos" y otra con el
contenido. Los contribuyentes del wiki respetarán tales diferencias también si y solo si las diferencias
están presentes.

• Información duplicada. Frecuentemente los wikis acaban con diferentes páginas con información si-
milar, porque los contribuyentes individuales no se han dado cuenta de la duplicidad. Esto puede ser
una consecuencia de la falta de principios de navegación mencionados antes, en que la gente puede
que no encuentre contenido duplicado si este no se encuentra donde esperaban encontrarlo.

• Audiencia objetivo inconsistente. Hasta cierto punto este problema es inevitable cuando existen tan-
tos autores, pero puede ser ralentizado si existen guías escritas acerca de como crear nuevo contenido.

Infraestructura Técnica

56

http://www.wikipedia.org/

También ayuda editar nuevas contribuciones al principio dando un ejemplo a seguir de manera que
los estándares se vayan asentando.

La solución más común para todos estos problemas es el mismo: tener estándares editoriales y mostrar-
los no sólo publicándolos sino que editando paginas y adheriendose a estos. En general, los wikis ampli-
ficaran cualquier fallo en el material original, ya que los contribuyentes imitaran cualquier patrón que
vean. No sólo hay que configurar el wiki y esperar que todo funcione a la perfección. Se debe preparar
con contenido bien escrito, de manera que la gente tenga una plantilla que seguir.

El ejemplo más brillantes de un wiki bien llevado es la Wikipedia, aunque esto sea parcialmente a que el
contenido (artículos enciclopédicos) sea idóneo para el formato del wiki. Pero si se examina la Wikipe-
dia en profundidad verá que sus administradores han establecido unas fundaciones muy estrictas para las
contribuciones. Existe una extensa documentación acerca de como añadir nuevo contenido o de como
mantener un punto de vista apropiado, los tipos de ediciones que hacer (involucrando varios grados, in-
cluyendo una eventual moderación) y así sucesivamente. También tienen controles de autorización, de
manera que si una página es el objetivo de ediciones inapropiadas, pueden bloquearla hasta que el pro-
blema sea resuelto. En otras palabras, no pusieron unas cuantas plantillas en un sitio web y se sentaron a
esperar. La Wikipedia funciona porque sus fundadores pensaron cuidadosamente acerca de como conse-
guir que cientos de contribuyentes pudieran adaptar sus escritos a una visión común. Aunque puede que
no necesite de toda esta preparación al montar un wiki para un proyecto de software libre, está bien
emular el espíritu.

Para más información acerca de los wikis visitad http://es.wikipedia.org/wiki/Wiki. El primer wiki sigue
vivo y coleando y contiene mucha información sobre los wikis: ???,
http://www.c2.com/cgi/wiki?WhyWikiWorks, y http://www.c2.com/cgi/wiki?WhyWikiWorksNot para
varios puntos de vista.

Sitio Web
No hay mucho que decir acerca de los aspectos técnicos del sitio web del proyecto: montar un servidor
web y crear las páginas web son tareas sencillas, y los aspectos más importantes acerca del diseño y con-
tenido ya han sido tratados en capítulos anteriores. La principal función del sitio web es ofrecer una vi-
sión general clara y unir las otras herramientas (Sistema de control de versiones, gestión de fallos, etc.).
Si no se tiene la experiencia suficiente para configurar un servidor web, no será difícil encontrar a al-
guien que pueda hacerlo y desee ayudar. Sin embargo, para ahorrar tiempo y esfuerzos, es preferible uti-
lizar uno de los sitios web enlatados.

Soluciones de hospedaje
Existen dos ventajas importantes de utilizar sitios preparados. La primera es la capacidad y ancho de
banda del servidor. Sin importar cuan exitoso pueda a llegar a ser el proyecto, el espacio en disco no se
va a acabar y la conexión no se verá superada. La segunda ventaja es sencillez. Estos sitios ya han selec-
cionado un gestor de fallos, un sistema de control de versiones, un gestor de listas de correos, archivador
y todo lo que sea necesario para llevar un sitio web. Ya han configurado las herramientas y se realizan
los respaldos necesarios de los datos almacenados por estas. No es necesario tomar decisiones. Sólo es
necesario rellenar un formulario, presionar un botón y se tiene un sitio web así de fácil.

Estos son beneficios muy significativos. La desventaja, por supuesto, es que se debe aceptar sus opcio-
nes y configuraciones, incluso si algo diferente sería mejor para el proyecto. Por lo general, estos sitios
se pueden ajustar bajo ciertos parámetros pero nunca se obtendrá el control total que se tendría si se hu-
biera hecho en casa teniendo acceso de administrador al servidor.

Un ejemplo perfecto de esto es la gestión de los ficheros generados. Ciertas paginas web del proyecto
puede que sean ficheros creados—por ejemplo, existen sistemas para mantener los datos del FAQ en un
formato fácil de modificar, desde el cual se pueden generar ficheros HTML, PDF y otros formatos. Al

Infraestructura Técnica

57

http://es.wikipedia.org/wiki/Wiki
http://www.c2.com/cgi/wiki?WhyWikiWorks
http://www.c2.com/cgi/wiki?WhyWikiWorksNot

8Disclaimer: Soy empleado de CollabNet [http://www.collab.net/], la cual patrocina Tigris.org, y lo utilizo regularmente.

igual como se explica en “Versiones de todo” anteriormente en este capítulo, no se desean diferentes
versiones de los formatos generados, sólo del fichero maestro. Pero cuando el sitio web está hospedado
en el servidor de otra persona, puede que sea imposible crear un hook personalizado que permita regene-
rar la versión HTML pública cada vez que el fichero maestro del FAQ sea modificado. La única solu-
ción es tener diferentes versiones de los ficheros generados de manera que aparezcan en el sitio web.

Pueden haber consecuencias más importantes también. Puede que no se tenga el control sobre la presen-
tación deseado. Algunos sitios de hospedaje permiten editar las páginas web, pero el diseño original del
sitio termina apareciendo en diversas formas. Por ejemplo, algunos proyectos hospedados en Sourcefor-
ge tienen páginas web totalmente personalizadas pero apuntan los enlaces a la página web de Sourcefor-
ge para más información. La página en Sourceforge sería la página principal del proyecto si no se hubie-
ra utilizado una personalizada. La página de Sourceforge tiene enlaces al gestor de fallos, repositorio
CVS, descargas, etc. Desafortunadamente, una página en Sourceforge también contiene una gran canti-
dad de ruido de fondo. La parte superior es un anuncio en banner, por lo general, una animación. El lado
izquierdo es un arreglo vertical de enlaces con poca relevancia para alguien interesado en el proyecto. El
lado derecho es por le general más publicidad. Sólo el centro de la página es dedicado a material especí-
fico del proyecto e incluso esto esta organizado de forma confusa lo cual hace que los visitantes no estén
seguros de donde pulsar a continuación.

Detrás de cada aspecto individual del diseño de Sourceforge existe sin lugar a dudas una buena ra-
zón—buena desde el punto de vista de Sourceforge, como la publicidad. Pero desde el punto de vista in-
dividual del proyecto el resultado puede que sea una página web alejada de la ideal. No es mi deseo cri-
ticar a Sourceforge; estas mismas preocupaciones se aplican a muchos de estos sitios de hospedaje. El
punto es que hay que hacer un sacrificio. Se obtiene el alivio de los aspectos técnicos de llevar el sitio
del proyecto, pero con la condición de aceptar la forma de llevarlo de otra persona.

Sólo usted puede decidir acerca de cual sitio de hospedaje es el mejor para el proyecto. Si se decide utili-
zar un sitio de hospedaje, deje abierta la posibilidad de cambiar a un servidor propio más adelante utili-
zando nombres de dominio personalizados para la página principal del proyecto. Se puede remitir el
URL al sitio hospedado o tener una página totalmente personalizada detrás de la URL pública y llevar a
los usuarios al sitio hospedado para funcionalidades más sofisticadas. Sólo asegúrese de organizar las
cosas de manera que si decide cambiar de solución para el hospedaje, la dirección del proyecto no deba
ser modificada.

Escoger un sitio de hospedaje

El sitio de hospedajes más grande y conocido es SourceForge [http://www.sourceforge.net/]. Otros dos
sitios que proveen los mismos servicios sonsavannah.gnu.org [http://savannah.gnu.org/] y BerliOS.de
[http://www.berlios.de/]. Algunas organizaciones, como Apache Software Foundation
[http://www.apache.org/] y Tigris.org [http://www.tigris.org/]8, ofrecen hospedaje a proyectos open
source que encajan su misión y su comunidad con proyectos ya existentes.

Haggen So ha hecho una evaluación exhaustiva de varios sitios de hospedaje como parte de su investiga-
ción para su tesis de doctorado titulada Construcción of an Evaluation Model for Free/Open Source
Project Hosting (FOSPHost) sites. Los resultados se encuentran en http://www.ibiblio.org/fosphost/, y
en http://www.ibiblio.org/fosphost/exhost.htm hay un gráfico comparativo.

Anonimato y participación

Un problema que no está estrictamente limitado a los sitios de hospedaje pero que usualmente se en-
cuentra en estos, es el abuso de sus funcionalidades de login. La funcionalidad es suficientemente senci-
lla en si misma: el sitio permite a cada visitante registrarse con un nombre de usuario y contraseña. A
partir de ahí mantiene un perfil para este usuario de manera que los administradores del proyecto puedan
asignar ciertos permisos a este usuario, por ejemplo, el derecho de enviar cambios al repositorio.

Infraestructura Técnica

58

http://www.sourceforge.net/
http://www.sourceforge.net/
http://savannah.gnu.org/
http://savannah.gnu.org/
http://www.berlios.de/
http://www.berlios.de/
http://www.apache.org/
http://www.apache.org/
http://www.tigris.org/
http://www.tigris.org/
http://www.collab.net/
http://www.collab.net/
http://www.ibiblio.org/fosphost/
http://www.ibiblio.org/fosphost/exhost.htm

Esto puede ser extremadamente útil y de hecho es una de las principales ventajas de los sitios de hospe-
daje. El problema es que a veces, el login de los usuarios termina siendo requerido para tareas que debe-
rían ser permitidas para visitantes anónimos, especialmente la habilidad de añadir bugs en el gestor de
fallos o comentar en bugs ya existentes. Al requerir que sólo sean usuarios registrados quienes puedan
llevar a cabo estas acciones, el proyecto eleva la vara de participación para lo que debería ser algo rápi-
do y conveniente. Por supuesto, se desea poder contactar con alguien que ha introducido algún dato en
un bug en el gestor de fallos, pero sólo con tener un campo donde introducir la dirección de correo elec-
trónico (opcional) debería ser suficiente. Si un nuevo usuario encuentra un fallo y desea reportarlo, se
verá molestado por tener que rellenar un formulario para crear una nueva cuenta antes de poder introdu-
cir el fallo. Puede que simplemente decida no hacerlo después de todo.

Las ventajas de la gestión de usuarios generalmente superan las desventajas. Pero si se pueden escoger
cuales acciones pueden ser hechas anónimamente, asegúrese no sólo de que todas las acciones de sólo
lectura sean permitidas a visitantes sin registro, pero también algunas acciones de introducción de datos,
especialmente en el gestor de fallos y, si se tiene, en el wiki.

Infraestructura Técnica

59

Capítulo 4. Infraestructura Social y
Política

Las primeras preguntas que la gente se hace sobre el software libre son "¿Cómo funciona? ¿Cómo se
mantiene el proyecto? ¿Quién toma las decisiones? Siempre quedo insatisfecho con respuestas concilia-
doras sobre la estima del mérito, el espíritu de cooperación, el código que se expresa por si mismo, etc.
El caso es que sobre esto no hay una respuesta fácil. La meritocracia, la cooperación, y un código que
funciona son partes de ella, pero aportan muy poco para explicar como funciona realmente un proyecto
en el andar de todos los días, y nada dice sobre cómo se resuelven los conflictos.

Este capítulo trata de mostrar la estructura subyacente que los proyectos exitosos tienen en comun. Me
refiero con el término "exitosos" no solamente a la calidad técnica, sino también a la salud operacional y
la capacidad de sobrevivencia. La salud operacional es la capacidad efectiva del proyecto de incorporar
las contribuciones de nuevos códigos y nuevos desarrolladores, y de asumir la responsabilidad de los in-
formes de errores que ingresan. Capacidad de sobrevivencia es la posibilidad de que el proyecto exista
independientemente de algún participante o auspiciante en particular— tómelo como la posibilidad que
tiene el proyecto para continuar aún cuando alguno de sus miembros fundadores tuviera que pasar a ocu-
parse de otras cosas. El éxito técnico no es difícil de alcanzar, pero sin una base robusta de desarrollo y
un fundamento social, un proyecto puede resultar incapaz de manejar el crecimiento que el éxito inicial
aporta, o la ausencia de algún individuo carismático.

Hay varias maneras de alcanzar este tipo de éxito. Algunas suponen una estructura formal de supervi-
sión, por la que se resuelven los debates, se aceptan (o rechazan) nuevos desarrolladores, se planifican
nuevas características, etc. Otras requieren menos estructura formal, pero más aplicación en conciencia,
para producir una atmósfera de armonía en la que la gente puede confiar como una formade facto de su-
pervisión. Ambos caminos llevan al mismo resultado: un sentido de permanencia institucional, ayudado
por los hábitos y procedimientos que son bien comprendidos por todos los que participan. Estas caracte-
rísticas son todavía más importantes en los sistemas que se organizan a si mismos que en aquellos que
están controlados centralmente, porque en los sistemas que se organizan a si mismos, cada uno es con-
ciente que unas pocas manzanas pueden arruinar todo el cajón, al menos por un tiempo.

Forkability
El ingrediente indispensable que une a los desarrolladores en un proyecto de software libre, y que los
lleva a comprometerse cuando es necesario es la "forkabilidad" del código: la capacidad de cada uno de
tomar una copia del código fuente y usarlo para abrir un proyecto que compita con el original, evento
que se conoce como "fork". Lo que aparece como paradójico aquí es que la posibilidad de los "forks" es
una fuerza mucho mayor en los proyectos de software libre que los "forks" reales, los que son muy ra-
ros. Puesto que un "fork" es malo para todos (por razones que se examinan en detalle en “Forks” en Ca-
pítulo 8, Coordinando a los Voluntarios), cuanto más seria sea la amenaza de un "fork", tanto mas son
las personas que se comprometen a evitarlo.

Los "forks", o más bien la posibilidad de que se produzca un "fork", es la razón por la cual no hay verda-
deros dictadores en los proyectos de software libre. Esto puede ser una expresión sorprendente, conside-
rando que es muy común oir que alguien es llamado el "dictador" o el "tirano" en algún proyecto de
fuente abierta. Pero esta tiranía es especial, muy diferente de lo que comúnmente se entiende por esa pa-
labra. Imaginaos un rey cuyos súbditos pudieran copiar todo su reino en cualquier momento y trasladar-
se a la copia para gobernarla como creen que corresponde. ¿No sería el gobierno de ese rey muy diferen-
te de otro cuyos súbditos están obligados a permanecer bajo su gobierno, sin importar lo que él haga?

Por esta razón aún aquellos proyectos que no están organizados formalmente como democracias, son en
la práctica democracias en el momento en que se toman las decisiones importantes. La replicabilidad in-
cluye a la "forkability"; "forkability" incluye al consenso. Podría bien darse el caso de que todos quieran
apoyarse en un líder (el ejemplo más famoso es el de Linus Torvalds durante el desarrollo del kernel de

60

Linux), pero esto es porque ellos así lo eligen, de una manera ajena a todo cinicismo y en una forma no
siniestra. El dictador no tiene un dominio mágico sobre el proyecto. Una propiedad de todas las licencias
de fuente abierta es que no se le da a una parte más poder que a cualquier otra para decidir cómo se debe
usar o cambiar el código. Si el dictador de repente comenzara a tomar malas decisiones, se produciría
una agitación, seguida eventualmente por un levantamiento y por un "fork". Excepto que, por supuesto,
muy rara vez las cosas llegan tan lejos, porque antes el dictador busca soluciones de compromiso.

Pero, sólo porque la forkability pone un límite al abuso de poder que uno puede ejercer en un proyecto,
eso no quiere decir que no hayan diferencias importantes en el modo como se gobiernan los proyectos.
Nadie desea que en todas las decisiones se llegue a la pregunta de última instancia de quien está conside-
rando un fork. Eso pasaría rápidamente a ser muy agobiante, restando energía necesaria para el trabajo
efectivo. Las dos secciones que siguen examinan los modos de organizar los proyectos para que la ma-
yoría de las decisiones se tomen naturalmente. Estos dos ejemplos son los casos extremos idealizados;
muchos proyectos quedan de alguna manera incluidos entre esos casos.

Dictadores Benevolentes
El modelo de un dictador benevolente es precisamente lo que se describe así: La autoridad final de la to-
ma de decisiones reside en una persona, de quien se espera que, por la fuerza de su personalidad o expe-
riencia, la use sabiamente.

Auque el término estándar de esta función es "dictador benévolo" (o DB), sería mejor que lo imagine-
mos como un "árbitro aprobado por la comunidad" o un "juez". En general, los dictadores benevolentes
no toman realmente las decisiones, ni siquiera la mayoría de las decisiones. No es probable que una per-
sona pueda tener todo el conocimiento para tomar decisiones buenas y coherentes en todas las áreas de
un proyecto, y además, los desarrolladores de calidad no se acercarán al proyecto a no ser que tengan al-
guna influencia en su dirección. Por lo que los dictadores benevolentes no se comportan como mando-
nes. Por el contrario, dejan que las cosas funcionen por sí solas por el intercambio de ideas y la experi-
mentación, siempre que eso sea posible. Ellos mismos participan en esas discusiones, como un desarro-
llador cualquiera, a menudo delegando a un administrador de area que tenga mas conocimiento. Sola-
mente cuando queda claro que no se puede alcanzar un consenso, y cuando la mayoría del grupo desea
que alguien guíe la decisión para que el desarrollo pueda seguir adelante, pisan firme y dicen: "Esta es la
forma que tiene que ser". Una característica compartida por casi todos los dictadores benevolentes exito-
sos es que tienen un rechazo a tomar decisiones con un "así tiene que ser"; esta es una de las razones por
la permanecen en la función.

¿Quién puede ser un Buen Dictador Benevolente?
Ser un DB requiere una combinación de características. Se necesita, antes que nada, una cierta delicade-
za para juzgar su propia influencia en el proyecto, lo que a su vez lleva a sujetar los primeros impulsos.
En los primeros pasos de una discusión uno no debe expresar opiniones y conclusiones con tanta seguri-
dad que los otros sientan que es inútil opinar en contra. La gente debe sentirse libre de ventilar sus ideas,
aunque sean tontas. Es inevitable que el DB sugiera alguna idea tonta de vez en cuando, y por lo tanto
esta función requiere la disponibilidad de reconocer cuando uno haya tomado una mala decisión— si
bien es ésta una característica sencilla que cualquier buen desarrollador debe tener, especialmente si per-
manece en el proyecto por mucho tiempo. Pero la diferencia es que el DB puede darse el lujo de equivo-
carse de vez en cuando sin tener que lamentar daños permanentes en su credibilidad. Los desarrolladores
más jóvenes pueden no tener tanta seguridad, y por eso los DB deben expresar sus críticas o decisiones
en contra con mucha delicadeza para contrapesar la fuerza psicológica y técnica que tienen sus palabras.

El DB no necesita tener una habilidad técnica superior que supere a todos los que están en el proyecto.
Tiene que saber lo suficiente como para trabajar en el código, y entender y comentar cualquier cambio
en consideración, y eso es todo. La posición del DB no se adquiere ni mantiene en virtud a una habilidad
de codificar intimidatoria. Lo que si es importante es la experiencia y un sentido general del diseño —no
necesariamente la habilidad de producir un buen diseño a pedido, pero si la habilidad de reconocer el
buen diseño, provenga de donde proveniere.

Infraestructura Social y Política

61

Es común que un dictador benevolente sea el fundador del proyecto, pero esto es más una correlación
que una causa. El tipo de cualidades que permite poner en marcha con éxito un proyecto son exáctamen-
te las cualidades que cualquier DB debe tener— competencia técnica, habilidad de persuadir para que
otro se una, etc.—. Y por supuesto, los fundadores se inician con una cierta senioridad automática, que
puede ser suficiente a menudo para que el dictador benevolente aparezca por el camino de menor resis-
tencia para todos aquellos a quienes les incumbe.

Recordar que la amenaza de un fork vale para los dos sentidos. Un DB puede hacer un fork de un pro-
yecto tan facilmente como cualquier otro, y ocasionalmente lo han hecho, cuando sienten que la direc-
ción que está tomando el proyecto es diferente de donde la mayoría de los desarrolladores quieren ir. Por
causa de la forkabilidad, poco importa si el dictador benevolente tiene privilegios de root (que corres-
ponden al administrador del sistema) en el servidor principal del proyecto. A veces la gente se refiere al
control del servidor como si fuera la mayor fuente de poder en un proyecto, pero de hecho es irrelevante.
La posibilidad de agregar o quitar las palabras clave para hacer commit en un servidor afecta solo a la
copia del proyecto que reside en el servidor. Un abuso constante de ese poder, sea por el DB o por cual-
quier otro, va a terminar simplemente con un cambio del desarrollo en un servidor diferente.

Si el proyecto tendrá un dictador benevolente o si va a funcionar mejor con un sistema menos centraliza-
do, depende ampliamente de quién es el que va a cumplir con esa función. Por lo general es algo muy
obvio desde el comienzo saber quién va a ser el DB, y entonces todo se encamina en ese sentido. Pero si
no hay un candidoto obvio para el DB, puede ser que el proyecto se incline a usar un proceso descentra-
lizado de tomas de decisión, como se va a describir en la prósima sección.

Democracia basada en el Consenso
A medida que el proyecto avanza, se tiende a pasar del modelo del dictador benevolente a los sistemas
más abiertaente democráticos. Este paso no se produce necesariamente por la insatisfacción causada por
un DB. Es que el gobierno basado en el grupo llega a ser estable en su evolución, para usar así una metá-
fora biológica. Siempre que un dictador benevolente se baja o intenta difundir la responsablidad de to-
mar decisiones entre todos por igual, se da la oportunidad para que el grupo se asiente en un nuevo siste-
ma no-dictatorial—estableciendo una constitución, por así decirlo. Puede ser que el grupo no aprovecha
la primera oportunidad, ni quizás tampoco la segunda, pero en algún momento lo hará; y una vez hecho,
es muy difícil que esta decisión se vuelva atrás. Y el sentido comun lo explica: si un grupo de N indivi-
duos tuviera que investir una persona con poderes especiales, eso significaría que N - 1 personas tuvie-
ron que aceptar que sus influencias individuales se disminuyan. Normalmente la gente no quiere hacer
cosas como esa. Y si las hiciera, todavía la dictadura que de allí resulte sería condicional: el grupo que
unge a un DB, es claramente el grupo que puede deponer al DB. Por lo tanto, una vez que el proyecto a
pasado de un liderazgo carismático individual a un sistema más formal basado en el grupo, muy rara vez
vuelve para atrás.

Los detalles de cómo funcionan esos sistemas varían ampliamente, pero hay en ellos dos elementos co-
munes: uno, el grupo funciona por consencio la mayoría del tiempo; dos, hay un mecanismo formal de
votaciones para los casos en que el consenso no puede alcanzarse.

Consenso significa solamente un acuerdo que todos aceptan de una vez por todas. No es un estado ambi-
guo: un grupo alcanza el consenso en un asunto particular cuando alguien expresa que se ha alcanzado
un consenso y nadie contradice esa afirmación. La persona que propone el consenso debe, por cierto, de-
jar en claro cual es el consenso alcanzado, y que acciones deben tomarse en consecuencia de él, si es que
ésto no resulta obvio.

La mayoría de las conversaciones de un proyecto son sobre los asuntos técnicos, como el modo correcto
de corregir algún error, la conveniencia o no de agregar un asunto, la forma estricta como un documento
se enlaza, etc. Un gobierno basado en el consenso funciona bien porque se entrelaza con la discusión
técnica y se confunde con ella silenciosamente. Al terminar una discusión, generalmente hay acuerdo so-
bre cual es el camino a seguir. Alguien hace una intervención conclusiva, que es al mismo tiempo un re-
sumen de lo que se ha ido decidiendo y queda como una propuesta implícita de consenso. Esto ofrece
una última oportunidad para que alguien diga "Un momento, no estoy de acuerdo. Debemos reconside-

Infraestructura Social y Política

62

rar esto un poco más"

En decisiones de poca importancia que no ofrecen discusión, la propuesta de consenso es implícita. Por
ejemplo, cuando un desarrollador hace un commit de una reparación de error, el mismo commit es la
propuesta de consenso: "Supongo que todos estamos de acuerdo en que este error debe ser corregido, y
esta es la manera de hacerlo." Por supuesto, el desarrollador no lo dice; simplemente hace el commit de
la reparación, y los demás no se preocupan de manifestar su acuerdo, porque el silencio es el consenti-
miento. Si alguien hace el commit de un cambio que resulta no tener consenso, se produce simplemente
una discusión sobre el cambio como si todavía no estuviera incluido como cambio. La explicación de
por qué esto funciona es el tema de la próxima sección.

Control de Versión Significa que Uno Puede Evitar el Es-
trés

Mantener el código fuente del proyecto bajo el control de versión significa que la mayoría de las deci-
siones pueden fácilmente deshacerse. La manera corriente para que esto pase es que alguien haga com-
mit de un cambio pensando que todos van a aceptarlo con gusto, y después encontrarse con las objecio-
nes ante el hecho. Una forma típica de esas objeciones es comenzar con las disculpas del caso por no ha-
ber intervenido en discusiones anteriores, aunque esto se puede omitir si el discrepante no encuentra re-
gistros de tales discusiones en los archivos de la lista de correos. En cualquier caso, no hay motivos para
que el tono de la discusión sea diferente después del cambio introducido que antes. Cualquier cambio
puede ser revertido, al menos antes de que se introduzcan cambios dependientes (es decir, nuevo código
que se daña si el cambio original es quitado de repente). El sistema de control de versión permite que el
proyecto deshaga los efectos de malas ideas o propuestas ligeras. Esto, a su vez, le da la libertad a la
gente para que confíe en sus instintos y aprenda cuanta consulta es necesaria antes de hacer algo.

También significa que el proceso de consensuar no necesita ser muy formal. Muchos proyectos manejan
esto por instinto. Los cambios menores pueden ir sin discusión, o con una discusión mínima seguida por
algunos acuerdos. En cambios de mayor importancia, especialmente aquellos que pueden desestabilizar
una parte del código, la gente espera uno o dos días antes de suponer que hay consenso. La razón es que
nadie puede ser dejado de lado en una conversación importante simplemente por no haber inspeccionado
su correo con la frecuencia debida.

Entonces, cuando alguien se siente seguro que sabe lo que tiene que hacer, no para en mientes y lo hace.
Esto se aplica no sólo al software fijo, sino a las actualizaciones de la Web, a cambios en la documenta-
ción y a cualquier otra cosa que no sea controversial. Generalmente se darán pocos casos en los que la
acción tenga que ser deshecha, y estos pueden ser tratados individualmente en cada caso. Por supuesto
que no se debe incentivar a la gente para que sea obstinada. Hay todavía una diferencia psicológica entre
una decisión bajo discusión y una que ya haya tenido efecto, por más que se diga que es técnicamente
reversible. La gente siente que el momento es un aliado de la acción, y que se sentirán más reacios a re-
vertir un cambio que a prevenirlo en el primer instante. Si un desarrollador se abusa de este principio y
rápidamente hace commits de cambios que generan controversia, ciertamente la gente puede y debe que-
jarse, y mantener a ese desarrollador en un estándar estricto hasta que las cosas mejoren.

Cuando No Se Puede Tener Consenso, Vote
Inevitablemente, algunos debates no llegarán al consenso. Cuando no haya otro medio de salir del calle-
jón, la solución es votar. Pero antes que se llegue a la votación, debe aclararse unas cuantas opciones del
ballotage. De nuevo en este caso el proceso de discusión técnica se integra suavemente con los procedi-
mientos de toma de decisión del proyecto. El tipo de asuntos que llega a votación implican a menudo te-
mas complejos, llenos de facetas. En cualquiera de tales discusiones complicadas, hay a menudo una o
dos personas que hacen las veces de negociador honesto: aportan periódicamente la síntesis de los argu-
mentos y siguen las líneas de los puntos centrales del desacuerdo (y del acuerdo). Estas síntesis ayudan a
que todos estimen el progreso que se va haciendo, y les recuerda a todos cuáles asuntos quedan pendien-
tes. Estas síntesis podrán servir como modelos para una propuesta de votación, en caso de que ésta se
vuelva necesaria. Si los negociadores honestos se han desempeñado bien en su oficio, estarán en condi-

Infraestructura Social y Política

63

ciones de llamar a votación cuando llegue el tiempo, y todos querrán usar las propuestas vertidas en esas
síntesis para organizar la votación. Los negociadores también serán partícipes del debate; no es necesa-
rio que ellos queden fuera de la votación, en tanto puedan entender y representar los puntos de vista de
los demás, y no dejen que sus sentimientos partidarios les impidan producir síntesis del estado del deba-
te en una forma neutral.

Normalmente la organización de la votación no cae en la controversia. Cuando llega el tiempo de votar,
el desacuerdo ha sido analizado y reducido a unas pocas cuestiones, bien etiquetadas y acompañadas de
descripciones concisas. De vez en cuando un desarrollador hará una objeción sobre la forma de votar. A
veces esta preocupación es legítima, por ejemplo, cuando una opción importante ha sido dejada de lado
o no ha sido presentada con precisión. Pero otras veces un desarrollador puede tratar de impedir lo inevi-
table, quizás porque se da cuenta que el voto no va acompañar su idea. Ver“Gente difícil” en Capítulo 6,
Communications para ver como tratar este tipo de obstruccionismo.

Recuerde de especificar el sistema de votación, puesto que hay varias formas, y la gente puede tener fal-
sas expectativas sobre el procedimiento que va a ser usado. Una buena opción es la votación por apro-
bación, en la que cada votante puede votar por todas las opciones que quiera, dentro de las opciones pre-
sentadas. La votación por aprobación se resuelve simplemente explicando y contando, y a diferencia de
otros métodos, solo requiere una ronda de votación. Ver
http://en.wikipedia.org/wiki/Voting_system#List_of_systems para mas detalles acerca de la votación por
aprobación y otros sistemas de votación, pero tratar de no caer en un debate largo sobre cuál deba ser el
sistema que se use (ya que se verán atrapados en el círculo de tener que votar para decidir cómo votar!)
Una razón para defender la votación por aprobación como una buena opción es que es difícil que alguien
se oponga—es lo más transparente que puede ser una votación.

Finalmente, voto secreto, voto abierto. No hay necesidad de guardar secretos o aparecer como anónimos
en una votación sobre asuntos que se han debatido públicamente. Cada participante pone su voto en la
lista de correo del proyecto, de modo que cualquier observador pueda hacer el conteo y verificar el re-
sultado, y que todo quede archivado.

Cuando Se Debe Votar
Lo más difícil en la votación es determinar cuando se debe votar. Generalmente la votación tiene que ser
algo fuera de lo común—el último resorte cuando todas las otras opciones han fallado. No tome a la vo-
tación como el gran camino para resolver los debates. No lo es. Finaliza la discusión, y por tanto finaliza
el pensamiento creativo sobre el problema. Mientras la discusión está en el tapete, existe la posibilidad
de que alguien aporte una solución nueva, que sea del agrado de todos. Sorprendentemente, esto ocurre a
menudo: un debate abierto puede producir un giro nuevo del pensamiento sobre el problema, y llevar a
una propuesta que eventualmente satisfaga a todos. Aún cuando no surja una propuesta nueva, todavía
es mejor negociar una solución de compromiso que poner un voto. Luego de una solución de compromi-
so, todos quedan algo insatisfechos, mientras que después de una votación unos quedan contentos y
otros en desánimo. Desde un punto de vista político, la primera situación es preferible: al menos cada
uno puede sentir que su desánimo es el precio de su accionar. Puede estar insatisfecho, pero todos lo es-
tán.

La ventaja principal de la votación es que se cierra la cuestión y se puede seguir adelante. Pero el arreglo
se hace por un conteo de votos, en lugar de un diálogo racional que conduzca a todos a la misma conclu-
sión. Cuanto más experiencia tiene la gente en proyectos de fuente abierta, les encuentro menos dispues-
tas a querer arreglar las cuestiones por medio de la votación. Tratarán primero de explorar las soluciones
que previamente no hayan sido consideradas, o entrar en soluciones de compromiso más ajustadas de lo
que planearon en un comienzo. Hay varias técnicas para prevenir una votación prematura. La más obvia
es decir simplemente "no creo que ya estemos listos para una votación", y explicar por qué no. La otra
es pedir que sin compromiso se levanten las manos. Si la respuesta tiende claramente hacia un lado, ne-
cesariamente va a inclinar al otro grupo a querer encontrar soluciones de compromiso, obviando así la
necesidad de la votación formal. Pero la manera más efectiva es simplemente ofrecer una solución nue-
va, o un nuevo punto de vista para una sugerencia antigua, de modo que la gente se re-conecte con los
temas en lugar de repetir meramente los mismos argumentos.

Infraestructura Social y Política

64

http://en.wikipedia.org/wiki/Voting_system#List_of_systems

En algunos casos raros, todos pueden concordar que las soluciones de compromiso presentadas son pe-
rores que cualquiera de las soluciones en consideración. Cuando esto ocurre, la votación no es tan obje-
table, por un lado porque es muy probable que se va a llegar a una solución superior, y por otro porque
la gente no se va a desanimar con el resultado, cualquiera sea la opción que gane. Aún en estos casos, no
hay que apurarse en votar. La discusión que arriba en una votación es lo que educa al electorado, y dete-
ner pronto la discusión puede disminuir la calidad del resultado.

(Fijarse que este consejo de ser reacio a las votaciones no se aplican a la votación sobre cambio-inclu-
sión que se describe en “Stabilizing a Release” en Capítulo 7, Packaging, Releasing, and Daily Develop-
ment. Allí, la votación es más bien un mecanismo de comunicación, un medio de registrar el propio
compromiso en el proceso de revisión de cambio de modo que todos puedan decir cuánta revisión ha re-
cibido un cambio dado.)

¿Quién Vota?
Al tener un sistema de votación aparece la cuestión del electorado: ¿A quién le corresponde votar? Este
asunto puede convertirse en delicado, porque fuerza a que el proyecto reconozca oficialmente que hay
gente con mayor compromiso, o con mejores apreciaciones que los otros.

La mejor solución es simplemente tomar la distinción existente, el acceso a los commits, y asociar los
privilegios del voto en eso. En proyectos en que existan accesos completos y parciales a los commits, la
cuestión de permitir el voto a los que tienen commit parcial dependerá en gran manera de los procesos
por los que el commit parcial fue otorgado. Si el proyecto lo maneja con liberalidad, por ejemplo como
una manera de mantener muchas herramientas de contribución de terceras partes en el repositorio, en-
tonces debe dejarse en claro que el acceso al commit parcial hace referencia a los commits, no a la vota-
ción. Naturalmente la implicación inversa se mantiene: puesto que los que tienen commit completo ten-
drán privilegios de votación, deben elegirse no solo como programadores, sino también como miembros
del electorado. Si alguien muestra tendencias disruptivas u obstruccionistas en la lista de correo, el gru-
po debe ser muy cauto en incluirlo entre los que hacen commits, auque sea una persona capacitada técni-
camente.

E sistema de votación debe ser usado para elegir a los nuevos miembros que hacen commit, sea comple-
to o parcial. Y aquí aparece una de las circunstancias raras en donde el voto secreto es apropiado. No
pueden ponerse los votos para los que hacen commits en una lista de correo pública, porque se pueden
herir los sentimientos y la reputación de un candidato. En lugar de eso, la forma común es que los que
tienen voto lo pongan en una lista de correo privada donde solamente estén los que pueden hacer com-
mits, para proponer que alguien sea habilitado para hacer commits. De esta manera todos pueden expre-
sarse libremente, sabiendo que la discusión es privada. A menudo no habrá desacuerdo, y no se necesita-
rá votar. Luego de esperar unos días para asegurarse que todos tuvieron oportunidad de responder, el
proponente envía un mail al candidato y le ofrece el acceso a los commits. Si hay desacuerdo, se inicia
una discusión como para cualquier otro asunto, con la posibilidad de terminar en una votación. Para que
este proceso sea abierto y transparente, tambien tiene que ser secreto el hecho que hay una discusión en
curso. Si la persona en consideración sabe lo que está ocurriendo, y luego no se le ofrece un acceso de
commit, puede concluir que él ha perdido el voto, y sentirse herido por ello. Por supuesto, si alguien ex-
plícitamente pide el acceso al commit, entonces no hay nada que hacer sino considerar la propuesta y ex-
plícitamente aceptarle o rechazarle. Si ocurre lo segundo, tiene que hacerse con sumo tacto, con una ex-
plicación clara: "Nos agradan tus aportes, pero todavía no hemos visto lo suficiente", o "Hemos tenido
en cuenta todos tus aportes, pero se han tenido que hacer considerables ajustes antes de poder aplicarlos,
por lo que todavía no nos sentimos confiados para darte el acceso al commit. Esperamos que esto cam-
bie con el tiempo". Recordar que lo que se dice puede caer como un golpe, dependiendo del grado de
confianza que se tenga con la persona. Tratar de verlo desde su punto de vista, en el momento que se es-
cribe el mail.

Puesto que agregar un nuevo miembro que pueda hacer commits es una decisión más secuencial que
otras decisiones, algunos proyectos tienen requerimientos especiales para el voto. Por ejemplo, puede re-
querirse que la propuesta reciba por lo menos n votos positivos y que no tenga ningún voto negativo, o
que cierta supermayoría vote a favor. Los parámetros exactos no son importantes; la idea principal es

Infraestructura Social y Política

65

que el grupo debe ser cuidadoso al otorgar acceso a los commits. Similarmente, o todavía más estricta-
mente, se aplican requerimientos especiales a la votación para quitar el acceso a los commits, y ojalá
que eso nunca sea necesario. Ver“Committers” en Capítulo 8, Coordinando a los Voluntarios para más
aspectos sobre la no votación para agregar o quitar acceso a los commits.

Encuestas Versus Votaciones
Para ciertas clases de votaciones, puede ser útil expandir el electorado. Por ejemplo, si los desarrollado-
res no tienen una idea clara para decidir si una interfase dada se adapta al modo como la gente realmente
usa el software, una solución es hacer una votación entre todos los suscriptos en la lista de correo del
proyecto. Estas son realmente encuestas más que votaciones, pero los desarrolladores pueden acordar
que los resultados sean vinculantes. Como en cualquier votación, hay que asegurarse de informar a los
participantes que hay una opción escrita: si a alguien se le ocurre una opción mejor que no está en la lis-
ta, su respuesta puede llegar a ser el resultado más importante de la votación.

Vetos
Algunos proyectos permiten un tipo especial de voto que se conoce como veto. El veto es la manera que
tiene un desarrollador para detener un cambio apresurado o mal considerado, por lo menos por un tiem-
po suficiente para que todos puedan discutirlo más. Entender el veto como algo que está entre una obje-
ción fuerte y una discusión sin fin. El sentido exacto del veto varía de un proyecto a otro. Algunos pro-
yectos hacen que sea difícil contrarrestar un veto; otros permiten que sea superado por el voto de una
simple mayoría, quizás luego de una forzada demora producida por más discusión. Un veto debe ser
acompañado por una explicación exhaustiva; el veto presentado sin esa explicación debe ser considerado
inválido.

Junto con los vetos se introduce el problema del abuso del veto. A veces los desarrolladores están dema-
siado ansiosos en levantar la presión con el pedido de veto, cuando lo que realmente se requiere es más
discusión. Se puede evitar el abuso del veto empezando por ser uno mismo contrario al uso del veto, y
haciendo notar con tacto cuando alguien usa el veto muy a menudo. Si fuera necesario, se puede recor-
dar para el grupo que los vetos tienen fuerza de obligación siempre y cuando el grupo esté de acuer-
do—después de todo, si una gran mayoría de desarrolladores quieren X, de una u otra manera van a con-
seguir X. O bien el desarrollador que propuso el veto lo retira, o el grupo va a quitarle fuerza al signifi-
cado del veto.

A veces se escribe un "-1" para contabilizar el veto. Esta costumbre viene de la Fundación del Software
Apache, quienes tienen un proceso muy estructurado de votos y votaciones, que está en
http://www.apache.org/foundation/voting.html. Las normas de Apache se han difundido a otros proyec-
tos, y se pueden ver sus acuerdos usados de distinta forma en muchos lugares del mundo de la fuente
abierta. Técnicamente "-1" no siempre indica que hay un veto formal de acuerdo a las normas de Apa-
che, pero informalmente se considera que representa un veto, o por lo menos una objeción muy fuerte.

Igual que con las votaciones, los vetos se pueden aplicar con efectos retroactivos. No es correcto recha-
zar un veto porque el cambio en cuestión haya sido puesto en commit, o porque la acción está asumida
(a no ser que se trate de algo irrevocable, como por ejemplo una edición de prensa). Por otro lado, un ve-
to que llega semanas, o meses tarde no tiene la posibilidad de que se lo tome muy en serio, ni tendría
que ser así.

Tomando Nota de Todo
En cierto momento, el número de acuerdos y arreglos que circulan por el proyecto pueden llegar a ser
tan grandes que se necesita registrarlos en algún lugar. Y para dar legitimidad a esos documentos, hay
que tener bien claro que están basados el las discusiones de las listas de correo y en acuerdos que ya es-
taban en vigencia. Cuando se los escribe, se hace referencia a las líneas de los archivos de la lista de co-
rreo y cada vez que no se está seguro sobre un punto, se pregunta de nuevo. El documento no debe con-
tener sorpresas: Éste no es fuente de los acuerdos, sino solamente la descripción de ellos. Por supuesto,

Infraestructura Social y Política

66

http://www.apache.org/foundation/voting.html

si es aceptado, la gente comenzará a citarlo como si fuera una fuente de autoridad, pero eso sólo signifi-
ca que refleja con exactitud la voluntad de todos los del grupo.

Este es el documento aludido “Pautas de Desarrollo” en Capítulo 2, Primeros Pasos. Naturalmente,
cuando el proyecto recién comienza, se tendrá que esbozar una guía, sin que por esto se excluya la con-
fección de una posterior historia del proyecto. Pero, a medida que la comunidad madura, se pueden ha-
cer ajustes del lenguaje para reflejar la manera final a la que se ha llegado.

No se debe pretender que uno lo ha dicho todo. Ningún documento puede captar todo lo que la gente ne-
cesita saber para participar en un proyecto. Muchos de los acuerdos del proyecto permanecen tácitos,
nunca explicitados, sin embargo aceptados por todos. Algunas cosas son muy obvias para incluirlas, y
resultarían distractivas al lado del material que no es obvio y es importante. Por ejemplo, no tiene senti-
do escribir en la guía una instrucción como "Sea educado y respetuoso con los otros miembros de la lista
de correos, y no incite a las discusiones acaloradas" o "Escriba código sin errores, claros y limpios." Por
supuesto que son cosas deseables, pero no existe un universo concebible donde estas cosas no sean de-
seables, por lo que no vale la pena mencionarlas. Si alguien es grosero en la lista de correos, o escribe el
código con errores, no van a dejar de hacerlo sólo porque la guía del proyecto lo dice. Estas situaciones
requieren atención en el momento que aparecen, y no bastan las normas generales que dicen que hay que
ser buenos. Además, si el proyecto tiene líneas específicas sobre cómo escribir un código bueno, enton-
ces esas líneas de la guía deber escribirse con todo el detalle que sea posible.
.

Una buena manera de determinar qué debe incluirse en el documento es referirse a las preguntas que los
recién llegados hacen, y a las quejas de los desarrolladores con experiencia. Esto no quiere decir que ne-
cesariamente tienen que convertirse en un informe FAQ—posiblemente el documento necesita una es-
tructura narrativa más coherente que la que puede ofrecer el FAQ. Tiene entonces que seguir el mismo
principio basado en la práctica, que hay que incluir asuntos que realmente se producen, y no tanto tratar
de anticiparse a los asuntos que pueden producirse.
.

Si el proyecto tiene un dictador benévolo, o si tiene miembros con poderes especiales (presidente, secre-
tario general, o lo que sea), entonces el documento es una buena oportunidad de escribir los procedi-
mientos de la sucesión de poderes. A veces eso puede ser tan simple como nombrar cierta gente como
reemplazantes en el caso en que el DB abandone el proyecto por alguna razón. Generalmente, si hay un
DB, es sólo él quien puede decidir el nombre de un sucesor. Si se elige una comisión, entonces el proce-
dimiento de la elección y el nombramiento de los integrantes de la comisión tiene que estar descrito en
el documento. Si al comienzo no existe un procedimiento, entonces hay que conseguir un consenso en la
lista de correos antes de escribir sobre el procedimiento. Hay gente que puede ser sensible con las es-
tructuras jerárquicas, por lo que el asunto tiene que ser tratado con delicadeza.

Quizás lo mas importante es dejar en claro que las reglas pueden ser reconsideradas. Si los acuerdos des-
critos en el documento comienzan a frenar el proyecto, recordar a todos que fue pensado como una refle-
xión viviente de las intenciones del grupo, no para provocar frustración y bloqueo. Si alguien toma por
hábito pedir que las reglas se reconsideren cada vez que una regla se considera, no siempre conviene de-
batir el tema con ella—a veces el silencio es la mejor táctica. Si hay mas de uno que se une a las quejas,
la campana ha sonado, y será lógico suponer que algo necesita ser cambiado. Si nadie se une a la queja,
entonces esa persona no representa a nadie, y las reglas quedarán como están.

Dos buenos ejemplos de una guía para un proyecto es Subversion hacking.html en
http://svn.collab.net/repos/svn/trunk/www/hacking.html, y los documentos de gobierno de la Fundación
de Software Apache, en http://www.apache.org/foundation/how-it-works.html y
http://www.apache.org/foundation/voting.html. La Fundación de Software Apache es de hecho una co-
lección de proyectos de software, organizada legalmente como una corporación sin fines de lucro, de
modo que sus documentos tienden a describir los procedimientos de gobierno más que las convenciones
de desarrollo. Vale la pena leerlas, porque representan una experiencia acumulada en muchos proyectos
de fuente abierta.

Infraestructura Social y Política

67

http://svn.collab.net/repos/svn/trunk/www/hacking.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/voting.html

Capítulo 5. Dinero
Este capitulo examina como conseguir fondos en un entorno de software libre. Esta dirigido no solo a
los desarrolladores que se les paga por trabajar en proyectos de software libre, sino tambien a los direc-
tores, quienes necesitan comprender la dinámica social de el entorno de desarrollo. En las secciones que
siguen, el destinatario ("tu") significa tanto un desarrollador que cobra como a aquel que coordina a tales
desarrolladores. El consejo a menudo será el mismo para ambos; cuando no sea así, la audiencia preten-
dida quedará clara con el contexto.

Los fondos corporativos de un desarrollo de software libre no son un nuevo fenomeno. Muchos de los
desarrollos han estado siempre informalmente subvencionados. Cuando un administrador de sistemas es-
cribe una herramienta de análisis de sistemas para ayudarle en su trabajo, entonces la pone online y con-
sigue corregir bugs y contribuciones con nuevas características de otros administradores de sistemas, lo
que ha ocurrido es que se ha creado un consorcio no oficial. Los fondos del consorcio provienen de los
sueldos de los sysadmins, y su espacio de oficina y ancho de banda son donados, aunque desconociéndo-
lo la organización para la que ellos trabajan. Aquellas organizaciones se benefician de la inversión aun-
que ellas, institucionalmente no son conscientes de ello al principio.

Hoy la diferencia, es que muchos de estos esfuerzos estan siendo formalizados. Las corporaciones se es-
tán concienciando de los beneficios de el software open source, y por ello empiezan a involucrarse ellas
mismas en su desarrollo. Los desarrolladores tambien llegan a esperar que los proyectos importantes
atraigan al menos donaciones, y posiblemente incluso sponsors de gran duración. Mientras que la pre-
sencia del dinero no ha cambiado la dinámica básica del desarrollo del software libre, ha cambiado mu-
cho la escala a la cual ocurren las cosas, ambas en términos de número de desarrolladores y tiempo por
desarrollador. Tambien ha tenido efecto en como son organizados los proyectos, y en como las partes
envueltas en ellos interactuan. La cuestión no es meramente sobre como se gasta el dinero, o en medir
como se devuelven las inversiones. Sino tambien en las administraciones y procesos: como pueden las
estructuras de mando jerárquico de las corporaciones y las comunidades de voluntarios semi-
descentralizados de proyectos de software libre trabajar productivamente uno con otro? ¿Tendrán ellos
que acordar incluso el significado de "productivo"?

El patrocinio financiero es, en general, bienvenido por las comunidades de desarrollo de open source.
Puede reducir la vulnerabilidad de un proyecto a las fuerzas del Caos, el cual arrebata tantos proyectos
antes de que ellos salgan a la tierra, y de ahí puede hacer a la gente más dispuesta a darle al software una
oportunidad; ellos sienten que estan invirtiendo su tiempo en algo que todavía les llevará seis meses des-
de ahora. Después de todo, la credibilidad es contagiosa, hasta cierto punto. Cuando se dice, IBM apoya
un proyecto Open Source, la gente más o menos asume que al proyecto no se le permitirá fallar, y su
buena voluntad resultante dedicará los esfuerzos a ello para que pueda hacerse como una profecía que se
cumple por su propia naturaleza.

Sin embargo, los fondos tambien traen una percepción de control. Si no se manejan cuidadosamente, el
dinero puede dividir un proyecto en grupos incluyentes y grupos excluyentes de desarrolladores. Si los
voluntarios no remunerados tienen el sentimiento que las decisiones de diseño o adición de característi-
cas están simplemente disponibles para el mejor postor, se marcharan a un proyecto que se parezca más
a una meritocracia y menos a un trabajo sin pagar para el beneficio de alguien. Puede que ellos nunca se
quejen patentemente en las listas de correo. En vez de eso, simplemente habrá menos y menos ruido de
fuentes externas, como los voluntarios gradualmente pararán de intentar ser tomados seriamente. El ru-
mor de la actividad a pequeña escala continuará, en la forma de informes de fallos y ocasionalmente pe-
queños arreglos. Pero no habrá ninguna contribución con gran código o participación externa en discu-
siones de diseño. La gente siente que es lo que se espera de ellos, y viven (o se deprimen) en esas espe-
ranzas.

Aunque el dinero necesita ser usado cuidadosamente, esto no significa que no se pueda comprar influen-
cia. Desde luego puede. El truco es que no puede comprar la influencia directamente. En una transación
comercial sencilla, cambias dinero por lo que quieras. Si necesitas añadir una característica, firmas un
contrato, pagas por ello, y lo tienes hecho. En un proyecto Open Source no es tan simple. Tu puedes fir-

68

mar un contrato con algunos desarrolladores, pero ellos serían idiotas consigo mismos, y tú, si ellos ga-
rantizan que el trabajo por el que tu has pagado será aceptado por la comunidad de desarrollo simple-
mente porque tu pagaste por él. El trabajo únicamente puede ser aceptado por sus propios méritos, y es
como encaja en la visión de la comunidad por el software. Puede que tengas algo que decir en esta vi-
sión, pero no serás la única voz.

Por lo tanto, el dinero no puede comprar influencia, pero puede comprar cosas que llevan a la influencia.
El ejemplo más obvio son los programadores. Si los buenos programadores son contratados, y aguantan
bastante como para conseguir experiencia con el software y credibilidad en la comunidad, entonces ellos
pueden influenciar en el proyecto de la misma manera que cualquier otro miembro. Tendrán voto o si
hay muchos de ellos, tendrán un bloque de votaciones. Si ellos son respetados en el proyecto, tendrán in-
fluencia más alla de sus votos. No hay necesidad de que los desarrolladores con sueldo disimulen sus
motivos, tampoco. Después de todo, todo el mundo que quiere que se haga un cambio en el software lo
quiere por alguna razón. Las razones de tu compañia no son menos legítimas que las de cualquiera. Es
simplemente que el peso dado a los objetivos de tu compañia será determinado por el estatus de sus re-
presentantes en el proyecto, no por el tamaño de la compañia, presupuesto o plan de negocios.

Tipos de participación
Existen múltiples razones diferentes por las cuales los proyectos open source consiguen fondos. Los ele-
mentos de esta lista no se excluyen mutuamente; a menudo, la financiación de un proyecto será el resul-
tado de muchos, o incluso todas de estas motivaciones:

Compartiendo la carga
Distintas organizaciones con necesidades de software similares, a menudo se encuentran a si mis-
mas duplicando esfuerzos, tanto escribiendo código interno similar, o comprando productos simila-
res de vendedores propietarios. Cuando se dan cuenta de lo que ocurre, las organizaciones pueden
reunir sus recursos y crear (o entrar) en un proyecto Open Source adaptado a sus necesidades. Las
ventajas son obvias: el costo de desarrollo se divide pero los beneficios se acumulan entre todos.
Aunque este escenario parezca más intuitivo para no lucrarse, puede crear un sentido estratégico in-
cluso para los competidores que quieren sacar beneficio.

Ejemplos: http://www.openadapter.org/, http://www.koha.org/

Aumentando servicios
Cuando una compañía vende servicios de los cuales depende, o se hacen más atractivos por, progra-
mas open source particulares, naturalmente en los intereses de esta compañía está asegurar que esos
programas sean activamente mantenidos.

Ejemplo: CollabNet's [http://www.collab.net/] soporte de http://subversion.tigris.org/ (descargo: es-
te es mi trabajo diario, pero es tambien un ejemplo perfecto de este modelo).

Apoyando las ventas de hardware
El valor de los ordenadores y sus componentes está directamente relacionado con la cantidad de
software disponible para ellos. Los vendedores de hardware no sólo venden máquinas completas,
pero tambien los creadores de dispositivos periféricos y microchips han descubierto que teniendo
software libre de gran calidad para ejecutarse en su hardware es tambien una parte importante para
los clientes.

Socavando a la competencia
A algunas empresas patrocinan ciertos proyectos OSS como una manera de socavar los productos
de la competencia, que puede que sean o no OSS. Quitar cuotas de mercado de la competencia no es
por lo general la única razón para involucrarse en un proyecto, pero si puede ser un factor importan-
te.

Ejemplo: http://www.openoffice.org/ (no, esta no es la única razón por la cual OpenOffice existe,

Dinero

69

http://www.openadapter.org/
http://www.koha.org/
http://www.collab.net/
http://www.collab.net/
http://subversion.tigris.org/
http://www.openoffice.org/

pero el software en si es parcialmente una respuesta a Microsoft Office).

Marketing
Ser asociado con un proyecto OSS popular puede que genere muy buena publicidad.

Licencias Duales
Licenciamiento Dual es una práctica bajo la cual se ofrece el software utilizando una licencia pro-
pietaria tradicional para clientes quienes deseen revenderlo como parte de otra aplicación propieta-
ria, y simultaneamente bajo una licencia libre para aquellos quienes pretenden utilizarlo bajo los ter-
minos del software libre (más en “Dual Licensing Schemes” en Capítulo 9, Licencias, Copyrights y
Patentes). Si la comunidad de desarrolladores de software libre es activa, el programa recibe los be-
neficios del desarrollo y búsqueda de fallos de amplio espectro mientras la compañia sigue obte-
niendo beneficios por las regalías para mantener algunos desarrolladores a tiempo completro.

Dos ejemplos muy conocidos son MySQL [http://www.mysql.com/], creadores de la base de datos
con el mismo nombre y Sleepycat [http://www.sleepycat.com/], que distribuye y brinda soporte para
la base de datos Berkeley. No es ninguna coincidencia que las dos sean empresas de bases de datos.
Las bases de datos suelen ser integradas dentro de otras aplicaciones en lugar de ser vendidas direc-
tamente a los usuarios, por lo que son perfectas para el modelo de licencia dual.

Donaciones
Un proyecto popular puede a veces obtener contribuciones significativas, tanto de individuos como
de organizaciones, sólo con colocar un botón de donaciones en línea o a veces vendiendo productos
promocionales del proyecto como tazas de cáfe, camisetas, alfombrillas, etc. Pero precaución, si el
proyecto ha de aceptar donaciones hay que planear como será utilizado ese dinero antes de que lle-
gue y publicar esto en la página web del proyecto. Las discusiones acerca de hacia donde debe ser
dirigido el dinero tienden a ser más distendidas antes de que este se tenga; de todas formas, si exis-
ten importantes desacuerdos, es mejor averiguarlo mientras se sigue siendo algo académico.

El módelo de negocio del beneficiario no es el único factor en como este se relaciona con la comunidad
open source. La relación historica entre los dos es tambien importante: ¿inicio la empresa el proyecto o
se ha unido luego? En cualquiera de los dos casos, el beneficiario deberá ganar credibilidad, pero, no
sorprendentemente, será necesario un mayor esfuerzo en el segundo caso. La organización debe tener
claros objetivos con respecto al proyecto. ¿Intenta la empresa mantener una posición de liderazgo o sim-
plemente intenta ser una voz dentro de la comunidad para guiar sin gobernar la dirección del proyecto?
¿O sólo desea tener un par de colaboradores que sean capaces de resolver los problemas de los usuarios
e incluir sus cambios en la distribución pública sin mucho jaleo?

Mantened estas preguntas en mente mientras continua leyendo las siguientes directrices. Estan pensadas
para ser aplicadas a cualquier tipo de participación empresarial dentro de un proyecto open source, pero
teniendo en cuenta que todo proyecto es un entorno humano, por lo cual, ninguno es igual. Hasta cierto
grado, habrá que seguir nuestro instinto, pero seguir estos principios aumentaran las posibilidades de que
las cosas funcionen como queremos.

Contratos Indefinidos
Si está dirigiendo un equipo de desarrolladores en un proyecto de software libre, intente mantenerlos el
tiempo suficiente para que adquieran experiencia técnica y política—un par de años como mínimo. Por
supuesto que ningún proyecto, sea de código abierto o cerrado, se beneficia del intercambio incesante de
programadores. La necesidad de que un recien llegado deba aprender todo de nuevo cada vez puede
crear un ambiente disuasorio. Pero el castigo puede ser mayor para un proyecto de código abierto porque
quienes abandonan el proyecto no sólo lo hacen con el conocimiento del código, tambien se llevan un
status en la comunidad y las relaciones que hayan hecho.

The credibility a developer has accumulated cannot be transferred. To pick the most obvious example,
an incoming developer can't inherit commit access from an outgoing one (see “Money Can't Buy You
Love” later in this chapter), so if the new developer doesn't already have commit access, he will have to

Dinero

70

http://www.mysql.com/
http://www.mysql.com/
http://www.sleepycat.com/
http://www.sleepycat.com/

submit patches until he does. But commit access is only the most measurable manifestation of lost in-
fluence. A long-time developer also knows all the old arguments that have been hashed and rehashed on
the discussion lists. A new developer, having no memory of those conversations, may try to raise the to-
pics again, leading to a loss of credibility for your organization; the others might wonder "Can't they re-
member anything?" A new developer will also have no political feel for the project's personalities, and
will not be able to influence development directions as quickly or as smoothly as one who's been around
a long time.

La credibilidad acumulada por un desarrollador no puede ser transferida. El ejemplo más obvio es que
un desarrollador recien incorporado no puede heredar los mismo accesos al código de quien se va (más
en “Money Can't Buy You Love”), así que si el nuevo desarrollador no tiene permisos para realizar cam-
bios, deberá enviar parches hasta que tenga estos permisos. Pero este nivel de acceso es sólo una mani-
festación cuantitativa de la perdida de influencia. Un desarrollador veterano tambien conoce los viejos
temas que han sido tratados una y otra vez en las listas de discusión. Uno nuevo, sin tener conocimiento
de estas conversaciones quizas intente sacar a flote de nuevo estos temas, llevando a una perdida de cre-
dibilidad; otros pueden que piensen: "¿Acaso esta gente no puede recordar nada?". Una nueva persona
tampoco tendrá ninguna sensación política hacia las personalidades del proyecto, y no podrá influenciar
la dirección del desarrollo tan rápida o sin problemas como alguien quien lleva largo tiempo en el pro-
yecto.

Train newcomers through a program of supervised engagement. The new developer should be in direct
contact with the public development community from the very first day, starting off with bug fixes and
cleanup tasks, so he can learn the code base and acquire a reputation in the community, yet not spark
any long and involved design discussions. All the while, one or more experienced developers should be
available for questioning, and should be reading every post the newcomer makes to the development
lists, even if they're in threads that the experienced developers normally wouldn't pay attention to. This
will help the group spot potential rocks before the newcomer runs aground. Private, behind-the-scenes
encouragement and pointers can also help a lot, especially if the newcomer is not accustomed to massi-
vely parallel peer review of his code.

When CollabNet hires a new developer to work on Subversion, we sit down together and pick some
open bugs for the new person to cut his teeth on. We'll discuss the technical outlines of the solutions,
and then assign at least one experienced developer to (publicly) review the patch that the new developer
will (also publicly) post. We typically don't even look at the patch before the main development list sees
it, although we could if there were some reason to. The important thing is that the new developer go th-
rough the process of public review, learning the code base while simultaneously becoming accustomed
to receiving critiques from complete strangers. But we try to coordinate the timing so that our own re-
view comes immediately after the posting of the patch. That way the first review the list sees is ours,
which can help set the tone for the others' reviews. It also contributes to the idea that this new person is
to be taken seriously: if others see that we're putting in the time to give detailed reviews, with thorough
explanations and references into the archives where appropriate, they'll appreciate that a form of training
is going on, and that it probably signifies a long-term investment. This can make them more positively
disposed toward that developer, at least to the degree of spending a little extra time answering questions
and reviewing patches.

Appear as Many, Not as One
Your developers should strive to appear in the project's public forums as individual participants, rather
than as a monolithic corporate presence. This is not because there is some negative connotation inherent
in monolithic corporate presences (well, perhaps there is, but that's not what this book is about). Rather,
it's because individuals are the only sort of entity open source projects are structurally equipped to deal
with. An individual contributor can have discussions, submit patches, acquire credibility, vote, and so
forth. A company cannot.

Furthermore, by behaving in a decentralized manner, you avoid stimulating centralization of opposition.
Let your developers disagree with each other on the mailing lists. Encourage them to review each other's
code as often, and as publicly, as they would anyone else's. Discourage them from always voting as a
bloc, because if they do, others may start to feel that, just on general principles, there should be an orga-

Dinero

71

nized effort to keep them in check.

There's a difference between actually being decentralized and simply striving to appear that way. Under
certain circumstances, having your developers behave in concert can be quite useful, and they should be
prepared to coordinate behind the scenes when necessary. For example, when making a proposal, having
several people chime in with agreement early on can help it along, by giving the impression of a gro-
wing consensus. Others will feel that the proposal has momentum, and that if they were to object, they'd
be stopping that momentum. Thus, people will object only if they have a good reason to do so. There's
nothing wrong with orchestrating agreement like this, as long as objections are still taken seriously. The
public manifestations of a private agreement are no less sincere for having been coordinated beforehand,
and are not harmful as long as they are not used to prejudicially snuff out opposing arguments. Their
purpose is merely to inhibit the sort of people who like to object just to stay in shape; see “Cuanto más
blando sea el tema, más largo será el debate” in Capítulo 6, Communications for more about them.

Be Open About Your Motivations
Be as open about your organization's goals as you can without compromising business secrets. If you
want the project to acquire a certain feature because, say, your customers have been clamoring for it, just
say so outright on the mailing lists. If the customers wish to remain anonymous, as is sometimes the ca-
se, then at least ask them if they can be used as unnamed examples. The more the public development
community knows about why you want what you want, the more comfortable they'll be with whatever
you're proposing.

This runs counter to the instinct—so easy to acquire, so hard to shake off—that knowledge is power, and
that the more others know about your goals, the more control they have over you. But that instinct would
be wrong here. By publicly advocating the feature (or bugfix, or whatever it is), you have already laid
your cards on the table. The only question now is whether you will succeed in guiding the community to
share your goal. If you merely state that you want it, but can't provide concrete examples of why, your
argument is weak, and people will start to suspect a hidden agenda. But if you give just a few real-world
scenarios showing why the proposed feature is important, that can have a dramatic effect on the debate.

To see why this is so, consider the alternative. Too frequently, debates about new features or new direc-
tions are long and tiresome. The arguments people advance often reduce to "I personally want X," or the
ever-popular "In my years of experience as a software designer, X is extremely important to users / a
useless frill that will please no one." Predictably, the absence of real-world usage data neither shortens
nor tempers such debates, but instead allows them to drift farther and farther from any mooring in actual
user experience. Without some countervailing force, the end result is as likely as not to be determined by
whoever was the most articulate, or the most persistent, or the most senior.

As an organization with plentiful customer data available, you have the opportunity to provide just such
a countervailing force. You can be a conduit for information that might otherwise have no means of rea-
ching the development community. The fact that that information supports your desires is nothing to be
embarrassed about. Most developers don't individually have very broad experience with how the softwa-
re they write is used. Each developer uses the software in her own idiosyncratic way; as far as other usa-
ge patterns go, she's relying on intuition and guesswork, and deep down, she knows this. By providing
credible data about a significant number of users, you are giving the public development community so-
mething akin to oxygen. As long as you present it right, they will welcome it enthusiastically, and it will
propel things in the direction you want to go.

The key, of course, is presenting it right. It will never do to insist that simply because you deal with a
large number of users, and because they need (or think they need) a given feature, therefore your solu-
tion ought to be implemented. Instead, you should focus your initial posts on the problem, rather than on
one particular solution. Describe in great detail the experiences your customers are encountering, offer
as much analysis as you have available, and as many reasonable solutions as you can think of. When
people start speculating about the effectiveness of various solutions, you can continue to draw on your
data to support or refute what they say. You may have one particular solution in mind all along, but don't
single it out for special consideration at first. This is not deception, it is simply standard "honest broker"

Dinero

72

behavior. After all, your true goal is to solve the problem; a solution is merely a means to that end. If the
solution you prefer really is superior, other developers will recognize that on their own eventually—and
then they will get behind it of their own free will, which is much better than you browbeating them into
implementing it. (There is also the possibility that they will think of a better solution.)

This is not to say that you can't ever come out in favor of a specific solution. But you must have the pa-
tience to see the analysis you've already done internally repeated on the public development lists. Don't
post saying "Yes, we've been over all that here, but it doesn't work for reasons A, B, and C. When you
get right down to it, the only way to solve this is..." The problem is not so much that it sounds arrogant
as that it gives the impression that you have already devoted some unknown (but, people will presume,
large) amount of analytical resources to the problem, behind closed doors. It makes it seem as though ef-
forts have been going on, and perhaps decisions made, that the public is not privy to, and that is a recipe
for resentment.

Naturally, you know how much effort you've devoted to the problem internally, and that knowledge is,
in a way, a disadvantage. It puts your developers in a slightly different mental space than everyone else
on the mailing lists, reducing their ability to see things from the point of view of those who haven't yet
thought about the problem as much. The earlier you can get everyone else thinking about things in the
same terms as you do, the smaller this distancing effect will be. This logic applies not only to individual
technical situations, but to the broader mandate of making your goals as clear as you can. The unknown
is always more destabilizing than the known. If people understand why you want what you want, they'll
feel comfortable talking to you even when they disagree. If they can't figure out what makes you tick,
they'll assume the worst, at least some of the time.

You won't be able to publicize everything, of course, and people won't expect you to. All organizations
have secrets; perhaps for-profits have more of them, but nonprofits have them too. If you must advocate
a certain course, but can't reveal anything about why, then simply offer the best arguments you can un-
der that handicap, and accept the fact that you may not have as much influence as you want in the dis-
cussion. This is one of the compromises you make in order to have a development community not on
your payroll.

Money Can't Buy You Love
If you're a paid developer on a project, then set guidelines early on about what the money can and can-
not buy. This does not mean you need to post twice a day to the mailing lists reiterating your noble and
incorruptible nature. It merely means that you should be on the lookout for opportunities to defuse the
tensions that could be created by money. You don't need to start out assuming that the tensions are there;
you do need to demonstrate an awareness that they have the potential to arise.

A perfect example of this came up in the Subversion project. Subversion was started in 2000 by Collab-
Net [http://www.collab.net/], which has been the project's primary funder since its inception, paying the
salaries of several developers (disclaimer: I'm one of them). Soon after the project began, we hired anot-
her developer, Mike Pilato, to join the effort. By then, coding had already started. Although Subversion
was still very much in the early stages, it already had a development community with a set of basic
ground rules.

Mike's arrival raised an interesting question. Subversion already had a policy about how a new develo-
per gets commit access. First, he submits some patches to the development mailing list. After enough
patches have gone by for the other committers to see that the new contributor knows what he's doing, so-
meone proposes that he just commit directly (that proposal is private, as described in “Committers”).
Assuming the committers agree, one of them mails the new developer and offers him direct commit ac-
cess to the project's repository.

CollabNet had hired Mike specifically to work on Subversion. Among those who already knew him, the-
re was no doubt about his coding skills or his readiness to work on the project. Furthermore, the volun-
teer developers had a very good relationship with the CollabNet employees, and most likely would not
have objected if we'd just given Mike commit access the day he was hired. But we knew we'd be setting

Dinero

73

http://www.collab.net/
http://www.collab.net/
http://www.collab.net/

a precedent. If we granted Mike commit access by fiat, we'd be saying that CollabNet had the right to ig-
nore project guidelines, simply because it was the primary funder. While the damage from this would
not necessarily be immediately apparent, it would gradually result in the non-salaried developers feeling
disenfranchised. Other people have to earn their commit access—CollabNet just buys it.

So Mike agreed to start out his employment at CollabNet like any other volunteer developer, without
commit access. He sent patches to the public mailing list, where they could be, and were, reviewed by
everyone. We also said on the list that we were doing things this way deliberately, so there could be no
missing the point. After a couple of weeks of solid activity by Mike, someone (I can't remember if it was
a CollabNet developer or not) proposed him for commit access, and he was accepted, as we knew he
would be.

That kind of consistency gets you a credibility that money could never buy. And credibility is a valuable
currency to have in technical discussions: it's immunization against having one's motives questioned la-
ter. In the heat of argument, people will sometimes look for non-technical ways to win the battle. The
project's primary funder, because of its deep involvement and obvious concern over the directions the
project takes, presents a wider target than most. By being scrupulous to observe all project guidelines
right from the start, the funder makes itself the same size as everyone else.

(See also Danese Cooper's blog at http://blogs.sun.com/roller/page/DaneseCooper/20040916 for a simi-
lar story about commit access. Cooper was then Sun Microsystem's "Open Source Diva"—I believe that
was her official title—and in the blog entry, she describes how the Tomcat development community got
Sun to hold its own developers to the same commit-access standards as the non-Sun developers.)

The need for the funders to play by the same rules as everyone else means that the Benevolent Dictators-
hip governance model (see “Dictadores Benevolentes” in Capítulo 4, Infraestructura Social y Política)
is slightly harder to pull off in the presence of funding, particularly if the dictator works for the primary
funder. Since a dictatorship has few rules, it is hard for the funder to prove that it's abiding by commu-
nity standards, even when it is. It's certainly not impossible; it just requires a project leader who is able
to see things from the point of view of the outside developers, as well as that of the funder, and act ac-
cordingly. Even then, it's probably a good idea to have a proposal for non-dictatorial governance sitting
in your back pocket, ready to be brought out the moment there are any indications of widespread dissa-
tisfaction in the community.

Contracting
Contracted work needs to be handled carefully in free software projects. Ideally, you want a contractor's
work to be accepted by the community and folded into the public distribution. In theory, it wouldn't mat-
ter who the contractor is, as long as his work is good and meets the project's guidelines. Theory and
practice can sometimes match, too: a complete stranger who shows up with a good patch will generally
be able to get it into the software. The trouble is, it's very hard to produce a good patch for a non-trivial
enhancement or new feature while truly being a complete stranger; one must first discuss it with the rest
of the project. The duration of that discussion cannot be precisely predicted. If the contractor is paid by
the hour, you may end up paying more than you expected; if he is paid a flat sum, he may end up doing
more work than he can afford.

There are two ways around this. The preferred way is to make an educated guess about the length of the
discussion process, based on past experience, add in some padding for error, and base the contract on
that. It also helps to divide the problem into as many small, independent chunks as possible, to increase
the predictability of each chunk. The other way is to contract solely for delivery of a patch, and treat the
patch's acceptance into the public project as a separate matter. Then it becomes much easier to write the
contract, but you're stuck with the burden of maintaining a private patch for as long as you depend on
the software, or at least for as long as it takes you to get that patch or equivalent functionality into the
mainline. Of course, even with the preferred way, the contract itself cannot require that the patch be ac-
cepted into the code, because that would involve selling something that's not for sale. (What if the rest of
the project unexpectedly decides not to support the feature?) However, the contract can require a bona
fide effort to get the change accepted by the community, and that it be committed to the repository if the

Dinero

74

http://blogs.sun.com/roller/page/DaneseCooper/20040916

community agrees with it. For example, if the project has written standards regarding code changes, the
contract can reference those standards and specify that the work must meet them. In practice, this
usually works out the way everyone hopes.

The best tactic for successful contracting is to hire one of the project's developers—preferably a commit-
ter—as the contractor. This may seem like a form of purchasing influence, and, well, it is. But it's not as
corrupt as it might seem. A developer's influence in the project is due mainly to the quality of his code
and to his interactions with other developers. The fact that he has a contract to get certain things done
doesn't raise his status in any way, and doesn't lower it either, though it may make people scrutinize him
more carefully. Most developers would not risk their long-term position in the project by backing an
inappropriate or widely disliked new feature. In fact, part of what you get, or should get, when you hire
such a contractor is advice about what sorts of changes are likely to be accepted by the community. You
also get a slight shift in the project's priorities. Because prioritization is just a matter of who has time to
work on what, when you pay for someone's time, you cause their work to move up in the priority queue
a bit. This is a well-understood fact of life among experienced open source developers, and at least some
of them will devote attention to the contractor's work simply because it looks like it's going to get done,
so they want to help it get done right. Perhaps they won't write any of the code, but they'll still discuss
the design and review the code, both of which can be very useful. For all these reasons, the contractor is
best drawn from the ranks of those already involved with the project.

This immediately raises two questions: Should contracts ever be private? And when they're not, should
you worry about creating tensions in the community by the fact that you've contracted with some deve-
lopers and not others?

It's best to be open about contracts, when you can. Otherwise, the contractor's behavior may seem stran-
ge to others in the community—perhaps he's suddenly giving inexplicably high priority to features he's
never shown interest in in the past. When people ask him why he wants them now, how can he answer
convincingly if he can't talk about the fact that he's been contracted to write them?

At the same time, neither you nor the contractor should act as though others should treat your arrange-
ment as a big deal. Too often I've seen contractors waltz onto a development list with the attitude that
their posts should be taken more seriously simply because they're being paid. That kind of attitude sig-
nals to the rest of the project that the contractor regards the fact of the contract—as opposed to the code
resulting from the contract—to be the important thing. But from the other developers' point of view,
only the code matters. At all times, the focus of attention should be kept on technical issues, not on the
details of who is paying whom. For example, one of the developers in the Subversion community hand-
les contracting in a particularly graceful way. While discussing his code changes in IRC, he'll mention
as an aside (often in a private remark, an IRC privmsg, to one of the other committers) that he's being
paid for his work on this particular bug or feature. But he also consistently gives the impression that he'd
want to be working on that change anyway, and that he's happy the money is making it possible for him
to do that. He may or may not reveal his customer's identity, but in any case he doesn't dwell on the con-
tract. His remarks about it are just an ornament to an otherwise technical discussion about how to get so-
mething done.

That example shows another reason why it's good to be open about contracts. There may be multiple or-
ganizations sponsoring contracts on a given open source project, and if each knows what the others are
trying to do, they may be able to pool their resources. In the above case, the project's largest funder
(CollabNet) is not involved in any way with these piecework contracts, but knowing that someone else
is sponsoring certain bug fixes allows CollabNet to redirect its resources to other bugs, resulting in grea-
ter efficiency for the project as a whole.

Will other developers resent that some are paid for working on the project? In general, no, particularly
when those who are paid are established, well-respected members of the community anyway. No one
expects contract work to be distributed equally among all the committers. People understand the impor-
tance of long-term relationships: the uncertainties involved in contracting are such that once you find so-
meone you can work reliably with, you would be reluctant to switch to a different person just for the sa-
ke of evenhandedness. Think of it this way: the first time you hire, there will be no complaints, because
clearly you had to pick someone—it's not your fault you can't hire everyone. Later, when you hire the
same person a second time, that's just common sense: you already know him, the last time was success-

Dinero

75

ful, so why take unnecessary risks? Thus, it's perfectly natural to have one or two go-to people in the
community, instead of spreading the work around evenly.

Review and Acceptance of Changes
The community is still important to the success of contract work. Their involvement in the design and
review process for sizeable changes cannot be an afterthought. It must be considered part of the work,
and fully embraced by the contractor. Don't think of community scrutiny as an obstacle to be overco-
me—think of it as a free design board and QA department. It is a benefit to be aggressively pursued, not
merely endured.

Case study: the CVS password-authentication protocol

In 1995, I was one half of a partnership that provided support and enhancements for CVS (the Concu-
rrent Versions System; see http://www.cvshome.org/). My partner Jim and I were, informally, the main-
tainers of CVS by that point. But we'd never thought carefully about how we ought to relate to the exis-
ting, mostly volunteer CVS development community. We just assumed that they'd send in patches, and
we'd apply them, and that was pretty much how it worked.

Back then, networked CVS could be done only over a remote login program such as rsh. Using the sa-
me password for CVS access as for login access was an obvious security risk, and many organizations
were put off by it. A major investment bank hired us to add a new authentication mechanism, so they
could safely use networked CVS with their remote offices.

Jim and I took the contract and sat down to design the new authentication system. What we came up
with was pretty simple (the United States had export controls on cryptographic code at the time, so the
customer understood that we couldn't implement strong authentication), but as we were not experienced
in designing such protocols, we still made a few gaffes that would have been obvious to an expert. These
mistakes would easily have been caught had we taken the time to write up a proposal and run it by the
other developers for review. But we never did so, because it didn't occur to us to think of the develop-
ment list as a resource to be used. We knew that people were probably going to accept whatever we
committed, and—because we didn't know what we didn't know—we didn't bother to do the work in a vi-
sible way, e.g., posting patches frequently, making small, easily digestible commits to a special branch,
etc. The resulting authentication protocol was not very good, and of course, once it became established,
it was difficult to improve, because of compatibility concerns.

The root of the problem was not lack of experience; we could easily have learned what we needed to
know. The problem was our attitude toward the volunteer development community. We regarded accep-
tance of the changes as a hurdle to leap, rather than as a process by which the quality of the changes
could be improved. Since we were confident that almost anything we did would be accepted (as it was),
we made little effort to get others involved.

Obviously, when you're choosing a contractor, you want someone with the right technical skills and ex-
perience for the job. But it's also important to choose someone with a track record of constructive inte-
raction with the other developers in the community. That way you're getting more than just a single per-
son; you're getting an agent who will be able to draw on a network of expertise to make sure the work is
done in a robust and maintainable way.

Funding Non-Programming Activities
Programming is only part of the work that goes on in an open source project. From the point of view of
the project's volunteers, it's the most visible and glamorous part. This unfortunately means that other ac-
tivities, such as documentation, formal testing, etc., can sometimes be neglected, at least compared to
the amount of attention they often receive in proprietary software. Corporate organizations are someti-
mes able to make up for this, by devoting some of their internal software development infrastructure to
open source projects.

Dinero

76

http://www.cvshome.org/

The key to doing this successfully is to translate between the company's internal processes and those of
the public development community. Such translation is not effortless: often the two are not a close
match, and the differences can only be bridged via human intervention. For example, the company may
use a different bug tracker than the public project. Even if they use the same tracking software, the data
stored in it will be very different, because the bug-tracking needs of a company are very different from
those of a free software community. A piece of information that starts in one tracker may need to be re-
flected in the other, with confidential portions removed or, in the other direction, added.

The sections that follow are about how to build and maintain such bridges. The end result should be that
the open source project runs more smoothly, the community recognizes the company's investment of re-
sources, and yet does not feel that the company is inappropriately steering things toward its own goals.

Quality Assurance (i.e., Professional Testing)
In proprietary software development, it is normal to have teams of people dedicated solely to quality as-
surance: bug hunting, performance and scalability testing, interface and documentation checking, etc. As
a rule, these activities are not pursued as vigorously by the volunteer community on a free software pro-
ject. This is partly because it's hard to get volunteer labor for unglamorous work like testing, partly be-
cause people tend to assume that having a large user community gives the project good testing coverage,
and, in the case of performance and scalability testing, partly because volunteers often don't have access
to the necessary hardware resources anyway.

The assumption that having many users is equivalent to having many testers is not entirely baseless.
Certainly there's little point assigning testers for basic functionality in common environments: bugs there
will quickly be found by users in the natural course of things. But because users are just trying to get
work done, they do not consciously set out to explore uncharted edge cases in the program's functiona-
lity, and are likely to leave certain classes of bugs unfound. Furthermore, when they discover a bug with
an easy workaround, they often silently implement the workaround without bothering to report the bug.
Most insidiously, the usage patterns of your customers (the people who drive your interest in the softwa-
re) may differ in statistically significant ways from the usage patterns of the Average User In The Street.

A professional testing team can uncover these sorts of bugs, and can do so as easily with free software as
with proprietary software. The challenge is to convey the testing team's results back to the public in a
useful form. In-house testing departments usually have their own way of reporting test results, involving
company-specific jargon, or specialized knowledge about particular customers and their data sets. Such
reports would be inappropriate for the public bug tracker, both because of their form and because of con-
fidentiality concerns. Even if your company's internal bug tracking software were the same as that used
by the public project, management might need to make company-specific comments and metadata chan-
ges to the issues (for example, to raise an issue's internal priority, or schedule its resolution for a particu-
lar customer). Usually such notes are confidential—sometimes they're not even shown to the customer.
But even when they're not confidential, they're of no concern to the public project, and therefore the pu-
blic should not be distracted with them.

Yet the core bug report itself is important to the public. In fact, a bug report from your testing depart-
ment is in some ways more valuable than one received from users at large, since the testing department
probes for things that other users won't. Given that you're unlikely to get that particular bug report from
any other source, you definitely want to preserve it and make it available to the public project.

To do this, either the QA department can file issues directly in the public issue tracker, if they're comfor-
table with that, or an intermediary (usually one of the developers) can "translate" the testing depart-
ment's internal reports into new issues in the public tracker. Translation simply means describing the
bug in a way that makes no reference to customer-specific information (the reproduction recipe may use
customer data, assuming the customer approves it, of course).

It is somewhat preferable to have the QA department filing issues in the public tracker directly. That gi-
ves the public a more direct appreciation of your company's involvement with the project: useful bug re-
ports add to your organization's credibility just as any technical contribution would. It also gives develo-

Dinero

77

pers a direct line of communication to the testing team. For example, if the internal QA team is monito-
ring the public issue tracker, a developer can commit a fix for a scalability bug (which the developer
may not have the resources to test herself), and then add a note to the issue asking the QA team to see if
the fix had the desired effect. Expect a bit of resistance from some of the developers; programmers have
a tendency to regard QA as, at best, a necessary evil. The QA team can easily overcome this by finding
significant bugs and filing comprehensible reports; on the other hand, if their reports are not at least as
good as those coming from the regular user community, then there's no point having them interact di-
rectly with the development team.

Either way, once a public issue exists, the original internal issue should simply reference the public issue
for technical content. Management and paid developers may continue to annotate the internal issue with
company-specific comments as necessary, but use the public issue for information that should be availa-
ble to everyone.

You should go into this process expecting extra overhead. Maintaining two issues for one bug is, natu-
rally, more work than maintaining one issue. The benefit is that many more coders will see the report
and be able to contribute to a solution.

Legal Advice and Protection
Corporations, for-profit or nonprofit, are almost the only entities that ever pay attention to complex legal
issues in free software. Individual developers often understand the nuances of various open source licen-
ses, but they generally do not have the time or resources to follow copyright, trademark, and patent law
in detail. If your company has a legal department, it can help a project by vetting the copyright status of
the code, and helping developers understand possible patent and trademark issues. The exact forms this
help could take are discussed in Capítulo 9, Licencias, Copyrights y Patentes. The main thing is to make
sure that communications between the legal department and the development community, if they happen
at all, happen with a mutual appreciation of the very different universes the parties are coming from. On
occasion, these two groups talk past each other, each side assuming domain-specific knowledge that the
other does not have. A good strategy is to have a liaison (usually a developer, or else a lawyer with tech-
nical expertise) stand in the middle and translate for as long as needed.

Documentation and Usability
Documentation and usability are both famous weak spots in open source projects, although I think, at
least in the case of documentation, that the difference between free and proprietary software is fre-
quently exaggerated. Nevertheless, it is empirically true that much open source software lacks first-class
documentation and usability research.

If your organization wants to help fill these gaps for a project, probably the best thing it can do is hire
people who are not regular developers on the project, but who will be able to interact productively with
the developers. Not hiring regular developers is good for two reasons: one, that way you don't take deve-
lopment time away from the project; two, those closest to the software are usually the wrong people to
write documentation or investigate usability anyway, because they have trouble seeing the software from
an outsider's point of view.

However, it will still be necessary for whoever works on these problems to communicate with the deve-
lopers. Find people who are technical enough to talk to the coding team, but not so expert in the softwa-
re that they can't empathize with regular users anymore.

A medium-level user is probably the right person to write good documentation. In fact, after the first
edition of this book was published, I received the following email from an open source developer named
Dirk Reiners:

One comment on Money::Documentation and Usability: when we had some
money to spend and decided that a beginner's tutorial was the most

Dinero

78

critical piece that we needed we hired a medium-level user to write it.
He had gone through the induction to the system recently enough to
remember the problems, but he had gotten past them so he knew how to
describe them. That allowed him to write something that needed only
minor fixes by the core developers for the things that he hadn't gotten
right, but still covering the 'obvious' stuff devs would have missed.

His case was even better, as it had been his job to introduce a bunch of
other people (students) to the system, so he combined the experience of
many people, which is something that was just a lucky occurrence and is
probably hard to get in most cases.

Providing Hosting/Bandwidth
For a project that's not using one of the free canned hosting sites (see “Soluciones de hospedaje” in Ca-
pítulo 3, Infraestructura Técnica), providing a server and network connection—and most importantly,
system administration help—can be of significant assistance. Even if this is all your organization does
for the project, it can be a moderately effective way to obtain good public relations karma, though it will
not bring any influence over the direction of the project.

You can probably expect a banner ad or an acknowledgment on the project's home page, thanking your
company for providing hosting. If you set up the hosting so that the project's web address is under your
company's domain name, then you will get some additional association just through the URL. This will
cause most users to think of the software as having something to do with your company, even if you
don't contribute to development at all. The problem is, the developers are aware of this associative ten-
dency too, and may not be very comfortable with having the project in your domain unless you're contri-
buting more resources than just bandwidth. After all, there are a lot of places to host these days. The
community may eventually feel that the implied misallocation of credit is not worth the convenience
brought by hosting, and take the project elsewhere. So if you want to provide hosting, do so—but either
plan to get even more involved soon, or be circumspect about how much involvement you claim.

Marketing
Although most open source developers would probably hate to admit it, marketing works. A good mar-
keting campaign can create buzz around an open source product, even to the point where hardheaded co-
ders find themselves having vaguely positive thoughts about the software for reasons they can't quite put
their finger on. It is not my place here to dissect the arms-race dynamics of marketing in general. Any
corporation involved in free software will eventually find itself considering how to market themselves,
the software, or their relationship to the software. The advice below is about how to avoid common pit-
falls in such an effort; see also “Publicity” in Capítulo 6, Communications.

Remember That You Are Being Watched
For the sake of keeping the volunteer developer community on your side, it is very important not to say
anything that isn't demonstrably true. Audit all claims carefully before making them, and give the public
the means to check your claims on their own. Independent fact checking is a major part of open source,
and it applies to more than just the code.

Naturally no one would advise companies to make unverifiable claims anyway. But with open source
activities, there is an unusually high quantity of people with the expertise to verify claims—people who
are also likely to have high-bandwidth Internet access and the right social contacts to publicize their fin-
dings in a damaging way, should they choose to. When Global Megacorp Chemical Industries pollutes a
stream, that's verifiable, but only by trained scientists, who can then be refuted by Global Megacorp's
scientists, leaving the public scratching their heads and wondering what to think. On the other hand,
your behavior in the open source world is not only visible and recorded; it is also easy for many people
to check it independently, come to their own conclusions, and spread those conclusions by word of

Dinero

79

mouth. These communications networks are already in place; they are the essence of how open source
operates, and they can be used to transmit any sort of information. Refutation is usually difficult, if not
impossible, especially when what people are saying is true.

For example, it's okay to refer to your organization as having "founded project X" if you really did. But
don't refer to yourself as the "makers of X" if most of the code was written by outsiders. Conversely,
don't claim to have a deeply involved volunteer developer community if anyone can look at your reposi-
tory and see that there are few or no code changes coming from outside your organization.

Not too long ago, I saw an announcement by a very well-known computer company, stating that they
were releasing an important software package under an open source license. When the initial announce-
ment came out, I took a look at their now-public version control repository and saw that it contained
only three revisions. In other words, they had done an initial import of the source code, but hardly anyt-
hing had happened since then. That in itself was not worrying—they'd just made the announcement, af-
ter all. There was no reason to expect a lot of development activity right away.

Some time later, they made another announcement. Here is what it said, with the name and release num-
ber replaced by pseudonyms:

We are pleased to announce that following rigorous testing by the Singer Community,
Singer 5 for Linux and Windows are now ready for production use.

Curious to know what the community had uncovered in "rigorous testing," I went back to the repository
to look at its recent change history. The project was still on revision 3. Apparently, they hadn't found a
single bug worth fixing before the release! Thinking that the results of the community testing must have
been recorded elsewhere, I next examined the bug tracker. There were exactly six open issues, four of
which had been open for several months already.

This beggars belief, of course. When testers pound on a large and complex piece of software for any
length of time, they will find bugs. Even if the fixes for those bugs don't make it into the upcoming re-
lease, one would still expect some version control activity as a result of the testing process, or at least
some new issues. Yet to all appearances, nothing had happened between the announcement of the open
source license and the first open source release.

The point is not that the company was lying about the community testing. I have no idea if they were or
not. But they were oblivious to how much it looked like they were lying. Since neither the version con-
trol repository nor the issue tracker gave any indication that the alleged rigorous testing had occurred,
the company should either not have made the claim in the first place, or provided a clear link to some
tangible result of that testing ("We found 278 bugs; click here for details"). The latter would have allo-
wed anyone to get a handle on the level of community activity very quickly. As it was, it only took me a
few minutes to determine that whatever this community testing was, it had not left traces in any of the
usual places. That's not a lot of effort, and I'm sure I'm not the only one who took the trouble.

Transparency and verifiability are also an important part of accurate crediting, of course. See “Credit” in
Capítulo 8, Coordinando a los Voluntarios for more on this.

Don't Bash Competing Open Source Products
Refrain from giving negative opinions about competing open source software. It's perfectly okay to give
negative facts—that is, easily confirmable assertions of the sort often seen in good comparison charts.
But negative characterizations of a less rigorous nature are best avoided, for two reasons. First, they are
liable to start flame wars that detract from productive discussion. Second, and more importantly, some
of the volunteer developers in your project may turn out to work on the competing project as well. This
is more likely than it at first might seem: the projects are already in the same domain (that's why they're
in competition), and developers with expertise in that domain may make contributions wherever their
expertise is applicable. Even when there is no direct developer overlap, it is likely that developers on
your project are at least acquainted with developers on related projects. Their ability to maintain cons-

Dinero

80

tructive personal ties could be hampered by overly negative marketing messages.

Bashing competing closed-source products seems to be more widely accepted in the open source world,
especially when those products are made by Microsoft. Personally, I deplore this tendency (though
again, there's nothing wrong with straightforward factual comparisons), not merely because it's rude, but
also because it's dangerous for a project to start believing its own hype and thereby ignore the ways in
which the competition may actually be superior. In general, watch out for the effect that marketing state-
ments can have on your own development community. People may be so excited at being backed by
marketing dollars that they lose objectivity about their software's true strengths and weaknesses. It is
normal, and even expected, for a company's developers to exhibit a certain detachment toward marke-
ting statements, even in public forums. Clearly, they should not come out and contradict the marketing
message directly (unless it's actually wrong, though one hopes that sort of thing would have been caught
earlier). But they may poke fun at it from time to time, as a way of bringing the rest of the development
community back down to earth.

Dinero

81

1Se ha hecho alguna investigacion academica interesante en esta materia; por ejemplo, vease Group Awareness in Distributed Soft-
ware Development por Gutwin, Penner, y Schneider (solia estar disponible on-line, pero parece que ha desaparecido, al menos
temporalmente; utiliza una herramienta de busqueda encontrarla).

Capítulo 6. Communications
La capacidad de escribir claramente es quizás la más importante habilidad que se puede tener en un am-
biente de código abierto. A largo plazo es más importante que el talento para programar. Un gran pro-
gramador con pocas habilidades comunicativas puede realizar sólo una cosa a la vez, y puede tener pro-
blemas convenciendo a otros para que le presten atención. Pero un mal programador con buenas habili-
dades de comunicación puede coordinar y persuadir mucha gente para realizar diferentes cosas, y de tal
modo tener un efecto significativo sobre la dirección y el ímpetu de un proyecto.

No parece haber mucha correlación, en cualquier sentido, entre la capacidad de escribir buen código y la
capacidad de comunicarse con sus compañeros. Hay cierta correlación entre programar bien y describir
bien cuestiones técnicas, pero describir asuntos técnicos es sólo una pequeña parte de las comunicacio-
nes en un proyecto. Más importante es la capacidad de enfatizar con su audiencia, ver sus propios co-
rreos y comentarios como lo ven los demás, y hacer que los demás vean sus propios correos con objeti-
vidad similar. Igualmente importante es notificar cuando un medio o método de comunicación determi-
nado no está funcionando bien, quizás porque no escala al ritmo que incrementa el número de usuarios,
y tomar el tiempo para hacer algo al respecto.

Aquello que es obvio en teoría y que se hace duro en la práctica es que los ambientes de desarrollo de
software libre son desconcertadamente diversos tanto en audiencias como en mecanismos de comunica-
ción. ¿Debería una opinión dada ser expresada en un mensaje a la lista de correo, como una anotación en
el gestor de fallos, o como un comentario en el código? Al contestar una pregunta en un foro público,
¿cuánto conocimiento puedes asumir por parte del lector?, en primer lugar dado que "el lector" no es el
único que hizo la pregunta, ¿pueden todos ver tú respuesta? ¿Como pueden los desarrolladores permane-
cer en contacto constructivo con los usuarios, sin ser ahogado por peticiones de características, informes
falsos de fallos, y charla en general? ¿Cómo dices cuando un medio ha alcanzado los límites de su capa-
cidad, y que harías al respecto?

Las soluciones a estos problemas son usualmente parciales, ya que cualquier solucion particular se vuel-
ve finalmente obsoleta por el crecimiento del proyecto o los cambios en la estructura del mismo. Son a
menudo ad hoc, ya que son respuestas improvisadas a situaciones dinámicas. Todos los participantes ne-
cesitan darse cuenta de como y cuando la comunicacion puede volverse farragosa, y deben estar implica-
dos en buscar soluciones. Ayudar a la gente a hacer esto es una gran parte de la direccion en un proyecto
open source. Las secciones siguientes tratan sobre como conducir tu propia comunicacion y como hacer
el mantenimiento de los mecanismos de comunicacion una prioridad para todo el mundo en el proyecto.1

Tú eres lo que escribes
Considera esto: la única cosa que cualquier persona sabe de ti en Internet viene de lo que tú escribes, o
de lo que otros escriben acerca de ti. Puedes ser brillante, perceptivo, y carismático en persona pero si
tus correos electrónicos son incoherentes y no estructurados, la gente asumirá que esé es el verdadero tú.
O quizás realmente eres incoherente y no estructurado en persona, pero nadie tiene por que saberlo, si
tus mensajes son claros e informativos.

Dedicar cierto cuidado a tu escritura valdrá enormemente la pena. El veterano hacker de software libre
Jim Blandy narra la siguiente historia:

Por el año 1993 trabajaba para la Fundación de Software Libre, y estábamos llevando
a cabo el beta-testing de la versión 19 de GNU Emacs. Haríamos una publicación beta

82

más o menos cada semana, y la gente la probaría y nos enviaría informes de error. Ha-
bía un chico que ninguno de nosotros conocía en persona pero que hizo un gran traba-
jo: sus informes de error siempre fueron claros y nos enfocaba hacia el problema y,
cuando nos proporcionaba una corrección, casi siempre tenía razón. Era un fuera de
serie.

Ahora, antes que la FSF pueda utilizar código escrito por alguien, hay que realizar un
papeleo legal para que el interés de esa persona hacia el copyright del código pase a la
FSF. Simplemente tomando el código de completos extraños dejándolo dentro es una
receta para el desastre legal.

Por lo que le envié un correo al chico con los formularios diciéndole "Te envío algo de
papeleo que necesitamos, esto es lo que significa, firmas este, haces que quien te tiene
contratado firme este otro y, entonces podemos comenzar a utilizar tus correcciones.
Muchas gracias."

Me envió un mensaje de vuelta diciendo: "No trabajo para nadie."

Por lo que le dije: "Bien, eso está bien, simplemente haz que firme tu universidad y
envíamelo de vuelta."

Después de un poco, me escribió de nuevo y me dijo: "Verás, realmente... tengo trece
años y vivo con mis padres."

Debido a que ese chico no escribía como si tuviera trece años nadie supuso que los tuviera. A continua-
ción se exponen también algunas cosas que conseguirán además que tu escritura de una buena impre-
sión.

Estructura y formato
No caigas en la trampa de escribir todo como si fuera un mensaje de teléfono móvil. Escribe frases com-
pletas, poniendo en mayúsculas la primera palabra de cada frase, y usando separaciones de párrafo don-
de sea necesario. Esto es lo más importante en correos electrónicos y otras composiciones. En el IRC u
otros foros efímeros similares, generalmente es correcto dejar de poner mayúsculas, utilizar formas com-
primidas o expresiones comunes, etc. Simplemente no lleves esos hábitos a foros más formales o persis-
tentes. Correos electrónicos, documentación, informes de error y otras piezas de escritura que suelen te-
ner una larga vida deberían escribirse usando una gramática y una spelling estándar, y tener una estruc-
tura narrativa coherente. Esto no se debe a que haya algo inherentemente bueno siguiendo reglas arbitra-
rias, sino a que estas reglas no son arbitrarias: evolucionan en las formas presentes ya que hacen que el
texto sea más leíble y, por esa razón, deberías seguirlas. La legibilidad no sólo es deseable para que la
mayoría de gente entienda lo que escribes, sino porque hace que que parezcas la clase de persona que se
toma su tiempo en comunicarse de una forma clara: es decir, alguien a quien vale la pena prestar aten-
ción.

En particular, para correos electrónicos, desarrolladores experimientados de open source han decidido
ciertas convenciones:

Envía correos solo de texto plano, no en HTML, texto enriquecido u otros formatos ya que podrían no
ser leidos por lectores que leen sólo texto plano. Formatea las líneas para que estén sobre las 72 colum-
nas de largo. No excedas las 80 columnas, que ha sido de facto el ancho estándar del terminal (es decir,
hay gente que utiliza terminales más anchos, pero nadie utiliza terminales no más estrechos). Al hacer
las líneas un poco menores de 80 columnas da cabida a unos cuantos niveles de caracteres de citado para
ser añadidos en otras respuestas sin forzar un estrechamiento de tu texto.

Utiliza saltos de línea reales. Algunos clientes de correo muestran un falso formateo de línea, mientras
estás escribiendo un correo, viéndose en la pantalla saltos de línea donde en realidad no los hay. Cuando
se envía el correo, no tendrá los saltos de línea que se pensaba y se presentará con un formato horroroso

Communications

83

en la pantalla de la gente. Si tu cliente de correo muestra falsos saltos de línea, busca posibilidad de qui-
tar la opción para ver los saltos de línea reales a medida que escribes el correo.

Cuando incluyas salida de pantalla, trozos de código u otro texto preformateado, desplázalo claramente,
de forma que a simple vista se pueda fácilmente ver los límites entre tu texto y el material que estés in-
cluyendo. (Nunca esperé escribir este consejo cuando comencé el libro, pero en un número de listas de
correo de código abierto posterior, he visto gente mezclando textos de diferentes fuentes sin dejar claro
qué es qué. El efecto es muy frustante. Hacen los correos bastante difíciles de entender y, francamente,
hace que esas personas parezcan un poco desorganizadas).

Cuando cites el correo de alguien, inserta tus repuestas donde sea más apropiado, en diferentes lugares si
es necesario, y elimina las partes de su correo que no utilices. Si estás escribiendo un comentario rápido
con referencia a todo el correo, es correcto hacerlo top-post (Es decir, poner tu respuesta encima del tex-
to citado; de lo contrario, deberías citar primero la parte relevante del texto original, seguido de tu res-
puesta.

Construye el asunto de los nuevos correos con cuidado. Es la línea más importante de un correo, ya que
permite a cualquier otra persona del proyecto decidir si leer más o no. Los lectores de correo modernos
organizan los grupos de mensajes relacionados en hilos, que pueden no solo definirse por un asunto co-
mún sino por otras cabeceras (que a menudo no se muestran). Entienden que si un hilo comienza a deri-
var hacia un nuevo tema, puedes y debes ajustar el asunto adecuadamente cuando respondas. La integri-
dad del hilo persistirá, debido a aquellas otras cabeceras, pero el nuevo asunto ayudará a la gente que
mira un resumen del hilo a saber que el tema ha derivado. Asimismo, si realmente quieres comenzar un
nuevo tema, hazlo creando un nuevo mensaje y no respondiendo uno ya existente y cambiándole el
asunto. De esta forma, tu correo podría estar agrupado en el mismo hilo del correo que estás respondien-
do y así volver loca a la gente pensando sobre algo que no es. Recuerda: la penalización no será la pérdi-
da de tiempo, sino la pequeña hendidura en tu credibilidad como alguien fluido en el uso de las herra-
mientas de comunicación.

Contenido
Correos electrónicos bien formateados atraen a los lectores, pero el contenido los mantiene. Ningún con-
junto fijo de reglas puede garantizar el buen contenido, por supuesto, hay algunos principios que lo ha-
cen más prometedor.

Hacer las cosas fáciles para tus lectores. Hay una tonelada de información flotando alrededor en cual-
quier proyecto activo de software libre, y los lectores no pueden esperar estar al corriente de la mayor
parte de ella, de hecho, no siempre pueden esperar familiarizarse. En lo posible, tus correos deben sumu-
nistrar información en la forma más conveniente para los lectores. Si tienes que pasar unos dos minutos
extra buscando el URL de un hilo particular en los archivos de la lista de correo, atendiendo al objetivo
de librar a tus lectores de hacerlo, vale la pena. Si tienes que pasar unos 5 o 10 minutos extra resumiendo
las conclusiones de un hilo complejo, con la intención de brindarle a las personas el contexto en el cual
comprederán tu correo, entonces hazlo. Piénsalo de esta manera: el mayor éxito en un proyecto, es au-
mentar el cociente lector-a-escritor en cualquier foro dado. Si cada correo tuyo es visto por n personas,
entonces como n aumenta, la utilidad de realizar un esfuerzo adicional para ayudar a aquellas personas
aumenta con el tiempo. Y como las personas te verán imponer este estándar, trabajarán imitándolo en
sus propias comunicaciones. El resultado es, idealmente, un incremento en la eficiencia global del pro-
yecto: cuando hay una elección entre n personas realizando un esfuerzo y una persona haciendolo, el
proyecto prefiere el segundo.

No acostumbrarse a la hipérbole. La exageración de correos online es una clásica competencia de arma-
mento. Por ejemplo, a una persona que reporta un fallo puede preocuparle que los desarrolladores no le
presten la suficiente atención, así que lo describirá como grave, gran problema que es prevenirle (y a to-
dos sus amigos/compañeros de trabajo/primos) de la utilización del software productivamente, cuando
es solamente una molestia leve. Pero la exageración no está limitada a los usuarios; los programadores
frecuentemente hacen lo mismo durante debates técnicos, especialmente cuando el desacuerdo es una
cuestión de gustos más que de corección:

Communications

84

"Hacerlo de esa manera haría el código totalmente ilegible. Sería una pesadilla para el
mantenimiento, comparado a la propuesta de J. Random..."

El mismo sentimiento se vuelve más fuerte cuando está expresado de una forma menos brusca:

"Pienso que eso funciona, pero menos de lo ideal en términos de legibilidad y mante-
nimiento. La propuesta de J. Random evita esos problemas ya que..."

No podrás librarte completamente de la hipérbole, y en general no es necesario hacerlo. Comparada con
otras formas retóricas, la hipérbole no es globalmente dañina y perjudica principalmente al autor. Los
destinatarios pueden comprender, solamente que el remitente pierde un poco más de credibilidad cada
vez. Por lo tanto, para bien de tu influencia en el proyecto, intenta proceder con moderación. De esa ma-
nera, cuando necesitas presentar un punto fuerte, las personas te tomarán con seriedad.

Corregir dos veces. Para cualquier mensaje más largo que el tamaño medio de un párrafo, se recomienda
volver a leerlo de arriba a abajo antes de enviarlo pero después de que lo tengas listo. Éste es un conoci-
do consejo para cualquiera que haya tomado una clase de composición, pero es especialmente importan-
te para las discusiones en línea. Ya que el proceso de composición en línea tiende a ser altamente dis-
continuo (en el transcurso de escritura de un mensaje, podrías necesitar retroceder y revisar otros co-
rreos, visitar ciertas páginas web, ejecutar un comando para capturar su salida de depuración, etc.), es
especialmente fácil perder el sentido de tu papel narrativo. Mensajes que fueron escritos discontinua-
mente y no fueron revisados antes de ser enviados son frecuentemente reconocibles como tal, mucho el
disgusto (o uno esperaría) de sus autores. Tómate el tiempo para examinar lo que envías. Cuanto más es-
tructurados sean tus mensajes, más leidos serán.

Tono
Después de escribir miles de mensajes, probablemente notarás que tu estilo tiende a ser extremadamente
conciso. Esto parece ser la norma en la mayoría de los foros técnicos, y no hay nada malo con ello. Un
nivel de brevedad que sería inaceptable en interacciones sociales normales es sencillamente el común
para los hackers de software libre. Aquí está una respuesta a la que yo recurrí una vez en una lista de co-
rreo acerca de cierto software gratuito de administración de contenido, citado en su totalidad:

¿Puedes explicar exactamente con que problema
te enfrentas?

Además:

¿Qué versión de Slash estás usando? No pude encontrarlo en
tu mensaje original.

¿Exactamente como compilaste el código de apache/mod_perl?

¿Probaste el parche de Apache 2.0 que fue colocado en
slashcode.com?

Shane

Eso es ser conciso! No tiene bienvenida, ni despedida con excepción de su nombre, y el mensaje en sí es
solamente una serie de preguntas expresadas de la forma más compacta. Su oración declarativa fue una
crítica implícita de mi mensaje original. Aunque, me alegra ver el correo de Shane, y no tomar su breve-
dad como un producto de cualquier otro motivo que no sea el de ser una persona ocupada. El mero he-
cho de que él haga preguntas, en vez de ignorar mi mensaje, significa que él es esta dispuesto a dedicarle
cierto tiempo a mi problema.

Communications

85

¿Reaccionarán positivamente todos los lectores a este estilo? No necesariamente; depende de la persona
y el contexto. Por ejemplo, si una persona envía un correo reconociendo que cometió un error (quizás
codificó un fallo), y sabes por experiencias pasadas que esta persona tiende a ser un poco insegura, en-
tonces mientras puedas escribir una respuesta compacta, deberías asegurarte de dejarlo con algo de men-
ción hacia sus sentimientos. La mayor parte de tu respuesta puede ser un breve análisis de la situación
desde el punto de vista del ingeniero, tan conciso como quieras. Pero al final, deberías despedirte con al-
go que indique que la brevedad no debe ser tomada como frialdad. Por ejemplo, si sólo escribiste monto-
nes de consejos indicando exactamente como la persona debería corregir el fallo, entonces debes despe-
dirte con "Buena suerte, NOMBRE_DE_LA_PERSONA" para indicar que le deseas suerte y que no
eres malgeniado. Una carita sonriente colocada estratégicamente u otro emoticón, también puede con
frecuencia ser suficiente para tranquilizar a un interlocutor.

Puede resultar un tanto extraño centrarse en el sentimiento de los colaboradores, asi como tambien en lo
superficial de lo que dicen por decirlo de alguna manera sin rodeos, los sentimientos afectan a la produc-
tividad. Los sentimientos tambien son importantes por otras razones, porque incluso confinandonos a
nosotros mismos a razones puramente utilitarias, podemos notar que la gente infeliz escribe peor softwa-
re, y/o menos. Dada la naturaleza restrictiva de la mayoria de los medios electronicos, aunque, a menudo
no habra indicios patentes de como se siente una persona. Tendras que realizar una adecuada suposicion
basandote en a) como se sentiria la mayoria de la gente en esa situacion, y b) que es lo que conoces de
esa persona particular a partir de interacciones pasadas. Algunas personas prefieren una actitud mas pa-
siva, y simplemente estan de acuerdo con todo el mundo sin cuestionarlos, la idea tras esto es que si un
participante no dice abiertamente que es lo que piensa, entonces uno no tiene nada que hacer tratandole
como pensaba que lo hacia. No comparto este enfoque, por un par de razones. Una, la gente no se com-
porta de esa manera en la vida real, asi que porque deberian hacerlo online? Dos, dado que la mayoria de
las interacciones tienen lugar en foros publicos, la gente tiende a ser incluso mas moderada expresando
las emociones que lo podrian ser en privado. Para ser mas preciso, a menudo estan deseando expresar
emociones directamente a otros, tales como de agradecimiento o indignacion, pero no emociones direc-
tamente intimas como inseguridad u orgullo. Todavía, la mayoría de los humanos trabajan mejor cuando
saben que los demás son conscientes de su estado de ánimo. Prestando atención a a pequeñas pistas, nor-
malmente podrás suponerlo acertadamente la mayoría del tiempo, y motivar a la gente a estar involucra-
da con un mayor grado que de otra manera no podrían.

Por supuesto no quiero decir que, tú rol sea el de un terapeuta de grupo, ayudando constantemente a todo
el mundo a estar al corriente de sus sentimientos. Pero poniendo una especial atención a patrones a lar-
go-plazo en el comportamiento de la gente, empezarás a tener una sensación de ellos como individuos
incluso aunque nunca los hayas conocido cara a cara. Y siendo sensible en el tono de tus mensajes escri-
tos, podrás tener una cantidad sorprendente de influencia sobre los sentimientos de los demás, que es el
último beneficio del proyecto.

Reconociendo la grosería
Una de las características que definen la cultura del código abierto son son las nociones distintivas de
qué constituye grosería y qué no. Mientras que los convenios que se describen debajo no son únicos para
el desarrollo de software libre, ni tampoco para el software en general debería ser familiar para cualquie-
ra que trabaje en disciplinas de las matemáticas, ciencias puras o la ingeniería el software libre, con sus
porosos límites y un constante influjo de recién llegados, es un entorno donde es especialmente probable
encontrar estas convenciones por gente no familiarizada con ellas.

Comencemos con las cosas que no son groseras (maleducadas):

La crítica técnica, incluso cuando es directa y sin tacto, no es una grosería. De hecho, puede ser una for-
ma de adulación: la crítica es decir, por implicación, que vale la pena tomarse en serio el destinatario,y
vale la pena invertir tiempo en él. Es decir, cuanto más viable fuera simplemente ignorar el mensaje de
alguien, se entiende más por un cumplido molestarse en criticarlo (a no ser que la crítica se convierta,
por su puesto, en un ataque ad hominem o alguna otra forma de grosería obvia).

Preguntas directas, sin adornos, como la que Shane me hizo en el correo anterior tampoco es grosería.

Communications

86

Preguntas que, en otros contextos, pueden parecer frias, retóricas e incluso a modo de burla, son formu-
ladas a menudo de una forma seria, y no tienen más intención que obtener información lo más rápido
posible. La famosa pregunta del soporte técnico "¿Está su ordenador conectado?" es un ejemplo clásico
de esto. La persona de soporte realmente necesita saber si tu ordenador está contectado y, después de
unos pocos días en el trabajo, se ha cansado de adornar su pregunta de florituras ("Le pido disculpas,
quisiera que me contestara unas simples preguntas para descartar algunas posibilidades. Algunas pueden
parecer muy básicas, pero tenga paciencia..."). En este punto, no le importa seguir adornando más sim-
plemente pregunta directamente: ¿está o no está conectado? Preguntas similares se hacen en todo mo-
mento en las lista de distribución del software libre. La intención no es insultar al destinatario, sino des-
cartar rápidamente las explicaciones más obvias (y quizás más comunes). Los destinatarios que lo en-
tiendan y reaccionen de ese modo ganarán puntos en tener una visión tolerante sin provocarse. Pero los
destinatarios que reaccionen mal tampoco deberían ser reprendidos. Es simplemente una colisión de cul-
turas, no es culpa de nadie. Explica amablemente que tu pregunta (o crítica) no tiene significados ocul-
tos; que solo significaba obtener (o transmitir) la información de la forma más eficientemente posible,
nada más.

Entonces, ¿qué es grosería?

Bajo el mismo principo por el cual las críticas a detalles técnicos es una forma de halago, no proporcio-
nar críticas de calidad puede ser un tipo de insulto. No quiero decir simplemente que ignorando el traba-
jo de alguien, sea una propuesta, cambio en el código, nuevas informaciones o cualquier cosa. A menos
que explicitamente prometas una reacción detallada más adelante, normalmente es OK simplemente no
reaccionando de ninguna manera. La gente asumirá así que no tuviste tiempo de decir nada. Pero si tu
reaccionas , no escatimes: tómate el tiempo para analizar detalladamente las cosas, proporcionar ejem-
plos concretos allá donde sea apropiado, rebuscar a través de los archivos para encontrar información re-
lacionada del pasado, etc. O si no tienes tiempo para realizar todo ese esfuerzo, pero todavía necesitas
escribir algún tipo de respuesta corta, entonces exponlo de manera abierta y breve en tu mensaje ("Creo
que hay un tema abierto para esto, pero desafortunadamente no tuve tiempo para buscarlo, lo siento").
Lo principal es reconocer la existencia de la norma cultural, ya sea algo satisfactorio o reconociendo
abiertamente que ha fallado ligeramente esta vez. Sea lo que sea, la norma es reforzar. Pero el no cum-
plir esta norma mientras que al mismo tiempo no se explica el porque fallaste en conecerlo, es lo mismo
que decir el tópico (y aquellos que participan en ello) no mereció tu tiempo. Es mejor mostrar que tu
tiempo es muy valioso siendo seco que siendo vago.

Hay muchas otras formas de grosería, por supuesto, pero la mayoría no es específica del desarrollo de
software libre, y el sentido común es una buena forma de evitarlas. Véase también “Echad a volar la ma-
la educación” en Capítulo 2, Primeros Pasos, si lo has hecho todavía.

Caras
Hay una parte en el cerebro humano dedicada específicamente a reconocer caras. Es conocida informal-
mente como "área de fusión de caras", y sus capacidades son mayoritariamente innatas , no se han
aprendido. Resulta que reconocer a las personas individualmente es una técnica tan crucial de supervi-
vencia que hemos desarrollado un hardware especializado para ello..

La colaboración basada en Internet es por ello psicologicamente curiosa porque implica una estrecha co-
laboración entre seres humanos que nunca se identificarían entre ellos por los más naturales e intuitivos
métodos: reconocimiento facial el primero de todos, pero tambien por el sonido de la voz, postura, etc.
Para compensar esto, intenta usar un consistente Nombre en todas partes. Debería ser la primera parte de
tu dirección de email (la parte antes de el signo @), tu nombre del IRC, tu nombre para hacer commit en
los repositorios, tu marca de nombre en cualquier lado y así. Este nombre es tu "cara" online : un tipo de
cadena de identificación que sirve el mismo propósito que tu cara real, aunque no lo es, desafortunada-
mente, estimula el mismo hardware consitutido en el cerebro.

El nombre que muestras debería ser una permutación intuitiva de tu nombre real (el mío por ejemplo, es
"kfogel"). En algunas situaciones estará acompañado de tu nombre completo, por ejemplo en las cabece-
ras del correo:

Communications

87

From: "Karl Fogel" <kfogel@whateverdomain.com>

Actualmente, hay dos puntos a tener en cuenta en ese ejemplo. Como ya he mencionado anteriormente,
el nombre que mostraremos coincidirá con el nombre real de una manera intuitiva. Pero tambien, el
nombre real es real. Esto es, no se compone de una denominación como:

From: "Wonder Hacker" <wonderhacker@whateverdomain.com>

Hay una famosa tira cómica de Paul Steiner, del 5 de Julio de 1993 publicada en The New Yorker, que
muestra a un perro que ha iniciado sesión en un terminal de ordenador, menospreciando y contando a los
demás de manera conspiratoria: "En Internet, nadie sabe que tú eres un perro." Este tipo de pensamiento
es una mentira detrás de tanto ensalzamiento propio, significado de estar a la moda con las identidades
online que la gente se atribuye a ellos mismos; como llamándose uno mismo "Wonder Hacker" causará
que la gente piense que uno es un maravilloso hacker. Pero los hechos permanecen: incluso si nadie sabe
que tu eres un perro, todavía seras un perro. Una fantástica identidad online nunca impresiona a los lec-
tores. En vez de esto, les hace creer que eres más una imagen que una persona con fundamento, o que
simplemente eres inseguro. Utiliza tu nombre real para todas las interacciones, o si por alguna razón ne-
cesitas un anónimo, entonces crea un nombre que se parezca perfectamente a un nombre real, y úsalo
consistentemente.

Además de mantener tu imagen online consistente, hay algunas cosas más que puedes hacer para que re-
sulte más atractiva. Si posees un título oficial (ejem., "doctor", "profesor", "director"), no hagas obsten-
tación de ello, no lo menciones a menos que sea directamente relevante a la conversación. El mundo
hacker en general y la cultura del Software Libre en particular, tienden a ver la muestra de títulos como
un signo de exclusión y de inseguridad. Esta bien si tu título aparece como parte de un bloque de firma
standard al final de cada mail que envías, pero no lo utilices como una herramienta para reforzar tu posi-
ción en una discusión; al intentarlo está garantizado el fracaso. Tu quieres que la gente te respete como
persona, no por el título.

Hablando de bloques de firma: mantelos pequeños y con buen gusto, o mejor todavía, inexistentes. Evita
largas responsabilidades legales fijadas al final de cada mail, especialmente cuando estos expresen senti-
mientos incompatibles con la participación en un proyecto de software libre. Por ejemplo, el siguiente
clásico del género aparece al final de cada post que un usuario particular hace en una lista de mail públi-
ca donde yo estoy:

IMPORTANT NOTICE

If you have received this e-mail in error or wish to read our e-mail
disclaimer statement and monitoring policy, please refer to the
statement below or contact the sender.

This communication is from Deloitte & Touche LLP. Deloitte &
Touche LLP is a limited liability partnership registered in England
and Wales with registered number OC303675. A list of members' names
is available for inspection at Stonecutter Court, 1 Stonecutter
Street, London EC4A 4TR, United Kingdom, the firm's principal place of
business and registered office. Deloitte & Touche LLP is
authorised and regulated by the Financial Services Authority.

This communication and any attachments contain information which is
confidential and may also be privileged. It is for the exclusive use
of the intended recipient(s). If you are not the intended
recipient(s) please note that any form of disclosure, distribution,
copying or use of this communication or the information in it or in
any attachments is strictly prohibited and may be unlawful. If you
have received this communication in error, please return it with the

Communications

88

title "received in error" to IT.SECURITY.UK@deloitte.co.uk then delete
the email and destroy any copies of it.

E-mail communications cannot be guaranteed to be secure or error free,
as information could be intercepted, corrupted, amended, lost,
destroyed, arrive late or incomplete, or contain viruses. We do not
accept liability for any such matters or their consequences. Anyone
who communicates with us by e-mail is taken to accept the risks in
doing so.

When addressed to our clients, any opinions or advice contained in
this e-mail and any attachments are subject to the terms and
conditions expressed in the governing Deloitte & Touche LLP client
engagement letter.

Opinions, conclusions and other information in this e-mail and any
attachments which do not relate to the official business of the firm
are neither given nor endorsed by it.

Para alguien que únicamente se quiere presentar para preguntar alguna cuestión ahora y entonces, esta
gran "renuncia" parece un poco fuera de lugar pero probablemente no hace ningún daño. Sin embargo, si
esta persona quería participar activamente en el proyecto, este formalismo-legal empezaría a tener un
efecto más insidioso. Enviaría al menos dos señales potencialmente destructivas: primero, qué esta per-
sona no tiene un control total sobre sus herramientas; está atrapado dentro de una cuenta de correo cor-
porativa que acarrea un mensaje molesto al final de cada mail, y el no tiene ningúna manera de evitarlo;
y segundo, que tiene poco o ningún apoyo de su organización para contribuir en las actividades del soft-
ware libre. Cierto, que la organización claramente no le ha prohibido completamente de postear en listas
públicas, pero hace que sus posts se distingan con un mensaje frío, ya que el riesgo de dejar información
confidencial debe figurarse sobre las demás prioridades.

Si trabajas para una organización que insiste en añadir tales bloques de firma en todos los mail salientes,
entonces considera tener una cuenta de correo gratuito de, por ejemplo, gmail.google.com,
www.hotmail.com, or www.yahoo.com, y utilizar esta dirección para el proyecto.

Evitando los obstáculos corrientes
No envíes un correo sin un propósito

Un obstáculo común en la participación de un proyecto online es pensar que tú tienes que responder a
todo. No tienes que hacerlo. Lo primero de todo, normalmente se generarán más hilos de correo de los
que tú puedas manejar, al menos después de que el proyecto ha pasado sus primeros meses. Segundo, in-
cluso en los hilos de correo en los que has decidido tomar parte, mucho de lo que comenta la gente no
requerirá una respuesta. Los foros de desarrollo en particular tiendes a ser dominados por tres tipos de
mensajes:

1. Mensajes proponiendo algo que -no es trivial-

2. Mensajes mostrando apoyo u oposición a algo o a lo que alguien ha dicho.

3. Mensajes de recapitulación

Ninguno de esosde manera inherente requerirá una respuesta, particularmente si puedes ser justamente
seguro, basándote en revisar el hilo desde el principio, que alguien más probablemente dirá lo que tu
ibas a decir de cualquier manera. (Si te preocupa que te tomen en un bucle de esperar-esperar porque to-
dos los demás están usando esta táctica tambien, no lo hagas; casi siempre habrá alguien por ahí que se

Communications

89

gmail.google.com
www.hotmail.com
www.yahoo.com

tenderá a crisparse.) Una respuesta debería ser motivada por un propósito definitivo. Pregúntate a ti mis-
mo primero: ¿Sabes que es lo que quieres conseguir? Y segundo: ¿no se conseguirá a menos que digas
algo?

Dos buenas razones para añadir tu voz a un hilo de corre son a) cuando veas un movimiento de proposi-
ción y sospeches que tú eres el único que así lo percibe, y b) cuando veas que no hay entendimiento en-
tre otros, y sepas que puedes solucionarlo con un correo clarificándolo todo. Tambien generalmente está
bien escribir únicamente para dar las gracias a alguien por algo, o para decir "Yo tambien!", porque un
lector puede decir en seguida que tal correo no requiere ninguna respuesta ni acción adicional, y por lo
tanto el esfuerzo mental demnadado por el post termina limpliamente cuando el lector llega a la última
línea de el correo. Pero incluso entonces, piensalo dos veces antes de decir algo; es siempre mejor dejar
a la gente deseando que escribas más a menudo que deseando que escribas menos. (Consulta la segunda
parte de Apéndice C, Why Should I Care What Color the Bikeshed Is? para ver más ideas sobre como
portarse en una lista de correo muy concurrida.)

Hilos productivos vs Hilos Improductivos
En una lista de correo muy concurrida, tienes dos imperativos. Uno, obviamente es comprender en que
es lo que necesitas poner tu atención y que es lo que puedes ignorar. El otro es evitar de alguna manera
el causar ruido: no sólo quieres que tus propios posts tengan un ratio de gran ruido/señal, sino que tam-
bien quieres que sean el tipo de mensajes que estimulan a otra gente a escribir mails con un ratio similar
de señal/ruido, o no escribir nada.

Para ver como hacer eso, vamos a considerar el contexto en el cual se hace. ¿Cuales son algunos de los
sellos de un hilo improductivo?

• Argumentos que ya se han hecho antes se empiezan a repetir, porque el que los hace piensa que nadie
le ha escuchado la primera vez.

• Se incrementan los níveles de exageración y participación mientras el interés se hace cada vez más
pequeño.

• Una mayoría de comentarios que provienen de gente que hablan poco o nada, mientras que la gente
que tiene a hacer las cosas permanece en silencio.

• Muchas ideas se discuten sin un propósito claro de que hacer con ellas. Por supuesto, cualquier idea
interesante empieza con una visión imprecisa; la cuestión importante es que dirección tomará a partir
de ahí. Parece que el hilo empieza a convertir la visión en algo más concreto, o está derivando en sub-
visiones y disputas ontológicas?)

Sólo porque un hilo de correo no sea productivo al principio no significa que sea una perdida de tiempo.
Puede tratar sobre un tema importante, en cuyo caso el hecho de que no se está produciendo ningún pro-
greseo es todo lo más molesto.

Guiar un hilo de correo hacia la utilidad sin ser agresivo es todo un arte. No funcionará simplemente
amonestando a la gente para que pare de gastar su tiempo, o preguntándoles que no escriban a menos
que tengan algo constructivo que decir. Por supuesto puedes pensar en esas cosas en privado, pero si lo
dices en la lista de correo sonará ofensivo. En lugar de eso, tienes que sugerir condiciones para promo-
ver progresos; guía a la gente, un camino a seguir que lleve a los resultados que quieres, y todo ello sin
que tu conducta parezca dictatoria. La distinción es en gran parte el tono. Por ejemplo, esto esta mal:

Esta discusión no va a ningún lado. Por favor podemos dejar este tema hasta que al-
guien tenga un parche que implemente una de esas proposiciones? No hay razón para
mantenernos en ello todo el rato diciendo las mismas cosas. El código hace más ruido
que las palabras, chicos.

Communications

90

Donde esto esta bien:

Varias propuestas han estado flotando en este hilo, pero ninguno ha tenido todos los
detalles completos, al menos no demasiados como para hacer una votación arriba-
o-abajo. Y todavía no estamos diciendo nada nuevo; estamos simplemente reiterando
lo que ya se ha dicho anteriormente. Así que lo mejor a partir de este punto será pro-
bablemente para posteriores correos contener tanto una especificación completa para
la característica propuesta, o un parche. Entonces al menos tendríamos una acción
definitiva que tomar (ejem, tener un consenso en la especificación, o aplicar el par-
che).

Compara la segunda propuesta con la primera. La segunda manera no traza una línea entre tú y los de-
más, ni les acusa de mantener la discusión en una espiral. Habla sobre "nosotros", que es lo importante
hayas participado o no en el hilo de correo anteriormente, porque recuerada a todo el mundo que incluso
aquellos que han estado en silencio hasta entonces en el hilo de correo todavía pueden participar en el
resultado del hilo de correo. Describe porque el hilo no va a ninguna parte, pero lo hace sin peyorativas
ni juicios; simplemente muestra el estado de algunos hechos sin sentimiento. Lo más importante, ofrece
un curso de acción positivo, de manera que en vez de que la gente sienta que la discusión esta siendo ce-
rrada (una restricción contra la cual ellos pueden sólo estar tentados a rebelar), se sentirán como si se les
estuviera ofreciendo una manera de tomar parte en la conversación a un nivel más constructivo. Este es
un estándar con el cual la gente querrá quedarse.

Siempre no querrás convertir un hilo de correo en el siguiente nivel de construcción; otras veces querrás
dejarlo pasar. El propósito de tu correo, entonces, es hacer una cosa o la otra. Si puedes decir el camino
que deberá tomar el hilo de correo de manera que nadie lo está haciendo así para tomar los pasos que su-
geriste, entonces tu correo ha cerrado el hilo sin aparentar hacerlo. Por supuesto, no hay una manera in-
falibe de cerrar un hilo, e incluso si la hubiera, no querrías usarla. Pero preguntando a los participantes a
crear progresos visibles o parar de escrbiri correos es perfectamente defendible, si se hace diplomática-
mente. Sin embargo, se cauteloso de anular los hilos de correo prematuramente. Alguna cantidad de
charla especulativa puede llegar a ser productiva, dependiendo del tema, y preguntando para que se re-
suelva demasiado rápida apagará el proceso creativo, así como tambien te hara parecer impaciente.

Don't expect any thread to stop on a dime. Probablemente habrá todavía unos pocos correos despues del
tuyo, ya sea porque los mails se cruzan en la red, o porque la gente quiere tener la última palabra. Esto
no es nada por lo que preocuparse, y no necesitas escribir otro correo otra vez. Simplemente deja que el
hilo se vaya esfumando o que no se esfume como puede ser el caso. No puedes tener control completo;
por otra parte, puedes esperar tener estadísticamente un efecto significativo a través de varios hilos de
correo.

Cuanto más blando sea el tema, más largo será el deba-
te

Aunque las discusiones pueden extenderse a cualquier topico, la probabilidad de que se vayan exten-
diendo va conforme la dificultad tecnica del tema disminuye. Despues de todo cuanta mas sea la dificul-
tad tecnica, menor sera el numero de participantes que realmente podran seguirla. Aquellos quienes pue-
den ser los desarrolladores mas experimentados, quienes ya han tomado parte en esas discusiones antes
cientos de veces, y conocen el tipo de comportamiento es el que va a llevar a un consenso con el cual to-
do el mundo este de acuerdo.

De esta manera, en cuestiones tecnicas que son simples de comprender y faciles de tener una opinion so-
bre ellas, es dificil llegar a un consenso, y en temas "blandos" como organizacion, publicidad, ingresos,
etc. La gente puede participar en aquellos argumentos siempre, porque no es necesario ninguna cualifi-
cacion para hacerlo, no hay un camino claro para decidir (incluso despues de todo) si una decision fue
buena o mala, y porque simplemente esperar a que otros discutan es a veces una tactica correcta.

El principio de que la cantidad de discusion es inversamente proporcional a la complejidad del tema tra-

Communications

91

tado, ha estado ahi durante algun tiempo, y es conocido informalmente como el Efecto Bikeshed . Aqui
esta la explicacion de Poul-Henning Kamp's, de un correo ahora famoso, hecho en la lista de desarrolla-
dores de BSD:

Es una larga historia o mas bien es una vieja historia, pero es bastante escasa actual-
mente. C. Northcote Parkinson escribio un libro en los comienzoa de 1960 titulado
"La ley de Parkinson", la cual contenia mucho entendimiento sobre la dinamica de la
gestion.

[...]

En el ejemplo especifico cubriendo el refugio de bicicletas, el otro componente vital es
una planta de energia atomica, supongo que ilustra la epoca de el libro. .

Parkinson nos muestra que puedes ir a un consejo de direccion y conseguir la aproba-
cion de un edificio multi millonario o incluso de billones de dolares de una planta de
energia atomica, pero si quieres construir un refugio de bicicletas te veras implicado
en discusiones sin fin.

Parkinson explica que esto es porque una planta de energia atomica es tan enorme, tan
cara y tan complicada que la gente no tendra conocimiento de ello, y en lugar de inten-
tarlo, recurriran al supuesto de que alguien revisara todos los detalles antes de ir mas
alla. Richard P. Feynmann dio un par de interesantes, y muy cercanos a esto ejemplos
en relacion a los Alamos en sus libros.

Por otra parte, un refugio para bicletas. Cualquiera puede construir uno de esos en un
fin de semana, y todavia tendra tiempo para ver la TV. Asi que no importa lo bien pre-
parado que estes, tampoco importa lo razonable que seas en tu proposicion, alguien se
hara con la oportunidad para demostrar que esta haciendo su trabajo, que esta atento,
que esta ahi.

En Dinamarca lo llamamos "deja tu huella". Trata sobre el orgullo personal y el presti-
gio, va sobre ser capaz de señalar en algun sitio y decir "Hay! esto lo hice Yo." Es
fuerte, simplemente piensa en las pisadas del semento mojado.

(Su post completo es una lectura de mucho valor. Miralo.Apéndice C, Why Should I Care What Color
the Bikeshed Is?; see also http://bikeshed.com.)

Cualquiera que regularmente tome parte en decisiones hechas en grupo reconocera sobre que es lo que
esta hablando Kamp. Sin embargo, normalmente es imposible persuadir a todo el mundo a evitar pintar
un cobijo de bicis. Lo mejor que puedes hacer es señalar que el fenomeno existe, y cuando veas que esta
ocurriendo, persuadir al desarrollador senior; las personas cuyos mails llevan todo el peso; a soltar sus
brochas pronto, asi al menos no contribuiran al ruido. Las fiestas para pintar bicis nunca se esfumaran
enteramente, pero puedes hacerlas mas cortas y menos frecuentes extendiendo una concienciacion del
fenomeno en la cultura del proyecto.

Evitando las Guerras Santas
UnaGuerra Santa es una disputa, a menudo pero no siempre sobre un tema relativamente menor el cual
no se puede resolver con los meritos de los argumentos, pero donde la gente se siente demasiado apasio-
nada para continuar discutiendo de cualquier manera con la esperanza de que su lado prevalecera. Las
Guerras Santas no son lo mismo que la pintura de un garaje de bicicletas. La gente de la pintura de bici-
cletas normalmente salen rapido con una opinion (porque pueden), pero ellos, necesariamente no se sen-
tiran demasiado apasionados sobre ello, y por lo tanto, otras veces, expresaran opiniones incompatibles
para mostrar que ellos comprenden todas las caras del tema tratado. Por otra parte, en una Guerra Santa,
comprender a las otras partes es un signo de debilidad. En una Guerra Santa, todo el mundo sabe que
hay UNA Respuesta Correcta; Per ellos no estan de acuerdo con esta.

Communications

92

http://bikeshed.com

Una vez que una Guerra Santa ha empezado, generalmente no se puede resolver con la satisfaccion de
todo el mundo. No es bueno mostrar, en el medio de una Guerra Santa, que esta esta teniendo lugar. To-
do el mundo ya lo sabe. Desafortunadamente una caracteristica comun de las Guerra Santa es el desa-
cuerdo en cada cuestion si la disputa se puede resolver continuando la discusion. Visto desde fuera, esta
claro que ninguna parte va a cambiar la opinion de los otros. Visto desde dentro, la otra parte esta siendo
obtusa y no esta pensando claramente, pero pueden cambiar de opinion si las cosas se vuelven feas.
Ahora,no estoy diciendo que no haya una parte con razon en una guerra santa. A veces la hay en las
Guerras Santas que yo he participado, siempre ha sido mi bando, por supuesto. Pero no importa porque
no hay algoritmo para demostrar convencidamente que una parte o la otra estan en lo cierto.

Un comun, pero insatisfactorio modo de intentar solucinar una Guerra Santa es decir "Ya hemos gastado
bastante tiempo y energia de lo que vale discutiendo esto! Por favor, ¿podemos dejarlo? Hay dos proble-
mas en esto. Primero, que el tiempo y la energia ya se han gastado y ya no se pueden recuperar; la unica
cuestion ahora es, cuanto esfuerzo mas permanecera? Si todavia alguno siente que un poco mas de dis-
cusion resolvera la cuestion pronto, entonces todavia tiene sentido (desde su punto de vista) continuar.

El otro problema en preguntar para que la cuestion sea zanjada es que esto es a menudo equivalente a
permitir a una parte el status quo, a declarar la victoria por inaccion. Y en algunos casos, el status quo es
conocido por ser de cualquier forma inaceptable: todo el mundo esta de acuerdo en que se debe llegar a
una decision, se debe tomar alguna accion. Dejar el tema seria peor para todo el mundo que simplemente
apoyando el argumento que daria alguien. Pero dado que el dilema se aplica igualmente a todo el mun-
do, todavia es posible terminar discutiendo por siempre sobre que hacer.

¿Como deberias manejar una Guerra Santa?

Puedes anticipar ciertas Guerras Santa estandar: tienden a tratar sobre lenguajes de programacion, licen-
cias (mira “La GPL y compatibilidad entre licencias” in Capítulo 9, Licencias, Copyrights y Patentes),
en respuesta a munging (mira “El gran debate del Reply-To” en Capítulo 3, Infraestructura Técnica), y
algunos otros topicos. Normalmente cada proyecto tiene una o dos Guerras Santas, tambien, las cuales
los desarrolladores mas experimentados estaran ya familiarizados. Las tecnicas para frenar las Guerras
Santas, o al menos limitar su daño, son casi las mismas en cualquier lugar. Incluso si eres positivo y tu
parte es correcta, intenta encontrar alguna manera de expresar simpatia y comprension hacia los puntos
de vista que los otros hacen. A menudo el problema en una Guerra Santa es porque cada parte ha cons-
truido sus muros lo mas alto posible, y dejan claro que cualquier otra opinion es totalmente idiota, el ac-
to de rendirse o cambiar el pensamiento de alguien se hace psicologicamente insostenible: sería un reco-
nocimiento no solamente siendo erróneo, pero habiendo sido ciertamentey todavia siendo erróneo. La
manera en que puedes hacer este reconocimiento aceptable por la otra parte es expresar alguna duda tu
mismo; precisamente mostrando que comprendes sus argumentos y al menos eres sensible a ellos, si no
persuasivo finalmente. Haz un gesto que proporcione espacio para un gesto recíproco, y normalmente la
situación mejorará. No es ni más ni menos probable que consigas el resultado técnico que querías, pero
al menos puedes evitar el daño colateral innecesario a la moral del proyecto.

Cuando una Guerra Santa no se puede evitar, decide pronto cuanto la apoyas, y entonces estáte dispuesto
públicamente a ceder. Cuando hagas esto, puedes decir que no estás respaldándola porque la Guerra
Santa no lo vale, pero no expreses ningún rencor y no tomes la oportunidad para una despedida dispa-
rando contra los argumentos de la otra parte. Darse por vencido es efectivo sólo cuando se hace con ele-
gancia.

Las Guerras Santas de lenguajes de programación son un caso especial, porque a menudo son mayor-
mente técnicas, todavía mucha gente se siente cualificada para tomar parte en ellas, y el interes es muy
alto, ya que el resultado puede determinar en gran medida en que lenguaje se va a escribir el proyecto.
La mejor solución es elegir el lenguaje pronto, con la influencia de los desarrolladores iniciales, y enton-
ces defenderlo en los terrenos en los que eres comfortable escribiendo, no en el terreno que sería mejor
en el que otro lenguaje se pudiera utilizar. Nunca dejes que la conversación en una comparación acadé-
mica de lenguajes de programación (esto parece ocurrir especialmente cuando alguien menciona Perl,
por alguna razón); éste es un tópico muerto en el que simplemente debes evitar caer.

Para consultar más fondo histórico de las Guerras Santas, mira

Communications

93

http://catb.org/~esr/jargon/html/H/holy-wars.html, y el artículo de Danny Cohen que popularizó el tér-
mino, http://www.ietf.org/rfc/ien/ien137.txt.

El efecto "Ruido Minoritario"
En cualquier discusion de una lista de correo, es fácil para una pequeña minoría dar la impresión de que
hay un gran acuerdo de contrariead, esto es inundando la lista con numerosos y largos emails. Es igual a
hacer una maniobra obstruccionista, excepto que la ilusión de la disensión general es incluso más pode-
rosa, porque está dividida entre un número arbitrario de posts discretos y a la mayoría de la gente no le
importa seguir la pista de quién ha dicho que, cuando. Sólo tienen una impresión instintiva de que el te-
ma es muy controvertido, y esperan a que el escándalo disminuya.

La mejor manera de contrarrestar este efecto es indicarlo muy claramente y proporcionar pistas respalda-
das mostrando cómo de pequeño es el número actual de disidentes comparado a los que están en acuer-
do. Para incrementar la disparidad, puedes querer encuestar de manera privada a la gente que ha estado
la mayor parte del tiempo en silencio, pero que sospechas que estarán de acuerdo con la mayoría. been
mostly silent, but who you suspect would agree with the majority. No digas nada que sugiera que los di-
sidentes estaban intentando deliberadamente inflar la impresión que estaban creando. Oportunidades que
no tuvieron, e incluso si las tuvieron no había una ventaja estratégica para señalarla. Todo lo que necesi-
tas es mostrar el número actual en una comparación cara-a-cara, y la gente se dara cuenta que su intui-
ción de la situación no coincidía con la realidad.

Este consejo no sólo se aplica a temas con una clara posición a-favor-en-contra. Se aplica a cualquier
discusión donde hay un alboroto, pero no esta claro que la mayoría de la gente considere ese tema bajo
discusión que sea un problema real. Despues de todo, si estas de acuerdo en que el tema no es digno de
acción, y puedes ver que ha fallado en atraer la atención (incluso si ha generado muchos mails), puedes
observar públicamente que no está teniendo tracción. Si el efecto "ruido minoritario" ha funcionado, tu
post parecerá un soplo de aire fresco. La mayoría de la impresión de la gente de la discusión se dará
cuenta de que ese punto habrá sido algo turbio: Huh, seguro que sienten como que hay un gran acuerdo
aqui, porque seguramente hay un montón de posts, pero no puedo ver que esté habiendo ningún progreso
claro." Explicando como la manera en que la discusión se hizo parezca más turbulenta de lo que real-
mente es, tú retrospectivamente le darás una nueva forma, a través de la cual la gente pueda recapitular
su comprensión del resultado.

Gente difícil
No es tan fácil tratar con gente díficl en foros electrónicos como lo sería en persona. Con "díficil" no me
refiero a "maleducados". La gente maleducada es molesta, pero no son necesariamente díficiles. En este
libro ya se ha discutido como manejarlos:comenta la grsoería la primera vez, y desde entonces ignórales
o tratalos como otro cualquiera. Si continuan siendo maleducados, ellos mismos se haran tan impopula-
res que no tendrán influencia en nadie del proyecto, por lo que serán un problema de ellos mismos.

Los casos realmente difíciles son la gente que no son manifiestamente groseros, pero que manipulan o
abusan en los procesos del proyecto de una manera que termina costando el tiempo y la energía de otras
personas, y todo ello sin traer ningún beneficio al proyecto. Tales personas a menudo buscan puntos de
presión en los procedimientos del proyecto, para darse a sí mismos más influencia que de otra manera no
tendrían. Esto es mucho más insidioso que la grosería meramente, porque ni el comportamiento ni el da-
ño que causa es aparente a los observadores casuales. Un ejemplo clásico es aquellos que realizan ma-
niobras obstruccionistas, en la que alguien (siempre sonando tan razonable como sea posible, por su-
puesto) viene demandando que la cuestión bajo discusión no esta lista para una solución, y ofrece más y
más posibles soluciones, o nuevos puntos de vista de viejas soluciones, cuando lo que realmente está pa-
sando es que el sentido de un consenso o votación está a punto de ocurrir, y no le gusta por donde va en-
caminado. Otro ejemplo es cuando hay un debate que no converge en consenso, pero el grupo al menos
intenta clarificar los puntos en desacuerdo y produce un sumario para que todo el mundo se refiera a par-
tir de el. El obstruccionista, que sabe que el sumario puede llevar a un punto que a el no le va a gustar, a
menudo intentará retrasar el sumario, implacablemente mediante complicadas cuestiones que deberían
estar ahí, u objetando sugerencias razonables, o mediante la introducción de nuevos asuntos.

Communications

94

http://catb.org/~esr/jargon/html/H/holy-wars.html
http://www.ietf.org/rfc/ien/ien137.txt

Tratando con gente difícil
Para contrarrestar tal comportamiento, ayuda el comprender la mentalidad de aquellos que caen en él. La
gente generalmente no lo hara conscientemente. Nadie se levanta por la mañana y se dice a sí mismo:
"Hoy voy a manipular cínicamente las formas y procedimientos para ser así un irritante obstruccionista."
En cambio, tales acciones están a menudo precedidas por un sentimiento de semi-paranoia de estar fuera
de las interacciones y decisiones del grupo. La persona piensa que no se le toma seriamente, o (en casos
más severos), que existe una conspiración contra él;y que los otros miembros del proyecto han decidido
formar un club exclusivo, del cual el no es miembro. Esto entonces justifica en su mente, a tomar las re-
glas literalmente y encargándose de una manipulación formal de los procedimientos del proyecto, para
así hacer que todo el mundo le tome en serio. En casos extremos, la persona puede incluso pensar que
está luchando una batalla solo para salvar el proyecto de sí mismo.

Es la naturaleza del propio ataque la que hara que nadie se percate de él al mismo tiempo, y mucha gente
no lo notará, a menos que se presente con evidencias muy fuertes. Esto significa que neutralizarlo puede
llevar algo de trabajo. No basta con persuadirse a sí mismo de que está ocurriendo; tendrás que organizar
muy bien las evidencias para persuadir a los demás de lo que está ocurriendo, y entonces tendrás que
distribuir estas evidencias de una manera atenta.

Dado que hay mucho por lo que luchar, a menudo la mejor opción es tolerarlo de vez en cuando. Piensa
en esto como un parásito, esto es una dolencia suave: si no es muy debilitante, el proyecto podrá afrontar
el permanecer infectado, y la medicina podría tener efectos perjudiciales. Sin embargo, si consigue más
daño del que se pueda tolerar, entonces es tiempo de entrar en acción. Empieza reuniendo notas de los
patrones que observas. Asegurate de incluir referencias a archivos públicos; esta es una de las razones
por la que los proyectos mantiene históricos, para que puedas usarlos tambien. Una vez que tengas una
buena recopilación, empieza a entablar conversaciones privadas con otros participantes del proyecto. No
les digas lo que has observado; en vez de eso, pregúntales primero que es lo que observan ellos. Esta
puede ser tu última oportunidad de conseguir feedback sin filtrar sobre como los demás observan el
comportamiento de los que crean problemas; una vez que has empezado a hablar abiertamente, la opi-
nión se polarizará y nadie será capaz de recordar que es lo que anteriormente opinaba sobre el tema en
cuestión.

Si las discusiones privadas indican que tambien hay otros que perciben el problema, entonces es hora de
hacer algo. Aquí es donde tienes que ser realmente cauteloso, porque sera muy fácil para este tipo de
persona hacer parecer como que tú eres el que actua injustamente. Hagas lo que hagas, nunca acuses de
abusar maliciosamente de los procedimientos del proyecto, o de ser paranoico, o, en general, de cual-
quier otra cosa que sospeches que probablemente sea cierta. Tu estrategia deberá mostrarse tanto razona-
ble como consciente del bienestar global del proyecto. Con el objetivo de reformar la actitud de la perso-
na, o de expulsarla del proyecto permanentemente. Dependiendo de los otros desarrolladores, y de tu re-
lación con ellos, puede ser ventajoso conseguir aliados de manera privada primero. O puede que no; ya
que puede dificultar el ambiente interno, si la gente piensa que te estas dedicando a una campaña de fal-
sos e impropios rumores.

Recuerda que aunque la otra persona sea la que se este portando destructivamente tu seras la que parezca
destructiva si le culpas públicamente y no lo puedes probar. Asegurate de tener varios ejemplos y de-
mostrar lo que estas diciendo, y dilo tan suave como puedes pero siendo directo. Puede que no persuadas
a la persona en cuestión, pero estará bien mientras puedas persuadir a los demás.

Estudio del caso
Recuerdo sólo una situación, en más de 10 años trabajando en Software Libre, donde las cosas fueron
tan mal, que nosotros tuvimos que preguntar a alguien para que parase de postear completamente. Como
era tan a menudo el caso, el no era maleducado y quería sinceramente ser de utilidad. Simplemente no
sabía cuando escribir a la lista y cuando no hacerlo. Nuestras listas estaban abiertas al público, y él escri-
bía muy a menudo, preguntando cuestiones de diferentes temas, que empezó a ser un problema de ruido
para la comunidad. Nosotros habíamos intentado preguntarle de buenas maneras para que hiciera un po-
co más de investigación para las respuestas antes de escribir a la lista, pero no hizo efecto.

Communications

95

La estrategia que al final funcionó es un ejemplo perfecto de como construir una situación neutral, y con
datos cuantitativos. Uno de los cuatro desarrolladores hizo una exploración en los archivos, y envío en-
tonces el siguiente mensaje de manera privada a unos pocos desarrolladores. El ofendido (el tercer nom-
bre en la lista de abajo, se muestra aquí como "J. Random") tenía muy poca historia con el proyecto, y
no había contribuido ni con código ni documentación. Y aún así era el tercero más activo en escribir
mensajes en la lista de correo:

From: "Brian W. Fitzpatrick" <fitz@collab.net>
To: [... recipient list omitted for anonymity ...]
Subject: The Subversion Energy Sink
Date: Wed, 12 Nov 2003 23:37:47 -0600

En los últimos 25 días, el top de los 6 que más han escrito en la lista de svn [dev|users] han sido:

294 kfogel@collab.net
236 "C. Michael Pilato" <cmpilato@collab.net>
220 "J. Random" <jrandom@problematic-poster.com>
176 Branko #ibej <brane@xbc.nu>
130 Philip Martin <philip@codematters.co.uk>
126 Ben Collins-Sussman <sussman@collab.net>

Diría que cinco de esas personas están contribuyendo con éxito al desarrollo
de la versión 1.0 de subversión en un futuro cercano.

Tambien diría que una de esas personas está constantemente atrayendo tiempo y energía de las
otras cinco, sin mencionar a la lista como un todo, así, (aunque no intencionadamente) está frenando
el desarrollo de Subversion. No hice un análisis de los hilos de correo, pero haciendo una búsqueda
en mi archivo de correo me muestra que a cada correo de esta persona le responde al menos uno o
dos de los otros cinco de la lista anterior.

Creo que algún tipo de intervención radical es necesaria en esto, incluso si nos asusta que el
susodicho se marche. Se ha comprobado que la finura y amabilidad aquí no tienen efecto.

dev@subversion es una lista de correo para facilitar el desarrollo de un sistema de control de versiones,
no una sesión de terapia de grupo.

-Fitz, intentando abrir camino con dificultad por el correo de svn de tres días que había dejado apilado.

Aunque no pueda parecerlo al principio, el comportamiento de J. Random's era un clásico de abuso de
los procedimientos del proyecto. El no estaba haciendo nada obvio más que intentando obstruccionar en
los votos, y estaba aprovechándose de la ventaja de la política de la lista de correo de depender en la
propia moderación de sus miembros. Dejamos al juicio de cada individuo en lo que escribe y sobre que
materias. De esta manera, no teníamos recursos de procedimiento para tratar con aquellos que no tenían
buen juicio, o que no lo practicaban. No había ninguna regla que pudieras apuntar e indicar que se estaba
violando, aunque todo el mundo ya sabía que sus frecuentes correos se estaban convirtiendo en un pro-
blema serio.

La estrategia de Fitz era retrospectivamente maestra. El recopilo una cantidad de evidencia irrefutable, y
entonces la distribuyo discretamente, enviándola primero a unas pocas personas cuyo soporte sería clave
en una acción drástica. Ellos estuvieron de acuerdo en que era necesaria algún tipo de acción, y al final
llamamos a J. Random por teléfono, le describimos el problema directamente, y le preguntamos para que
simplemente parase de escribir correos a la lista. El nunca comprendio realmente las razones de ello; si
hubiera sido capaza de comprenderlo, probablemente hubiera ejercido un juicio apropiado en primer lu-
gar. Pero el acordó en parar de escribir correos, y la lista de correo se convirtio en útil de nuevo. Una de
las razones por las que esta estrategia funcionó fue quizás, la amenaza implícita con la que hubieramos
empezado a restringir sus posts vía el software de moderación que normalmente se utiliza para prevenir
el spam (consulta “Prevenir el Spam” en Capítulo 3, Infraestructura Técnica). Pero la razón por la que
fuimos capaces de aquella opción en reserva fue que Fitz había recopilado el apoyo necesario de la gente
clave en primer lugar.

Communications

96

Manejando el crecimiento
El precio del éxito es muy pesado en el mundo del Open Source. Conforme tu software se hace más po-
pular, el número de gente que empieza a buscar información sobre él, se incrementa dramaticamente,
mientras el número de gente capaza de proporcionar información se incrementa mucho más despacio.
Además, incluso si el ratio fuera uniformemente balanceado, todavía existiría un problema de escalabili-
dad en la forma en que la mayoría de los proyectos Open source manejan las comunicaciones. Considera
por ejemplo las listas de correo. La mayoría de los proyectos tienen una lista de correo para cuestiones
generales de los usuarios; a veces los nombres de estas listas son "usuarios", "discusiones", o "ayuda" o
algo similar. Cualquiera que sea su nombre, el propósito de esas listas es el mismo: proporcionar un lu-
gar donde la gente pueda resolver sus cuestiones, mientras otros observan y (presumiblemente) absorben
conocimiento de la observación de ese intercambio de conocimiento.

Estas listas de correo funcionan muy bien hasta unos pocos miles de usuarios y/o un par de cientos de
posts al día. Pero más o menos, a partir de ahí el sistema empieza a romperse, porque cada suscriptor vee
cada post; si el número de post a la lista empieza a exceder lo que cualquier lector individual puede pro-
cesar en un día, la lista se convierte en una carga para sus miembros. Imagina por ejemplo, si Microsoft
tuviera tal lista de correo para Windows XP. Windows XP tiene cientos de millones de usuarios; aún in-
cluso si el uno por ciento de ellos tuviera cuestiones en un periodo de veinticuatro horas, entonces esta
lista hipotética cientos de miles de posts al día! Por supuesto, tal lista de correo no podría existir, porque
nadie permanecería subscrito. Este problema no esta limitado a las listas de correo; la misma lógica se
aplica a los canales del IRC, los foros de discusión online y por ende, a cualquier sistema en el cual un
grupo escuche preguntas de individuos. Las implicaciones son siniestras: el modelo usual del Open
Source del soporte masivamente paralelizado simplemente no escala los niveles necesarios para la domi-
nación mundial.

No habrá una explosión cuando los foros alcancen su punto de ruptura. Se trata simplemente de un efec-
to silencioso de feedback negativo: la gente se borrará de las listas, o saldrán de los canales del IRC, o a
cualquier ritmo cesaran de preocuparse en preguntar cuestiones, porque verán que no se les escuchará
entre tanta gente. Así cuanta más gente haga de estas su principal elección racional, la actividad de los
foros empezará a permanecer a un nivel inmanejable precisamente porque la gente racional o (al menos
experimentada), empezará a buscar información por otros medios, mientras la gente sin experiencia per-
manecerá y continuará preguntando en foros y listas de correo. En otras palabras, uno de los efectos de
continuar con el uso de modelos de comunicación que no son escalables mientras que el proyecto crece
es que la calidad media tanto de preguntas y respuestas tiene a disminuir, lo cual hace que los nuevos
usuarios parezcan más tontos de lo que son, cuando de hecho probablemente no lo sean. Se trata simple-
mente de que el ratio beneficio/costo de el uso de esos foros masificados, disminuye, por lo que de ma-
nera natural, aquellos con experiencia, empezarán a buscar respuestas en otros sitios. Ajustar los meca-
nismos de comunicación para poder con el crecimiento del proyecto, implicará dos estrategias relaciona-
das:

1. Reconociendo cuando partes especiales de un foro no sufren un crecimiento desmesurado, incluso si
el foro se trata como un todo, y separando aquellas partes creando otras nuevas, en foros más especia-
lizados (ejem., no dejes que los buenos se arrastren por los malos).

2. Asegurando que existen muchas fuentes de información automáticas disponibles, y que se mantienen
organizadas, actualizadas y fáciles de localizar.

La estrategia (1) normalmente no es muy dura. La mayoría de los proyectos empiezan con un foro prin-
cipal: y una lista de correo para discusiones generales, en las cuales las ideas de características, cuestio-
nes de diseño y problemas de codificación puedan ser discutidos. Todo el mundo involucrado en el pro-
yecto está en la lista. Despues de un tiempo, se comprueba que la lista ha evolucionado en varias sublis-
tas basadas en diferentes temáticas. Por ejemplo, algunos hilos son claramente sobre desarrollo y diseño;
otros son dudad de usuarios del tipo ¿"Cómo hago tal cosa"?; quizá exista una tercera temática centrada
en el registro de procesar los informes de bugs y peticiones de mejora; y así. Un individuo dado, por su-
puesto puede participar en varios tipos diferentes de hilos, pero lo más importante de todo es que no hay

Communications

97

mucho solapamiento entre los diferentes tipos mismos. Pueden ser divididos en listas separadas sin cau-
sar ningún perjuicio en el proyecto, porque los hilos se mantienen repartidos por temáticas.

Actualmente, realizar esta división es un proceso de dos pasos. Creas la nueva lista (o el canal IRC, o lo
que vaya a ser), y entonces gastas el tiempo necesario de manera educada pero insistiendo y recordando
a la gente a usar los nuevos foros apropiadamente. Este paso puede llevar semanas pero finalmente la
gente captará la idea. Simplemente tienes que hacer ver a alguien que envía un post al destino equivoca-
do, cual es el nuevo camino y hacerlo de manera visible, animando a que otras personas ayuden tambien
en los nuevos usuos. Es tambien muy útil tener una página web proporcionando una guía hacía todas las
listas disponibles; tus respuestas simplemente pueden referenciar esta página y, como gratificación, el
destinatario puede aprender sobre las pautas a seguir antes de escribir un correo.

La estrategia (2) es un proceso en curso, dura durante todo el tiempo de vida del proyecto e involucra a
muchos participantes. Por supuesto es en parte cuestión de tener una documentación actualizada (mira
“Documentación” en Capítulo 2, Primeros Pasos) y asegurándote que la gente vaya ahí. Pero es tambien
mucho más que eso; las secciones que siguen discuten esta estrategia en detalle.

Sobresaliente uso de los archivos
Tipicamente, todas las comunicaciones de un proyecto Open Source (excepto algunas veces conversa-
ciones en el IRC), son archivadas. Los archivos son públicos y se pueden buscar, y tienen una estabili-
dad referencial: que significa, una vez que una pieza de información se ha grabado en una dirección par-
ticular, permanece en esa dirección para siempre.

Usa estos archivos tanto como puedas, y tan visiblemente como sea posible. Incluso cuando sepas la res-
puesta a alguna pregunta, si piensas que existe una referencia en los archivos que contiene la respuestas,
gasta el tiempo necesario para buscarla y presentarla. Cada vez que hagas esto de una manera pública-
mente visible, algunas personas aprenderan la primera vez que significan esos archivos, y que buscando
en ellos pueden encontrar respuestas. Tambien, refiriéndose a los archivos en vez de reescribir la res-
puesta, refuerzas la norma social contra la duplicación de información. ¿Por qué obtenemos la misma
respuesta en dos sitios diferentes? Cuando el número de sitios que se puede encontrar es mantenido a un
mínimo, la gente que lo ha encontrado antes están más predispuestos a recordar qué y donde buscarlo
para las próximas veces. Las referencias bien situadas tambien contribuyen a la calidad de los resultados
de búsqueda en general, porque ellos refuerzan los recursos del objetivo en los rankings de los motores
de búsqueda en Internet.

Sin embargo, hay veces en las que duplicar la información tiene sentido. Por ejemplo, supon que hay
una respuesta en los archivos, que no es de tí, diciendo:

Parece que los índices Scanley indexes han sido corrompidos. Para devolverlos a
su estado original, ejecuta estos pasos:

1. Apaga el servidor Scanley.
2. Ejecuta el programa 'descorromper' que viene con Scanley.
3. Inicia el servidor.

Entonces, meses después, ves otro mail indicando que algunos indices han sido corrompidos. Buscas los
archivos y presentas la vieja respuesta anterior, pero te das cuenta que faltan algunos pasos (quizás por
error, o quizá porque el software ha cambiado desde que se escribió ese post). La clásica manera para
manejar esto, es escribir un nuevo mail, con un conjunto de instrucciones más completo, y explicitamen-
te dar como obsoleto el anterior post mencionándolo así:

Parece que tus índices Scanley han sido corrompidos. Vimos este problem allá por Julio,
y J. Random publicó una solución en http://blahblahblah/blah. Abajo hay una descripción
más completa de como recuperar tus índices, basado en las instrucciones de J. Random
pero extendiéndolo un poco más:

Communications

98

1. Para el servidor Scanley.
2. Cambiate al usuario con el que se ejecuta el servidor Scanley.
3. Como este usuario, ejecuta el programa 'recuperar' en los índices.
4. Ejecuta Scanley a mano para ver si los índices funcionan ahora.
5. Reinicia el servidor.

(En un mundo ideal, sería posible poner una nota en el viejo post, indicando que existe información más
actualizada y apuntando al nuevo post que la contiene. Sin embargo, no conozco ningún software de ar-
chivación que ofrezca una característica "obsoleto por", quizá porque sería muy difícil de implementar
de una manera en que no viole la integridad de los archivos. Esta es otra razón de porqué es buena idea
crear páginas web con respuestas a cuestiones comunes.

Los archivos probablemente son buscados más a menudo para respuestas a cuestiones técnicas, pero su
importancia para el proyecto va más allá de eso. Si una pauta formal del proyecto son sus leyes estable-
cidas, los archivos son su ley común: una grabación de todas las decisiones hechas y como se llegó hasta
ellas. En cualquier discusión recurrente, actualmente es casi obligatorio empezar con una búsqueda en
los archivos. Esto permite empezar la discusión con un sumario del estado actual de las cosas, anticipan-
dose a objeciones, preparando refutaciones y posiblemente descubriendo ángulos que no habías imagi-
nado. También los otros participantes esperan de ti que hayas hecho una búsqueda en los archivos. In-
cluso si las discusiones previas no llevaron a ninguna parte, tú deberías incluir sugerencias cuando vuel-
vas al téma, para que la gente pueda ver por si mismos a) que no llegaron a ningun consenso, y b) que tú
hiciste tu trabajo, y por tanto que probablemente se este diciendo algo ahora que no se dijo anteriormen-
te.

Treat all resources like archives

Todos los consejos anteriores son extensibles más allá de los archivos de las listas de mail. Tener piezas
particulares de información de manera estable, y en direcciones que se puedan encontrar conveniente-
mente debería ser un principio de organización para toda la información de un proyecto. Vamos a ver la
FAQ como un caso de estudio.

¿Cómo usa la gente una FAQ?

1. Buscan palabras y frases específicas.

2. Quieren poder navegarla, disfrutando de la información sin buscar necesariamente respuestas a cues-
tiones específicas.

3. Esperan que motores de búsqueda como google conozcan el contenido de la FAQ, de manera que las
búsquedas puedan ser entradas en la FAQ.

4. Quieren ser capaces de dirigirse directamente a otra gente en temas específicos en la FAQ.

5. Quieren ser capaces de añadir nuevo material a la FAQ, pero hay que ver que esto ocurre menos a
menudo que la búsqueda de respuestas —Las FAQs son de lejos mucho más leidas que escritas.

El punto 1 implica que la FAQ debería estar disponible en algún tipo de formato textual. Los puntos 2 y
3 implican que la FAQ debería estar disponible en forma de página HTML, con el punto 2 indicando
adicionalmnente que el HTML debería ser diseñado con legibilidad (ejem., necesitaras algún tipo de
control sobre su apariencia), y debería tener una tabla de contenidos. El punto 4 significa que cada entra-
da individual en la FAQ debería ser asignada como un HTML named anchor, un tag que permite a la
gente alcanzar un sitio particular en la página. El punto 5 significa que los ficheros fuente de la FAQ de-
berían estar disponibles de una manera conveniente (ver “Versiones de todo” en Capítulo 3, Infraestruc-
tura Técnica), un formato que sea fácil de editar.

Communications

99

Named Anchors and ID Attributes

There are two ways to get a browser to jump to a specific location within a web page: named an-
chors and id attributes.

A named anchor is just a normal HTML anchor element (<a>...), but with a "name" at-
tribute:

...

More recent versions of HTML support a generic id attribute, which can be attached to any
HTML element, not just to <a>. For example:

<p id="mylabel">...</p>

Both named anchors and id attributes are used in the same way. One appends a hash mark and the
label to a URL, to cause the browser to jump straight to that spot in the page:

http://myproject.example.com/faq.html#mylabel

Virtually all browsers support named anchors; most modern browsers support the id attribute. To
play it safe, I would recommend using either named anchors alone, or named anchors and id attri-
butes together (with the same label for both in a given pair, of course). Named anchors cannot be
self-closing—even if there's no text inside the element, you must still write it in two-sided form:

...though normally there would be some text, such as the title of a section.

Whether you use a named anchor, or an id attribute, or both, remember that the label will not be
visible to someone who browses to that location without using the label. But such a person might
want to discover the label for a particular location, so they can mail the URL for a FAQ answer to
a friend, for example. To help them do this, add a title attribute to the same element(s) where you
added the "name" and/or "id" attribute, for example:

...

When the mouse pointer is held over the text inside the title-attributed element, most browsers
will pop up a tiny box showing the title. I usually include the hash-sign, to remind the user that
this is what she would put at the end of the URL to jump straight to this location next time.

Formatting the FAQ like this is just one example of how to make a resource presentable. The same pro-
perties—direct searchability, availability to major Internet search engines, browsability, referential stabi-
lity, and (where applicable) editability—apply to other web pages, the source code tree, the bug tracker,
etc. It just happens that most mailing list archiving software long ago recognized the importance of these
properties, which is why mailing lists tend to have this functionality natively, while other formats may
require some extra effort on the maintainer's part (Capítulo 8, Coordinando a los Voluntarios discusses
how to spread that maintenance burden across many volunteers).

Codifying Tradition
As a project acquires history and complexity, the amount of data each incoming participant must absorb

Communications

100

increases. Those who have been with the project a long time were able to learn, and invent, the project's
conventions as they went along. They will often not be consciously aware of what a huge body of tradi-
tion has accumulated, and may be surprised at how many missteps recent newcomers seem to make. Of
course, the issue is not that the newcomers are of any lower quality than before; it's that they face a big-
ger acculturation burden than newcomers did in the past.

The traditions a project accumulates are as much about how to communicate and preserve information
as they are about coding standards and other technical minutae. We've already looked at both sorts of
standards, in “Documentación para Desarrolladores” in Capítulo 2, Primeros Pasos and “Tomando Nota
de Todo” in Capítulo 4, Infraestructura Social y Política respectively, and examples are given there.
What this section is about is how to keep such guidelines up-to-date as the project evolves, especially
guidelines about how communications are managed, because those are the ones that change the most as
the project grows in size and complexity.

First, watch for patterns in how people get confused. If you see the same situations coming up over and
over, especially with new participants, chances are there is a guideline that needs to be documented but
isn't. Second, don't get tired of saying the same things over and over again, and don't sound like you're
tired of saying them. You and other project veterans will have to repeat yourselves often; this is an ine-
vitable side effect of the arrival of newcomers.

Every web page, every mailing list message, and every IRC channel should be considered advertising
space—not for commercial advertisements, but for ads about your project's own resources. What you
put in that space depends on the demographics of those likely to read it. An IRC channel for user ques-
tions, for example, is likely to get people who have never interacted with the project before—often so-
meone who has just installed the software, and has a question he'd like answered immediately (after all,
if it could wait, he'd have sent it to a mailing list instead, which would probably use less of his total ti-
me, although it would take longer for an answer to come back). People usually don't make a permanent
investment in the IRC channel; they'll show up, ask their question, and leave.

Therefore, the channel topic should be aimed at people looking for technical answers about the software
right now, rather than at, say, people who might get involved with the project in a long term way and for
whom community interaction guidelines might be more appropriate. Here's how a really busy channel
handles it (compare this with the earlier example in “IRC / Sistemas de Chat en Tiempo Real” in Capítu-
lo 3, Infraestructura Técnica):

You are now talking on #linuxhelp

Topic for #linuxhelp is Please READ
http://www.catb.org/~esr/faqs/smart-questions.html &&
http://www.tldp.org/docs.html#howto BEFORE asking questions | Channel
rules are at http://www.nerdfest.org/lh_rules.html | Please consult
http://kerneltrap.org/node/view/799 before asking about upgrading to a
2.6.x kernel | memory read possible: http://tinyurl.com/4s6mc ->
update to 2.6.8.1 or 2.4.27 | hash algo disaster: http://tinyurl.com/6w8rf
| reiser4 out

With mailing lists, the "ad space" is a tiny footer appended to every message. Most projects put subs-
cription/unsubscription instructions there, and perhaps a pointer to the project's home page or FAQ page
as well. You might think that anyone subscribed to the list would know where to find those things, and
they probably do—but many more people than just subscribers see those mailing list messages. An ar-
chived post may be linked to from many places; indeed, some posts become so widely known that they
eventually have more readers off the list than on it.

Formatting can make a big difference. For example, in the Subversion project, we were having limited
success using the bug-filtering technique described in “Pre-filtrado del gestor de fallos” in Capítulo 3,
Infraestructura Técnica. Many bogus bug reports were still being filed by inexperienced people, and
each time it happened, the filer had to be educated in exactly the same way as the 500 people before

Communications

101

him. One day, after one of our developers had finally gotten to the end of his rope and flamed some poor
user who didn't read the issue tracker guidelines carefully enough, another developer decided this pattern
had gone on long enough. He suggested that we reformat the issue tracker front page so that the most
important part, the injunction to discuss the bug on the mailing lists or IRC channels before filing, would
stand out in huge, bold red letters, on a bright yellow background, centered prominently above everyt-
hing else on the page. We did so (you can see the results at
http://subversion.tigris.org/project_issues.html), and the result was a noticeable drop in the rate of bogus
issue filings. We still get them, of course—we always will—but the rate has slowed considerably, even
as the number of users increases. The outcome is not only that the bug database contains less junk, but
that those who respond to issue filings stay in a better mood, and are more likely to remain friendly
when responding to one of the now-rare bogus filings. This improves both the project's image and the
mental health of its volunteers.

The lesson for us was that merely writing up the guidelines was not enough. We also had to put them
where they'd be seen by those who need them most, and format them in such a way that their status as
introductory material would be immediately clear to people unfamiliar with the project.

Static web pages are not the only venue for advertising the project's customs. A certain amount of inte-
ractive policing (in the friendly-reminder sense, not the handcuffs-and-jail sense) is also required. All
peer review, even the commit reviews described in “Practicad revisiones visibles del código” in Capítu-
lo 2, Primeros Pasos, should include review of people's conformance or non-conformance with project
norms, especially with regard to communications conventions.

Another example from the Subversion project: we settled on a convention of "r12908" to mean "revision
12908 in the version control repository." The lower-case "r" prefix is easy to type, and because it's half
the height of the digits, it makes an easily-recognizable block of text when combined with the digits. Of
course, settling on the convention doesn't mean that everyone will begin using it consistently right away.
Thus, when a commit mail comes in with a log message like this:

--
r12908 | qsimon | 2005-02-02 14:15:06 -0600 (Wed, 02 Feb 2005) | 4 lines

Patch from J. Random Contributor <jrcontrib@gmail.com>

* trunk/contrib/client-side/psvn/psvn.el:
Fixed some typos from revision 12828.

--

...part of reviewing that commit is to say "By the way, please use 'r12828', not 'revision 12828' when re-
ferring to past changes." This isn't just pedantry; it's important as much for automatic parsability as for
human readership.

By following the general principle that there should be canonical referral methods for common entities,
and that these referral methods should be used consistently everywhere, the project in effect exports cer-
tain standards. Those standards enable people to write tools that present the project's communications in
more useable ways—for example, a revision formatted as "r12828" could be transformed into a live link
into the repository browsing system. This would be harder to do if the revision were written as "revision
12828", both because that form could be divided across a line break, and because it's less distinct (the
word "revision" will often appear alone, and groups of numbers will often appear alone, whereas the
combination "r12828" can only mean a revision number). Similar concerns apply to issue numbers, FAQ
items (hint: use a URL with a named anchor, as described in Named Anchors and ID Attributes), etc.

Even for entities where there is not an obvious short, canonical form, people should still be encouraged
to provide key pieces of information consistently. For example, when referring to a mailing list message,
don't just give the sender and subject; also give the archive URL and the Message-ID header. The last
allows people who have their own copy of the mailing list (people sometimes keep offline copies, for
example to use on a laptop while traveling) to unambiguously identify the right message even if they
don't have access to the archives. The sender and subject wouldn't be enough, because the same person

Communications

102

http://subversion.tigris.org/project_issues.html

might make several posts in the same thread, even on the same day.

The more a project grows, the more important this sort of consistency becomes. Consistency means that
everywhere people look, they see the same patterns being followed, so they know to follow those pat-
terns themselves. This, in turn, reduces the number of questions they need to ask. The burden of having
a million readers is no greater than that of having one; scalability problems start to arise only when a
certain percentage of those readers ask questions. As a project grows, therefore, it must reduce that per-
centage by increasing the density and accessibility of information, so that any given person is more li-
kely to find what he needs without having to ask.

No Conversations in the Bug Tracker
In any project that's making active use of its bug tracker, there is always a danger of the tracker turning
into a discussion forum itself, even though the mailing lists would really be better. Usually it starts off
innocently enough: someone annotates an issue with, say, a proposed solution, or a partial patch. So-
meone else sees this, realizes there are problems with the solution, and attaches another annotation poin-
ting out the problems. The first person responds, again by appending to the issue...and so it goes.

The problem with this is, first, that the bug tracker is a pretty cumbersome place to have a discussion,
and second, that other people may not be paying attention—after all, they expect development discus-
sion to happen on the development mailing list, so that's where they look for it. They may not be subs-
cribed to the issue changes list at all, and even if they are, they may not follow it very closely.

But exactly where in the process did something go wrong? Was it when the original person attached her
solution to the issue—should she have posted it to the list instead? Or was it when the second person
responded in the issue, instead of on the list?

There isn't one right answer, but there is a general principle: if you're just adding data to an issue, then
do it in the tracker, but if you're starting a conversation, then do it on the mailing list. You may not al-
ways be able to tell which is the case, but just use your best judgement. For example, when attaching a
patch that contains a potentially controversial solution, you might be able to anticipate that people are
going to have questions about it. So even though you would normally attach the patch to the issue
(assuming you don't want to or can't commit the change directly), in this case you might choose to post
it to a mailing list instead. At any rate, there eventually will come a point in the exchange where one
party or the other can tell that it is about to go from mere appending of data to an actual conversa-
tion—in the example that started this section, that would be the second respondent, who on realizing that
there were problems with the patch, could predict that a real conversation is about to ensue, and therefo-
re that it should be held in the appropriate medium.

To use a mathematical analogy, if the information looks like it will be quickly convergent, then put it di-
rectly in the bug tracker; if it looks like it will be divergent, then a mailing list or IRC channel would be
a better place.

This doesn't mean there should never be any exchanges in the bug tracker. Asking for more details of the
reproduction recipe from the original reporter tends to be a highly convergent process, for instance. The
person's response is unlikely to raise new issues; it's simply going to flesh out information already filed.
There's no need to distract the mailing list with that process; by all means, take care of it with a series of
comments in the tracker. Likewise, if you're fairly sure that the bug has been misreported (i.e., is not a
bug), then you can simply say so right in the issue. Even pointing out a minor problem with a proposed
solution is fine, assuming the problem is not a showstopper for the entire solution.

On the other hand, if you're raising philosophical issues about the bug's scope or the software's proper
behavior, you can be pretty sure other developers will want to be involved. The discussion is likely to di-
verge for a while before it converges, so do it on the mailing list.

Always link to the mailing list thread from the issue, when you choose to post to the mailing list. It's still
important for someone following the issue to be able to reach the discussion, even if the issue itself isn't
the forum of discussion. The person who starts the thread may find this laborious, but open source is

Communications

103

fundamentally a writer-responsible culture: it's much more important to make things easy for the tens or
hundreds of people who may read the bug than for the three or five people writing about it.

It's fine to take important conclusions or summaries from the list discussion and paste them into the is-
sue, if that will make things convenient for readers. A common idiom is to start a list discussion, put a
link to the thread in the issue, and then when the discussion finishes, paste the final summary into the is-
sue (along with a link to the message containing that summary), so someone browsing the issue can ea-
sily see what conclusion was reached without having to click to somewhere else. Note that the usual
"two masters" data duplication problem does not exist here, because both archives and issue comments
are usually static, unchangeable data anyway.

Publicity
In free software, there is a fairly smooth continuum between purely internal discussions and public rela-
tions statements. This is partly because the target audience is always ill-defined: given that most or all
posts are publicly accessible, the project doesn't have full control over the impression the world gets. So-
meone—say, a slashdot.org editor—may draw millions of readers' attention to a post that no one ever
expected to be seen outside the project. This is a fact of life that all open source projects live with, but in
practice, the risk is usually small. In general, the announcements that the project most wants publicized
are the ones that will be most publicized, assuming you use the right mechanisms to indicate relative
newsworthiness to the outside world.

For major announcements, there tend to be four or five main channels of distribution, on which announ-
cements should be made as nearly simultaneously as possible:

1. Your project's front page is probably seen by more people than any other part of the project. If you
have a really major announcement, put a blurb there. The blurb should be a very brief synopsis that
links to the press release (see below) for more information.

2. At the same time, you should also have a "News" or "Press Releases" area of the web site, where the
announcement can be written up in detail. Part of the purpose of a press release is to provide a single,
canonical "announcement object" that other sites can link to, so make sure it is structured accor-
dingly: either as one web page per release, as a discrete blog entry, or as some other kind of entity
that can be linked to while still being kept distinct from other press releases in the same area.

3. If your project has an RSS feed, make sure the announcement goes out there too. This may happen
automatically when you create the press release, depending on how things are set up at your site.
(RSS is a mechanism for distributing meta-data-rich news summaries to "subscribers", that is, people
who have indicated an interest in receiving those summaries. See
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html for more information about RSS.)

4. If the announcement is about a new release of the software, then update your project's entry on
http://freshmeat.net/ (see “Anunciar” about creating the entry in the first place). Every time you upda-
te a Freshmeat entry, that entry goes onto the Freshmeat change list for the day. The change list is up-
dated not only on Freshmeat itself, but on various portal sites (including slashdot.org) which are wat-
ched eagerly by hordes of people. Freshmeat also offers the same data via RSS feed, so people who
are not subscribed to your project's own RSS feed might still see the announcement via Freshmeat's.

5. Send a mail to your project's announcement mailing list. This list's name should actually be "announ-
ce", that is, announce@yourprojectdomain.org, because that's a fairly standard convention
now, and the list's charter should make it clear that it is very low-traffic, reserved for major project
announcements. Most of those announcements will be about new releases of the software, but occa-
sionally other events, such as a fundraising drive, the discovery of a security vulnerability (see
“Announcing Security Vulnerabilities”) later in this chapter, or a major shift in project direction may
be posted there as well. Because it is low traffic and used only for important things, the announce
list typically has the highest subscribership of any mailing list in the project (of course, this means

Communications

104

slashdot.org
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://freshmeat.net/
slashdot.org

you shouldn't abuse it—consider carefully before posting). To avoid random people making announ-
cements, or worse, spam getting through, the announce list must always be moderated.

Try to make the announcements in all these places at the same time, as nearly as possible. People might
get confused if they see an announcement on the mailing list but then don't see it reflected on the pro-
ject's home page or in its press releases area. If you get the various changes (emails, web page edits, etc.)
queued up and then send them all in a row, you can keep the window of inconsistency very small.

For a less important event, you can eliminate some or all of the above outlets. The event will still be no-
ticed by the outside world in direct proportion to its importance. For example, while a new release of the
software is a major event, merely setting the date of the next release, while still somewhat newsworthy,
is not nearly as important as the release itself. Setting a date is worth an email to the daily mailing lists
(not the announce list), and an update of the project's timeline or status web page, but no more.

However, you might still see that date appearing in discussions elsewhere on the Internet, wherever the-
re are people interested in the project. People who are lurkers on your mailing lists, just listening and ne-
ver saying anything, are not necessarily silent elsewhere. Word of mouth gives very broad distribution;
you should count on it, and construct even minor announcements in such a way as to encourage accurate
informal transmission. Specifically, posts that you expect to be quoted should have a clearly meant-
to-be-quoted portion, just as though you were writing a formal press release. For example:

Just a progress update: we're planning to release version 2.0 of Scanley in mid-August
2005. You can always check http://www.scanley.org/status.html for updates. The ma-
jor new feature will be regular-expression searches.

Other new features include: ... There will also be various bugfixes, including: ...

The first paragraph is short, gives the two most important pieces of information (the release date and the
major new feature), and a URL to visit for further news. If that paragraph is the only thing that crosses
someone's screen, you're still doing pretty well. The rest of the mail could be lost without affecting the
gist of the content. Of course, sometimes people will link to the entire mail anyway, but just as often,
they'll quote only a small part. Given that the latter is a possibility, you might as well make it easy for
them, and in the bargain get some influence over what gets quoted.

Announcing Security Vulnerabilities
Handling a security vulnerability is different from handling any other kind of bug report. In free softwa-
re, doing things openly and transparently is normally almost a religious credo. Every step of the standard
bug-handling process is visible to all who care to watch: the arrival of the initial report, the ensuing dis-
cussion, and the eventual fix.

Security bugs are different. They can compromise users' data, and possibly users' entire computers. To
discuss such a problem openly would be to advertise its existence to the entire world—including to all
the parties who might make malicious use of the bug. Even merely committing a fix effectively announ-
ces the bug's existence (there are potential attackers who watch the commit logs of public projects, sys-
tematically looking for changes that indicate security problems in the pre-change code). Most open sour-
ce projects have settled on approximately the same set of steps to handle this conflict between openness
and secrecy, based on the these basic guidelines:

1. Don't talk about the bug publicly until a fix is available; then supply the fix at exactly the same mo-
ment you announce the bug.

2. Come up with that fix as fast as you can—especially if someone outside the project reported the bug,
because then you know there's at least one person outside the project who is able to exploit the vulne-
rability.

Communications

105

In practice, those principles lead to a fairly standardized series of steps, which are described in the sec-
tions below.

Receive the report

Obviously, a project needs the ability to receive security bug reports from anyone. But the regular bug
reporting address won't do, because it can be watched by anyone too. Therefore, have a separate mailing
list for receiving security bug reports. That mailing list must not have publicly readable archives, and its
subscribership must be strictly controlled—only long-time, trusted developers can be on the list. If you
need a formal definition of "trusted", you can use "anyone who has had commit access for two years or
more" or something like that, to avoid favoritism. This is the group that will handle security bugs.

Ideally, the security list should not be spam-protected or moderated, since you don't want an important
report to get filtered out or delayed just because no moderators happened to be online that weekend. If
you do use automated spam-protection software, try to configure it with high-tolerance settings; it's bet-
ter to let a few spams through than to miss a report. For the list to be effective, you must advertise its ad-
dress, of course; but given that it will be unmoderated and, at most, lightly spam-protected, try to never
to post its address without some sort of address hiding transformation, as described in “Ocultar las direc-
ciones en los archivos” in Capítulo 3, Infraestructura Técnica. Fortunately, address-hiding need not ma-
ke the address illegible; see http://subversion.tigris.org/security.html, and view that page's HTML sour-
ce, for an example.

Develop the fix quietly

So what does the security list do when it receives a report? The first task is to evaluate the problem's se-
verity and urgency:

1. How serious is the vulnerability? Does it allow a malicious attacker to take over the computer of so-
meone who uses your software? Or does it, say, merely leak information about the sizes of some of
their files?

2. How easy is it to exploit the vulnerability? Can an attack be scripted, or does it require circumstantial
knowledge, educated guessing, and luck?

3. Who reported the problem to you? The answer to this question doesn't change the nature of the vulne-
rability, of course, but it does give you an idea of how many other people might know about it. If the
report comes from one of the project's own developers, you can breathe a little easier (but only a litt-
le), because you can trust them not to have told anyone else about it. On the other hand, if it came in
an email from anonymous14@globalhackerz.net, then you'd better act as fast as you can.
The person did you a favor by informing you of the problem at all, but you have no idea how many
other people she's told, or how long she'll wait before exploiting the vulnerability on live installa-
tions.

Note that the difference we're talking about here is often just a narrow range between urgent and extre-
mely urgent. Even when the report comes from a known, friendly source, there could be other people on
the Net who discovered the bug long ago and just haven't reported it. The only time things aren't urgent
is when the bug inherently does not compromise security very severely.

The "anonymous14@globalhackerz.net" example is not facetious, by the way. You really may
get bug reports from identity-cloaked people who, by their words and behavior, never quite clarify whet-
her they're on your side or not. It doesn't matter: if they've reported the security hole to you, they'll feel
they've done you a good turn, and you should respond in kind. Thank them for the report, give them a
date on or before which you plan to release a public fix, and keep them in the loop. Sometimes they may
give you a date—that is, an implicit threat to publicize the bug on a certain date, whether you're ready or
not. This may feel like a bullying power play, but it's more likely a preëmptive action resulting from past
disappointment with unresponsive software producers who didn't take security reports seriously enough.

Communications

106

http://subversion.tigris.org/security.html

Either way, you can't afford to tick this person off. After all, if the bug is severe, he has knowledge that
could cause your users big problems. Treat such reporters well, and hope that they treat you well.

Another frequent reporter of security bugs is the security professional, someone who audits code for a li-
ving and keeps up on the latest news of software vulnerabilities. These people usually have experience
on both sides of the fence—they've both received and sent reports, probably more than most developers
in your project have. They too will usually give a deadline for fixing a vulnerability before going public.
The deadline may be somewhat negotiable, but that's up to the reporter; deadlines have become recogni-
zed among security professionals as pretty much the only reliable way to get organizations to address se-
curity problems promptly. So don't treat the deadline as rude; it's a time-honored tradition, and there are
good reasons for it.

Once you know the severity and urgency, you can start working on a fix. There is sometimes a tradeoff
between doing a fix elegantly and doing it speedily; this is why you must agree on the urgency before
you start. Keep discussion of the fix restricted to the security list members, of course, plus the original
reporter (if she wants to be involved) and any developers who need to be brought in for technical rea-
sons.

Do not commit the fix to the repository. Keep it in patch form until the go-public date. If you were to
commit it, even with an innocent-looking log message, someone might notice and understand the chan-
ge. You never know who is watching your repository and why they might be interested. Turning off
commit emails wouldn't help; first of all, the gap in the commit mail sequence would itself look suspi-
cious, and anyway, the data would still be in the repository. Just do all development in a patch and keep
the patch in some private place, perhaps a separate, private repository known only to the people already
aware of the bug. (If you use a decentralized version control system like Arch or SVK, you can do the
work under full version control, and just keep that repository inaccessible to outsiders.)

CAN/CVE numbers

You may have seen a CAN number or a CVE number associated with security problems. These numbers
usually look like "CAN-2004-0397" or "CVE-2002-0092", for example.

Both kinds of numbers represent the same type of entity: an entry in the list of "Common Vulnerabilities
and Exposures" list maintained at http://cve.mitre.org/. The purpose of the list is to provide standardized
names for all known security problems, so that everyone has a unique, canonical name to use when dis-
cussing one, and a central place to go to find out more information. The only difference between a
"CAN" number and a "CVE" number is that the former represents a candidate entry, not yet approved
for inclusion in the official list by the CVE Editorial Board, and the latter represents an approved entry.
However, both types of entries are visible to the public, and an entry's number does not change when it
is approved—the "CAN" prefix is simply replaced with "CVE".

A CAN/CVE entry does not itself contain a full description of the bug and how to protect against it. Ins-
tead, it contains a brief summary, and a list of references to external resources (such as mailing list ar-
chives) where people can go to get more detailed information. The real purpose of http://cve.mitre.org/
is to provide a well-organized space in which every vulnerability can have a name and a clear route to
more data. See http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092 for an example of an entry.
Note that the references can be very terse, with sources appearing as cryptic abbreviations. A key to tho-
se abbreviations is at http://cve.mitre.org/cve/refs/refkey.html.

If your vulnerability meets the CVE criteria, you may wish to acquire it a CAN number. The process for
doing so is deliberately gated: basically, you have to know someone, or know someone who knows so-
meone. This is not as crazy as it might sound. In order for the CVE Editorial Board to avoid being
overwhelmed with spurious or poorly written submissions, they take submissions only from sources they
already know and trust. In order to get your vulnerability listed, therefore, you need to find a path of ac-
quaintance from your project to the CVE Editorial Board. Ask around among your developers; one of
them will probably know someone else who has either done the CAN process before, or knows someone
who has, etc. The advantage of doing it this way is also that somewhere along the chain, someone may
know enough to tell you that a) it wouldn't count as a vulnerability or exposure according to MITRE's
criteria, so there is no point submitting it, or b) the vulnerability already has a CAN or CVE number.

Communications

107

http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092
http://cve.mitre.org/cve/refs/refkey.html

The latter can happen if the bug has already been published on another security advisory list, for exam-
ple at http://www.cert.org/ or on the BugTraq mailing list at http://www.securityfocus.com/. (If that hap-
pened without your project hearing about it, then you should worry what else might be going on that you
don't know about.)

If you get a CAN/CVE number at all, you usually want to get it in the early stages of your bug investiga-
tion, so that all further communications can refer to that number. CAN entries are embargoed until the
go-public date; the entry will exist as an empty placeholder (so you don't lose the name), but it won't re-
veal any information about the vulnerability until the date on which you will be announcing the bug and
the fix.

More information about the CAN/CVE process may be found at
http://cve.mitre.org/about/candidates.html, and a particularly clear exposition of one open source pro-
ject's use of CAN/CVE numbers is at http://www.debian.org/security/cve-compatibility.

Pre-notification

Once your security response team (that is, those developers who are on the security mailing list, or who
have been brought in to deal with a particular report) has a fix ready, you need to decide how to distribu-
te it.

If you simply commit the fix to your repository, or otherwise announce it to the world, you effectively
force everyone using your software to upgrade immediately or risk being hacked. It is sometimes appro-
priate, therefore, to do pre-notification for certain important users. This is particularly true with client/
server software, where there may be well-known servers that are tempting targets for attackers. Those
servers' administrators would appreciate having an extra day or two to do the upgrade, so that they are
already protected by the time the exploit becomes public knowledge.

Pre-notification simply means sending mails to those administrators before the go-public date, telling
them of the vulnerability and how to fix it. You should send pre-notification only to people you trust to
be discreet with the information. That is, the qualification for receiving pre-notification is twofold: the
recipient must run a large, important server where a compromise would be a serious matter, and the reci-
pient must be known to be someone who won't blab about the security problem before the go-public da-
te.

Send each pre-notification mail individually (one at a time) to each recipient. Do not send to the entire
list of recipients at once, because then they would see each others' names—meaning that you would es-
sentially be alerting each recipient to the fact that each other recipient may have a security hole in her
server. Sending it to them all via blind CC (BCC) isn't a good solution either, because some admins pro-
tect their inboxes with spam filters that either block or reduce the priority of BCC'd mail, since so much
spam is sent via BCC these days.

Here's a sample pre-notification mail:

From: Your Name Here
To: admin@large-famous-server.com
Reply-to: Your Name Here (not the security list's address)
Subject: Confidential Scanley vulnerability notification.

This email is a confidential pre-notification of a security alert
in the Scanley server.

Please *do not forward* any part of this mail to anyone. The public
announcement is not until May 19th, and we'd like to keep the
information embargoed until then.

You are receiving this mail because (we think) you run a Scanley
server, and would want to have it patched before this security hole is

Communications

108

http://www.cert.org/
http://www.securityfocus.com/
http://cve.mitre.org/about/candidates.html
http://www.debian.org/security/cve-compatibility

made public on May 19th.

References:
===========

CAN-2004-1771: Scanley stack overflow in queries

Vulnerability:
==============

The server can be made to run arbitrary commands if the server's
locale is misconfigured and the client sends a malformed query.

Severity:
=========

Very severe, can involve arbitrary code execution on the server.

Workarounds:
============

Setting the 'natural-language-processing' option to 'off' in
scanley.conf closes this vulnerability.

Patch:
======

The patch below applies to Scanley 3.0, 3.1, and 3.2.

A new public release (Scanley 3.2.1) will be made on or just before
May 19th, so that it is available at the same time as this
vulnerability is made public. You can patch now, or just wait for
the public release. The only difference between 3.2 and 3.2.1 will
be this patch.

[...patch goes here...]

If you have a CAN number, include it in the pre-notification (as shown above), even though the infor-
mation is still embargoed and therefore the MITRE page will show nothing. Including the CAN number
allows the recipient to know with certainty that the bug they were pre-notified about is the same one
they later hear about through public channels, so they don't have to worry whether further action is ne-
cessary or not, which is precisely the point of CAN/CVE numbers.

Distribute the fix publicly

The last step in handling a security bug is to distribute the fix publicly. In a single, comprehensive an-
nouncement, you should describe the problem, give the CAN/CVE number if any, describe how to work
around it, and how to permanently fix it. Usually "fix" means upgrading to a new version of the softwa-
re, though sometimes it can mean applying a patch, particularly if the software is normally run in source
form anyway. If you do make a new release, it should differ from some existing release by exactly the
security patch. That way, conservative admins can upgrade without worrying about what else they might
be affecting; they also don't have to worry about future upgrades, because the security fix will be in all
future releases as a matter of course. (Details of release procedures are discussed in “Security Releases”
in Capítulo 7, Packaging, Releasing, and Daily Development.)

Whether or not the public fix involves a new release, do the announcement with roughly the same prio-
rity as you would a new release: send a mail to the project's announce list, make a new press release,
update the Freshmeat entry, etc. While you should never try to play down the existence of a security bug
out of concern for the project's reputation, you may certainly set the tone and prominence of a security
announcement to match the actual severity of the problem. If the security hole is just a minor informa-

Communications

109

tion exposure, not an exploit that allows the user's entire computer to be taken over, then it may not wa-
rrant a lot of fuss. You may even decide not to distract the announce list with it. After all, if the pro-
ject cries wolf every time, users might end up thinking the software is less secure than it actually is, and
also might not believe you when you have a really big problem to announce. See
http://cve.mitre.org/about/terminology.html for a good introduction to the problem of judging severity.

In general, if you're unsure how to treat a security problem, find someone with experience and talk to
them about it. Assessing and handling vulnerabilities is very much an acquired skill, and it's easy to ma-
ke missteps the first few times.

Communications

110

http://cve.mitre.org/about/terminology.html

Capítulo 7. Packaging, Releasing, and
Daily Development

This chapter is about how free software projects package and release their software, and how overall de-
velopment patterns organize around those goals.

A major difference between open source projects and proprietary ones is the lack of centralized control
over the development team. When a new release is being prepared, this difference is especially stark: a
corporation can ask its entire development team to focus on an upcoming release, putting aside new fea-
ture development and non-critical bug fixing until the release is done. Volunteer groups are not so mo-
nolithic. People work on the project for all sorts of reasons, and those not interested in helping with a gi-
ven release still want to continue regular development work while the release is going on. Because deve-
lopment doesn't stop, open source release processes tend to take longer, but be less disruptive, than com-
mercial release processes. It's a bit like highway repair. There are two ways to fix a road: you can shut it
down completely, so that a repair crew can swarm all over it at full capacity until the problem is solved,
or you can work on a couple of lanes at a time, while leaving the others open to traffic. The first way is
very efficient for the repair crew, but not for anyone else—the road is entirely shut down until the job is
done. The second way involves much more time and trouble for the repair crew (now they have to work
with fewer people and less equipment, in cramped conditions, with flaggers to slow and direct traffic,
etc.), but at least the road remains useable, albeit not at full capacity.

Open source projects tend to work the second way. In fact, for a mature piece of software with several
different release lines being maintained simultaneously, the project is sort of in a permanent state of mi-
nor road repair. There are always a couple of lanes closed; a consistent but low level of background in-
convenience is always being tolerated by the development group as a whole, so that releases get made
on a regular schedule.

The model that makes this possible generalizes to more than just releases. It's the principle of paralleli-
zing tasks that are not mutually interdependent—a principle that is by no means unique to open source
development, of course, but one which open source projects implement in their own particular way.
They cannot afford to annoy either the roadwork crew or the regular traffic too much, but they also can-
not afford to have people dedicated to standing by the orange cones and flagging traffic along. Thus they
gravitate toward processes that have flat, constant levels of administrative overhead, rather than peaks
and valleys. Volunteers are generally willing to work with small but consistent amounts of inconvenien-
ce; the predictability allows them to come and go without worrying about whether their schedule will
clash with what's happening in the project. But if the project were subject to a master schedule in which
some activities excluded other activities, the result would be a lot of developers sitting idle a lot of the ti-
me—which would be not only inefficient but boring, and therefore dangerous, in that a bored developer
is likely to soon be an ex-developer.

Release work is usually the most noticeable non-development task that happens in parallel with develop-
ment, so the methods described in the following sections are geared mostly toward enabling releases.
However, note that they also apply to other parallelizable tasks, such as translations and internationaliza-
tion, broad API changes made gradually across the entire code base, etc.

Release Numbering
Before we talk about how to make a release, let's look at how to name releases, which requires knowing
what releases actually mean to users. A release means that:

• Old bugs have been fixed. This is probably the one thing users can count on being true of every relea-
se.

111

• New bugs have been added. This too can usually be counted on, except sometimes in the case of secu-
rity releases or other one-offs (see “Security Releases” later in this chapter).

• New features may have been added.

• New configuration options may have been added, or the meanings of old options may have changed
subtly. The installation procedures may have changed slightly since the last release too, though one
always hopes not.

• Incompatible changes may have been introduced, such that the data formats used by older versions of
the software are no longer useable without undergoing some sort of (possibly manual) one-way con-
version step.

As you can see, not all of these are good things. This is why experienced users approach new releases
with some trepidation, especially when the software is mature and was already mostly doing what they
wanted (or thought they wanted). Even the arrival of new features is a mixed blessing, in that it may
mean the software will now behave in unexpected ways.

The purpose of release numbering, therefore, is twofold: obviously the numbers should unambiguously
communicate the ordering of releases (i.e., by looking at any two releases' numbers, one can know
which came later), but also they should indicate as compactly as possible the degree and nature of the
changes in the release.

All that in a number? Well, more or less, yes. Release numbering strategies are one of the oldest bikes-
hed discussions around (see “Cuanto más blando sea el tema, más largo será el debate” in Capítulo 6,
Communications), and the world is unlikely to settle on a single, complete standard anytime soon. Ho-
wever, a few good strategies have emerged, along with one universally agreed-on principle: be consis-
tent. Pick a numbering scheme, document it, and stick with it. Your users will thank you.

Release Number Components
This section describes the formal conventions of release numbering in detail, and assumes very little
prior knowledge. It is intended mainly as a reference. If you're already familiar with these conventions,
you can skip this section.

Release numbers are groups of digits separated by dots:

Scanley 2.3
Singer 5.11.4

...and so on. The dots are not decimal points, they are merely separators; "5.3.9" would be followed by
"5.3.10". A few projects have occasionally hinted otherwise, most famously the Linux kernel with its
"0.95", "0.96"... "0.99" sequence leading up to Linux 1.0, but the convention that the dots are not deci-
mals is now firmly established and should be considered a standard. There is no limit to the number of
components (digit portions containing no dots), but most projects do not go beyond three or four. The
reasons why will become clear later.

In addition to the numeric components, projects sometimes tack on a descriptive label such as "Alpha"
or "Beta" (see Alfa y Beta), for example:

Scanley 2.3.0 (Alpha)
Singer 5.11.4 (Beta)

Packaging, Releasing, and Daily Development

112

An Alpha or Beta qualifier means that this release precedes a future release that will have the same num-
ber without the qualifier. Thus, "2.3.0 (Alpha)" leads eventually to "2.3.0". In order to allow several
such candidate releases in a row, the qualifiers themselves can have meta-qualifiers. For example, here
is a series of releases in the order that they would be made available to the public:

Scanley 2.3.0 (Alpha 1)
Scanley 2.3.0 (Alpha 2)
Scanley 2.3.0 (Beta 1)
Scanley 2.3.0 (Beta 2)
Scanley 2.3.0 (Beta 3)
Scanley 2.3.0

Notice that when it has the "Alpha" qualifier, Scanley "2.3" is written as "2.3.0". The two numbers are
equivalent—trailing all-zero components can always be dropped for brevity—but when a qualifier is
present, brevity is out the window anyway, so one might as well go for completeness instead.

Other qualifiers in semi-regular use include "Stable", "Unstable", "Development", and "RC" (for "Relea-
se Candidate"). The most widely used ones are still "Alpha" and "Beta", with "RC" running a close third
place, but note that "RC" always includes a numeric meta-qualifier. That is, you don't release "Scan-
ley 2.3.0 (RC)", you release "Scanley 2.3.0 (RC 1)", followed by RC2, etc.

Those three labels, "Alpha", "Beta", and "RC", are pretty widely known now, and I don't recommend
using any of the others, even though the others might at first glance seem like better choices because
they are normal words, not jargon. But people who install software from releases are already familiar
with the big three, and there's no reason to do things gratuitously differently from the way everyone else
does them.

Although the dots in release numbers are not decimal points, they do indicate place-value significance.
All "0.X.Y" releases precede "1.0" (which is equivalent to "1.0.0", of course). "3.14.158" immediately
precedes "3.14.159", and non-immediately precedes "3.14.160" as well as "3.15.anything", and so.

A consistent release numbering policy enables a user to look at two release numbers for the same piece
of software and tell, just from the numbers, the important differences between those two releases. In a
typical three-component system, the first component is the major number, the second is the mi-
nor number, and the third is the micro number. For example, release "2.10.17" is the seventeenth micro
release in the tenth minor release line within the second major release series. The words "line" and "se-
ries" are used informally here, but they mean what one would expect. A major series is simply all the re-
leases that share the same major number, and a minor series (or minor line) consists of all the releases
that share the same minor and major number. That is, "2.4.0" and "3.4.1" are not in the same minor se-
ries, even though they both have "4" for their minor number; on the other hand, "2.4.0" and "2.4.2" are
in the same minor line, though they are not adjacent if "2.4.1" was released between them.

The meanings of these numbers are exactly what you'd expect: an increment of the major number indi-
cates that major changes happened; an increment of the minor number indicates minor changes; and an
increment of the micro number indicates really trivial changes. Some projects add a fourth component,
usually called the patch number, for especially fine-grained control over the differences between their
releases (confusingly, other projects use "patch" as a synonym for "micro" in a three-component sys-
tem). There are also projects that use the last component as a build number, incremented every time the
software is built and representing no change other than that build. This helps the project link every bug
report with a specific build, and is probably most useful when binary packages are the default method of
distribution.

Although there are many different conventions for how many components to use, and what the compo-
nents mean, the differences tend to be minor—you get a little leeway, but not a lot. The next two sec-
tions discuss some of the most widely used conventions.

Packaging, Releasing, and Daily Development

113

The Simple Strategy
Most projects have rules about what kinds of changes are allowed into a release if one is only incremen-
ting the micro number, different rules for the minor number, and still different ones for the major num-
ber. There is no set standard for these rules yet, but here I will describe a policy that has been used suc-
cessfully by multiple projects. You may want to just adopt this policy in your own project, but even if
you don't, it's still a good example of the kind of information release numbers should convey. This po-
licy is adapted from the numbering system used by the APR project, see
http://apr.apache.org/versioning.html.

1. Changes to the micro number only (that is, changes within the same minor line) must be both for-
ward- and backward-compatible. That is, the changes should be bug fixes only, or very small enhan-
cements to existing features. New features should not be introduced in a micro release.

2. Changes to the minor number (that is, within the same major line) must be backward-compatible, but
not necessarily forward-compatible. It's normal to introduce new features in a minor release, but
usually not too many new features at once.

3. Changes to the major number mark compatibility boundaries. A new major release can be forward-
and backward-incompatible. A major release is expected to have new features, and may even have
entire new feature sets.

What backward-compatible and forward-compatible mean, exactly, depends on what your software
does, but in context they are usually not open to much interpretation. For example, if your project is a
client/server application, then "backward-compatible" means that upgrading the server to 2.6.0 should
not cause any existing 2.5.4 clients to lose functionality or behave differently than they did before
(except for bugs that were fixed, of course). On the other hand, upgrading one of those clients to 2.6.0,
along with the server, might make new functionality available for that client, functionality that 2.5.4
clients don't know how to take advantage of. If that happens, then the upgrade is not "forward-compa-
tible": clearly you can't now downgrade that client back to 2.5.4 and keep all the functionality it had at
2.6.0, since some of that functionality was new in 2.6.0.

This is why micro releases are essentially for bug fixes only. They must remain compatible in both di-
rections: if you upgrade from 2.5.3 to 2.5.4, then change your mind and downgrade back to 2.5.3, no
functionality should be lost. Of course, the bugs fixed in 2.5.4 would reappear after the downgrade, but
you wouldn't lose any features, except insofar as the restored bugs prevent the use of some existing fea-
tures.

Client/server protocols are just one of many possible compatibility domains. Another is data formats:
does the software write data to permanent storage? If so, the formats it reads and writes need to follow
the compatibility guidelines promised by the release number policy. Version 2.6.0 needs to be able to
read the files written by 2.5.4, but may silently upgrade the format to something that 2.5.4 cannot read,
because the ability to downgrade is not required across a minor number boundary. If your project distri-
butes code libraries for other programs to use, then APIs are a compatibility domain too: you must make
sure that source and binary compatibility rules are spelled out in such a way that the informed user need
never wonder whether or not it's safe to upgrade in place. She will be able to look at the numbers and
know instantly.

In this system, you don't get a chance for a fresh start until you increment the major number. This can
often be a real inconvenience: there may be features you wish to add, or protocols that you wish to rede-
sign, that simply cannot be done while maintaining compatibility. There's no magic solution to this, ex-
cept to try to design things in an extensible way in the first place (a topic easily worth its own book, and
certainly outside the scope of this one). But publishing a release compatibility policy, and adhering to it,
is an inescapable part of distributing software. One nasty surprise can alienate a lot of users. The policy
just described is good partly because it's already quite widespread, but also because it's easy to explain
and to remember, even for those not already familiar with it.

Packaging, Releasing, and Daily Development

114

http://apr.apache.org/versioning.html

It is generally understood that these rules do not apply to pre-1.0 releases (although your release policy
should probably state so explicitly, just to be clear). A project that is still in initial development can re-
lease 0.1, 0.2, 0.3, and so on in sequence, until it's ready for 1.0, and the differences between those relea-
ses can be arbitrarily large. Micro numbers in pre-1.0 releases are optional. Depending on the nature of
your project and the differences between the releases, you might find it useful to have 0.1.0, 0.1.1, etc.,
or you might not. Conventions for pre-1.0 release numbers are fairly loose, mainly because people un-
derstand that strong compatibility constraints would hamper early development too much, and because
early adopters tend to be forgiving anyway.

Remember that all these injunctions only apply to this particular three-component system. Your project
could easily come up with a different three-component system, or even decide it doesn't need such fine
granularity and use a two-component system instead. The important thing is to decide early, publish
exactly what the components mean, and stick to it.

The Even/Odd Strategy
Some projects use the parity of the minor number component to indicate the stability of the software:
even means stable, odd means unstable. This applies only to the minor number, not the major and micro
numbers. Increments in the micro number still indicate bug fixes (no new features), and increments in
the major number still indicate big changes, new feature sets, etc.

The advantage of the even/odd system, which has been used by the Linux kernel project among others,
is that it offers a way to release new functionality for testing without subjecting production users to po-
tentially unstable code. People can see from the numbers that "2.4.21" is okay to install on their live web
server, but that "2.5.1" should probably stay confined to home workstation experiments. The develop-
ment team handles the bug reports that come in from the unstable (odd-minor-numbered) series, and
when things start to settle down after some number of micro releases in that series, they increment the
minor number (thus making it even), reset the micro number back to "0", and release a presumably sta-
ble package.

This system preserves, or at least, does not conflict with, the compatibility guidelines given earlier. It
simply overloads the minor number with some extra information. This forces the minor number to be in-
cremented about twice as often as would otherwise be necessary, but there's no great harm in that. The
even/odd system is probably best for projects that have very long release cycles, and which by their na-
ture have a high proportion of conservative users who value stability above new features. It is not the
only way to get new functionality tested in the wild, however. “Stabilizing a Release” later in this chap-
ter describes another, perhaps more common, method of releasing potentially unstable code to the pu-
blic, marked so that people have an idea of the risk/benefit trade-offs immediately on seeing the release's
name.

Release Branches
From a developer's point of view, a free software project is in a state of continuous release. Developers
usually run the latest available code at all times, because they want to spot bugs, and because they fo-
llow the project closely enough to be able to stay away from currently unstable areas of the feature spa-
ce. They often update their copy of the software every day, sometimes more than once a day, and when
they check in a change, they can reasonably expect that every other developer will have it within 24
hours.

How, then, should the project make a formal release? Should it simply take a snapshot of the tree at a
moment in time, package it up, and hand it to the world as, say, version "3.5.0"? Common sense says no.
First, there may be no moment in time when the entire development tree is clean and ready for release.
Newly-started features could be lying around in various states of completion. Someone might have chec-
ked in a major change to fix a bug, but the change could be controversial and under debate at the mo-
ment the snapshot is taken. If so, it wouldn't work to simply delay the snapshot until the debate ends, be-
cause another, unrelated debate could start in the meantime, and then you'd have wait for that one to end

Packaging, Releasing, and Daily Development

115

too. This process is not guaranteed to halt.

In any case, using full-tree snapshots for releases would interfere with ongoing development work, even
if the tree could be put into a releasable state. Say this snapshot is going to be "3.5.0"; presumably, the
next snapshot would be "3.5.1", and would contain mostly fixes for bugs found in the 3.5.0 release. But
if both are snapshots from the same tree, what are the developers supposed to do in the time between the
two releases? They can't be adding new features; the compatibility guidelines prevent that. But not ever-
yone will be enthusiastic about fixing bugs in the 3.5.0 code. Some people may have new features
they're trying to complete, and will become irate if they are forced to choose between sitting idle and
working on things they're not interested in, just because the project's release processes demand that the
development tree remain unnaturally quiescent.

The solution to these problems is to always use a release branch. A release branch is just a branch in the
version control system (see rama (branch)), on which the code destined for this release can be isolated
from mainline development. The concept of release branches is certainly not original to free software;
many commercial development organizations use them too. However, in commercial environments, re-
lease branches are sometimes considered a luxury—a kind of formal "best practice" that can, in the heat
of a major deadline, be dispensed with while everyone on the team scrambles to stabilize the main tree.

Release branches are pretty much required in open source projects, however. I have seen projects do re-
leases without them, but it has always resulted in some developers sitting idle while others—usually a
minority—work on getting the release out the door. The result is usually bad in several ways. First, ove-
rall development momentum is slowed. Second, the release is of poorer quality than it needed to be, be-
cause there were only a few people working on it, and they were hurrying to finish so everyone else
could get back to work. Third, it divides the development team psychologically, by setting up a situation
in which different types of work interfere with each other unnecessarily. The developers sitting idle
would probably be happy to contribute some of their attention to a release branch, as long as that were a
choice they could make according to their own schedules and interests. But without the branch, their
choice becomes "Do I participate in the project today or not?" instead of "Do I work on the release to-
day, or work on that new feature I've been developing in the mainline code?"

Mechanics of Release Branches
The exact mechanics of creating a release branch depend on your version control system, of course, but
the general concepts are the same in most systems. A branch usually sprouts from another branch or
from the trunk. Traditionally, the trunk is where mainline development goes on, unfettered by release
constraints. The first release branch, the one leading to the "1.0" release, sprouts off the trunk. In CVS,
the branch command would be something like this

$ cd trunk-working-copy
$ cvs tag -b RELEASE_1_0_X

or in Subversion, like this:

$ svn copy http://.../repos/trunk http://.../repos/branches/1.0.x

(All these examples assume a three-component release numbering system. While I can't show the exact
commands for every version control system, I'll give examples in CVS and Subversion and hope that the
corresponding commands in other systems can be deduced from those two.)

Notice that we created branch "1.0.x" (with a literal "x") instead of "1.0.0". This is because the same mi-
nor line—i.e., the same branch—will be used for all the micro releases in that line. The actual process of
stabilizing the branch for release is covered in “Stabilizing a Release” later in this chapter. Here we are
concerned just with the interaction between the version control system and the release process. When the
release branch is stabilized and ready, it is time to tag a snapshot from the branch:

Packaging, Releasing, and Daily Development

116

$ cd RELEASE_1_0_X-working-copy
$ cvs tag RELEASE_1_0_0

or

$ svn copy http://.../repos/branches/1.0.x http://.../repos/tags/1.0.0

That tag now represents the exact state of the project's source tree in the 1.0.0 release (this is useful in
case anyone ever needs to get an old version after the packaged distributions and binaries have been ta-
ken down). The next micro release in the same line is likewise prepared on the 1.0.x branch, and when it
is ready, a tag is made for 1.0.1. Lather, rinse, repeat for 1.0.2, and so on. When it's time to start thinking
about a 1.1.x release, make a new branch from trunk:

$ cd trunk-working-copy
$ cvs tag -b RELEASE_1_1_X

or

$ svn copy http://.../repos/trunk http://.../repos/branches/1.1.x

Maintenance can continue in parallel along both 1.0.x and 1.1.x, and releases can be made independently
from both lines. In fact, it is not unusual to publish near-simultaneous releases from two different lines.
The older series is recommended for more conservative site administrators, who may not want to make
the big jump to (say) 1.1 without careful preparation. Meanwhile, more adventurous people usually take
the most recent release on the highest line, to make sure they're getting the latest features, even at the
risk of greater instability.

This is not the only release branch strategy, of course. In some circumstances it may not even be the
best, though it's worked out pretty well for projects I've been involved in. Use any strategy that seems to
work, but remember the main points: the purpose of a release branch is to isolate release work from the
fluctuations of daily development, and to give the project a physical entity around which to organize its
release process. That process is described in detail in the next section.

Stabilizing a Release
Stabilization is the process of getting a release branch into a releasable state; that is, of deciding which
changes will be in the release, which will not, and shaping the branch content accordingly.

There's a lot of potential grief contained in that word, "deciding". The last-minute feature rush is a fami-
liar phenomenon in collaborative software projects: as soon as developers see that a release is about to
happen, they scramble to finish their current changes, in order not to miss the boat. This, of course, is the
exact opposite of what you want at release time. It would be much better for people to work on features
at a comfortable pace, and not worry too much about whether their changes make it into this release or
the next one. The more changes one tries to cram into a release at the last minute, the more the code is
destabilized, and (usually) the more new bugs are created.

Most software engineers agree in theory on rough criteria for what changes should be allowed into a re-
lease line during its stabilization period. Obviously, fixes for severe bugs can go in, especially for bugs
without workarounds. Documentation updates are fine, as are fixes to error messages (except when they
are considered part of the interface and must remain stable). Many projects also allow certain kinds of
low-risk or non-core changes to go in during stabilization, and may have formal guidelines for measu-

Packaging, Releasing, and Daily Development

117

ring risk. But no amount of formalization can obviate the need for human judgement. There will always
be cases where the project simply has to make a decision about whether a given change can go into a re-
lease. The danger is that since each person wants to see their own favorite changes admitted into the re-
lease, then there will be plenty of people motivated to allow changes, and not enough people motivated
to bar them.

Thus, the process of stabilizing a release is mostly about creating mechanisms for saying "no". The trick
for open source projects, in particular, is to come up with ways of saying "no" that won't result in too
many hurt feelings or disappointed developers, and also won't prevent deserving changes from getting
into the release. There are many different ways to do this. It's pretty easy to design systems that satisfy
these criteria, once the team has focused on them as the important criteria. Here I'll briefly describe two
of the most popular systems, at the extreme ends of the spectrum, but don't let that discourage your pro-
ject from being creative. Plenty of other arrangements are possible; these are just two that I've seen work
in practice.

Dictatorship by Release Owner
The group agrees to let one person be the release owner. This person has final say over what changes
make it into the release. Of course, it is normal and expected for there to be discussions and arguments,
but in the end the group must grant the release owner sufficient authority to make final decisions. For
this system to work, it is necessary to choose someone with the technical competence to understand all
the changes, and the social standing and people skills to navigate the discussions leading up to the relea-
se without causing too many hurt feelings.

A common pattern is for the release owner to say "I don't think there's anything wrong with this change,
but we haven't had enough time to test it yet, so it shouldn't go into this release." It helps a lot if the re-
lease owner has broad technical knowledge of the project, and can give reasons why the change could be
potentially destabilizing (for example, its interactions with other parts of the software, or portability con-
cerns). People will sometimes ask such decisions to be justified, or will argue that a change is not as
risky as it looks. These conversations need not be confrontational, as long as the release owner is able to
consider all the arguments objectively and not reflexively dig in his heels.

Note that the release owner need not be the same person as the project leader (in cases where there is a
project leader at all; see “Dictadores Benevolentes” in Capítulo 4, Infraestructura Social y Política). In
fact, sometimes it's good to make sure they're not the same person. The skills that make a good develop-
ment leader are not necessarily the same as those that make a good release owner. In something as im-
portant as the release process, it may be wise to have someone provide a counterbalance to the project
leader's judgement.

Contrast the release owner role with the less dictatorial role described in “Release manager” later in this
chapter.

Change Voting
At the opposite extreme from dictatorship by release owner, developers can simply vote on which chan-
ges to include in the release. However, since the most important function of release stabilization is to ex-
clude changes, it's important to design the voting system in such a way that getting a change into the re-
lease involves positive action by multiple developers. Including a change should need more than just a
simple majority (see “¿Quién Vota?” in Capítulo 4, Infraestructura Social y Política). Otherwise, one
vote for and none against a given change would suffice to get it into the release, and an unfortunate dy-
namic would be set up whereby each developer would vote for her own changes, yet would be reluctant
to vote against others' changes, for fear of possible retaliation. To avoid this, the system should be arran-
ged such that subgroups of developers must act in cooperation to get any change into the release. This
not only means that more people review each change, it also makes any individual developer less hesi-
tant to vote against a change, because she knows that no particular one among those who voted for it
would take her vote against as a personal affront. The greater the number of people involved, the more
the discussion becomes about the change and less about the individuals.

Packaging, Releasing, and Daily Development

118

The system we use in the Subversion project seems to have struck a good balance, so I'll recommend it
here. In order for a change to be applied to the release branch, at least three developers must vote in fa-
vor of it, and none against. A single "no" vote is enough to stop the change from being included; that is,
a "no" vote in a release context is equivalent to a veto (see “Vetos”). Naturally, any such vote must be
accompanied by a justification, and in theory the veto could be overridden if enough people feel it is un-
reasonable and force a special vote over it. In practice, this has never happened, and I don't expect that it
ever will. People are conservative around releases anyway, and when someone feels strongly enough to
veto the inclusion of a change, there's usually a good reason for it.

Because the release procedure is deliberately biased toward conservatism, the justifications offered for
vetoes are sometimes procedural rather than technical. For example, a person may feel that a change is
well-written and unlikely to cause any new bugs, but vote against its inclusion in a micro release simply
because it's too big—perhaps it adds a new feature, or in some subtle way fails to fully follow the com-
patibility guidelines. I've occasionally even seen developers veto something because they simply had a
gut feeling that the change needed more testing, even though they couldn't spot any bugs in it by inspec-
tion. People grumbled a little bit, but the vetoes stood and the change was not included in the release (I
don't remember if any bugs were found in later testing or not, though).

Managing collaborative release stabilization

If your project chooses a change voting system, it is imperative that the physical mechanics of setting up
ballots and casting votes be as convenient as possible. Although there is plenty of open source electronic
voting software available, in practice the easiest thing to do is just to set up a text file in the release
branch, called STATUS or VOTES or something like that. This file lists each proposed change—any de-
veloper can propose a change for inclusion—along with all the votes for and against it, plus any notes or
comments. (Proposing a change doesn't necessarily mean voting for it, by the way, although the two of-
ten go together.) An entry in such a file might look like this:

* r2401 (issue #49)
Prevent client/server handshake from happening twice.
Justification:
Avoids extra network turnaround; small change and easy to review.

Notes:
This was discussed in http://.../mailing-lists/message-7777.html
and other messages in that thread.

Votes:
+1: jsmith, kimf
-1: tmartin (breaks compatibility with some pre-1.0 servers;

admittedly, those servers are buggy, but why be
incompatible if we don't have to?)

In this case, the change acquired two positive votes, but was vetoed by tmartin, who gave the reason for
the veto in a parenthetical note. The exact format of the entry doesn't matter; whatever your project sett-
les on is fine—perhaps tmartin's explanation for the veto should go up in the "Notes:" section, or per-
haps the change description should get a "Description:" header to match the other sections. The impor-
tant thing is that all the information needed to evaluate the change be reachable, and that the mechanism
for casting votes be as lightweight as possible. The proposed change is referred to by its revision number
in the repository (in this case a single revision, r2401, although a proposed change could just as easily
consist of multiple revisions). The revision is assumed to refer to a change made on the trunk; if the
change were already on the release branch, there would be no need to vote on it. If your version control
system doesn't have an obvious syntax for referring to individual changes, then the project should make
one up. For voting to be practical, each change under consideration must be unambiguously identifiable.

Those proposing or voting for a change are responsible for making sure it applies cleanly to the release
branch, that is, applies without conflicts (see conflicto). If there are conflicts, then the entry should either
point to an adjusted patch that does apply cleanly, or to a temporary branch that holds an adjusted ver-
sion of the change, for example:

Packaging, Releasing, and Daily Development

119

* r13222, r13223, r13232
Rewrite libsvn_fs_fs's auto-merge algorithm
Justification:
unacceptable performance (>50 minutes for a small commit) in
a repository with 300,000 revisions

Branch:
1.1.x-r13222@13517

Votes:
+1: epg, ghudson

That example is taken from real life; it comes from the STATUS file for the Subversion 1.1.4 release
process. Notice how it uses the original revisions as canonical handles on the change, even though there
is also a branch with a conflict-adjusted version of the change (the branch also combines the three trunk
revisions into one, r13517, to make it easier to merge the change into the release, should it get approval).
The original revisions are provided because they're still the easiest entity to review, since they have the
original log messages. The temporary branch wouldn't have those log messages; in order to avoid dupli-
cation of information (see “Singularidad de la información” in Capítulo 3, Infraestructura Técnica), the
branch's log message for r13517 should simply say "Adjust r13222, r13223, and r13232 for backport to
1.1.x branch." All other information about the changes can be chased down at their original revisions.

Release manager

The actual process of merging (see merge) approved changes into the release branch can be performed
by any developer. There does not need to be one person whose job it is to merge changes; if there are a
lot of changes, it can be better to spread the burden around.

However, although both voting and merging happen in a decentralized fashion, in practice there are
usually one or two people driving the release process. This role is sometimes formally blessed as release
manager, but it is quite different from a release owner (see “Dictatorship by Release Owner” earlier in
this chapter) who has final say over the changes. Release managers keep track of how many changes are
currently under consideration, how many have been approved, how many seem likely to be approved,
etc. If they sense that important changes are not getting enough attention, and might be left out of the re-
lease for lack of votes, they will gently nag other developers to review and vote. When a batch of chan-
ges are approved, these people will often take it upon themselves to merge them into the release branch;
it's fine if others leave that task to them, as long as everyone understands that they are not obligated to
do all the work unless they have explicitly committed to it. When the time comes to put the release out
the door (see “Testing and Releasing” later in this chapter), the release managers also take care of the lo-
gistics of creating the final release packages, collecting digital signatures, uploading the packages, and
making the public announcement.

Packaging
The canonical form for distribution of free software is as source code. This is true regardless of whether
the software normally runs in source form (i.e., can be interpreted, like Perl, Python, PHP, etc.) or needs
to be compiled first (like C, C++, Java, etc.). With compiled software, most users will probably not com-
pile the sources themselves, but will instead install from pre-built binary packages (see “Binary Packa-
ges” later in this chapter). However, those binary packages are still derived from a master source distri-
bution. The point of the source package is to unambiguously define the release. When the project distri-
butes "Scanley 2.5.0", what it means, specifically, is "The tree of source code files that, when compiled
(if necessary) and installed, produces Scanley 2.5.0."

There is a fairly strict standard for how source releases should look. One will occasionally see deviations
from this standard, but they are the exception, not the rule. Unless there is a compelling reason to do ot-
herwise, your project should follow this standard too.

Packaging, Releasing, and Daily Development

120

Format
The source code should be shipped in the standard formats for transporting directory trees. For Unix and
Unix-like operating systems, the convention is to use TAR format, compressed by compress, gzip, bzip
or bzip2. For MS Windows, the standard method for distributing directory trees is zip format, which
happens to do compression as well, so there is no need to compress the archive after creating it.

TAR Files

TAR stands for "Tape ARchive", because tar format represents a directory tree as a linear data
stream, which makes it ideal for saving directory trees to tape. The same property also makes it
the standard for distributing directory trees as a single file. Producing compressed tar files (or tar-
balls) is pretty easy. On some systems, the tar command can produce a compressed archive itself;
on others, a separate compression program is used.

Name and Layout
The name of the package should consist of the software's name plus the release number, plus the format
suffixes appropriate for the archive type. For example, Scanley 2.5.0, packaged for Unix using GNU Zip
(gzip) compression, would look like this:

scanley-2.5.0.tar.gz

or for Windows using zip compression:

scanley-2.5.0.zip

Either of these archives, when unpacked, should create a single new directory tree named scanley-
2.5.0 in the current directory. Underneath the new directory, the source code should be arranged in a
layout ready for compilation (if compilation is needed) and installation. In the top level of new directory
tree, there should be a plain text README file explaining what the software does and what release this is,
and giving pointers to other resources, such as the project's web site, other files of interest, etc. Among
those other files should be an INSTALL file, sibling to the README file, giving instructions on how to
build and install the software for all the operating systems it supports. As mentioned in “Cómo aplicar
una licencia a nuestro software” in Capítulo 2, Primeros Pasos, there should also be a COPYING or LI-
CENSE file, giving the software's terms of distribution.

There should also be a CHANGES file (sometimes called NEWS), explaining what's new in this release.
The CHANGES file accumulates changelists for all releases, in reverse chronological order, so that the
list for this release appears at the top of the file. Completing that list is usually the last thing done on a
stabilizing release branch; some projects write the list piecemeal as they're developing, others prefer to
save it all up for the end and have one person write it, getting information by combing the version con-
trol logs. The list looks something like this:

Version 2.5.0
(20 December 2004, from /branches/2.5.x)
http://svn.scanley.org/repos/svn/tags/2.5.0/

New features, enhancements:
* Added regular expression queries (issue #53)

Packaging, Releasing, and Daily Development

121

* Added support for UTF-8 and UTF-16 documents
* Documentation translated into Polish, Russian, Malagasy
* ...

Bugfixes:
* fixed reindexing bug (issue #945)
* fixed some query bugs (issues #815, #1007, #1008)
* ...

The list can be as long as necessary, but don't bother to include every little bugfix and feature enhance-
ment. Its purpose is simply to give users an overview of what they would gain by upgrading to the new
release. In fact, the changelist is customarily included in the announcement email (see “Testing and Re-
leasing” later in this chapter), so write it with that audience in mind.

CHANGES Versus ChangeLog

Traditionally, a file named ChangeLog lists every change ever made to a project—that is, every
revision committed to the version control system. There are various formats for ChangeLog files;
the details of the formats aren't important here, as they all contain the same information: the date
of the change, its author, and a brief summary (or just the log message for that change).

A CHANGES file is different. It too is a list of changes, but only the ones thought important for a
certain audience to see, and often with metadata like the exact date and author stripped off. To
avoid confusion, don't use the terms interchangeably. Some projects use "NEWS" instead of
"CHANGES"; although this avoids the potential for confusion with "ChangeLog", it is a bit of a
misnomer, since the CHANGES file retains change information for all releases, and thus has a lot
of old news in addition to the new news at the top.

ChangeLog files may be slowly disappearing anyway. They were helpful in the days when CVS
was the only choice of version control system, because change data was not easy to extract from
CVS. However, with more recent version control systems, the data that used to be kept in the
ChangeLog can be requested from the version control repository at any time, making it pointless
for the project to keep a static file containing that data—in fact, worse than pointless, since the
ChangeLog would merely duplicate the log messages already stored in the repository.

The actual layout of the source code inside the tree should be the same as, or as similar as possible to,
the source code layout one would get by checking out the project directly from its version control repo-
sitory. Usually there are a few differences, for example because the package contains some generated fi-
les needed for configuration and compilation (see “Compilation and Installation” later in this chapter),
or because it includes third-party software that is not maintained by the project, but that is required and
that users are not likely to already have. But even if the distributed tree corresponds exactly to some de-
velopment tree in the version control repository, the distribution itself should not be a working copy (see
copia funcional). The release is supposed to represent a static reference point—a particular, unchangea-
ble configuration of source files. If it were a working copy, the danger would be that the user might up-
date it, and afterward think that he still has the release when in fact he has something different.

Remember that the package is the same regardless of the packaging. The release—that is, the precise en-
tity referred to when someone says "Scanley 2.5.0"—is the tree created by unpacking a zip file or tar-
ball. So the project might offer all of these for download:

scanley-2.5.0.tar.bz2
scanley-2.5.0.tar.gz
scanley-2.5.0.zip

Packaging, Releasing, and Daily Development

122

...but the source tree created by unpacking them must be the same. That source tree is the distribution;
the form in which it is downloaded is merely a matter of convenience. Certain trivial differences bet-
ween source packages are allowable: for example, in the Windows package, text files should have lines
ending with CRLF (Carriage Return and Line Feed), while Unix packages should use just LF. The trees
may be arranged slightly differently between source packages destined for different operating systems,
too, if those operating systems require different sorts of layouts for compilation. However, these are all
basically trivial transformations. The basic source files should be the same across all the packagings of a
given release.

To capitalize or not to capitalize

When referring to a project by name, people generally capitalize it as a proper noun, and capitalize
acronyms if there are any: "MySQL 5.0", "Scanley 2.5.0", etc. Whether this capitalization is reproduced
in the package name is up to the project. Either Scanley-2.5.0.tar.gz or scanley-
2.5.0.tar.gz would be fine, for example (I personally prefer the latter, because I don't like to make
people hit the shift key, but plenty of projects ship capitalized packages). The important thing is that the
directory created by unpacking the tarball use the same capitalization. There should be no surprises: the
user must be able to predict with perfect accuracy the name of the directory that will be created when
she unpacks a distribution.

Pre-releases

When shipping a pre-release or candidate release, the qualifier is truly a part of the release number, so
include it in the name of the package's name. For example, the ordered sequence of alpha and beta relea-
ses given earlier in “Release Number Components” would result in package names like this:

scanley-2.3.0-alpha1.tar.gz
scanley-2.3.0-alpha2.tar.gz
scanley-2.3.0-beta1.tar.gz
scanley-2.3.0-beta2.tar.gz
scanley-2.3.0-beta3.tar.gz
scanley-2.3.0.tar.gz

The first would unpack into a directory named scanley-2.3.0-alpha1, the second into scan-
ley-2.3.0-alpha2, and so on.

Compilation and Installation
For software requiring compilation or installation from source, there are usually standard procedures that
experienced users expect to be able to follow. For example, for programs written in C, C++, or certain
other compiled languages, the standard under Unix-like systems is for the user to type:

$./configure
$ make
make install

The first command autodetects as much about the environment as it can and prepares for the build pro-
cess, the second command builds the software in place (but does not install it), and the last command
installs it on the system. The first two commands are done as a regular user, the third as root. For more
details about setting up this system, see the excellent GNU Autoconf, Automake, and Libtool book by
Vaughan, Elliston, Tromey, and Taylor. It is published as treeware by New Riders, and its content is al-
so freely available online at http://sources.redhat.com/autobook/.

Packaging, Releasing, and Daily Development

123

http://sources.redhat.com/autobook/

This is not the only standard, though it is one of the most widespread. The Ant (http://ant.apache.org/)
build system is gaining popularity, especially with projects written in Java, and it has its own standard
procedures for building and installing. Also, certain programming languages, such as Perl and Python,
recommend that the same method be used for most programs written in that language (for example, Perl
modules use the command perl Makefile.pl). If it's not obvious to you what the applicable standards are
for your project, ask an experienced developer; you can safely assume that some standard applies, even
if you don't know what it is at first.

Whatever the appropriate standards for you project are, don't deviate from them unless you absolutely
must. Standard installation procedures are practically spinal reflexes for a lot of system administrators
now. If they see familiar invocations documented in your project's INSTALL file, that instantly raises
their faith that your project is generally aware of conventions, and that it is likely to have gotten other
things right as well. Also, as discussed in “Descargas” in Capítulo 2, Primeros Pasos, having a standard
build procedure pleases potential developers.

On Windows, the standards for building and installing are a bit less settled. For projects requiring com-
pilation, the general convention seems to be to ship a tree that can fit into the workspace/project model
of the standard Microsoft development environments (Developer Studio, Visual Studio, VS.NET,
MSVC++, etc.). Depending on the nature of your software, it may be possible to offer a Unix-like build
option on Windows via the Cygwin (http://www.cygwin.com/) environment. And of course, if you're
using a language or programming framework that comes with its own build and install conven-
tions—e.g., Perl or Python—you should simply use whatever the standard method is for that framework,
whether on Windows, Unix, Mac OS X, or any other operating system.

Be willing to put in a lot of extra effort in order to make your project conform to the relevant build or
installation standards. Building and installing is an entry point: it's okay for things to get harder after
that, if they absolutely must, but it would be a shame for the user's or developer's very first interaction
with the software to require unexpected steps.

Binary Packages
Although the formal release is a source code package, most users will install from binary packages, eit-
her provided by their operating system's software distribution mechanism, or obtained manually from
the project web site or from some third party. Here "binary" doesn't necessarily mean "compiled"; it just
means any pre-configured form of the package that allows a user to install it on his computer without
going through the usual source-based build and install procedures. On RedHat GNU/Linux, it is the
RPM system; on Debian GNU/Linux, it is the APT (.deb) system; on MS Windows, it's usually .MSI
files or self-installing .exe files.

Whether these binary packages are assembled by people closely associated with the project, or by distant
third parties, users are going to treat them as equivalent to the project's official releases, and will file is-
sues in the project's bug tracker based on the behavior of the binary packages. Therefore, it is in the pro-
ject's interest to provide packagers with clear guidelines, and work closely with them to see to it that
what they produce represents the software fairly and accurately.

The main thing packagers need to know is that they should always base their binary packages on an offi-
cial source release. Sometimes packagers are tempted to pull a later incarnation of the code from the re-
pository, or include selected changes that were committed after the release was made, in order to provide
users with certain bug fixes or other improvements. The packager thinks he is doing his users a favor by
giving them the more recent code, but actually this practice can cause a great deal of confusion. Projects
are prepared to receive reports of bugs found in released versions, and bugs found in recent trunk and
major branch code (that is, found by people who deliberately run bleeding edge code). When a bug re-
port comes in from these sources, the responder will often be able to confirm that the bug is known to be
present in that snapshot, and perhaps that it has since been fixed and that the user should upgrade or wait
for the next release. If it is a previously unknown bug, having the precise release makes it easier to re-
produce and easier to categorize in the tracker.

Packaging, Releasing, and Daily Development

124

http://ant.apache.org/
http://www.cygwin.com/

Projects are not prepared, however, to receive bug reports based on unspecified intermediate or hybrid
versions. Such bugs can be hard to reproduce; also, they may be due to unexpected interactions in isola-
ted changes pulled in from later development, and thereby cause misbehaviors that the project's develo-
pers should not have to take the blame for. I have even seen dismayingly large amounts of time wasted
because a bug was absent when it should have been present: someone was running a slightly patched up
version, based on (but not identical to) an official release, and when the predicted bug did not happen,
everyone had to dig around a lot to figure out why.

Still, there will sometimes be circumstances when a packager insists that modifications to the source re-
lease are necessary. Packagers should be encouraged to bring this up with the project's developers and
describe their plans. They may get approval, but failing that, they will at least have notified the project
of their intentions, so the project can watch out for unusual bug reports. The developers may respond by
putting a disclaimer on the project's web site, and may ask that the packager do the same thing in the ap-
propriate place, so that users of that binary package know what they are getting is not exactly the same
as what the project officially released. There need be no animosity in such a situation, though unfortuna-
tely there often is. It's just that packagers have a slightly different set of goals from developers. The pac-
kagers mainly want the best out-of-the-box experience for their users. The developers want that too, of
course, but they also need to ensure that they know what versions of the software are out there, so they
can receive coherent bug reports and make compatibility guarantees. Sometimes these goals conflict.
When they do, it's good to keep in mind that the project has no control over the packagers, and that the
bonds of obligation run both ways. It's true that the project is doing the packagers a favor simply by pro-
ducing the software. But the packagers are also doing the project a favor, by taking on a mostly ungla-
morous job in order to make the software more widely available, often by orders of magnitude. It's fine
to disagree with packagers, but don't flame them; just try to work things out as best you can.

Testing and Releasing
Once the source tarball is produced from the stabilized release branch, the public part of the release pro-
cess begins. But before the tarball is made available to the world at large, it should be tested and appro-
ved by some minimum number of developers, usually three or more. Approval is not simply a matter of
inspecting the release for obvious flaws; ideally, the developers download the tarball, build and install it
onto a clean system, run the regression test suite (see “Comprobaciones Automáticas”) in Capítulo 8,
Coordinando a los Voluntarios, and do some manual testing. Assuming it passes these checks, as well as
any other release checklist criteria the project may have, the developers then digitally sign the tarball
using GnuPG (http://www.gnupg.org/), PGP (http://www.pgpi.org/), or some other program capable of
producing PGP-compatible signatures.

In most projects, the developers just use their personal digital signatures, instead of a shared project key,
and as many developers as want to may sign (i.e., there is a minimum number, but not a maximum). The
more developers sign, the more testing the release undergoes, and also the greater the likelihood that a
security-conscious user can find a digital trust path from herself to the tarball.

Once approved, the release (that is, all tarballs, zip files, and whatever other formats are being distribu-
ted) should be placed into the project's download area, accompanied by the digital signatures, and by
MD5/SHA1 checksums (see http://en.wikipedia.org/wiki/Cryptographic_hash_function). There are va-
rious standards for doing this. One way is to accompany each released package with a file giving the co-
rresponding digital signatures, and another file giving the checksum. For example, if one of the released
packages is scanley-2.5.0.tar.gz, place in the same directory a file scanley-
2.5.0.tar.gz.asc containing the digital signature for that tarball, another file scanley-
2.5.0.tar.gz.md5 containing its MD5 checksum, and optionally another, scanley-
2.5.0.tar.gz.sha1, containing the SHA1 checksum. A different way to provide checking is to co-
llect all the signatures for all the released packages into a single file, scanley-2.5.0.sigs; the sa-
me may be done with the checksums.

It doesn't really matter which way you do it. Just keep to a simple scheme, describe it clearly, and be
consistent from release to release. The purpose of all this signing and checksumming is to give users a
way to verify that the copy they receive has not been maliciously tampered with. Users are about to run

Packaging, Releasing, and Daily Development

125

http://www.gnupg.org/
http://www.pgpi.org/
http://en.wikipedia.org/wiki/Cryptographic_hash_function

this code on their computers—if the code has been tampered with, an attacker could suddenly have a
back door to all their data. See “Security Releases” later in this chapter for more about paranoia.

Candidate Releases
For important releases containing many changes, many projects prefer to put out release candidates
first, e.g., scanley-2.5.0-beta1 before scanley-2.5.0. The purpose of a candidate is to sub-
ject the code to wide testing before blessing it as an official release. If problems are found, they are fixed
on the release branch and a new candidate release is rolled out (scanley-2.5.0-beta2). The cycle
continues until no unacceptable bugs are left, at which point the last candidate release becomes the offi-
cial release—that is, the only difference between the last candidate release and the real release is the re-
moval of the qualifier from the version number.

In most other respects, a candidate release should be treated the same as a real release. The alpha, beta,
or rc qualifier is enough to warn conservative users to wait until the real release, and of course the an-
nouncement emails for the candidate releases should point out that their purpose is to solicit feedback.
Other than that, give candidate releases the same amount of care as regular releases. After all, you want
people to use the candidates, because exposure is the best way to uncover bugs, and also because you
never know which candidate release will end up becoming the official release.

Announcing Releases
Announcing a release is like announcing any other event, and should use the procedures described in
“Publicity” in Capítulo 6, Communications. There are a few specific things to do for releases, though.

Whenever you give the URL to the downloadable release tarball, make sure to also give the MD5/SHA1
checksums and pointers to the digital signatures file. Since the announcement happens in multiple fo-
rums (mailing list, news page, etc.), this means users can get the checksums from multiple sources,
which gives the most security-conscious among them extra assurance that the checksums themselves ha-
ve not been tampered with. Giving the link to the digital signature files multiple times doesn't make tho-
se signatures more secure, but it does reassure people (especially those who don't follow the project clo-
sely) that the project takes security seriously.

In the announcement email, and on news pages that contain more than just a blurb about the release, ma-
ke sure to include the relevant portion of the CHANGES file, so people can see why it might be in their
interests to upgrade. This is as important with candidate releases as with final releases; the presence of
bugfixes and new features is important in tempting people to try out a candidate release.

Finally, don't forget to thank the development team, the testers, and all the people who took the time to
file good bug reports. Don't single out anyone by name, though, unless there's someone who is indivi-
dually responsible for a huge piece of work, the value of which is widely recognized by everyone in the
project. Just be wary of sliding down the slippery slope of credit inflation (see “Credit” in Capítulo 8,
Coordinando a los Voluntarios).

Maintaining Multiple Release Lines
Most mature projects maintain multiple release lines in parallel. For example, after 1.0.0 comes out, that
line should continue with micro (bugfix) releases 1.0.1, 1.0.2, etc., until the project explicitly decides to
end the line. Note that merely releasing 1.1.0 is not sufficient reason to end the 1.0.x line. For example,
some users make it a policy never to upgrade to the first release in a new minor or major series—they let
others shake the bugs out of, say 1.1.0, and wait until 1.1.1. This isn't necessarily selfish (remember,
they're forgoing the bugfixes and new features too); it's just that, for whatever reason, they've decided to
be very careful with upgrades. Accordingly, if the project learns of a major bug in 1.0.3 right before it's
about to release 1.1.0, it would be a bit severe to just put the bugfix in 1.1.0 and tell all the old 1.0.x
users they should upgrade. Why not release both 1.1.0 and 1.0.4, so everyone can be happy?

Packaging, Releasing, and Daily Development

126

After the 1.1.x line is well under way, you can declare 1.0.x to be at end of life. This should be announ-
ced officially. The announcement could stand alone, or it could be mentioned as part of a 1.1.x release
announcement; however you do it, users need to know that the old line is being phased out, so they can
make upgrade decisions accordingly.

Some projects set a window of time during which they pledge to support the previous release line. In an
open source context, "support" means accepting bug reports against that line, and making maintenance
releases when significant bugs are found. Other projects don't give a definite amount of time, but watch
incoming bug reports to gauge how many people are still using the older line. When the percentage
drops below a certain point, they declare end of life for the line and stop supporting it.

For each release, make sure to have a target version or target milestone available in the bug tracker, so
people filing bugs will be able to do so against the proper release. Don't forget to also have a target ca-
lled "development" or "latest" for the most recent development sources, since some people—not only
active developers—will often stay ahead of the official releases.

Security Releases
Most of the details of handling security bugs were covered in “Announcing Security Vulnerabilities” in
Capítulo 6, Communications, but there are some special details to discuss for doing security releases.

A security release is a release made solely to close a security vulnerability. The code that fixes the bug
cannot be made public until the release is available, which means not only that the fixes cannot be com-
mitted to the repository until the day of the release, but also that the release cannot be publicly tested be-
fore it goes out the door. Obviously, the developers can examine the fix among themselves, and test the
release privately, but widespread real-world testing is not possible.

Because of this lack of testing, a security release should always consist of some existing release plus the
fixes for the security bug, with no other changes. This is because the more changes you ship without tes-
ting, the more likely that one of them will cause a new bug, perhaps even a new security bug! This con-
servatism is also friendly to administrators who may need to deploy the security fix, but whose upgrade
policy prefers that they not deploy any other changes at the same time.

Making a security release sometimes involves some minor deception. For example, the project may have
been working on a 1.1.3 release, with certain bug fixes to 1.1.2 already publicly declared, when a secu-
rity report comes in. Naturally, the developers cannot talk about the security problem until they make the
fix available; until then, they must continue to talk publicly as though 1.1.3 will be what it's always been
planned to be. But when 1.1.3 actually comes out, it will differ from 1.1.2 only in the security fixes, and
all those other fixes will have been deferred to 1.1.4 (which, of course, will now also contain the secu-
rity fix, as will all other future releases).

You could add an extra component to an existing release to indicate that it contains security changes
only. For example, people would be able to tell just from the numbers that 1.1.2.1 is a security release
against 1.1.2, and they would know that any release "higher" than that (e.g., 1.1.3, 1.2.0, etc.) contains
the same security fixes. For those in the know, this system conveys a lot of information. On the other
hand, for those not following the project closely, it can be a bit confusing to see a three-component re-
lease number most of the time with an occasional four-component one thrown in seemingly at random.
Most projects I've looked at choose consistency and simply use the next regularly scheduled number for
security releases, even when it means shifting other planned releases by one.

Releases and Daily Development
Maintaining parallel releases simultaneously has implications for how daily development is done. In par-
ticular, it makes practically mandatory a discipline that would be recommended anyway: have each
commit be a single logical change, and never mix unrelated changes in the same commit. If a change is
too big or too disruptive to do in one commit, break it across N commits, where each commit is a well-

Packaging, Releasing, and Daily Development

127

partitioned subset of the overall change, and includes nothing unrelated to the overall change.

Here's an example of an ill-thought-out commit:

--
r6228 | jrandom | 2004-06-30 22:13:07 -0500 (Wed, 30 Jun 2004) | 8 lines

Fix Issue #1729: Make indexing gracefully warn the user when a file
is changing as it is being indexed.

* ui/repl.py
(ChangingFile): New exception class.
(DoIndex): Handle new exception.

* indexer/index.py
(FollowStream): Raise new exception if file changes during indexing.
(BuildDir): Unrelatedly, remove some obsolete comments, reformat
some code, and fix the error check when creating a directory.

Other unrelated cleanups:

* www/index.html: Fix some typos, set next release date.
--

The problem with it becomes apparent as soon as someone needs to port the BuildDir error check fix
over to a branch for an upcoming maintenance release. The porter doesn't want any of the other chan-
ges—for example, perhaps the fix to issue #1729 wasn't approved for the maintenance branch at all, and
the index.html tweaks would simply be irrelevant there. But she cannot easily grab just the Build-
Dir change via the version control tool's merge functionality, because the version control system was
told that that change is logically grouped with all these other unrelated things. In fact, the problem
would become apparent even before the merge. Merely listing the change for voting would become pro-
blematic: instead of just giving the revision number, the proposer would have to make a special patch or
change branch just to isolate the portion of the commit being proposed. That would be a lot of work for
others to suffer through, and all because the original committer couldn't be bothered to break things into
logical groups.

In fact, that commit really should have been four separate commits: one to fix issue #1729, another to re-
move obsolete comments and reformat code in BuildDir, another to fix the error check in
BuildDir, and finally, one to tweak index.html. The third of those commits would be the one pro-
posed for the maintenance release branch.

Of course, release stabilization is not the only reason why having each commit be one logical change is
desirable. Psychologically, a semantically unified commit is easier to review, and easier to revert if ne-
cessary (in some version control systems, reversion is really a special kind of merge anyway). A little
up-front discipline on everyone's part can save the project a lot of headache later.

Planning Releases
One area where open source projects have historically differed from proprietary projects is in release
planning. Proprietary projects usually have firmer deadlines. Sometimes it's because customers were
promised that an upgrade would be available by a certain date, because the new release needs to be coor-
dinated with some other effort for marketing purposes, or because the venture capitalists who invested in
the whole thing need to see some results before they put in any more funding. Free software projects, on
the other hand, were until recently mostly motivated by amateurism in the most literal sense: they were
written for the love of it. No one felt the need to ship before all the features were ready, and why should
they? It wasn't as if anyone's job was on the line.

Nowadays, many open source projects are funded by corporations, and are correspondingly more and

Packaging, Releasing, and Daily Development

128

more influenced by deadline-conscious corporate culture. This is in many ways a good thing, but it can
cause conflicts between the priorities of those developers who are being paid and those who are volun-
teering their time. These conflicts often happen around the issue of when and how to schedule releases.
The salaried developers who are under pressure will naturally want to just pick a date when the releases
will occur, and have everyone's activities fall into line. But the volunteers may have other agen-
das—perhaps features they want to complete, or some testing they want to have done—that they feel the
release should wait on.

There is no general solution to this problem except discussion and compromise, of course. But you can
minimize the frequency and degree of friction caused, by decoupling the proposed existence of a given
release from the date when it would go out the door. That is, try to steer discussion toward the subject of
which releases the project will be making in the near- to medium-term future, and what features will be
in them, without at first mentioning anything about dates, except for rough guesses with wide margins of
error. By nailing down feature sets early, you reduce the complexity of the discussion centered on any
individual release, and therefore improve predictability. This also creates a kind of inertial bias against
anyone who proposes to expand the definition of a release by adding new features or other complica-
tions. If the release's contents are fairly well defined, the onus is on the proposer to justify the expansion,
even though the date of the release may not have been set yet.

In his multi-volume biography of Thomas Jefferson, Jefferson and His Time, Dumas Malone tells the
story of how Jefferson handled the first meeting held to decide the organization of the future University
of Virginia. The University had been Jefferson's idea in the first place, but (as is the case everywhere,
not just in open source projects) many other parties had climbed on board quickly, each with their own
interests and agendas. When they gathered at that first meeting to hash things out, Jefferson made sure to
show up with meticulously prepared architectural drawings, detailed budgets for construction and opera-
tion, a proposed curriculum, and the names of specific faculty he wanted to import from Europe. No one
else in the room was even remotely as prepared; the group essentially had to capitulate to Jefferson's vi-
sion, and the University was eventually founded more or less in accordance with his plans. The facts that
construction went far over budget, and that many of his ideas did not, for various reasons, work out in
the end, were all things Jefferson probably knew perfectly well would happen. His purpose was strate-
gic: to show up at the meeting with something so substantive that everyone else would have to fall into
the role of simply proposing modifications to it, so that the overall shape, and therefore schedule, of the
project would be roughly as he wanted.

In the case of a free software project, there is no single "meeting", but instead a series of small proposals
made mostly by means of the issue tracker. But if you have some credibility in the project to start with,
and you start assigning various features, enhancements, and bugs to target releases in the issue tracker,
according to some announced overall plan, people will mostly go along with you. Once you've got
things laid out more or less as you want them, the conversations about actual release dates will go much
more smoothly.

It is crucial, of course, to never present any individual decision as written in stone. In the comments as-
sociated with each assignment of an issue to a specific future release, invite discussion, dissent, and be
genuinely willing to be persuaded whenever possible. Never exercise control merely for the sake of
exercising control: the more deeply others participate in the release planning process (see “Share Mana-
gement Tasks as Well as Technical Tasks” in Capítulo 8, Coordinando a los Voluntarios), the easier it
will be to persuade them to share your priorities on the issues that really count for you.

The other way the project can lower tensions around release planning is to make releases fairly often.
When there's a long time between releases, the importance of any individual release is magnified in
everyone's minds; people are that much more crushed when their code doesn't make it in, because they
know how long it might be until the next chance. Depending on the complexity of the release process
and the nature of your project, somewhere between every three and six months is usually about the right
gap between releases, though maintenance lines may put out micro releases a bit faster, if there is de-
mand for them.

Packaging, Releasing, and Daily Development

129

Capítulo 8. Coordinando a los
Voluntarios

Conseguir que la gente se ponga de acuerdo sobre cuales son las necesidades de un proyecto, y trabajar
en la misma dirección para llevarlas a cabo, requiere de algo más que un ambiente de trabajo genial sin
disfunciones visibles. Requiere una, o varias personas, que coordinen diligentemente a toda la gente in-
volucrada en el proyecto. Es posible que coordinar voluntarios no sea un arte tecnológico como lo pueda
ser la programación, pero como cualquier arte puede mejorarse a través del estudio y la práctica.

Este capítulo es un cajón de sastre de técnicas para coordinar voluntarios. Se nutre, quizá más intensa-
mente que capítulos anteriores, en el proyecto Subversion, en parte porque yo trabajaba en dicho proyec-
to mientras escribía esto y tenía información de primera mano, y en parte porque es más aceptable tirar
piedras sobre mi propio tejado que sobre el tejado de otro. No obstante, también he sido testigo de las
consecuencias que ha tenido aplicar sobre otros proyectos (y las consecuencias de no hacerlo) las reco-
mendaciones que se exponen a continuación. Siempre que sea políticamente correcto dar detalles de
otros proyectos, así lo haré.

Hablando de política, este momento es tan bueno como cualquier otro para inspeccionar en detalle la su-
sodicha palabra maldita. Muchos ingenieros hablan de política como si no fuera con ellos; "Yo me centro
en la mejor para el proyecto, pero Ella no deja de poner pegas por razones políticas." Pienso que dicho
distanciamiento de la política (o por lo que se piensa que es la política) es especialmente significativo
entre los ingenieros, porque se los educa para pensar que siempre hay razones objetivas para determinar
que unas soluciones son superiores a otras. Por tanto, cuando alguien actúa con motivaciones aparente-
mente externas al proyecto (p.ej. solidificar la propia posición de influencia en el proyecto, disminuir la
influencia de otros, chalaneos descarados, o evitar herir los sentimientos de alguien) otros participantes
del proyecto pueden molestarse. Por supuesto, esto raramente evita que ellos se comporten de la misma
manera cuando sus propios intereses se ven amenazados.

Si consideras que la "política" es una palabra sucia, y tienes esperanzas de mantener tu proyecto libre de
ella, mejor que abandones ahora mismo. La política es algo que surge inevitablemente cada vez que un
grupo de personas han de cooperar en la gestión de recursos compartidos. Es de lógica que, cada vez que
una persona toma una decisión, ésta se vea influenciada por cómo va a afectar a su futuro personal en el
proyecto. Después de todo, si tienes confianza en tu juicio y habilidades, como sucede con la mayoría de
programadores, entonces una posible pérdida de influencia sobre el proyecto podría ser considerada, en
cierta manera, como un aspecto técnico a tener en cuenta. Razonamientos similares se pueden aplicar a
comportamientos que, en apariencia, sean "pura" política. De hecho, no existe tal cosa como la "pura po-
lítica"; para empezar, porque como todas las acciones tienen múltiples consecuencias en la vida real la
gente adquiere conciencia política. La política, al final, simplemente reconoce que todas las consecuen-
cias de nuestras decisiones han de tenerse en cuenta. Si decisiones concretas llevan el proyecto por un
camino que la mayoría considera técnicamente correcto, pero dicha decisión conlleva un cambio en el
equilibrio de influencias del proyecto aislando a figuras clave del mismo, entonces hemos de dar igual
grado de importancia a ambas consecuencias. No hacerlo así, no sólo no sería juicioso, sino que sería
una actitud corta de miras.

Por tanto, mientras leas los consejos que siguen a continuación, y mientras trabajas en tu propio proyec-
to, recuerda que no hay nadie que esté por encima de la política. Dar la impresión que se está por encima
de ella es simplemente otra estrategia política más y, por cierto, en ocasiones una muy útil, pero nunca
refleja la realidad. La política es sencillamente lo que sucede cuando la gente no está de acuerdo en algo,
y los proyectos que acaban con éxito son aquellos capaces de desarrollar un mecanismo político para
gestionar los desacuerdos de forma constructiva.

Conseguir el Máximo de los Voluntarios
Por qué los voluntarios trabajan en proyectos de software libre? 1

130

1Esta cuestión fue estudiada en detalle, arrojando interesantes resultados, en un ensayo de Karim Lakhani y Robert G. Wolf, titula-
doPor qué los Hackers Hacen lo que Hacen: Comprensión de la Motivación y el Esfuerzo en Proyectos de Código Libre/Abierto.
Ved http://freesoftware.mit.edu/papers/lakhaniwolf.pdf.

Cuando se les pregunta, muchos dicen que lo hace por que quieren producir buen software, o por que
quieren involucrarse en arreglar errores que son importantes para ellos. Pero estas razones no acostum-
bran a ser toda la verdad. Después de todo ¿podrías imaginarte a un voluntario permaneciendo en un
proyecto a pesar de que nadie, nunca, le dirigiera un palabra de aprecio por su trabajo, o se le escuchara
en las discusiones? Claro que no. Claramente, la gente gasta su tiempo en el software libre por razones
que van más allá del deseo abstracto de producir buen código. Comprender las verdaderas motivaciones
de los voluntarios te ayudará a organizar las cosas de manera que puedas atraerlos y que no se vayan. El
deseo de producir buen código puede estar entre esas motivaciones, junto con el desafío y valor educati-
vo que supone trabajar en problemas difíciles, pero los seres humanos tienen el deseo natural de trabajar
con otros humanos, y el de dar y recibir respeto a través de actividades colectivas. Grupos cooperando
en tareas colectivas deben desarrollar normas de comportamiento tales que el prestigio sea adquirido ,y
mantenido, a través de acciones que ayuden a la consecución de las metas del grupo.

Esas normas no aparecen por sí solas. Por ejemplo, en algunos proyectos (desarrolladores con experien-
cia en código abierto podrían mencionar varias de memoria) la gente piensa que se gana prestigio por
enviar largos mensajes frecuentemente. No llegan a esta conclusión por casualidad, llegan a ella porque
son recompensados con respeto por crear largos e intrincados argumentos, independientemente de que
estos ayuden al proyecto. A continuación se explican algunas técnicas para crear una atmósfera en la que
se pueda adquirir prestigio a través de acciones constructivas.

Delegar
Delegar no simplemente una forma de distribuir la carga de trabajo, sino que también es una herramienta
política y social. Piensa en todas las consecuencias que tiene pedir a alguien que haga algo. El efecto
más evidente es que, si acepta, esa persona hace el trabajo y tú no. Pero otro efecto es que esa persona
toma consciencia de que tú confías en él para realizar la tarea. Además, si haces la petición en un foro
público, también aprecia que el resto de participantes son conscientes de la confianza que ha sido depo-
sitada en él. También es posible que se sienta presionado a aceptar, por tanto has de preguntar de manera
que le sea fácil declinar la oferta si realmente no quiere aceptarla. Si la tarea requiere coordinarse con
otros participantes del proyecto, entonces le estás pidiendo un mayor grado de compromiso con el pro-
yecto, crear lazos que no se hubieran creado de otra forma y, quizá, convertirse en una fuente de autori-
dad y algunos subdominios del proyecto. La responsabilidad adquirida puede ser agobiante, o puede lle-
varle a involucrarse en más áreas del proyecto gracias a un renovado sentimiento de compromiso.

Debido a todos estos posibles efectos, a menudo tiene sentido pedir a otro que haga algo incluso cuando
sabes que tú lo podrías hacer mejor o más rápido. Por supuesto, siempre hay momentos en que delegarás
únicamente por motivos de eficiencia; quizá el coste de oportunidad de hacer una tarea tú mismo es de-
masiado alto debido a que podrías dedicarte a hacer algo más importante para el proyecto. Pero incluso
cuando el argumento del coste de oportunidad no existe, aún así es posible que pidas a otro hacer una ta-
rea simplemente porque quieres involucrar más a una determinada persona en el proyecto, incluso si eso
significa que has de supervisar su trabajo al principio. Esta técnica también funciona al revés; si ocasio-
nalmente te presentas voluntario para hacer un trabajo que alguien no quiere, o no tiene tiempo de hacer,
te ganarás su confianza y su respeto. Delegar y sustituir no tiene que ver simplemente con finalizar ta-
reas; tiene mucho que ver también con aumentar el grado de compromiso de la gente con el proyecto.

Distingue claramente entre pedir y asignar

En ocasiones es lógico esperar que una persona aceptará de buen grado una tarea en particular. Por
ejemplo, si alguien introduce un error en el código, o envía código que incumple de forma clara con las
directrices del proyecto, debería ser suficiente con mencionar el problema y esperar que el responsable
de dicho código se haga cargo. Pero hay otras situaciones donde no está nada claro que puedas esperar
que alguien haga cargo. La persona podría hacer lo que le pides, o quizá no. Como a nadie le gusta que
se dé por hecho que va a obedecer, has de ser consciente en todo momento de cual de estas dos situacio-

Coordinando a los Voluntarios

131

nes estás tratando y, en función de la misma, medir tus palabras a la hora de solicitar una tarea.

Algo que casi siempre sienta mal es que te pidan hacer algo como si fuera tu responsabilidad cuanto tu
piensas que no es así. Por ejemplo, asignar nuevos problemas en el código es terreno abonado para este
tipo de situaciones. Los participantes de un proyecto normalmente saben quien es experto en cada área,
así que cuando un error en el código aparece, habrá normalmente una o dos personas en las que todo el
mundo piensa que podrían arreglar el problema rápidamente. No obstante, si asignas la tarea a una de es-
tas personas sin pedirles permiso, dicha persona podría sentirse incómoda y forzada a encargarse de la
tarea, podría sentir que se espera mucho de ella y que, de alguna forma, está siendo castigada por sus co-
nocimientos y experiencia. Después de todo, la forma en la que uno adquiere dichas habilidades es corri-
giendo código, así que ¡quizá debería ser otro el que lo corrija esta vez! (Cabe mencionar que los gesto-
res automáticos de errores que asignan tareas en función del tipo de error, reducen este tipo de conflictos
porque todo el mundo sabe que las tareas se asignan de forma automática y que nadie espera nada de la
persona a la que se ha asignado la tarea.)

Aunque lo deseable sería distribuir la carga de trabajo tan equitativamente como fuera posible, hay oca-
siones en las que simplemente quieres que puede arreglar el problema más rápidamente haga el trabajo.
Dado que no puedes permitirte establecer un diálogo para todas y cada una de las tareas que se han de
asignar ("¿Te importaría echarle un vistazo a este error?" "Sí." "Vale, entonces te asigno la tarea a ti."
"Vale."), deberías siempre asignar tareas en forma de petición, sin ejercer presión alguna. Casi todos los
gestores de errores permiten asociar comentarios a la tarea asignada. En dicho comentario podrías decir
algo así:

Tarea asignada a ti, jaleatorio, porque tu eres la persona más familiarizada con este có-
digo. No te preocupes si no puedes hacerte cargo de la tarea por el motivo que sea. (En
cualquier caso hazme saber si preferirías no recibir más tareas en el futuro.)

Así se distingue claramente la petición de la tarea de la aceptación de la misma. El mensaje no sólo va
dirigido a la persona a la que se pide la tarea; informa a todo el grupo del área de experiencia de dicho
miembro y, además, deja claro a todos que dicha persona es libre de aceptar o rechazar la tarea.

Supervisar después de delegar

Cuando le pidas a alguien que haga algo, recuerda que los has hecho y supervisa con él la tarea pase lo
que pase. La mayoría de peticiones se hace en foros públicos más o menos de la siguiente manera
"¿Podrías encargarte de X? Dinos algo en cualquier caso. En caso de que no puedas no pasa nada, pero
háznoslo saber." Pueden responder, o no, a tu petición, pero si te responden, y la respuesta es negativa,
el proceso se cierra y tendrás que buscar alternativas para llevar a cabo la tarea X. Si la respuesta es po-
sitiva entonces vigila como progresa el trabajo y haz comentarios sobre el mismo (todo el mundo trabaja
mejor cuando sabe que hay alguien que aprecia su trabajo). Si no hay respuesta después de unos días,
pregunta de nuevo, o comenta en el foro que nadie a respondido y que buscas a alguien que ses encargue
de la tarea, o simplemente hazlo tú pero, en cualquier caso, asegúrate de comentar que no recibiste res-
puesta alguna a tu petición"

El motivo de hacer pública la falta de respuesta no es para humillar a la persona a la que se le hizo la pe-
tición, y cuando menciones el tema lo has de hacer de forma que esto quede claro. El propósito es de de-
jar claro que sigues la pista de todo lo que pides, y que reaccionas ante las respuestas que recibes, o no, a
tus peticiones. Esta actitud hace que sea más probable que la gente acepta la tarea la próxima vez, y esto
es así porque se darán cuenta (aunque sea inconscientemente) que es probable que aprecies cualquier
trabajo que hagan debido a que prestas atención a detalles tan pequeños como el que alguien no respon-
da a una petición.

Fíjate en lo que se interesa la gente

Otra cosa que pone a la gente contenta es que te fijes en sus intereses; en general, cuantos más aspectos
recuerdas de la personalidad de alguien, más a gusto se encontrará dicha persona, y se interesará más por

Coordinando a los Voluntarios

132

trabajar en grupos de los que tú seas parte.

Por ejemplo, había una clara diferencia en el proyecto Subversion entre la gente que quería llegar pronto
a una versión final 1.0 (cosa que finalmente hicimos), y la gente que principalmente quería añadir nue-
vas funcionalidades y trabajar en problemas interesantes sin importarles mucho cuando estaría lista la
versión 1.0. Ninguna de estas dos posturas es mejor o peor que la otra; simplemente reflejan dos tipos
distintos de desarrolladores, y ambos realizan mucho trabajo en el proyecto. Pero aprendimos rápida-
mente que era vital no asumir que el interés por tener una versión 1.0 era compartido por todos. Las co-
municaciones electrónicas pueden ser muy engañosos; puedes pensar que hay un ambiente de propósito
común cuando, en realidad, dicho propósito sólo es compartido por la gente con la que tú has estado ha-
blando, mientras otras personas tienen prioridades completamente distintas

Cuanto más consciente seas de lo que la gente quiere sacar del proyecto, más eficientemente podrás pe-
dirles cosas. Simplemente demostrando comprensión por lo que quieren, sin demandar nada por ello, tie-
ne una utilidad per se, puesto que confirma a cada uno que no es una simple partícula de una masa infor-
me.

Halagos y Críticas
Halago y crítica no son antónimos, de hecho, en muchos aspectos son muy similares. Ambas son mues-
tras de atención, y son más efectivas cuando son específicas que cuando son genéricas. Ambas deben ha-
cerse con metas específicas en mente. Ambas pueden diluirse por el abuso; halaga mucho o demasiado y
tus halagos perderán valor, y lo mismo sirve para las críticas aunque, en la práctica, las críticas provocan
reacciones que las hacen mucho más resistentes a la devaluación.

Un importante aspecto de la cultura tecnológica es que la detallada y desapasionada crítica a menudo se
toma como una especia de alago (como se vio en “Reconociendo la grosería” en Capítulo 6, Communi-
cations), esto se debe a la implicación de que el trabajo en cuestión vale la pena ser analizado. En cual-
quier caso, ambos aspectos; detallada y desapasionada han de cumplirse para que esto se cumpla. Por
ejemplo, si alguien hace algún cambio chapucero en el código, es inútil (y de hecho perjudicial) comen-
tar el asunto simplemente diciendo "Eso es una chapuza". El ser un chapuzas es, al final, una caracterís-
tica de la persona, no de su trabajo, y es importante mantener tu atención enfocada en el trabajo hecho.
Es mucho más eficiente describir todas las cosas equivocadas que se han introducido al realizar el cam-
bio, y hay que hacerlo con tacto y sin malicia. Si fuera el tercer o cuarto cambio descuidado de la misma
persona, entonces lo más apropiado mencionar el hecho, después de la crítica sobre el trabajo realizado,
y de nuevo sin ningún signo de enfado, para así dejar claro que dicho patrón de comportamiento es evi-
dente.

Si alguien no mejora después de las críticas, la solución no es criticar más, o hacerlo más duramente. La
solución consiste en que el grupo retire a dicha persona del trabajo en el que es incompetente de forma
que se hiera lo menos posible los sentimientos de la misma, leed “Transitions” al final del capítulo unos
ejemplos. En cualquier caso, este no es un hecho frecuente. La mayoría de gente responde muy bien a
las críticas que son específicas, detalladas, y que contienen una clara (aunque sea entre líneas) indica-
ción de que se espera una mejora.

Las alabanzas no herirá la sensibilidad de nadie, por supuesto, pero eso no significa que se deba usar con
menos cuidado que las críticas. Las alabanzas son una herramienta; antes de usarla pregúntate por qué
quieres usarla. Como regla, no es una buena idea alabar a alguien por hacer lo que normalmente hace, o
por acciones que son habituales y esperadas de alguien que trabaja en grupo. Si hicieras eso, no será fá-
cil saber cuando parar; ¿deberías alabar a todo el mundo por hacer lo habitual? Al fin y al cabo, si te de-
jas a alguien se preguntarán por qué. Es mucho mejor expresar alabanzas y gratitud ocasionalmente en
respuesta a un esfuerzo inusual, o inesperado, con la intención de fomentar dichos esfuerzos. Cuando un
participante parece haberse trasladado permanentemente a un estado de alta productividad, debes ajustar
tu nivel de alabanzas consecuentemente. Repetidas alabanzas se acaban convirtiendo en algo sin signifi-
cado alguno. En su lugar, dicha persona deber sentir que su alto nivel de productividad se considera nor-
mal y natural, y sólo trabajo que sobrepasa ese nivel debe ser significado.

Coordinando a los Voluntarios

133

Por supuesto, esto no quiere decir que las contribuciones de dicha persona no deban ser reconocidas. Pe-
ro recuerda que si el proyecto se organiza correctamente, todo lo que hace una persona es visible de to-
das formas, y por tanto el grupo verá (y la persona implicada sabrá que el resto de miembros lo ven tam-
bién) todo lo que ella hace. También hay otras maneras de reconocer el trabajo de alguien además de las
alabanzas. Podrías mencionar de pasada, al debatir sobre un tema, que dicha persona ha trabajado mucho
en ese área y que es experta en la misma. Podrías realizar consultas públicas a dicha persona sobre el có-
digo o, quizá mejor, podrías utilizar su trabajo de forma ostensible para que la persona pueda apreciar
que la gente tiene confianza en los resultados de su trabajo. Probablemente no es necesario hacer todas
estas cosas de forma calculada. Las personas que contribuyen notablemente lo saben y ocuparán una po-
sición de influencia de forma natural. Normalmente no hay que tomar medidas explícitas para asegurar
esto, a menos que sientas que, por cualquier motivo, un miembro del grupo es poco valorado.

Prevén la Territorialidad
Ten cuidado con los participantes que intentan apropiarse la exclusividad en ciertas áreas del proyecto, y
con aquellos que parecen querer hacer todo el trabajo en esas áreas hasta el punto de apropiarse del tra-
bajo que otros han comenzado. Dicho comportamiento puede parecer saludable al principio, después de
todo, a primera vista parece como si el individuo en cuestión simplemente está tomando más responsabi-
lidad, y mostrando una mayor actividad en dichas áreas. A la larga, no obstante, dicho comportamiento
es destructivo. Cuando la gente ve señales de "no pasar" se apartan del proyecto. Esto conlleva una vi-
sión más estrecha de esa área, y una mayor fragilidad de la misma puesto se depende de la disponibili-
dad e un único desarrollador. Todavía peor, rompe el espíritu de cooperación igualitaria del proyecto. En
teoría, la ayuda de cualquier desarrollador debe ser bienvenida en cualquier momento, y sobre cualquier
área. Por supuesto, en la práctica las cosas funciona de manera algo diferente; la gente tiene áreas donde
es más o menos influyente, y los inexpertos habitualmente dejan que los expertos tomen las riendas en
ciertos dominios del proyecto. Pero la clave es que todo esto es algo voluntario; la autoridad se gana me-
diante la competencia y conocimiento probado, y nunca debe ser conquistada activamente. Incluso si la
persona deseando la autoridad es realmente competente, aún así es crucial que maneje esa autoridad de
manera informal, a través del consenso del grupo, y sin apartar a nadie de colaborar en su área de in-
fluencia.

Por supuesto, rechazar o editar el trabajo de otro por motivos técnicos es un asusto totalmente distinto.
En este caso, el factor decisivo es el contenido del trabajo, no quien actúa como portero. Podría suceder
que la misma persona realice la mayor parte de revisiones para un área particular, pero mientras no evite
que otros hagan su trabajo, las cosas deberían ir bien.

Para combatir cualquier territorialismo incipiente, o incluso la mera apariencia del mismo, muchos pro-
yectos han tomado medidas como la de prohibir la inclusión del nombre del autor, o de los encargados
elegidos, en el código fuente. Yo estoy de acuerdo de todo corazón con esta práctica; la utilizamos en el
proyecto Subversion y es, más o menos, la política oficial en la Apache Software Foundation. El miem-
bro del ASF Sander Striker lo explica de esta forma:

en la Apache Software Foundation desaconsejamos el uso de entradas con el nombre
del autor en el código fuente. Hay varias razones para esto además de motivos lega-
les. En el desarrollo en equipo se trata de trabajar en grupo y tratar al proyecto en
grupo. Dar crédito es bueno, y debe hacerse, pero de alguna manera esta forma de
actuar evita falsas atribuciones, incluso cuando sólo son implícitas. No hay una direc-
triz clara de cuando se ha de añadir o quitar entradas con el nombre del autor;
¿Añades tu nombre si cambias un comentario? ¿Cuando arreglas una sola línea de
código? ¿Has de borrar el nombre de alguien cuando reestructuras el código y es di-
ferente al anterior en un 95%? ¿Qué haces con la gente que va tocando cada archivo,
cambiando lo mínimo para que su nombre aparezca en todas partes?

Hay mejores formas de dar crédito, y nosotros preferimos usar esas. Desde un punto
de vista técnico las entradas con el nombre del autor son innecesarias; si quieres sa-
ber quién escribió una determinada línea de código se puede consultar el sistema de
control de versiones para averiguarlo. Además, las entradas de autor acostumbran a

Coordinando a los Voluntarios

134

estar caducadas; ¿Realmente quieres que se pongan en contacto contigo por unas lí-
neas de código que programaste hace cinco años y estás contento de haberlas olvida-
do?

El corazón de la identidad de un proyecto lo forman los archivos con el código fuente. Estos deben refle-
jar que la comunidad, como un todo, es responsable de los mismos, y no deben dividirse en pequeños
feudos.

La gente a veces defiende las entradas de autor en el código fuente argumentando que dan crédito de for-
ma visible a aquellos que han realizado más trabajo. Hay dos problemas con este argumento. Primero,
las entradas de autor traen consigo la incómoda pregunta de cuánto trabajo se ha de realizar para que tu
nombre también aparezca en el archivo. Segundo, las entradas fusiona la autoridad en un área con el cré-
dito en la misma; haber hecho la mayor parte del trabajo en un área no implica que se posea dicha área,
pero es difícil, sino imposible, evitar dicha implicación cuando hay nombres de personas al comienzo de
un archivo de código fuente. En cualquier caso, se puede saber el autor del código a través del sistema
de control de versiones u otros métodos alternativos como los archivos de las listas de correos, de esta
forma no se pierde ninguna información al no permitir las entradas de autor en el código fuente.

Si en tu proyecto se decide no permitir incluir entradas de autores en el código fuente, asegúrate de no
pasarte de la raya. Por ejemplo, muchos proyectos tienen un área contrib/ donde se almacenan pe-
queñas herramientas y scripts de ayuda, a menudo escritos por gente que no están asociados con el pro-
yecto de ninguna otra manera. Para ese tipo de archivos está bien que se introduzca los nombres de los
autores porque ellos no están desarrollando el proyecto en sí. Por otro lado, si una de estas herramientas
comienza a ser alterada por otros miembros del proyecto, puede que al final quieras trasladar dicha he-
rramienta a un lugar menos aislado y, suponiendo que el autor original aceptara, borrar los nombres de
los autores para que el archivo siga la política del resto de archivos del proyecto. Si el autor original no
se siente a gusto con esta iniciativa se pueden alcanzar acuerdos, por ejemplo:

indexclean.py: Borrar datos viejos del índice Scanley.
#
Autor Original: K. Maru <kobayashi@yetanotheremailservice.com>
Gestionado Ahora Por: The Scanley Project <http://www.scanley.org/>
and K. Maru.
#
...

Pero, dentro de lo posible, es mejor evitar dichos compromisos, además, la mayoría de autores están dis-
puestos a ser persuadidos puesto que se sienten felices de que su contribución pase a ser parte integral
del proyecto.

Lo importante es recordar que hay una continuidad entre el centro y la periferia de cualquier proyecto.
Los archivos del código fuente del software son claramente centrales en el proyecto, y deben ser gestio-
nados por la comunidad en su conjunto. Por otro lado, herramientas accesorias, o documentación, pue-
den ser el resultado del trabajo de un solo individuo, y lo puede gestionar él solo aunque su trabajo esté
asociado, en incluso distribuido, con el proyecto. En cualquier caso, no hay necesidad de aplicar la mis-
ma regla a todos los archivos siempre y cuando los recursos comunitarios sean gestionados por todos, y
no puedan convertirse en conto privado de nadie.

El Ratio de Automatización
Intenta evitar que los humanos hagan lo que pueden hacer las máquinas en su lugar. Como regla general,
automatizar una tarea común supone un esfuerzo diez veces menor al esfuerzo que le supondría al desa-
rrollador realizar la tarea a mano. Para tareas muy frecuentes, o muy complejas, el ratio puede ser veinte
veces superior e incluso mayor.

Coordinando a los Voluntarios

135

Verte a ti mismo como a un "Director de Proyecto", en lugar de como a un desarrollador, puede llegar a
ser una actitud positiva. A veces, algunos desarrolladores están demasiado enfrascados en su trabajo a
bajo nivel, esto no les permite tener una visión general del proyecto y darse cuenta de que todo el mundo
está desperdiciando mucho esfuerzo en realizar tareas manualmente que podrían muy bien automatizar-
se. Incluso aquellos que sí se dan cuenta, pueden no tomarse el tiempo para resolver el problema, al fin
el al cabo, el rendimiento de cada individuo para realizar dicha tarea no es una carga demasiada onerosa,
nadie se siente lo suficientemente molesto como para hacer algo al respecto. La automatización se hace
atractiva cuando se tiene en cuenta que, esa pequeña carga, se multiplica por el número de veces que ca-
da desarrollador ha de realizarla, y entonces ese número se múltiplica por el número de desarrolladores.

Aquí estoy utilizando la palabra "automatización" con un sentido muy amplio queriendo dar a entender,
no sólo acciones repetitivas donde una o dos variables cambian cada vez, sino también cualquier tipo de
infraestructura técnica que ayude a los humanos. La mínima automatización estándar necesaria para lle-
var a cabo un proyecto en nuestros días fue descrita en Capítulo 3, Infraestructura Técnica, pero cada
proyecto puede tener sus propios problemas especiales. Por ejemplo, un grupo trabajando en la docu-
mentación quizá quiera una página web que muestre las versiones más actualizadas del documento en
todo momento. Como la documentación se redacta normalmente en lenguajes del estilo de XML, puede
haber un paso de compilación, a menudo bastante intrincado, relacionado con la creación de documentos
para que puedan ser mostrados o bajados de la red. Crear un página web donde esa compilación tenga
lugar automáticamente en cada envío puede ser bastante complejo y llevar mucho tiempo—pero vale la
pena, incluso si te lleva uno o más días configurarla. Los beneficios globales de tener páginas actualiza-
das disponibles en todo momento son enormes, incluso si el coste de no tenerlas pueda parecer una sim-
ple molestia en un momento dado, para un desarrollador cualquiera.

Seguir estos pasos no sólo elimina las pérdidas de tiempo, sino también las obsesiones y frustraciones
que aparecen cuando los humanos cometen errores (inevitablemente lo harán) al intentar realizar proce-
dimientos complicados manualmente. Las tareas con múltiples pasos y operaciones deterministas son el
tipo de cosas para las que se inventaron las computadoras, y así dejamos que los humanos hagan cosas
más interesantes.

Comprobaciones Automáticas

Ejecutar pruebas automáticas es muy útil para cualquier proyecto de software, pero especialmente para
proyectos de código abierto porque las pruebas automáticas (especialmente las pruebas de regresión)
permiten que los desarrolladores se encuentren a gusto a la hora de cambiara código en áreas en las que
no están familiarizados y, así, se favorece el desarrollo de exploración. Como es muy difícil detectar fa-
llos a simple vista—básicamente has de adivinar dónde alguien puede haberse equivocado y realizar va-
rios experimentos para asegurarte de que no lo hizo—tener métodos automáticos para detectar dichos
errores ahorra muchísimo tiempo. También hace que la gente se relaje a la hora de refactorizar grandes
franjas de código y, por lo tanto, contribuye a que el software pueda ser gestionado a largo plazo.

Pruebas de Regresión

Por Pruebas de Regresión se entienden las comprobaciones que se realizan para detectar errores
que ya se han reparado. El objetivo de las pruebas de regresión es reducir las probabilidades de
que los cambios en el código rompan el software de forma inesperada. Cuando un proyecto de
software crece y se complica, las probabilidades de encontrarse dichos efectos secundarios crecen
al mismo paso. Un buen diseño puede reducir el crecimiento del ratio de dicha probabilidad, pero
no puede eliminar el problema completamente.

Como resultado de esta situación, muchos proyectos tienen una colección de pruebas, un progra-
ma aparte que ejecuta el software del proyecto en formas y maneras que se sabe producian errores
específicos con anterioridad. Cuando la colección de pruebas consigue reproducir uno de estos
errores, esto es conocido como regresión, dando a entender que las modificaciones de alguien han
vuelto a recrear inesperadamente un error corregido con anterioridad.

Coordinando a los Voluntarios

136

2Note that there would be no need to convert all the existing tests to the new framework; the two could happily exist side by side,
with old tests converted over only as they needed to be changed.

Ved también http://en.wikipedia.org/wiki/Regression_testing.

Las pruebas de regresión no son un panacea. Por un lado funciona bien para programas que tienen un es-
tilo de interfaz de lineas de comando. El software que se utiliza principalmente através de una interfaz
gráfica es mucho más difícil de utilizar mediante otro programa. Otro problema radica en que la estruc-
tura misma de la colección de pruebas puede ser muy compleja, con una curva de aprendizaje y cargas
de mantenimiento propias. Reducir esta complejidad es una de las cosas más útilies que puedes hacer,
incluso si ello implica una cantidad de tiempo considerable. Cuanto más fácil sea añadir nuevas pruebas
a la colección, más desarrolladores lo harán, y menos errores sobrevivirán a la versión final. Cualquier
esfuerzo empleado en que la creación de pruebas sea sencilla redundará con intereses en el desarrollo del
proyecto.

Muchos proyectos siguen la regla "¡No rompas el código!" , queriendo decir: no envíes cambios que ha-
gan que sea imposible compilar o ejecutar el software. Ser la persona que rompe el código es normal-
mente causa de cierta vergüenza y burla. Proyectos con colecciones de pruebas de regresión tienen ame-
nudo una nueva regla a modo de corolario: no envíes ningún cambio que hagan fallar las pruebas. Di-
chos fallos son más fáciles de identificar si se realizan ejecuciones automáticas cada noche de toda la co-
lección de pruebas, con los resultados enviados por email a los desrrolladores o a listas de correo dedica-
das al efecto; este es otro ejemplo de automatización que vale la pena.

La mayoría de los desarrolladores voluntarios están dispuestos a tomar el tiempo adicional para escribir
pruebas de regresión, cuando el sistema de pruebas es comprensible y fácil de trabajar. Acompañar mo-
dificaciones con pruebas es entendido como una responsabilidad de hacerlo, y es también una oportuni-
dad fácil para la colaboración: a menudo los desarrolladores dividen el trabajo para corregir un fallo,
uno de ellos corrige, y el otro escribe el ejemplo de prueba. El segundo desarrollador puede terminar con
más trabajo, y aunque escribir un ejemplo de prueba es menos satisfactorio que corregir realmente el fa-
llo, es imprescindible que el conjunto de pruebas no haga la experiencia más dolorosa de lo que debe
ser.

Some projects go even further, requiring that a new test accompany every bugfix or new feature. Whet-
her this is a good idea or not depends on many factors: the nature of the software, the makeup of the de-
velopment team, and the difficulty of writing new tests. The CVS (http://www.cvshome.org/) project has
long had such a rule. It is a good policy in theory, since CVS is version control software and therefore
very risk-averse about the possibility of munging or mishandling the user's data. The problem in practice
is that CVS's regression test suite is a single huge shell script (amusingly named sanity.sh), hard to
read and hard to modify or extend. The difficulty of adding new tests, combined with the requirement
that patches be accompanied by new tests, means that CVS effectively discourages patches. When I used
to work on CVS, I sometimes saw people start on and even complete a patch to CVS's own code, but gi-
ve up when told of the requirement to add a new test to sanity.sh.

It is normal to spend more time writing a new regression test than on fixing the original bug. But CVS
carried this phenomenon to an extreme: one might spend hours trying to design one's test properly, and
still get it wrong, because there are just too many unpredictable complexities involved in changing a
35,000-line Bourne shell script. Even longtime CVS developers often grumbled when they had to add a
new test.

This situation was due to a failure on all our parts to consider the automation ratio. It is true that swit-
ching to a real test framework—whether custom-built or off-the-shelf—would have been a major effort.2

But neglecting to do so has cost the project much more, over the years. How many bugfixes and new
features are not in CVS today, because of the impediment of an awkward test suite? We cannot know
the exact number, but it is surely many times greater than the number of bugfixes or new features the de-
velopers might forgo in order to develop a new test system (or integrate an off-the-shelf system). That
task would only take a finite amount of time, while the penalty of using the current test suite will conti-

Coordinando a los Voluntarios

137

http://en.wikipedia.org/wiki/Regression_testing
http://www.cvshome.org/

nue forever if nothing is done.

The point is not that having strict requirements to write tests is bad, nor that writing your test system as a
Bourne shell script is necessarily bad. It might work fine, depending on how you design it and what it
needs to test. The point is simply that when the test system becomes a significant impediment to deve-
lopment, something must be done. The same is true for any routine process that turns into a barrier or a
bottleneck.

Treat Every User as a Potential Volunteer
Each interaction with a user is an opportunity to get a new volunteer. When a user takes the time to post
to one of the project's mailing lists, or to file a bug report, he has already tagged himself as having more
potential for involvement than most users (from whom the project will never hear at all). Follow up on
that potential: if he described a bug, thank him for the report and ask him if he wants to try fixing it. If
he wrote to say that an important question was missing from the FAQ, or that the program's documenta-
tion was deficient in some way, then freely acknowledge the problem (assuming it really exists) and ask
if he's interested in writing the missing material himself. Naturally, much of the time the user will de-
mur. But it doesn't cost much to ask, and every time you do, it reminds the other listeners in that forum
that getting involved in the project is something anyone can do.

Don't limit your goals to acquiring new developers and documentation writers. For example, even trai-
ning people to write good bug reports pays off in the long run, if you don't spend too much time per per-
son, and if they go on to submit more bug reports in the future—which they are more likely to do if they
got a constructive reaction to their first report. A constructive reaction need not be a fix for the bug, alt-
hough that's always the ideal; it can also be a solicitation for more information, or even just a confirma-
tion that the behavior is a bug. People want to be listened to. Secondarily, they want their bugs fixed.
You may not always be able to give them the latter in a timely fashion, but you (or rather, the project as
a whole) can give them the former.

A corollary of this is that developers should not express anger at people who file well-intended but va-
gue bug reports. This is one of my personal pet peeves; I see developers do it all the time on various
open source mailing lists, and the harm it does is palpable. Some hapless newbie will post a useless re-
port:

Hi, I can't get Scanley to run. Every time I start it up, it just errors. Is anyone else
seeing this problem?

Some developer—who has seen this kind of report a thousand times, and hasn't stopped to think that the
newbie has not—will respond like this:

What are we supposed to do with so little information? Sheesh. Give us at least some
details, like the version of Scanley, your operating system, and the error.

This developer has failed to see things from the user's point of view, and also failed to consider the ef-
fect such a reaction might have on all the other people watching the exchange. Naturally a user who has
no programming experience, and no prior experience reporting bugs, will not know how to write a bug
report. What is the right way to handle such a person? Educate them! And do it in such a way that they
come back for more:

Sorry you're having trouble. We'll need more information in order to figure out what's
happening here. Please tell us the version of Scanley, your operating system, and the
exact text of the error. The very best thing you can do is send a transcript showing the
exact commands you ran, and the output they produced. See
http://www.scanley.org/how_to_report_a_bug.html for more.

This way of responding is far more effective at extracting the needed information from the user, because

Coordinando a los Voluntarios

138

it is written to the user's point of view. First, it expresses sympathy: You had a problem; we feel your
pain. (This is not necessary in every bug report response; it depends on the severity of the problem and
how upset the user seemed.) Second, instead of belittling her for not knowing how to report a bug, it
tells her how, and in enough detail to be actually useful—for example, many users don't realize that
"show us the error" means "show us the exact text of the error, with no omissions or abridgements." The
first time you work with such a user, you need to be specific about that. Finally, it offers a pointer to
much more detailed and complete instructions for reporting bugs. If you have successfully engaged with
the user, she will often take the time to read that document and do what it says. This means, of course,
that you have to have the document prepared in advance. It should give clear instructions about what
kind of information your development team wants to see in every bug report. Ideally, it should also evol-
ve over time in response to the particular sorts of omissions and misreports users tend to make for your
project.

The Subversion project's bug reporting instructions are a fairly standard example of the form (see Apén-
dice D, Ejemplo de Instrucciones para Informar sobre Fallos). Notice how they close with an invitation
to provide a patch to fix the bug. This is not because such an invitation will lead to a greater patch/report
ratio—most users who are capable of fixing bugs already know that a patch would be welcome, and
don't need to be told. The invitation's real purpose is to emphasize to all readers, especially those new to
the project or new to free software in general, that the project runs on volunteer contributions. In a sense,
the project's current developers are no more responsible for fixing the bug than is the person who repor-
ted it. This is an important point that many new users will not be familiar with. Once they realize it,
they're more likely to help make the fix happen, if not by contributing code then by providing a more
thorough reproduction recipe, or by offering to test fixes that other people post. The goal is to make
every user realize that there is no innate difference between herself and the people who work on the pro-
ject—that it's a question of how much time and effort one puts in, not a question of who one is.

The admonition against responding angrily does not apply to rude users. Occasionally people post bug
reports or complaints that, regardless of their informational content, show a sneering contempt at the
project for some failing. Often such people are alternately insulting and flattering, such as the person
who posted this to a Subversion mailing list:

Why is it that after almost 6 days there still aren't any binaries posted for the windows
platform?!? It's the same story every time and it's pretty frustrating. Why aren't these
things automated so that they could be available immediately?? When you post an
"RC" build, I think the idea is that you want users to test the build, but yet you don't
provide any way of doing so. Why even have a soak period if you provide no means of
testing??

Initial response to this rather inflammatory post was surprisingly restrained: people pointed out that the
project had a published policy of not providing official binaries, and said, with varying degrees of anno-
yance, that he ought to volunteer to produce them himself if they were so important to him. Believe it or
not, his next post started with these lines:

First of all, let me say that I think Subversion is awesome and I really appreciate the
efforts of everyone involved. [...]

...and then he went on to berate the project again for not providing binaries, while still not volunteering
to do anything about it. After that, about 50 people just jumped all over him, and I can't say I really min-
ded. The "zero-tolerance" policy toward rudeness advocated in “Echad a volar la mala educación” in Ca-
pítulo 2, Primeros Pasos applies to people with whom the project has (or would like to have) a sustained
interaction. But when someone makes it clear from the start that he is going to be a fountain of bile, the-
re is no point making him feel welcome.

Such situations are fortunately quite rare, and they are noticeably rarer in projects that make an effort to
engage users constructively and courteously from their very first interaction.

Coordinando a los Voluntarios

139

Share Management Tasks as Well as Technical
Tasks

Share the management burden as well as the technical burden of running the project. As a project beco-
mes more complex, more and more of the work is about managing people and information flow. There
is no reason not to share that burden, and sharing it does not necessarily require a top-down hierarchy
either—what happens in practice tends to be more of a peer-to-peer network topology than a military-sty-
le command structure.

Sometimes management roles are formalized, and sometimes they happen spontaneously. In the Subver-
sion project, we have a patch manager, a translation manager, documentation managers, issue managers
(albeit unofficial), and a release manager. Some of these roles we made a conscious decision to initiate,
others just happened by themselves; as the project grows, I expect more roles to be added. Below we'll
examine these roles, and a couple of others, in detail (except for release manager, which was already co-
vered in “Release manager” and “Dictatorship by Release Owner” earlier in this chapter).

As you read the role descriptions, notice that none of them requires exclusive control over the domain in
question. The issue manager does not prevent other people from making changes in the issues database,
the FAQ manager does not insist on being the only person to edit the FAQ, and so on. These roles are all
about responsibility without monopoly. An important part of each domain manager's job is to notice
when other people are working in that domain, and train them to do the things the way the manager
does, so that the multiple efforts reinforce rather than conflict. Domain managers should also document
the processes by which they do their work, so that when one leaves, someone else can pick up the slack
right away.

Sometimes there is a conflict: two or more people want the same role. There is no one right way to
handle this. You could suggest that each volunteer post a proposal (an "application") and have all the
committers vote on which is best. But this is cumbersome and potentially awkward. I find that a better
technique is just to ask the multiple candidates to settle it among themselves. They usually will, and will
be more satisfied with the result than if a decision had been imposed on them from the outside.

Patch Manager
In a free software project that receives a lot of patches, keeping track of which patches have arrived and
what has been decided about them can be a nightmare, especially if done in a decentralized way. Most
patches arrive as posts to the project's development mailing list (though some may appear first in the is-
sue tracker, or on external web sites), and there are a number of different routes a patch can take after
arrival.

Sometimes someone reviews the patch, finds problems, and bounces it back to the original author for
cleanup. This usually leads to an iterative process—all visible on the mailing list—in which the original
author posts revised versions of the patch until the reviewer has nothing more to criticize. It is not al-
ways easy to tell when this process is done: if the reviewer commits the patch, then clearly the cycle is
complete. But if she does not, it might be because she simply didn't have time, or doesn't have commit
access herself and couldn't rope any of the other developers into doing it.

Another frequent response to a patch is a freewheeling discussion, not necessarily about the patch itself,
but about whether the concept behind the patch is good. For example, the patch may fix a bug, but the
project prefers to fix that bug in another way, as part of solving a more general class of problems. Often
this is not known in advance, and it is the patch that stimulates the discovery.

Occasionally, a posted patch is met with utter silence. Usually this is due to no developer having time at
that moment to review the patch, so each hopes that someone else will do it. Since there's no particular
limit to how long each person waits for someone else to pick up the ball, and meanwhile other priorities
are always coming up, it's very easy for a patch to slip through the cracks without any single person in-
tending for that to happen. The project might miss out on a useful patch this way, and there are other

Coordinando a los Voluntarios

140

harmful side effects as well: it is discouraging to the author, who invested work in the patch, and it ma-
kes the project as a whole look a bit out of touch, especially to others considering writing patches.

The patch manager's job is to make sure that patches don't "slip through the cracks." This is done by fo-
llowing every patch through to some sort of stable state. The patch manager watches every mailing list
thread that results from a patch posting. If it ends in a commit of the patch, he does nothing. If it goes in-
to a review/revise iteration, ending with a final version of the patch but no commit, he files an issue
pointing to the final version, and to the mailing list thread around it, so that there is a permanent record
for developers to follow up on later. If the patch addresses an existing issue, he annotates that issue with
the relevant information, instead of opening a new issue.

When a patch gets no reaction at all, the patch manager waits a few days, then follows up asking if anyo-
ne is going to review it. This usually gets a reaction: a developer may explain that she doesn't think the
patch should be applied, and give the reasons why, or she may review it, in which case one of the pre-
viously described paths is taken. If there is still no response, the patch manager may or may not file an
issue for the patch, at his discretion, but at least the original submitter got some reaction.

Having a patch manager has saved the Subversion development team a lot of time and mental energy.
Without a designated person to take responsibility, every developer would constantly have to worry "If I
don't have time to respond to this patch right now, can I count on someone else doing it? Should I try to
keep an eye on it? But if other people are also keeping an eye on it, for the same reasons, then we'd have
needlessly duplicated effort." The patch manager removes the second-guessing from the situation. Each
developer can make the decision that is right for her at the moment she first sees the patch. If she wants
to follow up with a review, she can do that—the patch manager will adjust his behavior accordingly. If
she wants to ignore the patch completely, that's fine too; the patch manager will make sure it isn't forgot-
ten.

Because this system works only if people can depend on the patch manager being there without fail, the
role should be held formally. In Subversion, we advertised for it on the development and users mailing
lists, got several volunteers, and took the first one who replied. When that person had to step down (see
“Transitions” later in this chapter), we did the same thing again. We've never tried having multiple peo-
ple share the role, because of the communications overhead that would be required between them; but
perhaps at very high volumes of patch submission, a multiheaded patch manager might make sense.

Translation Manager
In software projects, "translation" can refer to two very different things. It can mean translating the soft-
ware's documentation into other languages, or it can mean translating the software itself—that is, having
the program display errors and help messages in the user's preferred language. Both are complex tasks,
but once the right infrastructure is in place, they are largely separable from other development. Because
the tasks are similar in some ways, it may make sense (depending on your project) to have a single trans-
lation manager handle both, or it may be better to have two different managers.

In the Subversion project, we have one translation manager handle both. He does not actually write the
translations himself, of course—he may help out on one or two, but as of this writing, he would need to
speak ten languages (twelve counting dialects) in order to work on all of them! Instead, he manages
teams of volunteer translators: he helps them coordinate among each other, and he coordinates between
the teams and the rest of the project.

Part of the reason the translation manager is necessary is that translators are a different demographic
from developers. They sometimes have little or no experience working in a version control repository, or
indeed with working as part of a distributed volunteer team at all. But in other respects they are often the
best kind of volunteer: people with specific domain knowledge who saw a need and chose to get invol-
ved. They are usually willing to learn, and enthusiastic to get to work. All they need is someone to tell
them how. The translation manager makes sure that the translations happen in a way that does not inter-
fere unnecessarily with regular development. He also serves as a sort of representative of the translators
as a unified body, whenever the developers must be informed of technical changes required to support
the translation effort.

Coordinando a los Voluntarios

141

Thus, the position's most important skills are diplomatic, not technical. For example, in Subversion we
have a policy that all translations should have at least two people working on them, because otherwise
there is no way for the text to be reviewed. When a new volunteer shows up offering to translate Subver-
sion to, say, Malagasy, the translation manager has to either hook him up with someone who posted six
months ago expressing interest in doing a Malagasy translation, or else politely ask the volunteer to go
find another Malagasy translator to work with as a partner. Once enough people are available, the mana-
ger sets them up with the proper kind of commit access, informs them of the project's conventions (such
as how to write log messages), and then keeps an eye out to make sure they adhere to those conventions.

Conversations between the translation manager and the developers, or between the translation manager
and translation teams, are usually held in the project's original language—that is, the language from
which all the translations are being made. For most free software projects, this is English, but it doesn't
matter what it is as long as the project agrees on it. (English is probably best for projects that want to at-
tract a broad international development community, though.)

Conversations within a particular translation team usually happen in their shared language, however, and
one of the other tasks of the translation manager is to set up a dedicated mailing list for each team. That
way the translators can discuss their work freely, without distracting people on the project's main lists,
most of whom would not be able to understand the translation language anyway.

Internationalization Versus Localization

Internationalization (I18N) and localization (L10N) both refer to the process of adapting a pro-
gram to work in linguistic and cultural environments other than the one for which it was originally
written. The terms are often treated as interchangeable, but in fact they are not quite the same
thing. As http://en.wikipedia.org/wiki/G11n writes:

The distinction between them is subtle but important: Internationalization is the adap-
tation of products for potential use virtually everywhere, while localization is the addi-
tion of special features for use in a specific locale.

For example, changing your software to losslessly handle Unicode
(http://en.wikipedia.org/wiki/Unicode) text encodings is an internationalization move, since it's
not about a particular language, but rather about accepting text from any of a number of langua-
ges. On the other hand, making your software print all error messages in Slovenian, when it de-
tects that it is running in a Slovenian environment, is a localization move.

Thus, the translation manager's task is principally about localization, not internationalization.

Documentation Manager
Keeping software documentation up-to-date is a never-ending task. Every new feature or enhancement
that goes into the code has the potential to cause a change in the documentation. Also, once the project's
documentation reaches a certain level of completeness, you will find that a lot of the patches people send
in are for the documentation, not for the code. This is because there are many more people competent to
fix bugs in prose than in code: all users are readers, but only a few are programmers.

Documentation patches are usually much easier to review and apply than code patches. There is little or
no testing to be done, and the quality of the change can be evaluated quickly just by review. Since the
quantity is high, but the review burden fairly low, the ratio of administrative overhead to productive
work is greater for documentation patches than for code patches. Furthermore, most of the patches will
probably need some sort of adjustment, in order to maintain a consistent authorial voice in the documen-
tation. In many cases, patches will overlap with or affect other patches, and need to be adjusted with res-
pect to each other before being committed.

Coordinando a los Voluntarios

142

http://en.wikipedia.org/wiki/G11n
http://en.wikipedia.org/wiki/Unicode

3IssueZilla is the issue tracker we use; it is a descendant of BugZilla.

Given the exigencies of handling documentation patches, and the fact that the code base needs to be
constantly monitored so the documentation can be kept up-to-date, it makes sense to have one person, or
a small team, dedicated to the task. They can keep a record of exactly where and how the documentation
lags behind the software, and they can have practiced procedures for handling large quantities of patches
in an integrated way.

Of course, this does not preclude other people in the project from applying documentation patches on
the fly, especially small ones, as time permits. And the same patch manager (see “Patch Manager” ear-
lier in this chapter) can track both code and documentation patches, filing them wherever the develop-
ment and documentation teams want them, respectively. (If the total quantity of patches ever exceeds
one human's capacity to track, though, switching to separate patch managers for code and documenta-
tion is probably a good first step.) The point of a documentation team is to have people who think of
themselves as responsible for keeping the documentation organized, up-to-date, and consistent with it-
self. In practice, this means knowing the documentation intimately, watching the code base, watching
the changes others commit to the documentation, watching for incoming documentation patches, and
using all these information sources to do whatever is necessary to keep the documentation healthy.

Issue Manager
The number of issues in a project's bug tracker grows in proportion to the number of people using the
software. Therefore, even as you fix bugs and ship an increasingly robust program, you should still ex-
pect the number of open issues to grow essentially without bound. The frequency of duplicate issues will
also increase, as will the frequency of incomplete or poorly described issues.

Issue managers help alleviate these problems by watching what goes into the database, and periodically
sweeping through it looking for specific problems. Their most common action is probably to fix up inco-
ming issues, either because the reporter didn't set some of the form fields correctly, or because the issue
is a duplicate of one already in the database. Obviously, the more familiar an issue manager is with the
project's bug database, the more efficiently she will be able to detect duplicate issues—this is one of the
main advantages of having a few people specialize in the bug database, instead of everyone trying to do
it ad hoc. When the group tries to do it in a decentralized manner, no single individual acquires a deep
expertise in the content of the database.

Issue managers can also help map between issues and individual developers. When there are a lot of bug
reports coming in, not every developer may read the issue notification mailing list with equal attention.
However, if someone who knows the development team is keeping an eye on all incoming issues, then
she can discreetly direct certain developers' attention to specific bugs when appropriate. Of course, this
has to be done with a sensitivity to everything else going on in development, and to the recipient's desi-
res and temperament. Therefore, it is often best for issue managers to be developers themselves.

Depending on how your project uses the issue tracker, issue managers can also shape the database to re-
flect the project's priorities. For example, in Subversion we schedule issues into specific future releases,
so that when someone asks "When will bug X be fixed?" we can say "Two releases from now," even if
we can't give an exact date. The releases are represented in the issue tracker as target milestones, a field
available in IssueZilla.3 As a rule, every Subversion release has one major new feature and a list of spe-
cific bug fixes. We assign the appropriate target milestone to all the issues planned for that release
(including the new feature—it gets an issue too), so that people can view the bug database through the
lens of release scheduling. These targets rarely remain static, however. As new bugs come in, priorities
sometimes get shifted around, and issues must be moved from one milestone to another so that each re-
lease remains manageable. This, again, is best done by people who have an overall sense of what's in the
database, and how various issues relate to each other.

Another thing issue managers do is notice when issues become obsolete. Sometimes a bug is fixed acci-
dentally as part of an unrelated change to the software, or sometimes the project changes its mind about
whether a certain behavior is buggy. Finding obsoleted issues is not easy: the only way to do it systema-

Coordinando a los Voluntarios

143

tically is by making a sweep over all the issues in the database. Full sweeps become less and less feasi-
ble over time, however, as the number of issues grows. After a certain point, the only way to keep the
database sane is to use a divide-and-conquer approach: categorize issues immediately on arrival and di-
rect them to the appropriate developer's or team's attention. The recipient then takes charge of the issue
for the rest of its lifetime, shepherding it to resolution or oblivion as necessary. When the database is
that large, the issue manager becomes more of an overall coordinator, spending less time looking at each
issue herself and more time getting it into the right person's hands.

FAQ Manager
FAQ maintenance is a surprisingly difficult problem. Unlike most other documents in a project, whose
content is planned out in advance by the authors, a FAQ is a wholly reactive document (see Mantenien-
do un FAQ (Preguntas Más Frecuentes)). No matter how big it gets, you still never know what the next
addition will be. And because it is always added to piecemeal, it is very easy for the document as a who-
le to become incoherent and disorganized, and even to contain duplicate or semi-duplicate entries. Even
when it does not have any obvious problems like that, there are often unnoticed interdependencies bet-
ween items—links that should be made but aren't—because the related items were added a year apart.

The role of a FAQ manager is twofold. First, she maintains the overall quality of the FAQ by staying fa-
miliar with at least the topics of all the questions in it, so that when people add new items that are dupli-
cates of, or related to, existing items, the appropriate adjustments can be made. Second, she watches the
project mailing lists and other forums for recurring problems or questions, and to write new FAQ entries
based on this input. This latter task can be quite complex: one must be able to follow a thread, recognize
the core questions raised in it, post a proposed FAQ entry, incorporate comments from others (since it's
impossible for the FAQ manager to be an expert in every topic covered by the FAQ), and sense when
the process is finished so the item can at last be added.

The FAQ manager usually also becomes the default expert in FAQ formatting. There are a lot of little
details involved in keeping a FAQ in shape (see “Treat all resources like archives” in Capítulo 6, Com-
munications); when random people edit the FAQ, they will sometimes forget some of these details.
That's okay, as long as the FAQ manager is there to clean up after them.

Various free software is available to help with the process of FAQ maintenance. It's fine to use it, as
long as it doesn't compromise the quality of the FAQ, but beware of over-automation. Some projects try
to fully automate the process of FAQ maintenance, allowing everyone to contribute and edit FAQ items
in a manner similar to a wiki (see “Wikis” in Capítulo 3, Infraestructura Técnica). I've seen this happen
particularly with Faq-O-Matic (http://faqomatic.sourceforge.net/), though it may be that the cases I saw
were simply abuses that went beyond what Faq-O-Matic was originally intended for. In any case, while
complete decentralization of FAQ maintenance does reduce the workload for the project, it also results
in a poorer FAQ. There's no one person with a broad view of the entire FAQ, no one to notice when cer-
tain items need updating or become obsolete entirely, and no one keeping watch for interdependencies
between items. The result is a FAQ that often fails to provide users what they were looking for, and in
the worst cases misleads them. Use whatever tools you need to to maintain your project's FAQ, but ne-
ver let the convenience of the tools seduce you into compromising the quality of the FAQ.

See Sean Michael Kerner's article, The FAQs on FAQs, at http://osdir.com/Article1722.phtml, for des-
criptions and evaluations of open source FAQ maintenance tools.

Transitions
From time to time, a volunteer in a position of ongoing responsibility (e.g., patch manager, translation
manager, etc.) will become unable to perform the duties of the position. It may be because the job turned
out to be more work than he anticipated, or it may be due to completely external factors: marriage, a
new baby, a new employer, or whatever.

When a volunteer gets swamped like this, he usually doesn't notice it right away. It happens by slow de-

Coordinando a los Voluntarios

144

http://faqomatic.sourceforge.net/
http://osdir.com/Article1722.phtml

grees, and there's no point at which he consciously realizes that he can no longer fulfill the duties of the
role. Instead, the rest of the project just doesn't hear much from him for a while. Then there will sud-
denly be a flurry of activity, as he feels guilty for neglecting the project for so long and sets aside a night
to catch up. Then you won't hear from him for a while longer, and then there might or might not be anot-
her flurry. But there's rarely an unsolicited formal resignation. The volunteer was doing the job in his
spare time, so resigning would mean openly acknowledging to himself that his spare time is permanently
reduced. People are often reluctant to do that.

Therefore, it's up to you and the others in the project to notice what's happening—or rather, not happe-
ning—and to ask the volunteer what's going on. The inquiry should be friendly and 100% guilt-free.
Your purpose is to find out a piece of information, not to make the person feel bad. Generally, the in-
quiry should be visible to the rest of the project, but if you know of some special reason why a private
inquiry would be better, that's fine too. The main reason to do it publicly is so that if the volunteer res-
ponds by saying that he won't be able to do the job anymore, there's a context established for your next
public post: a request for a new volunteer to fill that role.

Sometimes, a volunteer is unable to do the job he's taken on, but is either unaware or unwilling to admit
that fact. Of course, anyone may have trouble at first, especially if the responsibility is complex. Howe-
ver, if someone just isn't working out in the task he's taken on, even after everyone else has given all the
help and suggestions they can, then the only solution is for him to step aside and let someone new have a
try. And if the person doesn't see this himself, he'll need to be told. There's basically only one way to
handle this, I think, but it's a multistep process and each step is important.

First, make sure you're not crazy. Privately talk to others in the project to see if they agree that the pro-
blem is as serious as you think it is. Even if you're already positive, this serves the purpose of letting ot-
hers know that you're considering asking the person to step aside. Usually no one will object to
that—they'll just be happy you're taking on the awkward task, so they don't have to!

Next, privately contact the volunteer in question and tell him, kindly but directly, about the problems
you see. Be specific, giving as many examples as possible. Make sure to point out how people had tried
to help, but that the problems persisted without improving. You should expect this email to take a long
time to write, but with this sort of message, if you don't back up what you're saying, you shouldn't say it
at all. Say that you would like to find a new volunteer to fill the role, but also point out that there are
many other ways to contribute to the project. At this stage, don't say that you've talked to others about it;
nobody likes to be told that people were conspiring behind his back.

There are a few different ways things can go after that. The most likely reaction is that he'll agree with
you, or at any rate not want to argue, and be willing to step down. In that case, suggest that he make the
announcement himself, and then you can follow up with a post seeking a replacement.

Or, he may agree that there have been problems, but ask for a little more time (or for one more chance,
in the case of discrete-task roles like release manager). How you react to that is a judgement call, but
whatever you do, don't agree to it just because you feel like you can't refuse such a reasonable request.
That would prolong the agony, not lessen it. There is often a very good reason to refuse the request, na-
mely, that there have already been plenty of chances, and that's how things got to where they are now.
Here's how I put it in a mail to someone who was filling the release manager role but was not really sui-
ted for it:

> If you wish to replace me with some one else, I will gracefully
> pass on the role to who comes next. I have one request, which
> I hope is not unreasonable. I would like to attempt one more
> release in an effort to prove myself.

I totally understand the desire (been there myself!), but in
this case, we shouldn't do the "one more try" thing.

This isn't the first or second release, it's the sixth or
seventh... And for all of those, I know you've been dissatisfied

Coordinando a los Voluntarios

145

with the results too (because we've talked about it before). So
we've effectively already been down the one-more-try route.
Eventually, one of the tries has to be the last one... I think
[this past release] should be it.

In the worst case, the volunteer may disagree outright. Then you have to accept that things are going to
be awkward and plow ahead anyway. Now is the time to say that you talked to other people about it (but
still don't say who until you have their permission, since those conversations were confidential), and that
you don't think it's good for the project to continue as things are. Be insistent, but never threatening.
Keep in mind that with most roles, the transition really happens the moment someone new starts doing
the job, not the moment the old person stops doing it. For example, if the contention is over the role of,
say, issue manager, at any point you and other influential people in the project can solicit for a new issue
manager. It's not actually necessary that the person who was previously doing it stop doing it, as long as
he does not sabotage (deliberately or otherwise) the efforts of the new volunteer.

Which leads to a tempting thought: instead of asking the person to resign, why not just frame it as a mat-
ter of getting him some help? Why not just have two issue managers, or patch managers, or whatever the
role is?

Although that may sound nice in theory, it is generally not a good idea. What makes the manager roles
work—what makes them useful, in fact—is their centralization. Those things that can be done in a de-
centralized fashion are usually already being done that way. Having two people fill one managerial role
introduces communications overhead between those two people, as well as the potential for slippery dis-
placement of responsibility ("I thought you brought the first aid kit!" "Me? No, I thought you brought
the first aid kit!"). Of course, there are exceptions. Sometimes two people work extremely well together,
or the nature of the role is such that it can easily be spread across multiple people. But these are not li-
kely to be of much use when you see someone flailing in a role he is not suited for. If he'd appreciated
the problem in the first place, he would have sought such help before now. In any case, it would be dis-
respectful to let someone waste time continuing to do a job no one will pay attention to.

The most important factor in asking someone to step down is privacy: giving him the space to make a
decision without feeling like others are watching and waiting. I once made the mistake—an obvious
mistake, in retrospect—of mailing all three parties at once in order to ask Subversion's release manager
to step aside in favor of two other volunteers. I'd already talked to the two new people privately, and
knew that they were willing to take on the responsibility. So I thought, naïvely and somewhat insensiti-
vely, that I'd save some time and hassle by sending one mail to all of them to initiate the transition. I as-
sumed that the current release manager was already fully aware of the problems and would see the rea-
sonableness of my point immediately.

I was wrong. The current release manager was very offended, and rightly so. It's one thing to be asked to
hand off the job; it's another thing to be asked that in front of the people you'll hand it off to. Once I got
it through my head why he was offended, I apologized. He eventually did step aside gracefully, and con-
tinues to be involved with the project today. But his feelings were hurt, and needless to say, this was not
the most auspicious of beginnings for the new volunteers either.

Committers
As the only formally distinct class of people found in all open source projects, committers deserve spe-
cial attention here. Committers are an unavoidable concession to discrimination in a system which is ot-
herwise as non-discriminatory as possible. But "discrimination" is not meant as a pejorative here. The
function committers perform is utterly necessary, and I do not think a project could succeed without it.
Quality control requires, well, control. There are always many people who feel competent to make chan-
ges to a program, and some smaller number who actually are. The project cannot rely on people's own
judgement; it must impose standards and grant commit access only to those who meet them4. On the ot-
her hand, having people who can commit changes directly working side-by-side with people who cannot

Coordinando a los Voluntarios

146

4Note that the commit access means something a bit different in decentralized version control systems, where anyone can set up a
repository that is linked into the project, and give themselves commit access to that repository. Nevertheless, the concept of com-
mit access still applies: "commit access" is shorthand for "the right to make changes to the code that will ship in the group's next
release of the software." In centralized version control systems, this means having direct commit access; in decentralized ones, it
means having one's changes pulled into the main distribution by default. It is the same idea either way; the mechanics by which it
is realized are not terribly important.

sets up an obvious power dynamic. That dynamic must be managed so that it does not harm the project.

In “¿Quién Vota?” in Capítulo 4, Infraestructura Social y Política, we already discussed the mechanics
of considering new committers. Here we will look at the standards by which potential new committers
should be judged, and how this process should be presented to the larger community.

Choosing Committers
In the Subversion project, we choose committers primarily on the Hippocratic Principle: first, do no
harm. Our main criterion is not technical skill or even knowledge of the code, but merely that the com-
mitter show good judgement. Judgement can mean simply knowing what not to take on. A person might
post only small patches, fixing fairly simple problems in the code; but if the patches apply cleanly, do
not contain bugs, and are mostly in accord with the project's log message and coding conventions, and
there are enough patches to show a clear pattern, then an existing committer will usually propose that
person for commit access. If at least three people say yes, and no one objects, then the offer is made.
True, we might have no evidence that the person is able to solve complex problems in all areas of the
code base, but that does not matter: the person has made it clear that he is capable of at least judging his
own abilities. Technical skills can be learned (and taught), but judgement, for the most part, cannot.
Therefore, it is the one thing you want to make sure a person has before you give him commit access.

When a new committer proposal does provoke a discussion, it is usually not about technical ability, but
rather about the person's behavior on the mailing lists or in IRC. Sometimes someone shows technical
skill and an ability to work within the project's formal guidelines, yet is also consistently belligerent or
uncooperative in public forums. That's a serious concern; if the person doesn't seem to shape up over ti-
me, even in response to hints, then we won't add him as a committer no matter how skilled he is. In a vo-
lunteer group, social skills, or the ability to "play well in the sandbox", are as important as raw technical
ability. Because everything is under version control, the penalty for adding a committer you shouldn't
have is not so much the problems it could cause in the code (review would spot those quickly anyway),
but that it might eventually force the project to revoke the person's commit access—an action that is ne-
ver pleasant and can sometimes be confrontational.

Many projects insist that the potential committer demonstrate a certain level of technical expertise and
persistence, by submitting some number of nontrivial patches—that is, not only do these projects want
to know that the person will do no harm, they want to know that she is likely to do good across the code
base. This is fine, but be careful that it doesn't start to turn committership into a matter of membership in
an exclusive club. The question to keep in everyone's mind should be "What will bring the best results
for the code?" not "Will we devalue the social status associated with committership by admitting this
person?" The point of commit access is not to reinforce people's self-worth, it's to allow good changes to
enter the code with a minimum of fuss. If you have 100 committers, 10 of whom make large changes on
a regular basis, and the other 90 of whom just fix typos and small bugs a few times a year, that's still bet-
ter than having only the 10.

Revoking Commit Access
The first thing to be said about revoking commit access is: try not to be in that situation in the first place.
Depending on whose access is being revoked, and why, the discussions around such an action can be
very divisive. Even when not divisive, they will be a time-consuming distraction from productive work.

However, if you must do it, the discussion should be had privately among the same people who would
be in a position to vote for granting that person whatever flavor of commit access they currently have.
The person herself should not be included. This contradicts the usual injunction against secrecy, but in
this case it's necessary. First, no one would be able to speak freely otherwise. Second, if the motion fails,

Coordinando a los Voluntarios

147

you don't necessarily want the person to know it was ever considered, because that could open up ques-
tions ("Who was on my side? Who was against me?") that lead to the worst sort of factionalism. In cer-
tain rare circumstances, the group may want someone to know that revocation of commit access is or
was being considered, as a warning, but this openness should be a decision the group makes. No one
should ever, on her own initiative, reveal information from a discussion and ballot that others assumed
were secret.

Once someone's access is revoked, that fact is unavoidably public (see “Avoid Mystery” later in this
chapter), so try to be as tactful as you can in how it is presented to the outside world.

Partial Commit Access
Some projects offer gradations of commit access. For example, there might be contributors whose com-
mit access gives them free rein in the documentation, but who do not commit to the code itself. Common
areas for partial commit access include documentation, translations, binding code to other programming
languages, specification files for packaging (e.g., RedHat RPM spec files, etc.), and other places where a
mistake will not result in a problem for the core project.

Since commit access is not only about committing, but about being part of an electorate (see “¿Quién
Vota?” in Capítulo 4, Infraestructura Social y Política), the question naturally arises: what can the par-
tial committers vote on? There is no one right answer; it depends on what sorts of partial commit do-
mains your project has. In Subversion we've kept things fairly simple: a partial committer can vote on
matters confined exclusively to that committer's domain, and not on anything else. Importantly, we do
have a mechanism for casting advisory votes (essentially, the committer writes "+0" or
"+1 (non-binding)" instead of just "+1" on the ballot). There's no reason to silence people entirely just
because their vote isn't formally binding.

Full committers can vote on anything, just as they can commit anywhere, and only full committers vote
on adding new committers of any kind. In practice, though, the ability to add new partial committers is
usually delegated: any full committer can "sponsor" a new partial committer, and partial committers in a
domain can often essentially choose new committers for that same domain (this is especially helpful in
making translation work run smoothly).

Your project may need a slightly different arrangement, depending on the nature of the work, but the sa-
me general principles apply to all projects. Each committer should be able to vote on matters that fall
within the scope of her commit access, and not on matters outside that, and votes on procedural ques-
tions should default to the full committers, unless there's some reason (as decided by the full commit-
ters) to widen the electorate.

Regarding enforcement of partial commit access: it's often best not to have the version control system
enforce partial commit domains, even if it can. See “Autorizaciones” in Capítulo 3, Infraestructura Téc-
nica for the reasons why.

Dormant Committers
Some projects automatically remove people's commit access if they go a certain amount of time (say, a
year) without committing anything. I think this is usually unhelpful and even counterproductive, for two
reasons.

First, it may tempt some people into committing acceptable but unnecessary changes, just to prevent
their commit access from expiring. Second, it doesn't really serve any purpose. If the main criterion for
granting commit access is good judgement, then why assume someone's judgement would deteriorate
just because he's away from the project for a while? Even if he completely vanishes for years, not loo-
king at the code or following development discussions, when he reappears he'll know how out of touch
he is, and act accordingly. You trusted his judgement before, so why not trust it always? If high school
diplomas do not expire, then commit access certainly shouldn't.

Sometimes a committer may ask to be removed, or to be explicitly marked as dormant in the list of com-

Coordinando a los Voluntarios

148

mitters (see “Avoid Mystery” below for more about that list). In these cases, the project should accede to
the person's wishes, of course.

Avoid Mystery
Although the discussions around adding any particular new committer must be confidential, the rules
and procedures themselves need not be secret. In fact, it's best to publish them, so people realize that the
committers are not some mysterious Star Chamber, closed off to mere mortals, but that anyone can join
simply by posting good patches and knowing how to handle herself in the community. In the Subversion
project, we put this information right in the developer guidelines document, since the people most likely
to be interested in how commit access is granted are those thinking of contributing code to the project.

In addition to publishing the procedures, publish the actual list of committers. The traditional place for
this is a file called MAINTAINERS or COMMITTERS in the top level of the project's source code tree. It
should list all the full committers first, followed by the various partial commit domains and the members
of each domain. Each person should be listed by name and email address, though the address can be en-
coded to prevent spam (see “Ocultar las direcciones en los archivos” in Capítulo 3, Infraestructura Téc-
nica) if the person prefers that.

Since the distinction between full commit and partial commit access is obvious and well defined, it is
proper for the list to make that distinction too. Beyond that, the list should not try to indicate the infor-
mal distinctions that inevitably arise in a project, such as who is particularly influential and how. It is a
public record, not an acknowledgments file. List committers either in alphabetical order, or in the order
in which they arrived.

Credit
Credit is the primary currency of the free software world. Whatever people may say about their motiva-
tions for participating in a project, I don't know any developers who would be happy doing all their work
anonymously, or under someone else's name. There are tangible reasons for this: one's reputation in a
project roughly governs how much influence one has, and participation in an open source project can al-
so indirectly have monetary value, because some employers now look for it on resumés. There are also
intangible reasons, perhaps even more powerful: people simply want to be appreciated, and instinctively
look for signs that their work was recognized by others. The promise of credit is therefore one of best
motivators the project has. When small contributions are acknowledged, people come back to do more.

One of the most important features of collaborative development software (see Capítulo 3, Infraestructu-
ra Técnica) is that it keeps accurate records of who did what, when. Wherever possible, use these exis-
ting mechanisms to make sure that credit is distributed accurately, and be specific about the nature of the
contribution. Don't just write "Thanks to J. Random <jrandom@example.com>" if instead you can write
"Thanks to J. Random <jrandom@example.com> for the bug report and reproduction recipe" in a log
message.

In Subversion, we have an informal but consistent policy of crediting the reporter of a bug in either the
issue filed, if there is one, or the log message of the commit that fixes the bug, if not. A quick survey of
Subversion commit logs up to commit number 14525 shows that about 10% of commits give credit to
someone by name and email address, usually the person who reported or analyzed the bug fixed by that
commit. Note that this person is different from the developer who actually made the commit, whose na-
me is already recorded automatically by the version control system. Of the 80-odd full and partial com-
mitters Subversion has today, 55 were credited in the commit logs (usually multiple times) before they
became committers themselves. This does not, of course, prove that being credited was a factor in their
continued involvement, but it at least sets up an atmosphere in which people know they can count on
their contributions being acknowledged.

It is important to distinguish between routine acknowledgment and special thanks. When discussing a
particular piece of code, or some other contribution someone made, it is fine to acknowledge their work.

Coordinando a los Voluntarios

149

For example, saying "Daniel's recent changes to the delta code mean we can now implement feature X"
simultaneously helps people identify which changes you're talking about and acknowledges Daniel's
work. On the other hand, posting solely to thank Daniel for the delta code changes serves no immediate
practical purpose. It doesn't add any information, since the version control system and other mechanisms
have already recorded the fact that he made the changes. Thanking everyone for everything would be
distracting and ultimately information-free, since thanks are effective largely by how much they stand
out from the default, background level of favorable comment going on all the time. This does not mean,
of course, that you should never thank people. Just make sure to do it in ways that tend not to lead to
credit inflation. Following these guidelines will help:

• The more ephemeral the forum, the more free you should feel to express thanks there. For example,
thanking someone for their bugfix in passing during an IRC conversation is fine, as is an aside in an
email devoted mainly to other topics. But don't post an email solely to thank someone, unless it's for a
truly unusual feat. Likewise, don't clutter the project's web pages with expressions of gratitude. Once
you start that, it'll never be clear when or where to stop. And never put thanks into comments in the
code; that would only be a distraction from the primary purpose of comments, which is to help the
reader understand the code.

• The less involved someone is in the project, the more appropriate it is to thank her for something she
did. This may sound counterintuitive, but it fits with the attitude that expressing thanks is something
you do when someone contributes even more than you thought she would. Thus, to constantly thank
regular contributors for doing what they normally do would be to express a lower expectation of them
than they have of themselves. If anything, you want to aim for the opposite effect!

There are occasional exceptions to this rule. It's acceptable to thank someone for fulfilling his expec-
ted role when that role involves temporary, intense efforts from time to time. The canonical example
is the release manager, who goes into high gear around the time of each release, but otherwise lies
dormant (dormant as a release manager, in any case—he may also be an active developer, but that's a
different matter).

• As with criticism and crediting, gratitude should be specific. Don't thank people just for being great,
even if they are. Thank them for something they did that was out of the ordinary, and for bonus
points, say exactly why what they did was so great.

In general, there is always a tension between making sure that people's individual contributions are re-
cognized, and making sure the project is a group effort rather than a collection of individual glories. Just
remain aware of this tension and try to err on the side of group, and things won't get out of hand.

Forks
In “Forkability” in Capítulo 4, Infraestructura Social y Política, we saw how the potential to fork has
important effects on how projects are governed. But what happens when a fork actually occurs? How
should you handle it, and what effects can you expect it to have? Conversely, when should you initiate a
fork?

The answers depend on what kind of fork it is. Some forks are due to amicable but irreconcilable disa-
greements about the direction of the project; perhaps more are due to both technical disagreements and
interpersonal conflicts. Of course, it's not always possible to tell the difference between the two, as tech-
nical arguments may involve personal elements as well. What all forks have in common is that one
group of developers (or sometimes even just one developer) has decided that the costs of working with
some or all of the others now outweigh the benefits.

Once a project forks, there is no definitive answer to the question of which fork is the "true" or "origi-
nal" project. People will colloquially talk of fork F coming out of project P, as though P is continuing
unchanged down some natural path while F diverges into new territory, but this is, in effect, a declara-

Coordinando a los Voluntarios

150

tion of how that particular observer feels about it. It is fundamentally a matter of perception: when a lar-
ge enough percentage of observers agree, the assertion starts to become true. It is not the case that there
is an objective truth from the outset, one that we are only imperfectly able to perceive at first. Rather, the
perceptions are the objective truth, since ultimately a project—or a fork—is an entity that exists only in
people's minds anyway.

If those initiating the fork feel that they are sprouting a new branch off the main project, the perception
question is resolved immediately and easily. Everyone, both developers and users, will treat the fork as a
new project, with a new name (perhaps based on the old name, but easily distinguishable from it), a se-
parate web site, and a separate philosophy or goal. Things get messier, however, when both sides feel
they are the legitimate guardians of the original project and therefore have the right to continue using the
original name. If there is some organization with trademark rights to the name, or legal control over the
domain or web pages, that usually resolves the issue by fiat: that organization will decide who is the pro-
ject and who is the fork, because it holds all the cards in a public relations war. Naturally, things rarely
get that far: since everyone already knows what the power dynamics are, they will avoid fighting a battle
whose outcome is known in advance, and just jump straight to the end.

Fortunately, in most cases there is little doubt as to which is the project and which is the fork, because a
fork is, in essence, a vote of confidence. If more than half of the developers are in favor of whatever
course the fork proposes to take, usually there is no need to fork—the project can simply go that way it-
self, unless it is run as a dictatorship with a particularly stubborn dictator. On the other hand, if fewer
than half of the developers are in favor, the fork is a clearly minority rebellion, and both courtesy and
common sense indicate that it should think of itself as the divergent branch rather than the main line.

Handling a Fork
If someone threatens a fork in your project, keep calm and remember your long-term goals. The mere
existence of a fork isn't what hurts a project; rather, it's the loss of developers and users. Your real aim,
therefore, is not to squelch the fork, but to minimize these harmful effects. You may be mad, you may
feel that the fork was unjust and uncalled for, but expressing that publicly can only alienate undecided
developers. Instead, don't force people to make exclusive choices, and be as cooperative as is practicable
with the fork. To start with, don't remove someone's commit access in your project just because he deci-
ded to work on the fork. Work on the fork doesn't mean that person has suddenly lost his competence to
work on the original project; committers before should remain committers afterward. Beyond that, you
should express your desire to remain as compatible as possible with the fork, and say that you hope de-
velopers will port changes between the two whenever appropriate. If you have administrative access to
the project's servers, publicly offer the forkers infrastructure help at startup time. For example, offer
them a complete, deep-history copy of the version control repository, if there's no other way for them to
get it, so that they don't have to start off without historical data (this may not be necessary depending on
the version control system). Ask them if there's anything else they need, and provide it if you can. Bend
over backward to show that you are not standing in the way, and that you want the fork to succeed or fail
on its own merits and nothing else.

The reason to do all this—and do it publicly—is not to actually help the fork, but to persuade developers
that your side is a safe bet, by appearing as non-vindictive as possible. In war it sometimes makes sense
(strategic sense, if not human sense) to force people to choose sides, but in free software it almost never
does. In fact, after a fork some developers often openly work on both projects, and do their best to keep
the two compatible. These developers help keep the lines of communication open after the fork. They
allow your project to benefit from interesting new features in the fork (yes, the fork may have things you
want), and also increase the chances of a merger down the road.

Sometimes a fork becomes so successful that, even though it was regarded even by its own instigators as
a fork at the outset, it becomes the version everybody prefers, and eventually supplants the original by
popular demand. A famous instance of this was the GCC/EGCS fork. The GNU Compiler Collection
(GCC, formerly the GNU C Compiler) is the most popular open source native-code compiler, and also
one of the most portable compilers in the world. Due to disagreements between the GCC's official main-
tainers and Cygnus Software,5 one of GCC's most active developer groups, Cygnus created a fork of

Coordinando a los Voluntarios

151

5Now part of RedHat (http://www.redhat.com/).

GCC called EGCS. The fork was deliberately non-adversarial: the EGCS developers did not, at any
point, try to portray their version of GCC as a new official version. Instead, they concentrated on making
EGCS as good as possible, incorporating patches at a faster rate than the official GCC maintainers.
EGCS gained in popularity, and eventually some major operating system distributors decided to package
EGCS as their default compiler instead of GCC. At this point, it became clear to the GCC maintainers
that holding on to the "GCC" name while everyone switched to the EGCS fork would burden everyone
with a needless name change, yet do nothing to prevent the switchover. So GCC adopted the EGCS co-
debase, and there is once again a single GCC, but greatly improved because of the fork.

This example shows why you cannot always regard a fork as an unadulteratedly bad thing. A fork may
be painful and unwelcome at the time, but you cannot necessarily know whether it will succeed. There-
fore, you and the rest of the project should keep an eye on it, and be prepared not only to absorb features
and code where possible, but in the most extreme case to even join the fork if it gains the bulk of the
project's mindshare. Of course, you will often be able to predict a fork's likelihood of success by seeing
who joins it. If the fork is started by the project's biggest complainer and joined by a handful of disgrunt-
led developers who weren't behaving constructively anyway, they've essentially solved a problem for
you by forking, and you probably don't need to worry about the fork taking momentum away from the
original project. But if you see influential and respected developers supporting the fork, you should ask
yourself why. Perhaps the project was being overly restrictive, and the best solution is to adopt into the
mainline project some or all of the actions contemplated by the fork—in essence, to avoid the fork by
becoming it.

Initiating a Fork
All the advice here assumes that you are forking as a last resort. Exhaust all other possibilities before
starting a fork. Forking almost always means losing developers, with only an uncertain promise of gai-
ning new ones later. It also means starting out with competition for users' attention: everyone who's
about to download the software has to ask themselves: "Hmm, do I want that one or the other one?"
Whichever one you are, the situation is messy, because a question has been introduced that wasn't there
before. Some people maintain that forks are healthy for the software ecosystem as a whole, by a stan-
dard natural selection argument: the fittest will survive, which means that, in the end, everyone gets bet-
ter software. This may be true from the ecosystem's point of view, but it's not true from the point of view
of any individual project. Most forks do not succeed, and most projects are not happy to be forked.

A corollary is that you should not use the threat of a fork as an extremist debating technique—"Do
things my way or I'll fork the project!"—because everyone is aware that a fork that fails to attract deve-
lopers away from the original project is unlikely to survive long. All observers—not just developers, but
users and operating system packagers too—will make their own judgement about which side to choose.
You should therefore appear extremely reluctant to fork, so that if you finally do it, you can credibly
claim it was the only route left.

Do not neglect to take all factors into account in evaluating the potential success of your fork. For exam-
ple, if many of the developers on a project have the same employer, then even if they are disgruntled and
privately in favor of a fork, they are unlikely to say so out loud if they know that their employer is
against it. Many free software programmers like to think that having a free license on the code means no
one company can dominate development. It is true that the license is, in an ultimate sense, a guarantor of
freedom—if others want badly enough to fork the project, and have the resources to do so, they can. But
in practice, some projects' development teams are mostly funded by one entity, and there is no point pre-
tending that that entity's support doesn't matter. If it is opposed to the fork, its developers are unlikely to
take part, even if they secretly want to.

If you still conclude that you must fork, line up support privately first, then announce the fork in a non-
hostile tone. Even if you are angry at, or disappointed with, the current maintainers, don't say that in the
message. Just dispassionately state what led you to the decision to fork, and that you mean no ill will to-
ward the project from which you're forking. Assuming that you do consider it a fork (as opposed to an
emergency preservation of the original project), emphasize that you're forking the code and not the na-

Coordinando a los Voluntarios

152

http://www.redhat.com/

me, and choose a name that does not conflict with the project's name. You can use a name that contains
or refers to the original name, as long as it does not open the door to identity confusion. Of course it's fi-
ne to explain prominently on the fork's home page that it descends from the original program, and even
that it hopes to supplant it. Just don't make users' lives harder by forcing them to untangle an identity
dispute.

Finally, you can get things started on the right foot by automatically granting all committers of the origi-
nal project commit access to the fork, including even those who openly disagreed with the need for a
fork. Even if they never use the access, your message is clear: there are disagreements here, but no ene-
mies, and you welcome code contributions from any competent source.

Coordinando a los Voluntarios

153

Capítulo 9. Licencias, Copyrights y
Patentes

La licencia que elijas probablemente no tendrá un gran impacto en la adopción de tu proyecto, siempre
que sea software libre. Los usuarios generalmente eligen software basándose en la calidad y las funcio-
nalidades, no en los detalles de la licencia. No obstante, necesitas una comprensión básica de las impli-
caciones de las licencias libres, tanto para asegurar que la licencia del proyecto es compatible con sus
objetivos, como para discutir sobre las decisiones acerca de la licencia con otros. Por favor, ten en cuen-
ta que no soy abogado, y nada contenido en este capítulo debe ser tenido en cuenta como advertencia le-
gal. Para ello, necesitarás contratar un abogado o serlo.

Terminología
En cualquier discusión acerca de las licencias de software libre, lo primero que encuentras es que parece
que hay diferentes nomenclaturas para los mismos conceptos: software libre (free software), software de
fuentes abiertas (open source), FOSS, F/OSS, y FLOSS. Empecemos por ordenar estos términos, además
de algunos otros.

Software libre (free software)
Software que puede ser compartido y modificado con libertad, incluyendo el código fuente. El tér-
mino fue acuñado por Richard Stallman, quien lo utilizó en la GNU General Public License (GPL),
y quien fundó la Free Software Foundation (http://www.fsf.org/) para promocionar el concepto.

Aunque "software libre" cubre casi exactamente el mismo software que "software de fuentes abier-
tas", la FSF, entre otros, prefiere el término anterior porque hace hincapié en la idea de libertad, y el
concepto de libre distribución del software principalmente como un movimiento social y no técnico.
La FSF admite que el término es ambiguo—puede significar "free" como "de coste cero", en lugar
de "free" como "libertad"— pero considera que aún es el mejor término, y que las otras alternativas
en inglés tienen sus propias ambigüedades (a lo largo de este libro, "free" se utiliza con el sentido de
libertad, y no con el concepto de gratuito).

Software de fuentes abiertas (open source)
Software libre bajo otro nombre. Pero la diferencia en el nombre refleja una importante diferencia
filosófica: "open source" fue acuñado por la Open Source Initiative (http://www.opensource.org/)
como una alternativa deliberada a "free software", con el fin de hacer este tipo de software una op-
ción más apetecible para empresas, mediante su presentación como una metodología de desarrollo
en vez de un movimiento político. También podrían haber querido sobreponerse a otro estigma: lo
"gratuíto" es de baja calidad.

Mientras que cualquier licencia que sea "free software" es también "open source", y viceversa (con
unas pocas excepciones), la gente tiende a elegir un término y aferrarse a él. En general, aquellos
que prefieren "software libre" suelen tener una postura más filosófica o moral sobre el tema, mien-
tras que los que prefieren "open source" o no lo ven como un asunto de libertad, o no están interesa-
dos en publicitar el hecho de ese modo. Veáse “#Libre# vs #Abierto#” en Capítulo 1, Introducción
para una historia más detallada de este cisma.

La Free Software Foundation tiene una excelente —carente de objetividad, pero con matices y muy
justa —exégesis de los dos términos, en
http://www.fsf.org/licensing/essays/free-software-for-freedom.html. La visión de la Open Source
Initiative al respecto está en dos páginas:
http://www.opensource.org/advocacy/case_for_hackers.php#marketing y
http://www.opensource.org/advocacy/free-notfree.php.

154

http://www.fsf.org/
http://www.opensource.org/
http://www.fsf.org/licensing/essays/free-software-for-freedom.html
http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://www.opensource.org/advocacy/free-notfree.php

FOSS, F/OSS, FLOSS
Donde caben dos, caben tres, y eso es exactamente lo que está ocurriendo con los términos para el
software libre. El mundo académico, quizá buscando precisión e incluso por encima de la elegancia,
parece haber establecido FOSS, o a veces F/OSS, significando "Free / Open Source Software". Otra
variantes ganando adeptos es FLOSS, que quiere decir "Free / Libre Open Source Software" (libre
es común en varios idiomas y no sufre de la ambigüedad de "free"; veáse
http://en.wikipedia.org/wiki/FLOSS para más detalles).

Todos estos términos significan esencialmente lo mismo: software que puede ser modificado y re-
distribuido por cualquiera, algunas veces—pero no siempre— con el requisito de que los trabajos
derivados deben ser distribuíbles libremente bajo los mismos términos.

Conforme con las DFSG
Conforme con las Directrices de Software Libre de Debian (Debian Free Software Guidelines
,http://www.debian.org/social_contract#guidelines). Ésta es una prueba ampliamente usada para
comprobar si una licencia dada es verdaderamente software libre. La misión del proyecto Debian es
mantener un sistema operativo totalmente libre, de modo que cualquiera que lo instale nunca dude
de que tiene el derecho a modificar y redistribuir cualquier parte del sistema. Las Directrices de
Software Libre de Debian son los requisitos que la licencia de un paquete software debe cumplir pa-
ra poder ser incluído en Debian. Debido a que el proyecto Debian invirtió gran cantidad de tiempo
pensando en cómo realizar una prueba, las directrices que surgieron han demostrado ser muy robus-
tas (veáse http://en.wikipedia.org/wiki/DFSG), hasta donde yo sé, ninguna objección seria se ha lan-
zado ni por la Free Software Foundation ni por la Open Source Initiative. Si sabes que una licencia
es conforme con las DFSG, sabes que garantiza todas las libertades importantes (tales como la posi-
bilidad de un fork incluso en contra de los deseos del autor) requeridas para mantener la dinámica
de un proyecto libre. Todas las licencias tratadas en este capítulo son conformes a las DFSG.

Aprobadas por OSI
Aprobadas por la Open Source Initiative. Este es otra prueba ampliamente usada para comprobar si
una licencia cumple todas las libertades necesarias. La definición de la OSI del software libre está
basada en las DFSG, y una licencia que se ajusta a una prueba casi siempre se ajusta a la otra. A tra-
vés de los años han habido contadas excepciones, pero sólo relativas a un nicho de licencias de nin-
guna relevancia aquí. Al contrario que el proyecto Debian, la OSI mantiene una lista de todas las li-
cencias que ha aprobado, en http://www.opensource.org/licenses/, por lo que ser aprobada por OSI
es un estado sin ambigüedades: una licencia está o no está en la lista.

La Free Software Foundation también mantiene una lista de licencias en
http://www.fsf.org/licensing/licenses/license-list.html. La FSF clasifica las licencias no sólo por su
libertad, sino también por su compatibilidad con la GNU General Public License. La compatibilidad
con la GPL es un asunto important, que será tratado “La GPL y compatibilidad entre licencias” más
tarde en este capítulo.

Propietario, Código cerrado
Lo opuesto al software libre. Significa que el software se distribuye bajo términos tradicionales, con
licencias basadas en derechos de autor, donde los usuarios pagan por copia, o bajo otros términos
cualesquiera suficientemente restrictivos para prevenir la dinámica del software libre. Incluso el
software distribuido gratuítamente puede ser propietario, si su licencia no permite la libre redistribu-
ción y derecho a modificación.

Generalmente, software "proprietario" y software "de código cerrado" son sinónimos. Sin embargo,
"código cerrado" adicionalmente implica que el código fuente no puede ser visto. Debido a que el
código no puede verse en la mayoría del software privativo, esta diferencia generalmente no afecta.
Sin embargo, ocasionalmente alguien publica software propietario bajo una licencia que permite a
otros ver el código. Equivocadamente, algunas veces llaman a esto "código abierto" o "cercano al
código abierto", etc., pero es engañoso. La visibilidad del código no es el problema, el tema impor-
tante es que estás autorizado a hacer con él. Así, la diferencia entre el código cerrado o propietario
es en gran parte intrascendente, y ambos términos pueden tratarse como sinónimos.

Licencias, Copyrights y Patentes

155

http://en.wikipedia.org/wiki/FLOSS
http://www.debian.org/social_contract#guidelines
http://en.wikipedia.org/wiki/DFSG
http://www.opensource.org/licenses/
http://www.fsf.org/licensing/licenses/license-list.html

Algunas veces comercial es usado como sinónimo de "propietario", pero hablando con propiedad,
no es lo mismo. El software libre puede ser software comercial. Después de todo, el software libre
puede venderse, siempre que los compradores no estén restringidos a distribuir copias. También
puede comercializarse por otras vías, por ejemplo mediante la venta de soporte, servicios y certifi-
caciones. Hoy existen empresas multimillonarias basadas en el software libre, por tanto claramente
no es intrínsecamente anticomercial o contrario a las empresas. Por otro lado, es anti-proprietario
por su naturaleza y ésta es la clave de la diferencia con los modelos tradicionales de licencia por co-
pia.

Dominio público
Que no tiene derechos de autor, significa que no hay nada que tenga el derecho a restringir la copia
de la obra. Estar en el dominio público no es lo mismo que no tener autor. Todo tiene un autor, e in-
cluso si el autor del trabajo o los autores eligen ponerlo en el dominio público, no cambia el hecho
de que ellos lo escribieron.

Cuando un trabajo está en el dominio público, material de éste puede ser incorporado en trabajos
con derechos de autor, y entonces esa copia del material está cubierta bajo los mismos derechos de
autor que el trabajo completo. Pero esto no afecta a la disponibilidad del trabajo original, que per-
manece en el dominio público. Así, publicar algo en el dominio público es técnicamente un modo
de hacerlo "libre", de acuerdo con las directrices de la mayoría de organizaciones certificadoras de
software libre. Sin embargo, normalmente hay buenas razones para usar una licencia en vez de pu-
blicar algo en el dominio público: incluso con el software libre, ciertas restricciones pueden ser úti-
les, no sólo para el poseedor de los derechos de autor sino también para los beneficiarios, como
aclara la siguiente sección.

copyleft
Una licencia que utiliza la ley de propiedad intelectual para lograr el resultado contrario al derecho
de autor tradicional. Dependiendo de a quién preguntes, esto significa que cualquier licencia que
permita las libertades bajo discusión aquí, o, más estrictamente, las licencias que no sólo permiten
esas libertades sino que las imponen, estipulando que las libertades deben acompañar al trabajo. La
Free Software Foundation usa la segunda definición exclusivamente; en otros sitios, es un comple-
mento: mucha gente usa el término del mismo modo que la FSF, pero otros —incluyendo a algunos
que escriben en los principales medios de comunicación— tienden a usar la primera definición. Está
claro que no todo el mundo que usa el término es consciente de que hay distinciones que deben ha-
cerse.

El ejemplo clásico de la más limitada, una definición más estricta es la GNU General Public Licen-
se, que estipula que todo trabajo derivado debe estar también bajo dicha licencia, veáse “La GPL y
compatibilidad entre licencias” más tarde en este capítulo para más detalles.

Aspectos de las licencias
Aunque hay muchas licencias distintas de software libre disponibles, en los aspectos importantes, todas
dicen lo mismo: que cualquier persona puede modificar el código, que cualquier persona puede redistri-
burlo tanto en la forma original como modificada, y que los titulares del copyright y los autores no ofre-
cen garantía alguna (evitar las responsabilidades es especialmente importante teniendo en cuenta que la
gente puede ejecutar versiones modificadas incluso sin saberlo). Las diferencias entre las licencias se re-
ducen a unas pocas cuestiones muy recurrentes:

Compatibilidad con licencias propietarias
Algunas licencias libres permiten que el código que cubren se utilice en software propietario. Esto
no afecta a los términos de la licencia del software propietario: sigue siendo propietario como siem-
pre, sólo que contiene código de una fuente no propietaria. La Apache License, X Consortium Li-
cense, licencias estilo BSD, y licencias estilo MIT son ejemplos de licencias compatibles con licen-
cias propietarias.

Licencias, Copyrights y Patentes

156

Compatibilidad con otras licencias libres
Muchas licencias libres son compatibles con las demás, significando que el código bajo una licencia
puede combinarse con código bajo otra, y el resultado se distribuye bajo otra licencia sin violar los
términos de las otras. La mayor excepción a esto es la GNU General Public License, que requiere
que cualquier trabajo que utilice código GPL se distribuya bajo la GPL, y sin añadir ninguna restric-
ción más aparte de las de la GPL. La GPL es compatible con algunas licencias libres, pero no con
todas. Esto se trata con más detalle “La GPL y compatibilidad entre licencias”más tarde en este ca-
pítulo.

Obligación de acreditación
Algunas licencias libres estipulan que cualquier uso del código que cubren debe ir acompañado de
un aviso, cuya colocación y exhibición se suele especificar, dando crédito a los autores o titulares
del copyright del código. Estas licencias son generalmente compatibles con licencias propietarias:
no necesariamente requieren que el trabajo derivado sea libre, simplemente que se dé crédito al có-
digo libre.

Protección de la marca
Una variante de la obligación de acreditación. Las licencias que protegen las marcas especifican que
el nombre del software original (o los titulares del copyright, o su institución, etc.) no deben ser uti-
lizados por trabajos derivados sin el permiso previo por escrito. Aunque la obligación de acredita-
ción insiste en que se utilice cierto nombre, y la protección de la marca insiste en que no, son expre-
siones de un mismo deseo: que la reputación del código original se preserve y transmita, pero no sea
empañada por asociación.

Protección de la "integridad artística"
Algunas licencias (la Artistic License, usada para la implementación más popular del lenguaje de
programación Perl, y la licencia TeX de Donald Knuth, por ejemplo) requieren que la modificación
y redistribución se haga de modo que se distinga claramente entre la versión original del código y
cualquier modificación. Permiten esencialmente las mismas libertades que las demás licencias li-
bres, pero imponen una serie de requisitos que hacen fácil verificar la integridad del código original.
Estas licencias no han despertado mucho interés más allá de los programas para los cuáles se hicie-
ron, y no serán tratadas en este capítulo. Se mencionan aquí sólo con el propósito de exhaustividad.

La mayoría de estas disposiciones no son mutuamente excluyentes, y algunas licencias incluyen varias.
El hilo común entre ellas es que imponen unas exigencias al beneficiario a cambio del derecho de los
destinatarios a usar y/o redistribuir el código. Por ejemplo, algunos proyectos desean que su nombre y
reputación se transmita con el código, y esto hace que impongan las claúsulas de crédito o de protección
de la marca. Dependiendo de éstas, la carga añadida puede resultar en que algunos usuarios elijan un pa-
quete con una licencia menos exigente.

La GPL y compatibilidad entre licencias
De largo la mayor línea divisoria en cuanto a licencias es entre las licencias compatibles y las incompati-
bles con las licencias propietarias, es decir, entre la GNU General Public License y todas las demás. De-
bido a que el objetivo primordial de los autores de la GPL es la promoción del software libre, delibera-
damente crearon con sumo cuidado la licencia para hacer imposible la mezcla de código GPL en softwa-
re propietario. Específicamente, entre las claúsulas de la GPL (veáse
http://www.fsf.org/licensing/licenses/gpl.html para obtener el texto completo) están estos dos:

1. Todo trabajo derivado—es decir, todo trabajo que contenga una cantidad no trivial de código GPL
—debe ser distribuído bajo la GPL.

2. Ninguna restricción adicional debe ser añadida a la redistribución del trabajo original o de un trabajo
derivado (la frase literal es: "Usted no puede imponer ninguna restricción adicional a los beneficiarios
en el ejercicio de los derechos otorgados en este documento.").

Licencias, Copyrights y Patentes

157

http://www.fsf.org/licensing/licenses/gpl.html

Con estas claúsulas, la GPL triunfa al hacer la libertad contagiosa. Una vez que un programa se licencia
con la GPL, sus términos de distribución son virales —se pasan a cualquier sitio donde el código se in-
corpore, haciendo efectivamente imposible usar código GPL en programas de código cerrado. Sin em-
bargo, estas mismas claúsulas hacen a la GPL incompatible con algunas otras licencias libres. La manera
común de que esto ocurra es que la otra licencia impone un requisito —por ejemplo, una claúsula de cré-
dito requiriendo que se mencione a los autores originales de algún modo— que es incompatible con el
"Ninguna restricción adicional debe ser añadida..." de la GPL. Desde el punto de vista de la Free Soft-
ware Foundation, estas consecuencias secundarias son deseables o, al menos, no lamentables. La GPL
no sólo mantiene el software libre, sino que hace de tu software un agente para impulsar que otro soft-
ware sea libre también.

La cuestión de si éste es o no un buen modo de promover el software libre es una de las guerras santas
más persistentes en Internet (veáse “Evitando las Guerras Santas” en Capítulo 6, Communications), y no
la vamos a tratar aquí. Lo que importante para nuestro objetivos es que la compatibilidad con la GPL es
un problema importante cuando elegimos una licencia. La GPL es de lejos la licencia de software libre
más popular; en http://freshmeat.net/stats/#license, tiene un 68%, y la siguiente en el ranking tiene un
6%. Si quieres que tu código se puede emplear libremente con código GPL — y hay mucho código GPL
ahí fuera — debes elegir una licencia compatible con la GPL. Algunas de las licencias compatibles con
la GPL son también compatibles con software propietario: es decir, código bajo esa licencia puede usar-
se en un programa GPL, y también en un programa propietario. Por supuesto, los resultados de estas
mezclas no serán compatibles con la otra, ya que una estará bajo la GPL y otra estará bajo una licencia
de código cerrado. Pero esa preocupación se aplica únicamente a las obras derivadas, y no al código que
se distribuya en primer lugar.

Afortunadamente, la Free Software Foundation mantiene una lista que muestra qué licencias son compa-
tibles con la GPL y cuáles no, en http://www.gnu.org/licenses/license-list.html. Todas las licencias trata-
das en este capítulo están presentes en esa lista, en un lado u en otro.

Eligiendo una licencia
Cuando eliges una licencia para aplicarla a tu proyecto, si es posible usa una licencia existente en vez de
crear una nueva. Hay dos razones por la que licencias existentes son una mejor opción:

• Familiaridad. Si utilizas una de las tres o cuatro licencias más populares, la gente no sentirá que debe
leer textos legales para utilizar tu código, porque ya lo habrán hecho para esa licencia hace tiempo.

• Calidad. A menos que tengas un equipo de abogados a tu disposición, seguramente no consigas una li-
cencia sólida legalmente. Las licencias mencionadas aquí son producto de mucho trabajo y experien-
cia. A menos que tu proyecto tenga necesidades poco comunes, es poco probable que lo hagas mejor.

Para aplicar una de estas licencias a tu proyecto, lee “Cómo aplicar una licencia a nuestro software” en
Capítulo 2, Primeros Pasos.

La MIT / X Window System License
Si tu objetivo es que tu código sea accesible para el mayor número de desarrolladores y trabajos deriva-
dos posible, y no te importa que el código se pueda utilizar en software propietario, elije la MIT / X
Window System license (llamada así debido a que es la licencia bajo la cual el Massachusetts Institute
of Technology lanzó el código original del sistema de ventanas X). El mensaje básico de esta licencia es
"Eres libre para usar este código como quieras.". Es compatible con la GNU GPL, y es corta, sencilla, y
fácil de entender:

Copyright (c) <año> <propietarios del copyright>

Permission is hereby granted, free of charge, to any person obtaining

Licencias, Copyrights y Patentes

158

http://freshmeat.net/stats/#license
http://www.gnu.org/licenses/license-list.html

a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

(Tomada de http://www.opensource.org/licenses/mit-license.php.)

La GNU General Public License
Si prefieres que tu código no sea utilizado en software propietario, o si, al menos, no te importa si puede
o no usarse en éstos, elije la GNU General Public License
(http://www.fsf.org/licensing/licenses/gpl.html). La GPL es probablemente la licencia de software libre
más utilizada en el mundo a día de hoy; este capacidad de reconocerse en ella es una de las mayores
ventajas de la GPL.

Cuando programamos una biblioteca cuyo fin es ser usada en otros programas, considera detenidamente
si las restricciones que la GPL impone concuerdan con los objetivos de tu proyecto. En algunos casos —
por ejemplo, si intentas desbancar una biblioteca propietaria competidora que realiza la misma función
— tiene un sentido más estratégico el licenciar tu código de modo que pueda ser utilizada en software
propietario, incluso aunque no lo desearas. La Free Software Foundation preparó una alternativa a la
GPL para esas circunstancias: la GNU Library GPL, después renombrada como GNU Lesser GPL (la
mayoría de la gente utiliza directamente el acrónimo LGPL, de todos modos). La LGPL tiene restriccio-
nes menos estrictas que la GPL, y puede mezclarse más fácilmente con código no libre. Sin embargo,
también es más compleja y toma más tiempo entenderla, por lo que si no vas a utilizar la GPL, te reco-
miendo utilizar una licencia tipo MIT/X.

¿Es la GPL libre o no?

Una consecuencia de elegir la GPL es la posibilidad —pequeña, pero no infinitesimal— de encontrarte a
ti o a tu proyecto envueltos en una disputa acerca de si la GPL es o no realmente libre, dado que exige
ciertas restricciones en qué puedes hacer con el código—a saber, la restricción de que el código no pue-
de ser redistribuído bajo ninguna otra licencia. Para algunos, la existencia de esta restricción significa
que la GPL es "menos libre" que otras licencias más permisivas como la licencia MIT/X. El fin de este
argumento generalmente es, por supuesto, que dado que "más libre" debe ser mejor que "menos libre"
(después de todo, ¿quién no está a favor de la libertad?), esas licencias son mejores que la GPL.

Este debate es otra guerra santa (veáse “Evitando las Guerras Santas” en Capítulo 6, Communications)
muy popular. Evita participar en ella, al menos en foros del proyecto. No intentes probar que la GPL es
menos libre, tan libre o más libre que otras licencias. En vez de eso, explica las razones específicas por
las que elegiste la GPL para tu proyecto. Si fue el conocimiento de la licencia, di eso. Si también fue por
las restricciones de licencia libre para trabajos derivados, dilo también, pero niégate a discutir acerca de
si esto hace al código más o menos libre. La libertad es un tema complejo, y no tiene mucho sentido ha-
blar de ella si la terminología que va a ser utilizada como alimento para un caballo de acecho.

Dado que esto es un libro y no un hilo de una lista de correo, sin embargo, admitiré que nunca entendí el

Licencias, Copyrights y Patentes

159

http://www.opensource.org/licenses/mit-license.php
http://www.fsf.org/licensing/licenses/gpl.html

argumento "la GPL no es libre". La única restricción que la GPL impone previene a la gente de imponer
mayores restricciones. Decir que eso significa tener menos libertad siempre me ha parecido como decir
que la abolición de la esclavitud reduce la libertad, porque previene que cierta gente posea esclavos.

(Oh, y si te ves inmerso en un debate sobre ello, no aumentes la apuesta haciendo analogías inflamato-
rias.)

¿Qué tal la licencia BSD?
Una gran cantidad de software libre se distribuye bajo la BSD license (o algunas veces una licencia esti-
lo BSD). La licencia original BSD fue usada por la Berkeley Software Distribution, en la que la Univer-
sidad de California lanzó partes importantes de una implementación de Unix. Esta licencia (el texto
exacto puede verse en la sección 2.2.2 de http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6) era si-
milar en esencia a la licencia MIT/X, excepto por una claúsula:

Todo material publicitado que mencione características o use este software debe mos-
trar la siguiente advertencia: "Este producto contiene software desarrollado por la
Universidad de California, Lawrence Berkeley Laboratory.

La presencia de esta claúsula no sólo hace a la BSD incompatible con la GPL, sino que también sienta
un peligroso precedente: mientras otras organizaciones pongan claúsulas publicitarias similares en su
software libre —sustituyendo su propio nombre en lugar de "la Universidad de California, Lawrence
Berkeley Laboratory"— los redistribuidores del software se enfrentan a una creciente carga en cuanto a
lo que se ven requeridos a mostrar. Afortunadamente, muchos de los proyectos que usaron esta licencia
se percataron del problema, y simplemente eliminaron esa claúsula. En 1999, incluso la Universidad de
California lo hizo.

El resultado es la licencia BSD revisada, que es simplemente la licencia BSD original sin la claúsula pu-
blicitaria. Sin embargo, la historia hace a la expresión "licencia BSD" un poco ambigua: ¿se refiere a la
original, o a la versión revisada? Por esto es por lo que prefiero la licencia MIT/X, que es equivalente en
esencia, y no sufre ninguna ambigüedad. Sin embargo, quizá hay una razón para preferir la BSD revisa-
da frente a la licencia MIT/X, que es que la BSD incluye esta claúsula:

Ni el nombre de la <ORGANIZACIÓN> ni los nombres de sus contribuyentes debe
usarse para apoyar o promocionar productos derivados de este software sin permiso
previo por escrito explícito.

No queda claro que sin esa claúsula, un receptor del software podría tener el derecho a usar el nombre
del autor, pero esa claúsula borra cualquier tipo de duda. Para organizaciones preocupadas por el control
de marcas registradas, por lo tanto, la licencia BSD puede ser preferible a la MIT/X. En general, sin em-
bargo, una licencia de copyright liberal no implica que los receptores tengan ningún derecho a usar sus
marcas — las leyes de copyright y las leyes de marcas son dos cosas diferentes.

Si quieres utilizar la licencia BSD revisada, una plantilla está disponible en
http://www.opensource.org/licenses/bsd-license.php.

Asignación y propiedad del Copyright
Hay tres maneras de gestionar la propiedad del copyrighy en el software libre contribuído por mucha
gente. La primera es ignorar totalmente el asunto del copyright (no recomiendo esta). La segunda es re-
coger un acuerdo del contribuyente a la licencia(CLA, de las iniciales de contributor license agreement)
de cada persona que trabaja en el proyecto, garantizando explícitamente al proyecto el derecho de usar el
código de esa persona. Generalmente esto es suficiente para la mayoría de proyectos, y algo positivo es-
tá en que en algunas jurisdicciones, los CLAs pueden ser enviados por correo electrónico. El tercer mo-
do es obtener asignaciones de propiedad del copyright de parte de los contribuyentes, de modo que el

Licencias, Copyrights y Patentes

160

http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6
http://www.opensource.org/licenses/bsd-license.php

proyecto (por ejemplo, alguna entidad legal, generalmente sin ánimo de lucro) es la propietaria de todo
el copyright. Esta es la manera más hermética legalmente, pero es también la más onerosa para los con-
tribuyentes, sólo algunos proyectos insisten en ella.

Nótese que incluso bajo la propiedad centralizada del copyright, el código permanece libre, porque las
licencias de software libre no dan al propietario del copyrifht el derecho a apropiarse retroactivamente
de todas las copias del código. Por lo tanto, incluso si el proyecto, como entidad jurídica, de repente de-
cide cambiar y empezar a distribuir el código bajo una licencia restrictiva, eso no causaría un problema a
la comunidad. Los otros desarrolladores podrían simplemente comenzar un fork basado en la última co-
pia libre del código, y continuar como si nada hubiera pasado. Debido a que saben que pueden hacer
eso, muchos contribuyentes cooperan cuando se les pide firmar un CLA o asignar el copyright.

No hacer nada
Algunos proyectos nunca recogen CLAs o asignaciones de copyright de sus contribuyentes. En lugar de
eso, aceptan el código siempre que quede razonablemente claro que el contribuyente pretendía que fuera
incluído en el proyecto.
.

Bajo circunstancias normales, eso es suficiente. Pero de vez en cuando alguien puede decidir demandar
por infringimiento del copyright, alegando que ellos son los verdaderos propietarios del código en cues-
tión y que nunca accedieron a que fuera distribuído por el proyecto bajo una licencia libre. Por ejemplo,
el Grupo SCO hizo algo como esto con el proyecto Linux, veáse
http://en.wikipedia.org/wiki/SCO-Linux_controversies para más detalles. Cuando esto ocurre, el proyec-
to no tiene documentación que demuestre que el contribuyente formalmente ha garantizado el derecho a
utilizar el código, que puede hacer la defensa legal más complicada.

Contributor License Agreements
CLAs probably offer the best tradeoff between safety and convenience. A CLA is typically an electronic
form that a developer fills out and sends in to the project. In many jurisdictions, email submission is
enough. A secure digital signature may or may not be required; consult a lawyer to find out what method
would be best for your project.

Most projects use two slightly different CLAs, one for individuals, and one for corporate contributors.
But in both types, the core language is the same: the contributor grants the project "...perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare deri-
vative works of, publicly display, publicly perform, sublicense, and distribute [the] Contributions and
such derivative works." Again, you should have a lawyer approve any CLA, but if you get all those ad-
jectives into it, you're probably fine.

When you request CLAs from contributors, make sure to emphasize that you are not asking for actual
copyright assignment. In fact, many CLAs start out by reminding the reader of this:

This is a license agreement only; it does not transfer copyright ownership and does
not change your rights to use your own Contributions for any other purpose.

Here are some examples:

• Individual contributor CLAs:

• http://apache.org/licenses/icla.txt

• http://code.google.com/legal/individual-cla-v1.0.html

• Corporate contributor CLAs:

Licencias, Copyrights y Patentes

161

http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://apache.org/licenses/icla.txt
http://code.google.com/legal/individual-cla-v1.0.html

• http://apache.org/licenses/cla-corporate.txt

• http://code.google.com/legal/corporate-cla-v1.0.html

Transfer of Copyright
Copyright transfer means that the contributor assigns to the project copyright ownership on her contribu-
tions. Ideally, this is done on paper and either faxed or snail-mailed to the project.

Some projects insist on full assignment because having a single legal entity own the copyright on the en-
tire code base can be useful if the terms of the open source license ever need to be enforced in court. If
no single entity has the right to do it, all the contributors might have to cooperate, but some might not
have time or even be reachable when the issue arises.

Different organizations apply different amounts of rigor to the task of collecting assignments. Some
simply get an informal statement from a contributor on a public list mailing list—something to the effect
of "I hereby assign copyright in this code to the project, to be licensed under the same terms as the rest
of the code." At least one lawyer I've talked to says that's really enough, presumably because it happens
in a context where copyright assignment is normal and expected anyway, and because it represents a bo-
na fide effort on the project's part to ascertain the developer's true intentions. On the other hand, the Free
Software Foundation goes to the opposite extreme: they require contributors to physically sign and mail
in a piece of paper containing a formal statement of copyright assignment, sometimes for just one contri-
bution, sometimes for current and future contributions. If the developer is employed, the FSF asks that
the employer sign it too.

The FSF's paranoia is understandable. If someone violates the terms of the GPL by incorporating some
of their software into a proprietary program, the FSF will need to fight that in court, and they want their
copyrights to be as airtight as possible when that happens. Since the FSF is copyright holder for a lot of
popular software, they view this as a real possibility. Whether your organization needs to be similarly
scrupulous is something only you can decide, in consultation with lawyers. In general, unless there's so-
me specific reason why your project needs full copyright assignment, just go with CLAs; they're easier
for everyone.

Dual Licensing Schemes
Some projects try to fund themselves by using a dual licensing scheme, in which proprietary derivative
works may pay the copyright holder for the right to use the code, but the code still remains free for use
by open source projects. This tends to work better with code libraries than with standalone applications,
naturally. The exact terms differ from case to case. Often the license for the free side is the GNU GPL,
since it already bars others from incorporating the covered code into their proprietary product without
permission from the copyright holder, but sometimes it is a custom license that has the same effect. An
example of the former is the MySQL license, described at
http://www.mysql.com/company/legal/licensing/; an example of the latter is Sleepycat Software's licen-
sing strategy, described at http://www.sleepycat.com/download/licensinginfo.shtml.

You might be wondering: how can the copyright holder offer proprietary licensing for a mandatory fee if
the terms of the GNU GPL stipulate that the code must be available under less restrictive terms? The
answer is that the GPL's terms are something the copyright holder imposes on everyone else; the owner
is therefore free to decide not to apply those terms to itself. A good way to think of it is to imagine that
the copyright owner has an infinite number of copies of the software stored in a bucket. Each time it ta-
kes one out of the bucket to send into the world, it can decide what license to put on it: GPL, proprietary,
or something else. Its right to do this is not tied to the GPL or any other open source license; it is simply
a power granted by copyright law.

The attractiveness of dual licensing is that, at its best, it provides a way for a free software project to get

Licencias, Copyrights y Patentes

162

http://apache.org/licenses/cla-corporate.txt
http://code.google.com/legal/corporate-cla-v1.0.html
http://www.mysql.com/company/legal/licensing/
http://www.sleepycat.com/download/licensinginfo.shtml

1Sun Microsystems and IBM have also made at least a gesture at the problem from the other direction, by freeing large numbers of
software patents—1600 and 500 respectively—for use by the open source community. I am not a lawyer and thus can't evaluate
the real utility of these grants, but even if they are all important patents, and the terms of the grants make them truly free for use by
any open source project, it would still be only a drop in the bucket.
2See http://lpf.ai.mit.edu/Whatsnew/survey.html for one such survey.

a reliable income stream. Unfortunately, it can also interfere with the normal dynamics of open source
projects. The problem is that any volunteer who makes a code contribution is now contributing to two
distinct entities: the free version of the code and the proprietary version. While the contributor will be
comfortable contributing to the free version, since that's the norm in open source projects, she may feel
funny about contributing to someone else's semi-proprietary revenue stream. The awkwardness is exa-
cerbated by the fact that in dual licensing, the copyright owner really needs to gather formal, signed
copyright assignments from all contributors, in order to protect itself from a disgruntled contributor later
claiming a percentage of royalties from the proprietary stream. The process of collecting these assign-
ment papers means that contributors are starkly confronted with the fact that they are doing work that
makes money for someone else.

Not all volunteers will be bothered by this; after all, their contributions go into the open source edition
as well, and that may be where their main interest lies. Nevertheless, dual licensing is an instance of the
copyright holder assigning itself a special right that others in the project do not have, and is thus bound
to raise tensions at some point, at least with some volunteers.

What seems to happen in practice is that companies based on dual licensed software do not have truly
egalitarian development communities. They get small-scale bug fixes and cleanup patches from external
sources, but end up doing most of the hard work with internal resources. For example, Zack Urlocker,
vice president of marketing at MySQL, told me that the company generally ends up hiring the most acti-
ve volunteers anyway. Thus, although the product itself is open source, licensed under the GPL, its de-
velopment is more or less controlled by the company, albeit with the (extremely unlikely) possibility
that someone truly dissatisfied with the company's handling of the software could fork the project. To
what degree this threat preëmptively shapes the company's policies I don't know, but at any rate,
MySQL does not seem to be having acceptance problems either in the open source world or beyond.

Patents
Software patents are the lightning rod issue of the moment in free software, because they pose the only
real threat against which the free software community cannot defend itself. Copyright and trademark
problems can always be gotten around. If part of your code looks like it may infringe on someone else's
copyright, you can just rewrite that part. If it turns out someone has a trademark on your project's name,
at the very worst you can just rename the project. Although changing names would be a temporary in-
convenience, it wouldn't matter in the long run, since the code itself would still do what it always did.

But a patent is a blanket injunction against implementing a certain idea. It doesn't matter who writes the
code, nor even what programming language is used. Once someone has accused a free software project
of infringing a patent, the project must either stop implementing that particular feature, or face an expen-
sive and time-consuming lawsuit. Since the instigators of such lawsuits are usually corporations with
deep pockets—that's who has the resources and inclination to acquire patents in the first place—most
free software projects cannot afford the latter possibility, and must capitulate immediately even if they
think it highly likely that the patent would be unenforceable in court. To avoid getting into such a situa-
tion in the first place, free software projects are starting to code defensively, avoiding patented algorit-
hms in advance even when they are the best or only available solution to a programming problem.1

Surveys and anecdotal evidence show that not only the vast majority of open source programmers, but a
majority of all programmers, think that software patents should be abolished entirely.2 Open source pro-
grammers tend to feel particularly strongly about it, and may refuse to work on projects that are too clo-
sely associated with the collection or enforcement of software patents. If your organization collects soft-
ware patents, then make it clear, in a public and irrevocable way, that the patents would never be enfor-
ced on open source projects, and that they are only to be used as a defense in case some other party ini-
tiates an infringement suit against your organization. This is not only the right thing to do, it's also good

Licencias, Copyrights y Patentes

163

http://lpf.ai.mit.edu/Whatsnew/survey.html

3For example, RedHat has pledged that open source projects are safe from its patents, see
http://www.redhat.com/legal/patent_policy.html.

open source public relations.3

Unfortunately, collecting patents for defensive purposes is a rational action. The current patent system,
at least in the United States, is by its nature an arms race: if your competitors have acquired a lot of pa-
tents, then your best defense is to acquire a lot of patents yourself, so that if you're ever hit with a patent
infringement suit you can respond with a similar threat—then the two parties usually sit down and work
out a cross-licensing deal so that neither of them has to pay anything, except to their intellectual property
lawyers of course.

The harm done to free software by software patents is more insidious than just direct threats to code de-
velopment, however. Software patents encourage an atmosphere of secrecy among firmware designers,
who justifiably worry that by publishing details of their interfaces they will be giving technical help to
competitors seeking to slap them with patent infringement suits. This is not just a theoretical danger; it
has apparently been happening for a long time in the video card industry, for example. Many video card
manufacturers are reluctant to release the detailed programming specifications needed to produce high-
performance open source drivers for their cards, thus making it impossible for free operating systems to
support those cards to their full potential. Why would the manufacturers do this? It doesn't make sense
for them to work against software support; after all, compatibility with more operating systems can only
mean more card sales. But it turns out that, behind the design room door, these shops are all violating
one another's patents, sometimes knowingly and sometimes accidentally. The patents are so unpredicta-
ble and so potentially broad that no card manufacturer can ever be certain it's safe, even after doing a pa-
tent search. Thus, manufacturers dare not publish their full interface specifications, since that would ma-
ke it much easier for competitors to figure out whether any patents are being infringed. (Of course, the
nature of this situation is such that you will not find a written admission from a primary source that it is
going on; I learned it through a personal communication.)

Some free software licenses have special clauses to combat, or at least discourage, software patents. The
GNU GPL, for example, contains this language:

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

[...]

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) also contains anti-
patent requirements. First, it stipulates that anyone distributing code under the license must implicitly in-

Licencias, Copyrights y Patentes

164

http://www.redhat.com/legal/patent_policy.html
http://www.apache.org/licenses/LICENSE-2.0

clude a royalty-free patent license for any patents they might hold that could apply to the code. Second,
and most ingeniously, it punishes anyone who initiates a patent infringement claim on the covered work,
by automatically terminating their implicit patent license the moment such a claim is made:

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except
as stated in this section) patent license to make, have made, use,
offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s)
alone or by combination of their Contribution(s) with the Work to
which such Contribution(s) was submitted. If You institute patent
litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this
License for that Work shall terminate as of the date such litigation
is filed.

Although it is useful, both legally and politically, to build patent defenses into free software licenses this
way, in the end these steps will not be enough to dispel the chilling effect that the threat of patent law-
suits has on free software. Only changes in the substance or interpretation of international patent law
will do that. To learn more about the problem, and how it's being fought, go to
http://www.nosoftwarepatents.com/. The Wikipedia article http://en.wikipedia.org/wiki/Software_patent
also has a lot of useful information on software patents. I've also written a blog post summarizing the ar-
guments against software patents, at
http://www.rants.org/2007/05/01/how-to-tell-that-software-patents-are-a-bad-idea/.

Recursos adicionales
Este capítulo es sólo una introducción a las incidencias del licenciamiento de software libre. A pesar de
que espero que contenga suficiente información para iniciarte en tu propio proyecto de software libre,
cualquier investigación seria acerca de las licencias puede fácilmente aumentar la que este libro ofrece.
Aquí hay una lista de recursos acerca de licencias de software libre:

• Understanding Open Source and Free Software Licensing por Andrew M. St. Laurent. Publicado por
O'Reilly Media, primera edición Agosto 2004, ISBN: 0-596-00581-4.

Se trata de un completo libro sobre licenciamiento de software libre en toda su complejidad, incluyen-
do muchos temas omitidos en este capítulo. Veáse http://www.oreilly.com/catalog/osfreesoft/ para
más detalle.

• Make Your Open Source Software GPL-Compatible. Or Else. por David A. Wheeler, en
http://www.dwheeler.com/essays/gpl-compatible.html.

Se trata de un completo artículo bien escrito sobre por qué es importante usar una licencia compatible
con la GPL incluso cuando no usamos la propia GPL. El artículo también trata otras muchas pregun-
tas acerca de licencias de software, y tiene una gran cantidad de excelentes enlaces.

• http://creativecommons.org/

Creative Commons es una organización que promociona una serie de copyrights más flexibles y libe-
rales que las que la práctica más tradicional del copyright propone. Ofrecen licencias no sólo para
software, sino también para textos, arte y música, todas accesibles mediante una selección fácil de
usar. Algunas de estas licencias son copyleft, otras no son no-copyleft pero son libres, y otras son sim-
plemente copyright con algunas restricciones relajadas. La página web de Creative Commons propor-

Licencias, Copyrights y Patentes

165

http://www.nosoftwarepatents.com/
http://en.wikipedia.org/wiki/Software_patent
http://www.rants.org/2007/05/01/how-to-tell-that-software-patents-are-a-bad-idea/
http://www.oreilly.com/catalog/osfreesoft/
http://www.dwheeler.com/essays/gpl-compatible.html
http://creativecommons.org/

ciona claras instrucciones de sobre qué va. Si tuviera que elegir un sitio para demostrar las implicacio-
nes filosóficas más amplias del movimiento del software libre, sería éste.

Licencias, Copyrights y Patentes

166

Apéndice A. Sistemas de Control de
Versiones Libres

Estos son todos los sistemas de control de versiones de código abierto de los que soy consciente a me-
diados de 2007. El único que uso frecuentemente es Subversion. Poseo poca experiencia o ninguna con
la mayoría de estos sistemas, excepto con Subversion y CVS; la información de aquí ha sido tomada de
sus sitios web. Ver también http://en.wikipedia.org/wiki/List_of_revision_control_software.

CVS — http://www.nongnu.org/cvs/
CVS ha estado durante mucho tiempo, y muchos desarrolladores están ya familiarizados con él. En su
día fue revolucionario: fue el primer sistema de control de versiones de código abierto con acceso a re-
des de área amplia para desarrolladores (que yo sepa), y el primero que ofreció ""checkouts"" anónimos
de sólo lectura, los que dieron a los desarrolladores una manera fácil de implicarse en los proyectos.
CVS sólo versiona ficheros, no directorios; ofrece ramificaciones, etiquetado, y un buen rendimiento en
la parte del cliente, pero no maneja muy bien ficheros grandes ni ficheros binarios. Tampoco soporta
cambios atómicos. [Descargo: he estado activo en el desarrollo de CVS durante cinco años, antes de
ayudar a empezar el proyecto Subversion para reemplazarlo.]

Subversion — http://subversion.tigris.org/
Subversion fue escrito ante todo para reemplazar a CVS—es decir, para acceder al control de versiones
aproximadamente de la misma manera que CVS lo hace, pero sin los problemas o falta de utilidades que
más frecuentemente molestan a los usuarios de CVS. Uno de los objetivos de Subversion es encontrar la
transición a Subversion relativamente suave para la gente que ya está acostumbrada a CVS. Aquí no hay
sitio para entrar en detalles sobre las características de Subversion; acceda a su sitio web para más infor-
mación. [Descargo: Estoy implicado en el desarrollo de Subversion, y es el único de estos sistemas que
uso habitualmente.]

SVK — http://svk.elixus.org/
Aunque se ha construido sobre Subversion, probablemente SVK se parece más a algunos anteriores sis-
temas descentralizados más que Subversión. SVK soporta desarrollo distribuido, cambios locales, mez-
cla sofisticada de cambios, y la habiluidad de ""reflejar/clonar"" árboles desde sistemas de control de
versiones que no son SVK. Vea su sitio web para más detalles.

Mercurial — http://www.selenic.com/mercurial/
Mercurial es un sistemas de control de versiones distribuido que ofrece, entre otras cosas, "una completa
""indexación cruzada"" de ficheros y conjutos de cambios; unos procotolos de sincronización SSH y
HTTP eficientes respecto al uso de CPU y ancho de banda; una fusión arbitraria entre ramas de desarro-
lladores; una interfaz web autónoma integrada; [portabilidad a] UNIX, MacOS X, y Windows" y más
(las anterior lista de características ha sido parafraseada del sitio web de Mercurial).

GIT — http://git.or.cz/
GIT es un proyecto empezado por Linus Torvalds para manejar el arbol fuente del ""kernel"" de Linux.
Al principio GIT se enfoco bastante en las necesidades del desarrollo del ""kernel"", pero se ha expandi-
do más allá que eso y ahora es usado por otros proyectos a parte del ""kernel"" de Linux. Su página web
dice que está "... diseñado para manejar proyectos muy grandes eficaz y velozmente; se usa sobre todo
en varios proyectos de código abierto, entre los cuales el más notable es el ""kernel"" de Linux. GIT cae

167

http://en.wikipedia.org/wiki/List_of_revision_control_software
http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://svk.elixus.org/
http://www.selenic.com/mercurial/
http://git.or.cz/

en la categoría de herramientas de administración de código abierto distribuído, similar al, por ejemplo,
GNU Arch o Monotone (o bitKeeper en el mundo comercial). Cada directorio de trabajo de GIT es un
repositorio completo con plenas capacidades de gestión de revisiones, sin depender del acceso a la red o
de un servidor central."

Bazaar — http://bazaar.canonical.com/
Bazaar está todavía en desarrollo. Será una implementación del protocolo GNU Arch, mantendrá com-
patibilidad con el procotolo GNU Arch a medida que evolucione, y trabajará con el proceso de la comu-
nidad GNU Arch para cualquier cambio de protocolo que fuera requerido a favor del agrado del usuario.

Bazaar-NG — http://bazaar-ng.org/
Bazaar-NG (o bzr) está actualmente siendo desarrollado por Canonical (http://canonical.com/). Ofrece la
elección entre el trabajo centralizado y el descentralizado dentro de un mismo proyecto. Por ejemplo,
cuando en la oficina uno puede trabajar en una rama central compartida; para cambios experimentales o
trabajo desconectado, se puede crear una rama en el portatil y mezclarla más tarde.

Darcs — http://abridgegame.org/darcs/
"El Sistema Avanzado de Control de Revisión de David (David's Advanced Revision Control System)
es aún otro reemplazo de CVS. Está escrito en Haskell, y se ha usado en Linux, MacOX, FreeBSD,
Open BSD y Microsoft Windows. Darcs incluye un archivo de comandos cgi, el cual puede ser usado
para ver los contenidos de su repositorio.

Arch — http://www.gnu.org/software/gnu-arch/
GNU Arch soporta tanto desarrollo distribuido como centralizado. Los desarrolladores suben sus cam-
bios a un "archivo", que puede ser local, y los cambios pueden ser metidos y quitados de otros archivos
tal y como los administradores de esos archivos vean conveniente. Como toda metodología implica,
Arch posee más soporte de mezclado que CVS. Arch tambien permite a uno crear fácilmente ramas de
archivos a las cuales uno no tiene acceso para subir cambios. Esto es sólo un breve sumario; para más
detalles vea las páginas web de Arch.

monotone — http://www.venge.net/monotone/
"monotone es un sistema de control de versión distribuido libre. Ofrece un almacén simple de version
transacional de un solo fichero, con una operación completa de desconexión y un protocolo de sincroni-
zación entre iguales ""peer-to-peer"" eficiente. Comprende el mezclado susceptible al historial, ramas li-
geras, revisión de código integrado y pruebas de terceros. Usa nombrado criptográfico de versión y cer-
tificados de cliente RSA. Posee un buen soporte de internacionalización, no tiene dependencias externas,
se ejecuta en Linux, Solaris, OSX, y windows, y está licenciado bajo la GNU GPL."

Codeville — http://codeville.org/
"¿Por qué otro sistema de control de versión? Todos los sistemas de control de versión requieren que se
mantenga una gestión cuidadosa de las relaciones entre ramas con tal de no tener que mezclar repetida-
mente los mismos conflcitos. Codeville es mucho más anárquico. Permite actualizar o subir cambios a
cualquier repositorio en cualquier momento sin innecesarias re-mezclas."

"Codeville funciona creando un identificador para cada cambio que sea hecho, y recordando la lista de
todos los cambios que se han aplicado a cada fichero y el último cambio que modificó cada línea de ca-
da fichero. Cuando hay un conflicto, lo comprueba para ver si una de las dos partes se ha aplicado ya a
la otra, y si es así hace a la otra automáticamente ganadora. Cuando hay un conflicto de versión real que

Sistemas de Control de Versiones Libres

168

http://bazaar.canonical.com/
http://bazaar-ng.org/
http://canonical.com/
http://abridgegame.org/darcs/
http://www.gnu.org/software/gnu-arch/
http://www.venge.net/monotone/
http://codeville.org/

no se puede mezclar automáticamente, Codeville se comporta de una manera casi exacta que CVS."

Vesta — http://www.vestasys.org/
"Vesta es un sistema portátil SCM [Administrador de Configuración de Software o Software Configura-
tion Management] orientado a apoyar el desarrollo de sistemas de software de casi cualquier tamaño,
desde bastante pequeños (menos de 10.000 líneas de código fuente) hasta muy grandes (10.000.000 lí-
neas de código fuente)."

"Vesta es un sistema maduro. Es el resultado de más de 10 años de investigación y desarrollo en el Cen-
tro de Desarrollo desistemas Compaq/Digital, y ha estado en uso productivo por el grupo de microproce-
sador Alpha de Compaq durante más de dos años y medio. El grupo Alpha tuvo más de 150 desarrolla-
dores activos en dos sitios a miles de millas de distancia el uno del otro, en la costa este y en la oeste de
los Estados Unidos de América. El grupo usó Vesta para administrar ""builds"" con a lo sumo 130 MB
de datos fuente, cada uno produciendo 1,5 GB de datos derivados. Las ""builds"" hechas en la parte oes-
te de media en un día producieron 10-15 GB de datos derivados, todos administrados por Vesta. Aunque
Vesta se diseñó teniendo en mente el desarrollo de software, el grupo Alpha demostró la flexibilidad del
sistema usándolo para el desarrollo de hardware, comprobando los ficheros en lenguaje de descripción
de su hardware dentro de la facilidad de control de código fuente de Vesta y contruyendo simuladores y
otros objetos derivados con el ""constructor"" de Vesta. Los miembros del ex-grupo Alpha, ahora parte
de Intel, hoy continuan usado Vesta en el proyecto de un nuevo microprocesador."

Aegis — http://aegis.sourceforge.net/
"Aegis es un sistema de administración de configuración de software basado en transacciones. Propor-
ciona un marco dentro del que un equipo de desarrolladores puede trabajar en muchos cambios de un
programa independientemente, y Aegis coordina la integración de esos cambios dentro del código fuente
maestro del programa, con el menor transtorno posible."

CVSNT — http://cvsnt.org/
"CVSNT es un sistema de control de versión multiplataforma avanzado. Compatible con el protocolo es-
tándar CVS de industria ahora soporta muchas más características... CVSNT es Código Abierto, softwa-
re libre licenciado bajo la Licencia Pública General GNU." Su lista de características incluye autentifica-
ción via todos los protocolos estándar de CVS, más SSPI y Directorio Activo específicos de Windows;
soporte de transporte seguro, vía sserver o SSPI encriptada; plataformas cruzadas (corre en entornos
Windows o Unix); la versión NT está totalmente integrada con el sistemas Win32; el proceso Merge-
Point significa no tener que mezclar etiquetas más; bajo desarrollo activo.

META-CVS — http://users.footprints.net/~kaz/mcvs.html
"Meta-CVS es un sistema de control de versión construído alrededor de CVS. Aunque conserva la ma-
yoría de las características de CVS, incluyendo todo el soporte de red, tiene más capacidad que CVS, y
es más fácil de usar." Las características listadas en el sitio web de META-CVS incluyen: versionado de
estructura de directorio, manejo de tipos de ficheros mejorado, mezclado y ramificado más simple y más
fácil de usar, soporte para enlaces simbólicos, listas de propiedad adjuntadas a los datos versionados, im-
portación mejorada de datos de terceros, y un fácil actualización desde las existencias en CVS.

OpenCM — http://www.opencm.org/
"OpenCM está diseñado como un reemplazo seguro y de alta integridad de CVS. Se puede encontrar una
lista de las características clave en la página de características. Aun cuando no es tan 'rico en característi-
cas' como CVS, soporta algunas cosas útiles de las que carece CVS. En pocas palabras, OpenCM pro-
porciona soporte de primera clase para renombrado y configuración, autentificación criptográfica y con-
trol de acceso, y ramas de primera clase."

Sistemas de Control de Versiones Libres

169

http://www.vestasys.org/
http://aegis.sourceforge.net/
http://cvsnt.org/
http://users.footprints.net/~kaz/mcvs.html
http://www.opencm.org/

Stellation — http://www.eclipse.org/stellation/
"Stellation es un sistema avanzado y extensible de administración de configuración de software, origi-
nalmente desarrollado por IBM Research. Mientras que Stellation proporciona todas las funciones están-
dar disponibles en cualquier sistema SCM, se distingue por un número de características avanzadas, ta-
les como administración de cambios orientada a tarea, versionado consistente de proyectos y ramifica-
ción ligera, destinado para facilitar el desarrollo de sistemas software por grupos grandes de desarrolla-
dores coordinados líbremente."

PRCS — http://prcs.sourceforge.net/
"PRCS, el Sistema de Control de Revisión de Proyecto (Project Revision Control System), es la interfaz
de un conjunto de herramientas que (como CVS) proporcionan una manera de tratar con conjuntos de fi-
cheros y directorios como una entidad, preservando versiones coherentes del conjunto entero... Su pro-
posito es similar al de SCCS, RCS, y CVS, pero (al menos según sus autores), es mucho más simple que
cualquiera de aquellos sistemas."

ArX — http://www.nongnu.org/arx/
ArX es un sistema de control de versión distribuído que ofrece características de ramificación y mezcla,
verificarión criptográfica de integridad de datos, y la capacidad de publicar archivos fácilmente en cual-
quier servidor HTTP.

SourceJammer — http://sourcejammer.org/
"SourceJammer es un sistema de versionado y control de código fuente escrito en Java. Consiste en un
componente en la parte del servidor que mantiene el historial de la versión y de los ficheros, y maneja
subidas , descargas, etc, y otros comandos; y en un componente en la parte del cliente que hace peticio-
nes al servidor y administra ficheros en el sistema de ficheros en la parte del cliente."

http://www.zedshaw.com/projects/fastcst/ind
FastCST — ex.html

"Un sistema 'moderno' que usa conjuntos de cambios sobre revisiones de ficheros, y operacion distribuí-
da más que control centralizado. Siempre y cuando se posea una cuenta de correo electrónico se puede
usar FastCST. Para distribuciones más grandes sólo se necesita un servidor FTP y/o un servidor HTTP p
usar el comando incorporado 'serve' para servir directamente las cosas. Todos los conjutos de cambios
son únicos universalmente y tienen toneladas de meta-datos, por lo que se puede rechazar cualquier cosa
que no se [quiera] antes de intentarlo. La mezcla es hecha comparando un conjunto de cambios mezcla-
do con los contenidos del directorio actual, más que intentar mezclarlo con otro conjunto de cambios."

Superversion — http://www.superversion.org/
"Superversion es un sistema de control de versión distribuído multi-usuario basado en conjuntos de cam-
bios. Apunta a ser una alternativa de código abierto con peso en la industria frente a soluciones comer-
ciales, el cual es igual de fácil de usar (o inclusive más fácil) y con una potencia similar. De hecho, la
utilización intuitiva y eficiente ha sido una de las máximas prioridades en el desarrollo de Superversion
desde los comienzos."

Sistemas de Control de Versiones Libres

170

http://www.eclipse.org/stellation/
http://prcs.sourceforge.net/
http://www.nongnu.org/arx/
http://sourcejammer.org/
http://www.zedshaw.com/projects/fastcst/index.html
http://www.zedshaw.com/projects/fastcst/index.html
http://www.superversion.org/

Apéndice B. Gestor de fallos libres
Da igual que gestor de fallos usa un proyecto, a algunos desarrolladores siempre les gusta quejarse de
ellos. Esto es inclusive más cierto para gestores de fallos que para cualquier otra herramienta estándar de
desarrollo. Creo que es porque los gestores de fallos son tan visuales y tan interactivos que es fácil ima-
ginar las mejoras que uno mismo haría (si solamente tuviera tiempo), y describirlas en voz alta. Toma
las inevitables quejas con excepticismo— muchos de los gestores que se describen más tarde son bastan-
te buenos.

A lo largo de estos listados, la palabra ejemplar se usa para referirse a elementos que el gestor gestiona.
Pero recuerda que cada sistema puede tener su propia terminología, en la cual el término correspondien-
te podría ser "artefacto" o "fallo" o cualquier otra cosa.

Bugzilla — http://www.bugzilla.org/
Bugzilla es muy popular, es mantenido activamente, y parece que hace a sus usuarios muy felices. Yo he
estado usando una variante modificada de él en mi trabajo desde hace cuatro años, y me gusta. No es al-
tamente personalizable, pero esa puede ser, de una manera curiosa, una de sus características: Las insta-
laciones de Bugzilla tienden a parecer la misma sea donde sea que se encuentren, lo que significa que
muchos desarrolladores estén ya acostumbrados a su interfaz y se sentirán en un territorio familiar.

GNATS — http://www.gnu.org/software/gnats/
GNU GNATS es uno de los gestores de fallos de código abierto más antiguos, y se usa extensamente. Su
mayor fortaleza reside en la diversidad de interfaces (no solamente puede ser usado a través de un nave-
gador WEB, sino que también a través de correo electrónico o utilidades de línea de comandos), y el al-
macenamiento de los ejemplares en texto plano. El hecho de que los datos de todos los ejemplares se al-
macenen en ficheros de texto en el disco hace que sea más fácil escribir herramientas a medida para bus-
car y analizar sintácticamente los datos (por ejemplo, para generar informes estadísticos). GNATS tam-
bién puede absorber correos electrónicos de muchas maneras, y añadirlos a los ejemplares apropiados
basados en patrones dentro de las cabeceras del correo electrónico, lo que hace que el registro de las
conversaciones del usuario/desarrollador sean muy fáciles.

RequestTracker (RT) — http://www.bestpractical.com/rt/
El sitio Web de RT dice que "RT es un sistema de etiquetado de niveles de seguridad que permite a un
grupo de gente manejar tareas, ejemplares, y peticiones enviadas por una comunidad de usuarios de una
manera inteligente y eficiente, y todo eso en resumen. RT posee una interfaz web bastante pulida, y pa-
rece tener una base bastante ampliamente instalada. La interfaz es un poco compleja en términos visua-
les, pero que llega a ser menos molesto a medida que se utiliza. RT tiene una licencia GNU GPL (por al-
guna razón, su sitio web no deja esto claro).

Trac — http://trac.edgewall.com/
Trac es un poco más que un gestor de fallos: realmente es un sistema wiki y gestor de fallos integrado.
Usa el enlace Wiki para conectar ejemplares, ficheros, grupos de cambios de control de versión, y sim-
ples páginas wiki. Es bastante simple de configurar, y se integra con Subversion (ver Apéndice A, Siste-
mas de Control de Versiones Libres).

Roundup — http://roundup.sourceforge.net/
Roundup es bastante fácil de instalar (sólo se necesita Python 2.1 o superior), y simple de usar. Tiene in-
terfaces web, para correo electrónico y de línea de comandos. Las plantillas de datos de ejemplares y las

171

http://www.bugzilla.org/
http://www.gnu.org/software/gnats/
http://www.bestpractical.com/rt/
http://trac.edgewall.com/
http://roundup.sourceforge.net/

interfaces web son parametrizables, al igual que alguna de su lógica de transición de estados.

Mantis — http://www.mantisbt.org/
Mantis es un sistema de gestión de fallos basado en web, escrito en PHP, y que usa la base de datos
MySQL como almacenaje. Posee las características que se esperarían de él. Personalmente, encuentro la
interfaz web limpia, intuituva, y visualmente fácil.

Scarab — http://scarab.tigris.org/
Scarab está pensado para ser un gestor de fallos altamente parametizable y con todas las características,
ofreciendo más o menos el conjunto total de las características ofrecidas por otros gestores de fallos: en-
tradas de datos, consultas, informes, notificaciones a grupos interesados, acumulación colaborativa de
comentarios, y gestión de dependencias.

Se parametriza a través de páginas web administrativas. Se puede tener múltiples "módulos" (proyectos)
activos en una única instalación de Scarab. Dentro de un módulo dado, se puede crear nuevos tipos de
ejemplares (defectos, mejoras, tareas, peticiones de apoyo, etc.), y añadir atributos arbitrarios, para afi-
nar el gestor a los requisitos específicos de tu proyecto.

A últimos de 2004, Scarab se acercaba a su versión liberada 1.0.

Sistema de Gestión de Fallos de Debian (Debian Bug
Tracking System
http://www.chiark.greenend.org.uk/~ian/debb
(DBTS)) — ugs/

El Sistema de Gestión de Fallos de Debian (Debian Bug Tracking System) es inusual en el sentido que
todas las entradas y manipulaciones de ejemplares se hace vía correo electrónico: cada ejemplar obtiene
su propia dirección de correo electrónico dedicada. El DBTS escala bastante bien:
http://bugs.debian.org/ tiene 227.741 ejemplares, por ejemplo.

Ya que la interacción se hace vía clientes de correo normales, un entorno que es familiar y fácilmente
accesible para la mayoría de gente, el DBTS es bueno para manejar grandes volúmenes de informes en-
trantes que necesitan una rápida clasificación y respuesta. Por supuesto, también existen desventajas.
Los desarrolladores deben dedicar el tiempo necesario a aprender el sistema de comando del correo elec-
trónico, y los usuarios deben escribir sus informes de fallos sin un formulario web que los guíe en la
elección de la información que hay que escribir. Hay algunas herramientas disponibles para ayudar a los
usuarios a enviar mejor sus informes de fallos, tales como el programa de línea de comandos reportbug
o el paquete debbugs-el para Emacs. Pero la mayoría de la gente no usará estas herramientas; sólo
escribirán correos electrónicos a mano, y podrán o no seguir las pautas para reportar fallos publicadas
por su proyecto.

El DBTS tiene una interfaz web de sólo lectura, para ver y consultar ejemplares.

Gestores de Etiquetado de Problema
Estos están más orientados hacia la gestión de etiquetas del escritorio de ayuda que a la gestión de fallos
de software. Probablemente sería mejor con un gestor de fallos habitual, pero estos se han listado por
completitud, y porque posiblemente podría tener proyectos poco comunes para los cuales un sistema de
etiquetado de problemas podría ser más apropiado que un gestor de fallos tradicional.

Gestor de fallos libres

172

http://www.mantisbt.org/
http://scarab.tigris.org/
http://www.chiark.greenend.org.uk/~ian/debbugs/
http://www.chiark.greenend.org.uk/~ian/debbugs/
http://bugs.debian.org/

• WebCall — http://myrapid.com/webcall/

• Teacup — http://www.altara.org/teacup.html

(Teacup no parece estar activo bajo desarrollo, pero los ficheros para descargar están todavía accesi-
bles. Nota que tiene tanto interfaz web como por correo electrónico.)

Bluetail Ticket Tracker
(BTT) — http://btt.sourceforge.net/

El BTT se situa en algún lugar entre un gestor de etiquetas de problema y un gestor de fallos. Ofrece ca-
racterísticas de privacidad que son algo inusuales entre los gestores de fallos de código abierto: los usua-
rios del sistema se clasifican como Plantilla (Staff), Amigo (Friend), Cliente (Customer), o Anónimo
(Anonymous), y más o menos los datos son accesibles según la categoría de uno mismo. Ofrece algo de
integración con el correo electrónico, una interfaz por línea de comandos, y un mecanismo para conver-
tir correos electrónicos en etiquetas. También posee utilidades para mantener la información no asociada
con una etiqueta específica, tal como documentación interna o FAQs. BTT is somewhere between a
standard trouble-ticket tracker and a bug tracker. It offers privacy features that are somewhat unusual
among open source bug trackers: users of the system are categorized as Staff, Friend, Customer, or
Anonymous, and more or less data is available depending on one's category. It offers some email inte-
gration, a command-line interface, and mechanisms for converting emails into tickets. It also has featu-
res for maintaining information not associated with any specific ticket, such as internal documentation
or FAQs.

Gestor de fallos libres

173

http://myrapid.com/webcall/
http://www.altara.org/teacup.html
http://btt.sourceforge.net/

Apéndice C. Why Should I Care What
Color the Bikeshed Is?

You shouldn't; it doesn't really matter, and you have better things to spend your time on.

Poul-Henning Kamp's famous "bikeshed" post (an excerpt from which appears in Capítulo 6, Communi-
cations) is an eloquent disquisition on what tends to go wrong in group discussions. It is reprinted here
with his permission. The orginal URL is
http://www.freebsd.org/cgi/getmsg.cgi?fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-ha
ckers/19991003.freebsd-hackers.

Subject: A bike shed (any colour will do) on greener grass...
From: Poul-Henning Kamp <phk@freebsd.org>
Date: Sat, 02 Oct 1999 16:14:10 +0200
Message-ID: <18238.938873650@critter.freebsd.dk>
Sender: phk@critter.freebsd.dk
Bcc: Blind Distribution List: ;
MIME-Version: 1.0

[bcc'ed to committers, hackers]

My last pamphlet was sufficiently well received that I was not
scared away from sending another one, and today I have the time
and inclination to do so.

I've had a little trouble with deciding on the right distribution
of this kind of stuff, this time it is bcc'ed to committers and
hackers, that is probably the best I can do. I'm not subscribed
to hackers myself but more on that later.

The thing which have triggered me this time is the "sleep(1) should
do fractional seconds" thread, which have pestered our lives for
many days now, it's probably already a couple of weeks, I can't
even be bothered to check.

To those of you who have missed this particular thread: Congratulations.

It was a proposal to make sleep(1) DTRT if given a non-integer
argument that set this particular grass-fire off. I'm not going
to say anymore about it than that, because it is a much smaller
item than one would expect from the length of the thread, and it
has already received far more attention than some of the *problems*
we have around here.

The sleep(1) saga is the most blatant example of a bike shed
discussion we have had ever in FreeBSD. The proposal was well
thought out, we would gain compatibility with OpenBSD and NetBSD,
and still be fully compatible with any code anyone ever wrote.

Yet so many objections, proposals and changes were raised and
launched that one would think the change would have plugged all
the holes in swiss cheese or changed the taste of Coca Cola or
something similar serious.

"What is it about this bike shed ?" Some of you have asked me.

It's a long story, or rather it's an old story, but it is quite
short actually. C. Northcote Parkinson wrote a book in the early

174

http://www.freebsd.org/cgi/getmsg.cgi?fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-hackers/19991003.freebsd-hackers
http://www.freebsd.org/cgi/getmsg.cgi?fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-hackers/19991003.freebsd-hackers

1960'ies, called "Parkinson's Law", which contains a lot of insight
into the dynamics of management.

You can find it on Amazon, and maybe also in your dads book-shelf,
it is well worth its price and the time to read it either way,
if you like Dilbert, you'll like Parkinson.

Somebody recently told me that he had read it and found that only
about 50% of it applied these days. That is pretty darn good I
would say, many of the modern management books have hit-rates a
lot lower than that, and this one is 35+ years old.

In the specific example involving the bike shed, the other vital
component is an atomic power-plant, I guess that illustrates the
age of the book.

Parkinson shows how you can go in to the board of directors and
get approval for building a multi-million or even billion dollar
atomic power plant, but if you want to build a bike shed you will
be tangled up in endless discussions.

Parkinson explains that this is because an atomic plant is so vast,
so expensive and so complicated that people cannot grasp it, and
rather than try, they fall back on the assumption that somebody
else checked all the details before it got this far. Richard P.
Feynmann gives a couple of interesting, and very much to the point,
examples relating to Los Alamos in his books.

A bike shed on the other hand. Anyone can build one of those over
a weekend, and still have time to watch the game on TV. So no
matter how well prepared, no matter how reasonable you are with
your proposal, somebody will seize the chance to show that he is
doing his job, that he is paying attention, that he is *here*.

In Denmark we call it "setting your fingerprint". It is about
personal pride and prestige, it is about being able to point
somewhere and say "There! *I* did that." It is a strong trait in
politicians, but present in most people given the chance. Just
think about footsteps in wet cement.

I bow my head in respect to the original proposer because he stuck
to his guns through this carpet blanking from the peanut gallery,
and the change is in our tree today. I would have turned my back
and walked away after less than a handful of messages in that
thread.

And that brings me, as I promised earlier, to why I am not subscribed
to -hackers:

I un-subscribed from -hackers several years ago, because I could
not keep up with the email load. Since then I have dropped off
several other lists as well for the very same reason.

And I still get a lot of email. A lot of it gets routed to /dev/null
by filters: People like [omitted] will never make it onto my
screen, commits to documents in languages I don't understand
likewise, commits to ports as such. All these things and more go
the winter way without me ever even knowing about it.

But despite these sharp teeth under my mailbox I still get too much
email.

This is where the greener grass comes into the picture:

Why Should I Care What Color the Bikeshed
Is?

175

I wish we could reduce the amount of noise in our lists and I wish
we could let people build a bike shed every so often, and I don't
really care what colour they paint it.

The first of these wishes is about being civil, sensitive and
intelligent in our use of email.

If I could concisely and precisely define a set of criteria for
when one should and when one should not reply to an email so that
everybody would agree and abide by it, I would be a happy man, but
I am too wise to even attempt that.

But let me suggest a few pop-up windows I would like to see
mail-programs implement whenever people send or reply to email
to the lists they want me to subscribe to:

+--+
| Your email is about to be sent to several hundred thousand |
| people, who will have to spend at least 10 seconds reading |
| it before they can decide if it is interesting. At least |
| two man-weeks will be spent reading your email. Many of |
| the recipients will have to pay to download your email. |
| |
| Are you absolutely sure that your email is of sufficient |
| importance to bother all these people ? |
| |
| [YES] [REVISE] [CANCEL] |
+--+

+--+
| Warning: You have not read all emails in this thread yet. |
| Somebody else may already have said what you are about to |
| say in your reply. Please read the entire thread before |
| replying to any email in it. |
| |
| [CANCEL] |
+--+

+--+
| Warning: Your mail program have not even shown you the |
| entire message yet. Logically it follows that you cannot |
| possibly have read it all and understood it. |
| |
| It is not polite to reply to an email until you have |
| read it all and thought about it. |
| |
| A cool off timer for this thread will prevent you from |
| replying to any email in this thread for the next one hour |
| |
| [Cancel] |
+--+

+--+
| You composed this email at a rate of more than N.NN cps |
| It is generally not possible to think and type at a rate |
| faster than A.AA cps, and therefore you reply is likely to |
| incoherent, badly thought out and/or emotional. |
| |
| A cool off timer will prevent you from sending any email |
| for the next one hour. |
| |
| [Cancel] |
+--+

Why Should I Care What Color the Bikeshed
Is?

176

The second part of my wish is more emotional. Obviously, the
capacities we had manning the unfriendly fire in the sleep(1)
thread, despite their many years with the project, never cared
enough to do this tiny deed, so why are they suddenly so enflamed
by somebody else so much their junior doing it ?

I wish I knew.

I do know that reasoning will have no power to stop such "reactionaire
conservatism". It may be that these people are frustrated about
their own lack of tangible contribution lately or it may be a bad
case of "we're old and grumpy, WE know how youth should behave".

Either way it is very unproductive for the project, but I have no
suggestions for how to stop it. The best I can suggest is to refrain
from fuelling the monsters that lurk in the mailing lists: Ignore
them, don't answer them, forget they're there.

I hope we can get a stronger and broader base of contributors in
FreeBSD, and I hope we together can prevent the grumpy old men
and the [omitted]s of the world from chewing them up, spitting
them out and scaring them away before they ever get a leg to the
ground.

For the people who have been lurking out there, scared away from
participating by the gargoyles: I can only apologise and encourage
you to try anyway, this is not the way I want the environment in
the project to be.

Poul-Henning

Why Should I Care What Color the Bikeshed
Is?

177

Apéndice D. Ejemplo de Instrucciones
para Informar sobre Fallos

Esto es una copia editada ligeramente de las instrucciones en línea del proyecto Subversion para nuevos
usuarios sobre cómo informar sobre fallos. Ver “Treat Every User as a Potential Volunteer” en Capítu-
lo 8, Coordinando a los Voluntarios para saber porque es importante que un proyecto tenga tales ins-
trucciones. El documento original se localiza en http://svn.collab.net/repos/svn/trunk/www/bugs.html.

Informar sobre Fallos en Subversion

Este documento explica cómo y dónde informar sobre fallos. (no es una lista
de todos los fallos pendientes - pero se puede conseguir eso aquí)

Dónde informar sobre un fallo

* Si el fallo está en el propio Subversion, mandar un correo a
users@subversion.tigris.org. Una vez que se ha confirmado que es
un fallo, alguién, posiblemente tú, puede introducirlo en el
gestor de ""ejemplares"". (o si estás bastante seguro del fallo,
sigue adelante y publicalo directamente en nuestra lista de desarrollo,
dev@subversion.tigris.org. Preo si no estás seguro, es mejor que se
publique primero en users@; ahí alguién puede decirte si el comportamiento
que se encontró es el esperado o no.)

* Si el fallo esta en la librería APR, por favor informálo en estás
dos listas de correo: dev@apr.apache.org, dev@subversion.tigris.org.

* Si el fallo está en la librería de HTTP Neon, por favor infórmalo en:
neon@webdav.org, dev@subversion.tigris.org.

* Si el fallo está en el Apache HTTPD 2.0, por favor infórmalo en
estás dos listas de correo: dev@httpd.apache.org,

dev@subversion.tigris.org. La lista de correo para el desarrollador de
Apache httpd tiene mucho tráfico, así que tu publicación del informe
del fallo puede que sea pasada por alto. También debes introducir
un informe del fallo en http://httpd.apache.org/bug_report.html.

* Si el fallo está en tu ""alfombra"", por favor dale un abrazo y
déjalo ""cómodo"".

Cómo informar sobre un fallo

Primero, asegurate que es un fallo. Si Subversion no se comporta como esperas,
mira la documentación y los archivos de las listas de correo buscando alguna
evidencia que indique que debería comportarse como esperas. Por supuesto,
si es una cosa de sentido común, como que Subversion ha destruído tus datos
y ha hecho que salga humo de tu monitor, entonces puedes fiarte de tu juicio.
Pero si no estás seguro, sigue adelante y pregunta primero en las lista
de correo de usuarios, users@subversion.tigris.org, o pregunta en IRC,
irc.freenode.net, en el canal #svn.

Una vez que has demostrado que es un fallo, lo más importante que debes hacer
es proponer una descripción simple y una receta para reproducirlo. Por ejemplo,
si el fallo, como lo encontraste inicialmente, implica cinco ficheros
sobre diez cambios, intenta hacer que se reproduzca con solo un fichero
y un cambio. Cuanto más simple es la receta para reproducirlo, más
probable es que un desarrollador tenga éxito al reproducir el fallo

178

http://svn.collab.net/repos/svn/trunk/www/bugs.html

y en arreglarlo.

Cuando escribas la receta para reproducirlo, no escribas una descripción
inversa de lo que hiciste para que ocurriera el fallo. Por el contrario,
da una transcripción literal de la serie exacta de comandos que ejecutaste,
y sus salidas. Utiliza la función cortar-y-pegar para este fin. Si hay ficheros
implicados, asegurate incluir los nombres de los ficheros, e incluso su
contenido si piensas que podría ser relevante. Lo mejor es empaquetar
tu receta para reproducirlo en un archivo de comandos, lo cual ayuda mucho.

Una sana comprobación rápida: *estás* utilizando la versión más
reciente de Subvesion, ¿no? :-) Posiblemente el fallo ya se ha corregido;
deberías probar tu receta para reproducir el fallo en el árbol de desarrollo
de Subversión más reciente.

Además de la receta para reproducirlo, también necesitaremos una
descripción completa del entorno donde se reprodució el error.
Esto es:

* Tu sistema operativo
* La versión liberada y/o revisión de Subversion
* El compilador y las opciones de configuración con las que ""construíste"" Subversion
* Cualquier modificación personal que hiciste a Subversion
* La versión de la BD de Berkeley con la que estás corriendo Subversion, si usas un BD
* Cualquier otra cosa que podría ser posiblemente relevante. Mejor tener demasiada información

más que tener demasiada poca.

Una vez que tienes todo esto, estás listo para escribir el informe. Empieza
con una descripción clara del fallo en si. Es decir, di como esperabas que
Subversion se comportara, y contrástalo con como realmente se comportó.
Aunque el fallo puede parecerte obvio a ti, puede no ser tan obvio para
otra persona, por tanto es mejor evitar las adivinanzas. Sigue con la descripción
del entorno, y la receta para reproducirlo. Si también quieres incluir
alguna especulación sobre la causa, e inclusive un parche para arreglar
el problema, sería genial - ver http://svn.collab.net/repos/svn/trunk/www/hacking.html#patches
con las instrucciones para mandar parches.

Publica toda esta información en dev@subversion.tigris.org, o si ya lo has hecho
y has pedido que se publique un ""ejemplar"", entonces ve al Gestor de ""Ejemplares""
y sigue las instrucciones de allí.

Gracias. Sabemos que es mucho trabajo publicar un informe de fallos efectivo,
pero a un buen informe puede ahorrar horas de tiempo a un desarrollador,
y hace que los fallos tengan más probabilidad de ser arreglados.

Ejemplo de Instrucciones para Informar sobre
Fallos

179

Apéndice E. Copyright
This work is licensed under the Creative Commons
Attribution-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA. A summary of the license is given below, followed by the full
legal text. If you wish to distribute some or all of this work under
different terms, please contact the author, Karl Fogel
<kfogel@red-bean.com>.

-*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*-

You are free:

* to Share — to copy, distribute and transmit the work
* to Remix — to adapt the work

Under the following conditions:

* Attribution. You must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work).

* Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

* For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a
link to this web page.

* Any of the above conditions can be waived if you get permission
from the copyright holder.

* Nothing in this license impairs or restricts the author's moral
rights.

-*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*- -*-

Creative Commons Legal Code: Attribution-ShareAlike 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License:

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH

180

TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work
and other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and
includes cinematographic adaptations or any other form in which
the Work may be recast, transformed, or adapted including in any
form recognizably derived from the original, except that a work
that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of
doubt, where the Work is a musical work, performance or
phonogram, the synchronization of the Work in timed-relation
with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works,
such as encyclopedias and anthologies, or performances,
phonograms or broadcasts, or other works or subject matter other
than works listed in Section 1(f) below, which, by reason of the
selection and arrangement of their contents, constitute
intellectual creations, in which the Work is included in its
entirety in unmodified form along with one or more other
contributions, each constituting separate and independent works
in themselves, which together are assembled into a collective
whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined below) for the purposes of
this License.

c. "Creative Commons Compatible License" means a license that is
listed at http://creativecommons.org/compatiblelicenses that has
been approved by Creative Commons as being essentially
equivalent to this License, including, at a minimum, because
that license: (i) contains terms that have the same purpose,
meaning and effect as the License Elements of this License; and,
(ii) explicitly permits the relicensing of adaptations of works
made available under that license under this License or a
Creative Commons jurisdiction license with the same License
Elements as this License.

d. "Distribute" means to make available to the public the original
and copies of the Work or Adaptation, as appropriate, through
sale or other transfer of ownership.

e. "License Elements" means the following high-level license
attributes as selected by Licensor and indicated in the title of
this License: Attribution, ShareAlike.

f. "Licensor" means the individual, individuals, entity or entities
that offer(s) the Work under the terms of this License.

g. "Original Author" means, in the case of a literary or artistic
work, the individual, individuals, entity or entities who
created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a
performance the actors, singers, musicians, dancers, and other
persons who act, sing, deliver, declaim, play in, interpret or
otherwise perform literary or artistic works or expressions of
folklore; (ii) in the case of a phonogram the producer being the
person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of
broadcasts, the organization that transmits the broadcast.

Copyright

181

h. "Work" means the literary and/or artistic work offered under the
terms of this License including without limitation any
production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including
digital form, such as a book, pamphlet and other writing; a
lecture, address, sermon or other work of the same nature; a
dramatic or dramatico-musical work; a choreographic work or
entertainment in dumb show; a musical composition with or
without words; a cinematographic work to which are assimilated
works expressed by a process analogous to cinematography; a work
of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of
applied art; an illustration, map, plan, sketch or
three-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a
phonogram; a compilation of data to the extent it is protected
as a copyrightable work; or a work performed by a variety or
circus performer to the extent it is not otherwise considered a
literary or artistic work.

i. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this
License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this
License despite a previous violation.

j. "Publicly Perform" means to perform public recitations of the
Work and to communicate to the public those public recitations,
by any means or process, including by wire or wireless means or
public digital performances; to make available to the public
Works in such a way that members of the public may access these
Works from a place and at a place individually chosen by them;
to perform the Work to the public by any means or process and
the communication to the public of the performances of the Work,
including by public digital performance; to broadcast and
rebroadcast the Work by any means including signs, sounds or
images.

k. "Reproduce" means to make copies of the Work by any means
including without limitation by sound or visual recordings and
the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in
digital form or other electronic medium.

2. Fair Dealing Rights.

Nothing in this License is intended to reduce, limit, or restrict
any uses free from copyright or rights arising from limitations or
exceptions that are provided for in connection with the copyright
protection under copyright law or other applicable laws.

3. License Grant.

Subject to the terms and conditions of this License, Licensor
hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections;

Copyright

182

b. to create and Reproduce Adaptations provided that any such
Adaptation, including any translation in any medium, takes
reasonable steps to clearly label, demarcate or otherwise
identify that changes were made to the original Work. For
example, a translation could be marked "The original work was
translated from English to Spanish," or a modification could
indicate "The original work has been modified.";

c. to Distribute and Publicly Perform the Work including as
incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive
right to collect such royalties for any exercise by You of
the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme can
be waived, the Licensor waives the exclusive right to
collect such royalties for any exercise by You of the
rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right
to collect royalties, whether individually or, in the
event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via
that society, from any exercise by You of the rights
granted under this License.

The above rights may be exercised in all media and formats whether
now known or hereafter devised. The above rights include the right
to make such modifications as are technically necessary to exercise
the rights in other media and formats. Subject to Section 8(f), all
rights not expressly granted by Licensor are hereby reserved.

4. Restrictions.

The license granted in Section 3 above is expressly made subject to
and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the
terms of this License. You must include a copy of, or the
Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not
offer or impose any terms on the Work that restrict the terms of
this License or the ability of the recipient of the Work to
exercise the rights granted to that recipient under the terms of
the License. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the
disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of
the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a)
applies to the Work as incorporated in a Collection, but this
does not require the Collection apart from the Work itself to be

Copyright

183

made subject to the terms of this License. If You create a
Collection, upon notice from any Licensor You must, to the
extent practicable, remove from the Collection any credit as
required by Section 4(c), as requested. If You create an
Adaptation, upon notice from any Licensor You must, to the
extent practicable, remove from the Adaptation any credit as
required by Section 4(c), as requested.

b. You may Distribute or Publicly Perform an Adaptation only under
the terms of: (i) this License; (ii) a later version of this
License with the same License Elements as this License; (iii) a
Creative Commons jurisdiction license (either this or a later
license version) that contains the same License Elements as this
License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative
Commons Compatible License. If you license the Adaptation under
one of the licenses mentioned in (iv), you must comply with the
terms of that license. If you license the Adaptation under the
terms of any of the licenses mentioned in (i), (ii) or (iii)
(the "Applicable License"), you must comply with the terms of
the Applicable License generally and the following provisions:
(I) You must include a copy of, or the URI for, the Applicable
License with every copy of each Adaptation You Distribute or
Publicly Perform; (II) You may not offer or impose any terms on
the Adaptation that restrict the terms of the Applicable License
or the ability of the recipient of the Adaptation to exercise
the rights granted to that recipient under the terms of the
Applicable License; (III) You must keep intact all notices that
refer to the Applicable License and to the disclaimer of
warranties with every copy of the Work as included in the
Adaptation You Distribute or Publicly Perform; (IV) when You
Distribute or Publicly Perform the Adaptation, You may not
impose any effective technological measures on the Adaptation
that restrict the ability of a recipient of the Adaptation from
You to exercise the rights granted to that recipient under the
terms of the Applicable License. This Section 4(b) applies to
the Adaptation as incorporated in a Collection, but this does
not require the Collection apart from the Adaptation itself to
be made subject to the terms of the Applicable License.

c. If You Distribute, or Publicly Perform the Work or any
Adaptations or Collections, You must, unless a request has been
made pursuant to Section 4(a), keep intact all copyright notices
for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original
Author and/or Licensor designate another party or parties (e.g.,
a sponsor institute, publishing entity, journal) for attribution
("Attribution Parties") in Licensor's copyright notice, terms of
service or by other reasonable means, the name of such party or
parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does
not refer to the copyright notice or licensing information for
the Work; and (iv) , consistent with Ssection 3(b), in the case
of an Adaptation, a credit identifying the use of the Work in
the Adaptation (e.g., "French translation of the Work by
Original Author," or "Screenplay based on original Work by
Original Author"). The credit required by this Section 4(c) may
be implemented in any reasonable manner; provided, however, that
in the case of a Adaptation or Collection, at a minimum such
credit will appear, if a credit for all contributing authors of
the Adaptation or Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for
the other contributing authors. For the avoidance of doubt, You

Copyright

184

may only use the credit required by this Section for the purpose
of attribution in the manner set out above and, by exercising
Your rights under this License, You may not implicitly or
explicitly assert or imply any connection with, sponsorship or
endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without
the separate, express prior written permission of the Original
Author, Licensor and/or Attribution Parties.

d. Except as otherwise agreed in writing by the Licensor or as may
be otherwise permitted by applicable law, if You Reproduce,
Distribute or Publicly Perform the Work either by itself or as
part of any Adaptations or Collections, You must not distort,
mutilate, modify or take other derogatory action in relation to
the Work which would be prejudicial to the Original Author's
honor or reputation. Licensor agrees that in those jurisdictions
(e.g. Japan), in which any exercise of the right granted in
Section 3(b) of this License (the right to make Adaptations)
would be deemed to be a distortion, mutilation, modification or
other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as
appropriate, this Section, to the fullest extent permitted by
the applicable national law, to enable You to reasonably
exercise Your right under Section 3(b) of this License (right to
make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this
License. Individuals or entities who have received Adaptations
or Collections from You under this License, however, will not
have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections
1, 2, 5, 6, 7, and 8 will survive any termination of this
License.

b. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable copyright
in the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that
any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted

Copyright

185

under the terms of this License), and this License will continue
in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a
Collection, the Licensor offers to the recipient a license to
the Work on the same terms and conditions as the license granted
to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation,
Licensor offers to the recipient a license to the original Work
on the same terms and conditions as the license granted to You
under this License.

c. If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License,
and without further action by the parties to this agreement,
such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and
no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreement between the
parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from
You. This License may not be modified without the mutual written
agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in
this License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the
WIPO Copyright Treaty of 1996, the WIPO Performances and
Phonograms Treaty of 1996 and the Universal Copyright Convention
(as revised on July 24, 1971). These rights and subject matter
take effect in the relevant jurisdiction in which the License
terms are sought to be enforced according to the corresponding
provisions of the implementation of those treaty provisions in
the applicable national law. If the standard suite of rights
granted under applicable copyright law includes additional
rights not granted under this License, such additional rights
are deemed to be included in the License; this License is not
intended to restrict the license of any rights under applicable
law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the

Copyright

186

Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

Copyright

187

