Karl Fogel

producir
software de
codigo abierto

COMO LLEVAR A BUEN PUERTO UN
PROYECTO DE CODIGO LIBRE

O’REILLY"

Producir Software de Codigo
Abierto

Como Llevar a Buen Puerto un Proyecto
de Codigo Libre

Karl Fogel

Rafael Martilotti

Alejandro Ayuso
José Manuel Puerta Pefa
Pedro Andrés Bonilla Polo

Aldo Vadillo Batista
Francisco Urbano Garcia
Christian Lopez Espinola
Emilio Casbas Jimenez

Producir Software de Codigo Abierto: Como Llevar a Buen

Puerto un Proyecto de Codigo Libre

por Karl Fogel, Rafagl Martilotti, Alejandro Ayuso, José Manuel Puerta Pefia, Pedro Andrés Bonilla Po-
lo, Aldo Vadillo Batista, Francisco Urbano Garcia, Christian L épez Espinola, y Emilio Casbas Jimenez
Copyright © 2005, 2006, 2007 Karl Fogel, Rafael Martilotti, Alejandro Ayuso, Francisco Urbano Gar-
cia, José Manuel Puerta Pefia, Pedro Andrés Bonilla Polo, Christian L 6pez Espinola, Emilio Casbas un-
der a CreativeCommons Attribution-ShareAlike (3.0) license.

Dedicatoria

Este libro esta dedicado a dos queridos amigos sin los cuales esta obra no hubiera sido posible: Karen
Underhill y Jim Blandy.

Tabla de contenidos

1= = oo Vi
¢POr QUE esCribir ESE [IDrO?evvviii e Vi
¢Quien deberialear ESteliBro? ..o Vi
0 01 = PP PP UPTRPRRN vii
RECONOCTMIENTOS ...ttt e e e e et e e e et e e e e aa s viii
DR ol F= 1T 1= PSPPSR iX

O 1 g 0o (1o o o 1
(= Y o TR (o - L PP 3

El Florecimiento del Software Propietario y del SoftwareLibreccooeeeei. 4
ALIDret VSHADIEIMOH ..o 7
=] (0 =T L o L= o o 9

2. PrIMENOSPASOS ...ttt et aaan 11

Empezando CON 10 QUE SETIENE i 12
EScoger un buen NOMDIEuuiiiiiii e 13
Tener [0S ObJELIVOS ClArOSceuiiii e 14
Declaraque el proyecto eslibre ..o 15
Listade caracteristicasy reqUErimIENtOSccuuviviiiieiiiieii e e e 15
Estado del deSarrollOcouuiiiii e 16
DESCANGESnceeeeiee et 16
Control deversionesy acceso al Bug Trackercoouivveiiiiiiiiiiiineeci e, 17
Canales de COMUNICACIONccvveieiiiii e e e e e e e et e e e e eeaens 18
Pautas de DESAMTOII0 18
DOCUMENEBCTON ...ttt e et e e e e et e e e eeta e eeees 19
Ejemplosde salidasy Capturasooceuiiiiiiiiiii e e e 21
HOSEING €NIEEAOOeeveieiei e 21

Escogiendo unalicenciay aplicAndol@..............uoiiieiiiiiiiiiiii e 22
Laslicencias"Haz [0 QUE QUIEIES"ccuuiiiniiiiiieii e 22
LICENCIAGPL ...t 22
COmo aplicar unalicenciaanuestro SOftWarec.ceevevuieviiieeeiiieiei e, 22

N LU= = I (0] 23
Evitar diSCUSIONES PrIVEAESccevunieiiiiiiieieiii e 24
Echad avolar lamalaeducationcoouviiiiiiiiiiieiiie e 25
Practicad revisiones visibles del cOdigocovvviiiiiiiiiiiiiii 26
Al abrir un proyecto cerrado, hay que ser sensible acerca de lamagnitud de |os cam-
08 e 27

N 410 T PP 28

I 1 == (ot (0 = B =" o 30
L O QUE NECESITAUN PIrOYECLO ...eevvtieeiitieeeeeii e e ettt e e ettt e et e e e et eeeeti e e eebeaeeees 31
LIStBS B COMEO ...ttt ettt et e et e et e et eean e e eb e aeanaes 32

Prevenir @ SPam ..o 33
Identificacion y Administracion de CabeCErasocvvuveviiiiiiiieiii e eeee e 35
El gran debate del REPIY-TO ..vuoveeniiiiiii e e 37
N o o 39
SOfIWAIE .. e 40

CONtrol AEVEISIONESnietee et e et e e e eaa e eees 41
VOCADUIAITO ...eneie et 41
Escoger un sistema de control de VErSIONESccevvuvviiieiiieeiii e eeieeeaeeeann 44
Utilizando el sistema de control de VErSIONESvveveevinieiieiiiieeiiiine e, 44

SEGUIMIENTO TE EITOMES ...ttt ettt et e e e aa e eeaans 50
Interaccion con [as LiStade COMEOuuuieeiiiiiieeiiiie et 52
Pre-filtrado del gestor defallos ..o 52

IRC/ Sistemasde Chaten TIemMPO Realc.oeiviiiiii e 54
BOtS e 55

Producir Software de Codigo Abierto

Archivando TRC ... oo 56
MVTKIS e 56
SO VWED 57

SOIUCIONES dE NOSPEAGIE ... ceeeeieeeeii e 57

4. Infraestructura SOCIal Y POITHICAovvvviiieiiii e e s 60
Dictadores BENEVOIENLESccuuiiiiiii e 61

¢Quién puede ser un Buen Dictador Benevolente?cccevevvieviiiiieiiiecnneeen, 61
Democraciabasadaen € CONSENSOuviiiiiiiieiiiiie e 62

Control de Version Significa que Uno Puede Evitar €l ESIYSooevvvevvnievennnnn. 63

Cuando No Se Puede Tener Consenso, VOUEvvvneiiiieiiieeiieeeeeee e 63

CUaNdO SEDEDE VOLANceveiiii e 64

§7 O U 1= A1 o - PP 65

ENCUEStas VErsUS VOLBCIONESieiivuiieiiiiiie et e e et e et e e et e e eei e eees 66

VA= (0 PP UPPTRPPTP 66
QLI 107z 1o (o] N\ o) = o [N oo o 66

LT 11 o T PP 68
LT oo L=y o= g et o o o) o [P 69
ContratoS INAEfINIAOS ... cceueeeee e e e e 70
Appear aMany, NOt @S ONEovuuiiiiiii e e e e e e e e ans 71
Be Open About Your MOIVALIONSuviieiiiiieeie e e e e e e e e e e e e 72
Money Cant BUY YOU LOVEccouiiiiiiiieei ettt e 73
1600011 7='oi 1 oo PP UPPPTI 74

Review and Acceptance of Changescouuiiiiiiiiiiie e 76
Funding Non-Programming ACHVITIESoveuiiiiiiee e 76

Quality Assurance (i.e., Professional Testing)covevvveviiiieiiiieeiiieecieeieeeann, 77

Legal Adviceand ProteCtioncccuviiiiiiiii i 78

Documentation and USabilityccoouuiiiiiiiiiiiiii e 78

Providing Hosting/Bandwidthoooiiii e 79
Y =g G (] oo PRSPPI 79

Remember That You Are BeingWatchedccovviiiiiiiiiii e 79

Don't Bash Competing Open Source ProductSvvvviieiiiieeiineeiee e 80

6. COMMUNICALIONSeeeetie ettt e e et ettt e e e et r e et eaan e e e eabreeeeaan e eeenens 82
TUEreSI0 QUE ESCIIDESiiii e 82

ESLrUCTUraY TOMMELOceeeveeieii e e 83

1670111 o (o TSP 84

TON0 ettt 85

ReCONOCIENAO [@ GIrOSEITa .. cvvv e ceee e e 86

L0 - PP 87
Evitando 10S ObStACUIOS COMTIENIESieee e 89

NO envies un Correo SiN UN PropOSITOoeeevuueuneeeeeiieiiiii e e e eeeeiiii e e e e eeeenes 89

Hilos productivos vs Hilos Improductivos ... 0

Cuanto més blando sea €l tema, méslargo serael debateccoccevveviiiiiinennnnn. 91

Evitando 1aS GUEITES SANEESccvvnieiiiiiii e 92

El efecto "RuUido MiNOKtario"cooeuuiioiiiiiieiis e 94
LT 01 Lo T T %!

Tratando con gente difiCilcoiiiiiiiiiiii e 95

EStUAIO Bl CBSDieeieii e e 95
Mangjando € CrECIMIENTOcvuiie i e e e 97

Sobresaliente uso de 10S archivoscccuviviiiiiiiiii 98

Codifying Traditioncoeuiiiiiie e 100
No Conversations in the Bug TraCkero 103
PUBITCITY . 104

Announcing Security VUulNerabilitiesc.oiiiiiiiiii e, 105

7. Packaging, Releasing, and Daily DevelOpmentcc.vviiiiiiiiiiiiieei e 111
ReEI€aSE NUMDBEIING ..vieice e e e 111

Release NUumber COMPONENEScvveiieiecc e e e e e 112

The SIMPIE SIFELEGY ..evveneeeiiie et 114

The EVEN/OAd SITELEQY ... ceeernieieiii ettt 115

Producir Software de Codigo Abierto

REEASEBIaNChESvviiiiiiii e 115
Mechanics of REI€ase BranChesc.uviveiiiiiiiiiiiic e 116
StEDIlIZING AREIEASE ... 117
Dictatorship by REIEase OWNEYcoouuiiiiiiiiieeii e 118
Change VOtiNGccueiiiieii e et ees 118
PaCKagiNg ... 120
FOMMIBL .. e e 121

N E= (a0 = 1Yo | 121
Compilation and INStall@tionuuiiiiiiiiiii e 123
Binary Packagesieiiiiiii e 124
Testing and REIEASINGceuniiiiiei e 125
Candidate REIEASES 126
ANNOUNCING REIEASESvviiiiice e e 126
Maintaining Multiple REIEESELINESc..uiviiiiiii e e 126
SECUNLY REIBASES ...vuiiieii et 127
Releases and Daily DeVEIOPMENTcoouuuiiiiiiie et 127
Planning REIEASESoeuiiiiiiiii e 128

8. Coordinando @l0S VOIUNLAITOSccuuuiiiiieiie et 130
Conseguir el Maximo de 1S VolUNtarioscccvueviviiiieiiiieii e 130
1= = - P 131
HElagOS Y CritiCaS .ovvvneiiiii e 133
PrevénlaTeritorialidadooieiiiiiiieci e 134

El Ratio de AULOMELIZACIONccvvnieeiiiie e e e e e 135

Treat Every User asaPotential Volunteeroooovvviiiiiiiiiiii e 138
Share Management Tasks as Well as Technical Tasksccovvvviiiiiiiiiicveneennn, 140
[(0 = 107 o 140
Tranglation MaNAOESieiiiiiie et 141
DocumeNntation MaNAQErccoeuunieiiiiiiee ettt e e 142

[SSUE IMIBINAGET ... ettt ettt ettt e e e e e e e e e e ees 143

FAQ MaNager ...oiviiiiiiii e 144
TRANSITIONS ..t ettt e e e e ettt e e et e et e e e e eanas 144
1000]10] 00111 (= £SO 146
ChooSiNg COMMITIENS ..eivtiieiiiii et e e 147
RevOKIiNG COMMIT ACCESS iiiiiiieeiii ettt 147
Partial COMMIT ACCESSuiiiteiii ettt ettt e e e eanas 148
Dormant COMMITLENSiieeeiiie e e e e et e e e eaaes 148
AVOIA MYSIEIY .ot e e 149
LX< [PSPPSRI 149
0 150
Handling @F0rKooiii e 151
INITTAEING BFOTK e 152

9. Licencias, CopyrightSy Patentescocuu i 154
BIC=: 0011700 = U 154
ASPECLOS AE IBS TICENCIAS ..vuevveeiiiieiiii e e e e e e eees 156
LaGPL y compatibilidad entre liCenCiasoovvuuiieiiiiiiiie e 157
ElGIendo UNTTCENCIAoevueeiiiie e 158
LaMIT / X WIindow System LICENSEoiiuuiiiiiiiiiieeii et e e 158
LaGNU General PUDIIC LICENSEc.uuiiiiiiiiiieii et 159
¢(QUELAl 1AliceNCIABSD? ..ccvviiiiii e 160
Asignaciony propiedad del Copyrightccovuiiiiiiiiie e 160
N[0] 0= o= 47 o - L 161
Contributor License AQreEMENESuuueiieiiieeiiii et e et e e 161
Transfer of CoOPYIIgNTc.uiii e 162

Dual LiCeNSiNg SCNEMESiiiii et e e e 162
PaLENIES .ttt aas 163
RECUrSOS @I CIONEAIEScciivii et 165
A. Sistemas de Control de VersioneSLibresovvveiiiiiiiiiiee e 167
B. Gestor defallOS HDreSiii e 171

Producir Software de Codigo Abierto

C. Why Should | Care What Color the Bikeshed IS?ccoovvviiiiiiiiiiii e, 174
D. Ejemplo de Instrucciones para Informar sobre Falloscccoveviiiiiiiiiiiiii e 178
S ©e)Y 1o | PP OUPRT 180

Prefacio
¢,Por que escribir éste libro?

Ahora cuando estoy en unafiesta, la gente no se queda con la mirada en blanco cuando les digo que es-
cribo software libre. "Oh si, codigo abierto ¢cémo Linux?' me dicen mientras asiento con aprovacion.
"SI, exactamente! Eso eslo que hago." Es agradable no estar mas completamente aislado. Antes, lasi-
guiente pregunta era predecible: " ¢Cémo ganas dinero haciendo eso?"' Para responder, resumiriaasi la
economiadel cédigo abierto: que existen organizaciones interesadas en que cierta clase de software
exista, pero que no necesitan vender copias, sdlo quieren asegurarse de que esté disponible y mantenido,
como una herramienta en lugar de como un servicio.

En cambio, tltimamente, la siguiente pregunta no siempre ha tenido que ver con el dinero. El Business
Case del software Open Source ! yano es tan misterioso, y muchos no-programadores ya entienden—o
al menos no se sorprenden—que haya gente empleada en ello atiempo completo. En su lugar, la pregun-
ta que voy escuchando cada vez més es " ¢ Como funciona todo esto?"

No tenia una respuesta satisfactorialistay cuan mas duro intentaba pensar en una, mas me daba cuenta
de cuan complejo realmente es el tema. Llevar un proyecto de software libre no es exactamente como di-
rigir un negocio (imaginemos tener que negociar constantemente la natural eza de nuestro producto con
un grupo de voluntarios, muchos de los cuales jni siquiera conocemos!). Tampoco es, por varias razo-
nes, como llevar una organizacion sin &nimo de lucro tradicional o un gobierno. Es similar atodas ellas,
pero poco a poco he llegado ala conclusion de que el software libre es sui generis. Existen muchas co-
sas con |as que puede ser comparado por su utilidad, pero con ninguna puede ser igualado. En realidad,
asumir que el software libre puede ser dirigido esiluso. Un proyecto de software libre puede ser iniciado
y puede ser influenciado, fuertemente, por algunas partes interesadas. Pero sus activos no pueden ser he-
chos propiedad de un sélo duefio, asi que mientras haya gente en alguna parte—cualquier parte— intere-
sada en continuar con el proyecto, no puede ser cancelado unilateralmente. Todos tienen poder infinito;
nadie tiene poder. Una dindmica muy interesante.

Es por esto que queria escribir éste libro. Los proyectos de software libre han permitido a una nueva cul-
tlra evolucionar, un ethos en € cual lalibertad de hacer que el software haga cualquier cosa que desea-
mos sea el gje central, sin embargo, € resultado de ésta libertad no es la dispersion de los individuos, ca-
da uno trabajando por su cuenta en €l codigo, sino la colaboracion entusiasta. De hecho, ser un coopera-
dor competente es en si, una de las cualidades mas valoradas en €l software libre. Dirigir uno de estos
proyectos es abordar un tipo de cooperacion hipertrofiada, donde la habilidad de, no sblo trabajar con
otros, pero de ingeniar nuevas maneras de trabajar en conjunto, pueden producir beneficios tangibles pa-
rael desarrollo. Este libro intenta describir las técnicas con las que esto se puede lograr. No es de ningu-
na manera completo, pero al menoses uninicio.

El buen software libre es yaen si mismo un objetivo y espero que agquell os lectores que vengan buscan-
do como lograrlo esten satisfechos con lo que van a encontrar aqui. Pero mas alla de esto, espero trans-
mitir algo del doloroso placer de trabajar con un equipo motivado de desarrolladores de codigo abierto y
de lainteraccion con los usuarios en la maravillosa manera directa que el Open Source anima. Participar
en un proyecto de software libre exitoso es divertido y en Ultimainstancia es esto 1o que mantiene atodo
el sistema funcionando.

¢, Quien deberia leer éste libro?

1| os términos "cddigo abierto” y "libre" son sinénimos esenciales en éste contexto; son discutidos en mayor profundidad en e
“#Libre# vs #Abierto#’, en Capitulo 1, Introduccion.

Vi

Prefacio

Este libro esta enfocado a desarrolladores y directores quienes esten considerando iniciar un proyecto de
software libre o que ya hayan iniciado uno y esten planeado qué hacer ahora. Tambien deberia ser (il
para aquellas personas que quieren participar en un proyecto Open Source y que nuncalo han hecho.

El lector no necesita ser un programador, pero debe conocer conceptos béasicos de ingénierainformética
como cédigo fuente, compiladoresy parches.

Experiencia anterior con software Open Source como usuario o desarrollador no es necesaria. Quienes
hayan trabajado en proyectos de software libre con anterioridad probablemente encuentren algunas par-
tesdel libro algo obviasy quizas deseen saltar esas secciones. Dado que potencial mente existe una am-
plia audiencia experimientada, he hecho un esfuerzo para etiquetar claramente cada seccion y decir
cuando algo puede ser omitido por quienes ya estan familiarizados en la materia.

Fuentes

Mucha de la materia prima para éste libro viene de trabajar durante cinco afios con € proyecto Subver-
sion (http://subversion.tigris.org/). Subversion es un sistema de cédigo abierto para el control de versio-
nes, escrito desde cero con laintencion de reemplazar a CV'S como el sistema de control de versiones de
facto utilizado por la comunidad Open Source. El proyecto fue iniciado por la empresa en la que trabajo,
CollabNet (http://www.collab.net/), a principios del afio 2000 y gracias a Dios, CollabNet entendio des-
dee inicio allevarlo como un esfuerzo colaborativo y distribuido. Desde € principio tuvimos muchos
desarrolladores voluntarios; hoy somos unos 50 en el proyecto, de los cuales sdlo unos pocos son em-
pleados de CollabNet.

Subversion es de muchas maneras un clésico gjemplo de un proyecto Open Source y termine aproximan-
dome més de lo que originalmente esperaba. Parte de esto fue una cuestion de conveniencia: cadavez
gue necesitaba un gjemplo de un fendbmeno en particular, usualmente podia recordar alguno sobre Sub-
version. Pero tambien fue una cuestién de verificacion. Aunque estoy inmerso en otros proyecto de soft-
ware libre a diversos niveles, y que converso con amigosy conocidos envueltos en muchos otros, rapi-
damente me he dado cuenta que al escribir paralaimprenta, todas las afirmaciones deben ser verificadas
con hechos. No deseaba hacer declaraciones acerca de situaciones presentes en otros proyectos basando-
me sblo en |o que podialeer en las listas de correo. Si alguien intentase algo asi con Subversion sé que
sblo estariaen o correcto lamitad de las veces y equivocado la otra mitad. Asi que al buscar inspiracion
0 gjemplos en proyectos con |os que no tenia experiencia directa, intentaba primero hablar con algin in-
formador, alguien en quien confiara para explicarme qué estaba sucediendo realmente

Subversion ha sido mi trabajo durante los ultimos cinco afios pero he estado involucrado en el software

libre durante otros doce. Otros proyectos que han influenciado éste libro son:

« El proyecto de |la Free Software Foundation GNU Emacs, un editor de texto del cual mantengo algu-
nos paquetes pequefios

 Sistemade versiones concurrentes, del ingles Concurrent Version System (CVS) en el que trabgjé in-
tensamente en 1994#1995 con Jim Blandy y en el que sigo trabajando intermitentemente desde enton-
ces.

» Lacoleccién de proyectos Open Source conocidos como la Fundacion de Software Apache, especial-
mente en el Apache Portable Runtime (APR) y en el servidor Apache HTTP.

» OpenOffice.org, las bases de datos Berkeley de Sleepycat y MySQL ; No he estado envuelto personal -
mente en estos proyectos, pero los he observado y, en algunos casos, hablado con personas en ellos.

* GNU Debugger (GDB) (igua que con los anteriores).

 Proyecto Debian (igual que con los anteriores).

Vii

http://subversion.tigris.org/
http://www.collab.net/

Prefacio

Estano eslalista completa, por supuesto. Como muchos de |os programadores de Open Source, man-
tengo varios frentes abiertos en diferentes proyectos, sdlo paratener unavision del estado general. No
los voy anombrar atodos aqui, pero seran mencionados alo largo del libro cuando sea apropiado.

Reconocimientos

Este libro me tomd cuatro veces el tiempo que esperaba para escribirlo, y durante mucho tiempo sentia
como si un piano estuviese suspendido sobre mi cabeza a cada lugar a queiba. Sin la ayuda de mucha
gente, no habria podido completarlo y seguir cuerdo.

Andy Oram, mi editor en O'Reilly fue el suefio de todo escritor. Aparte de conocer el tema intimamente
(& sugirié muchos de los temas), tiene el raro don de saber |0 que seintentadecir y ayudar a encontrar la
manera correcta de decirlo. Ha sido un honor trabajar con él. Gracias tambien a Chuck Toporek por pa-
sarle ésta propuesta a Andy Right desde el principio.

Brian Fritzpatrick reviso casi todo €l material mientras lo escribia, 10 que no sélo hizo el libro mejor, pe-
ro me mantuvo escribiendo cuando queria estar en cualquier lugar menos frente a un ordenador. Ben Co-
[lins-Sussman y Hike Pilato tambien revisaban de vez en cuando el progreso y siempre se contentaban
con discutir—algunas veces en profundidad—cual quier tema que intentaba cubrir esa semana. Tambien
se daban cuenta cuando reducia lamarchay gentilmente me regafiaban cuando era necesario. Gracias
tios.

Biela Coleman estaba escribiendo su tésis al mismo tiempo que yo escribia éste libro. Ella sabe lo que
significa sentarse cada dia a escribir, dandome un ejemplo de inspiracion como un oido amigo. Tambien
tiene una fascinante vista antropol ogica del movimiento free software, dandome ideas y referencias que
podria utilizar en € libro. Alex Golub—otro antropélogo con un pie en el mundo del software libre—fue
un apoyo excepcional que me ayudo inmensamente.

Micah Anderson de alguna manera nunca parecio oprimido por su propio trabajo de escritor, el cual me
inspiraba en algunaforma enfermizay envidiable, pero siempre estuvo listo con su amistad, conversa-
ciony (al menos en una ocasion) soporte técnico. jGracias Micah!

Jon Trowbridge and Sander Striker gave both encouragement and concrete hel p—their broad experience
in free software provided material | couldn't have gotten any other way.

Thanks to Greg Stein not only for friendship and well-timed encouragement, but for showing the Sub-
version project how important regular code review isin building a programming community. Thanks al-
so to Brian Behlendorf, who tactfully drummed into our heads the importance of having discussions pu-
blicly; | hope that principleis reflected throughout this book.

Thanks to Benjamin "Mako" Hill and Seth Schoen, for various conversations about free software and its
politics; to Zack Urlocker and L ouis Suarez-Potts for taking time out of their busy schedules to be inter-

viewed; to Shane on the Slashcode list for allowing his post to be quoted; and to Haggen So for his enor-
mously helpful comparison of canned hosting sites.

Thanks to Alla Dekhtyar, Polina, and Sonyafor their unflagging and patient encouragement. I'm very
glad that | will no longer have to end (or rather, try unsuccessfully to end) our evenings early to go home
and work on "The Book."

Thanks to Jack Repenning for friendship, conversation, and a stubborn refusal to ever accept an easy
wrong analysis when a harder right one is available. | hope that some of hislong experience with both
software development and the software industry rubbed off on this book.

CollabNet was exceptionally generousin allowing me a flexible schedule to write, and didn't complain
when it went on far longer than originally planned. | don't know all the intricacies of how management
arrives at such decisions, but | suspect Sandhya Klute, and later Mahesh Murthy, had something to do
with it—my thanks to them both.

viii

Prefacio

The entire Subversion devel opment team has been an inspiration for the past five years, and much of
what isin this book | learned from working with them. | won't thank them all by name here, because
there are too many, but | implore any reader who runsinto a Subversion committer to immediately buy
that committer the drink of his choice—I certainly plan to.

Many times | ranted to Rachel Scollon about the state of the book; she was always willing to listen, and
somehow managed to make the problems seem smaller than before we talked. That helped a
[ot—thanks.

Thanks (again) to Noel Taylor, who must surely have wondered why | wanted to write another book gi-
ven how much | complained the last time, but whose friendship and leadership of Golosa hel ped keep
music and good fellowship in my life even in the busiest times. Thanks also to Matthew Dean and Do-
rothea Samtleben, friends and long-suffering musical partners, who were very understanding as my ex-
cuses for not practicing piled up. Megan Jennings was constantly supportive, and genuinely interested in
the topic even though it was unfamiliar to her—agreat tonic for an insecure writer. Thanks, pal!

| had four knowledgeable and diligent reviewers for this book: Y oav Shapira, Andrew Stellman, Dava-
num Srinivas, and Ben Hyde. If | had been able to incorporate all of their excellent suggestions, this
would be a better book. Asit was, time constraints forced me to pick and choose, but the improvements
were still significant. Any errors that remain are entirely my own.

My parents, Frances and Henry, were wonderfully supportive as always, and as this book is less techni-
cal than the previous one, | hope they'll find it somewhat more readable.

Finally, | would like to thank the dedicatees, Karen Underhill and Jim Blandy. Karen's friendship and
understanding have meant everything to me, not only during the writing of this book but for the last se-
ven years. | simply would not have finished without her help. Likewise for Jim, atrue friend and a hac-
ker's hacker, who first taught me about free software, much as a bird might teach an airplane about fl-
ying.

Disclaimer

L os pensamientos y opiniones expresadas en este libro son propias. No representan |os puntos de vista
de CollabNet o del proyecto Subversion.

Capitulo 1. Introduccion

Lamayoria de los proyectos de software libre fracasan.

Tratamos de no prestar mucha atencion alos fracasos. Solamente |os proyectos exitosos |laman la aten-
cién, y hay tantos proyectos de software! que atin cuando solo un pequefio porcentaje tiene éxito, el re-
sultado es de una apreciable cantidad de proyectos. Pero tampoco prestamos atencion alos fracasos por-
gue no los contamos como un evento. No existe un momento puntual en el que un proyecto deja de ser
viable; simplemente se los deja de lado y se deja de trabajar en ellos. Puede haber un momento en que se
hace un cambio final a proyecto, pero quienquiera que lo haga, norma mente no sabe en ese momento
que ese cambio fue € Gltimo. Tampoco hay una definicién clara del momento en que un proyecto se
acaba. ¢Podra ser cuando se haya degjado de trabajar en €l por seis meses? ¢O cuando su base de usuarios
deja de crecer, sin antes haber excedido la base de programadores? ¢Y qué pasariasi |os programadores
de un proyecto |o abandonan porque se dan cuenta que estaban duplicando el trabajo de algin otro—y

si se unen todos en el otro proyecto, y 1o amplian paraincluir ahi su esfuerzo realizado? ¢Acaso € pri-
mer proyecto finalizd, o simplemente cambi6 de lugar de residencia?

Dada ésta complgjidad, esimposible obtener un nimero preciso para un promedio de fracasos. Pero la
evidencia de lo que ha ocurrido en més de un decenio con proyectos con fuente abiertay curioseando un
poco en SourceForge.net y otro poco en Google, se llega siempre alamisma conclusién: € porcentaje
es muy alto, probablemente algo asi como &l 90-95%. Este numero crece alln més si seincluyen los pro-
yectos que sobreviven pero son disfuncionales: aguellos que producen un codigo que funciona, pero no
son placenteros ni amigables, 0 no progresan tan rgpidamente ni son tan confiables como tendrian que
Ser.

En este libro se habla de como evitar los fracasos. Se examina no solamente cdmo se hacen bien las co-
sas, sino también como se hacen mal, para que se puedan reconocer desde €l comienzo, y se corrijan los
problemas. Tengo la esperanza que después de que se lea este libro, se adquiera un repertorio de técnicas
no sblo para evitar los errores comunes en el desarrollo de programas de fuente abierta, sino también pa-
ramanejar €l crecimiento y el mantenimiento de un proyecto exitoso. El éxito no es un juego paraque
haya un solo ganador, y este libro no busca producir un solo ganador que salga airoso de una competi-
cion. Asi pues, una parte importante de impulsar un proyecto de fuente abierta es trabajar en armonia
con otros proyectos relacionados entre si. Y alalarga, cada proyecto exitoso contribuye al bienestar de
todo el mundo del software libre.

Seria muy tentador afirmar que los proyectos de software libre fracasan por las mismas razones que los
proyectos de software propietario. Ciertamente el software libre no tiene el monopolio de |os requisitos
descabellados, |as especificaciones vagas, del manejo pobre de los recursos, fases de disefio insuficien-
tes, y tantas otras complicaciones ya conocidas en laindustria del software. Se va a hablar mucho de es-
tos asuntos en este libro, y ahora hay que tratar de no multiplicar las referencias a dichos asuntos. Més
bien se intentara describir 1os problemas particulares a software libre. Cuando un proyecto de software
libre se estanca, a menudo es porgue los programadores (o la direccién) no caen en cuenta de los proble-
mas tipicos del desarrollo de software de fuente abierta, aungque pareciera que estan muy bien preparados
paralas dificultades méas conocidas del desarrollo de software de fuente cerrada.

Uno de los errores mas comunes es tener expectativas desproporcionadas sobre |os beneficios propios de
lafuente abierta. Unalicencia abierta no es una garantia de tener unalegion de programadores activos
gue de repente se of recen para el proyecto, ni tampoco un proyecto con problemas se cura por € solo he-
cho de pasarlo afuente abierta. De hecho estodo o contrario: abrir un proyecto puede agregar una serie
de complicaciones, y resultar a corto plazo mas costoso que manejarlo dentro de casa. Abrirlo vaasigni-
ficar acomodar €l cAdigo para que sea comprensible a gente extrafia, estableciendo un sitioenlared y

LE sitio de hosti ng SourceForge.net, tiene 79 225 proyectos registrados a mediados de abril de 2004. Por supuesto que este niime-
ro no se acerca paranadaa nimero total de proyectos en Internet, solo €l nimero que usa SourceForge.

1

Introduccioén

una lista de correos, y a menudo redactando la documentacion del proyecto por primeravez. Todo esto
significamucho trabgjo. Y ademés, si aparece algun programador interesado, habra que soportar € peso
agregado de contestar sus preguntas por un tiempo, antes de ver € beneficio que se recibe por su presen-
cia. Como dijo & programador Jaime Zawinski comentando los dias ajetreados cuando se lanzaba €l pro-
yecto Mozilla:

La fuente abierta anda, pero no es definitivamente la panacea. Hay que advertir con
cautela que no se puede encarar un proyecto moribundo, rociarlo con el polvo magico
de la #fuente abierta# y tener de repente todo en funcionamiento. El software es difi-
cil. Las cosas no son tan simples.

(de http://www.jwz.or g/gr untle/nomo.html)

Una equivocaci6n relacionada es escatimar en la presentacién y el empaguetado, creyendo que esto se
puede hacer después, cuando el proyecto esté encaminado. La presentacion y el empaquetado compren-
den una amplia serie de tareas, todas en torno areducir la barrerade ingreso a proyecto. Hacer un pro-
yecto atractivo para un no iniciado significa documentarlo parael usuarioy el programador, establecer
un sitio web paralos recien llegados, automatizar cuanto sea posible la compilacion e instalacion del
software, etc. Desgraciadamente muchos programadores dan a este trabajo una importancia secundaria
comparado con el codigo. Hay un par de razones para esto. De entrada se puede percibir como trabajo
no productivo, porque aparentemente beneficia mas alos que no estan familiarizados con el proyecto.
De cualquier modo, los que desarrollan € c6digo no necesitan realmente del empaguetado. Y a conocen
como instalar, administrar y usar el software, porque ellos lo escribieron. En segundo lugar, los conoci-
mientos para hacer bien la presentacion y el empaquetado son a menudo completamente diferentes alos
gue se requieren para escribir el codigo. La gente tiende a concentrarse en lo que mas sabe, alin cuando
podria ser mas til a proyecto que se dediquen un poco alo que no lesresultatan familiar. En el Capitu-
lo 2, Primeros Pasos se trata la presentacion y el empaquetado en detalle, y explica por qué esimportan-
te que sean una prioridad desde el comienzo del proyecto.

Después se introduce lafalacia de que no se requiere unadireccién del proyecto cuando es de fuente
abierta, 0 alainversa, que las mismas préacticas de gestion usadas para un proyecto hecho en casavan a
funcionar bien en un proyecto de fuente abierta. El manejo de un proyecto de fuente abierta no siempre
resulta visible, pero cuando éste es exitoso tiene lugar detrés de las bambalinas de una u otraforma. Un
pequefio experimento mental serd suficiente para mostrar por qué. Un proyecto de fuente abierta consis-
te en una coleccion de programadores al azar —Ios que ya de por si son gente con categorias indepen-
dientes— que muy probablemente nunca se van a encontrar juntos, y que quizas tienen objetivos perso-
nales muy diferentes paratrabajar en el proyecto. El experimento consiste en imaginar sencillamente
gué vaa pasarle adicho grupo sin direccion. Si no creemos en milagros, € proyecto vaa colapsar y di-
[uirse muy rapidamente. Las cosas no funcionaran simplemente por si solas, por mas que |os deseos sean
grandes. Pero la administracion, alin cuando sea muy activa, es amenudo informal, sutil, y de bajo per-
fil. Lo Unico que mantiene unido a grupo de desarrollo es el convencimiento compartido de que juntos
pueden hacer més que individualmente. Entonces el objetivo de la direccion es mayormente asegurar
gue continien con ese convencimiento, estableciendo estandares de comunicacién, cuidando que los
programadores Utiles no queden marginados debido aidiosincrasias personales, y en general procurando
gue el proyecto sea un lugar acogedor paralos programadores. L as técnicas especificas pararealizar esto
sediscuten alo largo de este libro.

Finalmente, hay una categoria general de los problemas que podria llamarse #fallas de orientacion cultu-
ral.# Hace diez afios, 0 quizés sean s6lo cinco, hubiera sido prematuro hablar de una cultura global de
software libre, pero ahorayano es asi. Lentamente ha emergido una culturavisible, y alin cuando esta
no es monolitica—por lo menos es tan propensa al disentimiento interno y a corporativismo como cual-
quier cultura limitada geograficamente— tiene ciertamente un niicleo bésico consistente. L os proyectos
de fuente abierta mas exitosos muestran algo o €l total de las caracteristicas de ese niicleo. Se premian
ciertos tipos de conductas y se castigan otros. Se crea una atmésfera que incita ala participacion espon-
tanea, a veces a expensas de una coordinacion central. Se tienen conceptos de o que es ser amable o ser
rudo que difieren substancialmente de o que prevalece fuera. Lo més importante es que |os participantes
gue son asiduos tienen ya interiorizados esos conceptos y comparten un cierto consenso sobre la conduc-
ta que es aceptable. Los proyectos no exitosos a menudo se desvian apreciablemente de ese nlcleo, ave-

2

http://www.jwz.org/gruntle/nomo.html

Introduccioén

ces intencionalmente, y no tienen un consenso sobre |0 que razonablemente constituye una conducta
predeterminada. Esto quiere decir que cuando surgen los problemas la situacion se viene abajo rapida-
mente, porque los participantes carecen de un conjunto de reflgjos culturales determinados que les per-
mita resolver sus diferencias.

Este libro es una guia préctica, no un estudio antropol égico o un libro de historia. Sin embargo, un cono-
cimiento efectivo de los origenes del software libre actual es una base esencial para cualquier consgjo
préctico. Una persona que entienda esta cultura puede vigjar sin limites en este mundo de la fuente abier-
ta, encontrandose con muchas variaciones en costumbresy dialectos, y alavez estar en la condicion de
participar comoday efectivamente en cualquier lado. Por €l contrario, una persona que no entiende esta
cultura encontrara que €l proceso de organizar y participar en un proyecto es algo dificil y lleno de sor-
presas. Puesto que el nimero de gente que desarrolla software libre sigue creciendo a grandes saltos, ha-
bra muchos en ésta Ultima categoria— ésta es mayormente una cultura de inmigrantes recientes, y conti-
nuara asi por mucho tiempo. Si crees que eres uno de estos, en € préximo titulo se presentaran algunos
antecedentes Utiles para | as discusiones que vendran después, tanto en este libro como en Internet. (Por
otro lado, s ya has trabajado en proyectos de fuente abierta por algin tiempo, puede ser que conozcas
mucho sobre esta historia, y y seamejor saltar ala siguiente seccion.)

La Historia

Compartir el software tiene tanta historia como el software mismo. En los primeros tiempos de |os orde-
nadores, |os fabricantes se dieron cuenta que vendrian avances competitivos en lainnovacion del hard-
warey no prestaron mucha atencion al software como una ventaja para €l desarrollo de sus negocios.
Muchos de los usuarios de las primeras méaquinas eran cientificos o técnicos que podian modificar y am-
pliar el software que incluiala maquina. A veces los usuarios distribuian sus aportes no solamente a fa-
bricante, sino también a otros usuarios que tenian maguinas similares. A menudo |os fabricantes tolera-
ban esto, eincluso lo estimulaban: para ellos cualquier mejoraen el software, fuera cual fuese su proce-
dencia, contribuia a que las maquinas resultasen mas atractivas para otros usuarios potenciales.

Aungue esta primera época se parece de muchas maneras a la cultura actual del software libre, difiere
fundamental mente en dos aspectos: primero que habia poca estandarizacion del hardware— era un mo-
mento de mucha innovacion en el disefio de los ordenadores, pero ladiversidad en las arquitecturas ha-
ciaque cualquier cosaresultaraincompatible con laotra. Asi que € software que se escribia para una
maquina generalmente no servia para otra. Los programadores se inclinaban hacia una arquitectura en
particular o familiade arquitecturasy en ellas se hacian expertos (mientras que hoy se adquiere expe-
riencia en un lenguaje de programacion o unafamilia de lenguajes y se espera que esa experiencia se
pueda luego transferir a cualquier hardware en que se vaya a trabajar). Puesto que un experto se inclina-
ba a sdlo un tipo de ordenador, la acumulacion de sus conocimientos tenia el efecto de hacer més atracti-
vo ese ordenador tanto paraé como para sus colegas. Por lo que |os fabricantes tenian gran interés en
difundir tanto como pudieran la codificacién y e conocimiento de alguna méguina especifica.

En segundo lugar Internet no existia. Aunque tenian menos restricciones legales que hoy para compartir,
habia mas restricciones técnicas: Hablando comparativamente, los medios para transmitir datos de un la
do aotro eran dificiles y engorrosos. Habia algunas pequefias redes locales, aptas para compartir infor-
macién entre empleados del mismo laboratorio de investigacién o compafiia. Pero quedaban por superar
unaserie de trabas si se queria compartir con alguien, estuviere donde estuviere. Estas trabas se supera-
ban en muchos casos. A veces eran grupos varios que se contactaban independientemente, enviandose
discos o cintas por correo, y aveces eran |os fabricantes mismos que servian como centrales de inter-
cambio de los aportes individual es. También ayudaba que muchos de los que desarrollaban |os primeros
ordenadores trabajasen en las universidades, en donde era costumbre publicar los avances. Pero lareali-
dad de latransmision de datos implicaba que siempre que se los queria compartir se topaba con un impe-
dimento que era proporcional aladistancia (fisicau organizacional) que el software tenia que vigjar. Era
imposible compartir algo con todo el mundo sin resistencias, tal como se puede hacer hoy.

El Florecimiento del Software Propietario y del Software

Introduccioén

Libre

A medida que maduraba laindustria ocurrian simultdneamente algunos cambios interrel acionados. La
gran diversidad de los disefios del hardware finalmente cedieron el paso a unos pocos ganadores
—qganadores por tener una tecnol ogia superior, o una comercializacion superior, 0 una combinacion de
ambas cosas. Al mismo tiempo, no coincidente en su totalidad, el desarrollo de los asi [lamados lengua-
jes de programacién de #alto nivel# significaba que se podia escribir un programa de una sélavez en un
lenguaje, y luego traducirlo automaticamente (#compilarlo#) para que funcione en diferentes tipos de or-
denadores. Las consecuencias de esto ho se quedaron perdidas en | os fabricantes de hardware: un usua-
rio podia ahora emprender un mayor esfuerzo de ingenieria de software sin encerrarse en una arquitectu-
ra particular. Cuando esto se combinaba con la disminucién gradual de las diferencias en lacalidad de
funcionamiento entre los ordenadores, y mientras los disefios menos eficientes eran eliminados, un fabri-
cante que se centraba en €l hardware como Unico beneficio podia divisar una disminucién de sus ganan-
cias en €l futuro. La potencia de computacion pura se convertiaen un bien fungible, mientras que el soft-
ware se convertiaen el diferenciador. Aparecia como una buena estrategia vender software, 0 al menos,
tratarlo como parte integral de las ventas del hardware.

Esto significé que los fabricantes tuvieran que ser més estrictos defendiendo |os derechos de copia de los
codigos. Si 1os usuarios hubieran continuado simplemente con su costumbre de compartir y modificar
los cédigos de maneralibrey gratis, hubieran instalado en formaindependiente las mejoras que ahora
empezaban a ser vendidas como #val or agregado# por |os proveedores. Peor aln, el codigo compartido
podria haber caido en las manos de los competidores. Laironia de esto es que ocurriaa mismo tiempo
gue Internet estaba ganando terreno. Justamente, cuando se hacia técnicamente posible compartir el soft-
warey se caian los obstaculos, los cambios en e mundo de los negocios hacian del compartir algo eco-
némicamente indeseable, por lo menos desde € punto de vista propio de una compafiia. Los proveedores
imponian sus controles, ya sea negando el acceso al cddigo alos usuarios que corrian el programa en sus
maéaquinas, o mediante acuerdos de no difundir € cédigo, lo que hacia que el compartir fueraimposible.

Una resistencia conciente

Mientras se extinguia el mundo del intercambio de cdigos se cristalizaba una contra reaccién al menos
en lamente de un programador. Richard Stallman trabajaba en €l |aboratorio de inteligencia artificial en
e Instituto Tecnol 6gico de Massachussets en la década de 1970 einicios de 1980, laépocay €l lugar de
oro parala costumbre de compartir los codigos. El laboratorio de | A teniaunafuerte "ética de hackers'?
y no sdlo se estimulaba a personal de los proyectos sino que era de esperar que todos |os avances he-
chos en €l sistema fueran compartidos. Como luego escribiria Stallman:

No le llamabamos #software libre# a nuestro software porque ese término no existia;
pero era precisamente eso. Toda vez que alguien de otra universidad queria llevar y
usar un programa, nosotros se lo ofreciamos con gusto. S se veia que alguien usaba
un programa distinto e interesante, se le podia pedir el codigo fuente, para poder
leerlo, cambiarlo o fusionar partes de él en un programa nuevo.

(de http://www.gnu.or g/gnu/thegnupr oj ect.html)
Esta comunidad edénica colapso con Stallman poco después de 1980, cuando los cambios que venian
ocurriendo en el resto de laindustria finalmente alcanzaron al laboratorio de |A. Una compafia que se
iniciabaincorporaba a muchos de los programadores del |aboratorio paratrabajar en un sistema operati-
vo similar al que habian desarrollado ali, pero ahora bajo unalicencia exclusiva. Al mismo tiempo, €l
laboratorio de A adquiria nuevos equipos que llegaban con un sistema operativo de marca registrada.
Stallman vio lagran trama de |o que estaba sucediendo:

Los ordenadores modernos de la época, como el VAX o el 68020, venian con sus siste-

2Stallman usala palabra"hacker" con el significado de "alguien que amalaprogramacion y disfrutas hace algo inteligente” y no
con el sentido mas reciente de "alguien gque se conecta como un intruso en los ordenadores"

4

http://www.gnu.org/gnu/thegnuproject.html

Introduccioén

mas operativos propios, pero ninguno era un software libre: se debia firmar un acuer-
do de no revelar los contenidos para poder recibir una copia € ecutable.

Lo cual significaba que el primer paso para usar un ordenador era prometer que no
habia que ayudar al vecino. La comunidad de cooperacién estaba prohibida. La regla
gue establecian los duefios del software propietario era: "si compartes con tu vecino,
eresun pirata. S quieres cambios, nosotros los haremos, si nos lo pides.#

Y por su personalidad peculiar decidio ofrecer resistencia a esta nueva ola. En lugar de continuar traba-
jando en el diezmado laboratorio de | A, o aceptar €l trabajo de escribir codigo en alguna de las compa-
fiias nuevas, en las que su trabajo iba a quedar encerrado en una caja, renunci6 al laboratorio y comenzo
el proyecto GNU y la Fundacion de Software Libre (FSF por sus siglas en Inglés). El objetivo del
GNU~eradesarrollar un sistema operativo y un conjunto de aplicaciones completamente libres y abier-
tas, donde nunca se impediria ala gente hackear o compartir sus cambios. En esencia, estaba empefiado
en recrear |0 que se habia destruido del laboratorio de | A, pero aunaescalaglobal, y sin las vulnerabili-
dades que ponian ala cultura del laboratorio de | A en un estado de posible desintegracion.

Ademés de trabajar en el nuevo sistema operativo, Stallman inventd una licencia de copyright cuyos tér-
minos garantizaban que |os codigos permanecerian gratis en perpetuidad. La Licencia Plblica Genera
GNU es unaingeniosa pieza de judo legal: dice que los cddigos pueden ser copiados y maodificados sin
ningunarestriccién y que ambas copiasy trabajos derivados (a saber, |las versiones modificadas) deben
ser distribuidas bajo lamismalicenciaque € original, sin poner restricciones adicionales. En efecto, se
usan las leyes del copyright para conseguir un efecto contrario al que apunta el copyright tradicional: en
lugar de limitar la distribucién del software, prohibe que nadie, ni siquiera el autor, lo limite. Para Stall-
man, esto eramejor que si hubiera puesto su codigo en el dominio publico. Si hubiera estado en €l domi-
nio publico, cualquier copia podria haber sido incorporada a los programas propietarios (como ya se sa-
bia que habia sucedido con codigos que tenian licencias permisivas). Aungue unaincorporacién como
éstas no hubiera disminuido la disponibilidad de los cédigos originales, hubiera significado que los es-
fuerzos de Stallman iban a beneficiar a enemigo— a software propietario. La Licencia Piblica General
puede entenderse como una forma de proteccionismo del software libre, porque impide que el software
no-libre se aproveche de los cddigos que estan bajo esta licencia. La Licencia Publica Genera y su rela-
cién con otras licencias del software libre se discuten en detalle en el Capitulo 9, Licencias, Copyrightsy
Patentes.

Con laayuda de nuevos programadores, alguno de los cuales compartian laideologia de Stallman 'y
otros que simplemente querian ver abundante codigo disponible en forma gratuita, el Proyecto GNU co-
menzo entregando versiones libres para reemplazar muchos de los componentes criticos de sistemas
operativos. Gracias a la estandarizacion expandida del hardware y software para ordenadores, se hizo
posible usar |os reemplazos GNU en sistemas no-libres, y mucha gente lo hizo. El editor de texto de
GNU (Emacs) y el compilador C (GCC) tuvieron especia éxito, ganando muchos seguidores leales, no
por términos ideol 6gicos, sino simplemente por los méritos técnicos. Alrededor del afio 1990, GNU ha-
bia producido la mayor parte de un sistema operativo libre, con excepcion del niicleo —la parte por la
gue realmente lamaguina arrancay se hace responsable de mangjar lamemoria, €l disco y otros recursos
del sistema.

Desafortunadamente el proyecto GNU habia elegido un disefio de nlcleo que resulté més dificil deim-
plementar de lo esperado. La consiguiente demora impedia que la Fundacién de Software Libre ofrecie-
rala primeraversién de un sistema operativo enteramente libre. La piezafinal fue instalada en su lugar
por Linus Torvalds, un estudiante de computacién finlandés quien con la ayuda de voluntarios de todo €l
mundo habia completado un ntcleo libre usando un disefio més conservador. Le [lamé Linux, y cuando
fue combinado con los programas GNU existentes tuvo como resultado un sistema operativo compl eta-
mente Iibre.4 Por primera vez se podia arrancar un ordenador y hacerlo trabagjar sin usar ninglin software
propietario.

3Siglasque significan "GNU No es Unix" donde GNU significa... lo mismo.

Un sistema operativo libre para ordenadores compatibles con IBM, llamado 386BSD, habia aparecido poco antes que Linux. Sin
embargo, era mucho mas dificil conseguir un 386BSD y hacerlo funcionar. Linux tuvo tanta resonancia no solo porque eralibre,
sino porque realmente tenia una probabilidad alta de hacer arrancar a ordenador una vez que se instalaba.

5

Introduccioén

Muchas partes del software de este nuevo sistema operativo no fueron producidas por el proyecto GNU.
De hecho, el GNU no fue € nico grupo que trabajaba para producir un sistema operativo libre (por
giemplo, e codigo que luego fue NetBSD y FreeBSD estaba ya en desarrollo en ese momento). Laim-
portancia de la Fundacion de Software libre no solamente residia en los c6digos que se escribian, sino en
€l tratamiento politico del tema. Al hablar del software libre como una causa en lugar de una convenien-
Cia, eracas imposible que los programadores no tomasen una postura politica de ello. Aun los que no
estaban de acuerdo con la Fundacion de Software Libre tuvieron que enfrentar la causa, aunque mas no
sea para proponer una posicion diferente. La efectividad que tuvo la Fundacién de Software Libre en €
proceso de difusion residio en lavinculacion del codigo al mensaje, por medio de la Licencia Pdblica
Generad y de otros textos. Al mismo tiempo que se difundian los codigos, se distribuiatambién el men-

sgje.
Resistencia accidental

Habian muchas otras cosas sucediendo en la escena naciente del software libre, sin embargo, pocas eran
tan explicitas ideol 6gicamente como el Proyecto GNU de Stallman. Una de | os sucesos mas importantes
fue la Berkeley Software Distribution (BSD), una reimplementacion gradual del sistema operativo Unix,
gue hasta finales de la década de los 70" habia sido un proyecto de investigacion sin restricciones de
AT&T— hecho por programadores de la Universidad de Berkeley en California. Este grupo BSD no hi-
zo unadeclaracion politica sobre la necesidad de que |os programadores se unan y compartan unos con
otros, pero practicaron laidea con talento y entusiasmo, coordinando un esfuerzo de desarrollo distri-
buido masivamente en €l cual fueron reescritos |os recursos de linea de comando y las bibliotecas del
Unix y eventualmente también el nicleo del sistema operativo, en su mayoria por voluntarios que los to-
maban de borradores. El proyecto BSD resulté un primer g emplo de desarrollo de un software libre no-
ideoldgico, y también sirvié como campo de entrenamiento para muchos desarrolladores que continua-
rian activos en e mundo del software libre.

Otro proyecto de desarrollo cooperativo fue el X Window System, un entorno grafico de computacion li-
brey transparente en lared, desarrollado en el MIT a mediados de |a década de 1980 en coparticipacion
con empresas que tenian €l interés comln de estar en condiciones de ofrecer a sus clientes un sistema
operativo con ventanas. Lejos de oponerse a software propietario, lalicencia X permitia deliberadamen-
te que se hicieran extensiones propietarias encima del nucleo libre — cada miembro del consorcio que-
riatener la oportunidad de mejorar la distribucion X predeterminaday consiguientemente ganar una
ventaja competitiva con respecto alos otros miembros. El X Wi ndows® era un software libre, pero fun-
damentalmente como una manera de nivelar el campo de juego entre intereses de las empresas competi-
doras, y no por el deseo de poner fin ala dominacion del software propietario. Todavia hay otro g em-
plo, el TeX de Donad Knuth, un sistema de tipografia, que se alimentaba del proyecto GNU. Ofrecié
unaversién bajo unalicencia que permitia que cual quiera modifique y distribuya el cédigo, pero que no
sellamara"TeX" ano ser que superara una serie de tests de compatibilidad muy estrictos (este es un
gjemplo de una clase de licencias libres "protectoras de marcas registradas” de las que se hablara més en
el Capitulo 9, Licencias, Copyrights y Patentes) Knuth no estaba tomando partido para un lado ni para el
otro en la cuestion del software libre contra el propietario, solo necesitaba un sistema mejor de impre-
sién para cumplir con su objetivo real —un libro sobre programacion de ordenadores— y no encontré
escollos para presentar a mundo su sistema una vez que estuvo hecho.

AUn sin tener un listado completo de proyectosy licencias, se puede afirmar con seguridad que para €l
fin de la década de los 80" habia una buena cantidad de software libre y unaamplia variedad de licen-
cias. Ladiversidad de licencias reflejaba una diversidad de motivaciones correspondientes. Incluso algu-
nos de los programadores que eligieron la Licencia Piblica General de GNU estaban mucho menos mo-
tivados ideol 6gicamente que el proyecto GNU mismo. Aunque disfrutaban trabajando en el software li-
bre, muchos desarrolladores no consideraron que el software propietario eraunalacra social. Habia
guienes sentian un impulso moral de liberar al mundo del #acaparamiento de software# (un término que
usaba Stallman para €l software no libre), pero otros estaban mas motivados por un entusiasmo técnico,
o por €l placer de trabajar con colaboradores de pensamiento afin, o simplemente por el deseo humano
delagloria. Pero las motivaciones disparatadas no intervinieron en forma destructiva en todo este con-

SPreferian que se llamara "X Windows System", pero en la préctica se le llama comunmente "X Windows", porque tres palabras es
demasiado complicado.

6

Introduccioén

fin. Esto se explica en parte porque, en oposicion alos que acontece en otras formas creativas como la
prosao las artes visuales, €l software debe superar pruebas semi-objetivas para ser considerado un éxito:
debe funcionar y estar razonablemente libre de errores. Esto otorga a todos |os participantes del proyecto
una especie de pie de igualdad comUn, unarazén y un encuadre paratrabajar juntos sin preocuparse mu-
cho de otros titulos que no sean los conocimientos técnicos.

Ademas, los desarrolladores tenian otra razén para permanecer juntos. acontecia que € mundo del soft-
ware libre estaba produciendo codigos de muy ata calidad. En algunos casos se podia demostrar que
eran técnicamente superiores alas aternativas del software no libre que se les acercaban; en otros casos
eran al menos comparablesy por supuesto, costaban menos. Mientras que solo unos pocos pudieron es-
tar motivados para usar software libre por razones estrictamente filosoficas, la gran mayoria se sentia fe-
liz de usarlos porque cumplian mejor con lastareas. Y entre los usuarios, algln porcentaje estaba siem-
pre listo para donar su tiempo y habilidad para ayudar a mantener y mejorar el software.

Esta tendencia de producir buenos cdigos no era ciertamente universal, pero se repetia por todas partes
con frecuencia en aumento en los proyectos de software libre. Las empresas que dependian fuertemente
del software lo empezaron a notar gradual mente. Muchos de ellos descubrieron que ya estaban usando
software libre en las operaciones de todos |os dias, solo que no lo sabian (los gerentes de alto rango no
siempre saben todo lo que ocurre en las dependencias de |a tecnologia informatica). Las corporaciones
comenzaron atomar cartas activas en los proyectos del software libre, contribuyendo con tiempo y equi-
pos, y aveces subvencionando directamente al desarrollo de programas libres. Estas inversiones podian,
en el mejor de los casos, devolverles muchas horas de tiempo extra. Las subvenciones solo pagaban a
una cantidad pequefia de programadores expertos para que dedicaran su trabajo de tiempo compl eto, pe-
ro cosechaban |os beneficios de las contribuciones de todos, incluso de voluntarios no pagos, y progra-
madores pagados por otras corporaciones.

#Libre# vs #Abierto#

Cuando |as corporaciones prestaron mayor atencion alos programadores de software libre se enfrenta-
ron con nuevas formas de presentacion. Una de ellas fue la palabra #libre#. Al escuchar por primeravez
el término #software libre# muchos pensaron erréneamente que solamente significaba #software de cos-
to cero#. Es verdad que todo software libre tiene un costo cera®, pero no todo € software gratis eslibre.
Por ejemplo, durante la guerra de los navegadores de la década de l0s '90 Netscape y Microsoft repartian
gratis sus navegadores en la disputa por ganar la mayor partici paci 0n en & mercado. Ninguno de estos
navegadores eralibre en € sentido que tiene el "software libre" No se dispone del caédigo fuente, y si se
lo tuviera, no setiene e derecho de modificarlo o redistribuirlo.” Lo tnico permitido era bajar |os pro-
gramas gjecutables y hacerlos funcionar. Los navegadores no eran més libres que | os softwares empa-
guetados y comprimidos que se compran en un negocio; solo que el precio eramas bajo.

Esta confusion en la palabra #libre# se debe a una desaf ortunada ambigiiedad de lenguaje, en este caso
del inglés. En otras lenguas romances aparece la diferencia entre precio bajo y libertad porque existen
las palabras gratisy libre que se distinguen con facilidad. Pero siendo el inglés el lenguaje puente dentro
de Internet, pasd esto asignificar que un problema con el inglés era también un problema paralos de-
mas. Este malentendido suscitado por |a palabra #libref eratan penetrante paralos angloparlantes que
los programadores de software desarrollaron unaformula estandar que repetian: "Eslibre (free) como la
libertad, no como la cerveza gratis (free)" Aun ahora, tener que explicar esto unay otra vez resulta fati-
gante. Muchos programadores sentian, no sin razén, que la palabra ambigua (en inglés) #libre# (free) es-
taba obstaculizando la comprension del piblico en relacion a este software.

Pero este problema se profundizé mas alin. La palabra#libre# |levaba consigo unainevitable connota-
cién mora: si lalibertad eraun bien en si mismo, no eraimportante si el software eramejor o mas con-
veniente para ciertos asuntos o ciertas circunstancias. Estos Ultimos ef ectos aparecian como secundarios,
por otras motivaciones que no eran en el fondo ni técnicas ni comerciales, sino morales. Mas todavia, la

bse podria cobrar algo por repartir las copias del softwre libre, pero puesto que no se puede parar alos que lo reciben si éstos quie-
ren ofrecerlo gratis después, el precio vuelve a cero inmediatamente.

" El codi go fuente del Navegador de Netscape apareci6 eventualmente bajo unalicencia de fuente abierta, en 1998, vino a ser la
base del navegador Mozilla. Ver http://www.mozilla.org/.

7

http://www.mozilla.org/

Introduccioén

postura de #libre como la libertad# |levaba a una flagrante incoherencia de las corporaciones que sub-
vencionaban algunos programas libres para algunas areas de sus negocios, pero continuaban comerciali-
zando software propietario en otras.

Estos dilemas llovian sobre de una comunidad que ya estaba aplastada por unacrisis de identidad. Los
programadores que escriben actualmente el software libre no se sienten necesariamente identificados
con €l objetivo central #si 1o hay- del movimiento del software libre. Seria engafioso decir que las opi-
niones van de un extremo a otro, porque esto implicarialafalsedad de imaginar que nos movemos en
unalinea de pensamiento, cuando en realidad es una distribucion multidimensional. Sin embargo, s es-
tamos dispuestos a obviar las sutilezas, por e momento pueden diferenciarse dos amplias categorias. Un
grupo se alinea bajo & punto de vista de Stallman, para quien lalibertad de participar y modificar eslo
mas importante, y por lo tanto si no se habla de libertad se esta esquivando el nucleo principa de la
cuestion. Otros piensan que €l software es el argumento mas importante a su favor, y se sienten incomo-
dos con la proclamacion del software propietario como algo inherentemente malo. Algunos de los pro-
gramadores de software, auque no todos, creen que el autor (0 e empleador, en el caso de trabajo paga-
do) deberia tener el derecho de controlar las clausulas de la distribucion y que no se necesita agregar un
juicio moral en la seleccidn de algunas clausulas particulares.

Por mucho tiempo no se necesitdé examinar o articular estas diferencias, pero €l éxito floreciente del soft-
ware libre hizo que esta cuestion fuerainevitable. En 1998 un grupo de programadores cred el término
fuente abierta como unaalternativapara”libre" y fueron ellos quienes crearon laIniciativa por el Codi-
go Abierto(OSl por sus siglas en Inglés). 8 Lalniciativa por el Cadigo Abierto creia que e término "soft-
ware libre" llevaba a una confusién potencial, y que la palabra"libre" era justamente un sintomadel pro-
blema general: que el movimiento necesitaba un programa de mercado paralanzarlo en el mundo de las
grandes empresas, y que hablar de moral y de los beneficios sociales del compartir no iba atener vuelo
en las salas de las empresas. Tomando sus propias palabras:

La Iniciativa por el Codigo Abierto es un programa de mercado para el softwareli-
bre. Significa fundar € #software libreft sobre bases sélidas y practicas mas que en
una discusion acalorada. La sustancia ganadora no ha cambiado, si en cambio la ac-
titud de perdedoresy su simbolismo. ...

La aclaracion que debe hacerse a muchos técnicos no es acerca del concepto de fuen-
te abierta, sino sobre el nombre. ¢Por qué no [lamarle, como se ha hecho tradicional -
mente, software libre?

Una razén definitiva es que €l término #software libre# se confunde facilmente de ma-
nera que lleva a terrenos conflictivos. ...

Pero la verdadera razon del cambio de cartel es una razon de comercializacion. Esta-
mos ahora tratando de lanzar nuestro concepto al mundo corporativo. Tenemos un
producto ganador, pero nuestra posicién, en € pasado, ha sido terrible. El término
"software libre" se ha malentendido entre las personas de negocios, quienes confun-
den el deseo de compartir con una conducta anticomercial, o peor todavia, con un ro-
bo.

Los CEOsy CTOs de grandes cor poraciones ya establecidas nunca compraran " soft-
warelibre." Pero si manteniendo la misma tradicion, la misma gente y las mismas li-
cencias de software libre y les cambimos el nombre poniéndole #cddigo abierto#, en-
tonces si 1o compraran.

Algunos hackers encuentran esto dificil de creer, porque son técnicos que piensan en
concreto, con términos substanciales, y ho entienden la importancia de la imagen de
algo cuando uno lo esta vendiendo.

Para el mercado la apariencia esla realidad. La apariencia de que estamos dispues-

8El sitio web delaOSl es http://www.opensource.org/.

http://www.opensource.org/

Introduccioén

tos a bajarnos de nuestras barricadasy a trabajar con € mundo cor porativo importa
tanto como la realidad de nuestras conductas o convicciones, y de nuestro software.

(de http://www.opensour ce.or g/advocacy/faq.php y
http://www.opensour ce.or g/advocacy/case for _hackers.php#marketing)

En este libro aparecen las puntas de muchos icebergs de la controversia. Se refiere a#nuestras convic-
ciones#, pero discretamente evita decir con exactitud de que convicciones se trata. Para algunos, puede
ser laconviccion de que el codigo desarrollado en concordancia con un proceso abierto serd un codigo
mejor; para otros pudiera ser la conviccion de que toda informacion debiera ser compartida. Aparece el
uso del término #robo# para referirse (posiblemente) a copiado ilegal —una costumbre que muchos ob-
jetan alegando que pese atodo no es un robo si el propietario original todaviatiene el articulo. Hay una
sospecha inquietante que el movimiento de software libre podria ser acusado por equivocacién de anti-
comercialismo, aunque queda por examinar detenidamente la cuestién de si esta acusacion tendria algu-
na base en los hechos.

Esto no quiere decir que el sitio web de la OS| seaincoherente o engafioso. No o es. En realidad es un
gjemplo de lo que la OSI reclama como perdido por el movimiento de software libre. Una buena comer-
cializacién, donde #buena# significaviable en el mundo de los negocios. La Iniciativa de Fuente Abierta
brindé a mucha gente exactamente lo que buscaban —un vocabulario parareferirse a software libre co-
mo una metodologia de desarrollo y una estrategia paralos negocios, en lugar de una cruzada moral.

Laaparicion delalniciativapor el Cadigo Libre cambié el panorama del software libre. Formalizé una
dicotomia que por mucho tiempo no tuvo un nombre, y al hacerlo forzabaa movimiento a reconocer
gue tenia una politicainternaa mismo tiempo que una externa. Hoy, el efecto es que ambos lados han
tenido que encontrar un terreno comun, puesto que la mayoria de |os proyectos incluye a programadores
de ambos campos, como también otros participantes que no encajan claramente en una categoria. Esto
no impide que se hable de motivaciones morales —por ejempl o, a veces aparecen convocatorias con re-
caidas en latradicional #ética de hackers#. Pero es raro que un desarrollador de software libre / fuente
abierta entre a cuestionar abiertamente las motivaciones basicas de otros. La contribucion encubre a
contribuyente. Si alguien escribe un buen cddigo, no sele preguntasi lo hace por razones morales o por-
que su empleador le paga, o porque esta engrosando su curriculum, o lo que sea. Se evalUa la contribu-
cién en términos técnicos, y se responde con fundamentos técnicos. | nclusive organizaciones politicas
como el proyecto Debian, cuyo objetivo es ofrecer un entorno computacional 100% libre (#libre como la
libertad#), no tienen peros paraintegrarse con el codigo no libre y cooperar con programadores que no
comparten exactamente |os mismos objetivos.

La situacion de Hoy

Cuando se maneja un proyecto libre, no se necesita hablar todos | os dias sobre esos enfoques filosdficos.
L os programadores no pretenden que todos los integrantes del proyecto estén de acuerdo con sus puntos
de vista en todos | os aspectos (aquellos que insisten en hacerlo se encuentran rdpidamente incapacitados
paratrabajar en cualquier proyecto). Pero se necesita estar advertido que la cuestion de #libre# contra
#fuente abierta# existe, en parte para evitar decir cosas que pueden enemistarlo a uno con algun otro par-
ticipante, y en parte porque un entendimiento con los demas 'y sus motivaciones eslameor manera, y
—en cierto sentido— la Gnica manerade llevar adelante el proyecto.

El software libre es una cultura por eleccion. Paratrabajar con éxito en esta cultura hay que entender por
qué hay personas que la eligen en primer lugar. Las técnicas coercitivas no tienen efecto. Si hay alguien
gue no se siente comodo en un proyecto, recurre a otro. El software libre se distingue incluso entre las
comunidades de voluntarios por sus inversiones limitadas. Muchos de | os parti cipantes nunca se encuen-
tran caraacara, y simplemente hacen donacion de alguiin tiempo cada vez que se sienten motivados. Los
conductos normal es que conectan alos seres humanos entre si 'y se concretan en grupos duraderos se re-
ducen a un pequefio canal: |a palabra escrita, trasmitida por cables eléctricos. Por esto puede llevar mu-
cho tiempo para formar un grupo dedicado y unido. Y alainversa, es muy facil que un proyecto pierda
un voluntario potencial en los cinco primeros minutos de haberse encontrado. Si el proyecto no impacta

9

http://www.opensource.org/advocacy/faq.php
http://www.opensource.org/advocacy/case_for_hackers.php#marketing

Introduccioén

con una buenaimpresion, raras veces |os recién llegados |e dardn una segunda oportunidad.

Latransitoriedad real o potencial de las relaciones es quizas |la tarea més desal entadora que se debe en-
frentar en un nuevo proyecto. ¢Qué va a persuadir a toda esa gente a permanecer juntos el tiempo sufi-
ciente necesario para producir algo Util? La respuesta es tan compleja como para ocupar € resto de este
libro, pero si setiene que expresar en una solafrase, serialasiguiente:

Las personas deben sentir que su conexion con un proyecto, y su influencia sobre é,
es directamente proporcional a sus contribuciones.

Ningun desarrollador, real o potencial, debe sentir que no es tenido en cuenta o es discriminado por ra-
Zones que no sean técnicas. Con claridad, los proyectos con apoyo de empresas y/o desarrolladores pa-
gos tienen que ser especia mente cuidadosos en este aspecto, como se expresa en detalle en el Capitu-

lo 5, Dinero. Por supuesto, esto no quiere decir que si no hay apoyo de empresas no hay nada de que
preocuparse. El dinero es solo uno de los tantos factores que pueden afectar el éxito de un proyecto.
Otras cuestiones son € lenguagje que se vaaelegir, lalicencia, cudl serd el proceso de desarrollo, qué ti-
po de infraestructura hay que instalar, cdmo promocionar efectivamente el arranque del proyecto, y mu-
chas otras cosas mas. El contenido del préximo capitulo serd como dar € primer paso con € pié correcto
al comenzar un proyecto.

10

Capitulo 2. Primeros Pasos

El clasico modelo de como los proyectos de software libre deben iniciar fue propuesto por Eric Ray-
mond, en un articulo ahora famoso sobre procesos de c6digo abierto titulado La catedral y el bazar. El
escribié:

Todos | os trabajos buenos en software comienzan tratando de paliar un problema per-
sonal de quien los programa

(de http://www.catb.or g/~esr /writings/cathedral-bazaar/)

Es de notar que Raymond no estaba diciendo que los proyectos de codigo abierto no sélo suceden cuan-
do cierto individuo tiene una necesidad. En cambio, nos esta diciendo que los buenos programas son re-
sultado de que un programador tenga un interés personal en ver el problemaresulto. Larelevanciade es-
to para € software libre ha sido que ésta necesidad personal sea frecuentemente a motivacion paraini-
ciar un proyecto de software libre.

Esto sigue siendo la manera cdmo muchos de los proyectos libres se inician, pero menos ahora que en
1997, cuando Raymond escribi6 esas palabras. Hoy, tenemos el fendmeno de organizaciones
—incluidas corporaciones con fines de lucro—iniciando desde cero, proyectos Open Source centraliza-
dosy agran escala. El desarrollador solitario, tecleando algo de cédigo pararesolver un problemalocal
y luego dandose cuenta de que | os resultados tienen un mayor aplicacion, sigue siendo la fuente de mu-
chos software libre, pero esano esla Unica historia.

Detodas formas, €l objetivo de Raymond sigue siendo profundo. La condicién esencia es que los pro-
ductores de software libre tengan un interés directo en su éxito, porque ellos mismos lo utilizan. Si el
software no hace o que se supone deberia hacer, la persona u organizacion que lo han producido senti-
ran insatisfaccion en su labor diaria. Por gjemplo, € proyecto OpenAdapter
(http://www.openadapter.org/), e cual fueiniciado por el banco de inversiones Dresdner Klienwort
Wasserstein es un marco de trabajo paralaintegracién de sistemas de informacion financieros dispares,
poco de esto puede ser considerado como un problema personal de un programador. En particular éste
problema surge directamente de la experiencia de lainstitucion y sus socios, por lo cua s el proyecto
fallaen aiviarlos, ellos lo sabrén. Este arreglo produce buenos programas porque el bucle de criticas flu-
ye en ladireccion correcta. El programa no esta siendo escrito para ser vendido a alguien mas, es solo
para que sean ellos quienes resuelvan sus problemas. Esta siendo desarrollado para resolver su propio
problema, luego compartiéndolo con todo €l mundo como si €l problema fuerauna enfermedad y € soft-
ware lamedicina, lacual debe ser distribuida para erradicar la epidemia.

Este capitulo trata de coémo introducir un nuevo proyecto de software libre al mundo, pero muchas de
sus recomendaciones sonaran familiares a una organizacion sanitaria distribuyendo medicinas. Los obje-
tivos son muy similares: quieres dejar claro lo que hace la medicina, hacerlallegar alas manos correctas
y asegurarte de que aquellos quienes la reciben saben como usarla. Pero con el software, también deseas
incitar a algunos de los receptores a unirse al esfuerzo de investigacion para mejorar la medicina

Ladistribucion del software libre es unatarea a dos bandas. El programa necesita usuarios y desarrolla-
dores. Estas dos necesidades no tienen por que estar en conflicto, pero si que afiaden cierta complejidad
alapresentacion inicial de un proyecto. Algunainformacion es (til paralas dos audiencias, alguna solo
lo es para alguna u otra. Ambos tipos de informacion deben suscribirse a principio de las presentaciones
en escala, esto es, €l grado de detalle con el que se presenta cada etapa debe corresponder directamente a
lacantidad de tiempo y esfuerzo puesto por €l lector. Un mayor esfuerzo debe tener siempre una mayor
recompensa. Cuando los dos no se relacionan conjuntamente, |as personas pueden perder rapidamente su
fey perder el impulso.

El corolario a esto es:las apariencias importan. Los programadores en particular, no desean creer esto.
Su amor por la sustancia sobre laforma es casi un punto de orgullo profesional. No es un accidente que
tantos desarrolladores exhiban una antipatia hacia los trabajos en marketing y en relaciones publicas o

11

http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.openadapter.org/

Primeros Pasos

que disefiadores gréficos profesional es usualmente se sientan horrorizados de lo que los desarrolladores
ingenian.

Esto es penoso, ya que hay situaciones en las que laforma es la sustanciay la presentacion de proyectos
es unade estas. Por g.emplo, |o primero que un visitante descubre sobre un proyecto es como se ve su Si-
tio web. Esta informacion es absorbida antes de que el contenido en si sea comprendido—antes de que
cualquier linea haya sido leida o enlaces pulsados. Aunque parezcainjusto, las personas no pueden evi-
tar el formarse una opinion inmediatamente después de la primeraimpresion. La aparienciadel sitio se-
fialasi se hatomado cuidado en la organizacion de la presentacion del proyecto. Los humanos tenemos
una antena extremadamente sensible para detectar el empefio en el cuidado. Muchos de nosotros pode-
mos decir con solo un vistazo si un sitio web ha sido ensamblado rapidamente o ha sido disefiado con
cuidado. Esta es la primera pieza de informacion que e proyecto muestray laimpresion que cree sera
asociada a resto del proyecto por asociacion.

Aungue mucho de éste capitulo habla acerca del contenido con el que se deberiainiciar € proyecto, re-
cuerde que la presentacion también importa. Yaque el sitio web debe funcionar para dos tipos diferentes
de visitantes—usuarios y desarrolladores— hay que ser directo y conciso. A pesar de que este no es €l
lugar para un tratado general acerca de disefio web, un principio es suficientemente importante para me-
recer nuestra atencién, particularmente cuando sirve amdiltiples audiencias: la gente debe tener unaidea
de adonde Ileva un enlace antes de pulsar en €l. Por gjemplo, debe ser obvio que con solo ver € enlace a
la documentacion paralos usuarios, que les lleve ala documentacion paralos usuarios, sin mencionar la
documentacion para los desarrolladores. Dirigir un proyecto se basa parcial mente en suministrar infor-
macién, pero también en suministrar comodidad. La mera presencia de ofrecer ciertos estandares, en lu-
gares obvios, tranquiliza a usuarios y desarrolladores quienes estan decidiendo si desean involucrarse.
Dice que este proyecto funciona, ha anticipado las preguntas que la gente puede hacer y ha hecho un es-
fuerzo en responderlas sin la necesidad del mas minimo esfuerzo por parte del visitante. Al dar ésta aura
de preparacion, €l proyecto envia un mensgje: "Su tiempo no serdmalgastado s seinvolucra’, lo que es
exactamente lo que la gente desea escuchar.

Primero investiga

Antesde iniciar un proyecto Open Source hay un importante advertencia:

Siempre investiga si existe un proyecto que hace lo que deseas. L as posibilidades son muy buenas de
gue cualquier problema que desees resolver ahora alguien méas |o haya deseado resolver con anteriori-
dad. Si han sido capaces de resolverlo y han liberado bajo unalicencia libre entonces hoy, no sera nece-
sario inventar larueda. Existen excepciones claro: si deseasiniciar un proyecto como experiencia educa
tiva, el codigo pre-existente no es de ayuda o quizas el proyecto que deseas iniciar es muy especializado
y sabes que no existe la posibilidad de que alguien més |o haya hecho ya. Pero generalmente, no hay ne-
cesidad en no investigar ya que las ganancias pueden ser grandiosas. Si |os buscadores mas utilizados no
muestran nada, intenta tus blsgquedas en: http://freshmeat.net/(un sitio sobre noticias de proyectos open
sourcey del cual hablaremos un poco mas adelante), en http://www.sourceforge.net/ y en €l directorio
de proyectos de |la Free Software Foundation http://directory.fsf.org/.

Incluso si no se encuentra exactamente |o que estamos buscando, podria encontrar algo parecido, alo

gue tiene més sentido unirse a ese proyecto y afiadir funcionalidad en lugar de empezar desde cero por si
mismo.

Empezando con lo que se tiene

Has investigado, sin encontrar nada que realmente se adapte a tus necesidades, y decides iniciar un nue-
VO proyecto.

¢Ahora qué?

Lo més dificil acercade lanzar un proyecto de software libre es transformar una vision privada a una pu-
blica. TU'y tu organizacién quizas sepan exactamente lo que deseas pero expresar ese objetivo de una

12

http://freshmeat.net/
http://www.sourceforge.net/
http://directory.fsf.org/

Primeros Pasos

manera comprensivaa resto del mundo tiene su trabajo. De hecho, es esencial, que te tomes tu tiempo
para hacerlo. Ty los otros fundadores deben decidir sobre qué varealmente € proyecto—eso es, deci-
dir sus limitaciones, |0 que no podra hacer como lo que si—y escribir una declaracion de objetivos. Esta
parte no suele ser usualmente dificil, aungque puede revelar afirmaciones y desacuerdos sobre la naturale-
zadel proyecto, lo cual esta bien: mejor resolver esto ahora que luego. El proximo paso es empaquetar €l
proyecto para el consumo publico, y esto es, basicamente, trabajo puroy duro.

Lo que lo hace laborioso es porque consiste principalmente en organizar y documentar o que yatodo el
mundo sabe—todos aguellos involucrados en el proyecto hasta ahora. Asi que, paralas personas traba-
jando ya, no existen beneficios inmediatos. Estos no necesitan de un fichero READVE que resuma el pro-
yecto ni de un documento de disefio 0 manual de usuario. No necesitan de un érbol de cédigo cuidadosa
mente ordenado conforme a los esténdares informales, ampliamente utilizados para|as distribuciones de
fuentes. De cualquier forma como esté ordenado el codigo fuente estard bien, porque ya estarén acos-
tumbrados de todas formas, y s el cadigo funciona, saben como usarlo. Ni siquieraimportasi las afir-
maciones fundamental es sobre la arquitecturadel proyecto siguen sin documentar, ya estan familiariza-
dos con lo que deben hacer.

En cambio, los recién [legados, necesitan de todas estas cosas. Afortunadamente, no las necesitan todas
alavez. No es necesario proporcionar todos los recursos posibles antes de tomar un proyecto publico.
Quizas en un mundo perfecto, todo nuevo proyecto open source empezaria su vida con un riguroso do-
cumento de disefio, un manual de usuario completo (marcando especialmente las caracteristicas planea-
das pero que aun no han sido implementadas), codigo empaguetado hermosamente y portable, capaz de
gjecutar en cualquier plataformay asi sucesivamente. En realidad, cuidar de todos estos detall es consu-
miria demasiado tiempo, y de todas maneras, es trabajo con €l que podrian ayudar voluntarios unavez
que €l proyecto esté en marcha.

Por otro lado, lo que si es necesario, es que se realice unainversién apropiada en la presentacién, de for-
ma que los recién llegados puedan superar € obstaculo inicial de no estar familiarizados con & proyecto.
Pensemos en ello como en el primer paso en un proceso de inicio (bootstrapping), Ilevar al proyecto aun
tipo de activacion de energia minima. He escuchado llamar a este umbral como hacktivation energy: la
cantidad de energia que debe aportar un recién llegado antes de recibir algo a cambio. Mientras menor
sea ésta energia, mejor. La primeratarea es hacer descender ésta hacktivation energy a niveles que ani-
men alagente ainvolucrarse.

Cada una de las siguientes secciones, describen un aspecto importante de iniciar un nuevo proyecto. Es-
tan presentadas casi en el mismo orden en el que un nuevo visitante las encontraria, aunque claro, el or-
den en €l cual sean implementadas puede ser diferente. Incluso pueden ser tratadas como una lista de ta-
reas. Cuando seinicie un proyecto, asegurese de revisar lalistay de que cada uno de los elementos sean
cubiertos, 0 a menos asegurar ciertacomodidad con las posibles consecuencias de dejar alguna aparte.

Escoger un buen nombre

Coloque se en la posicion de a guien que acaba de escuchar acerca de su proyecto, quizés por alguien
quien fortuitamente tropezo con éste mientras buscaba por alguna aplicacion pararesolver un problema.
Lo primero que encontraran sera el nombre del proyecto.

Un nombre genial no hara que automaticamente el proyecto tenga éxito, y un nombre malo no significa
gue éste acabado—bueno, en realidad un mal nombre probablemente podria hacer eso, pero empecemos
asumiendo que nadie esta activamente intentando hacer que su proyecto falle. De todos modos, un mal
nombre puede desacel erar la adopcion del programa porque la gente no se lo tome seriamente o porque
simplemente les cueste recordarlos.

Un buen nombre:

» Daciertaideadelo que € proyecto hace, 0 al menos esta relacionado de una manera obvia, como si
alguien conoce el nombrey sabe lo que hace, después |o recordaran rdpidamente.

13

Primeros Pasos

» Esfécil de recordar. Veamos, no hay nada de falso en el hecho de que el ingles se a convertido en €l
lenguaje por defecto de Internet: "fécil de recordar” significa "fécil paraaguien que sepaleer enin-
gles de recordar.” Nombres que son calambures dependientes en la pronunciacién de ingleses nativos,
por ejemplo, serén opacos para muchos lectores no nativos en ingles. Si el calambur es particularmen-
te llamativo y memorable, quizas si valgala pena. S6lo recuerde que muchas personas a ver el nom-
bre no lo escucharén en sus mentes de la misma manera que un ingles nativo lo haria.

» Notiene el mismo nombre que otro proyecto y no infringe ninguna marca comercial. Esto es por bue-
nos modales, y tener un buen sentido legal. No desea crear confusiones de identidad. Y a es bastante
dificil mantenerse al dia con todo lo que hay disponible en lared, sin tener diferentes cosas con el
mismo nombre.

L os enlaces mencionados anteriormente en “ Primero investiga’ son muy Utiles en descubrir si algin
otro proyecto yatiene el mismo nombre en el que estadbamos pensando. Podemos encontrar buscado-
res gratuitos de marcas registradas en http://www.nameprotect.org/ y http://www.uspto.gov/.

* Estadisponible como un nombre de dominio. com . net,y. or g. Hay que escoger alguno, proba-
blemente . or g, para promaocionarse como €l sitio oficial parael proyecto. Los otros dos deben reen-
viar ali simplemente para evitar que terceras partes creen una confusion de identidad sobre el nombre
del proyecto. Incluso si piensa en hospedar €l proyecto en otro sitio (vea“ Hosting enlatado”) puede
registrar 1os dominios especificos del proyecto y direccionarlos a sitio del hospedaje. Ayuda mucho a
los usuarios tener que recordar sélo un URL.

Tener los objetivos claros

Unavez que se haencontrado €l sitio del proyecto, lo siguiente que la gente hace es buscar por una des-
cripcion rapida, una declaracion de objetivos, para poder decidir (en menos de 30 segundos) s estén o
no interesados en aprender més. Esto debe estar en un lugar prioritario en la pagina principal, preferible-
mente justo debajo del nombre del proyecto.

La declaracion de los objetivos debe ser concreta, limitaday sobre todo, corta. Aqui tenemos un buen
gjemplo, de http://www.openoffice.org/:

Crear, como una comunidad, una suite ofimatica lider a nivel internacional, que fun-
cione en las mayores plataformasy proporcionar acceso a toda la funcionalidad y da-
tos a través de API's basadas en componentes abiertos y un formato de ficheros basa-
do en XML.

En pocas palabras, han logrado la méaxima puntuacion, sobretodo a basarse en los conocimientos pre-
vios delos lectores. Al decir "como una comunidad", sefialan que ninguna corporacion dominara el de-
sarrollo. "Internacional” significa que la aplicacion permitira a personas con multiples lenguasy locali-
dades trabagjar. "En las mayores platafor mas significa que sera portable a Unix, Macintosh y Windows.
El resto sefidla que las interfaces abiertas y formatos de ficheros féciles de comprender son una parte im-
portante de sus objetivos. De buenas a primeras, no intentan declarar ser una alternativa libre a Micro-
soft Office, aunque seguramente la mayoria puede leer entre lineas. Aunque ésta declaracion de objeti-
vos pueda parecer demasiado amplia a primeravista, el hecho es que esté bien circunscrita: las palabras
"suite ofimatica " significan algo muy concreto para aguellos familiarizados con este tipo de programas.
Otravez, e asumir sobre los conocimientos previos del lector (en este caso probablemente de M S Offi-
ce) permite mantener la declaracion concisa.

El &mbito de una declaracion de objetivos depende en gran parte de quien la escriba, no sélo del progra-
ma que intenta describir. Por ejemplo, tiene sentido para OpenOffice.org utilizar las palabras "como una
comunidad”, porque € proyecto fueiniciado, y sigue estando patrocinado, por Sun Microsystems. Al in-
cluir esas palabras, Sun estaindicado sensibilidad a preocupaciones de que intente dominar €l proceso
de desarrollo. Con este tipo de cosas, simplemente demostrar un conocimiento ambiguo del potencial de
un problema ayuda enormemente a evitar el problema completamente. Por otra parte, aquellos proyectos

14

http://www.nameprotect.org/
http://www.uspto.gov/
http://www.openoffice.org/

Primeros Pasos

gue no son patrocinados por una sola corporacion probablemente no tengan que utilizar este lenguaje,
después de todo, el desarrollo comunitario eslanorma, asi que normal mente no deberia haber ninguna
razon para sefidar esto como una parte de los objetivos.

Declara que el proyecto es libre

Aquellos que sigan interesados después de leer |a declaracion de objetivos querrdn més detalles, quizés
un poco de documentacién para usuarios o desarrolladores, y eventualmente querran descargar algo. Pe-
ro antes que nada, necesitaran estar seguros de que es open source.

La pagina principal debe poner claramente y sin ambigiiedades que el proyecto es open source. Esto
puede parecer obvio, pero es sorprendente cuantos proyectos se olvidan de esto. He visto sitios de pro-
yectos de software libre donde la p&gina principal no sdlo no decia bajo cua licencialibre se distribuia
laaplicacion sino que ni siquiera declaraban que el software fuese libre. A veces, estas piezas cruciales
de informacion eran relegadas ala pagina de descargas o ala pagina de los desarrolladores o aalgun
otro lugar el cual requeria méas de un enlace parallegar. En casos extremos, lalicencia no se mostraba en
ninguna parte del sitio—Ila Unicaforma de encontrarla era descargando |a aplicacién e investigando.

No cometéis estos errores. Una omisién como ésta puede haceros perder muchos desarrolladores y usua-
rios potenciales. Declarad desde el principio, justo debajo de la declaracion de objetivos, que el proyecto
es "software libre" u "open source", y mostrad la licencia exacta. Una guia rapida para escoger unali-
cencia se encuentra en “Escogiendo unalicenciay aplicandola’ més adelante en éste capitulo, y algunos
detalles sobre las licencias serén discutidos en el Capitulo 9, Licencias, Copyrights y Patentes.

Llegados a este punto, nuestro visitante hipotético ha determinado— probablemente en un minuto o me-
nos—que estainteresado en utilizar, digamos, al menos cinco minutos mas investigando el proyecto. La
préxima parte describe qué deberia encontrar durante esos cinco minutos.

Lista de caracteristicas y requerimientos

Deberia haber una breve lista de las caracteristicas que € software soporta (si algo aun no hasido com-
pletado, se puede listar de todas formas, pero sefialando "planeado” o "en progreso™) y €l tipo de entor-
No necesario para gjecutar la aplicacion. Hay que pensar en ésta lista como algo que dariamos aalguien
gue requiere un resumen de nuestro programa. Por gjemplo, la declaracion de objetivos podria decir:

Crear un controlador y sistema de busgqueda con una API, para ser utilizada por pro-

gramadores suministrando servicios de blisqueda para grandes colecciones de fiche-
ros de texto.

Lalistade caracteristicas y requerimientos daria detalles que permitirian esclarecer el alcance de lade-
claracién de objetivos:

Caracteristicas

 Busquedas en texto plano, HTML y XML

 Busqueda de palabras o frases

(planeado) Emparejando borroso (Fuzzy Matching)

(planeado) Actualizacion incremental de indices

(planeado) Indexado de sitios web remotos

Requerimientos:

15

Primeros Pasos

* Python 2.2 o0 mayor

 Espacio en disco suficiente para contener |os indices (aproximadamente 2x el ta-
mario original de los datos)

Con éstainformacion, los lectores podran répidamente tener unaidea de si éste programa tiene alguna
esperanza de trabajar para ellos, y también pueden considerar involucrarse como desarrolladores.

Estado del desarrollo

Lagente siempre quiere saber cOmo va un proyecto. Para proyectos nuevos, desean saber |a separacion
entre las promesas del proyecto y larealidad del momento. Para proyectos maduros, desean saber cuan
activamente es mantenido, cuan seguido sacan nuevas versiones, lafacilidad parareportar fallos, etc.

Para responder a estas dudas, se debe suministrar una pagina que muestre el estado del desarrollo, listan-
do los objetivos a corto plazo del proyecto y las necesidades (por ejemplo, quizas se estén buscando de-
sarrolladores con un expertos en un tema en particular). Esta pagina también puede dar una historia de
versiones anteriores, con listas de las caracteristicas, de manera que los visitantes obtengan unaidea de
como el proyecto define su "progreso” y de cuan rapidamente se hacen progresos de acuerdo a esas defi-
niciones.

No hay que asustarse por parecer no estar preparado y no caer en latentacion deinflar el estado del de-
sarrollo. Todos saben que el software evoluciona por etapas; no hay que avergonzarse en decir "Esto es
software alfa con fallos conocidos. Ejecuta, y funciona algunas veces, asi que uselo bajo su responsabili-
dad." Este lenguaje no asustara el tipo de desarrolladores que son necesarios en esta etapa. En cuanto a
los usuarios, unade las peores cosas que un proyecto puede hacer es atraer usuarios antes de que el soft-
ware éste listo para estos. Una reputaci én por inestabilidad y fallos es muy dificil de hacer desaparecer
unavez adquirida. La paciencia da sus frutos alargo plazo; siempre es mejor que € software sea mas es-
table de lo que espera el usuario ya que las sorpresas gratas producen el mejor boca a boca.

Alfay Beta

El término alfa usualmente significa, la primeraversion, con lo que los usuarios pueden realizar
todos € trabajo teniendo todas la funcionalidad esperada, pero que se sabetiene fallos. El princi-
pal propdsito de el software alfa es generar una respuesta, de forma que |os desarrolladores sepan
en qué trabgjar. La préxima etapa, beta, significa que han sido resueltos todos los fallos més im-
portantes, pero que aun no ha sido intensivamente probado como para ser laversion oficial. El
propésito de las betas es |a de convertirse en la versién oficial, asumiendo que nuevos fallos no
sean encontrados, o de suministrar un feedback paralos desarrolladores para que logren laversion
oficial méasrapido. Ladiferencia entre alfay beta es mas una cuestion de juicio.

Descargas

EL software debe poder ser descargable como codigo fuente en formatos estandares, paquetes binarios
(gjecutables) no son necesarios, a menos que el programa tenga requerimientos muy complicados para
su compilado o dependencias que hagan hacerlo funcionar sea muy laborioso parala mayoriade las per-
sonas. (jAunque si es éste es el caso, € proyecto va atenerlo muy dificil atrayendo programadores de to-
das maneras!)

El mecanismo de distribucién debe de ser de lo mas conveniente, esténdar y sencillo posible. Si se estu-

viese intentando erradicar una enfermedad, no distribuiriala medicinatal que requiriese de unajeringui-
[laespecia paraadministrarse. De igual manera, un programa debe ser conforme a métodos de compila-
cion einstalacion estandar; entre mas se desvie de estos estdndares, mayor sera la cantidad de usuarios y

16

Primeros Pasos

desarrolladores potenciales que se den por vencidos y abandonen el proyecto confundidos.

Esto parece obvio, pero muchos proyectos no se molestan en estandarizar sus procedimientos de instala-
cion hasta mucho después, diciéndose asi mismos que esto |o pueden hacer en cualquier momento: "Ya
resolveremos todas esas cosas cuando € cadigo éste casi listo." De lo que no se dan cuentaesde que a
dejar de lado el trabajo aburrido de terminar los procedimientos de compilado e instalacion, en realidad
estan ralentizando todo—porque desalientan alos programadores que de otra manera habrian contribui-
do al codigo. Mas dafiino aun, no saben que estén perdiendo a todos esos desarrolladores, porque €l pro-
ceso es una acumulacion de eventos que no suceden: alguien visita un sitios web, descarga el programa,
intenta compilarlo, falla, deja de intentarlo y abandona. ¢Quién sabra que ocurrié exceptuando a ésta
persona? Nadie en €l proyecto se dara cuenta que € interésy labuena voluntad de alguien asido silen-
ciosamente malgastada.

Lastareas aburridas con un alto beneficio siempre deben ser hechos al principio y disminuyendo de ma-
nera significativalas barreras de entrada a un proyecto utilizando buenos paquetes brindan altos benefi-
cios.

Cuando se lanza un paquete descargable, esvital que se le dé un nimero de versién Unico a éste lanza-
miento, de manera que la gente pueda comparar dos versiones cualquiera diferentes y saber cual reem-
plaza a cual. Unadiscusién detallada sobre la numeracién de versiones puede ser encontrada en
“Release Numbering”, y detalles sobre la estandarizacion de los procedi mientos de compilado e instala-
cidn serén cubiertos en “Packaging”, ambos en e Capitulo 7, Packaging, Releasing, and Daily Develop-
ment.

Control de versiones y acceso al Bug Tracker

Descargar paquetes con el cddigo fuente esté bien para aquellos que solo desean instalar y utilizar un
programa, pero no es suficiente para aquellos que desean buscar fallos o afiadir nuevas mejoras. Instan-
taneas nocturnas del codigo fuente pueden ayudar, pero esto no es suficiente para una prospera comuni-
dad de desarrollo. Estas personas necesitan de acceso en tiempo real alos Gltimos cambios, y la manera
de proporcionarles esto es utilizando un sistema de control de versiones (version control system). La
presencia de fuentes controladas, accesibles anénimamente es una sefial de—para ambos, usuariosy
programadores—que éste proyecto ésta haciendo un esfuerzo en proporcionar todo o necesario para que
otros participen. Si no se puede ofrrecer control de versiones desde el principio, comunique laintencion
de montarlo pronto. La infraestructura de control de versiones es discutida en detalle en “ Control de
Versiones’ en € Capitulo 3, Infraestructura Técnica..

Lo mismo se aplica para el seguimiento de errores del proyecto. La mayor importanciaque sele dé a és-
ta base de datos, o megjor que parecera €l proyecto. Esto puede parecer contraintuitivo, pero hay que re-
cordar que € nimero de fallos registrados, en realidad depende en tres cosas: €l nimero absoluto de
errores presentes en € programa, €l nimero de usuarios utilizandolo y la conveniencia con la cual esos
usuarios registran nuevos fallos. De estos tres factores, |os dos Ultimos son més significativos que el pri-
mero. Cualquier aplicacion con suficiente tamafio y complejidad tiene una cantidad arbitraria de fallos
esperando a ser descubiertos. La verdadera cuestion es, cuan bien serén registrados y priorizados estos
errores. Un proyecto con una base de datos de fallos ampliay bien mantenida (errores importantes son
atacados rapidamente, fallos duplicados son unificados, etc.) generan una mejor impresion que un pro-
yecto sin una o vacia.

Claro esta, que si un proyecto esta empezando, que la base de datos de fallos contenga al gunos pocos, y
no hay mucho que se pueda hacer al respecto. Pero si la paginadonde se indica el estado del proyecto,
enfatiza en lajuventud del proyecto y s las personas mirando |os fallos pueden observar que muchos de
estos han sido incluidos recientemente, pueden asumir que € proyecto tiene una proporcion saludable
de entradas y no serén alarmados por el minimo absoluto de fallos registrados.

Hay que sefialar que los bug trackers no sélo son usados para fallos en los programas pero también para
peticiones de mejoras, cambios en la documentacidn, tareas pendientes y mucho mas. Los detalles de
gjecutar un sistema de seguimiento de fall os sera cubierto en “ Seguimiento de errores’ en el Capitulo 3,

17

Primeros Pasos

Infraestructura Técnica, asi que no vamos a entrar en detalles. Lo importante desde la perspectivade la
presentacion esta en tener un bug tracker y asegurarse de que es visible desde la pagina principal del
proyecto.

Canales de comunicacion

Usualmente | os visitantes desean saber como pueden contactar con |os seres humanos detras del proyec-
to. Hay que suministrar direcciones de listas de correo, salas de chat, canales en IRC y cualquier otro fo-
ro donde aquellos involucrados puedan ser contactados. Hay que dejar claro que los autores del proyecto
estén suscritos a estas listas, de manera que la gente vea una forma de dar feedback alos desarrolladores.
Lapresencia de estos en las listas no implica obligacion alguna de responder atodas las preguntas que se
formulan o de implementar todas las peticiones. A lalarga, muchos de |os usuarios probablemente ni si-
quiera se unan alos foros de todas maneras, pero estaran conformes con saber que podrian si fuese ne-
cesario.

En la primeras etapas de cualquier proyecto, no existe la necesidad de que haya una diferenciacion entre
los foros de los usuarios y los de los desarrolladores. Es mejor tener atodos los involucrados en el pro-
yecto hablando en conjunto en una sala. Dentro de los primeros en adoptar €l proyecto, ladistincién en-
tre usuario y desarrollador sera muchas veces borrosa, hastatal punto que la distincion no se puede hacer
y la proporcion entre programadores y usuarios usualmente es mayor al principio que a final. Mientras
gue no se puede asumir que todos quienes utilicen el programa sean programadores que quieren modifi-
carlo, si se puede asumir que a menos estan interesados en seguir las discusiones sobre el desarrolloy
en obtener unavision de ladireccion del proyecto.

Y a que éste capitulo es sblo sobre iniciar un proyecto, es suficiente decir que al menos estos foros de co-
municacion deben existir. Luego en “Manejando el crecimiento” en el Capitulo 6, Communications, exa-
minaremos dénde y como montar estos foras, cémo deben ser moderados o cualquier otro tipo de direc-

cion y como separar los foros de usuarios de los foros de los desarrolladores, cuando |legue € momento,
sin crear un espacio infranqueable.

Pautas de Desarrollo

Si alguien considera contribuir a proyecto, buscara por pautas de desarrollo. Estas pautas son méas socia-
les que técnicas: explican como los desarrolladores interactlan entre ellosy con los usuarios y Ultima-
mente como hacer |as cosas.

Este tema es tratado en detalle en “Tomando Nota de Todo” en Capitulo 4, Infraestructura Social y Poli-
tica, pero los elementos basicos de unas pautas de desarrollo son:

 enlaces alosforos paralainteraccién de los desarrolladores
* instrucciones en como reportar fallosy enviar parches

« agunaindicacién de como el desarrollo es usualmente llevado a cabo—es el proyecto unadictadura
benevolente, una democracia 0 algo més

Ningun sentido peyorativo esintencional por lo de "dictadura’ por cierto. Es perfectamente aceptable
ser un tirano donde un desarrollador en particular tiene el poder de veto sobre todos |os cambios. Mu-
chos proyectos exitosos funcionan de ésta manera. Lo importante es que el proyecto sea consciente de
esto y lo comunique. Unatirania pretendiendo ser una democracia desalentara a las personas; unatirania
gue dice serlo funcionard bien siempre que €l tirano sea competente y de confianza.

Un gjemplo de unas pautas de desarroll os parti cularmente exhaustivas estan en
http://svn.collab.net/repos/svn/trunk/www/hacking.html o en
http://www.openoffice.org/dev_docs/guidelines.html tenemos unas pautas mas amplias que se concen-
tran més en laforma de gobierno y el espiritu de participacion y menos en temas técnicos.

18

http://svn.collab.net/repos/svn/trunk/www/hacking.html
http://www.openoffice.org/dev_docs/guidelines.html

Primeros Pasos

Proveer unaintroduccioén ala aplicacion paralos programadores es otro temay seré discutido en
“Documentacion para Desarrolladores’ més adelante en éste capitulo .

Documentacion

Ladocumentacion es esencial. Debe haber algo para que la gente lea, aunque sea algo rudimentario e in-
completo. Esto entra de Ileno en la categoria antes referida y usualmente es la primera area donde un
proyecto falla. Conseguir una declaracion de objetivos y unalista de requerimientos, escoger unalicen-
cia, resumir €l estado de desarrollo—son todas tareas rel ativamente pequefias que pueden ser compl eta-
dasy alas que usualmente no es necesario volver unavez terminadas. La documentacion, por otra parte,
nunca estéa terminada realmente, lo cual puede que sea una de las razones por las cuales se retrase su ini-
cio.

La cuestién masinsidiosa sobre la utilidad de la documentacion es que es inversamente proporcional pa-
raquienes la escriben y para quienes laleen. Lo méas importante de la documentacion para un usuario
inicial eslo més bésico: como configurar la aplicacion, unaintroduccion de como funcionay quizés al-
gunas guias para realizar las tareas mas comunes. Pero alavez son estas cosas las mas sabidas por aque-
[los quienes escriben la documentaci on— tan bien sabidas que puede ser dificil para estos ver |as cosas
desde el punto de vista de los lectores, dificultando listar |os pasos que (paralos escritores) parecen tan
obvios que no merecen especial atencién.

No existe una solucién mégica para éste problema. Alguien debe sentarse 'y escribir todo esto paraluego
presentarselo a un usuario nuevo tipo y probar la calidad. Hay que utilizar un formato simpley facil de
modificar como HTML, texto plano, Tex o aguna variante de XML—algo que sea conveniente para
mejoras rapidas, ligeras e imprevisibles. Esto no es s6lo para eliminar cualquier trabajo innecesario alos
escritores originales realizar cambios incremental es, sino que también para quienes se unan al proyecto
despuésy desean trabajar en la documentacién.

Una manera de asegurarse de que la documentacién bésicainicial se hace, eslimitando su alcance. Al
menos de ésta manera no parecera que se esta escribiendo unatarea sin fin. Una buena regla es seguir
unos criterios minimos:

» Avisar a lector claramente €l nivel técnico que se espera que tenga.

» Describir claray extensivamente como configurar el programay en alguna parte a inicio de la docu-
mentacion comunicarle al usuario como gjecutar algun tipo de prueba de diagndstico o un simple co-
mando para confirmar que todo funciona correctamente. La documentacion inicial es aveces masim-
portante que la documentacion de uso. Mientras mayor sea el esfuerzo invertido en instalar y tener
funcionando la aplicacion, mayor serala persistencia en descubrir funcionalidades avanzadas o no do-
cumentadas. Cuando alguien abandona, abandonan a principio; por elo, las primeras etapas como la
instalacién, necesiten la mayor ayuda.

e Dar un gemplo estilo tutorial de como realizar alguna tarea comin. Obviamente, muchos ejemplos
paramuchas tareas seriamejor, pero si € tiempo es limitado, es mejor escoger unatarea en especifico
y llevar a usuario de la mano paso por paso. Unavez que se ve que la aplicacién puede ser utilizada,
empezaran a explorar qué més es lo que puede hacer—y s se tiene suerte empezar a documentarlo
ellos mismos. Lo que nos llevaal siguiente punto...

* Indicar las areas donde se sabe que la documentacion es incompleta. Al mostrar alos lectores que se
es consciente de | as deficiencias, nos alineamos con su punto de vista. La empatia les da confianza en
gue no van atener que luchar para convencer a proyecto de su importancia. Estas indicaciones no ne-
cesitan representar promesa alguna de compl etar 10s espacios en blanco en unafecha en particu-
|lar—es igualmente legitimo tratarlas como requisitos abiertos para ayudantes voluntarios.

Ese Ultimo criterio es de una especia importancia, y puede ser aplicado a proyecto entero, no solo ala
documentacion. Una gestidn exacta de las deficiencias conocidas es la norma en e mundo Open Source.

19

Primeros Pasos

No se debe exagerar en las faltas del proyecto, solo identificarlas escrupulosay desapasionadamente
cuando sea necesario (sea en la documentacion, en la base de datos de fallos 0 en discusiones en lalista
de correos). Nadie verd esto como derrotismo por parte del proyecto, ni como una responsabilidad expli-
cita. Yaque cualquieraque utilice la aplicacidn descubrira sus deficiencias por S mismos, es mejor que
estén psi col 6gicamente preparados—entonces parece que el proyecto tiene un sdlido conocimiento acer-
ca de como va progresando.

Manteniendo un FAQ (Preguntas Mas Frecuentes)

Un FAQ (del ingles "Frequently Asked Questions") puede ser uno de las mejores inversiones que
un proyecto puede hacer en términos de beneficios educativos. Los FAQs estéan enfocados alas
preguntas que desarrolladores y usuarios podrian formular—opuesto a aquellas que se espera que
hagan—por lo cual un FAQ bien cuidado tiende a dar a aquellos quienes lo consultan exactamen-
telo que estan buscando. Por lo general es el primer lugar en el que se busca cuando se encuen-
tran con un problema, incluso con preferencia sobre el manual oficial y es probablemente el docu-
mento mas propenso a ser enlazado desde otros sitios.

Desafortunadamente, no se puede hacer un FAQ al principio del proyecto. Los buenos FAQs no
son escritos, crecen. Son por definicion documentos reactivos, evolucionando con €l tiempo como
respuesta al uso diario del programa. Y a que esimposible anticipar correctamente las preguntas
gue se podrian formular, es imposible sentarse a escribir un FAQ Util desde cero.

Asi que no hay que malgastar €l tiempo en intentarlo. En cambio, podria ser Gtil crear una planti-
llacasi en blanco del FAQ, de forma gque haya un lugar obvio donde las personas contribuyan con
preguntas y respuestas después de que €l proyecto esté en progreso. En ésta etapalo mas impor-
tante no es tenerlo todo completo, sino la conveniencia: si es sencillo agregar contenido al FAQ,
lagente lo hard. (Un mantenimiento correcto de un FAQ es un problemano trivia e intrigante y
es discutido més afondo en “FAQ Manager” en el Capitulo 8, Coordinando a los Voluntarios.)

Disponibilidad de la documentacion

La documentacién debe ser accesible desde dos sitios: en linea (directamente desde el sitio web), yenla
distribucién descargable de la aplicacidn (consultar “Packaging” en el Capitulo 7, Packaging, Releasing,
and Daily Development). Debe estar en lineay navegable porque a menudo se lee la documentacién an-
tes de descargar €l programa por primeravez, como una ayuda en la decisién de descargarlo o no. Pero
también debe acompafiar al programa, bajo la premisa de que la descarga debe suministrar todo lo nece-
sario para utilizar el paquete.

Parala documentacion en linea, hay que asegurarse de que hay un enlace que muestra toda la documen-
tacion en una paginaHTML (indicando algo como "monoalito” o "todo-en-uno" o "sblo un gran fichero"
al lado del enlace, de tal manera que se sepa que puede tardar un poco en cargar). Esto es muy (til por-
gue a veces solo desean buscar una sola palabra o frase en la documentacion. Generalmente, |as perso-
nas ya saben qué es |o que estan buscando, solo que no recuerdan en cual seccion esta. Para estas perso-
nas, nada es mas frustrante que encontrar una pagina para |la tabla de contenidos, luego otra diferente pa-
ralaintroduccién, luego otra diferente paralas instrucciones de instalacién, etc. Cuando las péaginas es-
tan divididas de esta manera, lafuncion de busqueda de sus navegadores es indtil. Este estilo de paginas
separadas es Util para quienes ya saben cual es la seccion que necesitan, o que desean leer toda la docu-
mentacion de principio afin en secuencia. Pero esta no es laforma méas comin en que la documentacion
es leida. Ocurre mas a menudo que alguien que conoce algo bésico de la aplicacidn vuelve para buscar
unapalabrao frase. Fallar a suministrarles un sdlo documento en el que se puedan realizar blsquedas,
es hacerles lavidamés dura

Documentacion para Desarrolladores

La documentacién para los desarrolladores es escrita para ayudar alos programadores a entender el co-

20

Primeros Pasos

digo y puedan arreglarlo o extenderlo. Esto es algo diferente alas pautas de desarrollo discutidas ante-
riormente, que son mas sociales que técnicas. Estas pautas paralos desarrolladores le dicen alos progra-
madores como deben desenvolverse entre ellos. La documentacion les dice como deben desenvolverse
con €l cadigo en si mismo. Por conveniencialas dos vienen juntas en un solo documento (como sucede
con el gjemplo anterior http://svn.collab.net/repos/svn/trunk/www/hacking.html) pero no es obligatorio.

A pesar de que la documentacion para los desarrolladores puede ser de mucha ayuda, no existe ninguna

razén pararetrasar un lanzamiento por hacerla. Es suficiente para empezar que los autores originales es-

tén disponibles (y dispuestos) aresponder a preguntas sobre el codigo. De hecho, tener que responder la
misma pregunta varias veces es una motivacion muy comin para escribir dicha documentacion. Pero an-
tes de que sea escrita, determinados contribuyentes serén capaces de desenvolverse con el cédigo yaque
lafuerza que hace que las persones utilicen su tiempo en leer el codigo base es que éste codigo les resul-
tautil. Si las personas tienen fé en €llo, ninguna cantidad de documentacién hara que vengan o los man-

tendra.

Asi que si hay tiempo para escribir documentacion solo para una audiencia, que sea paralos usuarios.
Toda la documentacién para los usuarios es, en efecto, documentacién para desarrolladores también.
Cualquier programador que vaya atrabajar en un proyecto necesita estar familiarizado con su uso. Lue-
go, cuando se vea alos programadores preguntando las mismas preguntas unay otravez, habra que to-
marse el tiempo de escribir algunos documentos aparte solo para estos.

Algunos proyectos utilizan wikis para su documentacion inicia o incluso para su documentacién princi-
pal. En mi experiencia, esto es efectivo si y solo si, el wiki es editado activamente por algunas personas

que se ponen de acuerdo en como la documentacién debe ser organizaday lavoz que debe tener. Més en
“Wikis” en el Capitulo 3, Infraestructura Técnica.

Ejemplos de salidas y capturas

Si e proyecto implica unainterfaz graficapara el usuario o si produce una salida gréfica o distintiva, ha-
bra que poner algunos g emplos en el sitio web del proyecto. En el caso de las interfaces, esto significa
capturas. Para salidas, pueden ser capturas o solo ficheros. Ambos dotan al usuario de gratificacion ins-
tantanea: una sola captura puede ser més convincente que parrafos de texto descriptivo y chacharadelis-
tas de correo, porgque una captura es la prueba indiscutible de que e programa funciona. Puede que tenga
fallos, quizas sea dificil deinstalar o que la documentacion esté incompleta, pero esa captura sigue sien-
do la prueba de que con €l esfuerzo necesario, se puede hacer funcionar.

Capturas

Y aque hacer las capturas puede ser algo desal entador, aqui tenéis unas instrucciones béasicas so-
bre como hacerlas. Utilizando The Gimp (http://www.gimp.org/), pinchad en Archivo-
>Adquirir->Captura de pantalla, escoged Capturar una sola ventana o Toda la pantalla, luego pin-
chad en Capturar. La préximavez que pinche la ventana o |a pantalla sera capturada como una
imagen en The Gimp Recortad y cambiad el tamafio de laimagen segin sea necesario siguiendo
las instrucciones en http://www.gimp.org/tutorials/Lite_Quickies/#crop.

Existen muchas otras cosas que se pueden poner en €l sitio web del proyecto, si setiene el tiempo, 0 si
por algunarazén u otra son especial mente apropiadas: pagina de noticias, historia, enlaces relacionados,
funcion de busqueda, enlace para donaciones, etc. Ninguno de estos es necesarios al principio, pero hay
gue tenerlos en mente para el futuro.

Hosting enlatado

Existen algunos sitios que proveen hosting gratuito e infraestructura para proyectos open source: un area
web, control de versiones, gestor de errores, zona de descargas, salas de chat, backups regulares, etc.
Los detalles varian entre sitio y sitio, pero los servicios bésicos son ofrecidos por todos. Al utilizar uno

21

http://svn.collab.net/repos/svn/trunk/www/hacking.html
http://www.gimp.org/
http://www.gimp.org/tutorials/Lite_Quickies/#crop

Primeros Pasos

de estos sitios, se obtiene mucho por nada, dando a cambio, obviamente, el control sobre la experiencia
del usuario. Quien provee el hosting decide cuales programas € sitio aceptay puede controlar o al me-
nos influenciar el aspecto de |las paginas del proyecto.

Vayaa " Soluciones de hospedaje”’ en el Capitulo 3, Infraestructura Técnica para una discusién méas de-
talladas acerca de las ventgjas y desventgjas del hosting enlatado y unalista de sitios que lo ofrecen.

Escogiendo una licenciay aplicandola

Esta seccion esta concebida para ser una guiarapiday amplia sobre como escoger unalicencia. Leed el
Capitulo 9, Licencias, Copyrightsy Patentes para entender en detalle las implicaciones legales de dife-
rentes licencias y como lalicencia escogida puede af ectar |a capacidad de otras personas de mezclar el
programa con otros.

Existen muchas licencias libres de donde escoger. Muchas de ellas no necesitamos tenerlas en conside-
racion aqui, ya que han sido escritas para satisfacer las necesi dades legal es especificas de alguna corpo-
racion o persona, asi que no serian apropiadas para nuestro proyecto. Por ello nos vamos arestringir a
las mas usadas. En lamayoria de los casos, querras escoger una de €llas.

Las licencias "Haz lo que quieras”

Si se esta conforme con que € cadigo del proyecto sea potencial mente usado en programas propi etarios,

entonces se puede utilizar unalicencia estilo MIT/X. Esla mas sencilla de muchas licencias minimas que
no hacen més que declarar un copyright nominal (sin restringir la copia) y especificar que el codigo vie-

ne sin ningunagarantia. Ida“LaMIT / X Window System License” paramas detalles.

Licencia GPL

Si no desea que el cddigo sea utilizado en aplicaciones propietarias utilice la Licencia Plblica General o
GPL (del ingles General Public License) (http://www.gnu.org/licenses/gpl.html). La GPL es probable-
mente la licencia para software libre mas utilizada a nivel mundial hoy en dia. Esto esen si mismo una
gran ventaja, ya que muchos usuarios potenciales y voluntarios ya estaran familiarizados con €lla, por lo
cual, no tendran que invertir tiempo extraen leer y entender lalicencia utilizada. Mas detallesen “La
GNU General Public License” en el Capitulo 9, Licencias, Copyrightsy Patentes.

Como aplicar una licencia a nuestro software

Unavez que ha sido escogida una licencia, se debe exponer en la pégina principal del proyecto. No se
tiene que incluir el texto de lalicencia aqui, solo hay que dar el nombre delalicenciay un enlace a tex-
to completo de ésta en otra pagina.

Estoinformaal publico bajo cua licencia se pretende publicar laaplicacion. Paraello, el programaen si
debeincluir lalicencia. La manera estandar de hacer esto es poniendo e texto completo en un fichero
[lamado COPYI NG (o L1 CENSE) y luego colocar un aviso al principio de cada fichero con €l codigo
fuente, listando lafecha del copyright, titular y licenciay explicando donde encontrar el texto completo
delamisma.

Hay muchas variaciones de éste patron, asi que miraremos a un solo ejemplo. LaGPL de GNU indica
que se debe colocar un aviso como éste a principio de cada fichero con cédigo fuente:

Copyright (C <year> <nane of author>

This programis free software; you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

22

http://www.gnu.org/licenses/gpl.html

Primeros Pasos

(at your option) any later version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
G\U Ceneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA

No especifica que una copia de lalicencia adjuntada a programaesta en el fichero COPYI NG, pero co-
mUnmente es en éste donde se pone (Se puede cambiar 1o anterior paraindicar esto directamente). Esta
plantilla también nos da una direccion fisica a donde solicitar una copia de lalicencia. Otro método muy
comun es suministrar un enlace a una paginaweb que contiene lalicencia. Solo hay que utilizar el senti-
do comln y sefidar algun sitio donde se crea habra una copia permanente de lalicencia. Por |o general,
el aviso que se coloca a principio de cada fichero con cédigo fuente no debe ser exacto al anteriormente
expuesto, siempre y cuando se empiece con el mismo aviso de copyright, titular y fecha, se especifique
el nombre de lalicenciay se deje claro donde encontrar lalicencia completa.

Ajustar el tono

Hasta ahora hemos cubierto tareas que se hacen sélo unavez durante el proyecto: escoger lalicencia,
acomodar €l sitio web inicial, etc. Pero los aspectos mas importantes al empezar un nuevo proyecto son
dindmicos. Escoger la direccion paralalista de correos es facil; asegurarse de que las conversaciones en
ésta se mantengan en contexto y sean productivas es otro tema. Si €l proyecto es abierto después de afios
de desarrollo cerrado propio, sus procesos de desarrollo cambiaran y habra que preparar alos desarrolla-
dores existentes para éste cambio.

L os primeros pasos son |os mas duros, porque |os precedentes y |as expectaciones sobre la conducta fu-
tura aun no se han definido. La estabilidad de un proyecto no viene de politicas formales, sino de un co-
nocimiento colectivo compartido muy dificil de definir y que se desarrollacon el tiempo. A veces exis-
ten unas reglas escritas, pero tienden a ser un destilado de los acuerdos intangibles y siempre cambiantes
gue realmente guian €l proyecto. Las politicas escritas no definen la cultura del proyecto mas que descri-
birla, he incluso asi, s6lo se aproximan.

Hay algunas razones por las cuales |las cosas funcionan de ésta manera. El crecimiento y los grandes
cambios no son tan dafiinos para la acumulacion de las normas sociales como se puede pensar. Mientras
gue el cambio no ocurra demasiado rapido, hay tiempo para que |os novatos aprendan como funcionan
las cosas y después de que aprendan, ellos mismos ayudaran areforzar este funcionamiento. Considere-
mos como las canciones infantiles sobreviven alo largo de los siglos. Hay nifios hoy en dia cantando ca
si las mismas rimas que los nifios de hace cien afios, aungue no haya ninguno vivo hoy en dia que haya
vivido entonces. Los més pequefios escuchan estas canciones de otros nifios mayoresy cuando son ma-
yores, las cantaran frente a otros nifios menores que ellos. Conscientemente |os nifios no estan iniciando
un programa de transmision, por supuesto, pero larazén por la cual las canciones sobreviven es nada
mas y hada menos porque son transmitidas regular y repetidamente. La escala de tiempo de un proyecto
de software libre quizés no sea medido en siglos (alin no lo sabemos) pero las formas de transmision son
las mismas. Aunque el indice de cambios es mas rapido y debe ser compensado con un esfuerzo delibe-
rado de comunicacion mas activo.

A este esfuerzo le ayuda € hecho de que las personas por |0 general se presentan esperando y buscando
normas sociales. Asi es como los humanos estamos construidos. En cualquier grupo unido por un mismo
objetivo, las personas que se unen, instintivamente buscan conductas las cuales |os marcaran como parte
del grupo. El objetivo temprano de sentar precedentes es hacer de esas conductas de grupo Utiles para €l
proyecto; una vez establecidas serén perpetuas por s mismas.

A continuacion hay algunos gemplos especificos de lo que se puede hacer para establecer buenos prece-

23

Primeros Pasos

dentes. No se supone que sea una lista exhaustiva, mas es unailustracion de laidea de que establecer un
ambiente de colaboracién desde el principio ayuda enormemente al proyecto. Fisicamente, cada desarro-
[lador puede que trabaje en solitario, pero se puede hacer mucho para hacerlo sentir como si todos estu-
viesen trabajando juntos en la misma habitacién. Mientras mayor sea ésta sensacion mayor sera el tiem-
po que quieran invertir en el proyecto. He escogido estos € emplos en particular porque han surgido en
el proyecto de Subversion (http://subversion.tigris.org/), en el cual participéy observé desde susinicios.
Pero estas no son Unicas a Subversion, situaciones como estas surgen en casi todos |0s proyectos open
source, y deben ser tomadas como oportunidades para empezar de la manera correcta.

Evitar discusiones privadas

Incluso después de haber hecho publico el proyecto, usted y los otros fundadores del proyecto se encon-
trardn a menudo intentado resolver preguntas dificiles via comunicaciones privadas dentro de un circulo
interno. Esto es especialmente cierto en los primeros dias del proyecto, cuando hay tantas decisiones im-
portantes que tomar y usual mente pocos voluntarios cualificados para resolverlas. Todas las obvias des-
ventajas de una lista publica de discusién se perfilan palpablemente frente ati: € retraso inherente en las
conversaciones por correo, la necesidad de dejar que se forme un consenso, las dificultades de tratar con
voluntarios crédulos que piensan gque entienden todos |os problemas pero que no es asi (todo proyecto
tiene de estos; aveces son € voluntario estrelladel proximo afio, a veces permanecen ingenuas durante
€l resto del proyecto), la persona que no puede entender por qué quieres resolver €l problema X cuando
es obviamente una parte del méas grande problema Z y muchos otros. Latentacién de tomar decisiones a
puerta cerraday presentarlas como faits accomplis, o0 al menos como firmes recomendaciones de un blo-
gue unido e influyente serian geniaes laverdad.

No lo hagas.

Por muy lentas y engorrosas que puedan ser las discusiones publicas, casi siempre son preferibles alar-
go plazo. Tomar decisiones importantes en privado es como esparcir repel ente anti-voluntarios sobre el
proyecto. Ningun voluntario serio se quedaria mucho tiempo en un ambiente donde un consejo secreto

tomatodas las grandes decisiones. Ademas, |as discusiones publicas tienen efectos secundarios benefi-

Ciosos que durardn mas que cualquier pregunta técnica que fuese el problema:

 Ladiscusion ayudara a entrenar y educar a nuevos desarrolladores. Nunca se sabe cuantos 0jos estan
viendo una conversacion asi; Incluso si muchas de las personas no participan, muchas podrian estar
monitorizando silenciosamente, deduciendo informacion acercade la aplicacion.

 Ladiscusion te entrenara en el arte de explicar temas técnicos a personas que no estan tan familiariza-
das con €l programa. Esta es una capacidad que requiere de précticay no se puede entrenar hablando
con personas que ya saben o mismo que tu.

» Ladiscusiony sus conclusiones estaran disponibles en un archivo publico para siempre, evitando que
futuras discusiones caigan en los mismos problemas. Mé&s en “ Sobresaliente uso de los archivos” en el
Capitulo 6, Communications.

Finalmente, existe la posibilidad de que alguien en lalista haga una contribucion real ala conversacion,
ingeniando unaidea nunca antes anticipada. Es dificil decir cuan probable es que esto suceda; depende

en lacomplejidad del codigo y el nivel de especializacion requerida. Pero si se me permite utilizar evi-

dencia anecddtica, apostaria a que esto es mas probable de |o que podemos esperar. En € proyecto Sub-
version, nosotros (los fundadores) creiamos encontrarnos ante una serie complejay profunda de proble-
mas, en |os cuales habiamos estado pensando durante meses, y francamente, dudabamos de que alguien
en larecientemente creada lista de correos fueses a dar alguna contribucién Util ala discusion. Asi que

tomamos el camino més fécil y empezamos alanzar ideas técnicas a diestray siniestra en correos priva-
dos, hasta que alguien observando €l proyecto ! descubrié lo gue estaba pasando y pidié que se moviera
ladiscusion alalista pablica. Torciendo un poco los o0jos, |o hicimos—y fuimos asombrados por la can-
tidad de comentarios inspiradores y sugerencias que rapidamente resultaron. En muchos casos ofrecien-

24

http://subversion.tigris.org/

Primeros Pasos

do ideas que no se nos habian ocurrido anteriormente. Al final resulté que habia gente muy inteligente en
esa lista, sdlo estaban esperando € anzuel o apropiado. Es cierto que las discusiones tomaron méas tiempo
de haberlas hechas en privado, pero eran mucho més productivas, lo cual hacia que valierala penael
tiempo extra.

Sin entrar en generalizaciones como "l grupo es siempre mas listo que el individuo" (ya hemos conaoci-
do muchos grupos para saberlo) debe ser apuntado que hay ciertas actividades en las que un grupo so-
bresale. Las revisiones distribuidas masivas son una de estas. Generar un gran nimero de ideas rapida-
mente es otra. La calidad de las ideas depende en la calidad del pensamiento que se ha aplicado a estas,
por supuesto, pero no vas a saber qué clase de pensadores hay hasta que 10s estimules con problemas de-
safiantes.

Naturalmente, hay discusiones que deben ser llevadas a cabo en privado; alo largo de éste libro veremos
algunos gjemplos. Pero el principio que debe guiar sempre es: S no existe razon alguna para que sea
privada, debe ser piblica.

Hacer que esto suceda requiere acciones. No es suficiente con simplemente asegurarse de que todos |os
comentarios van alalista piblica. También hay que atenerse alas conversaciones privadas innecesarias
enlalista. Si alguien intentainiciar una conversacion privada, y no existe razon alguna para que asi sea,
entonces es de tu incumbencia el abrir la discusion apropiada inmediatamente. Ni siquieraintentes co-
mentar el tema original hasta que se haya direccionado exitosamente la conversacion a un sitio publico,
0 asegurado que el tema era necesariamente privado. Si se hace esto consistentemente, |as personas se
darén cuenta rapidamente y empezara# a utilizar los foros publicos por defecto.

Echad a volar la mala educacion

Desde el primero momento de la existencia publica de un proyecto se deberd mantener una politicade
tolerancia cero ante la mala educacién o las actitudes insultantes en los foros. Tolerancia cero no implica
esfuerzos técnicos per se. No se deben eliminar personas de lalista de correos cuando ataguen a otros
usuarios, o quitarles sus accesos para realizar commits porque hayan hecho comentarios peyorativos.

(En teoria, habria que llegar atomar estas acciones, pero solo después de que todas las otras vias hayan
fallado—Ilo cual, por definicion, no significa que seaa principio del proyecto.) Tolerancia cero simple-
mente significa nunca permitir que este tipo de conductas pasen desapercibidas. Por jemplo, cuando al-
guien enviaun comentario técnico mezclado con un atague ad hominem contra otros desarrolladores del
proyecto, esimperativo que tu respuesta sea primero dirigida a ese atague ad hominem como un tema
aparte y solo después entrar en el tematécnico.

Desafortunadamente es muy facil y tipico, que conversaciones constructivas terminen en una guerra. Las
personas dirén cosas en un correo el ectrénico que nuncadirian caraacara. Los temas de discusién solo
ayudan aampliar éste efecto: en cuestiones técnicas, la gente cree amenudo que solo existe una solares-
puesta correcta parala mayoria de las preguntas y que €l desacuerdo ante la respuesta solo puede ser ex-
plicado por laignorancia o la estupidez. Hay una corta distancia entre [lamar |a propuesta técnica de al-
guien estlpiday llamar a esa persona estlpida. De hecho, es dificil definir cuando un debate técnico lo
deja de ser y se convierte en atagues personales, por lo cua unarespuestadrasticay el castigo no son
buenas ideas. En su lugar, cuando creas que |o estas viviendo, envia un mensaje que remarque laimpor-
tancia de mantener la discusion amistosa, sin acusar a nadie de ser deliberadamente venenoso. Este tipo
de "politica amable" de mensgjes tienen la desaf ortunada tendencia a parecer consejos de un profesor de
kindergarten sobre la buena conducta en €l aula:

Primero, vamos a dejar a un lado los comentarios (potenciales) ad hominem por fa-
vor; por ejemplo, decir que el disefio para la capa de seguridad de Jes"simple eig-
norante de los principios de la seguridad informética." Quizas sea cierto o no, pero
en cualquier caso no esla manera de mantener una discusion. J hizo su propuesta de
buena fe y estoy seguro de que M no deseaba insultar a J, pero las maneras han sido
inadecuadas y o Unico que deseamos es mantener las cosas constructivas.

INo hemos Ilegado ala seccién de los agradecimientos atin, pero sélo para practicar lo que luego voy a ensefiar: el nombre del ob-
servador era Brian Behlendorf, y fue él quien no indicd laimportancia de mantener todas | as discusiones publicas a menos de que
existiera alguna necesidad de privacidad

25

Primeros Pasos

Ahora, vamos con la propuesta de J. Creo que J tenia razon en decir que...

Por muy artificial que parezcan respuestas como estas, tienen un efecto notable. Si se llamalaatencion
constantemente acerca de estas malas actitudes, pero no se pide una disculpa o conocimiento de la parte
ofensora, entonces se deja ala gente calmarse y mostrar unamejor cara comportandose con mas decoro
lapréximavez—y o haran. Uno de | os secretos para hacer esto con éxito es nunca hacer de la discusion
el tema principal. Siempre debe ser tratado a parte, una breve introduccion alamayor parte de tu res-
puesta. Hay que sefialar que "aqui no hacemos las cosas de ésta manera' y luego continuar con el tema
real, de manera que no dejemos nada alo que los demés puedan responder. Si alguien protesta diciendo
gue no merecian ese reproche, simplemente hay que negarse a entrar en una disputa sobre esto. O no res-
pondas (si crees que slo estan liberando tension y que no requiere de una respuesta) o responde discul-
pandote por haber sobreactuado y que es dificil detectar matices en el correo electrénico, y ahorade
vueltaal tema principal. Nuncainsistas en un reconocimiento, publico o privado, de alguien que se haya
comportado inadecuadamente. Si deciden por voluntad propia enviar una disculpa, genial, pero solicitar
gue lo hagan en contra de su voluntad, sélo causara resentimiento.

El objetivo principal es de hacer que la buena educacion se vea como una de las actitudes del grupo. Es-
to ayuda a proyecto, porque otros desarrolladores pueden ser espantados (incluso de proyectos que les
gustan y en los que quieren ayudar) por unaflame war. Quizas ni siquiera se llegue a saber que han sido
espantados; pueden estar merodeando las listas de correo, descubrir que se necesita de un grueso pelagje
para participar en el proyectoy decidir en contra de involucrarse de cualquier manera. Mantener los fo-
ros amistosos es una estrategia de supervivenciaalargo plazo y es méas fécil mientras el proyecto siga
siendo pequefio. Una vez sea parte de la cultura general, no sera necesario ser la Ginica persona promo-
cionando esto. Serd mantenido por todos.

Practicad revisiones visibles del cédigo

Una de las mejores formas de fomentar una comunidad productiva de desarrollo es hacer que cada uno
pueda ver € cadigo de los demas. Una infraestructura técnica es necesaria para hacer esto efectivamen-
te—en particular, se deben activar |os correos con |os avisos de cambios; mas detalles en “ Correos de
cambios’. El efecto de los correos electrénicos con los cambios es que cada vez que se envie un cambio
al cadigo fuente, un correo es enviado mostrando un registro y las diferencias de los cambios (mirad diff
en “Vocabulario”). Larevision del codigo es la practica de revisar los correos con cambios mientras van
[legando, buscando fallosy posibles mejoras.

Revisar €l codigo sirve varios propésitos simultaneamente. Es el gjemplo mas obvio de revision en no-
dos en e mundo del open source y directamente ayuda a mantener la calidad del programa. Cadafallo
gue se enviajunto aun programa llego alli después de ser comprometido y no haber sido detectado; es
por esto que mientras mas 0j0s estén revisando los cambios, menos fallos serén empaquetados. Pero in-
directamente, las revisiones tienen también otro propésito: confirmar alas personas que lo que hacen
importa, porque obviamente nadie se tomaria el tiempo de revisar un cambio a menos que le importara
su efecto. La gente realiza unamejor labor cuando saben que otros van atomarse el tiempo de evaluarla.

En el proyecto Subversion, no hicimos de larevision del cddigo una practica regular. No existia ninguna
garantia de que después de cada commit éste seria revisado, aunque a veces alguien se interesa en un
cambio que se realiza sobre una parte del codigo en € que se tiene particular interés. Fallos que deberian
y podrian haber sido detectados, se colarén. Un desarrollador [lamado Greg Stein, quien sabialaimpor-
tancia de las revisiones del codigo de trabajos anteriores, decidio que ibaaser é quien dierael ejemplo
revisando cada linea de uno y cada uno de los commits que hayan llegado a repositorio. Cada vez que
alguien envia un cambio era seguido de un correo electronico de Greg alas lista de los desarrolladores,
diseccionandolos, analizando posibles problemas y ocasiona mente el ogiando ingeniosas piezas de codi-
go. De ésta manera, estaba atrapando fallos y préacticas poco Optimas de programacién que de otra mane-
ra habrian pasado desapercibidas. Deliberadamente, nunca se quej6 de ser la Uinica persona revisando ca-

2Comunmente es asi como las revisiones del cédigo se hacen en los proyectos open source, por lo menos. En proyectos mas cen-
tralizados, larevision del cadigo puede significar que muchas personas se sienten juntasy lean impresiones del cadigo fuente, bus-
cando por problemas y patrones especificos.

26

Primeros Pasos

da commit, apesar de que esto |le tomaba una gran cantidad de tiempo, pero siempre alababa las revisio-
nes de codigo cada vez que tenia oportunidad. Muy pronto, otros, yo incluso, empezamos arevisar 10s
cambios regularmente también. ¢Cuél era nuestra motivacién? No habia sido porque Greg consciente-
mente nos avergonzo hacia esto. Nos habia probado que revisar el codigo era una manera muy valiosa
de utilizar nuestro tiempo y que se podia contribuir tanto al proyecto revisando los cambios de otros co-
mo escribiendo codigo nuevo. Unavez demostrado esto, se volvid una conducta anticipada, hasta el
punto en el que cada commit que no generaba alguna reaccion hacia que quien larealizaba se preocupa
raeincluso que preguntase alalistasi alguien habiatenido |a oportunidad de revisarlo aun. Luego, Greg
consiguiod un trabajo que no le dejaba mucho tiempo libre para Subversion y tuvo que dejar de hacer re-
visiones regulares. Pero llegados a éste punto, el habito se habiaintegrado en el resto de nosotros tanto,
gue parecia como algo que se hacia desde tiempos inmemoriabl es.

Hay que empezar arealizar las revisiones desde el primer commit. El tipo de problemas que son mas fa
ciles de descubrir con sdlo revisar las diferencias son las vulnerabilidades de seguridad, desbordamien-
tos de memoria, comentarios insuficientes o documentacién del AP, errores off-by-one, emparejamien-
tos mal hechosy otros problemas que requieren de un minimo de contexto para encontrar. Aungue in-
cluso problemas alarga escala como el fallar en abstraer patrones repetitivos a un solo sitio solo se pue-
den descubrir después de llevar mucho tiempo realizando revisiones regularmente, porque el recuerdo de
diferencias anteriores ayuda a revisar |as diferencias presentes.

No hay que preocuparse a no poder encontrar nada sobre lo que comentar o de saber |0 suficiente acerca
de todas las areas del codigo. Usualmente habra algo que decir sobre casi todos |os cambios; incluso
donde no hay nada que criticar, se puede encontrar algo que elogiar. Lo importante es degjar claro a cada
programador, que lo que hacen se vey es entendido. Por supuesto, el revisar cadigo no absuelve alos
desarrolladores de la responsabilidad de revisar y probar su codigo antes de enviar los cambios; nadie
debe depender en las revisiones para encontrar cosas que deberia haber encontrado.

Al abrir un proyecto cerrado, hay que ser sensible acer-
ca de la magnitud de los cambios

Si se reabre un proyecto existente, uno que yatiene desarrolladores activos acostumbrados atrabagjar en
un ambiente de codigo cerrado, habra que asegurarse de que todos entienden que grandes cambios se
avecinan—y asegurarte de que entiendes como se siente desde su punto de vista.

Intentaimaginar como la situacién se presenta ante ellos: antes, todas |as decisiones sobre el codigo y
disefio eran hechas con un grupo de programadores quienes conocian € software mas o menos al mismo
nivel, quienes compartian la misma presion de los mismos directores y quienes conocian entre todos sus
fuerzasy debilidades. Ahora se les pide que expongan su cadigo al escrutinio de extrafios a azar, quie-
nes formaran un juicio basado solo en el codigo, sin laconcienciade las presiones bajo las cuales se to-
maron ciertas decisiones. Estos forasteros hardn muchas preguntas, preguntas que haran que los desarro-
[ladores existentes se den cuenta que la documentacién en la que se han esclavizado tan duramente sigue
siendo inadecuada (esto es inevitable). Para cerrar con broche de oro, todos estos forasteros son entida-
des desconocidasy sin cara. Si alguno de los desarrolladores ya se siente de por si inseguro sobre sus ha-
bilidades, imaginemos como éste sentimiento es exacerbado cuando recién |legados empiezan a sefia ar
fallos en el cdédigo que han escrito, y aun peor, frente a sus colegas. A menos que se tenga un equipo con
programadores perfectos, esto es inevitable—de hecho, puede que le suceda atodos ellos a principio.
Esto no es porque sean malos programadores; es solo que todo programa de cierto tamario tiene fallos y
unarevisién distribuida descubrird algunos de estos fallos (1d a“ Practicad revisiones visibles del codi-
go” anteriormente en éste capitulo). En algdn momento, los recién Ilegados no seran sujetos a muchas
revisiones a principio, yaque no pueden contribuir con cédigo hasta que estén més familiarizados con

€l proyecto. Paratus desarrolladores, podra parecer que todas las criticas van hacia ellos y no por su par-
te. Por esto, existe e peligro de que los viejos programadores se sientan asediados.

Lamejor manera de prevenir esto, es advertir atodos acerca de lo que se avecing, explicarlo, decirles

gue el desconcierto inicial es perfectamente normal y asegurar que todo va a mejorar. Algunas de estas
advertencias deberan hacerse en privado, antes de que €l proyecto se haga publico. Pero también puede
llegar aser (til recordarle ala gente de las listas publicas que ésta es una nueva direccion en el desarro-

27

Primeros Pasos

[lo del proyectoy que tomara algo de tiempo adaptarse. Lo mejor que se puede hacer es ensefiar con el
giemplo. Si no ves atus desarrolladores respondiendo suficiente preguntas a los nuevos, decirles que de-
ben responder mas preguntas no seré de gran ayuda. Quizas no tengan alin una nocion acerca de que re-
quiere unarespuestay de que no, o puede que no sepan como dar diferentes prioridades a escribir codi-
goy las nuevas tareas de comunicacion exterior. La manera de hacerlos participantes es hacerlo uno
mismo. Hay que estar en las listas publicas y responder algunas preguntas. Cuando no se tenga la expe-
riencia necesaria en una materia para responder a una pregunta entonces transfierela visiblemente a un
desarrollador quien pueda responderla—y vigila para asegurarte de que continua con una respuesta. Na-
turalmente serd tentador paralos desarrolladores mas antiguos enfrascarse en discusiones privadas ya
gue aesto esalo que estédn acostumbrados. Asegurate de suscribirte alas listas internas en las cuaes es-
tas discusiones puedan dar lugar, de manera que puedas pedir que ladiscusién se continle en las listas
publicas inmediatamente.

Existen otros asuntos a largo plazo con abrir un proyecto cerrado. Capitulo 4, Infraestructura Social y
Politica explora técnicas para mezclar exitosamente desarrolladores asalariados y voluntarios'y en Capi-
tulo 9, Licencias, Copyrightsy Patentes se discute la necesidad de ser diligente a abrir una base de codi-
go que puede contener programas gque han sido escritos o que pertenecen a otras personas.

Anunciar

Unavez que el proyecto esta presentable—no perfecto, solo presentable—se esta listo para anunciarlo al
mundo. Esto es un proceso bastante sencillo: id a http://freshmeat.net/, pulsamos en Submit en la barra
de navegacion superior y rellenad el formulario anunciando el nuevo proyecto. Freshmeat es el sitio que
todos miran ala espera de anuncios sobre nuevos proyectos. Solo hace falta atrapar unas cuantas mira-
das alli para que noticias sobre €l proyecto sean esparcidas de boca en boca.

Si se conocen listas de correos o grupos de noticias donde €l anuncio del proyecto sea un tema de inte-
rés, entonces publicalo ali, pero hay que tener cuidado en publicar solo una vez en cadaforoy dirigir a
las personas alos foros del proyecto para més discusiones (configurando la cabecera Repl y-t 0). Los
comentarios en los foros deben ser cortosy directos a grano:

To: discuss@ists.exanple.org
Subject: [ANN] Scanley full-text indexer project
Repl y-to: dev@canl ey. org

Este es un s6l o nensaj e para anunciar |la creaci 6n del proyecto
Scanl ey, un indexador y buscador de texto open source con

un extenso APl para el uso de progranmadores qui enes desean
crear servicios de blusqueda en grandes col ecci ones de

ficheros de texto. Scanley ejecuta, esta siendo desarrollado
activanente y buscanbps nuevos desarrol | adores y testers.

Sitio Web: http://ww. scanl ey. org/

Caracteristicas:
- Busca texto plano, HTM. y XM
- Busqueda de pal abras o frases
- (pl aneado) Busquedas borrosas
- (pl aneado) Actualizacion increnmental de |os indices
- (pl aneado) | ndexaci 6n de sitios web renotos

Requeri m ent os:
- Python 2.2 o mayor . .
- Suficiente espacio en disco para contener |os indices
(apr oxi madanent e dos veces el tanmmfio ocupado en di sco)
Para nas infornmaci 6n, visitad scanley.org

Gr aci as

28

http://freshmeat.net/

Primeros Pasos

-J. Random

(Masinformacion “Publicity” enCapitulo 6, Communications para consej 0s sobre como anunciar lanza-
mientos posteriores u otros eventos.)

Existe un debate en el mundo del software libre sobre si es necesario empezar con codigo funcional o si
el proyecto puede empezar a beneficiarse aun cuando estéd en la fase de disefio y discusion. Solia pensar
gue empezar con codigo funcional era el factor mas importante, que esto es o que separaba proyectos
exitosos de los juguetes y que solo desarrolladores serios se verian atraidos que hacia algo concreto ya.

Esto resulto no ser del todo cierto. En €l proyecto Subversion, empezamos con un documento de disefio,
un nicleo de desarrolladores interesados e interconectados, mucha fanfarriay nada de cédigo funcional.
Parami completa sorpresa, €l proyecto recibié participantes activos desde e principio y parael momen-
to en que teniamos algo funcional ya habian unos cuantos desarrolladores voluntarios involucrados pro-
fundamente. Subversion no es € Unico gjemplo; e proyecto Mozillatambién fue iniciado sin cédigo
funcional y ahora es un navegador exitoso y popular.

En vista de ésta evidencia debo retirar mi afirmacion sobre que es necesario tener codigo funcional para
lanzar un proyecto. EL cddigo funcional sigue siendo la mejor base para el éxito y una buenaregla del
pulgar seria esperar atener €l codigo antes de anunciar €l proyecto. Por otra parte, pueden haber circuns-
tancias cuando un anuncio temprano puede tener sentido. Si creo que al menos un documento de disefio
bien desarrollado o algun ctro tipo de marco de trabajo, es necesario— claro que puede ser modificado
en base a las respuestas publicas, pero debe haber algo tangible, en el que las personas puedan hincar sus
dientes.

Cuando sea gque se anuncie un proyecto, no hay que esperar una horda de voluntarios listos para unirse
inmediatamente. Usualmente, €l resultado de anunciar es que se obtiene algunas preguntas casuales, al-
gunas otras personas se unen alalistade correosy aparte de esto, todo continua como antes. Pero con el
tiempo, podréis notar un incremento gradual en la participacion tanto de usuarios como de nuevo cédigo
de voluntarios. Anunciar es solo plantar una semilla, puede tomar un largo tiempo para que lanoticia se
extienda. Si el proyecto recompensa constantemente a quienes se involucran, las noticias se extenderan,
pues la gente desea compartir algo cuando han encontrado algo bueno. Si todo va bien, ladinamicade
las redes exponencial es de comunicacién lentamente transformaran €l proyecto en una compleja comu-
nidad donde no se conoce el nombre de todos y no se puede seguir cada una de las conversaciones. Los
préximos capitul os son acerca de como trabajar en éste ambiente.

29

Capitulo 3. Infraestructura Tecnica

L os proyectos de software libre dependen en la tecnologia que aportan la captura selectiva e integral de
informacion. Mientras mejor se sea usando estas tecnologias y persuadiendo a otros para utilizarlas, ma-
yor serd el éxito del proyecto. Esto se vuelve mas cierto mientras el proyecto crece. Un buen manejo de
lainformacién es o que previene a un proyecto open source de colapsar bajo €l peso delalLey de
Brook,! lacual afirma que asignar fuerza de trabajo adicional a un proyecto retrasado o demorara alin
mas. Fred Brooks observé que la complejidad de un proyecto se incrementa alcuadradodel nimero de
participantes. Cuando solo unas pocas personas estan involucradas, todos pueden hablar entre todos f&
cilmente, pero cuando cientos de personas estan involucradas, ya no es posible que cada uno de los indi-
viduos se mantengan constantemente a tanto de lo que todos |os demas estén haciendo. Si dirigir bien
un proyecto de software libre se trata de hacer que todos se sientan como si estuviesen trabajando juntos
en lamisma habitacion, es obvio preguntar: ¢Qué sucederiasi todas las personas en una habitacion ates-
tada de gente hablase alavez?

Este problema no es nuevo. En una habitacion no metaf orica atestada, 1a solucion es un procedimiento
parlamentario : guias formales acerca de como tener discusiones en tiempo real en grupos grandes, co-
mo asegurarse de que las disensiones mas importantes no se pierdan entre comentarios irrelevantes, co-
mo formar subcomites, como reconocer cuando se toman decisiones, etc. Las partes méas importantes en
un procedimiento parlamentario especifican como deben interactuar |os grupos con su sistema de mane-
jo deinformacion. Algunos comentarios se hacen para el registro, otros no. El registro mismo es sujeto a
manipulacion directay se entiende que no es unatranscripcion literal de lo que ha ocurrido, sino que es
una representacion alo que el grupo esta dispuesto a acordar sobre lo sucedido. El registro no es mono-
litico, sino que toma diferentes formas para diferentes propositos. Comprende los minutos de encuentros
individuales, una coleccién completa de todos |os minutos de todos |os encuentros, sumarios, agendasy
sus anotaciones, reportes de comités, reportes de corresponsal es no presentes, listas de accién, etc.

Dado que Internet no es realmente una habitacion, no debemos preocuparnos acerca de replicar aquellas
partes de los procesos parlamentarios que mantiene a algunas personas calladas mientras las demas ha-
blan. Pero cuando nos referimos a técnicas de manejo de lainformacion, proyectos open source bien di-
rigidos son como procesos parlamentarios en esteroides. Y a que todas las comunicaciones en |os proyec-
tos open source suceden por escrito, sistemas muy elaborados han evolucionado para enrutar y etiquetar
apropiadamente |os datos, para minimizar |as repeticiones de forma que se eviten divergencias espurio-
sas, paraamacenar y buscar los datos, para corregir informacion incorrecta u obsoletay para asociar
bits dispares de informacion con cada uno mientras que nuevas conexiones son observadas. L os partici-
pantes activos en 10s proyectos open source integran muchas de estas técnicas y a menudo realizaran
compl g as labores manual es para asegurar que lainformacién sea dirigida correctamente. Pero todo el
esfuerzo depende a final de un sofisticado soporte informético. Tanto que sea posible, [os mismos me-
dios de comunicacion deben realizar éste enrutamiento, etiquetado y registro y deberia mantener lain-
formacion a alcance de los humanos de la manera mas conveniente posible. En la préctica, por supues-
to, los humanos siguen necesitando intervenir en muchos puntos durante € proceso y también esimpor-
tante que estos programas hagan éstaintervencion lo mas conveniente. Pero por lo general, si los huma-
nos se encargan de etiquetar y enrutar informaci én acertadamente desde su primera entrada en €l siste-
ma, entonces el software deberia estar configurado para dar el maximo uso posible a esa metadata.

El consgjo de éste capitulo es intensamente practico, basado en las experiencias con aplicacionesy pa-
trones especificos. Pero el objetivo no es sélo ensefiar una coleccion particular de técnicas. Es también
demostrar, utilizando peguefios ejemplos, la actitud general que mejor fomentard el correcto uso de los
sistemas de manejo de informacion en el proyecto. Esta actitud incluye una combinacién de habilidades
técnicas y don de gentes. L as habilidades técnicas son esenciales porque | as aplicaciones de manejo de
informaci6n siempre requieren cierta configuracion y ademas una cierta cantidad de mantenimiento y
puesta apunto mientras nuevas necesidades vayan surgiendo (por jemplo, mirad la discusion de como
manejar el crecimiento del proyecto en “Pre-filtrado del gestor de fallos’ méas adelante en éste capitul o).
El don de gentes es necesario porque la comunidad humana también requiere de cierto mantenimiento:

'De su libroEl mes mitico del hombore, 1975. Més en http://en.wikipedia.org/wiki/The_Mythical_Man-Month y en
http://en.wikipedia.org/wiki/Brooks L aw.

30

http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://en.wikipedia.org/wiki/Brooks_Law

Infraestructura Técnica

no siempre es inmediatamente obvio como utilizar estas herramientas para obtener una ventaja completa
y en agunos casos | 0s proyectos tienen convenciones conflictivas (por g emplo, la discusién de como
crear cabeceras Repl y-t 0 enlos mensgjes salientes de las lista de correos, en “Listas de correo”). To-
doslosinvolucrados en el proyecto van a necesitar ser animados, en el momento correcto de laforma
correcta, para que sigan manteniendo lainformacion del proyecto bien organizada. Mientras mas involu-
crado esté el contribuyente, mas complejas'y especializadas serén | as técnicas que se esperara que apren-
dan.

El manegjo de informacion no tiene soluciones rapidas ya que existen demasiadas variables. Pueden que
finalmente se tenga todo configurado justo como se deseay tener ala mayoria de la comunidad partici-
pando pero luego el crecimiento del proyecto hace de estas practicas no escalables. El puede que e cre-
cimiento del proyecto se estabilice y que la comunidad de usuarios y desarrolladores acuerden unarela-
cion confortable con lainfraestructura técnica pero llega alguien e inventa un nuevo servicio de manejo
de informacion completo y pronto muchos de |os recién llegados empezaran a preguntar que por qué no
es utilizado en el proyecto— por ejemplo, esto esta sucediendo mucho Ultimamente en proyectos de
software libre que son anteriores alainvencion del Wiki (mas en http://en.wikipedia.org/wiki/Wiki).
Muchas cuestiones son materia de juicio, incluyendo las desventajas entre la conveniencia de aquellos
generando informacién y la conveniencia de agquellos quienes la consumen o entre el tiempo requerido
para configurar €l software de manejo de lainformacién y los beneficios que le brinda al proyecto.

Cuidado con la tentacién de automatizar demasiado, esto es, automatizar cosas que realmente requieren
de atencién por parte de los humanos. Lainfraestructura técnica es importante, pero lo que hace que los
proyectos de software libre funcionar es el cuidado—y la expresion inteligente de éste cuidado—de los
humanos involucrados. Principalmente, lainfraestructura técnica esté para ofrecer medios convenientes
para hacer esto.

Lo que necesita un proyecto

Lamayoria de los proyectos open source ofrecen a menos un minimo y estandar conjunto de herramien-
tas para mangjar informacion:

Sitio Web
Principalmente, conducto de informacidn centralizado en un sentido del proyecto parael pablico. El
sitio web puede también servir como unainterfaz para otras herramientas del proyecto.

Listas de Correo
Usualmente es el foro de comunicacion més activo del proyectoy el "medio de registro.”

Control de Versiones
Permite alos desarrolladores realizar cambios al codigo convenientemente, incluso retroceder y ex-
portar cambios. Le permite atodos mirar lo que esté sucediendo con el codigo.

Gestion defallos
Permite alos desarrolladores mantener un registro de en qué estan trabajando, coordinandose entre
ellosy planear lanzamientos. Permite que todo el mundo puedarealizar blisquedas acerca del estado
delosfalosy registrar informacion (p.e. recetas reproducibles) acerca de fallos en particular. Puede
ser utilizado para seguir no solo fallos, sino también lanzamientos, tareas, nuevas caracteristicas,etc.

Chat en tiempo real
Un sitio para discusiones rapidas, sencillas e intercambios de preguntas/respuestas. No siempre se
archiva completamente.

Cada una de estas herramientas esta dirigida a distintas necesidades, pero sus funciones estan también
interrelacionadas y se debe hacer que estas herramientas trabajen en conjunto. Més abajo examinaremos
como podemos lograr esto y méas importante aun como hacer que |as personas se acostumbren a usarlas.
El sitio web no se discute hasta el final, ya que actla més como un pegamento para otros componentes

31

http://en.wikipedia.org/wiki/Wiki

Infraestructura Técnica

gue como una herramientaen si.

Se pueden evitar muchos dolores de cabeza por escoger y configurar estas herramientas si en su lugar
utilizamos un hosting enlatado : un servicio que ofrece todas |as herramientas necesarias para un pro-
yecto open source ya listas para su uso gracias a plantillas y empaquetado. Mas en “ Soluciones de hos-
pedaje’ a continuacion en éste mismo capitulo para una discusion més profunda acerca de ventajasy
desventgjas de estas soluciones.

Listas de correo

Laslistas de correo son el pan y lamantequilla de las comunicaciones del proyecto. Si algin usuario es
expuesto a algun foro aparte de las paginas web, probablemente sea lalista de correos del proyecto. Pero
antes de trabajar con las listas en si mismas, deben tomar experiencia con lainterfaz—esto es, el meca-
nismo por el cua se pueden unir ("suscribirse @') alalista. Esto nos brindalaregla nimero uno de las
listas de correo:

No intentes dirigir las listas de correo a mano—consigue un software de manejo de
listas.

Seratentador dejar esto de lado. Configurar un software para listas de correo puede parecer demasiado
dificil al principio. Manejar listas pequefias de bajo tr&fico a mano puede parecer seductor a principio:
solo hay que montar una lista de suscripcion que te reenviatodo y cuando alguien enviaun mensgje, se
agrega (o elimina) su direccion de correo en algun tipo de fichero de texto que almacenatodas las direc-
cionesdelalista. ¢Qué podria ser mas sencillo?

El truco esta en hacer un buen manegjo de las listas de correo—Ilo cual no eslo que la gente espera— no
es nada sencillo. No es solo sobre suscribir y de suscribir usuarios cuando lo solicitan. También es sobre
moderar para prevenir SPAM, ofrecer lalistaresumida en lugar de mensaje por mensaje, proporcionar
unalista estandar e informacion del proyecto a través de auto respuestas y muchas otras cosas. Un ser
humano monitorizando las direcciones de suscripcién es solo una pequefia parte del minimo de funcio-
nalidad e incluso asi, no eslaformamas seguray puntua que un software podria ofrecer.

Un software para el manejo de listas de correo usualmente ofrece las siguientes caracteristicas:

Suscripcion através de correos o basada en web
Cuando un usuario se suscribe alalista, deberiarecibir una respuesta de bienvenida sin demora, ex-
plicandole como seguir interactuando con el software y (méas importante) con eliminar la suscrip-
cion. Esta respuesta automética puede ser modificada para contener informacién especificadel pro-
yecto, por supuesto, como €l sitio web, localizacion del FAQ, etc.

Suscripcion a modo de resimenes 0 al modo de mensaje por mensgje
En modo resumen, el suscriptor recibe un correo conteniendo toda la actividad de lalista en ese dia.
Para aguell os quienes desean seguir la listaindirectamente, sin participar, el modo resumen es a me-
nudo el preferible, porque les permite revisar todos los temas alavez y evitar las distracciones de
los correos que llegan en momentos a azar.

Caracteristicas parala moderacion
Moderar es revisar |0s mensgjes para asegurar que: @) no es SPAM y b) en tema, antes de que lle-
guen alalista. La moderacién incluye necesariamente a seres humanos, pero e software puede ha
cer mucho para hacerlo més sencillo. Se discute mas acerca de la moderacion luego.

Interfaz Administrativa
Entre otras cosas, le permite a un administrador eliminar direcciones obsol etas facilmente. Esto pue-
de hacerse urgentemente cuando la direccién del receptor empieza a enviar respuestas automéaticas
del tipo "Y ano tengo ésta direccion de correo” alalista en respuesta a cada mensaje. (Algunas apli-

32

Infraestructura Técnica

caciones paralistas de correo pueden incluso detectar esto por si mismasy eliminar la suscripcién
de ésta persona automaticamente.)

Manipulacion de las cabeceras
Muchas personas tienen sofisticados filtros y reglas de respuestas configuradas en sus clientes de
correo. Las aplicaciones de listas de correo pueden afadir y manipular ciertas cabeceras estandar de
las que estas personas se puedan beneficiar (més detalles a continuacion).

Archivo
Todos los mensgjes enviados a las listas son almacenados y hechos publicos en laweb. Alternativa-
mente, algunas aplicaciones de software para listas de correo ofrecen interfaces especial es para co-
nectar alguna herramienta externa de archivo como MHonArc (http://www.mhonarc.org/). Al igual
“ Sobresaliente uso de los archivos’ en Capitulo 6, Communications se discute que el archivo es cru-
cial.

El objetivo de todo esto es sencillamente enfétizar que la administracion de las listas de correo esun
problema complejo sobre € cual se ha pensado mucho y que esta casi resuelto. Ciertamente no es nece-
sario convertirse en un experto, pero hay que resefiar que siempre hay lugar para el aprendizajey quela
administracién de las listas ocupara algo de atencién de vez en cuando durante la duracidn del proyecto.
A continuacién examinaremos a gunos de | os problemas mas comunes que podemos encontrar al confi-
gurar las listas de correo.

Prevenir el Spam

Entre el momento cuando ésta frase es escritay cuando es publicada, el problemaalo largo y ancho de
Internet el problema del Spam probablemente sea €l doble de severo—o al menos parecera que es asi.
Hubo una época, no mucho tiempo atrés, cuando se podia administrar unalista de correos sin la necesi-
dad de tomar medidas para prevenir € Spam. Algin mensaje extraviado ocasional aparecia pero con tan
poca frecuencia que solo era unamolestia de bajo nivel. Esa épocaya es historia. Hoy, las listas de co-
rreo que no toman medidas preventivas en contradel Spam se vera sumergida rapidamente en correo ba-
sura hasta € punto de ser inttil. Prevenir el Spam es una prioridad.

La prevencion de Spam se divide en dos categorias. prevenir que mensajes basura aparezcan en lalistay
prevenir que la lista sea utilizada como fuente de nuevas direcciones de correo paralos spammers. La
primera es la méas importante, asi que la examinaremos primero.

Filtrado de los mensajes

Existen tres técnicas bési cas para prevenir mensajes basuray muchas aplicaciones para listas ofrecen las
tres. Lo mejor es utilizarlas en tandem:

1. Sdlo per mitir automaticamente mensajesdelos suscriptoresalalista.

Esto es efectivo hasta cierto punto y necesita de poca administracion ya que usual mente es solo cues-
tién de cambiar algunos puntos en la configuracién de la aplicacion de listas. Hay que apuntar que
aquellos mensgj es que no son aprobados autométicamente no deben ser desechados. En su lugar, de-
ben ser moderados por dos razones. Primero, se deben permitir mensajes de quienes no estan suscri-
tos. Alguna persona con una pregunta o sugerencia no deberiatener que suscribirse alalista paraen-
viar un solo mensaje. Segundo, incluso quienes estén suscritos envian mensajes desde cuentas dife-
rentes de la que han utilizado para suscribirse. Las direcciones de correo el ectronico no son un meto-
do eficaz paraidentificar alas personasy no debe ser utilizado para esto.

2. Filtrar los mensajes utilizando un programa defiltro de spam.

Si laaplicacion de listas de correo o permite (lamayorialo hace) se pueden filtrar los mensgjes utili-
zando un filtro anti-spam. El filtrado automatico de Spam no es perfecto, y nuncalo serg, ya que exis-

33

http://www.mhonarc.org/

Infraestructura Técnica

te un pulso sin fin entre los spammersy los escritores de filtros. A pesar de esto, se puede reducir
enormemente la cantidad de Spam que llega ala cola de moderacion y dado que mientras més larga
sea ésta cola, se necesitaran mas tiempo examinandola, asi que cualquier filtrado automatico es bene-
ficioso.

No hay lugar suficiente para unas instrucciones detalladas sobre como configurar filtros de Spam.
Habré que consultar la documentacion de la aplicacion de listas de correo para esto (en “ Software”
mas adel ante en éste capitul o). Las aplicaciones paralistas vienen con caracteristicas parala preven-
cion de Spam, pero quizas seria una buenaidea afadir una solucién de un tercero. He tenido buenas
experiencias con estas dos: SpamAssassin (http://spamassassin.apache.org/) y SpamProbe
(http://spamprobe.sourceforge.net/). Esto no es una critica contra otros filtros anti spam open source
que a parecer son muy buenos también. Sucede que sdlo he tenido la oportunidad de utilizar estos
dosy estar satisfecho con ellos.

3. Moderacion.

Para aquell os correos que no son automati camente aceptados por su virtud de ser enviados por un
suscriptor alalistay que pasan através del filtro anti-spam, si es quelo hay, la ultimafase es lamo-
deracion: el correo es enrutado a una direccién especial, donde alguien lo examinay lo confirmao
rechaza.

Confirmar un mensaje se puede hacer de dos formas: se puede aceptar €l mensgje sdlo unavez o sele
puede indicar alaaplicacion que acepte éste y todos |os mensajes futuros de éste remitente. Casi
siempre deseamos hacer lo Ultimo de manera que podamaos reducir la carga futura en la moderacion.

L os detalles sobre como confirmar esto, varian entre sistemas pero usual mente es una cuestion de res-
ponder a unadireccién en especial con el comando "aceptar” (lo que significa que solo se aceptara és-
te mensgje) o "permitir" (permitir éste y todos |os mensajes futuros).

Rechazar un mensgje se hace simplemente ignorando el correo de moderacion. Si la aplicacion nunca
recibe confirmacién de que algo es un mensgje valido entonces no pasard alalista, asi que con solo
ignorar el correo de moderacion creara el efecto deseado. En algunos casos, existe laopcion de res-
ponder con los comandos "rechazar” o "denegar” para que automati camente se desaprueben los men-
sgjes del remitente sin siquiera pasarlos por la moderacion. Raramente existe una razén para hacer es-
to yaque lamoderacion es por |o general para prevenir el spam y los spammers no suelen utilizar una
misma direccidn dos veces.

Hay que asegurarse de que la moderacién solo se utiliza parafiltrar €l spam y mensgjes fuera de contex-
to, como cuando alguien envia un correo alalista equivocada. El sistema de moderacién por lo general
ofrece una manera de responder directamente al remitente pero es mejor no utilizarlo para responder a
preguntas que real mente pertenecen alalista, incluso si se sabe la respuesta inmediatamente. De hacer
esto, se privariaalacomunidad del proyecto de una vision exacta de que tipo de preguntas la gente hace
y privarlos de la oportunidad de responder ellos mismos a preguntas y/o ver |as respuestas de otros. La
moderacién de las listas debe ser estrictamente para mantenerlas libres de basuray de correos fuera de
contexto, nada més.

Ocultar las direcciones en los archivos
Para prevenir que los spammers utilicen las listas de correo como una fuente de direcciones, unatécnica
muy comun es la de ocultar las direcciones de correo de la gente en € registro, reemplazéndolas como
por ejemplo:

j random@omedorrai n. com

jpor

http://spamassassin.apache.org/
http://spamprobe.sourceforge.net/

Infraestructura Técnica

j random AT_somedomnai n. com

j randomNOSPAM@ onedormai n. com

o algo similar igual de obvio (para un humano). Y a que los recolectores de direcciones por |o general
funcionan reptando por paginas web—incluyendo el archivo de nuestra lista de correo— y buscando se-
cuencias conteniendo "@", modificar las direcciones es una forma para que sean invisibles o inGtiles pa-
ralos spammers. Esto no hace nada para prevenir que se envié spam desde lalista, por supuesto, pero si
evita que se incremente la cantidad de spam enviado directamente alas cuentas personales de |os usua-
riosdelalista

Ocultar las direcciones puede ser algo controversial. A algunas personas les puede gustar muchoy se
sorprenderan si € registro no lo hace autométicamente. Otras pueden pensar que es demasiado inconve-
niente (porgue los humanos también tenemos que traducir las direcciones antes de utilizarlas). Algunas
veces las personas afirman que es inefectivo, porque |os recolectores en teoria pueden compensar cual-
quier patron de modificacion consistente. No obstante, hay que sefidar que existe evidencia empiricade
gue ocultar las direcciones es efectivo, como se puede ver en
http://www.cdt.org/speech/spam/030319spamreport.shtml.

Lo idea seriaque laaplicacion administrativa de la lista diese 1a posibilidad de escoger a cadaindivi-
duo, utilizando una cabecera si/no especial o configurandolo en las preferencias de la cuenta del suscrip-
tor. Sin embargo, no conozco ninguna aplicacion que permita hacer esto para cada suscriptor o para cada
mensgje, asi que por ahora el administrador de lalista debe tomar la decision en nombre de todos
(asumiendo que & archivador ofrece ésta caracteristica, lo cual no essiempre asi). Yo meinclino ligera-
mente hacia ocultar las direcciones. Algunas personas son muy cuidadosas para evitar enviar sus direc-
ciones de correo electronico en paginas web o en cualquier lugar donde un recolector de spam pueda
verla, y podrian ser decepcionante que todo ese cuidado sea perdido gracias al registro de lalista de co-
rreo. Mientras tanto, lainconvenienciaa ocultar las direcciones que impone en los usuarios del registro
es muy peguefia, dada latrivialidad de transformar las direcciones al formato correcto Si se necesita con-
tactar con esa persona. Pero hay que seguir pensando en que, a final, sigue siendo unaluchasin fin: pa-
ra cuando hayaleido esto, los recolectores podrian haber evolucionado hasta el punto de reconocer la
mayoria de formas comUnmente utilizadas para ocultar y tendremos que pensar en algo més.

ldentificacion y Administracion de cabeceras

Por lo general, los suscriptores de las listas mueven estos correos a una carpeta especifica para el pro-
yecto, separados de su otro correo personal. Sus clientes de correo hacen esto autométicamente a exa-
minar las cabeceras de |os mensgjes. La cabecera son l0s campos que se encuentran en la parte superior
delos correos, los cualesindican € remitente, destinatario, asunto, fecha e informacién variada sobre €
mensgje. Cabeceras certeras son bien conocidas y obligatorias:

From
To: ...
Subj ect :
Dat e:

Otras son opcionales, aunque de cierta manera estandar. Por ejemplo, no es estrictamente requerido que
un correo electronico tenga la cabecera

Repl y-to: sender @nmai | . addr ess. here

35

http://www.cdt.org/speech/spam/030319spamreport.shtml

Infraestructura Técnica

pero muchas lo tienen, porque da a destinatario una manera a prueba de errores de responder a remiten-
te (es especialmente Util cuando el remitente ha tenido que enviar un correo desde una direccion diferen-
tealacual lasrespuestas deben ser dirigidas).

Algunos clientes de correo ofrecen unainterfaz facil de usar pararellenar correos basados en patrones en
la cabecera Asunto. Esto lleva a que la gente pida que lalista de correo afiada autométicamente un prefi-
jo atodos los Asuntos, de forma que puedan configurar sus clientes para que busguen esos prefijosy ar-
chivar los correos en € directorio correcto. Laidea es que € autor origina escribiria

Asunt o: Trabaj ando en | a version 2.5
pero €l correo apareceriaen lalistaasi:
Asunto: [discuss@i sts. exanple.org] Trabajando en la version 2.5

Aunque la mayoria de las aplicaciones de administracion de listas ofrecen la opcion de hacer esto, yo re-
comiendo no utilizarla. El problema que resuelve puede ser resuelto de otras formas menosintrusasy los
costes de utilizar espacio en el campo del Asunto son demasiado grandes. L os usuarios experimentados
delas listas de correos revisan €l asunto de |os correos entrantes del dia para decidir acerca de qué van a
leer y qué van aresponder. Fijar el nombre delalistaa Asunto puede mover haciala derecha el verda
dero Asunto y fuerade la pantalla, haciéndolo invisible. Esto oculta informacion necesaria para aquellos
quienes dependen en la decision de cuales correos van a abrir, reduciendo la funcionalidad conjunta de
lalista paratodos.

En lugar de sobrecargar €l Asunto, hay que ensefiar alos usuarios para que saquen ventgjas de otras ca-
beceras estandar, empezando con € campo "Para’, €l cual deberia contener el nombre de lalista de co-
rreos:

To: <discuss@i sts. exanpl e. org>

Cualquier cliente de correo capaz de filtrar los mensgjes basandose en €l Asunto debe ser capaz de filtrar
utilizando el campo Para facilmente.

Existen otras cabeceras opcionales pero estandar para las listas de correo. Filtrar utilizandolos es incluso
més fiable que utilizar las cabeceras "Pard" 0 "Cc" dado que estas cabeceras son afiadidas a todos los
mensagjes por €l programa de administracion de lalista, asi que algunos usuarios estén contando con su
presencia:

[ist-help: <mailto:discuss-hel p@ists. exanpl e. org>
list-unsubscribe: <mailto:discuss-unsubscribe@ists. exanple.org>
list-post: <mailto:discuss@ists. exanpl e. org>

Delivered-To: mailing list discuss@ists. exanple.org

Mai | i ng-List: contact discuss-hel p@ists.exanple.org; run by ezmim

La mayoria se explican en si mismos. En http://www.nisto.com/listspec/list-manager-intro.html se expli-
can mejor o en http://www.fags.org/rfcs/rfc2369.html para una especificacion formal mas detallada.

Hay que sefialar como estas cabeceras implican que si se tiene unalista de correos llamada "list" enton-
ces se tienen también unas direcciones administrativas "list-help" y "list-unsubscribe”. Ademas de estas,
es normal tener "list-subscribe" paraunirsey "list-owner" para contactar con €l administrador de lalista
Dependiendo en la aplicacion administrativa que se use, estas y/o otras direcciones administrativas va-
rias pueden ser configuradas; la documentacidn deberia detallar esto. A menudo una explicacion com-

36

http://www.nisto.com/listspec/list-manager-intro.html
http://www.faqs.org/rfcs/rfc2369.html

Infraestructura Técnica

pleta de todas estas direcciones especiales es enviada a cada nuevo suscriptor como parte de un mensaje
de bienvenida automético. Probablemente usted mismo reciba una copia de esto correo de bienvenida. Si
no lo harecibido, pida una copia a aguien, de manera que pueda saber qué estan recibiendo los nuevos
suscriptores. Mantenga la copia a mano de manera que pueda responder preguntas acerca del funciona-
miento de lalista, 0 mejor aun, ponerlo en una paginaweb en alguna parte. Asi, cuando alguien pierda
su copiade lasinstruccionesy pregunte como pueden eliminarse de lalista, selesfacilitalaURL.

Algunas aplicaciones para listas de correos ofrecen la opcion de agregar a final de cada mensgje lasins-
trucciones para eliminar la suscripcion. Si ésta opcion esta disponible, usela. Solo causa agunas lineas
extrapor mensaje en un sitio inofensivo y puede ahorrar mucho tiempo al reducir € nimero de gente
gue escriba—o peor aln, que escriban a la lista—preguntando cémo eliminar la suscripcién.

El gran debate del Reply-To

Antes en “Evitar discusiones privadas’ hice incapie en laimportancia de asegurar que |as discusiones se
mantengan en foros publicos y hable acerca de porque a veces tomar medidas activas es necesario para
prevenir que algunas conversaciones deriven a hilos privados. Este capitul o es acerca de todo lo relacio-
nado con preparar €l software de comunicacion del proyecto para que realice lamayor cantidad de traba-
jo posible. Asi que, si laaplicacion paralaadministracion de las listas de correo ofrece una manera auto-
maética de encausar las discusiones alalista, habria que pensar que habilitarla esla opcion correcta.

Bueno, quizas no. Existe tal caracteristica, pero tiene algunas desventajas muy importantes. Usarlao no
es uno de |os debates més calientes en la administracion de las listas de correo—admitamosl o, no es una
controversia que vaya a aparecer en las noticias, pero se puede iniciar de vez en cuando en los proyectos
de software libre. A continuacién, voy a describir esta caracteristica, proponer los argumentos de cada
posicién y hacer lamejor recomendaci én que puedo.

Esta caracteristicaen si misma es muy sencilla: la aplicacién paralas listas puede, si o deseamos, auto-

méti camente establecer la cabecera Reply-To en todos |os mensajes para dirigir todas |as respuestas ala
lista. Asi que, sin importar lo que escriba €l remitente en este campo (0 s ni siquieralo establecen) para
cuando los suscriptores alalista vean el mensgje, éste contendra la direccién de lalista en la cabecera:

Reply-to: discuss@ists. exanple.org

Esto puede parecer algo bueno, porque virtualmente todos | os clientes de correo prestan atencién a esta
cabeceray ahora cada vez que alguien responda a alglin mensaje, su respuesta serd automéaticamente di-
rigidaalalista, no sblo aquien haenviado el mensgje que se responde. Por supuesto que el remitente
puede manual mente modificar esto, pero lo importante es que por defecto las respuestas son enviadas a
lalista. Este es un gjemplo perfecto de como utilizar la tecnologia para animar la colaboracion.

Desafortunadamente, existen algunas desventgjas. La primera es conocida como €l problema No puedo
llegar a casa: aveces, el remitente original establece su direccion de correo real en € campo Reply-To
porque por alguna razon u otra envian correos utilizando una direccién diferente ala que utilizan para
recibirlos. Las personas que envian y reciben correos desde el mismo sitio no tienen éste problemay
guizas se sorprendan de que siquiera existe. Pero para quienes utilizan configuraciones de correo inusua-
les o quienes no pueden controlar como se formael campo From de su direccion de correo electrénico
(quizés porque envian correos desde sus trabajos y no tienen ninguna influencia sobre el departamento
de sistemas) €l utilizar el campo Reply-To quizas sea la Unica manera que tienen para asegurarse de que
las respuestas a sus mensgjes les llegan (encuentran el camino acasa). Asi que si laaplicaciéon delaslis-
tas sobre escribe esto, esta persona puede que nunca vea las respuestas a sus mensajes.

La segunda desventagja se refiere alas expectativas y en mi opinién, el argumento mas fuerte en contra
del cambio del Reply-To. La mayoria de los usuarios experimentados de correo electronico estan acos-
tumbrados a dos métodos basi cos de responder: Responder a todosy Responder al remitente. Todos los
clientes de correo tienen botones separados para estas dos acciones. Sus usuarios saben que para respon-
der atodos losincluidos en lalista, deben escoger, responder atodosy que pararesponder sélo al remi-

37

Infraestructura Técnica

tente en privado, deben seleccionar Responder a remitente. Aungue se desee animar a que la gente res-
ponda alalista siempre que sea posible, existen ciertas circunstancias cuando un mensgje privado al re-
mitente es prerrogativo—por ejemplo, desean compartir informacion confidencial, algo que seriainapro-
piado para unalista piblica.

Ahora consideremos |o que sucede cuando la lista sobre escribe la cabecera Reply-To origina del remi-
tente. Quien responde pulsala opcion de Responder al remitente, con la esperanza de enviar un mensgje
privado al autor original. Porque esta es la conducta esperaday quizas esta persona no se moleste en
examinar cuidadosamente la direccion del destinatario en €l nuevo mensaje. Redacta su correo privado,
un mensgje confidencial, uno que puede diga algo embarazoso acerca de alguien delalistay pulsa el bo-
ton de enviar. Inesperadamente el mensaje llega a la lista unos minutos después. Cierto, en teoria debe-
ria haber revisado cuidadosamente el destinatario y no deberia haber asumido nada acerca del campo
Reply-To. Pero por lo general este campo se compone con su direccion de correo personal (o0 en su lu-
gar, los clientes de correo lo hacen) y muchos usuarios asiduos del correo electrénico dan esto por segu-
ro. De hecho, cuando alguien determina deliberadamente el campo Reply-To a alguna otra direccion, co-
mo la de lalista, usualmente sefialan esto en el contenido del mensaje, de forma que quienes respondan
no se sorprendan de lo que sucede cuando lo hacen.

Dada la posibilidad de consecuencias muy severas de esta conducta inesperada, mi preferenciaeslade
configurar la aplicacién de lalista para que nunca toque |la cabecera Reply-To. Este caso de cuando se
utilizala tecnologia para animar la colaboracion tiene, ami parecer, efectos colateral es potencialmente
peligrosos. Por otro lado, existen argumentos concretos del otro lado de este debate. Sea lo que sea que
Se escoja, puede que en ocasiones algunas personas pregunten por qué no se ha escogido el otro camino.
Dado que esto no es algo que se quiere sea d principal temade discusién en lalista, puede ser conve-
niente tener una respuesta preparada del tipo que sea més propensa a poner fin ala discusion en lugar de
animarla. Hay que asegurarse de no insistir en que esta decision, sea cua sea, es obviamente la Ginica co-
rrecta (incluso cuando se crea que esto es asi). En cambio, hay que sefialar que este es un vigjo debate,
gue existen buenos argumentos de cada lado, que ninguna decisién iba a satisfacer atodos los usuariosy
gue por esto se hatomado lamejor decision que se podia. Amablemente se pide que el temano vuelvaa
surgir a menos que alguien tenga algo realmente nuevo que decir, entonces hay que mantenerse algjado
y esperar a que muera por causas naturales.

Alguien podria sugerir unavotacién. Se puede permitir esto si se quiere, pero persona mente no creo que
contar manos sea una solucién satisfactoria en este caso. El castigo para alguien que se vea sorprendido
por este comportamiento es demasiado (accidentalmente enviar un correo privado alalistapublica) y las
mol estias para todos |os demés es pequefia (ocasional mente recordarle a alguien que deben responder a
lalista) por esto no esta claro de que la mayoria, aunque sean lamayoria, deban poner a una minoria ba-
jo eseriesgo.

No he llegado a tocar todos |os aspectos acerca de este tema, solo los que me han parecido de especial
importancia. Para una discusion completa, se pueden leer 1os siguientes documentos, los cuales son
siempre citados cuando se entra en €l debate:
» Leave Reply-to alone, por Chip Rosenthal

http://www.unicom.com/pw/reply-to-harmful .html
» Set Reply-totolist, por Smon Hill

http://www.metasystema.net/essays/reply-to.mhtml
A pesar de las benignas preferencias indicadas anteriormente, no creo que exista una Unica respuestas
correctay he participado felizmente de muchas listas que cambiabanel Reply-To. Lo mejor que se puede

hacer, es centrarse en alguna de las dos vias desde €l principio e intentar no verse enredado en debates
sobre esto despues.

Dos fantasias

38

http://www.unicom.com/pw/reply-to-harmful.html
http://www.metasystema.net/essays/reply-to.mhtml

Infraestructura Técnica

Algun dia, alguien tendra la brillante idea de implementar una opcién Responder a la lista en su cliente
de correo. Podria utilizar alguna de | as cabeceras para listas mencionadas antes para descubrir la direc-
cién delalistade correosy luego direccionar las respuestas directamente alalista, ignorando cuaquier
otro destinatario, ya que probablemente muchos estén suscritos a la lista de todas formas. Eventua men-
te, otros clientes implementaran esta caracteristicay todo el debate desaparecerd. (De hecho, € cliente
de correos Mutt [http://www.mutt.org/] ofrece esta opci c’>n.2)

Unamejor solucién seriaque el tratamiento del campo Reply-To fuese una opcion por suscriptor. Quie-
nes deseen que la lista modifique sus cabeceras Reply-To (ya sea en sus mensajes o en los de otros) po-
driasolicitarlo, y quienes no lo desean, se les deja tranquilos. Aungue no conozco ninguna aplicacion
paralistas de correo que permita esto para cada suscriptor. Asi que por ahora, parece que estamos atados
auna configuracion global 2

Archivo

L os detalles técnicos para configurar un archivo paralalista de correos son especificos de la aplicacion
utilizaday estan fueradel acance de este libro. Al escoger o configurar un archivador, es conveniente
considerar lo siguiente:

Actualizacion rgpida
A menudo la gente querra ser referida a un mensaje enviado durante la ultima horao dos. Si es posi-
ble, el archivador debera archivar cada mensgje instantaneamente, de tal manera de que cuando el
mensaj e aparezca en lalista de correos, ya esté en el archivo. Si esa opcidn no esta disponible en-
tonces al menos hay que intentar configurar el archivado para que se realice cada hora o asi. (Por
defecto, algunos archivadores gjecutan el proceso de actualizacion cada noche, pero en la préctica
esta demora es demasiado larga para una lista de correos.

Estabilidad referencial
Unavez que un mensaje es archivado bajo una URL en particular, debe ser accesible desde esa
URL parasiempre. Incluso si el archivo es reconstruido o restaurado de un respaldo, cualquier URL
gue haya sido hecha publica debe permanecer igual. Las referencias estables hacen posible que los
buscadores de Internet sean capaces de indexar €l archivo, o cual es unagran ventaja paralos usua
rios que buscan respuestas. L as referencias estables son también importantes porque |os mensajes
delalistay los hilos son enlazados desde €l gestor de fallos (“ Seguimiento de errores’) mas ade-
lante en este capitulo o en la documentacidn de otros proyectos.

Lo ideal seriaque laaplicacion delalistade correosincluyala URL del mensaje archivado o a me-
nos laporcién de la URL especifica del mensaje en una cabecera cuando este es distribuido. De esta
manera la gente que haya recibido € mensaje podra conocer su lugar en el archivo sin la necesidad
devisitar €l archivo, lo cua es de gran ayuda, ya que cualquier actividad que implique el uso del na-
vegador web es automaticamente un consumo de tiempo. Que alguna aplicacion de listas de correos
ofrece esta posibilidad no lo s2. Desafortunadamente, los que he utilizado no latienen. Pero esto es
algo que hay que buscar (0 si desarrolla una aplicacion de listas, esta es una caracteristica que debe
considerar implementar, por favor).

Respal dos (Backups)
Debe ser obvio como respaldar €l archivo y lareceta para restaurarlo no deben ser muy complicada.
En otras palabras, no hay que tratar €l archivo como una caja negra. Debe conocer donde se almace-
nan los mensajes y como restaurar |as paginas del archivo del amacén si algunavez es necesario.
Estos archivos contienen datos muy preciados—un proyecto que |os pierde, pierde buena parte de
su memoria colectiva

2 Poco después de que este libro apareciera, Michael Bernstein [http://www.michael bernstein.com/] me escribié para comentarme
lo siguiente: "Existen otros clientes de correos que implementan una funcién de responder alalistaa parte de Mutt. Por gjemplo,
Evolution tiene una combinacién de teclas, pero no un botén (Ctrl+L)."

3Desde que escribi esto, he aprendido que existe d menos un sistema de gestion de listas que of rece esta caracteristica: Siesta
[http://siesta.unixbeard.net/]. Hay un articulo sobre este en http://www.perl.com/pub/al2004/02/05/siesta.html

39

http://www.mutt.org/
http://www.mutt.org/
http://www.michaelbernstein.com/
http://www.michaelbernstein.com/
http://siesta.unixbeard.net/
http://siesta.unixbeard.net/
http://www.perl.com/pub/a/2004/02/05/siesta.html

Infraestructura Técnica

Soporte de los hilos
Desde cualquier mensgje debe ser posibleir a hilo (grupo de mensajes relacionados) al que pertene-
ce el mensgje. Cada hilo debe tener su propia URL también, separado del URL de los mensgjes del
hilo.

Busquedas
Un archivo que no permita blsquedas—tanto en el cuerpo de los mensajes como por autor 0 segin
el asunto—es casi indtil. Hay que sefialar que algunos archivadores permiten blsquedas a remitir la
labor a un buscador externo como Google [http://www.google.com/]. Esto es aceptable, pero por lo
general, las blsquedas directas son més finas, porque permiten a quien busca, especificar que losre-
sultados sean mostrados, por ejemplo, segiin el asunto y no segun €l cuerpo del mensaje.

Lo anterior es s6lo una lista técnica para ayudar aevaluar y configurar un archivador. Hacer que la gente
de hecho utilice €l archivo como ventgja para el proyecto es discutido en capitul os posteriores en parti-
cular en “ Sobresaliente uso de los archivos’.

Software

Aqui hay algunas herramientas open source parala gestion de las listas de correo y su archivo. Si el hos-
ting del proyecto yatiene una configuracion por defecto, quizas no sea necesario siquiera decidir cual
herramienta utilizar. Pero si se tiene queinstalar una, existen algunas posibilidades. Las que he utilizado
son Mailman, Ezmim, MHonArc e Hypermail, lo cual no significa que no haya otras que sean igual de
buenas (y por supuesto, probablemente existan otras que no he logrado encontrar, asi que no considere
esto como una lista completa).

Aplicaciones de gestion de listas de correo:

* Mailman — http://www.list.org/
(Tiene un archivador incorporado y la posibilidad de conectarse a archivadores externos.)
* SmartList — http://www.procmail .org/
(Para ser utilizado con €l sistema de procesamiento de correos Procmail.)
» Ecartis— http://www.ecartis.org/
» ListProc — http://listproc.sourceforge.net/
* Ezmlm — http://cr.yp.to/ezmim.html
(Disefiado para funcionar conQmail [http://cr.yp.to/gmail.html] .)
» Dada— http://mojo.skazat.com/
(A pesar del bizarro intento de su sitio web, es un software libre, liberado bajo lalicencia GNU GPL.
También tiene un archivador incluido.)

Software para el archivo de las listas de correo:

* MHonArc — http://www.mhonarc.org/
» Hypermail — http://www.hypermail.org/

» Lurker — http://sourceforge.net/projects/lurker/

40

http://www.google.com/
http://www.google.com/
http://www.list.org/
http://www.procmail.org/
http://www.ecartis.org/
http://listproc.sourceforge.net/
http://cr.yp.to/ezmlm.html
http://cr.yp.to/qmail.html
http://cr.yp.to/qmail.html
http://mojo.skazat.com/
http://www.mhonarc.org/
http://www.hypermail.org/
http://sourceforge.net/projects/lurker/

Infraestructura Técnica

* Procmail — http://www.procmail.org/

(Software que acomparia a SmartList, un sistema de procesado general de correos que puede, aparen-
temente, ser configurado como un archivo.)

Control de Versiones

Un sistema de control de versiones (o sistema de control de revisiones) es una combinacion de tecnolo-
giasy practicas para seguir y controlar |os cambios realizados en los ficheros del proyecto, en particular
en el codigo fuente, en la documentacion y en las paginas web. Si nunca antes se ha utilizado un control
de versiones, lo primero que hay que hacer es conseguir aalguien que si |o haya hecho y hacer que se
unaa proyecto. Hoy en dia todo el mundo espera que al menos € codigo fuente del proyecto este bajo
un control de versionesy probablemente no se tomen el proyecto seriamente si no se utiliza este sistema
con un minimo de competencia.

Larazon por lacual € control de versiones es universal es porque ayuda virtualmente en todos los as-
pectos al dirigir un proyecto: comunicacion entre los desarrolladores, manejo de |os lanzamientos, admi-
nistracion de fallos, estabilidad entre el codigo y los esfuerzos de desarrollo experimental y atribuciény
autorizacion en los cambios de los desarrolladores. El sistema de control de versiones permite a una
fuerza coordinadora central abarcar todas estas areas. El nlcleo del sistema esla gestion de cambios:
identificar cada cambio alos ficheros del proyecto, anotar cada cambio con meta-data como lafechay €l
autor de lamodificacion y disponer estainformacion para quien seay como sea. Es un mecanismo de
comunicacion donde el cambio es la unidad basica de informacién.

Aun no hemos discutido todos |os aspectos de utilizar un sistema de control de versiones ya que es un
tema tan extenso que seraintroducido seguiin e topico alo largo de este libro. Ahora, vamos a concen-
trarnos en seleccionar y configurar un sistema de control de versiones de forma que fomentemos un de-
sarrollo cooperativo.

Vocabulario

En este libro no podemos ensefiar como utilizar el control de versiones si nunca antes lo ha utilizado, pe-
ro seriaimposible continuar sin conocer agunos términos clave. Estos son Utiles independientemente del
sistema particular utilizado: son definiciones basicas y verbos sobre la colaboracion en red y seran utili-
zados alo largo ddl libro. Incluso si no existiera ninguin sistema de control de versiones, €l problemadel
control de los cambios aun existiriay estas palabras nos dan un lengugje para hablar acerca de este pro-
blema consi stentemente.

"Version" Versus "Revision"

El termino versién es a veces utilizado como un sinbnimo para "revisiéon", pero agui no voy a uti-
lizarla de esta forma, ya que se puede confundir facilmente con "version" en el sentido de una ver-
sién de un programa—asi que, el nimero de lanzamiento o edicion como en "Version 1.0". Y
aungue lafrase "control de versiones' es un estandar, continuare utilizandolo como sinénimo para
"control derevisiones' y para"control de cambios'.

commit
Realizar un cambio en el proyecto. Formalmente, almacenar un cambio en la base de datos del con-
trol de versiones de forma que pueda ser incorporado en lanzamientos futuros del proyecto. "Com-
mit" puede ser utilizado como un verbo o como un sustantivo. Como un sustantivo, es esencia men-
te un sinénimo de "cambio". Por gemplo: "He commited una reparacion para un fallo reportado en
Mac OS X que haciaque €l servidor se colgara. Jose ¢podrias por favor revisarlo y verificar que no

41

http://www.procmail.org/

Infraestructura Técnica

estoy haciendo mal laasignacion?'

Mensaje de registro
Un pequefio comentario afiadido a cada commit que describe el tipo 'y € propdsito del commit. Los
mensgj es de registro forman parte de os documentos méas importantes de cual quier proyecto ya que
son un puente entre el lenguaje altamente técnico de los cambiosindividualesen el codigoy € len-
guaje mas orientado al usuario de caracteristicas, resolucion de fallosy progreso del proyecto. Més
adelante vamos a ver laforma de distribuir estos mensajes ala audiencia apropiaday también
“Codifying Tradition” en Capitulo 6, Communications discutimos como ENCOURAGE alos vo-
luntarios para que escriban mensajes de registro Utiles y concisos.

update
Solicitar los cambios (commits) que han realizado otros en la copialoca del proyecto, esto actuali-
zaesta copiaalaultimaversion. Es una operacién muy comuin ya que lamayoria de los desarrolla
dores actualizan su cédigo varias veces a diay asi saben que estan gjecutando casi 10 mismo que
los otros desarrolladores, asi que si se descubre un fallo es muy posible que este aun no haya sido
resuelto. Por jemplo: "Hey, he notado que el codigo del indice estafallando en el Gltimo byte. ¢Es
esto un nuevo falo?' "Si, pero fue resuelto la semana pasada—prueba actualizar pararesolverlo."

repositorio
Una base de datos en la que |os cambios son almacenados. Algunas versiones de sistemas de control
de versiones son centralizados, es decir, existe un Unico repositorio maestro, el cual almacenatodos
los cambios en el proyecto. Otros sistemas son descentralizados, cada desarrollador tiene su propio
repositorio y los cambios pueden ser intercambiados entre repositorios arbitrariamente. El sistema
de control de versiones mantiene un registro de las dependencias entre estos cambios y cuando llega
el momento de realizar un lanzamiento, un conjunto particular de cambios es aprobado para ese lan-
zamiento. La cuestion de cual sistemaes mejor es otra de las guerras santas del desarrollo de soft-
ware. Intentad no caer en latrampade discutir sobre esto en las listas de correo del proyecto.

checkout
El proceso de obtener una copia del proyecto desde el repositorio. Por 1o general, un checkout pro-
duce un arbol de directorios Ilamado "copia funciona" desde €l cual 1os cambios serén enviados de
vueltaal repositorio original. En algunas versiones descentralizadas de sistemas de control, cada co-
piafuncional esen si mismo un repositorio y los cambios son empujados (o atraidos) a cualquier re-
positorio que este dispuesto a aceptarlos.

copia funcional
El &rbol de directorios privado de cada desarrollador que que contiene el codigo fuente del proyecto
y posiblemente | as paginas web u otros documentos. Una copia funcional también contiene un pe-
guefia cantidad de meta-data administrada por el sistema de control de versiones, informando ala
copiafuncional cual es repositorio central de procedencia, larevision de los ficheros presentes, etc.
Generalmente, cada desarrollador tiene su propia copiafuncionaen lacual reaizay pruebalos cam-
biosy desde la cual envia sus commits (cambios).

revisién, cambio, conjunto de cambios
Unarevision es usual mente una encarnaci 6n especifica de un fichero o directorio en particular. Por
giemplo, si el proyecto seiniciaen larevision 6 del fichero F y alguien enviaun cambio a fichero
F, esto produce larevision 7 de F. Algunos sistemas también utilizan revision (revision), cambio
(change) o conjunto de cambios (changeset) para referirse a un conjunto de cambios enviados juntos
como una unidad conceptual.

Estos conceptos pueden tener distintos significados técnicos en cada sistema de control de versio-
nes, pero en general, laidea es siempre lamisma: dar un sistema para comunicar de manera precisa
la historia de cambios en un fichero o conjunto de ficheros (inmediatamente antes y después de que
se ha corregido un fallo). Por ejemplo: "Eso se haresuelto en larevision 10" 0 "Se ha corregido eso
enlarevision 10 del fichero foo.c."

Cuando se habla sobre ficheros o una coleccion de ficheros sin especificar unarevision en particu-
lar, por lo general se asume que nos referimos ala revision disponible mas reciente.

42

Infraestructura Técnica

diff
Una representacion contextual de un cambio. Un diff muestralas lineas que han sido modificadas,
como y ademas, algunas lineas contextual es rodedndolas a cada lado. Un desarrollador familiariza-
do con el cddigo puede, con leer un diff de ese cddigo, entender lo que hace el cambio eincluso de-
tectar fallos.

etiqueta (tag)
Una etiqueta para una coleccion particular de ficheros en unarevision especifica. Los tags son utili-
zados para preservar capturas interesantes del proyecto. Por g emplo, un tag es hecho para cadalan-
zamiento publico, de forma que cada persona pueda obtener, directamente desde el sistema de con-
trol de versiones, €l conjunto exacto de ficheros/revisiones que componen el lanzamiento. Algunos
tags comunes son como Rel ease_1 0, Del i very_ 00456, etc.

rama (branch)
Es una copiadel proyecto, bajo el control de versiones, pero aislado, de forma que los cambios rea-
lizados en estarama no afecten al resto del proyecto y vice versa, excepto cuando |os cambios sean
deliberadamente "unidos" de un lado a otro. Las ramas también son conocidas como "lineas de de-
sarrollo”. Incluso cuando un proyecto no tiene ramas especificas se considera que €l desarrollo se
esta produciendo en larama principal, también conocida como "linea primaria’ o "trunk".

Las ramas o branches, permiten aislar diferentes lineas de desarrollo de st mismas. Por gemplo, una
rama puede ser utilizada para un desarrollo experimental que seria demasiado inestable paralarama
principal. O al contrario, unarama puede ser utilizada como sitio para estabilizar una version para
lanzamiento. Durante el proceso de lanzamiento, €l desarrollo regular se mantendriaininterrumpida
en larama principal. Mientras tanto, en larama de lanzamiento, ninglin cambio es aceptado excepto
aquellos aprobados por el responsable del lanzamiento. De esta manera, realizar un lanzamiento no
tiene porque interferir con el trabajo de desarrollo que se esta realizando. Para mas informacion
“Las ramas paraevitar cuellos de botella” mas adelante en el capitulo para una discusién més deta-
[lada sobre las ramas.

merge
Mover un cambio de unaramaaotra, 1o que incluye unir desde larama principal aotraramao vice
versa. De hecho, estos son las uniones mas comunes y es rarala ocasion en la que esto se hace entre
dos ramas no principales. Para méas informacidn sobre los merge “ Singularidad de lainformacion”.

"Merge" tiene otro significado: eslo que hace el sistema de control de versiones cuando se encuen-
tra con que dos personas han realizado cambios en un mismo fichero sin relacién alguna. Yaque es-
tos cambios no interfieren entre ellos, cuando alguna de estas personas actualizan su copiadel fiche-
ro (el cual ya contiene los cambios) |os cambios de la otra persona seran unidos automati camente.
Esto sucede muy a menudo, especialmente en proyectos con multiples personas realizando cambios
en el mismo cédigo. Cuando dos cambios diferentes estan relacionados, el resultado es un "conflic-
to".

conflicto
Sucede cuando dos 0 mas personas intentan redlizar diferentes cambios en la misma porcion de co-
digo. Todos los sistemas de control de versiones detectan estos conflictos automaticamente y notifi-
can aal menos uno de los humanos involucrados de que sus cambios entran en conflicto con los de
alguien mas. Es entonces tarea de esta personas resolver € conflicto y comunicar esaresolucién a
sistema de control de versiones.

bloqueo (lock)
Declaracién de un intento exclusivo para cambiar un fichero o directorio en particular. Por g emplo,
"No puedo enviar cambios a las paginas web ahora mismo, ya que parece que Alfredo las tiene blo-
gueadas mientras arregla sus imagenes de fondo." No todos los sistemas de control de versiones
ofrecen laposibilidad del bloqueo y aquellos que si [o permiten, no es necesario que se utilice. Esto
es porque el desarrollo paralelo y simultaneo eslanormay bloquear ala gente para que no puedan
modificar los ficheros es contrario alaidea del sistema.

43

Infraestructura Técnica

El modelo del sistema de control de versiones que requiere el bloqueo de ficheros suele ser [lamado
bl oqueo-modificacion-desbloqueo y el modelo que no requiere del bloqueo es Ilamado copia-
modificacion-union. Una excelente explicacion en profundidad y comparaciones puede ser encon-
trada en http://svnbook.red-bean.com/svnbook-1.0/ch02s02.html. En general, el modelo de copia-
modificacién-union es el mejor para el desarrollo open source y todos |os sistemas de control de
versiones discutidos en este libro soportan este modelo.

Escoger un sistema de control de versiones

Hasta ahora, |os dos sistemas de control de versiones mas populares en el mundo del software libre son
Concurrent Versions System (CVS), http://www.cvshome.org/) y Subversion (SVN,
http://subversion.tigris.org/).

CVSllevalargo tiempo y los desarrolladores més experimentados ya estén familiarizados con el. Hace
mas 0 menos |o necesario y ya que ha sido popular durante mucho tiempo es probable que no se termine
discutiendo su utilizacion. A pesar de todo, CV'S tiene algunas desventajas. No ofrece facilidad para ha-
cer referencia a cambios en multiples ficheros, no permite renombrar o copiar ficheros dentro dedl siste-
ma de control (asi que puede ser muy doloroso reorganizar €l codigo después deiniciar € proyecto), €l
soporte para las uniones es algo pobre, no trabaja muy bien con ficheros muy grandes o con ficheros bi-
nariosy algunas operaciones son lentas cuando muchos ficheros estan involucrados.

Ninguno de estos fallos de CV S son fatales y sigue siendo muy popular. Sin embargo, durante los Ulti-
mos afios Subversion ha venido ganando terreno, especia mente con nuevos proyectos. 4 Si estainician-
do un nuevo proyecto, recomiendo Subversion.

Por otra parte, dado que estoy involucrado en el proyecto Subversion, mi objetividad puede ser razona-
blemente cuestionable y durante |os Ultimos afios han ido surgiendo un nimero de nuevos sistemas de
control de versiones open source. Podemos encontrar una lista de todos | os sistemas que conozco en
Apéndice A, Sstemas de Control de Versiones Libres segin su popularidad. Como muestra esta lista,
escoger un sistema de control de versiones puede convertirse en unainterminable tarea de investigacion.
Posiblemente esta decision ya haya sido tomada por €l sitio donde hospedamos €l proyecto, liberando-
nos de esta carga, pero si es necesario tomar una decision, o mejor es consultar con otros desarrollado-
res, indagar un poco paratener unaidea de las distintas experiencias que hayatenido la gentey luego es-
coger uno y mantenerse con este. Cualquier sistema de control de versiones estable y listo para entornos
de produccion sera suficiente, no hay que preocuparse demasiado sobre tomar una decision equivocada.
Si simplemente no se puede decidir, entonces la opcidn es Subversion. Es relativamente facil de apren-
der y es probable que se mantenga como el estdndar por unos afios méas.

Utilizando el sistema de control de versiones

L as recomendaciones realizadas en esta seccion no estan enfocadas hacia un sistema de control de ver-
siones en particular y deberia ser sencillo implementarlas en cualquiera. La documentacion especifica
del sistema debe ofrecer |os detalles necesarios.

Versiones de todo

No solo hay que mantener € cadigo del proyecto bajo el control de versiones también las paginas web,
documentacién, FAQ, notas de disefio y cualquier cosa que pueda ser necesario editar. Todo esto hay
gue mantenerlo cercadel codigo, en el mismo arbol que el repositorio. Se deben mantener versiones de
cualquier pieza de informacidn que pueda cambiar y archivar la que no cambie. Por gemplo, un correo
electronico, unavez enviado, no cambia, por lo tanto, mantener versiones de este no tiene sentido (ame-
Nos que se convierta en una parte importante de la documentaci on).

4Mas informacion en http://ciavc/stats/'ves y para evidencia sobre su crecimiento en
http://subversion.tigris.org/svn-dav-securityspace-survey.html .

a4

http://svnbook.red-bean.com/svnbook-1.0/ch02s02.html
http://www.cvshome.org/
http://subversion.tigris.org/
http://cia.vc/stats/vcs
http://subversion.tigris.org/svn-dav-securityspace-survey.html

Infraestructura Técnica

Larazdn de mantener versiones de todo en un mismo sitio, es para que la gente solo tenga que aprender
un sistema para realizar cambios. A menudo, un voluntario se iniciara modificando a gunas paginas web
0 partes de la documentacion, para luego pasar arealizar pequefias contribuciones a codigo, por gjem-
plo. Cuando €l proyecto utiliza el mismo sistema para todo tipo de cambios, las personas solo tendran
gue aprender THE ROPES unavez. Mantener |as versiones juntas significa que nuevas caracteristicas
pueden ser afiadidas junto ala actualizacion de la documentacidn, y que al crear ramas del cadigo, se
crearan ramas de la documentacion, etc.

No hace falta mantener los ficheros generados bajo el sistema de control de versiones ya que no son da-
tos editabl es generados por otros programas. Por ejemplo, algunos sistemas de compilado generan los fi-
cherosconf i gur e basandose en unaplantillaconf i gur e. i n. Pararealizar cambios a fichero
conf i gur e bastariacon modificar conf i gur e. i ny volver agenerarlo. Entonces, sdlo €l fichero
confi gure. i nesun fichero editable. Sdlo es necesario mantener versiones de las plantillas—si se
hace con los ficheros generados, |a gente se olvidara de volver a generarlos cuando realicen algin cam-
bio en las plantillas y |as resultantes inconsistencias crearan una mayor confusion.

Laregla de que todos los datos editabl es deben ser mantenidos bajo el control de versiones tiene una ex-
cepcion desafortunada: €l gestor de fallos. La base de datos de fallos almacena una gran cantidad de da-
tos editables pero generalmente, por razones técnicas, no se puede mantener bajo el control de versiones
principal. (Algunos gestores tienen caracteristicas primitivas de control de versiones, pero independiente
de repositorio principal del proyecto.)

Navegabilidad

El repositorio del proyecto debe ser accesible desde Internet. Esto no solo significa la habilidad de vi-
sualizar la ultimarevision de los ficheros del proyecto, pero permitir volver atrés en el tiempo y ver en
revisiones anteriores, mirar las diferencias entre revisiones, leer |os mensajes de registro para cambios
especificos, etc.

La navegabilidad es importante porque es un ligero portal alos datos del proyecto. Si e repositorio no
es accesible desde un navegador web entonces alguien que desea inspeccionar un fichero en particular
(por gemplo, paramirar si unamejorahasido incluida en el codigo) tendra que instalar €l mismo pro-
grama utilizado por €l sistema de control de versiones, lo cua convierte una simple consulta de dos mi-
nutos en unatarea de medio hora o més.

También implica URLs CANONICAL paravisualizar revisiones especificas de un fichero y paralaulti-
marevision en cualquier momento. Esto puede ser muy (til durante discusiones técnicas o paraindicar
alguna documentacién ala gente. Por jemplo, en lugar de decir "Para ayudas sobre como encontrar fa-
llos en el servidor, mirad e fichero www/hacking.html en vuestra copiafunciona" se puede decir "Para
ayudas sobre como encontrar fallos en el servidor, mirad

http: //svn.collab.net/repos/svn/tr unk/www/hacking.html," dando una URL que siempre llevaalaultima
revision del fichero hacki ng. ht m . LaURL es mejor porque no es nada ambiguay evitala cuestion
de s existe una copiafunciona actualizada.

Algunos sistemas de control de versiones incluyen un mecanismo que permite la navegacion del reposi-
torio, mientras que otros dependen de herramientas de terceros. Tres de estas herramientas son ViewCVS
(http://viewcvs.sourceforge.net/), CVSWeb (http://www.freebsd.org/projects/cvsweb.html), and WebSVN
(http://websvn.tigris.org/). La primeratrabaja muy bien con CVSy con Subversion, la segunda sélo con
CVSy latercera sdlo con Subversion.

Correos de cambios

Cada commit al repositorio deberia generar un correo electrénico mostrando quien ha hecho el cambio,
cuando, cuales ficherosy directorios han cambiado y como. Este correo debe ser dirigido aunalistade
correos separada de las listas a las que envian los humanos. L os desarrolladores y todos aquellos intere-

5AIexr:-zy Mathotkin tiene una opinién diferente sobre el tema de controlar las versiones de los ficherosconf i gur e en un articulo
llamado "configure.in and version control” en http://versioncontrolblog.com/2007/01/08/configurein-and-version-control/.

45

http://versioncontrolblog.com/2007/01/08/configurein-and-version-control/
http://viewcvs.sourceforge.net/
http://www.freebsd.org/projects/cvsweb.html
http://websvn.tigris.org/

Infraestructura Técnica

sados deben ser animados para suscribirse alas lista de commits ya que es la manera mas efectiva de
mantenerse a dia con lo que sucede en €l proyecto al nivel del cédigo. Aparte de los obvios beneficios
técnicos de larevision por la comunidad (“Practicad revisiones visibles del codigo”), 1os correos con los
cambios ayudan a crear un sentido de comunidad porque establecen un ambiente compartido en el que la
gente puede reaccionar ante diferentes eventos (commits) que saben son visibles a otros tambien.

La configuracion especifica para habilitar estos correos varia dependiendo de la version del sistemade
control de versiones pero a menudo existe un script o pagquete que facilita esto. Si se tiene algun proble-
ma para encontrar estos, intente buscar en ladocumentacion el tema relacionado con los hooks, especifi-
camente € post-commit hook, también [lamado loginfo hook en CV'S. Los Post-commit hooks son tareas
automati zadas que se gjecutan como respuesta a los cambios enviados (commits). El hook es gjecutado
por un cambio individual, se rellena con lainformacidn acercadel cambio y luego es liberada esa infor-
macion para ser utilizada como se desee—por g emplo, paraenviar un correo €l ectronico.

Con los sistemas de correos con cambios ya listos para usar, quizas sea necesario modificar alguna de
las siguientes conductas:

1. Algunos de estos sistemas no incluyen € diff en el correo que envian sino que enlazan con una URL
para poder ver el cambio en laweb utilizando el sistema de navegacién del repositorio. Aungue esta
bien dar una URL para que se puedarevisar € cambio luego, también es muy importante que el co-
rreo del commit incluyalos diff. Leer €l correo electrénico ya es parte de larutina de la gente, asi que
si el contenido es visible alli mismo en el correo, los desarrolladores podrén revisar €l commit en el
mismo sitio sin la necesidad de abandonar sus clientes de correo. Si tienen que seguir un enlace auna
pagina de revisiones, muchos no lo pulsaran, ya que esto requiere de una nueva accién en lugar de
una continuacion de lo que ya estaban haciendo. Por si fuerapoco, si €l lector desea preguntar algo
acerca del cambio, es mucho més fécil responder al mensaje incluyendo el texto original y simple-
mente realizar anotaciones en € diff, en lugar de tener que visitar una paginaweb y tomarse lamoles-
tiade copiar y pegar partes del diff en el navegador web al cliente de correo.

(Por supuesto que si el diff es gigantesco, como cuando una gran parte de codigo nuevo ha sido afia-
dido a repositorio, entonces tiene sentido omitir la parte del diff y ofrecer sdlo la URL. Muchos de
los sistemas permiten hacen esto automéaticamente. Si el utilizado en el proyecto no es capaz de hacer
esto, entonces sigue siendo mejor incluir los diffs completos. La convenienciade larevision y los co-
mentarios es una piedra angular del desarrollo cooperativo, algo demasiado importante para olvidar.)

2. Los correos con los cambios deben tener su cabecera Reply-To direccionada hacia lalistaregular de
desarrollo, no alalista de los cambios, de esta manera cuando alguien revise un cambio y escriba una
respuesta, esta debe ser dirigida autométicamente alalista de desarrolladores, donde los temas técni-
cos son discutidos normalmente. Existen varias razones para esto, primero, se quiere mantener todas
las discusiones técnicas en lalista, porque es ali donde la gente espera que sucedan y porque asi ésta
es laUnica lista que seré necesario archivar. Segundo, puede que existan partes interesadas no suscri-
tasalalistade cambios. Tercero, lalista de cambios es publicitada como unalista paralos commitsy
no como una lista paralos commits y las discusiones técnicas ocasionadas. Quienes se han suscrito
solo alalista de cambios, no se han suscrito a nada més que commits, a enviarles correos con mate-
rial sin relacion utilizando ésta via, es unaviolacién del contrato implicito. Cuarto, algunas personas
escriben programas que procesan los correos con los cambios (para publicarlos en una pagina web,
por g emplo). Estos programas estan preparados para manejar correos con un formato consistente y
son incapaces de trabajar con correos escritos por humanos.

Hay que sefidlar que ésta recomendacion no contradi ce las recomendaciones anteriores en “El gran
debate del Reply-To”. Siempre esta bien que € remitente del mensgje configure la cabecera Reply-to.
En este caso, €l remitente es el sistema de control de versionesy su Reply-to lo configura de tal ma-
nera que indique que el lugar apropiado pararesponder eslalistade desarrollo y no lalistade cam-
bios

46

Infraestructura Técnica

CIA: Otro mecanismo de publicacion de cambios

L os correos con |os cambios no son la tnica forma de propagar |as noticias de los cambios. Re-
cientemente, otro mecanismo I[lamado CIA (http://cia.navi.cx/) ha sido desarrollador. Este es un
distribuidor y AGGREGATOR de estadisticas de cambios. El uso més popular de CIA es el de
enviar notificaciones de los commits a un canal |RC de forma que las personas en el canal pueden
ver los commits en tiempo real. Aunque es una utilidad menos técnica que | os correos el ectroni-
cos, ya que los observadores puede que estén o no conectados cuando las al ertas sobre nuevos
cambios llegan al canal, esta técnica tiene unainmensa utilidad social. La gente tiene la sensacion
de pertenecer aago vivoy activo, y siente que pueden ver el progreso que se esté haciendo ante
SUS Propios 0jos.

El programa de notificaciones del CIA esinvocado por €l post-commit hook, daformato a com-
mit en un mensaje XML y lo enviaal servidor central (por lo general ci a. navi . cx). Este ser-
vidor luego distribuye la informacion alos otros foros.

CIA también puede ser configurado para enviar feeds RSS
[http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html]. Mas detalles en la documentacion
en http://cia.navi.cx/.

Para ver un eiemplo de CIA en accién conecteseai r c. f r eenode. net , y a cand
#comi ts.

Las ramas para evitar cuellos de botella

Los usuariosinexpertos del control de versiones pueden sentirse temerosos de crear ramas'y uniones.
Esto sea probablemente un efecto colateral de la popularidad de CVS: su interfaz de ramasy uniones
puede ser poco intuitivo, asi que muchas personas han aprendido a evitar estas operaciones por comple-
to.

Si se encuentra entre estas personas, decidase ahora mismo a conquistar cualquier miedo que pueda te-
ner y tdmese el tiempo de aprender cémo funcionan las ramasy las uniones. No son operaciones muy
complicadas una vez que se acostumbra a ellas y se vuelven muy importantes mientras el proyecto ad-
quiere més desarrolladores.

Las ramas son muy importantes porque convierten un recurso escaso—espacio de trabgjo en € codigo
del proyecto—en uno abundante. Normalmente, todos los desarrolladores trabajan juntos en lamisma
cajade arena, construyendo el mismo castillo. Cuando alguien desea afiadir un nuevo puente levadizo,
pero no puede convencer alos demés de que seria unamejora, entonces las ramas hacen posible que va-
yaa una esquina aislada donde probar su puente. Si € esfuerzo tiene éxito, puede invitar a otros desarro-
[ladores para que evalUen el resultado. Si todos estan de acuerdo en que el resultado es bueno, pueden
hacer que el sistema de control de versiones mueva ("merge") el puente levadizo de laramadel castillo a
laramaprincipal del castillo.

Esfécil ver como esta habilidad ayuda al desarrollo colaborativo, ya que la gente necesita de cierta liber-
tad para probar cosas nuevas sin sentir que estan interfiriendo con el trabajo de otros. Igual de importan-
te es cuando el codigo debe ser aislado del CHURN usual de desarrollo de manera que un fallo sea repa-
rado o un lanzamiento sea estabilizado (méas en “ Stabilizing a Release” y en “Maintaining Multiple Re-
lease Lines’ en Capitulo 7, Packaging, Releasing, and Daily Development) sin la preocupacion de se-
guir un blanco en movimiento.

Hay que utilizar las ramas libremente y fomentar su uso entre otros. Pero también hay que asegurarse de
gue unaramaen particular se mantenga activa exactamente durante €l tiempo que sea necesaria. Incluso
quienes no trabajan en larama principal mantienen unavision periféricade lo que estd sucediendo en és-
ta. Estavision es deseable, por supuesto, y los correos con cambios deben salir de estas ramas como de
cualquier otra. Pero las ramas no deben convertirse en un mecanismo que divida ala comunidad de de-

47

http://cia.navi.cx/
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://cia.navi.cx/

Infraestructura Técnica

sarrolladores. Con raras excepciones, €l objetivo eventual de la mayoria de las ramas debe de ser su
unién alaramaprincipa y desaparecer.

Singularidad de la informacion

Las uniones tienen un corolario importante: nunca se debe enviar el mismo cambio dos veces, es decir,
un cambio dado sblo debe ser introducido a sistema de control de versiones solo unavez. Larevision (o
conjunto de revisiones) en laque &l cambio es introducido es su identificador Uinico desde ese momento.
Si debe ser aplicado a otras ramas aparte de la cual en laque ha sido hecho, entonces debera ser unido
desde su punto de entrada original a sus otros destinos —al contrario de enviar cambios textualmente
idénticos, que tendrian el mismo efecto en el cadigo, pero harian del mantenimiento eficaz y de la ges-
tién de lanzamientos unatareaimposible.

L os efectos practicos de este consgjo difieren entre sistemas de control de versiones. En algunos siste-
mas, las uniones son eventos especia es, fundamentalmente distintos de los commits y acarrean sus me-
ta-datos propios. En otros, el resultado de las uniones son enviadas de la misma manera que los cambios
son enviados asi que lamejor manera de distinguir una unién de un nuevo cambio es leyendo |os mensa-
jes deregistro. El mensaje de registro de una unién no repite & mensaje de registro del cambio original,
en cambio, sdlo indica que es unaunién y dalaidentificacion de larevision del cambio original, con co-
mo mucho una linea de sumario del sus efectos. Si alguien desea ver el mensaje de registro compl eto,
debera consultar larevision original.

Larazon por lacual esimportante evitar larepeticion de los mensagjes de registro es que estos pueden

ser editados después de que se hayan enviado. Si un mensaje de registro es repetido en € destino de cada
unién, entonces incluso si alguien edita el mensgje original, deja todos |os otros mensgjes sin corre-
gir—Ilo cual solo puede causar confusion alargo plazo.

El mismo principio se aplicaal retirar un cambio. Si esto llegara a suceder, entonces €l mensgje deregis-
tro paralaretirada solo debe indicar que unarevision en particular estd siendo retirada, no debe describir
el cambio en el cAdigo resultante, pues la semantica del cambio se puedeintuir a leer el mensaje dere-
gistro original del cambio. Por supuesto, el mensaje de registro del retiro también debe indicar larazén
por la cual ese cambio ha sido retirado, pero no debe duplicar nada del mensaje de registro del cambio
original. Si esposible, hay que volver y editar el mensgje de registro original para sefialar que hasido re-
tirado.

Todo lo anterior implica que se debe utilizar una sintaxis consistente al referirnos alas revisiones. Esto
es de gran ayuda no sdlo en los mensgjes de registro, sino en los correos electrénicos, en € gestor de fa-
llosy en todas partes. Si se esta utilizando CV'S, recomiendo "di r ect ori o/

al / fichero/del/proyecto/ ranma: REV', donde REV esun nimero de revision en CVS como
"1.76". Si se esta utilizando Subversion, la sintaxis estandar paralarevision 1729 es"r1729" (el directo-
rio de los ficheros no es necesario porque Subversion utiliza nimeros globales paralas revisiones). En
otros sistemas, existe por lo general una sintaxis estandar para expresar € nombre del conjunto de cam-
bios. Cualquiera que seala sintaxis apropiada para el sistema utilizado, hay que animar ala gente aque
lo utilicen al referirse aalglin cambio. El uso consistente en €l nombre de |os cambios permiten que €l
mantenimiento del proyecto sea mucho mas sencillo (como ya veremos en Capitulo 6, Communications
y en Capitulo 7, Packaging, Releasing, and Daily Development), y dado que mucho de este manteni-
miento serarealizado por voluntarios, debe ser 1o més sencillo posible.

Mas informacion en “ Releases and Daily Development” Capitulo 7, Packaging, Releasing, and Daily
Devel opment.

Autorizaciones

Muchos de los sistemas de control de versiones ofrecen la posibilidad por la cual aciertas personas se
les permite o no, realizar cambios en areas especificas del repositorio. Siguiendo € principio de que
cuando a las personas se les entrega un martillo empiezan a buscar clavos para golpear, muchos proyec-
tos utilizan esta caracteristicacon ABANDON, permitiendo cuidadosamente el acceso solo alas areas

48

Infraestructura Técnica

donde tienen permiso de enviar cambio y asegurandose de que no lo puedan hacer en ningun otro sitio.
(Més informacion en “ Committers’ Capitulo 8, Coordinando a los Voluntarios sobre como los proyec-
tos deciden quienes pueden hacer cambiosy donde.)

Probablemente hayan pequefios dafios implementar un control asi de estricto, pero una politica un poco
mas rel gjada también esta bien. Algunos proyectos utilizan un sistema basado en el honor: cuando a una
persona se le permite la posibilidad de realizar cambios, aunque sea a una pequefia area del repositorio,
lo que reciben es una contrasefia que les permite realizar cambios en cualquier otro sitio del repositorio y
solo se les pide que mantengan sus cambios en su &rea. Hay que recordar que no existe ningun peligro
aqui: de todas formas, en un proyecto activo, todos |os cambios son revisados. Si alguien hace un cam-
bio donde no debia, alguien més se dara cuentay dirdalgo. Es muy sencillo si un cambio debe ser recti-
ficado—todo esta bgjo el control de versiones de todas formas, asi que solo hay que volver atras.

Existen varias ventajas en tal aproximacion tan relgjada. Primero, mientras los desarrolladores se vayan
expandiendo en las diferentes &reas (lo cual hardn amenudo si siguen en el proyecto), no es necesario un
trabajo administrativo extra de tener que dar y quitar privilegios. Unavez que la decision estomada, la
persona puede empezar a enviar sus cambios ala nueva area sin problemas.

Segundo, la expansion se puede filtrar mejor, ya que generalmente, quienes realizan cambios en el &rea
X'y desean expandirse al area’Y sdlo tienen que empezar a enviar sus cambios contraY y solicitar su re-
vision. Si alguien con acceso acambios al area 'Y recibe alguno de estos parches y 1o aprueba, puede pe-
dir que el cambio sea enviado directamente (mencionando el nombre de quien ha revisado/aprobado €l
cambio en el mensgje de registro). De esta manera, el commit vendra de quien ha hecho el cambio, lo
cual es preferible desde un punto de vista administrativo y de credibilidad.

Por Ultimo, y quizés larazdén mas importante, al utilizar un sistema basado en el honor, se crea una at-
mosfera de confianzay respeto mutuo. Al darle a alguien permiso paraenviar cambio a un subdominio
se hace una declaracién acerca de su preparacion técnica—la cual dice: "Hemos visto que tienes la capa-
cidad pararealizar cambios en cierto dominio, asi que a por €llo". Pero imponer controles estrictos en las
autorizaciones dice: "No sdlo estamos juzgando tus limitadas capacidades, sino que también sospecha-
mos de tus intenciones." Este no es € tipo de declaraciones que se desean hacer si pueden ser evitadas.
Incluir aalguien dentro del grupo de desarrolladores del proyecto es una oportunidad de iniciarlos en un
circulo de confianza mutua. Una buena manera de hacer esto es dar més poder del que se supone deben
tener e informarles que es su responsabilidad mantenerse dentro de los limites impuestos.

El proyecto Subversion ha operado bajo este sistema por més de cuatro afios, con 33 desarrolladores con
privilegios completos y 43 con privilegios parciales. La Unica distincion que € sistemafuerza esta entre
guienes envian cambiosy quienes no, otras divisiones son mantenidas solo por humanos. Incluso asi,
nunca hemos tenido ningtn problema con que alguien realice un cambio deliberado fuera de su dominio.
Una que otravez han habido inocentes mal entendidos sobre la extensién de |os privilegios de alguna
persona, pero siempre es resuelto répiday amigablemente.

Obviamente, en situaciones donde esto es poco practico se debe depender en controles estrictos en las
autorizaciones, pero dadas situaciones son raras. Incluso cuando hay millones de lineas de cédigo y
ciento o miles de desarrolladores, un commit hecho a cualquier modulo del cadigo sigue siendo revisado
por quienes trabajan en dicho médulo y son quienes pueden reconocer si quien lo haintentado hacer
puede hacerlo. Si unarevision regular no esta sucediendo entonces el proyecto tiene problemas més im-
portantes con los cualeslidiar que el sistema de autorizaciones.

Para concluir, no hace falta pasar mucho tiempo con las autorizaciones del sistema de control de versio-
nes a menos gue se tenga una razon en especifico. Usualmente esto no trae beneficios tangibles y confiar
en el control humano tiene sus ventgjas.

Por supuesto que nada de esto significa que | as restricciones mismas son poco importantes. Seriamalo

para un proyecto el animar alas personas arealizar cambios en areas paralas cuales no estan cualifica
das. Incluso en algunos proyectos, e acceso ilimitado tiene un status especial: implica derecho de voto

en cuestiones que atafien a proyecto por completo. Este aspecto politico del acceso es discutido en ma-
yor profundidad en “ ¢Quién Vota?' en Capitulo 4, Infraestructura Social y Politica.

49

Infraestructura Técnica

Seguimiento de errores

El seguimiento de errores es un tema muy amplio y varios aspectos de este son discutidos alo largo de
este libro. Aqui intentare concentrarme principa mente en las consideraciones técnicasy en lainstala
cién, pero parallegar a esto, debemos empezar con una politica de preguntas: exactamente ¢qué tipo de
informacion va a ser mantenida en € sistema de seguimiento?.

El término seguimiento de errores puede generar confusion ya que estos sistemas se utilizan frecuente-
mente para seguir solicitudes para nuevas caracteristicas, tareas que se efectlian solo unavez, parches no
solicitados—en realidad se utilizan para cualquier cosa que pueda tener estados distinguibles de comien-
zoy final, con estados opcionales de transicion entre estos y que acumulan informacién alo largo de su
existencia. Por estarazdn, los sistemas de seguimiento de fallos también son llamados de seguimiento de
temas, de defectos, de solicitudes, trouble ticket system, etc. Mas informacion en Apéndice B, Gestor de
fallos libres donde hay unalista de programas.

En este libro continuare utilizando "gestor de fallos" parala aplicacion que hace € seguimiento, porque
es asi como lamayoriadelagentelo llamay utilizare issue a referirme aun punto en particular en la
base de datos del gestor de fallos. Esto nos permitira distinguir entre los buenos y malos comportamien-
tos que el usuario se puede encontrar (el fallo en si mismo) y €l registro en € gestor del descubrimiento,
diagnostico y eventual resolucion del fallo. Hay que recordar que aunque la mayoria de las entradas sean
fallos, también pueden ser otras tareas.

El clésico ciclo de vida se parece al siguiente:

1. Alguien crea unaentrada. Ofrecen un resumen, unadescripcion inicia (incluyendo como reproducir
el fallo s esposible. En “Treat Every User as a Potential VVolunteer” en Capitulo 8, Coordinando a
los Voluntarios hay €/ emplos de como se puede animar la correcta creacién de reportes de fallos) y
cualquier otrainformacion que € gestor solicite. Quien creala entrada puede ser un desconocido a
proyecto—Ios reportes de fallos y las solicitudes de caracteristicas provienen tanto de los usuarios co-
mo de los desarrolladores.

Unavez enviada, la entrada entra en un estado llamado abierto porque ninguna accion ha sido toma-
daaun. Algunos gestores etiquetan las nuevas entradas como sin verificar o como sininiciar. No esta
asignada a nadie, 0 en algunos sistemas, es asignada a un usuario fantasma que representa la faltade
una asignacion real. Llegado a este punto, la entrada se encuentra en €l érea de espera: hasido regis-
trada, pero aun no ha sido integrada en la conciencia del proyecto.

2. Otros leen la entrada, afiaden comentarios y quizas soliciten el esclarecimiento de algunos puntos a
quien realizo laentrada.

3. El fallo esreproducido. Este puede que sea el momento mas importante en su ciclo vital, yaquein-
cluso que € fallo aun no ha sido resuelto, € hecho de que a guien haya podido reproducirlo ademés
de quien creo la entrada prueba que es genuino y, no menos importante, confirmaal creador de laen-
trada que ha contribuido a proyecto reportando un fallo real.

4. El falo esdiagnosticado: su causaesidentificada, y si es posible, es estimado € esfuerzo requerido
pararepararlo. Hay que asegurarse de que todo esto es registrado en la entrada, ya que en €l case en
gue quien haya hecho € diagnostico abandona el proyecto (lo cua sucede a menudo con desarrolla
dores voluntarios), alguien mas debe ser capaz de continuar con su trabgjo.

Llegados a este punto, 0 a veces en uno de los anteriores, puede que algun programador ya se haya
"aduefiado" de laentraday selo asigneas mismo (el proceso es examinado en mayor detalle en
“Distingue claramente entre pedir y asignar” en Capitulo 8, Coordinando a los Voluntarios). Laprio-
ridad de la entrada puede que también seafijada en esta etapa. Por giemplo, si € fallo estan severo
que deberiaretrasar € préximo lanzamiento, debe ser identificado desde el principio y el gestor debe
proporcionar un mecanismo para hacer esto.

50

Infraestructura Técnica

5. Laentrada es programada para su resolucién. Esto no implica necesariamente fijar unafecha para
cuando debe ser resuelta. A veces solo significa decidir para cual préximo lanzamiento (no necesaria-
mente la siguiente) el fallo debe estar corregido o decidir si debe 0 no bloquear un lanzamiento en
particular. Incluso nos podemos olvidar de planificar lareparacion del fallo si es algo que se puede
hacer rapidamente.

6. El fallo esreparado (o latarea es completada, o el parche es aplicado o lo que sea). El cambio o con-
junto de cambios que arreglan el fallo deben ser registrados en un comentario en la entrada, después
delo cual éstaes cerrada o marcada como resuelta.

Existen variaciones en este ciclo. A veces € problema es cerrado seguidamente después de ser archiva-
do, porqgue resulta que no es un fallo, sino que es un malentendido por parte del usuario. Mientras el pro-
yecto vaya ganando usuarios, mas'y mas de estas entradas invalidas apareceran, y los desarrolladores |las
cerraran con respuestas cada vez menos respetuosas. Hay que intentar protegerse de ésta tendencia, pues
no le hace ningun bien a nadie, porque el usuario en cada caso no es responsable de las entradas invali-
das previas. Estatendencia estadisticas sdlo es divisada por los desarrolladores, no por los usuarios. (En
“Pre-filtrado del gestor de fallos” méas adelante en este capitul o, examinaremos algunas técnicas parare-
ducir el nimero de entradas invalidas.) También puede suceder que varios usuarios estén experimentan-
do el mismo malentendido unay otravez, lo cual significa que algun aspecto de la aplicacion necesita
volver a ser disefiada. Este tipo de patrones son |os més sencillos de ver cuando se utiliza un gestor de
entradas que monitorice la base de datos de fallos. Més en “1ssue Manager” en Capitulo 8, Coordinando
alos Voluntarios.

Otra variacién muy comun de este ciclo de vida es cuando la entrada es cerrada a ser un duplicado poco
después del paso 1. Un duplicado aparece cuando alguien crea una entrada para un problema ya conoci-
do por € proyecto. Los duplicados no estén limitados a entradas abiertas: es posible que un fallo haya
reaparecido después de haberlo reparado (esto es conocido como regresion), por lo cual, lavia preferida
es usualmente reabrir laentrada original y cerrar cualquier nuevo reporte como duplicado de este. El sis-
tema de gestion de fallo debe mantener un seguimiento de esta relacion bidimensional, de formaque la
informacion en los duplicados este disponible en la entrada original y vice versa.

Unatercera variacion es cuando |os desarrolladores cierran la entrada pensando que yaha sido resueltay
€l usuario que la hareportado rechaza esareparacion y es reabierta. Por |0 general esto es porque € de-
sarrollador no tiene la capacidad de reproducir el fallo o porque no han probado su reparacién siguiendo
la misma receta parala reproduccion descrita por € usuario.

A parte de estas variaciones existen pequefios detalles de este ciclo de vida que pueden variar depen-
diendo de la aplicacion de seguimiento. Pero la forma basica es lamisma e incluso cuando € ciclo de vi-
dano es s6lo para €l software open source, tiene implicaciones acerca de como los proyectos utilizan sus
sistemas de control de fallos.

Implicito en €l paso 1, €l sistema es una caratan publica del proyecto, como lo pueden ser laslistas de
correo o las paginas web. Cualquiera puede crear una entrada, cual quiera puede ver una entraday cual-
quiera puede navegar lalista de entradas abiertas. De tal manera que nunca se sabe cuantas personas es-
tan interesadas en ver el progreso en una entrada en particular. Aunque el tamarfio y la capacidad de la
comunidad de desarrolladores constrifie la frecuencia con la que los problemas son atacados, € proyecto
debe a menosintentar reconocer cada entrada mientras vayan llegando. Incluso si el problema persiste
por un tiempo, una repuesta anima a usuario a mantenerse involucrado porgue siente que un humano ha
visto lo que ha hecho (recordad que rellenar una entrada requiere mucho mas tiempo que un correo elec-
trénico). Incluso mejor, una vez que una entrada es vista por un desarrollador, entra en la conciencia del
proyecto, en el sentido en que este puede mantenerse al acecho de otras instancias del mismo problema,
puede comentarlo con otros desarrolladores, etc.

L a necesidad de reacciones oportunas implica dos cosas:

* El sistema de seguimiento debe conectarse alalista de correos de manera que cada cambio a una en-

51

Infraestructura Técnica

trada, incluyendo su redaccion inicial, genere un correo describiendo |o sucedido. Estalista de correos
es, aveces, diferente de lalista de desarrollo ya que quizas, no todos los desarrolladores quieran reci-
bir correos autométicos con fallos, pero (al igua que con los correos con cambios) la cabecera Reply-
to debe ser fijada alalista de desarrollo.

 El formulario donde se rellena la entrada debe almacenar la direccién de correo electrénico de quien
lareporta, de forma que pueda ser contactada para solicitar mas informacion. (No obstante, no debe
requerir la direccion ya que algunas personas prefieren realizar el reporte anénimamente. Més infor-
macion sobre el anonimato en “ Anonimato y participacion” a continuacion en este capitul o.

Interaccion con las Lista de Correo

Hay que asegurarse de que el gestor de fallos no se convierte en un foro de discusiones. Aunque esim-
portante mantener una presencia humanaen el gestor, no esta preparado para discusiones en tiempo real.
Hay que pensar en éste como un archivador, una forma de organizar hechosy referencias a otras discu-
siones, principalmente aquellas que suceden en laslistas de correo.

Hay dos razones por |as cuales es importante hacer esta distincion. Primero, el gestor defalosesun sis-
tema més engorroso que las lista de correo (0 que salas de chat). Esto no es porque estén mal disefiados,
es s6lo que sus interfaces han sido disefiadas para capturar y presentar estados discretos, no discusiones.
Segundo, no todo € mundo que este involucrado en una discusion sobre una entrada en particular, esta
revisando €l gestor de fallos frecuentemente. Parte de una buena gestion de fallos (més en “ Share Mana-
gement Tasks as Well as Technical Tasks’ en Capitulo 8, Coordinando a los Voluntarios) esta en asegu-
rarse de que cada problema es llevado ala atencién de las personas indicadas en lugar de requerir que
todos | os desarrolladores monitoricen todos |os problemas. En “No Conversations in the Bug Tracker”
en Capitulo 6, Communications, veremos como asegurarnos de que la gente no desvie accidental mente
las discusiones de los foros apropiados hacia €l sistema de gestion de fallos.

Algunos gestores pueden monitorizar listas de correos y automati camente registrar todos los correos que
son acerca de un problema conocido. Por 1o general, hacen esto reconociendo €l nimero de identifica-
cion de laentradaen el asunto de los correos, como parte de unalinea especial, asi 1os desarrolladores
pueden aprender aincluir estas lineas en sus correos para atraer la atencion del gestor. El sistema puede
guardar €l correo completo o (incluso mejor) registrar un enlace a correo en €l archivo regular de lalista
de correos. De cualquier forma, ésta es una habilidad muy (til, asi que si € sistema utilizado la aporta
hay que utilizarlay hay que recordarle ala gente que la utilice.

Pre-filtrado del gestor de fallos

Muchas de | as bases de datos de fallos sufren eventualmente del mismo problema: una cantidad devasta-
dora de fallos duplicados o invalidos hechos por usuarios bien intencionados pero sin experiencia 0 poco
informados. El primer paso para combatir esta tendenciaes, por lo general, colocar un vistoso aviso en
lapagina principal del gestor de fallos, explicando como saber si un bug es realmente un bug, como bus-
car si € bug yaestaincluido y finalmente, como reportar efectivamente si aun se cree que €s un nuevo
falo.

Esto reducira el nivel de ruido por un tiempo, pero mientras el nimero de usuarios vaya creciendo, el
problema regresara eventualmente. Ningun individuo puede ser culpado de esto, ya que cada uno esta4
intentando contribuir en beneficio del proyecto e incluso cuando su primer reporte no sea de verdadera
utilidad, se desea animarlos para que continen involucrandose y para que puedan hacer mejores repor-
tesen € futuro. Mientras tanto, el proyecto necesita mantener en 1o posible la base de datos libre de ba-
sura.

L as dos cosas que tendran €l maximo efecto ala hora de prevenir este problema son: asegurarnos de que
hay gente vigilando el gestor de fallos quienes tienen el conocimiento suficiente para cerrar problemas
como invalidos o duplicados mientras vayan llegando y requiriendo (o fomentando duramente) alos
usuarios que confirme su reporte con otras personas antes de reportarlos en el gestor.

52

Infraestructura Técnica

La primeratécnica parece ser utilizada universalmente. Incluso proyectos con gigantescas bases de datos
defallos (digamos, €l gestor de Debian en http://bugs.debian.org/, el cual contenia 315,929 reportes al
momento de escribir este libro) siguen ordenando todo de tal manera que todos puedan ver los reportes
mientras llegan. Puede que sea una persona diferente dependiendo de la categoria del problema. Por
gjemplo, el proyecto Debian es una coleccion de paguetes de software, de manera que e proyecto auto-
maticamente enruta cada reporte ala persona que mantiene €l paquete especifico. Por supuesto, aveces
los usuarios no identifican bien la categoria ala que pertenece e problema, con el resultado de que €l re-
porte es enviado ala persona equivocada, quien entonces debera redireccionarlo. No obstante, lo impor-
tante es que la carga sigue siendo distribuida—cada vez que un usuario crea correcta o incorrectamente
al reportar, lavigilancia de las entradas sigue siendo distribuida més o menos uniformemente entre los
desarrolladores, de manera que cada reporte es respondido en un tiempo justo.

L a segunda técni ca esta menos extendida, probablemente sea porque es mas dificil de automatizar. La
idea esencial es que cada nuevo reporte es apadrinado hacia la base de datos. Cuando un usuario cree ha-
ber encontrado un bug, se le pide que lo describa en unade las listas de correo 0 en algun canal de IRC
para que reciba confirmacién de alguien de que en realidad es un fallo. Al introducir este segundo par de
0j 0s puede prevenir muchos reportes falsos. A veces esta segunda persona puede identificar que este
comportamiento no es un fallo o que ha sido resuelto recientemente. O puede que este familiarizado con
los sintomas gracias a problemas anteriores, evitando un duplicado al sefialar al usuario €l vigjo reporte.
A veces estan sencillo como preguntar a usuario " ¢Has revisado €l gestor de fallos para asegurarte de
gue no hasido reportado ya?' Muchas personas no piensan en esto, pero se contentan con hacer la bis-
gueda sabiendo que hay alguien ala expectativa de que o hagan.

El sistema de apadrinamiento puede mantener la limpieza de los reportes en la base de datos, pero tam-
bién tiene algunas desventajas. M uchas personas haran los reportes sin consultar, al no buscar o despreo-
cupandose de |as instrucciones de buscar a un padrino para €l nuevo reporte. Aun asi, es necesario que
los voluntarios sigan vigilando las bases de datos y dado que lamayoria de los nuevos usuarios que re-
portan fallos no entienden la dificultad de mantenerlas, no es justo reprenderl os duramente por ignorar
las directrices. Aun asi, los voluntarios deben ser vigilantes y gjercitar restricciones en como se rechazan
reportes sin apadrinar de vuelta a quien lo haya hecho. El objetivo es entrenar a cada reportero para que
utilice el sistema de apadrinamiento en €l futuro, de tal manera que haya una siempre creciente fondo de
gente quienes entienden el sistema de filtrado de fallos. Al encontrarnos con un reporte sin padrino, 10s
pasos ideales atomar son:

1. Inmediatamente responder el reporte, agradeciendo al usuario por hacerlo, pero dirigiéndolo alas di-
rectrices de apadrinamiento (las cuales deberian, por supuesto, estar publicadas en un lugar promi-
nente del sitio web.)

2. Si el reportes es claramente valido y no un duplicado, hay que aprobarlo de todas formasy de esta
maneraqueinicie su ciclo de vida normal. Después de todo, quien harealizado €l reporte ya hasido
informado sobre el apadrinamiento, asi que no tiene sentido perder el trabajo ya hecho al cerrarlo co-
mo invalido.

3. Si el problema no es claramente valido, hay que cerrarlo, pero solicitando que sea reabierto si reciben
la confirmacion por parte de un padrino. Cuando lo hagan, deberan colocar unareferenciaal hilo de
confirmacion (por gjemplo, una URL en € archivo de lalistas de correo).

Hay que recordar que a pesar de que este sistema mejorara la proporcion sefial/ruido en la base de datos
de problemas alo largo del tiempo, nunca pondrafin alos reportes invalidos. La Unica manera de evitar
esto por completo es cerrar €l gestor de fallos a todos quienes no sean desarrolladores—una cura que ca-
si siempre es peor que la enfermedad. Es mejor aceptar que lalimpieza de reportes invalidos siempre se-
ra una parte de la rutina de mantenimiento del proyecto e intentar obtener lamayor cantidad de ayuda
para hacerlo.

Mas en “Issue Manager” en el Capitulo 8, Coordinando a los Voluntarios.

53

http://bugs.debian.org/

Infraestructura Técnica

IRC / Sistemas de Chat en Tiempo Real

Muchos proyectos ofrecen salas de chat utilizando Internet Relay Chat (IRC), foros donde los usuarios y
desarrolladores pueden hacerse preguntas y obtener respuestas instantaneas. Mientras que se puede lle-
var un servidor de |RC para nuestro sitio web, por lo general no vale la pena. En cambio podemos hacer
lo que todo el mundo: crear canales de IRC en Freenode (http://freenode.net/). Freenode proporciona el
control necesario para administrar los canales IRC del proyecto, ®mientras gue nos evitalamolestiade
tener que mantener un servidor de IRC.

Lo primero que hay que hacer es decidir un nombre para el canal. La opcion més obviaes utilizar el
nombre del proyecto—si es que se encuentra disponible en Freenode. Si no, se puede utilizar algo lo
més parecido a nombre del proyecto y que seaen lo posible, facil de recordar. Hay que publicitar ladis-
ponibilidad del canal en el sitio web del proyecto, de manera que un visitante con una duda pueda verlo
rapidamente. Por ejemplo, esto aparece en un contenedor prominente en la parte de arriba de la pagina
principal de Subversion:

S esta utilizando Subversion, le recomendamos que se una a lalista
users@ubversion.tigris.orgyleae Librode Subversion

[http: //svnbook.red-bean.conV] y el FAQ [http://subversion.tigris.org/fag.html]. Tam-
bién puede comentar susdudasen IRC en €l canal #svn eni rc. fr eenode. net

Algunos proyectos tienen varios canales, uno para cada tema. Por ejemplo, un canal para problemas de
instalacion, otro para dudas sobre su uso, otro para charlas sobre el desarrollo, etc. (“Manegjando € creci-
miento” en el Capitulo 6, Communications se discute como dividirse en mltiples canales). Cuando €
proyecto es joven, sdlo debe haber un canal en el que todos hablan juntos. Luego, mientras el proyecto
vaya creciendo, |la separacion de canales serd necesaria.

¢Coémo podré la gente encontrar todos |os canales disponibles y ademés, en cuales entrar? ¢Y a entrar,
como sabran los criterios de la sala?

Larespuesta atodo esto es publicandolo en € tépico del canal TE tépico del canal es un breve mensaje
gue ven todos los usuarios cuando entran en el canal. Da una guia rapida para los recién llegados y apun-
ta ainformacion necesaria. Por ejemplo:

Ha entrado en #svn

El tema para #svn es Foro para usuarios de Subversion. Ms informacion en

http://subversion.tigris.org/. || Las discusiones sobre el desarrollo
estan en #svn-dev. || Por favor, no pegue transcripci ones nuy | argas,
para ello utilice un sitio comp http://pastebin.cal/ || Noticias:

Subversion 1.1.0 ha salido, mas en http://svnll0. notl ong. con!

Es algo tosco, pero informa a quienes entran a canal 10 que necesitan saber. Dice exactamente paralo
gue es el canal, muestrala paginaweb del proyecto (en caso de que alguien entre a canal sin antes haber
visitado el sitio web del proyecto), menciona canales relacionados y da algunas directivas sobre el pega-
do.

Sitios de pegado

5No esun requerimiento ni tampoco se espera ninguna donacion a Freenode, pero si usted o el proyecto se lo pueden permitir, por
favor considerelo. Son una caridad exenta de impuestos en EE.UU. y proveen de un servicio muy valioso.

"Para establecer el topico del cand se utilizael comando "/ t opi c. Todos los comandos en IRC empiezan con € signo "/ *. Si no
se esta familiarizado con la utilizacion y administracion de IRC id a http://www.irchelp.org. Hay un excelente tutorial en
http://www.irchelp.org/irchel p/irctutorial .html.

54

http://freenode.net/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://subversion.tigris.org/faq.html
http://subversion.tigris.org/faq.html
http://www.irchelp.org
http://www.irchelp.org/irchelp/irctutorial.html

Infraestructura Técnica

Un canal de IRC es un espacio compartido: todos pueden ver |o que todos escriben. Normalmente
esto es algo bueno, ya que permite que la gente entre en una conversacion cuando creen que tie-
nen algo para contribuir y permite a los espectadores aprender leyendo. Pero puede tornarse pro-
blemético cuando alguien suministra una gran cantidad de informacion alavez, como latrans-
cripcion de una sesion de debugging, porque a pegar muchas lineas de texto en €l canal seinte-
rrumpen las conversaciones de otros.

Lasolucion aesto es €l uso de los [lamados sitios de pegado pastebin o pastebot. Al requerir una
gran cantidad de datos de alguien, pida que no los pegue en el canal, sino que vayan a (por ejem-
plo) http://pastebin.ca, peguen lainformacion necesaria alli y suministren el nuevo URL resultan-
tea canal de IRC. Asi cualquiera puede visitar la URL y revisar |os datos que alli se encuentran.

Existen muchos sitios gratuitos de pegado disponibles, demasiados para una lista comprensiva,
pero aqui hay algunos que he utilizado: http://www.nomorepasting.com/, http://pastebin.cal,
http://nopaste.php.cd/ http://rafb.net/paste/ http://sourcepost.sytes.net/,

http://extraball .sunsite.dk/notepad.php, y http://www.pastebin.com/.

Bots

Many technically-oriented IRC channels have a non-human member, a so-called bot, that is capable of
storing and regurgitating information in response to specific commands. Typically, the bot is addressed
just like any other member of the channel, that is, the commands are delivered by "speaking to" the bot.
For example:

Muchos canales técnicos de IRC tienen un miembro no humano, un tal llamado bot, €l cual es capaz de
almacenar y regurgitar informaci én en respuesta a comandos especificos. El bot se parece a un miembro
més del canal, esto es, |os comandos se hacen llegar "hablandole" a bot. Por jemplo:"

<kfogel > ayita: learn diff-cnd = http://subversion.tigris.org/faq.htm #diff-cnd
<ayita> Thanks!

Estole hadicho al bot (el cua estden el canal como ayita) que recuerde cierto URL como larespuestaa
la pregunta "diff-cmd". Ahora podemos dirigirnos a ayita pidiendole al bot que le diga a otro usuario
acerca de diff-cmd:

<kfogel > ayita: tell jrandom about diff-cnd
<ayita> jrandom http://subversion.tigris.org/faq.htm#diff-cnd

Lo mismo puede ser logrado con un comando més corto:

<kfogel > la jrandom di ff-cnd
<ayita> jrandom http://subversion.tigris.org/faq.htm#diff-cnd

El conjunto exacto de comandos y conductas difieren entre bots. El giemplo anterior utilizaayi t a
(http://hix.nu/svn-public/alexis/trunk/), del cual existe unainstanciaen #svn en Freenode. Otros bots
son Dancer (http://dancer.sourceforge.net/) y Supybot (http://supybot.com/). No son necesarios privile-
gios especificos en € servidor para gjecutar un bot. Un bot es un programa cliente; cualquiera puede fi-
jary dirigirlo para que escuche en un servidor/canal en particular.

Si el canal del proyecto tiende arecibir 1as mismas preguntas unay otra vez, recomiendo utilizar un bot.
S6lo un pequefio porcentaje de usuarios del canal adquiriran la habilidad necesaria para manejar €l bot,

55

http://pastebin.ca
http://www.nomorepasting.com/
http://pastebin.ca/
http://nopaste.php.cd/
http://rafb.net/paste/
http://sourcepost.sytes.net/
http://extraball.sunsite.dk/notepad.php
http://www.pastebin.com/
http://hix.nu/svn-public/alexis/trunk/
http://dancer.sourceforge.net/
http://supybot.com/

Infraestructura Técnica

pero serén los que si 1o hagan quienes responderan a una cantidad desproporcionada de preguntas, por-
gue el bot permite que sean respondidas con mayor eficiencia.

Archivando IRC

Aunque es posible archivar todo lo que sucede en los canales de IRC, no es algo necesario. Las conver-
saciones en |RC pueden ser publicas, por |o que muchas personas piensan en ellas como conversaciones
informales semi-privadas. Los usuarios puede que no cuiden lagramaticay a veces expresen opiniones
(por giemplo, acerca del software o sobre otros desarrolladores) que no querran que sean preservadas
eternamente en un archivo en linea.

Por supuesto que existen extractos que deberian ser preservados. Muchos de los clientes de IRC pueden
registrar conversaciones a un fichero bajo demanda por €l usuario, o si esto falla, se puede copiar y pe-
gar la conversacion del IRC aotro foro permanente (a menudo, €l bug tracker). Pero €l registro indiscri-
minado puede incomodar a algunos usuarios. Si se archivatodo, hay que declararlo claramente en € té-
pico del canal y proporcionar una URL del archivo.

Wikis
Un wiki es un sitio web que permite a cualquier visitante editar o extender su contenido; el término "wi-
ki" (una palabra Hawaiana que significa"rapido" o "super-rapido™) también es usado parala aplicacion
gue permite este tipo de edicion. Los wikis fueron inventados en 1995, pero su popularidad alzo vuelo a
partir del afio 2000 o 2001, impulsado parcialmente por €l éxito de la Wikipedia
(http://www.wikipedia.org/), un enciclopedia de contenido libre basada en un wiki. Imaginemos un wiki
como algo entre IRC y las paginas web: los wikis no trabajan en tiempo real, asi que la gente tiene la po-

sibilidad de deliberar y pulir sus contribuciones, pero alavez son muy sencillos de utilizar, facilitando
mas la edicién que una pagina web.

Los wikis no son aun equipamiento estandar para los proyectos open source, pero probablemente pronto
lo serén. Dado que son una tecnologia relativamente nuevay la gente alin experimenta con las diferentes
maneras de utilizarlos, sdlo of receré algunas precauciones —Ilegados a este punto, es més facil analizar
los usos equivocados de los wikis en lugar de analizar sus exitos.

Si decide ofrecer un wiki, hay que poner un gran esfuerzo en tener una organizacién clara de las paginas
y un disefio visual atractivo, de manera que los visitantes (p.e. editores potencial es) instintivamente se-
pan como incluir sus contribuciones. Igual de importante, hay que publicar estos estandares en € mismo
wiki, de manera que la gente tenga un lugar a donde ir en busca de orientacion. Muy a menudo, los ad-
ministradores de los wikis caen en latrampa de creer que porgue hordas de visitantes afiaden individual-
mente contenido de alta calidad &l sitio, el resultado de todo esto debe ser también de la mas alta calidad
y esto no es como funcionan los sitios web. Cada paginaindividual o parrafo puede que sea bueno al ser
considerado individualmente, pero no seratan bueno si esta encuadrado dentro de un todo desorganiza-
do o confuso. Demasiadas veces, los wikis sufren de:

 Faltade principios de navegacion. Un sitio web bien organizado hace que |os visitantes se sientan
como s supieran donde se encuentran en todo momento. Por gjemplo, si |as paginas estén bien dise-
fadas, la gente puede intuir las diferencias entre unaregién con la "tabla de contenidos" y otra con €l
contenido. Los contribuyentes del wiki respetaran tales diferencias también si y solo si las diferencias
estan presentes.

* Informacion duplicada. Frecuentemente los wikis acaban con diferentes paginas con informacion si-
milar, porgue |os contribuyentes individuales no se han dado cuenta de la duplicidad. Esto puede ser
una consecuencia de la falta de principios de navegaci 6h mencionados antes, en que la gente puede
gue no encuentre contenido duplicado si este no se encuentra donde esperaban encontrarlo.

» Audiencia objetivo inconsistente. Hasta cierto punto este problema es inevitable cuando existen tan-
tos autores, pero puede ser ralentizado si existen guias escritas acerca de como crear nuevo contenido.

56

http://www.wikipedia.org/

Infraestructura Técnica

También ayuda editar nuevas contribuciones al principio dando un ejemplo a seguir de manera que
|os estandares se vayan asentando.

La solucion més comun paratodos estos problemas es el mismo: tener estdndares editoriales y mostrar-
los no sélo publicandolos sino que editando paginas y adheriendose a estos. En general, los wikis ampli-
ficaran cualquier fallo en e material original, ya que los contribuyentes imitaran cualquier patrén que
vean. No solo hay que configurar el wiki y esperar que todo funcione ala perfeccidn. Se debe preparar
con contenido bien escrito, de manera que la gente tenga una plantilla que seguir.

El ggemplo maés brillantes de un wiki bien llevado es la Wikipedia, aunque esto sea parciamente a que €l
contenido (articul os enciclopédicos) seaidoneo para el formato del wiki. Pero si se examinala Wikipe-
dia en profundidad vera que sus administradores han establecido unas fundaciones muy estrictas paralas
contribuciones. Existe una extensa documentacion acerca de como afiadir nuevo contenido o de como
mantener un punto de vista apropiado, |os tipos de ediciones que hacer (involucrando varios grados, in-
cluyendo una eventual moderacion) y asi sucesivamente. También tienen controles de autorizacion, de
maneraque si una pagina es el objetivo de ediciones inapropiadas, pueden bloguearla hasta que €l pro-
blema sea resuelto. En otras palabras, no pusieron unas cuantas plantillas en un sitio web y se sentaron a
esperar. La Wikipedia funciona porque sus fundadores pensaron cuidadosamente acerca de como conse-
guir que cientos de contribuyentes pudieran adaptar sus escritos a una vision comun. Aunque puede que
no necesite de toda esta preparacién a montar un wiki para un proyecto de software libre, estd bien
emular el espiritu.

Para mas informacion acerca de los wikis visitad http://es.wikipedia.org/wiki/Wiki. El primer wiki sigue
vivo y coleando y contiene mucha informacién sobre los wikis: 27?2,

http://www.c2.com/cgi/wiki WhyWikiWorks, y http://www.c2.com/cgi/wiki WhyWikiWorksNot para
varios puntos de vista.

Sitio Web

No hay mucho que decir acerca de | os aspectos técnicos del sitio web del proyecto: montar un servidor
web y crear |as paginas web son tareas sencillas, y |os aspectos més importantes acercadel disefio y con-
tenido ya han sido tratados en capitul os anteriores. La principal funcién del sitio web es ofrecer una vi-
sion genera claray unir las otras herramientas (Sistema de control de versiones, gestion de fallos, etc.).
Si no setiene la experiencia suficiente para configurar un servidor web, no sera dificil encontrar aal-
guien que pueda hacerlo y desee ayudar. Sin embargo, para ahorrar tiempo y esfuerzos, es preferible uti-
lizar uno de los sitios web enlatados.

Soluciones de hospedaje

Existen dos ventajas importantes de utilizar sitios preparados. La primera es la capacidad y ancho de
banda ddl servidor. Sinimportar cuan exitoso pueda allegar a ser € proyecto, €l espacio en disco no se
vaaacabar y la conexion no se verd superada. La segunda ventaja es sencillez. Estos sitios ya han selec-
cionado un gestor de fallos, un sistema de control de versiones, un gestor de listas de correos, archivador
y todo lo que sea necesario parallevar un sitio web. Y a han configurado las herramientasy se realizan
los respal dos necesarios de | os datos almacenados por estas. No es necesario tomar decisiones. Slo es
necesario rellenar un formulario, presionar un botén y setiene un sitio web asf de facil.

Estos son beneficios muy significativos. La desventaja, por supuesto, es que se debe aceptar sus opcio-

nesy configuraciones, incluso si algo diferente seriamejor parael proyecto. Por lo general, estos sitios
se pueden gjustar bajo ciertos pardmetros pero nunca se obtendra el control total que setendriasi se hu-
biera hecho en casa teniendo acceso de administrador al servidor.

Un gjemplo perfecto de esto es la gestion de los ficheros generados. Ciertas paginas web del proyecto
puede que sean ficheros creados—por ejempl o, existen sistemas para mantener los datos del FAQ en un
formato fécil de modificar, desde el cua se pueden generar ficheros HTML, PDF y otros formatos. Al

57

http://es.wikipedia.org/wiki/Wiki
http://www.c2.com/cgi/wiki?WhyWikiWorks
http://www.c2.com/cgi/wiki?WhyWikiWorksNot

Infraestructura Técnica

igual como se explicaen “Versiones detodo” anteriormente en este capitulo, no se desean diferentes
versiones de los formatos generados, solo del fichero maestro. Pero cuando €l sitio web esta hospedado
en el servidor de otra persona, puede que seaimposible crear un hook personalizado que permita regene-
rar laversion HTML publica cadavez que el fichero maestro del FAQ sea modificado. La Gnica solu-
cion es tener diferentes versiones de los ficheros generados de manera que aparezcan en el sitio web.

Pueden haber consecuencias mas importantes también. Puede que no se tenga el control sobre la presen-
tacion deseado. Algunos sitios de hospedaje permiten editar las paginas web, pero el disefio original del
sitio termina apareciendo en diversas formas. Por ejemplo, algunos proyectos hospedados en Sourcefor-
ge tienen paginas web total mente personalizadas pero apuntan los enlaces a la pagina web de Sourcefor-
ge paramasinformacion. La pagina en Sourceforge seriala pagina principal del proyecto si no se hubie-
ra utilizado una personalizada. La pégina de Sourceforge tiene enlaces al gestor de fallos, repositorio
CVS, descargas, etc. Desafortunadamente, una pagina en Sourceforge también contiene una gran canti-
dad de ruido de fondo. La parte superior es un anuncio en banner, por lo general, una animacion. El lado
izquierdo es un arreglo vertical de enlaces con poca relevancia para alguien interesado en el proyecto. El
lado derecho es por le general mas publicidad. S6lo el centro de la pagina es dedicado a material especi-
fico del proyecto eincluso esto esta organizado de forma confusalo cua hace que los visitantes no estén
seguros de donde pulsar a continuacion.

Detras de cada aspecto individual del disefio de Sourceforge existe sin lugar a dudas una buenara
zon—buena desde el punto de vista de Sourceforge, como la publicidad. Pero desde el punto de vistain-
dividual del proyecto € resultado puede que sea una paginaweb alejada de laideal. No es mi deseo cri-
ticar a Sourceforge; estas mismas preocupaciones se aplican a muchos de estos sitios de hospedaje. El
punto es que hay que hacer un sacrificio. Se obtiene €l alivio de los aspectos técnicos de llevar €l sitio
del proyecto, pero con la condicién de aceptar laforma de llevarlo de otra persona.

S6lo usted puede decidir acerca de cual sitio de hospedaje es el mejor para el proyecto. Si se decide utili-
zar un sitio de hospedaje, deje abiertala posibilidad de cambiar a un servidor propio mas adelante utili-
zando nombres de dominio personalizados parala pagina principal del proyecto. Se puede remitir €l
URL 4l sitio hospedado o tener una pagina total mente personalizada detras de la URL publicay llevar a
los usuarios a sitio hospedado para funcionalidades més sofisticadas. S6lo aseglrese de organizar las
cosas de manera que si decide cambiar de solucion para el hospedaje, la direccién del proyecto no deba
ser modificada.

Escoger un sitio de hospedaje

El sitio de hospedajes mas grande y conocido es SourceForge [http://www.sourceforge.net/]. Otros dos
sitios que proveen los mismos servicios sonsavannah.gnu.org [http://savannah.gnu.org/] y BerliOS.de
[http://www.berlios.de/]. Algunas organizaciones, como Apache Software Foundation
[http://Iwww.apache.org/] y Tigris.org [http://www.tigris.org/] 8 ofrecen hospedaje a proyectos open
source que encagjan su misién y su comunidad con proyectos ya existentes.

Haggen So ha hecho una eval uacién exhaustiva de varios sitios de hospedaje como parte de su investiga-
cion para su tesis de doctorado titulada Construccion of an Evaluation Model for Free/Open Source
Project Hosting (FOSPHost) sites. Los resultados se encuentran en http://www.ibiblio.org/fosphost/, y
en http://www.ibiblio.org/fosphost/exhost.htm hay un gréfico comparativo.

Anonimato y participacion

Un problema que no esta estrictamente limitado a los sitios de hospedaje pero que usual mente se en-
cuentra en estos, es el abuso de sus funcionalidades de login. La funcionalidad es suficientemente senci-
Ilaen s misma: € sitio permite a cada visitante registrarse con un nombre de usuario y contrasefia. A
partir de ahi mantiene un perfil para este usuario de manera que los administradores del proyecto puedan
asignar ciertos permisos a este usuario, por ggemplo, €l derecho de enviar cambios a repositorio.

8Disclaimer: Soy empleado de CollabNet [http://www.collab.net/], la cual patrocina Tigris.org, y lo utilizo regularmente.

58

http://www.sourceforge.net/
http://www.sourceforge.net/
http://savannah.gnu.org/
http://savannah.gnu.org/
http://www.berlios.de/
http://www.berlios.de/
http://www.apache.org/
http://www.apache.org/
http://www.tigris.org/
http://www.tigris.org/
http://www.collab.net/
http://www.collab.net/
http://www.ibiblio.org/fosphost/
http://www.ibiblio.org/fosphost/exhost.htm

Infraestructura Técnica

Esto puede ser extremadamente Util y de hecho es una de las principal es ventgjas de | os sitios de hospe-
daje. El problemaes que aveces, €l login de los usuarios termina siendo requerido para tareas que debe-
rian ser permitidas para visitantes andnimos, especialmente la habilidad de afiadir bugs en €l gestor de
fallos o comentar en bugs ya existentes. Al requerir que solo sean usuarios registrados quienes puedan
Ilevar a cabo estas acciones, € proyecto elevalavara de participacién paralo que deberia ser algo rapi-
doy conveniente. Por supuesto, se desea poder contactar con alguien que haintroducido algin dato en
un bug en el gestor de fallos, pero sélo con tener un campo donde introducir ladireccion de correo elec-
trénico (opcional) deberia ser suficiente. Si un nuevo usuario encuentra un fallo y deseareportarlo, se
vera molestado por tener que rellenar un formulario para crear una nueva cuenta antes de poder introdu-
cir el fallo. Puede que simplemente decida no hacerlo después de todo.

Las ventgjas de la gestidn de usuarios general mente superan las desventgjas. Pero si se pueden escoger
cual es acciones pueden ser hechas anénimamente, asegUrese no sdlo de que todas las acciones de sélo
lectura sean permitidas a visitantes sin registro, pero también algunas acciones de introduccion de datos,
especialmente en el gestor defallosy, s setiene, en el wiki.

59

Capitulo 4. Infraestructura Social y
Politica

Las primeras preguntas que la gente se hace sobre €l software libre son " ¢Cémo funciona? ;Como se
mantiene el proyecto? ¢Quién tomalas decisiones? Siempre quedo insatisfecho con respuestas concilia-
doras sobre la estima del mérito, el espiritu de cooperacion, el codigo que se expresapor s mismo, etc.
El caso es que sobre esto no hay unarespuestafécil. La meritocracia, la cooperacion, y un cédigo que
funciona son partes de €lla, pero aportan muy poco para explicar como funciona realmente un proyecto
en el andar de todos los dias, y nada dice sobre como se resuelven los conflictos.

Este capitulo trata de mostrar la estructura subyacente que |os proyectos exitosos tienen en comun. Me
refiero con el término "exitosos' no solamente a la calidad técnica, sino también ala salud operacional y
la capacidad de sobrevivencia. La salud operacional es la capacidad efectiva del proyecto de incorporar
las contribuciones de nuevos codigos y nuevos desarrolladores, y de asumir la responsabilidad de los in-
formes de errores que ingresan. Capacidad de sobrevivencia es la posibilidad de que €l proyecto exista
independientemente de alglin participante o auspiciante en particular— témelo como la posibilidad que
tiene el proyecto para continuar alin cuando alguno de sus miembros fundadores tuviera que pasar a ocu-
parse de otras cosas. El éxito técnico no es dificil de alcanzar, pero sin una base robusta de desarrollo y
un fundamento social, un proyecto puede resultar incapaz de mangjar el crecimiento que el éxito inicial
aporta, o laausencia de alguin individuo carismatico.

Hay varias maneras de alcanzar este tipo de éxito. Algunas suponen una estructura formal de supervi-
sién, por la que se resuelven |os debates, se aceptan (o rechazan) nuevos desarrolladores, se planifican
nuevas caracteristicas, etc. Otras regquieren menos estructuraformal, pero mas aplicacion en conciencia,
para producir una atmésfera de armonia en la que la gente puede confiar como una formade facto de su-
pervision. Ambos caminos llevan al mismo resultado: un sentido de permanenciainstitucional, ayudado
por los hébitos'y procedimientos que son bien comprendidos por todos |os que participan. Estas caracte-
risticas son todavia mas importantes en |os sistemas que se organizan asi mismos que en aquellos que
estan controlados centralmente, porque en los sistemas que se organizan asi mismos, cada uno es con-
ciente que unas pocas manzanas pueden arruinar todo €l cajon, a menos por un tiempo.

Forkability

El ingrediente indispensable que une alos desarrolladores en un proyecto de software libre, y que los
Ileva a comprometerse cuando es necesario es la "forkabilidad" del codigo: la capacidad de cada uno de
tomar unacopia del codigo fuentey usarlo para abrir un proyecto que compita con el original, evento
gue se conoce como "fork". Lo que aparece como paraddjico agqui es que la posibilidad de los "forks" es
una fuerza mucho mayor en los proyectos de software libre que los "forks" reales, los que son muy ra-
ros. Puesto que un "fork™ es malo para todos (por razones que se examinan en detalle en “Forks’ en Ca-
pitulo 8, Coordinando a los Voluntarios), cuanto mas seria seala amenaza de un "fork", tanto mas son
las personas que se comprometen a evitarlo.

Los "forks", o mas bien la posibilidad de que se produzca un "fork", eslarazén por lacual no hay verda-
deros dictadores en los proyectos de software libre. Esto puede ser una expresion sorprendente, conside-
rando que es muy comn oir que alguien es llamado el "dictador” o el "tirano" en algin proyecto de
fuente abierta. Pero estatirania es especial, muy diferente de lo que cominmente se entiende por esa pa-
labra. Imaginaos un rey cuyos stbditos pudieran copiar todo su reino en cualquier momento y trasladar-
se alacopia para gobernarla como creen que corresponde. ¢No seriael gobierno de ese rey muy diferen-
te de otro cuyos stibditos estan obligados a permanecer bajo su gobierno, sin importar lo que é haga?

Por esta razén alin aquellos proyectos que no estan organizados formal mente como democracias, son en
la practica democracias en el momento en que se toman las decisiones importantes. La replicabilidad in-
cluye ala"forkability"; "forkability" incluye al consenso. Podria bien darse el caso de que todos quieran
apoyarse en un lider (el ejemplo mésfamoso es el de Linus Torvalds durante el desarrollo del kernel de

60

Infraestructura Social y Politica

Linux), pero esto es porque ellos asi |0 eligen, de una manera gjena a todo cinicismo y en unaformano
siniestra. El dictador no tiene un dominio magico sobre el proyecto. Una propiedad de todas |as licencias
de fuente abierta es que no se le da a una parte mas poder que a cualquier otra para decidir cdmo se debe
usar o cambiar el cédigo. Si el dictador de repente comenzara atomar malas decisiones, se produciria
una agitacion, seguida eventualmente por un levantamiento y por un "fork". Excepto que, por supuesto,
muy raravez las cosas llegan tan lgjos, porque antes el dictador busca soluciones de compromiso.

Pero, sdlo porque laforkability pone un limite al abuso de poder que uno puede gercer en un proyecto,
eso0 no quiere decir que no hayan diferencias importantes en e modo como se gobiernan 10s proyectos.
Nadie desea que en todas | as decisiones se llegue ala pregunta de Ultima instancia de quien esta conside-
rando un fork. Eso pasaria rapidamente a ser muy agobiante, restando energia necesaria para el trabajo
efectivo. Las dos secciones que siguen examinan |os modos de organizar 10s proyectos para que la ma-
yoria de las decisiones se tomen naturalmente. Estos dos gjemplos son |os casos extremos ideali zados;
muchos proyectos quedan de alguna manera incluidos entre esos casos.

Dictadores Benevolentes

El modelo de un dictador benevolente es precisamente lo que se describe asi: La autoridad final de lato-
ma de decisiones reside en una persona, de quien se espera que, por la fuerza de su personalidad o expe-
riencia, la use sabiamente.

Auque €l término esténdar de esta funcidn es "dictador benévolo" (o DB), seriamejor que lo imagine-
mos como un "arbitro aprobado por la comunidad” o un "juez". En general, los dictadores benevolentes
no toman realmente las decisiones, ni siquierala mayoriade las decisiones. No es probable que una per-
sona pueda tener todo el conocimiento paratomar decisiones buenasy coherentes en todas las &reas de
un proyecto, y ademés, |los desarrolladores de calidad no se acercaran al proyecto ano ser que tengan a-
gunainfluencia en su direccién. Por lo que los dictadores benevolentes no se comportan como mando-
nes. Por el contrario, dejan que las cosas funcionen por si solas por el intercambio deideasy la experi-
mentacién, siempre que eso sea posible. Ellos mismos participan en esas discusiones, como un desarro-
[lador cualquiera, a menudo delegando a un administrador de area que tenga mas conocimiento. Sola-
mente cuando queda claro que no se puede alcanzar un consenso, y cuando la mayoriadel grupo desea
gue alguien guie la decision para que €l desarrollo pueda seguir adelante, pisan firmey dicen: "Estaesla
forma que tiene que ser". Una caracteristica compartida por casi todos los dictadores benevol entes exito-
S0S es que tienen un rechazo atomar decisiones con un "asi tiene que ser"; esta es una de |las razones por
la permanecen en lafuncion.

¢, Quién puede ser un Buen Dictador Benevolente?

Ser un DB requiere una combinacién de caracteristicas. Se necesita, antes que nada, una cierta delicade-
zaparajuzgar su propiainfluenciaen el proyecto, 1o que a su vez lleva a sujetar 1os primeros impul sos.
En los primeros pasos de una discusion uno no debe expresar opiniones y conclusiones con tanta seguri-
dad que los otros sientan que esindtil opinar en contra. La gente debe sentirse libre de ventilar sus ideas,
aunque sean tontas. Esinevitable que el DB sugiera aguna idea tonta de vez en cuando, y por lo tanto
esta funcion requiere la disponibilidad de reconocer cuando uno hayatomado una mala decision— si
bien es ésta una caracteristica sencilla que cualquier buen desarrollador debe tener, especialmente si per-
manece en el proyecto por mucho tiempo. Pero la diferencia es que el DB puede darse el [ujo de equivo-
carse de vez en cuando sin tener que lamentar dafios permanentes en su credibilidad. Los desarrolladores
maés jovenes pueden no tener tanta seguridad, y por eso los DB deben expresar sus criticas o decisiones
en contra con mucha delicadeza para contrapesar lafuerza psicolégicay técnica que tienen sus palabras.

El DB no necesita tener una habilidad técnica superior que supere atodos los que estén en el proyecto.
Tiene que saber o suficiente como paratrabajar en €l codigo, y entender y comentar cualquier cambio
en consideracion, y eso estodo. La posicion del DB no se adquiere ni mantiene en virtud a una habilidad
de codificar intimidatoria. Lo que si esimportante es la experienciay un sentido general del disefio —no
necesariamente la habilidad de producir un buen disefio a pedido, pero si la habilidad de reconocer €l
buen disefio, provenga de donde proveniere.

61

Infraestructura Social y Politica

Es comun que un dictador benevolente sea el fundador del proyecto, pero esto es més una correlacién
que una causa. El tipo de cualidades que permite poner en marcha con éxito un proyecto son exactamen-
te las cualidades que cualquier DB debe tener— competencia técnica, habilidad de persuadir para que
otro se una, etc.—. Y por supuesto, los fundadores seinician con una cierta senioridad automética, que
puede ser suficiente amenudo para que el dictador benevolente aparezca por €l camino de menor resis-
tencia para todos aquellos a quienes les incumbe.

Recordar que la amenaza de un fork vale paralos dos sentidos. Un DB puede hacer un fork de un pro-
yecto tan facilmente como cualquier otro, y ocasionalmente lo han hecho, cuando sienten que la direc-
cion que estatomando € proyecto es diferente de donde la mayoria de los desarrolladores quieren ir. Por
causa de laforkabilidad, poco importa s el dictador benevolente tiene privilegios de root (que corres-
ponden a administrador del sistema) en el servidor principa del proyecto. A veceslagente serefierea
control del servidor como si fueralamayor fuente de poder en un proyecto, pero de hecho esirrelevante.
Laposibilidad de agregar o quitar las palabras clave para hacer commit en un servidor afectasolo ala
copiadel proyecto que reside en el servidor. Un abuso constante de ese poder, sea por €l DB o por cual-
quier otro, vaaterminar ssmplemente con un cambio del desarrollo en un servidor diferente.

Si € proyecto tendra un dictador benevolente o si va afuncionar mejor con un sistema menos centraliza-
do, depende ampliamente de quién es el que vaa cumplir con esafuncion. Por lo general es algo muy
obvio desde el comienzo saber quién vaaser el DB, y entonces todo se encamina en ese sentido. Pero s
no hay un candidoto obvio parael DB, puede ser que el proyecto seincline a usar un proceso descentra-
lizado de tomas de decision, como se vaa describir en la présima seccién.

Democracia basada en el Consenso

A medida que el proyecto avanza, se tiende a pasar del modelo del dictador benevolente alos sistemas
mas abi ertaente democréticos. Este paso no se produce necesariamente por lainsatisfaccion causada por
un DB. Es que el gobierno basado en €l grupo llega a ser estable en su evolucion, para usar asi una meta-
forabiolégica. Siempre que un dictador benevolente se baja o intenta difundir |a responsablidad de to-
mar decisiones entre todos por igual, se dala oportunidad para que e grupo se asiente en un nuevo siste-
ma no-dictatorial—estableciendo una constitucion, por asi decirlo. Puede ser que €l grupo no aprovecha
la primera oportunidad, ni quizas tampoco la segunda, pero en algin momento lo harg; y una vez hecho,
es muy dificil que esta decision sevuelvaatras. Y el sentido comun lo explica: si un grupo de N indivi-
duos tuviera que investir una persona con poderes especiales, eso significariaque N - 1 personas tuvie-
ron gque aceptar que sus influencias individuales se disminuyan. Normal mente la gente no quiere hacer
cosas como esa. Y s las hiciera, todavia la dictadura que de alli resulte seria condicional : €l grupo que
unge aun DB, es claramente e grupo que puede deponer a DB. Por lo tanto, unavez que € proyecto a
pasado de un liderazgo carismético individual aun sistema més formal basado en el grupo, muy raravez
vuelve para atrés.

L os detalles de cdmo funcionan esos sistemas varian ampliamente, pero hay en ellos dos elementos co-
munes: uno, € grupo funciona por consencio la mayoriadel tiempo; dos, hay un mecanismo formal de
votaciones paralos casos en que &l consenso no puede alcanzarse.

Consenso significa solamente un acuerdo que todos aceptan de una vez por todas. No es un estado ambi-
guo: un grupo alcanza el consenso en un asunto particular cuando a guien expresa que se ha a canzado
un consenso y nadie contradice esa afirmacion. La persona que propone el consenso debe, por cierto, de-
jar en claro cual es el consenso acanzado, y que acciones deben tomarse en consecuenciade €, si es que
ésto no resulta obvio.

Lamayoriade las conversaciones de un proyecto son sobre los asuntos técnicos, como el modo correcto
de corregir algun error, la conveniencia o no de agregar un asunto, |a forma estricta como un documento
se enlaza, etc. Un gobierno basado en el consenso funciona bien porque se entrelaza con ladiscusion
técnicay se confunde con ella silenciosamente. Al terminar una discusion, generalmente hay acuerdo so-
bre cual es el camino a seguir. Alguien hace unaintervencién conclusiva, que es a mismo tiempo un re-
sumen de lo que se haido decidiendo y queda como una propuesta implicita de consenso. Esto ofrece
una ultima oportunidad para que alguien diga "Un momento, no estoy de acuerdo. Debemos reconside-

62

Infraestructura Social y Politica

rar esto un poco mas"

En decisiones de pocaimportancia que no ofrecen discusion, la propuesta de consenso es implicita. Por
gjemplo, cuando un desarrollador hace un commit de una reparacion de error, € mismo commit esla
propuesta de consenso: " Supongo que todos estamos de acuerdo en que este error debe ser corregido, y
esta es la manera de hacerlo." Por supuesto, € desarrollador no 1o dice; simplemente hace el commit de
lareparacion, y los demés no se preocupan de manifestar su acuerdo, porque €l silencio es €l consenti-
miento. Si alguien hace el commit de un cambio que resulta no tener consenso, se produce simplemente
una discusion sobre el cambio como si todavia no estuvieraincluido como cambio. Laexplicacién de
por qué esto funciona es el tema de la préxima seccion.

Control de Versioén Significa que Uno Puede Evitar el Es-

trés

Mantener € cédigo fuente del proyecto bajo el control de versién significa que la mayoria de las deci-
siones pueden facilmente deshacerse. La manera corriente para que esto pase es que alguien haga com-
mit de un cambio pensando que todos van a aceptarlo con gusto, y después encontrarse con las objecio-
nes ante el hecho. Una forma tipica de esas objeciones es comenzar con las disculpas del caso por no ha-
ber intervenido en discusiones anteriores, aungue esto se puede omitir si el discrepante no encuentrare-
gistros de tales discusiones en los archivos de la lista de correos. En cualquier caso, no hay motivos para
gue €l tono de la discusion sea diferente después del cambio introducido que antes. Cualquier cambio
puede ser revertido, a menos antes de que se introduzcan cambios dependientes (es decir, nuevo cédigo
gue sedafasi €l cambio original es quitado de repente). El sistema de control de version permite que el
proyecto deshaga | os efectos de malas ideas o propuestas ligeras. Esto, asu vez, le dalalibertad ala
gente para que confie en sus instintos y aprenda cuanta consulta es necesaria antes de hacer algo.

También significaque &l proceso de consensuar no necesita ser muy formal. Muchos proyectos manejan
esto por instinto. Los cambios menores pueden ir sin discusién, o con una discusion minima seguida por
algunos acuerdos. En cambios de mayor importancia, especial mente aquellos que pueden desestabilizar
una parte del codigo, la gente espera uno o dos dias antes de suponer que hay consenso. Larazon es que
nadie puede ser dejado de lado en una conversacion importante simplemente por no haber inspeccionado
su correo con lafrecuencia debida.

Entonces, cuando alguien se siente seguro que sabe lo que tiene que hacer, no paraen mientesy lo hace.
Esto se aplicano solo a softwarefijo, sino alas actualizaciones de la Web, a cambios en la documenta-
ciény acualquier otra cosa que no sea controversial. Generalmente se darén pocos casos en los que la
accion tenga que ser deshecha, y estos pueden ser tratados individualmente en cada caso. Por supuesto
gue no se debe incentivar ala gente para que sea obstinada. Hay todavia una diferencia psicol égica entre
una decision bajo discusién y una que ya haya tenido efecto, por més que se diga que es técnicamente
reversible. La gente siente que el momento es un aliado de laaccion, y que se sentiran mas reacios are-
vertir un cambio que aprevenirlo en el primer instante. Si un desarrollador se abusa de este principio y
rapidamente hace commits de cambios que generan controversia, ciertamente la gente puede y debe que-
jarse, y mantener a ese desarrollador en un estandar estricto hasta que las cosas mejoren.

Cuando No Se Puede Tener Consenso, Vote

Inevitablemente, algunos debates no Ilegardn a consenso. Cuando no haya otro medio de salir del calle-
jon, lasolucién es votar. Pero antes que se llegue ala votacion, debe aclararse unas cuantas opciones del
ballotage. De nuevo en este caso el proceso de discusion técnica se integra suavemente con los procedi-
mientos de toma de decision del proyecto. El tipo de asuntos que llega a votacion implican a menudo te-
mas complejos, llenos de facetas. En cualquiera de tales discusiones complicadas, hay a menudo unao
dos personas que hacen las veces de negociador honesto: aportan periodicamente la sintesis de los argu-
mentosy siguen las lineas de |os puntos centrales del desacuerdo (y del acuerdo). Estas sintesis ayudan a
gue todos estimen el progreso que se va haciendo, y les recuerda a todos cudl es asuntos quedan pendien-
tes. Estas sintesis podran servir como model os para una propuesta de votacidn, en caso de que ésta se
vuelva necesaria. Si 10s negociadores honestos se han desempefiado bien en su oficio, estardn en condi-

63

Infraestructura Social y Politica

ciones de llamar a votacion cuando llegue € tiempo, y todos querrén usar |as propuestas vertidas en esas
sintesis para organizar la votacién. Los negociadores también seran participes del debate; no es necesa-
rio que ellos queden fuera de la votacion, en tanto puedan entender y representar |os puntos de vista de
los demés, y no dejen que sus sentimientos partidarios les impidan producir sintesis del estado del deba-
te en unaformaneutral .

Normalmente la organizacién de la votacion no cae en la controversia. Cuando llega el tiempo de votar,
el desacuerdo ha sido analizado y reducido a unas pocas cuestiones, bien etiquetadas y acompafiadas de
descripciones concisas. De vez en cuando un desarrollador hara una objecion sobre laformade votar. A
Veces esta preocupacion es legitima, por g emplo, cuando una opcion importante ha sido dejada de lado
0 no ha sido presentada con precision. Pero otras veces un desarrollador puede tratar de impedir lo inevi-
table, quizés porgque se da cuenta que el voto no va acompafiar su idea. Ver' Gente dificil” en Capitulo 6,
Communications para ver como tratar este tipo de obstruccionismo.

Recuerde de especificar €l sistema de votacion, puesto que hay varias formas, y la gente puede tener fal-
sas expectativas sobre e procedimiento que va a ser usado. Una buena opcidn es la votacién por apro-
bacién, en la que cada votante puede votar por todas las opciones que quiera, dentro de las opciones pre-
sentadas. La votacién por aprobacion se resuel ve simplemente explicando y contando, y a diferencia de
otros métodos, solo requiere unaronda de votacion. Ver
http://en.wikipedia.org/wiki/Voting_system#List_of _systems para mas detalles acerca de la votacion por
aprobacion y otros sistemas de votacion, pero tratar de no caer en un debate largo sobre cud deba ser el
sistema que se use (ya que se verén atrapados en €l circulo de tener que votar para decidir como votar!)
Unarazon para defender la votacion por aprobacién como una buena opcién es que es dificil que alguien
se oponga—es |0 més transparente que puede ser una votacion.

Finalmente, voto secreto, vato abierto. No hay necesidad de guardar secretos o aparecer como anénimos
en una votacién sobre asuntos que se han debatido publicamente. Cada participante pone su voto en la
lista de correo del proyecto, de modo que cualquier observador pueda hacer el conteo y verificar el re-
sultado, y que todo quede archivado.

Cuando Se Debe Votar

Lo més dificil en lavotacion es determinar cuando se debe votar. Generalmente la votaci én tiene que ser
algo fuera de lo comun—el Ultimo resorte cuando todas | as otras opciones han fallado. No tome alavo-
tacion como el gran camino para resolver los debates. No lo es. Finalizala discusion, y por tanto finaliza
€l pensamiento creativo sobre € problema. Mientras la discusion esta en el tapete, existe la posibilidad
de que alguien aporte una solucién nueva, que sea del agrado de todos. Sorprendentemente, esto ocurre a
menudo: un debate abierto puede producir un giro nuevo del pensamiento sobre el problema, y llevar a
una propuesta que eventual mente satisfaga a todos. Aln cuando no surja una propuesta nueva, todavia
es mejor negociar una solucion de compromiso que poner un voto. Luego de una solucion de compromi-
S0, todos quedan algo insatisfechos, mientras que después de una votacion unos quedan contentos y
otros en desanimo. Desde un punto de vista politico, la primera situacion es preferible; al menos cada
uno puede sentir que su desénimo es el precio de su accionar. Puede estar insatisfecho, pero todos o es-
tan.

Laventaja principa de lavotacion es que se cierrala cuestion y se puede seguir adelante. Pero e arreglo
se hace por un conteo de votos, en lugar de un didlogo racional que conduzca a todos a la misma conclu-
sion. Cuanto més experiencia tiene la gente en proyectos de fuente abierta, les encuentro menos dispues-
tasaquerer arreglar las cuestiones por medio de lavotacion. Trataran primero de explorar |las soluciones
gue previamente no hayan sido consideradas, o entrar en soluciones de compromiso més gjustadas de lo
gue planearon en un comienzo. Hay varias técnicas para prevenir una votacion prematura. La més obvia
es decir simplemente "no creo que ya estemos listos para una votacion”, y explicar por qué no. Laotra
es pedir que sin compromiso se levanten las manos. Si la respuesta tiende claramente hacia un lado, ne-
cesariamente va ainclinar al otro grupo a querer encontrar soluciones de compromiso, obviando asi la
necesidad de la votacién formal. Pero la manera mas efectiva es simplemente ofrecer una solucion nue-
Va, 0 Un nuevo punto de vista para una sugerencia antigua, de modo que la gente se re-conecte con los
temas en lugar de repetir meramente |0s mismos argumentos.

http://en.wikipedia.org/wiki/Voting_system#List_of_systems

Infraestructura Social y Politica

En agunos casos raros, todos pueden concordar que las soluciones de compromiso presentadas son pe-
rores que cualquiera de las soluciones en consideracion. Cuando esto ocurre, la votacion no es tan obje-
table, por un lado porque es muy probable que se vaallegar a una solucién superior, y por otro porque
lagente no se vaadesanimar con €l resultado, cualquiera sea la opcidn que gane. AUn en estos casos, no
hay que apurarse en votar. La discusion que arriba en una votacion es lo que educa al electorado, y dete-
ner pronto la discusién puede disminuir la calidad del resultado.

(Fijarse que este consgjo de ser reacio alas votaciones no se aplican ala votacion sobre cambio-inclu-
sidn que se describe en “ Stabilizing a Release” en Capitulo 7, Packaging, Releasing, and Daily Devel op-
ment. Alli, lavotacion es mas bien un mecanismo de comunicacion, un medio de registrar € propio
compromiso en el proceso de revision de cambio de modo que todos puedan decir cuanta revision hare-
cibido un cambio dado.)

¢,Quién Vota?

Al tener un sistema de votacién aparece la cuestion del electorado: ¢A quién le corresponde votar? Este
asunto puede convertirse en delicado, porque fuerza a que el proyecto reconozca oficialmente que hay
gente con mayor Compromiso, 0 Con Mejores apreciaciones que |os otros.

Lamejor solucién es simplemente tomar la distincién existente, el acceso alos commits, y asociar los
privilegios del voto en eso. En proyectos en que existan accesos completos y parciales alos commits, la
cuestion de permitir €l voto alos que tienen commit parcial dependerd en gran manera de |os procesos
por los que el commit parcial fue otorgado. Si el proyecto lo maneja con liberalidad, por jemplo como
una manera de mantener muchas herramientas de contribucion de terceras partes en el repositorio, en-
tonces debe dejarse en claro que el acceso al commit parcial hace referencia alos commits, no alavota-
cion. Naturalmente laimplicacion inversa se mantiene: puesto que los que tienen commit completo ten-
drén privilegios de votacion, deben elegirse no solo como programadores, sino también como miembros
del electorado. Si alguien muestra tendencias disruptivas u obstruccionistas en lalista de correo, €l gru-
po debe ser muy cauto en incluirlo entre los que hacen commits, augue sea una persona capacitada técni-
camente.

E sistema de votacion debe ser usado para elegir alos nuevos miembros que hacen commit, sea comple-
to o parcial. Y aqui aparece unade las circunstancias raras en donde el voto secreto es apropiado. No
pueden ponerse |os votos paralos que hacen commits en una lista de correo pablica, porque se pueden
herir los sentimientos y la reputacién de un candidato. En lugar de eso, la forma comun es que los que
tienen voto lo pongan en una lista de correo privada donde solamente estén |os que pueden hacer com-
mits, para proponer que alguien sea habilitado para hacer commits. De esta manera todos pueden expre-
sarse libremente, sabiendo que la discusién es privada. A menudo no habra desacuerdo, y no se necesita-
ravotar. Luego de esperar unos dias para asegurarse que todos tuvieron oportunidad de responder, €
proponente envia un mail al candidato y le ofrece el acceso alos commits. Si hay desacuerdo, seinicia
una discusién como para cualquier otro asunto, con la posibilidad de terminar en una votacién. Para que
este proceso sea abierto y transparente, tambien tiene que ser secreto € hecho que hay una discusion en
curso. Si la persona en consideracion sabe lo que esta ocurriendo, y luego no se le ofrece un acceso de
commit, puede concluir que é ha perdido el voto, y sentirse herido por ello. Por supuesto, si alguien ex-
plicitamente pide el acceso a commit, entonces no hay nada que hacer sino considerar la propuestay ex-
plicitamente aceptarle o rechazarle. Si ocurre lo segundo, tiene que hacerse con sumo tacto, con una ex-
plicacion clara: "Nos agradan tus aportes, pero todavia no hemos visto lo suficiente”, o "Hemos tenido
en cuenta todos tus aportes, pero se han tenido que hacer considerables gjustes antes de poder aplicarlos,
por lo que todavia no nos sentimos confiados para darte el acceso al commit. Esperamos que esto cam-
bie con el tiempo". Recordar que lo que se dice puede caer como un golpe, dependiendo del grado de
confianza que se tenga con la persona. Tratar de verlo desde su punto de vista, en e momento que se es-
cribe el mail.

Puesto que agregar un nuevo miembro que pueda hacer commits es una decision mas secuencial que
otras decisiones, algunos proyectos tienen requerimientos especiales para el voto. Por gemplo, puede re-
guerirse que la propuesta reciba por lo menos n votos positivos y que no tenga ningn voto negativo, o
que cierta supermayoria vote a favor. Los parametros exactos no son importantes; laidea principal es

65

Infraestructura Social y Politica

gue €l grupo debe ser cuidadoso al otorgar acceso alos commits. Similarmente, o todavia més estricta-
mente, se aplican reguerimientos especiales ala votacion para quitar el acceso alos commits, y ojala
gue eso nunca sea necesario. Ver* Committers’ en Capitulo 8, Coordinando a los Voluntarios para mas
aspectos sobre la no votacion para agregar o quitar acceso alos commits.

Encuestas Versus Votaciones

Para ciertas clases de votaciones, puede ser Util expandir el electorado. Por gemplo, si 1os desarrollado-
res no tienen unaidea clara para decidir s unainterfase dada se adapta al modo como la gente realmente
usa €l software, una solucion es hacer una votacién entre todos |os suscriptos en lalista de correo del
proyecto. Estas son real mente encuestas mas que votaciones, pero los desarrolladores pueden acordar
gue los resultados sean vinculantes. Como en cualquier votacion, hay que asegurarse de informar alos
participantes que hay una opcidn escrita: si aalguien se le ocurre unaopcion mejor que no estaen lalis-
ta, su respuesta puede llegar a ser € resultado més importante de la votacion.

Vetos

Algunos proyectos permiten un tipo especial de voto que se conoce como veto. El veto esla manera que
tiene un desarrollador para detener un cambio apresurado o mal considerado, por o menos por un tiem-
po suficiente para que todos puedan discutirlo mas. Entender €l veto como algo que esta entre una obje-
cion fuertey unadiscusion sin fin. El sentido exacto del veto varia de un proyecto a otro. Algunos pro-
yectos hacen que sea dificil contrarrestar un veto; otros permiten que sea superado por el voto de una
simple mayoria, quizas luego de una forzada demora producida por més discusion. Un veto debe ser
acompafiado por una explicacion exhaustiva; €l veto presentado sin esa explicacion debe ser considerado
invalido.

Junto con los vetos se introduce el problema del abuso del veto. A veces los desarrolladores estan dema-
siado ansiosos en levantar la presion con el pedido de veto, cuando |o que realmente se requiere es mas
discusion. Se puede evitar €l abuso del veto empezando por ser uno mismo contrario a uso del veto, y
haciendo notar con tacto cuando alguien usa el veto muy a menudo. Si fuera necesario, se puede recor-
dar para el grupo que los vetos tienen fuerza de obligacion siempre y cuando el grupo esté de acuer-
do—después de todo, si una gran mayoria de desarrolladores quieren X, de una u otra manera van a con-
seguir X. O bien €l desarrollador que propuso €l veto lo retira, o € grupo vaa quitarle fuerza al signifi-
cado del veto.

A veces se escribe un "-1" para contabilizar €l veto. Esta costumbre viene de la Fundacién del Software
Apache, quienes tienen un proceso muy estructurado de votos y votaciones, que esta en
http://www.apache.org/foundation/voting.html. Las normas de Apache se han difundido a otros proyec-
tos, y se pueden ver sus acuerdos usados de distinta forma en muchos lugares del mundo de lafuente
abierta. Técnicamente"-1" no siempreindica que hay un veto formal de acuerdo alas normas de Apa-
che, pero informamente se considera que representa un veto, o por 1o menos una objecién muy fuerte.

Igual que con las votaciones, l0s vetos se pueden aplicar con efectos retroactivos. No es correcto recha
zar un veto porgue & cambio en cuestion haya sido puesto en commit, 0 porque la accion esta asumida
(ano ser que setrate de algo irrevocable, como por ejemplo una edicion de prensa). Por otro lado, un ve-
to que llega semanas, 0 meses tarde no tiene la posibilidad de que se o tome muy en serio, ni tendria
que ser asi.

Tomando Nota de Todo

En cierto momento, el nimero de acuerdosy arreglos que circulan por € proyecto pueden llegar a ser
tan grandes que se necesita registrarlos en algun lugar. Y paradar legitimidad a esos documentos, hay
que tener bien claro que estan basados €l las discusiones de |as listas de correo y en acuerdos que ya es-
taban en vigencia. Cuando se los escribe, se hace referencia alas lineas de los archivos de lalista de co-
rreo y cada vez que no se esta seguro sobre un punto, se pregunta de nuevo. El documento no debe con-
tener sorpresas: Este no es fuente de los acuerdos, sino solamente la descripcion de ellos. Por supuesto,

66

http://www.apache.org/foundation/voting.html

Infraestructura Social y Politica

si es aceptado, la gente comenzara a citarlo como si fuera una fuente de autoridad, pero eso sélo signifi-
caque reflgja con exactitud la voluntad de todos los del grupo.

Este es el documento aludido “Pautas de Desarrollo” en Capitulo 2, Primeros Pasos. Naturalmente,
cuando el proyecto recién comienza, se tendra que esbozar una guia, sin que por esto se excluyala con-
feccion de una posterior historiadel proyecto. Pero, a medida que la comunidad madura, se pueden ha-
cer gustes del lengugje parareflejar |la manerafinal alaque se hallegado.

No se debe pretender que uno lo hadicho todo. Ningin documento puede captar todo lo que la gente ne-
cesita saber para participar en un proyecto. Muchos de |os acuerdos del proyecto permanecen técitos,
nunca explicitados, sin embargo aceptados por todos. Algunas cosas son muy obvias paraincluirlas, y
resultarian distractivas a lado del material que no es obvio y esimportante. Por ejemplo, no tiene senti-
do escribir en la guia unainstruccién como " Sea educado y respetuoso con los otros miembros de lalista
de correos, y no incite alas discusiones acaloradas' o "Escriba cddigo sin errores, clarosy limpios." Por
supuesto que son cosas deseables, pero no existe un universo concebible donde estas cosas no sean de-
seables, por 1o que no vale la penamencionarlas. Si alguien es grosero en lalista de correos, o escribe €l
codigo con errores, no van adejar de hacerlo solo porque laguiadel proyecto lo dice. Estas situaciones
requieren atencién en el momento que aparecen, y no bastan las normas generales que dicen que hay que
ser buenos. Ademas, si el proyecto tiene lineas especificas sobre como escribir un codigo bueno, enton-
ces esas | ineas de la guia deber escribirse con todo el detalle que sea posible.

Una buena manera de determinar qué debe incluirse en el documento es referirse alas preguntas que los
recién llegados hacen, y alas quejas de |os desarrolladores con experiencia. Esto no quiere decir que ne-
cesariamente tienen que convertirse en un informe FAQ—posiblemente el documento necesita una es-
tructura narrativa mas coherente que la que puede ofrecer el FAQ. Tiene entonces que seguir €l mismo
principio basado en la practica, que hay que incluir asuntos que realmente se producen, y no tanto tratar
de anticiparse alos asuntos que pueden producirse.

Si el proyecto tiene un dictador benévolo, o si tiene miembros con poderes especiales (presidente, secre-
tario general, o lo que sea), entonces el documento es una buena oportunidad de escribir |os procedi-
mientos de la sucesion de poderes. A veces eso puede ser tan simple como nombrar cierta gente como
reemplazantes en el caso en que el DB abandone el proyecto por algunarazén. Generalmente, si hay un
DB, es solo é quien puede decidir el nombre de un sucesor. Si se elige una comision, entonces el proce-
dimiento de la eleccién y el nombramiento de los integrantes de la comision tiene que estar descrito en

el documento. Si al comienzo no existe un procedimiento, entonces hay que conseguir un consenso en la
lista de correos antes de escribir sobre el procedimiento. Hay gente que puede ser sensible con las es-
tructuras jerarquicas, por 1o que el asunto tiene que ser tratado con delicadeza.

Quizas lo mas importante es dgjar en claro que las reglas pueden ser reconsideradas. Si 10s acuerdos des-
critos en el documento comienzan afrenar el proyecto, recordar atodos que fue pensado como unarefle-
xién viviente de las intenciones del grupo, no para provocar frustracion y blogueo. Si alguien toma por
habito pedir que las reglas se reconsideren cada vez que unaregla se considera, no siempre conviene de-
batir el tema con ella—a veces el silencio eslamejor tactica. Si hay mas de uno que se une alas qugjas,
la campana ha sonado, y seré |6gico suponer que algo necesita ser cambiado. Si nadie se une ala queja,
entonces esa persona no representa a nadie, y las reglas quedaran como estan.

Dos buenos ejempl os de una guia para un proyecto es Subversion hacki ng. ht m en
http://svn.collab.net/repos/svn/trunk/www/hacking.html, y los documentos de gobierno de la Fundacion
de Software Apache, en http://www.apache.org/foundation/how-it-works.html y
http://www.apache.org/foundation/voting.html. La Fundacion de Software A pache es de hecho una co-
leccion de proyectos de software, organizada legalmente como una corporacion sin fines de lucro, de
modo que sus documentos tienden a describir los procedimientos de gobierno mas que las convenciones
de desarrollo. Vae lapenaleerlas, porque representan una experiencia acumulada en muchos proyectos
de fuente abierta

67

http://svn.collab.net/repos/svn/trunk/www/hacking.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/voting.html

Capitulo 5. Dinero

Este capitulo examina como conseguir fondos en un entorno de software libre. Estadirigido no solo a
los desarrolladores que se les paga por trabajar en proyectos de software libre, sino tambien alos direc-
tores, quienes necesitan comprender la dinamica social de el entorno de desarrollo. En las secciones que
siguen, el destinatario ("tu") significatanto un desarrollador que cobra como a aquel que coordinaatales
desarrolladores. El consgjo a menudo serd el mismo para ambos; cuando no sea asi, la audiencia preten-
dida quedara claracon el contexto.

Los fondos corporativos de un desarrollo de software libre no son un nuevo fenomeno. Muchos de los
desarrollos han estado siempre informal mente subvencionados. Cuando un administrador de sistemas es-
cribe una herramienta de andlisis de sistemas para ayudarle en su trabajo, entonces la pone online'y con-
sigue corregir bugsy contribuciones con nuevas caracteristicas de otros administradores de sistemas, o
gue ha ocurrido es que se ha creado un consorcio no oficial. Los fondos del consorcio provienen de los
sueldos de los sysadmins, y su espacio de oficinay ancho de banda son donados, aungue desconociéndo-
lo la organizacion parala que ellos trabajan. Aquellas organizaciones se benefician de lainversion aun-
que €ellas, institucionalmente no son conscientes de ello al principio.

Hoy ladiferencia, es que muchos de estos esfuerzos estan siendo formalizados. Las corporaciones se es-
tan concienciando de los beneficios de el software open source, y por ello empiezan ainvolucrarse ellas
mismas en su desarrollo. Los desarrolladores tambien llegan a esperar que los proyectos importantes
atraigan al menos donaciones, y posiblemente incluso sponsors de gran duracién. Mientras que la pre-
senciadel dinero no hacambiado la dindmicabasicadel desarrollo del software libre, ha cambiado mu-
cho laescalaalacual ocurren las cosas, ambas en términos de nimero de desarrolladores y tiempo por
desarrollador. Tambien hatenido efecto en como son organizados los proyectos, y en como las partes
envueltas en ellos interactuan. La cuestion no es meramente sobre como se gasta el dinero, o en medir
como se devuelven lasinversiones. Sino tambien en las administracionesy procesos: como pueden las
estructuras de mando jerarquico de las corporaciones y las comunidades de voluntarios semi-
descentralizados de proyectos de software libre trabajar productivamente uno con otro? ¢Tendran ellos
gue acordar incluso € significado de "productivo"?

El patrocinio financiero es, en general, bienvenido por las comunidades de desarrollo de open source.
Puede reducir la vulnerabilidad de un proyecto alas fuerzas del Caos, €l cual arrebata tantos proyectos
antes de que ellos salgan alatierra, y de ahi puede hacer ala gente mas dispuesta adarle a software una
oportunidad; ellos sienten que estan invirtiendo su tiempo en algo que todavia les llevara seis meses des-
de ahora. Después de todo, la credibilidad es contagiosa, hasta cierto punto. Cuando se dice, IBM apoya
un proyecto Open Source, la gente méas 0 menos asume que a proyecto no se le permitirafallar, y su
buena voluntad resultante dedicara | os esfuerzos a ello para que pueda hacerse como una profecia que se
cumple por su propia natural eza.

Sin embargo, los fondos tambien traen una percepcion de control. Si no se manejan cuidadosamente, el
dinero puede dividir un proyecto en grupos incluyentes y grupos excluyentes de desarrolladores. Si los
voluntarios no remunerados tienen el sentimiento que las decisiones de disefio o adicidn de caracteristi-
cas estan simplemente disponibles para el mejor postor, se marcharan a un proyecto que se parezca mas
aunameritocraciay menos a un trabajo sin pagar para el beneficio de alguien. Puede que ellos nunca se
guejen patentemente en las listas de correo. En vez de eso, simplemente habrd menosy menos ruido de
fuentes externas, como los voluntarios gradual mente pararan de intentar ser tomados seriamente. El ru-
mor de la actividad a pequefia escala continuard, en laforma de informes de fallos y ocasionalmente pe-
guefios arreglos. Pero no habra ninguna contribucidn con gran codigo o participacion externa en discu-
siones de disefio. La gente siente que es o que se esperade ellos, y viven (0 se deprimen) en esas espe-
ranzas.

Aunque el dinero necesita ser usado cuidadosamente, esto no significa que no se pueda comprar influen-
cia. Desde luego puede. El truco es que no puede comprar lainfluencia directamente. En unatransacion
comercial sencilla, cambias dinero por lo que quieras. Si necesitas afiadir una caracteristica, firmas un

contrato, pagas por ello, y 1o tienes hecho. En un proyecto Open Source no es tan simple. Tu puedes fir-

68

Dinero

mar un contrato con algunos desarrolladores, pero ellos serian idiotas consigo mismos, y tu, si ellos ga-
rantizan que el trabajo por € que tu has pagado serd aceptado por la comunidad de desarrollo simple-
mente porque tu pagaste por él. El trabajo Unicamente puede ser aceptado por sus propios méritos, y es
como encgjaen lavision de la comunidad por el software. Puede que tengas algo que decir en esta vi-
sién, pero no seréslaUnicavoz.

Por lo tanto, € dinero no puede comprar influencia, pero puede comprar cosas que llevan a lainfluencia
El gemplo més obvio son los programadores. Si 1os buenos programadores son contratados, y aguantan
bastante como para conseguir experiencia con el softwarey credibilidad en la comunidad, entonces ellos
pueden influenciar en el proyecto de la misma manera que cualquier otro miembro. Tendran voto o si
hay muchos de €llos, tendrén un blogue de votaciones. Si ellos son respetados en el proyecto, tendran in-
fluencia més alla de sus votos. No hay necesidad de que |os desarrolladores con sueldo disimulen sus
motivos, tampoco. Después de todo, todo € mundo que quiere que se haga un cambio en el softwarelo
quiere por algunarazon. Las razones de tu compafiia no son menos legitimas que las de cualquiera. Es
simplemente que el peso dado alos objetivos de tu compafia serd determinado por el estatus de susre-
presentantes en el proyecto, no por el tamafio de la compafiia, presupuesto o plan de negocios.

Tipos de participacion

Existen multiples razones diferentes por las cuales |os proyectos open source consiguen fondos. Los ele-
mentos de esta lista no se excluyen mutuamente; a menudo, la financiacién de un proyecto sera el resul-
tado de muchos, o incluso todas de estas motivaciones:

Compartiendo la carga
Ditintas organizaciones con necesi dades de software similares, a menudo se encuentran asi mis-
mas duplicando esfuerzos, tanto escribiendo cédigo interno similar, o comprando productos simila-
res de vendedores propietarios. Cuando se dan cuenta de o que ocurre, las organi zaciones pueden
reunir sus recursosy crear (o entrar) en un proyecto Open Source adaptado a sus necesidades. Las
ventajas son obvias: el costo de desarrollo se divide pero los beneficios se acumulan entre todos.
Aunque este escenario parezca mas intuitivo para no lucrarse, puede crear un sentido estratégico in-
cluso paralos competidores que quieren sacar beneficio.

Ejemplos: http://www.openadapter.org/, http://www.koha.org/

Aumentando servicios
Cuando una compafiia vende servicios de los cual es depende, 0 se hacen més atractivos por, progra-
mas open source particulares, naturalmente en los intereses de esta compafiia esta asegurar que esos
programas sean activamente mantenidos.

Ejemplo: CollabNet's [http://www.collab.net/] soporte de http://subversion.tigris.org/ (descargo: es-
te es mi trabgjo diario, pero es tambien un g emplo perfecto de este model o).

Apoyando las ventas de hardware
El valor de los ordenadores y sus componentes esta directamente relacionado con la cantidad de
software disponible para ellos. Los vendedores de hardware no sdlo venden maquinas completas,
pero tambien los creadores de dispositivos periféricos y microchips han descubierto que teniendo
software libre de gran calidad para gjecutarse en su hardware es tambien una parte importante para
los clientes.

Socavando ala competencia
A algunas empresas patrocinan ciertos proyectos OSS como una manera de socavar 1os productos
de la competencia, que puede que sean o no OSS. Quitar cuotas de mercado de la competenciano es
por lo general la Unicarazon parainvolucrarse en un proyecto, pero si puede ser un factor importan-
te.

Ejemplo: http://www.openoffice.org/ (no, esta no esla Unicarazoén por la cual OpenOffice existe,

69

http://www.openadapter.org/
http://www.koha.org/
http://www.collab.net/
http://www.collab.net/
http://subversion.tigris.org/
http://www.openoffice.org/

Dinero

pero el software en si es parcialmente una respuesta a Microsoft Office).

Marketing
Ser asociado con un proyecto OSS popular puede que genere muy buena publicidad.

Licencias Duales
Licenciamiento Dual es una préactica bajo la cua se ofrece el software utilizando unalicencia pro-
pietaria tradicional para clientes quienes deseen revenderlo como parte de otra aplicacion propieta-
ria, y simultaneamente bajo unalicencialibre para aquell os quienes pretenden utilizarlo bajo los ter-
minos del software libre (més en “Dual Licensing Schemes” en Capitulo 9, Licencias, Copyrightsy
Patentes). Si la comunidad de desarrolladores de software libre es activa, €l programarecibe los be-
neficios del desarrollo y busqueda de fallos de amplio espectro mientras la compafiia sigue obte-
niendo beneficios por las regalias para mantener algunos desarrolladores a tiempo compl etro.

Dos g emplos muy conocidos son MySQL [http://www.mysqgl.com/], creadores de |a base de datos
con el mismo nombrey Sleepycat [http://www.sleepycat.com/], que distribuye y brinda soporte para
la base de datos Berkeley. No es ninguna coincidencia que las dos sean empresas de bases de datos.
L as bases de datos suelen ser integradas dentro de otras aplicaciones en lugar de ser vendidas direc-
tamente alos usuarios, por |0 que son perfectas para el modelo de licencia dual.

Donaciones
Un proyecto popular puede a veces obtener contribuciones significativas, tanto de individuos como
de organizaciones, solo con colocar un botdn de donaciones en linea o a veces vendiendo productos
promocionales del proyecto como tazas de cafe, camisetas, alfombrillas, etc. Pero precaucion, si €l
proyecto ha de aceptar donaciones hay que planear como sera utilizado ese dinero antes de que lle-
guey publicar esto en la paginaweb del proyecto. Las discusiones acerca de hacia donde debe ser
dirigido el dinero tienden a ser mas distendidas antes de que este se tenga; de todas formas, si exis-
ten importantes desacuerdos, es mejor averiguarlo mientras se sigue siendo algo académico.

El mddelo de negocio del beneficiario no es el Gnico factor en como este se relaciona con la comunidad
open source. Larelacion historica entre los dos es tambien importante: ¢inicio laempresa el proyecto o
se ha unido luego? En cualquiera de los dos casos, €l beneficiario debera ganar credibilidad, pero, no
sorprendentemente, sera necesario un mayor esfuerzo en el segundo caso. La organizacion debe tener
claros objetivos con respecto a proyecto. ¢l ntentala empresa mantener una posicién de liderazgo o sim-
plemente intenta ser una voz dentro de la comunidad para guiar sin gobernar la direccion del proyecto?
¢0O solo desea tener un par de colaboradores que sean capaces de resolver |os problemas de |os usuarios
eincluir sus cambios en la distribucién publica sin mucho jaleo?

Mantened estas preguntas en mente mientras continua leyendo las siguientes directrices. Estan pensadas
para ser aplicadas a cualquier tipo de participacion empresarial dentro de un proyecto open source, pero
teniendo en cuenta que todo proyecto es un entorno humano, por o cual, ninguno esigual. Hasta cierto
grado, habré que seguir nuestro instinto, pero seguir estos principios aumentaran las posibilidades de que
las cosas funcionen como queremos.

Contratos Indefinidos

Si estadirigiendo un equipo de desarrolladores en un proyecto de software libre, intente mantenerlos el
tiempo suficiente para que adquieran experienciatécnicay politica—un par de afios como minimo. Por
supuesto gque ninguin proyecto, sea de cédigo abierto o cerrado, se beneficiadel intercambio incesante de
programadores. La necesidad de que un recien llegado deba aprender todo de nuevo cada vez puede
crear un ambiente disuasorio. Pero el castigo puede ser mayor para un proyecto de cédigo abierto porque
quienes abandonan €l proyecto no sdlo o hacen con el conocimiento del codigo, tambien sellevan un
status en la comunidad y las relaciones que hayan hecho.

The credibility a devel oper has accumulated cannot be transferred. To pick the most obvious example,
an incoming developer can't inherit commit access from an outgoing one (see “Money Can't Buy You
Love” later in this chapter), so if the new developer doesn't already have commit access, he will have to

70

http://www.mysql.com/
http://www.mysql.com/
http://www.sleepycat.com/
http://www.sleepycat.com/

Dinero

submit patches until he does. But commit access is only the most measurable manifestation of lost in-
fluence. A long-time devel oper also knows all the old arguments that have been hashed and rehashed on
the discussion lists. A new devel oper, having no memory of those conversations, may try to raise the to-
pics again, leading to aloss of credibility for your organization; the others might wonder "Can't they re-
member anything?' A new developer will aso have no political feel for the project's personalities, and
will not be able to influence development directions as quickly or as smoothly as one who's been around
along time.

La credibilidad acumulada por un desarrollador no puede ser transferida. El jemplo més abvio es que
un desarrollador recien incorporado no puede heredar los mismo accesos a cédigo de quien se va (més
en “Money Can't Buy You Love"), asi que s €l nuevo desarrollador no tiene permisos pararealizar cam-
bios, deberd enviar parches hasta que tenga estos permisos. Pero este nivel de acceso es solo una mani-
festacion cuantitativa de la perdida de influencia. Un desarrollador veterano tambien conoce los vigjos
temas que han sido tratados unay otra vez en las listas de discusion. Uno nuevo, sin tener conocimiento
de estas conversaciones quizas intente sacar a flote de nuevo estos temas, Ilevando a una perdida de cre-
dibilidad; otros pueden que piensen: " ¢Acaso esta gente no puede recordar nada?’. Una nueva persona
tampoco tendra ninguna sensacion politica hacia las personalidades del proyecto, y no podréainfluenciar
ladireccion del desarrollo tan répida o sin problemas como alguien quien llevalargo tiempo en e pro-
yecto.

Train newcomers through a program of supervised engagement. The new developer should be in direct
contact with the public development community from the very first day, starting off with bug fixes and
cleanup tasks, so he can |learn the code base and acquire a reputation in the community, yet not spark
any long and involved design discussions. All the while, one or more experienced devel opers should be
available for questioning, and should be reading every post the newcomer makes to the devel opment
lists, even if they're in threads that the experienced developers normally wouldn't pay attention to. This
will help the group spot potential rocks before the newcomer runs aground. Private, behind-the-scenes
encouragement and pointers can also help alot, especially if the newcomer is not accustomed to massi-
vely parallel peer review of his code.

When CollabNet hires a new developer to work on Subversion, we sit down together and pick some
open bugs for the new person to cut his teeth on. Wel'l discuss the technical outlines of the solutions,
and then assign at |east one experienced devel oper to (publicly) review the patch that the new developer
will (also publicly) post. We typically don't even look at the patch before the main devel opment list sees
it, although we could if there were some reason to. The important thing is that the new developer go th-
rough the process of public review, learning the code base while simultaneously becoming accustomed
to receiving critiques from complete strangers. But we try to coordinate the timing so that our own re-
view comes immediately after the posting of the patch. That way the first review the list seesis ours,
which can help set the tone for the others' reviews. It also contributes to the idea that this new personis
to be taken serioudly: if others see that we're putting in the time to give detailed reviews, with thorough
explanations and references into the archives where appropriate, they'll appreciate that aform of training
is going on, and that it probably signifies along-term investment. This can make them more positively
disposed toward that developer, at least to the degree of spending alittle extra time answering questions
and reviewing patches.

Appear as Many, Not as One

Y our developers should strive to appear in the project's public forums as individual participants, rather
than as a monolithic corporate presence. Thisis not because there is some negative connotation inherent
in monolithic corporate presences (well, perhaps there is, but that's not what this book is about). Rather,
it's because individuals are the only sort of entity open source projects are structurally equipped to deal
with. Anindividual contributor can have discussions, submit patches, acquire credibility, vote, and so
forth. A company cannot.

Furthermore, by behaving in a decentralized manner, you avoid stimulating centralization of opposition.
Let your devel opers disagree with each other on the mailing lists. Encourage them to review each other's
code as often, and as publicly, asthey would anyone else's. Discourage them from always voting as a
bloc, because if they do, others may start to feel that, just on general principles, there should be an orga-

71

Dinero

nized effort to keep them in check.

There's a difference between actually being decentralized and simply striving to appear that way. Under
certain circumstances, having your developers behave in concert can be quite useful, and they should be
prepared to coordinate behind the scenes when necessary. For example, when making a proposal, having
several people chime in with agreement early on can help it along, by giving the impression of agro-
wing consensus. Others will feel that the proposal has momentum, and that if they were to object, they'd
be stopping that momentum. Thus, people will object only if they have a good reason to do so. There's
nothing wrong with orchestrating agreement like this, as long as objections are still taken seriously. The
public manifestations of a private agreement are no less sincere for having been coordinated beforehand,
and are not harmful aslong as they are not used to prejudicialy snuff out opposing arguments. Their
purpose is merely to inhibit the sort of people who like to object just to stay in shape; see “ Cuanto més
blando sea €l tema, més largo sera el debate” in Capitulo 6, Communications for more about them.

Be Open About Your Motivations

Be as open about your organization's goals as you can without compromising business secrets. If you
want the project to acquire a certain feature because, say, your customers have been clamoring for it, just
say so outright on the mailing lists. If the customers wish to remain anonymous, as is sometimes the ca-
se, then at least ask them if they can be used as unnamed examples. The more the public devel opment
community knows about why you want what you want, the more comfortable they'll be with whatever
you're proposing.

This runs counter to the instinct—so easy to acquire, so hard to shake off—that knowledge is power, and
that the more others know about your goals, the more control they have over you. But that instinct would
be wrong here. By publicly advocating the feature (or bugfix, or whatever it is), you have already laid
your cards on the table. The only question now is whether you will succeed in guiding the community to
share your godl. If you merely state that you want it, but can't provide concrete examples of why, your
argument isweak, and people will start to suspect a hidden agenda. But if you give just afew real-world
scenarios showing why the proposed feature isimportant, that can have a dramatic effect on the debate.

To see why thisis so, consider the alternative. Too frequently, debates about new features or new direc-
tions are long and tiresome. The arguments people advance often reduce to "I personally want X," or the
ever-popular "In my years of experience as a software designer, X is extremely important to users/ a
useless frill that will please no one." Predictably, the absence of real-world usage data neither shortens
nor tempers such debates, but instead allows them to drift farther and farther from any mooring in actual
user experience. Without some countervailing force, the end result is aslikely as not to be determined by
whoever was the most articulate, or the most persistent, or the most senior.

As an organization with plentiful customer data available, you have the opportunity to provide just such
acountervailing force. Y ou can be a conduit for information that might otherwise have no means of rea-
ching the development community. The fact that that information supports your desiresis nothing to be
embarrassed about. Most devel opers don't individually have very broad experience with how the softwa-
re they write is used. Each developer uses the software in her own idiosyncratic way; as far as other usa-
ge patterns go, she's relying on intuition and guesswork, and deep down, she knows this. By providing
credible data about a significant number of users, you are giving the public development community so-
mething akin to oxygen. Aslong as you present it right, they will welcome it enthusiastically, and it will
propel things in the direction you want to go.

The key, of course, is presenting it right. It will never do to insist that simply because you deal with a
large number of users, and because they need (or think they need) a given feature, therefore your solu-
tion ought to be implemented. Instead, you should focus your initial posts on the problem, rather than on
one particular solution. Describe in great detail the experiences your customers are encountering, offer
as much analysis as you have available, and as many reasonable solutions as you can think of. When
people start speculating about the effectiveness of various solutions, you can continue to draw on your
data to support or refute what they say. Y ou may have one particular solution in mind al along, but don't
singleit out for special consideration at first. Thisis not deception, it is simply standard "honest broker"

72

Dinero

behavior. After all, your true goal isto solve the problem; a solution is merely ameansto that end. If the
solution you prefer really is superior, other developers will recognize that on their own eventually—and
then they will get behind it of their own free will, which is much better than you browbeating them into
implementing it. (Thereis also the possibility that they will think of a better solution.)

Thisis not to say that you can't ever come out in favor of a specific solution. But you must have the pa-
tience to see the analysis you've aready done internally repeated on the public development lists. Don't
post saying "Y es, we've been over all that here, but it doesn't work for reasons A, B, and C. When you
get right down to it, the only way to solvethisis..." The problem is not so much that it sounds arrogant
asthat it gives the impression that you have already devoted some unknown (but, people will presume,
large) amount of analytical resources to the problem, behind closed doors. It makes it seem as though ef-
forts have been going on, and perhaps decisions made, that the public is not privy to, and that is arecipe
for resentment.

Naturally, you know how much effort you've devoted to the problem internally, and that knowledgeiis,
in away, a disadvantage. It puts your developersin aslightly different menta space than everyone else
on the mailing lists, reducing their ability to see things from the point of view of those who haven't yet
thought about the problem as much. The earlier you can get everyone else thinking about thingsin the
same terms as you do, the smaller this distancing effect will be. Thislogic applies not only to individual
technical situations, but to the broader mandate of making your goals as clear as you can. The unknown
is always more destahilizing than the known. If people understand why you want what you want, they'll
feel comfortable talking to you even when they disagree. If they can't figure out what makes you tick,
they'll assume the worst, at least some of the time.

Y ou won't be able to publicize everything, of course, and people won't expect you to. All organizations
have secrets; perhaps for-profits have more of them, but nonprofits have them too. If you must advocate
acertain course, but can't reveal anything about why, then simply offer the best arguments you can un-
der that handicap, and accept the fact that you may not have as much influence as you want in the dis-
cussion. Thisis one of the compromises you make in order to have a development community not on

your payroll.

Money Can't Buy You Love

If you're a paid developer on a project, then set guidelines early on about what the money can and can-
not buy. This does not mean you need to post twice a day to the mailing lists reiterating your noble and
incorruptible nature. It merely means that you should be on the lookout for opportunities to defuse the
tensions that could be created by money. Y ou don't need to start out assuming that the tensions are there;
you do need to demonstrate an awareness that they have the potential to arise.

A perfect example of this came up in the Subversion project. Subversion was started in 2000 by Collab-
Net [http://www.collab.net/], which has been the project's primary funder since its inception, paying the
salaries of several developers (disclaimer: I'm one of them). Soon after the project began, we hired anot-
her developer, Mike Pilato, to join the effort. By then, coding had aready started. Although Subversion
was still very much in the early stages, it already had a development community with a set of basic
ground rules.

Mike's arrival raised an interesting question. Subversion already had a policy about how a new develo-
per gets commit access. First, he submits some patches to the development mailing list. After enough
patches have gone by for the other committers to see that the new contributor knows what he's doing, so-
meone proposes that he just commit directly (that proposal is private, as described in “Committers”).
Assuming the committers agree, one of them mails the new developer and offers him direct commit ac-
cess to the project's repository.

CollabNet had hired Mike specifically to work on Subversion. Among those who already knew him, the-
re was no doubt about his coding skills or his readiness to work on the project. Furthermore, the volun-
teer developers had avery good relationship with the CollabNet employees, and most likely would not
have objected if we'd just given Mike commit access the day he was hired. But we knew we'd be setting

73

http://www.collab.net/
http://www.collab.net/
http://www.collab.net/

Dinero

aprecedent. If we granted Mike commit access by fiat, we'd be saying that CollabNet had the right to ig-
nore project guidelines, simply because it was the primary funder. While the damage from this would
not necessarily be immediately apparent, it would gradually result in the non-salaried devel opers feeling
disenfranchised. Other people have to earn their commit access—CollabNet just buysit.

So Mike agreed to start out his employment at CollabNet like any other volunteer devel oper, without
commit access. He sent patches to the public mailing list, where they could be, and were, reviewed by
everyone. We also said on the list that we were doing things this way deliberately, so there could be no
missing the point. After a couple of weeks of solid activity by Mike, someone (I can't remember if it was
a CollabNet developer or not) proposed him for commit access, and he was accepted, as we knew he
would be.

That kind of consistency gets you a credibility that money could never buy. And credibility isavaluable
currency to have in technical discussions: it's immunization against having one's motives questioned la-
ter. In the heat of argument, people will sometimes look for non-technical ways to win the battle. The
project's primary funder, because of its deep involvement and obvious concern over the directions the
project takes, presents awider target than most. By being scrupulous to observe al project guidelines
right from the start, the funder makesitself the same size as everyone else.

(See a'so Danese Cooper's blog at http://blogs.sun.com/roller/page/DaneseCooper/20040916 for a simi-
lar story about commit access. Cooper was then Sun Microsystem's " Open Source Diva'—I believe that
was her official titte—and in the blog entry, she describes how the Tomcat development community got
Sun to hold its own devel opers to the same commit-access standards as the non-Sun devel opers.)

The need for the funders to play by the same rules as everyone else means that the Benevolent Dictators-
hip governance model (see “Dictadores Benevolentes’ in Capitulo 4, Infraestructura Social y Politica)
isdightly harder to pull off in the presence of funding, particularly if the dictator works for the primary
funder. Since a dictatorship has few rules, it is hard for the funder to prove that it's abiding by commu-
nity standards, even when it is. It's certainly not impossible; it just requires a project leader who is able
to see things from the point of view of the outside developers, as well asthat of the funder, and act ac-
cordingly. Even then, it's probably a good idea to have a proposal for non-dictatorial governance sitting
in your back pocket, ready to be brought out the moment there are any indications of widespread dissa-
tisfaction in the community.

Contracting

Contracted work needs to be handled carefully in free software projects. Ideally, you want a contractor's
work to be accepted by the community and folded into the public distribution. In theory, it wouldn't mat-
ter who the contractor is, as long as hiswork is good and meets the project's guidelines. Theory and
practice can sometimes match, too: a compl ete stranger who shows up with a good patch will generally
be able to get it into the software. The troubleiis, it's very hard to produce a good patch for a non-trivial
enhancement or new feature while truly being a complete stranger; one must first discussit with the rest
of the project. The duration of that discussion cannot be precisely predicted. If the contractor is paid by
the hour, you may end up paying more than you expected; if heis paid aflat sum, he may end up doing
more work than he can afford.

There are two ways around this. The preferred way is to make an educated guess about the length of the
discussion process, based on past experience, add in some padding for error, and base the contract on
that. It also helps to divide the problem into as many small, independent chunks as possible, to increase
the predictability of each chunk. The other way isto contract solely for delivery of a patch, and treat the
patch's acceptance into the public project as a separate matter. Then it becomes much easier to write the
contract, but you're stuck with the burden of maintaining a private patch for as long as you depend on
the software, or at least for aslong as it takes you to get that patch or equivalent functionality into the
mainline. Of course, even with the preferred way, the contract itself cannot require that the patch be ac-
cepted into the code, because that would involve selling something that's not for sale. (What if the rest of
the project unexpectedly decides not to support the feature?) However, the contract can require a bona
fide effort to get the change accepted by the community, and that it be committed to the repository if the

74

http://blogs.sun.com/roller/page/DaneseCooper/20040916

Dinero

community agrees with it. For example, if the project has written standards regarding code changes, the
contract can reference those standards and specify that the work must meet them. In practice, this
usually works out the way everyone hopes.

The best tactic for successful contracting isto hire one of the project's devel opers—preferably a commit-
ter—as the contractor. This may seem like aform of purchasing influence, and, well, it is. But it's not as
corrupt asit might seem. A developer'sinfluencein the project is due mainly to the quality of his code
and to his interactions with other developers. The fact that he has a contract to get certain things done
doesn't raise his status in any way, and doesn't lower it either, though it may make people scrutinize him
more carefully. Most developers would not risk their long-term position in the project by backing an
inappropriate or widely disliked new feature. In fact, part of what you get, or should get, when you hire
such a contractor is advice about what sorts of changes are likely to be accepted by the community. Y ou
also get adlight shift in the project's priorities. Because prioritization is just a matter of who hastimeto
work on what, when you pay for someone's time, you cause their work to move up in the priority queue
abit. Thisisawell-understood fact of life among experienced open source developers, and at least some
of them will devote attention to the contractor's work simply because it looks like it's going to get done,
so they want to help it get done right. Perhaps they won't write any of the code, but they'll still discuss
the design and review the code, both of which can be very useful. For al these reasons, the contractor is
best drawn from the ranks of those already involved with the project.

Thisimmediately raises two questions: Should contracts ever be private? And when they're not, should
you worry about creating tensions in the community by the fact that you've contracted with some deve-
lopers and not others?

It's best to be open about contracts, when you can. Otherwise, the contractor's behavior may seem stran-
geto others in the community—perhaps he's suddenly giving inexplicably high priority to features he's
never shown interest in in the past. When people ask him why he wants them now, how can he answer
convincingly if he can't talk about the fact that he's been contracted to write them?

At the same time, neither you nor the contractor should act as though others should treat your arrange-
ment as a big deal. Too often |'ve seen contractors waltz onto a development list with the attitude that
their posts should be taken more seriously simply because they're being paid. That kind of attitude sig-
nals to the rest of the project that the contractor regards the fact of the contract—as opposed to the code
resulting from the contract—to be the important thing. But from the other developers' point of view,
only the code matters. At all times, the focus of attention should be kept on technical issues, not on the
details of who is paying whom. For example, one of the devel opers in the Subversion community hand-
les contracting in a particularly graceful way. While discussing his code changesin IRC, he'll mention
as an aside (often in a private remark, an IRC privmsg, to one of the other committers) that he's being
paid for hiswork on this particular bug or feature. But he also consistently gives the impression that he'd
want to be working on that change anyway, and that he's happy the money is making it possible for him
to do that. He may or may not reveal his customer's identity, but in any case he doesn't dwell on the con-
tract. His remarks about it are just an ornament to an otherwise technical discussion about how to get so-
mething done.

That example shows another reason why it's good to be open about contracts. There may be multiple or-
ganizations sponsoring contracts on a given open source project, and if each knows what the others are
trying to do, they may be able to pool their resources. In the above case, the project's largest funder
(CollabNet) is not involved in any way with these piecework contracts, but knowing that someone else
is sponsoring certain bug fixes allows CollabNet to redirect its resources to other bugs, resulting in grea-
ter efficiency for the project as awhole.

Will other developers resent that some are paid for working on the project? In general, no, particularly
when those who are paid are established, well-respected members of the community anyway. No one
expects contract work to be distributed equally among all the committers. People understand the impor-
tance of long-term relationships: the uncertainties involved in contracting are such that once you find so-
meone you can work reliably with, you would be reluctant to switch to a different person just for the sa-
ke of evenhandedness. Think of it thisway: the first time you hire, there will be no complaints, because
clearly you had to pick someone—it's not your fault you can't hire everyone. Later, when you hire the
same person a second time, that's just common sense: you already know him, the last time was success-

75

Dinero

ful, so why take unnecessary risks? Thus, it's perfectly natural to have one or two go-to people in the
community, instead of spreading the work around evenly.

Review and Acceptance of Changes

The community is till important to the success of contract work. Their involvement in the design and
review process for sizeable changes cannot be an afterthought. It must be considered part of the work,
and fully embraced by the contractor. Don't think of community scrutiny as an obstacle to be overco-
me—think of it as afree design board and QA department. It is a benefit to be aggressively pursued, not
merely endured.

Case study: the CVS password-authentication protocol

In 1995, | was one half of a partnership that provided support and enhancements for CV'S (the Concu-
rrent VVersions System; see http://www.cvshome.org/). My partner Jim and | were, informally, the main-
tainers of CVS by that point. But we'd never thought carefully about how we ought to relate to the exis-
ting, mostly volunteer CV S development community. We just assumed that they'd send in patches, and
we'd apply them, and that was pretty much how it worked.

Back then, networked CV S could be done only over aremote login program such asr sh. Using the sa-
me password for CV S access as for login access was an obvious security risk, and many organizations
were put off by it. A major investment bank hired us to add a new authentication mechanism, so they
could safely use networked CV S with their remote offices.

Jim and | took the contract and sat down to design the new authentication system. What we came up
with was pretty simple (the United States had export controls on cryptographic code at the time, so the
customer understood that we couldn't implement strong authentication), but as we were not experienced
in designing such protocols, we still made a few gaffes that would have been obviousto an expert. These
mistakes would easily have been caught had we taken the time to write up a proposal and run it by the
other developers for review. But we never did so, because it didn't occur to usto think of the develop-
ment list as aresource to be used. We knew that people were probably going to accept whatever we
committed, and—because we didn't know what we didn't know—we didn't bother to do the work in avi-
sibleway, e.g., posting patches frequently, making small, easily digestible commitsto a special branch,
etc. The resulting authentication protocol was not very good, and of course, once it became established,
it was difficult to improve, because of compatibility concerns.

Theroot of the problem was not lack of experience; we could easily have learned what we needed to
know. The problem was our attitude toward the volunteer devel opment community. We regarded accep-
tance of the changes as a hurdle to leap, rather than as a process by which the quality of the changes
could be improved. Since we were confident that almost anything we did would be accepted (as it was),
we made little effort to get othersinvolved.

Obviously, when you're choosing a contractor, you want someone with the right technical skills and ex-
perience for the job. But it's al so important to choose someone with atrack record of constructive inte-
raction with the other devel opersin the community. That way you're getting more than just a single per-
son; you're getting an agent who will be able to draw on a network of expertise to make sure the work is
donein arobust and maintainable way.

Funding Non-Programming Activities

Programming isonly part of the work that goes on in an open source project. From the point of view of
the project's volunteers, it's the most visible and glamorous part. This unfortunately means that other ac-
tivities, such as documentation, formal testing, etc., can sometimes be neglected, at least compared to
the amount of attention they often receive in proprietary software. Corporate organizations are someti-
mes able to make up for this, by devoting some of their internal software development infrastructure to
open source projects.

76

http://www.cvshome.org/

Dinero

The key to doing this successfully isto translate between the company's internal processes and those of
the public development community. Such tranglation is not effortless: often the two are not a close
match, and the differences can only be bridged via human intervention. For example, the company may
use a different bug tracker than the public project. Even if they use the same tracking software, the data
stored in it will be very different, because the bug-tracking needs of a company are very different from
those of afree software community. A piece of information that starts in one tracker may need to be re-
flected in the other, with confidential portions removed or, in the other direction, added.

The sections that follow are about how to build and maintain such bridges. The end result should be that
the open source project runs more smoothly, the community recognizes the company's investment of re-
sources, and yet does not feel that the company is inappropriately steering things toward its own goals.

Quality Assurance (i.e., Professional Testing)

In proprietary software development, it isnormal to have teams of people dedicated solely to quality as-
surance: bug hunting, performance and scal ability testing, interface and documentation checking, etc. As
arule, these activities are not pursued as vigorously by the volunteer community on a free software pro-
ject. Thisis partly because it's hard to get volunteer labor for unglamorous work like testing, partly be-
cause people tend to assume that having alarge user community gives the project good testing coverage,
and, in the case of performance and scalability testing, partly because volunteers often don't have access
to the necessary hardware resources anyway.

The assumption that having many usersis eguivalent to having many testersis not entirely baseless.
Certainly there's little point assigning testers for basic functionality in common environments: bugs there
will quickly be found by usersin the natural course of things. But because users are just trying to get
work done, they do not consciously set out to explore uncharted edge cases in the program's functiona-
lity, and are likely to leave certain classes of bugs unfound. Furthermore, when they discover a bug with
an easy workaround, they often silently implement the workaround without bothering to report the bug.
Most insidiously, the usage patterns of your customers (the people who drive your interest in the softwa
re) may differ in statistically significant ways from the usage patterns of the Average User In The Street.

A professional testing team can uncover these sorts of bugs, and can do so as easily with free software as
with proprietary software. The challenge isto convey the testing team's results back to the publicin a
useful form. In-house testing departments usually have their own way of reporting test results, involving
company-specific jargon, or specialized knowledge about particular customers and their data sets. Such
reports would be inappropriate for the public bug tracker, both because of their form and because of con-
fidentiality concerns. Even if your company's internal bug tracking software were the same as that used
by the public project, management might need to make company-specific comments and metadata chan-
gesto theissues (for example, to raise an issue'sinternal priority, or schedule its resolution for a particu-
lar customer). Usually such notes are confidential—sometimes they're not even shown to the customer.
But even when they're not confidential, they're of no concern to the public project, and therefore the pu-
blic should not be distracted with them.

Y et the core bug report itself isimportant to the public. In fact, a bug report from your testing depart-
ment isin some ways more valuable than one received from users at large, since the testing department
probes for things that other users won't. Given that you're unlikely to get that particular bug report from
any other source, you definitely want to preserve it and make it available to the public project.

To do this, either the QA department can file issues directly in the public issue tracker, if they're comfor-
table with that, or an intermediary (usually one of the developers) can "translate” the testing depart-
ment's internal reports into new issuesin the public tracker. Trandation simply means describing the
bug in away that makes no reference to customer-specific information (the reproduction recipe may use
customer data, assuming the customer approvesit, of course).

It is somewhat preferable to have the QA department filing issuesin the public tracker directly. That gi-
ves the public amore direct appreciation of your company's involvement with the project: useful bug re-
ports add to your organization's credibility just as any technical contribution would. It also gives develo-

77

Dinero

persadirect line of communication to the testing team. For example, if the internal QA team is monito-
ring the public issue tracker, a developer can commit afix for a scalability bug (which the developer
may not have the resources to test herself), and then add a note to the issue asking the QA team to seeif
the fix had the desired effect. Expect a bit of resistance from some of the devel opers; programmers have
atendency to regard QA as, at best, a necessary evil. The QA team can easily overcome this by finding
significant bugs and filing comprehensible reports; on the other hand, if their reports are not at least as
good as those coming from the regular user community, then there's no point having them interact di-
rectly with the development team.

Either way, once a public issue exists, the original internal issue should simply reference the public issue
for technical content. Management and paid devel opers may continue to annotate the internal issue with
company-specific comments as necessary, but use the public issue for information that should be availa-
ble to everyone.

Y ou should go into this process expecting extra overhead. Maintaining two issues for one bug is, natu-
rally, more work than maintaining one issue. The benefit is that many more coders will see the report
and be able to contribute to a solution.

Legal Advice and Protection

Corporations, for-profit or nonprofit, are almost the only entities that ever pay attention to complex legal
issuesin free software. Individual devel opers often understand the nuances of various open source licen-
ses, but they generally do not have the time or resources to follow copyright, trademark, and patent law
in detail. If your company has alegal department, it can help a project by vetting the copyright status of
the code, and helping devel opers understand possible patent and trademark issues. The exact formsthis
help could take are discussed in Capitulo 9, Licencias, Copyrightsy Patentes. The main thing is to make
sure that communications between the legal department and the development community, if they happen
at al, happen with amutual appreciation of the very different universes the parties are coming from. On
occasion, these two groups talk past each other, each side assuming domain-specific knowledge that the
other does not have. A good strategy isto have aliaison (usually a developer, or else alawyer with tech-
nical expertise) stand in the middle and trandate for as long as needed.

Documentation and Usability

Documentation and usability are both famous weak spots in open source projects, although | think, at
least in the case of documentation, that the difference between free and proprietary softwareis fre-
quently exaggerated. Nevertheless, it is empirically true that much open source software lacks first-class
documentation and usability research.

If your organization wantsto help fill these gaps for a project, probably the best thing it can dois hire
people who are not regular devel opers on the project, but who will be able to interact productively with
the developers. Not hiring regular developersis good for two reasons. one, that way you don't take deve-
lopment time away from the project; two, those closest to the software are usually the wrong people to
write documentation or investigate usability anyway, because they have trouble seeing the software from
an outsider's point of view.

However, it will still be necessary for whoever works on these problems to communicate with the deve-
lopers. Find people who are technical enough to talk to the coding team, but not so expert in the softwa-
re that they can't empathize with regular users anymore.

A medium-level user is probably the right person to write good documentation. In fact, after the first
edition of this book was published, | received the following email from an open source devel oper named
Dirk Reiners:

One coment on Money: : Docunentation and Usability: when we had sone
noney to spend and decided that a beginner's tutorial was the nopst

78

Dinero

critical piece that we needed we hired a nediumlevel user to wite it.
He had gone through the induction to the systemrecently enough to
renmenber the problens, but he had gotten past them so he knew how to
describe them That allowed himto wite sonething that needed only

m nor fixes by the core developers for the things that he hadn't gotten
right, but still covering the 'obvious' stuff devs would have m ssed.

Hi s case was even better, as it had been his job to introduce a bunch of
ot her people (students) to the system so he conbined the experience of
many people, which is something that was just a |ucky occurrence and is
probably hard to get in npbst cases.

Providing Hosting/Bandwidth

For a project that's not using one of the free canned hosting sites (see “ Soluciones de hospedaje”’ in Ca
pitulo 3, Infraestructura Técnica), providing a server and network connection—and most importantly,
system administration help—can be of significant assistance. Even if thisis all your organization does
for the project, it can be amoderately effective way to obtain good public relations karma, though it will
not bring any influence over the direction of the project.

Y ou can probably expect a banner ad or an acknowledgment on the project's home page, thanking your
company for providing hosting. If you set up the hosting so that the project's web address is under your
company's domain name, then you will get some additional association just through the URL. This will
cause most users to think of the software as having something to do with your company, even if you
don't contribute to development at all. The problem is, the devel opers are aware of this associative ten-
dency too, and may not be very comfortable with having the project in your domain unless you're contri-
buting more resources than just bandwidth. After al, there are alot of placesto host these days. The
community may eventually feel that the implied misallocation of credit is not worth the convenience
brought by hosting, and take the project elsewhere. So if you want to provide hosting, do so—but either
plan to get even more involved soon, or be circumspect about how much involvement you claim.

Marketing

Although most open source devel opers would probably hate to admit it, marketing works. A good mar-
keting campaign can create buzz around an open source product, even to the point where hardheaded co-
ders find themselves having vaguely positive thoughts about the software for reasons they can't quite put
their finger on. It is not my place here to dissect the arms-race dynamics of marketing in general. Any
corporation involved in free software will eventualy find itself considering how to market themselves,
the software, or their relationship to the software. The advice below is about how to avoid common pit-
falsin such an effort; see also “Publicity” in Capitulo 6, Communications.

Remember That You Are Being Watched

For the sake of keeping the volunteer developer community on your side, it is very important not to say
anything that isn't demonstrably true. Audit all claims carefully before making them, and give the public
the means to check your claims on their own. Independent fact checking isamajor part of open source,
and it applies to more than just the code.

Naturally no one would advise companies to make unverifiable claims anyway. But with open source
activities, there is an unusually high quantity of people with the expertise to verify claims—people who
are dso likely to have high-bandwidth Internet access and the right social contacts to publicize their fin-
dings in adamaging way, should they choose to. When Global Megacorp Chemical Industries pollutes a
stream, that's verifiable, but only by trained scientists, who can then be refuted by Global Megacorp's
scientists, leaving the public scratching their heads and wondering what to think. On the other hand,
your behavior in the open source world is not only visible and recorded; it is also easy for many people
to check it independently, come to their own conclusions, and spread those conclusions by word of

79

Dinero

mouth. These communications networks are aready in place; they are the essence of how open source
operates, and they can be used to transmit any sort of information. Refutation is usually difficult, if not
impossible, especially when what people are saying is true.

For example, it's okay to refer to your organization as having "founded project X" if you really did. But
don't refer to yourself as the "makers of X" if most of the code was written by outsiders. Conversely,
don't claim to have a deeply involved volunteer developer community if anyone can look at your reposi-
tory and see that there are few or no code changes coming from outside your organization.

Not too long ago, | saw an announcement by a very well-known computer company, stating that they
were releasing an important software package under an open source license. When the initial announce-
ment came out, | took alook at their now-public version control repository and saw that it contained
only threerevisions. In other words, they had done an initial import of the source code, but hardly anyt-
hing had happened since then. That in itself was not worrying—they'd just made the announcement, af-
ter all. There was no reason to expect alot of development activity right away.

Some time later, they made another announcement. Hereiswhat it said, with the name and release num-
ber replaced by pseudonyms:

We are pleased to announce that following rigorous testing by the Singer Community,
Snger 5 for Linux and Windows are now ready for production use.

Curious to know what the community had uncovered in "rigorous testing," | went back to the repository
to look at its recent change history. The project was still on revision 3. Apparently, they hadn't found a
single bug worth fixing before the release! Thinking that the results of the community testing must have
been recorded elsewhere, | next examined the bug tracker. There were exactly six open issues, four of
which had been open for several months already.

This beggars belief, of course. When testers pound on a large and complex piece of software for any
length of time, they will find bugs. Even if the fixes for those bugs don't make it into the upcoming re-
lease, one would still expect some version control activity asaresult of the testing process, or at least
some new issues. Y et to all appearances, nothing had happened between the announcement of the open
source license and the first open source release.

The point is not that the company was lying about the community testing. | have no ideaif they were or
not. But they were oblivious to how much it looked like they were lying. Since neither the version con-
trol repository nor the issue tracker gave any indication that the alleged rigorous testing had occurred,
the company should either not have made the claim in the first place, or provided a clear link to some
tangible result of that testing ("We found 278 bugs; click here for details"). The latter would have allo-
wed anyone to get a handle on the level of community activity very quickly. Asit was, it only took me a
few minutes to determine that whatever this community testing was, it had not |eft traces in any of the
usual places. That's not alot of effort, and I'm sure I'm not the only one who took the trouble.

Transparency and verifiability are also an important part of accurate crediting, of course. See “ Credit” in
Capitulo 8, Coordinando a los Voluntarios for more on this.

Don't Bash Competing Open Source Products

Refrain from giving negative opinions about competing open source software. It's perfectly okay to give
negative facts—that is, easily confirmable assertions of the sort often seen in good comparison charts.
But negative characterizations of aless rigorous nature are best avoided, for two reasons. First, they are
liable to start flame wars that detract from productive discussion. Second, and more importantly, some
of the volunteer developersin your project may turn out to work on the competing project aswell. This
ismore likely than it at first might seem: the projects are already in the same domain (that's why they're
in competition), and devel opers with expertise in that domain may make contributions wherever their
expertise is applicable. Even when there is no direct developer overlap, it islikely that developers on
your project are at least acquainted with devel opers on related projects. Their ability to maintain cons-

80

Dinero

tructive personal ties could be hampered by overly negative marketing messages.

Bashing competing closed-source products seems to be more widely accepted in the open source world,
especially when those products are made by Microsoft. Personally, | deplore this tendency (though
again, there's nothing wrong with straightforward factual comparisons), not merely because it's rude, but
also because it's dangerous for a project to start believing its own hype and thereby ignore the waysin
which the competition may actually be superior. In general, watch out for the effect that marketing state-
ments can have on your own development community. People may be so excited at being backed by
marketing dollars that they lose objectivity about their software's true strengths and weaknesses. It is
normal, and even expected, for a company's devel opers to exhibit a certain detachment toward marke-
ting statements, even in public forums. Clearly, they should not come out and contradict the marketing
message directly (unlessit's actually wrong, though one hopes that sort of thing would have been caught
earlier). But they may poke fun at it from time to time, asaway of bringing the rest of the development
community back down to earth.

81

Capitulo 6. Communications

La capacidad de escribir claramente es quizas la més importante habilidad que se puede tener en un am-
biente de codigo abierto. A largo plazo es més importante que e talento para programar. Un gran pro-
gramador con pocas habilidades comunicativas puede realizar solo una cosa alavez, y puede tener pro-
blemas convenciendo a otros para que le presten atencion. Pero un mal programador con buenas habili-
dades de comunicacion puede coordinar y persuadir mucha gente pararealizar diferentes cosas, y detal
modo tener un efecto significativo sobre la direccién y e impetu de un proyecto.

No parece haber mucha correlacién, en cualquier sentido, entre la capacidad de escribir buen codigoy la
capacidad de comunicarse con sus comparieros. Hay cierta correlacion entre programar bien 'y describir
bien cuestiones técnicas, pero describir asuntos técnicos es solo una pequefia parte de las comuni cacio-
nes en un proyecto. Mas importante es la capacidad de enfatizar con su audiencia, ver sus propios co-
rreos y comentarios como lo ven los demas, y hacer que los demas vean sus propios correos con objeti-
vidad similar. Igualmente importante es notificar cuando un medio o método de comunicacién determi-
nado no esta funcionando bien, quizés porque no escalaa ritmo que incrementa el nimero de usuarios,
y tomar el tiempo para hacer algo a respecto.

Aquello que es obvio en teoriay que se hace duro en la préctica es que |os ambientes de desarrollo de
software libre son desconcertadamente diversos tanto en audiencias como en mecanismos de comunica
cion. ¢Deberia una opinién dada ser expresada en un mensgje alalista de correo, como una anotacion en
el gestor de fallos, 0 como un comentario en el cadigo? Al contestar una pregunta en un foro publico,
¢cuanto conocimiento puedes asumir por parte del lector?, en primer lugar dado que "el lector" no es e
Unico que hizo la pregunta, ¢pueden todos ver t respuesta? ¢Como pueden |os desarrolladores permane-
cer en contacto constructivo con los usuarios, sin ser ahogado por peticiones de caracteristicas, informes
falsos defallos, y charlaen general? ¢Como dices cuando un medio ha alcanzado los limites de su capa-
cidad, y que harias al respecto?

L as soluciones a estos problemas son usualmente parciales, ya que cualquier solucion particular se vuel-
ve finalmente obsoleta por el crecimiento del proyecto o los cambios en la estructura del mismo. Son a
menudo ad hoc, ya que son respuestas improvisadas a situaciones dindmicas. Todos |os participantes ne-
cesitan darse cuenta de como y cuando la comunicacion puede volverse farragosa, y deben estar implica-
dos en buscar soluciones. Ayudar ala gente a hacer esto es una gran parte de la direccion en un proyecto
open source. Las secciones siguientes tratan sobre como conducir tu propia comunicacion y como hacer
el mantenimiento de |os mecanismos de comunicacion una prioridad paratodo € mundo en el proyecto.1

Tu eres lo que escribes

Considera esto: la Unica cosa que cualquier persona sabe deti en Internet viene de lo que tu escribes, o
de lo que otros escriben acerca de ti. Puedes ser brillante, perceptivo, y carismético en persona pero si
tus correos electrénicos son incoherentes y no estructurados, |a gente asumira que esé es el verdadero td.
O quizéas realmente eres incoherente y no estructurado en persona, pero nadie tiene por que saberlo, si
tus mensajes son claros e informativos.

Dedicar cierto cuidado atu escritura valdra enormemente la pena. El veterano hacker de software libre
Jim Blandy narralasiguiente historia:

Por €l afio 1993 trabajaba parala Fundacion de Software Libre, y estdbamos llevando
acabo €l beta-testing de la version 19 de GNU Emacs. Hariamos una publicacion beta

1se ha hecho aguna investigacion academica interesante en esta materia; por ejemplo, vease Group Awarenessin Distributed Soft-
ware Development por Gutwin, Penner, y Schneider (solia estar disponible on-line, pero parece que ha desaparecido, a menos
temporalmente; utiliza una herramienta de busgueda encontrarla).

82

Communications

mas 0 menos cada semana, y la gente la probariay nos enviariainformes de error. Ha-
bia un chico que ninguno de nosotros conocia en persona pero que hizo un gran traba
jo: susinformes de error siempre fueron claros y nos enfocaba hacia el problemay,
cuando nos proporcionaba una correccion, casi siempre teniarazén. Eraun fuerade
Serie.

Ahora, antes que la FSF pueda utilizar codigo escrito por alguien, hay que realizar un
papeleo legal paraque € interés de esa persona hacia €l copyright del codigo paseala
FSF. Simplemente tomando el codigo de completos extrafios dejandolo dentro es una
receta para el desastre legal.

Por lo que le envié un correo al chico con los formularios diciéndole "Te envio algo de
papel eo que necesitamos, esto es |o que significa, firmas este, haces que quien tetiene
contratado firme este otro y, entonces podemaos comenzar a utilizar tus correcciones.
Muchas gracias."

Me envié un mensgje de vuelta diciendo: "No trabajo para nadie."

Por lo que le dije: "Bien, eso estd bien, simplemente haz que firme tu universidad y
enviamelo de vuelta.”

Después de un poco, me escribié de nuevo y me dijo: "Verés, reamente... tengo trece
afnosy vivo con mis padres.”

Debido a que ese chico no escribiacomo si tuviera trece afios nadie supuso que los tuviera. A continua-
cién se exponen también al gunas cosas que conseguirén ademés que tu escritura de una buenaimpre-
sion.

Estructuray formato

No caigas en latrampa de escribir todo como s fuera un mensaje de teléfono moévil. Escribe frases com-
pletas, poniendo en mayUsculas la primera palabra de cada frase, y usando separaciones de parrafo don-
de sea necesario. Esto es|o més importante en correos electrénicos y otras composiciones. En el IRC u
otros foros efimeros similares, generalmente es correcto dejar de poner mayUsculas, utilizar formas com-
primidas o expresiones comunes, etc. Simplemente no Ileves esos habitos a foros més formales o persis-
tentes. Correos el ectrénicos, documentacion, informes de error y otras piezas de escritura que suelen te-
ner unalarga vida deberian escribirse usando una graméticay una spelling esténdar, y tener una estruc-
tura narrativa coherente. Esto no se debe a que haya algo inherentemente bueno siguiendo reglas arbitra-
rias, Sino a gque estas reglas no son arbitrarias. evolucionan en las formas presentes ya que hacen que el
texto seamés leibley, por esarazén, deberias seguirlas. Lalegibilidad no solo es deseable paraque la
mayoria de gente entienda lo que escribes, sino porque hace que que parezcas la clase de persona que se
toma su tiempo en comunicarse de unaforma clara: es decir, alguien a quien vale la pena prestar aten-
cion.

En particular, para correos el ectronicos, desarrolladores experimientados de open source han decidido
ciertas convenciones:

Envia correos solo de texto plano, no en HTML, texto enriquecido u otros formatos ya que podrian no
ser leidos por lectores que leen sblo texto plano. Formatea las lineas para que estén sobre las 72 colum-
nas de largo. No excedas las 80 columnas, que ha sido de facto €l ancho estédndar del terminal (es decir,
hay gente que utiliza terminales mas anchos, pero nadie utiliza terminales no més estrechos). Al hacer
las lineas un poco menores de 80 columnas da cabida a unos cuantos niveles de caracteres de citado para
ser afadidos en otras respuestas sin forzar un estrechamiento de tu texto.

Utiliza saltos de linea reales. Algunos clientes de correo muestran un falso formateo de linea, mientras
estés escribiendo un correo, viéndose en la pantalla saltos de linea donde en realidad no los hay. Cuando
se enviael correo, no tendralos saltos de linea que se pensabay se presentara con un formato horroroso

83

Communications

en lapantalla de la gente. Si tu cliente de correo muestra fal sos saltos de linea, busca posibilidad de qui-
tar la opcion paraver los saltos de linea rea es a medida que escribes € correo.

Cuando incluyas salida de pantalla, trozos de codigo u otro texto preformateado, desplézalo claramente,
de forma que a simple vista se pueda facilmente ver los limites entre tu texto y el material que estésin-
cluyendo. (Nunca esperé escribir este consejo cuando comencé €l libro, pero en un nimero de listas de
correo de codigo abierto posterior, he visto gente mezclando textos de diferentes fuentes sin dejar claro
gué es qué. El efecto es muy frustante. Hacen los correos bastante dificiles de entender y, francamente,
hace que esas personas parezcan un poco desorganizadas).

Cuando cites €l correo de alguien, inserta tus repuestas donde sea mas apropiado, en diferentes lugares si
es hecesario, y elimina las partes de su correo que no utilices. Si estas escribiendo un comentario rapido
con referenciaatodo € correo, es correcto hacerlo top-post (Es decir, poner tu respuesta encima del tex-
to citado; de lo contrario, deberias citar primero la parte relevante del texto original, seguido de tu res-
puesta.

Construye el asunto de los nuevos correos con cuidado. Es la linea mas importante de un correo, ya que
permite a cualquier otra persona del proyecto decidir si leer més o0 no. Los lectores de correo modernos
organizan |os grupos de mensgjes rel acionados en hilos, que pueden no solo definirse por un asunto co-
mun sino por otras cabeceras (que amenudo no se muestran). Entienden que si un hilo comienza a deri-
var hacia un nuevo tema, puedesy debes gjustar el asunto adecuadamente cuando respondas. La integri-
dad del hilo persistira, debido a aquellas otras cabeceras, pero el nuevo asunto ayudara ala gente que
miraun resumen del hilo a saber que el tema ha derivado. Asimismo, si realmente quieres comenzar un
nuevo tema, hazlo creando un nuevo mensaje y no respondiendo uno ya existente y cambiandole el
asunto. De estaforma, tu correo podria estar agrupado en el mismo hilo del correo que estas respondien-
doy asi volver loca ala gente pensando sobre algo que no es. Recuerda: la penalizacion no seréla pérdi-
da de tiempo, sino la pequefia hendidura en tu credibilidad como alguien fluido en el uso de las herra-
mientas de comunicacion.

Contenido

Correos electrénicos bien formateados atraen alos lectores, pero € contenido los mantiene. Ningun con-
junto fijo de reglas puede garantizar €l buen contenido, por supuesto, hay algunos principios que lo ha-
cen més prometedor.

Hacer las cosas faciles para tus lectores. Hay unatonelada de informacion flotando alrededor en cual-
quier proyecto activo de software libre, y los lectores no pueden esperar estar a corriente de la mayor
parte de ella, de hecho, no siempre pueden esperar familiarizarse. En lo posible, tus correos deben sumu-
nistrar informacion en laforma més conveniente paralos lectores. Si tienes que pasar unos dos minutos
extra buscando el URL de un hilo particular en los archivos de lalista de correo, atendiendo a objetivo
delibrar atuslectores de hacerlo, valelapena. Si tienes que pasar unos 5 o 10 minutos extra resumiendo
las conclusiones de un hilo complegjo, con laintencion de brindarle alas personas el contexto en el cual
comprederan tu correo, entonces hazlo. Piénsalo de esta manera: el mayor éxito en un proyecto, es au-
mentar €l cociente lector-a-escritor en cualquier foro dado. Si cada correo tuyo es visto por n personas,
entonces como n aumenta, la utilidad de realizar un esfuerzo adicional para ayudar a aquellas personas
aumenta con el tiempo. Y como las personas te verdn imponer este estdndar, trabajaran imitandolo en
sus propias comunicaciones. El resultado es, idealmente, un incremento en la eficiencia global del pro-
yecto: cuando hay una eleccion entre n personas realizando un esfuerzo y una persona haciendolo, el
proyecto prefiere el segundo.

No acostumbrarse ala hipérbole. La exageracidn de correos online es una clésica competencia de arma-
mento. Por ejemplo, a una persona que reporta un fallo puede preocuparle que los desarrolladores no le
presten la suficiente atencidn, asi que lo describira como grave, gran problema que es prevenirle (y ato-
dos sus amigos/comparieros de trabajo/primos) de la utilizacion del software productivamente, cuando
es solamente una molestia leve. Pero la exageracion no esta limitada a los usuarios; los programadores
frecuentemente hacen 1o mismo durante debates técnicos, especiamente cuando e desacuerdo es una
cuestion de gustos mas que de coreccion:

Tono

Communications

"Hacerlo de esa manera haria el codigo totalmenteilegible. Seria una pesadilla para el
manteni miento, comparado a la propuesta de J. Random..."

El mismo sentimiento se vuelve més fuerte cuando esta expresado de una forma menos brusca:

"Pienso que eso funciona, pero menos de lo ideal en términos de legibilidad y mante-
nimiento. La propuesta de J. Random evita esos problemas ya que..."

No podras librarte compl etamente de la hipérbole, y en general no es necesario hacerlo. Comparada con
otras formas retdricas, |a hipérbole no es globalmente dafiinay perjudica principalmente a autor. Los
destinatarios pueden comprender, solamente que € remitente pierde un poco mas de credibilidad cada
vez. Por o tanto, para bien de tu influencia en el proyecto, intenta proceder con moderacion. De esa ma-
nera, cuando necesitas presentar un punto fuerte, las personas te tomaran con seriedad.

Corregir dos veces. Para cualquier mensaje mas largo que el tamafio medio de un parrafo, se recomienda
volver aleerlo de arriba a abajo antes de enviarlo pero después de que lo tengas listo. Este es un conoci-
do consgjo para cualquiera que haya tomado una clase de composicion, pero es especial mente importan-
te paralas discusiones en linea. Ya que €l proceso de composicién en lineatiende a ser altamente dis-
continuo (en el transcurso de escritura de un mensaje, podrias necesitar retroceder y revisar otros co-
rreos, visitar ciertas paginas web, gjecutar un comando para capturar su salida de depuracion, etc.), es
especialmente fécil perder el sentido de tu papel narrativo. Mensajes que fueron escritos discontinua-
mente y no fueron revisados antes de ser enviados son frecuentemente reconocibles como tal, mucho €
disgusto (o uno esperaria) de sus autores. Témate el tiempo para examinar lo que envias. Cuanto més es-
tructurados sean tus mensagjes, mas leidos seran.

Después de escribir miles de mensgjes, probablemente notaras que tu estilo tiende a ser extremadamente
conciso. Esto parece ser lanorma en la mayoria de los foros técnicos, y no hay nadamalo con ello. Un
nivel de brevedad que seriainaceptable en interacciones sociales normal es es sencillamente € comin
paralos hackers de software libre. Aqui estd unarespuesta ala que yo recurri unavez en unalista de co-
rreo acerca de cierto software gratuito de administracién de contenido, citado en su totalidad:

¢Puedes explicar exactanente con que probl ema
te enfrentas?

Ademas:

¢Qué version de Slash estas usando? No pude encontrarlo en
tu nensaje original.

¢(Exactanente conp conpil aste el cédi go de apache/ nod_perl ?

cProbaste el parche de Apache 2.0 que fue col ocado en
sl ashcode. conf?

Shane

Eso es ser conciso! No tiene bienvenida, ni despedida con excepcién de su nombre, y €l mensgjeen si es
solamente una serie de preguntas expresadas de la forma mas compacta. Su oracion declarativa fue una
criticaimplicita de mi mensgje original. Aunque, me alegra ver €l correo de Shane, y no tomar su breve-
dad como un producto de cualquier otro motivo que no sea €l de ser una persona ocupada. El mero he-
cho de que @ haga preguntas, en vez de ignorar mi mensaje, significaque él es esta dispuesto adedicarle
cierto tiempo ami problema.

85

Communications

¢Reaccionaran positivamente todos | 0s | ectores a este estilo? No necesariamente; depende de la persona
y €l contexto. Por gemplo, si una persona envia un correo reconociendo que cometid un error (quizés
codifico un fallo), y sabes por experiencias pasadas que esta personatiende a ser un poco insegura, en-
tonces mientras puedas escribir una respuesta compacta, deberias asegurarte de dejarlo con algo de men-
cion hacia sus sentimientos. La mayor parte de tu respuesta puede ser un breve andlisis de la situacion
desde el punto de vista del ingeniero, tan conciso como quieras. Pero al final, deberias despedirte con al-
go que indique que la brevedad no debe ser tomada como frialdad. Por jemplo, si s6lo escribiste monto-
nes de consgjos indicando exactamente como la persona deberia corregir € fallo, entonces debes despe-
dirte con "Buena suerte, NOMBRE_DE LA PERSONA" paraindicar que le deseas suerte y que no
eres malgeniado. Una carita sonriente col ocada estratégicamente u otro emoticdn, también puede con
frecuencia ser suficiente paratranquilizar a un interlocutor.

Puede resultar un tanto extrafio centrarse en el sentimiento de los colaboradores, asi como tambien en lo
superficial de lo que dicen por decirlo de alguna manera sin rodeos, |os sentimientos afectan a la produc-
tividad. L os sentimientos tambien son importantes por otras razones, porque incluso confinandonos a
NOSOtros mismos a razones puramente utilitarias, podemos notar que la gente infeliz escribe peor softwa-
re, y/o menos. Dada la naturaleza restrictiva de la mayoria de os medios el ectronicos, aunque, a menudo
no habraindicios patentes de como se siente una persona. Tendras que realizar una adecuada suposicion
basandote en @) como se sentiriala mayoria de la gente en esa situacion, y b) que eslo que conoces de
esa persona particular a partir de interacciones pasadas. Algunas personas prefieren una actitud mas pa-
siva, y ssmplemente estan de acuerdo con todo el mundo sin cuestionarlos, laideatras esto es que s un
participante no dice abiertamente que es |o que piensa, entonces uno no tiene nada que hacer tratandole
como pensaba que lo hacia. No comparto este enfoque, por un par de razones. Una, la gente no se com-
porta de esa maneraen lavidareal, asi que porgque deberian hacerlo online? Dos, dado que la mayoria de
las interacciones tienen lugar en foros publicos, la gente tiende a ser incluso mas moderada expresando
las emociones que o podrian ser en privado. Para ser mas preciso, a menudo estan deseando expresar
emociones directamente a otros, tales como de agradecimiento o indignacion, pero no emociones direc-
tamente intimas como inseguridad u orgullo. Todavia, la mayoria de los humanos trabajan mejor cuando
saben que los demés son conscientes de su estado de &nimo. Prestando atencidn a a pequefias pistas, nor-
mal mente podréas suponerlo acertadamente la mayoriadel tiempo, y motivar ala gente a estar involucra-
da con un mayor grado que de otra manera no podrian.

Por supuesto no quiero decir que, ta rol sea el de un terapeuta de grupo, ayudando constantemente a todo
el mundo aestar a corriente de sus sentimientos. Pero poniendo una especial atencién a patrones alar-
go-plazo en el comportamiento de la gente, empezarés atener una sensacién de ellos como individuos
incluso aunque nunca los hayas conocido caraacara. Y siendo sensible en el tono de tus mensajes escri-
tos, podrés tener una cantidad sorprendente de influencia sobre los sentimientos de los demés, que es €
ultimo beneficio del proyecto.

Reconociendo la groseria

Unade las caracteristicas que definen la cultura del codigo abierto son son las nociones distintivas de
gué congtituye groseriay qué no. Mientras que los convenios que se describen debajo no son Unicos para
el desarrollo de software libre, ni tampoco para el software en general deberia ser familiar para cualquie-
ra que trabaje en disciplinas de las matematicas, ciencias puras o laingenieria el software libre, con sus
porosos limites y un constante influjo de recién llegados, es un entorno donde es especialmente probable
encontrar estas convenciones por gente no familiarizada con ellas.

Comencemos con las cosas que no son groseras (maleducadas):

La criticatécnica, incluso cuando es directay sin tacto, no es una groseria. De hecho, puede ser unafor-
ma de adulacion: lacritica es decir, por implicacion, que vale la pena tomarse en serio el destinatario,y
vale lapenainvertir tiempo en él. Es decir, cuanto mas viable fuera simplemente ignorar € mensaje de
alguien, se entiende mas por un cumplido molestarse en criticarlo (a no ser que la critica se convierta,
por su puesto, en un atague ad hominem o alguna otra forma de groseria obvia).

Preguntas directas, sin adornos, como la que Shane me hizo en €l correo anterior tampoco es groseria.

86

Communications

Preguntas que, en otros contextos, pueden parecer frias, retéricas e incluso a modo de burla, son formu-
ladas a menudo de una forma seria, y no tienen més intencién que obtener informacién lo mas rapido
posible. Lafamosa pregunta del soporte técnico " ¢Esta su ordenador conectado?' es un gjemplo clésico
de esto. La persona de soporte realmente necesita saber si tu ordenador estéa contectado y, después de
unos pocos dias en €l trabajo, se ha cansado de adornar su pregunta de florituras ("L e pido disculpas,
quisiera que me contestara unas simples preguntas para descartar algunas posibilidades. Algunas pueden
parecer muy bésicas, pero tenga paciencia..."). En este punto, no le importa seguir adornando mas sim-
plemente pregunta directamente: ¢esti o no esté conectado? Preguntas similares se hacen en todo mo-
mento en las lista de distribucion del software libre. Laintencion no esinsultar al destinatario, sino des-
cartar rpidamente las explicaciones mas obvias (y quizas més comunes). Los destinatarios que lo en-
tiendan y reaccionen de ese modo ganaran puntos en tener una vision tolerante sin provocarse. Pero los
destinatarios que reaccionen mal tampoco deberian ser reprendidos. Es simplemente una colisién de cul-
turas, no es culpade nadie. Explica amablemente que tu pregunta (o critica) no tiene significados ocul-
tos; que solo significaba obtener (o transmitir) lainformacion de laforma més eficientemente posible,
nada mas.

Entonces, ¢qué es groseria?

Bajo el mismo principo por €l cual las criticas a detall es técnicos es una forma de halago, no proporcio-
nar criticas de calidad puede ser un tipo de insulto. No quiero decir ssimplemente que ignorando el traba-
jo de alguien, sea una propuesta, cambio en el codigo, nuevas informaciones o cualquier cosa. A menos
gue explicitamente prometas una reaccién detallada mas adel ante, normalmente es OK simplemente no
reaccionando de ninguna manera. La gente asumira asi que no tuviste tiempo de decir nada. Pero si tu
reaccionas, no escatimes. tomate el tiempo para analizar detalladamente |as cosas, proporcionar €jem-
plos concretos all& donde sea apropiado, rebuscar a través de los archivos para encontrar informacion re-
lacionada del pasado, etc. O si no tienes tiempo pararealizar todo ese esfuerzo, pero todavia necesitas
escribir algun tipo de respuesta corta, entonces exponlo de manera abiertay breve en tu mensaje ("Creo
gue hay un tema abierto para esto, pero desaf ortunadamente no tuve tiempo para buscarlo, lo siento").
Lo principal esreconocer la existencia de lanorma cultural, ya sea algo satisfactorio o reconociendo
abiertamente que ha fallado ligeramente esta vez. Sealo que sea, lanormaes reforzar. Pero el no cum-
plir esta norma mientras que a mismo tiempo no se explica el porque fallaste en conecerlo, eslo mismo
que decir €l topico (y aguellos que participan en ello) no merecio tu tiempo. Es mejor mostrar que tu
tiempo es muy valioso siendo seco que siendo vago.

Hay muchas otras formas de groseria, por supuesto, pero la mayoria no es especifica del desarrollo de
software libre, y €l sentido comdn es una buena forma de evitarlas. V éase también “ Echad avolar lama-
laeducacion” en Capitulo 2, Primeros Pasos, si 10 has hecho todavia.

Caras

Hay una parte en € cerebro humano dedi cada especificamente areconocer caras. Es conocida informal-
mente como "area de fusion de caras’, y sus capacidades son mayoritariamente innatas , no se han
aprendido. Resulta que reconocer a las personas individualmente es una técnicatan crucial de supervi-
vencia que hemos desarrollado un hardware especializado paradllo..

La colaboracion basada en Internet es por ello psicol ogicamente curiosa porque implica una estrecha co-
laboracion entre seres humanos que nunca se identificarian entre ellos por los mas naturales e intuitivos
métodos. reconocimiento facial e primero de todos, pero tambien por el sonido de lavoz, postura, etc.
Para compensar esto, intenta usar un consistente Nombre en todas partes. Deberia ser |a primera parte de
tu direccion de email (la parte antes de el signo @), tu nombre del IRC, tu nombre para hacer commit en
los repositorios, tu marca de nombre en cualquier lado y asi. Este nombre estu "cara’ online : un tipo de
cadena de identificacion que sirve el mismo propdsito que tu carareal, aunque no lo es, desafortunada-
mente, estimula el mismo hardware consitutido en el cerebro.

El nombre que muestras deberia ser una permutacion intuitiva de tu nombre real (el mio por gemplo, es
"kfogel"). En algunas situaciones estara acompafiado de tu nombre completo, por gjemplo en las cabece-
ras del correo:

87

Communications

From "Karl Fogel" <kfogel @hateverdomain.conp

Actualmente, hay dos puntos a tener en cuenta en ese gjemplo. Como ya he mencionado anteriormente,
el nombre que mostraremos coincidira con el nombre real de una maneraintuitiva. Pero tambien, €l
nombre real esreal. Esto es, no se compone de una denominacion como:

From "Wonder Hacker" <wonder hacker @hat ever donai n. con®

Hay unafamosatira comica de Paul Steiner, del 5 de Julio de 1993 publicada en The New Yorker, que
muestra a un perro que hainiciado sesion en un termina de ordenador, menospreciando y contando alos
demés de manera conspiratoria: "En Internet, nadie sabe que tu eres un perro." Este tipo de pensamiento
es una mentira detrés de tanto ensal zamiento propio, significado de estar alamoda con las identidades
online que la gente se atribuye a ellos mismos; como [lamandose uno mismo "Wonder Hacker" causara
gue la gente piense que uno es un maravilloso hacker. Pero los hechos permanecen: incluso si nadie sabe
gue tu eres un perro, todavia seras un perro. Una fantésticaidentidad online nuncaimpresionaalos lec-
tores. En vez de esto, les hace creer que eres mas unaimagen que una persona con fundamento, o que
simplemente eres inseguro. Utiliza tu nombre real paratodas |as interacciones, o si por algunarazon ne-
cesitas un anénimo, entonces crea un nombre que se parezca perfectamente aun nombrereal, y Usalo
consistentemente.

Ademés de mantener tu imagen online consistente, hay algunas cosas mas que puedes hacer para que re-
sulte més atractiva. Si posees un titulo oficial (gjem., "doctor", "profesor”, "director"), no hagas obsten-
tacion de ello, no lo menciones a menos que sea directamente relevante ala conversacion. El mundo
hacker en general y la cultura del Software Libre en particular, tienden aver la muestra de titulos como
un signo de exclusion y de inseguridad. Esta bien si tu titulo aparece como parte de un blogque de firma
standard al final de cada mail que envias, pero no lo utilices como una herramienta para reforzar tu posi-
cion en unadiscusion; a intentarlo esta garantizado el fracaso. Tu quieres que la gente te respete como

persona, no por €l titulo.

Hablando de blogues de firma: mantel os pequefios y con buen gusto, 0 mejor todavia, inexistentes. Evita
largas responsabilidades legales fijadas al final de cada mail, especia mente cuando estos expresen senti-
mientos incompatibles con la participacion en un proyecto de software libre. Por jemplo, € siguiente
clasico del género aparece al final de cada post que un usuario particular hace en unalista de mail pibli-
cadonde yo estoy:

| MPORTANT NOTI CE

If you have received this e-mail in error or wish to read our e-nmail
di scl ai ner statenent and nonitoring policy, please refer to the
statenent bel ow or contact the sender.

This communication is fromDeloitte & Touche LLP. Deloitte &

Touche LLP is a limted liability partnership registered in Engl and
and Wal es with registered nunber OC303675. A |list of nenbers' nanmes
is available for inspection at Stonecutter Court, 1 Stonecutter
Street, London EC4A 4TR, United Kingdom the firm s principal place of
busi ness and registered office. Deloitte & Touche LLP is

aut hori sed and regul ated by the Financial Services Authority.

Thi s conmmuni cati on and any attachnments contain information which is
confidential and nay also be privileged. It is for the exclusive use
of the intended recipient(s). |If you are not the intended

reci pient(s) please note that any form of disclosure, distribution
copying or use of this conmunication or the information in it or in
any attachments is strictly prohibited and may be unlawful. If you
have received this conmmunication in error, please return it with the

88

Communications

title "received in error” to | T.SECURI TY. UK@lel oi tte.co.uk then del ete
the email and destroy any copies of it.

E-mai | comuni cations cannot be guaranteed to be secure or error free,
as information could be intercepted, corrupted, anmended, | ost,
destroyed, arrive late or inconplete, or contain viruses. W do not
accept liability for any such natters or their consequences. Anyone
who communi cates with us by e-nmail is taken to accept the risks in
doi ng so.

VWhen addressed to our clients, any opinions or advice contained in
this e-mail and any attachnments are subject to the terns and
conditions expressed in the governing Deloitte & Touche LLP client
engagerent letter.

Opi ni ons, conclusions and other information in this e-mail and any
attachments which do not relate to the official business of the firm
are neither given nor endorsed by it.

Para alguien que Unicamente se quiere presentar para preguntar alguna cuestion ahoray entonces, esta
gran "renuncia’ parece un poco fuerade lugar pero probablemente no hace ningln dafio. Sin embargo, si
esta persona queria participar activamente en el proyecto, este formalismo-legal empezariaatener un
efecto masinsidioso. Enviaria al menos dos sefial es potencial mente destructivas: primero, qué esta per-
sona o tiene un control total sobre sus herramientas; esta atrapado dentro de una cuenta de correo cor-
porativa que acarrea un mensaje molesto al final de cada mail, y el no tiene ninglina manera de evitarlo;
y segundo, que tiene poco o ningln apoyo de su organizacion para contribuir en las actividades del soft-
ware libre. Cierto, que la organizacion claramente no le ha prohibido completamente de postear en listas
publicas, pero hace que sus posts se distingan con un mensaje frio, ya que el riesgo de dgjar informacién
confidencial debe figurarse sobre las demas prioridades.

Si trabajas para una organizacion que insiste en afadir tales bloques de firma en todos los mail salientes,
entonces considera tener una cuenta de correo gratuito de, por gjemplo, gmail.google.com,
www.hotmail.com, or www.yahoo.com, y utilizar esta direccion parael proyecto.

Evitando los obstaculos corrientes

NoO envies un correo sin un propodsito

Un obstéculo comun en la participacion de un proyecto online es pensar que tu tienes que responder a
todo. No tienes que hacerlo. Lo primero de todo, normal mente se generaran mas hilos de correo de los
gue tl puedas manejar, a menos después de que el proyecto ha pasado sus primeros meses. Segundo, in-
cluso en los hilos de correo en los que has decidido tomar parte, mucho de lo que comenta la gente no
requerira unarespuesta. Los foros de desarrollo en particular tiendes a ser dominados por tres tipos de
mensajes:

1. Mensgjes proponiendo algo que -no estrivial-

2. Mensgjes mostrando apoyo u oposicion aalgo o alo que alguien hadicho.

3. Mensajes de recapitulacion

Ninguno de esosde manera inherente requerira una respuesta, particularmente si puedes ser justamente
seguro, basandote en revisar €l hilo desde € principio, que alguien mas probablemente diralo que tu

ibas adecir de cualquier manera. (Si te preocupa que te tomen en un bucle de esperar-esperar porque to-
dos los demés estén usando esta tactica tambien, no |o hagas; casi siempre habra alguien por ahi que se

89

gmail.google.com
www.hotmail.com
www.yahoo.com

Hilos

Communications

tendera a crisparse.) Una respuesta deberia ser motivada por un proposito definitivo. Preguntate ati mis-
mo primero: ¢Sabes que es 1o que quieres conseguir? Y segundo: ¢no se conseguird a menos que digas
algo?

Dos buenas razones para afiadir tu voz a un hilo de corre son @) cuando veas un movimiento de proposi-
cion y sospeches que tl eres el Unico que asi 1o percibe, y b) cuando veas que no hay entendimiento en-
tre otros, y sepas que puedes solucionarlo con un correo clarificandolo todo. Tambien generalmente esta
bien escribir Unicamente paradar las gracias a alguien por algo, o para decir "Y o tambien!", porque un
lector puede decir en seguida que tal correo no requiere ninguna respuesta ni accién adicional, y por lo
tanto el esfuerzo mental demnadado por el post termina limpliamente cuando €l lector llegaaladltima
linea de el correo. Pero incluso entonces, piensalo dos veces antes de decir algo; es siempre mejor degjar
alagente deseando que escribas mas a menudo que deseando que escribas menos. (Consulta la segunda
parte de Apéndice C, Why Should | Care What Color the Bikeshed Is? paraver més ideas sobre como
portarse en una lista de correo muy concurrida.)

productivos vs Hilos Improductivos

En unalista de correo muy concurrida, tienes dos imperativos. Uno, obviamente es comprender en que
es o que necesitas poner tu atencion y que es lo que puedes ignorar. El otro es evitar de alguna manera
€l causar ruido: no sélo quieres que tus propios posts tengan un ratio de gran ruido/sefial, sino que tam-
bien quieres que sean €l tipo de mensajes que estimulan a otra gente a escribir mails con un ratio similar
de sefial/ruido, o no escribir nada.

Para ver como hacer eso, vamos a considerar el contexto en el cual se hace. ¢Cuales son algunos de los
sellos de un hilo improductivo?

» Argumentos que ya se han hecho antes se empiezan a repetir, porque el que los hace piensa que nadie
le haescuchado la primeravez.

» Seincrementan los niveles de exageracion y participacion mientras el interés se hace cada vez mas
pequerio.

» Unamayoria de comentarios que provienen de gente que hablan poco o nada, mientras que la gente
que tiene a hacer las cosas permanece en silencio.

» Muchas ideas se discuten sin un proposito claro de que hacer con ellas. Por supuesto, cualquier idea
interesante empieza con una vision imprecisa; la cuestion importante es que direccion tomara a partir
de ahi. Parece que el hilo empieza a convertir lavisién en algo més concreto, o esta derivando en sub-
visionesy disputas ontol 6gicas?)

S6lo porque un hilo de correo no sea productivo a principio no significa que sea una perdida de tiempo.
Puede tratar sobre un temaimportante, en cuyo caso € hecho de que no se esta produciendo ningan pro-
greseo es todo |o més molesto.

Guiar un hilo de correo hacialautilidad sin ser agresivo es todo un arte. No funcionard simplemente
amonestando ala gente para que pare de gastar su tiempo, o preguntandoles que no escriban a menos
gue tengan algo constructivo que decir. Por supuesto puedes pensar en esas cosas en privado, pero si o
dices en lalistade correo sonard ofensivo. En lugar de eso, tienes que sugerir condiciones para promo-
ver progresos; guiaalagente, un camino a seguir que lleve alos resultados que quieres, y todo ello sin
gue tu conducta parezca dictatoria. La distincion es en gran parte el tono. Por ejemplo, esto estamal:

Esta discusion no va a ninglin lado. Por favor podemos dejar este tema hasta que al-
guien tenga un parche que implemente una de esas proposiciones? No hay razén para
mantenernos en ello todo el rato diciendo las mismas cosas. El codigo hace mas ruido
gue las palabras, chicos.

90

Communications

Donde esto esta bien:

Varias propuestas han estado flotando en este hilo, pero ninguno ha tenido todos los
detalles completos, al menos no demasiados como para hacer una votacién arriba-
0-abajo. Y todavia no estamos diciendo nada nuevo; estamos simplemente reiterando
lo que ya se ha dicho anteriormente. Asi que lo mejor a partir de este punto sera pro-
bablemente para posteriores correos contener tanto una especificacion completa para
la caracteristica propuesta, o un parche. Entonces al menos tendriamos una accion
definitiva que tomar (gjem, tener un consenso en la especificacién, o aplicar e par-
che).

Compara la segunda propuesta con la primera. La segunda manera no traza unalineaentre ti y los de-
mas, ni les acusa de mantener la discusion en unaespiral. Habla sobre "nosotros”, que es lo importante
hayas participado o no en € hilo de correo anteriormente, porque recuerada atodo el mundo que incluso
aquellos que han estado en silencio hasta entonces en el hilo de correo todavia pueden participar en €l
resultado del hilo de correo. Describe porgue €l hilo no va a ninguna parte, pero o hace sin peyorativas
ni juicios; simplemente muestra €l estado de algunos hechos sin sentimiento. Lo més importante, ofrece
un curso de accidn positivo, de manera que en vez de que la gente sienta que la discusion esta siendo ce-
rrada (unarestriccion contrala cual ellos pueden slo estar tentados a rebelar), se sentirdn como si seles
estuviera ofreciendo una manera de tomar parte en la conversacion a un nivel mas constructivo. Este es
un estandar con € cual la gente querra quedarse.

Siempre no querras convertir un hilo de correo en el siguiente nivel de construccion; otras veces querras
dejarlo pasar. El propdésito de tu correo, entonces, es hacer unacosa o laotra. Si puedes decir € camino
gue debera tomar e hilo de correo de manera que nadie lo esta haciendo asi para tomar |os pasos que su-
geriste, entonces tu correo ha cerrado € hilo sin aparentar hacerlo. Por supuesto, no hay una manerain-
falibe de cerrar un hilo, eincluso si la hubiera, no querrias usarla. Pero preguntando alos participantes a
crear progresos visibles o parar de escrhbiri correos es perfectamente defendible, si se hace diplomética-
mente. Sin embargo, se cautel 0so de anular los hilos de correo prematuramente. Alguna cantidad de
charla especulativa puede llegar a ser productiva, dependiendo del tema, y preguntando para que se re-
suelva demasiado rdpida apagara el proceso creativo, asi como tambien te hara parecer impaciente.

Don't expect any thread to stop on a dime. Probablemente habra todavia unos pocos correos despues del
tuyo, ya sea porque los mails se cruzan en lared, o porque la gente quiere tener la Ultima palabra. Esto
no es nada por 1o que preocuparse, y No necesitas escribir otro correo otra vez. Simplemente deja que €l
hilo se vaya esfumando o que no se esfume como puede ser € caso. No puedes tener control completo;
por otra parte, puedes esperar tener estadisticamente un efecto significativo através de varios hilos de
correo.

Cuanto mas blando sea el tema, mas largo sera el deba-

te

Aunque las discusiones pueden extenderse a cualquier topico, la probabilidad de que se vayan exten-
diendo va conforme la dificultad tecnica del tema disminuye. Despues de todo cuanta mas seala dificul -
tad tecnica, menor sera el numero de participantes que realmente podran seguirla. Aquellos quienes pue-
den ser los desarrolladores mas experimentados, quienes ya han tomado parte en esas discusiones antes
cientos de veces, y conocen €l tipo de comportamiento es el que vaallevar aun consenso con €l cual to-
do el mundo este de acuerdo.

De esta manera, en cuestiones tecnicas que son simples de comprender y faciles de tener una opinion so-
bre ellas, es dificil llegar a un consenso, y en temas "blandos’ como organizacion, publicidad, ingresos,
etc. Lagente puede participar en aguell os argumentos siempre, porgue no es necesario ninguna cualifi-
cacion para hacerlo, no hay un camino claro para decidir (incluso despues de todo) si una decision fue
buena o mala, y porque simplemente esperar a que otros discutan es a veces unatactica correcta.

El principio de que la cantidad de discusion es inversamente proporciona alacomplejidad del tematra-

91

Communications

tado, ha estado ahi durante algun tiempo, y es conocido informalmente como el Efecto Bikeshed . Aqui
esta la explicacion de Poul-Henning Kamp's, de un correo ahora famoso, hecho en lalista de desarrolla-
dores de BSD:

Es unalarga historia o mas bien es una vigja historia, pero es bastante escasa actual-
mente. C. Northcote Parkinson escribio un libro en 1os comienzoa de 1960 titulado
"Laley de Parkinson", lacua contenia mucho entendimiento sobre la dinamicadela
gestion.

[.]

En el g emplo especifico cubriendo el refugio de bicicletas, el otro componente vital es
una planta de energia atomica, supongo queilustralaepocade € libro. .

Parkinson nos muestra que puedes ir a un consejo de direccion y conseguir la aproba-
cion de un edificio multi millonario o incluso de billones de dolares de una planta de
energia atomica, pero si quieres construir un refugio de bicicletas te veras implicado
en discusiones sin fin.

Parkinson explica que esto es porque una planta de energia atomica es tan enorme, tan
caray tan complicada que la gente no tendra conocimiento de ello, y en lugar de inten-
tarlo, recurriran a supuesto de que alguien revisaratodos los detalles antes de ir mas
ala Richard P. Feynmann dio un par de interesantes, y muy cercanos a esto ejemplos
en relacion alos Alamos en sus libros.

Por otra parte, un refugio para bicletas. Cual quiera puede construir uno de esos en un
fin de semana, y todavia tendratiempo paraver laTV. As que no importalo bien pre-
parado que estes, tampoco importa lo razonable que seas en tu proposicion, alguien se
hara con la oportunidad para demostrar que esta haciendo su trabajo, que esta atento,
gue esta ahi.

En Dinamarcalo llamamos "dejatu huella'. Trata sobre el orgullo personal y el presti-
gio, vasobre ser capaz de sefialar en algun sitio y decir "Hay! esto lo hice Yo." Es
fuerte, simplemente piensa en las pisadas del semento mojado.

(Su post completo es unalectura de mucho valor. Miralo.Apéndice C, Why Should | Care What Color
the Bikeshed 1s?; see also http://bikeshed.com.)

Cualquiera que regularmente tome parte en decisiones hechas en grupo reconocera sobre que es 1o que
esta hablando Kamp. Sin embargo, normal mente es imposible persuadir atodo el mundo a evitar pintar
un cobijo de bicis. Lo mejor que puedes hacer es sefialar que el fenomeno existe, y cuando veas que esta
ocurriendo, persuadir a desarrollador senior; las personas cuyos mails |levan todo € peso; a soltar sus
brochas pronto, asi al menos no contribuiran al ruido. Las fiestas para pintar bicis nunca se esfumaran
enteramente, pero puedes hacerlas mas cortas y menos frecuentes extendiendo una concienciacion del
fenomeno en la cultura del proyecto.

Evitando las Guerras Santas

UnaGuerra Santa es una disputa, a menudo pero no siempre sobre un tema rel ativamente menor € cual
no se puede resolver con los meritos de los argumentos, pero donde la gente se siente demasiado apasio-
nada para continuar discutiendo de cual quier manera con la esperanza de que su lado prevalecera. Las
Guerras Santas no son o mismo que la pintura de un garaje de bicicletas. La gente de la pintura de bici-
cletas normalmente salen rapido con una opinion (porgue pueden), pero ellos, necesariamente no se sen-
tiran demasiado apasionados sobre ello, y por |o tanto, otras veces, expresaran opiniones incompatibles
para mostrar que ellos comprenden todas las caras del tematratado. Por otra parte, en una Guerra Santa,
comprender alas otras partes es un signo de debilidad. En una Guerra Santa, todo € mundo sabe que
hay UNA Respuesta Correcta; Per ellos no estan de acuerdo con esta.

92

http://bikeshed.com

Communications

Unavez que una Guerra Santa ha empezado, generalmente no se puede resolver con la satisfaccion de
todo el mundo. No es bueno mostrar, en el medio de una Guerra Santa, que esta esta teniendo lugar. To-
do el mundo yalo sabe. Desafortunadamente una caracteristica comun de las Guerra Santa es el desa-
cuerdo en cada cuestion si la disputa se puede resolver continuando la discusion. Visto desde fuera, esta
claro que ninguna parte va a cambiar la opinion de los otros. Visto desde dentro, la otra parte esta siendo
obtusay no esta pensando claramente, pero pueden cambiar de opinion si las cosas se vuelven feas.
Ahora,no estoy diciendo que no haya una parte con razon en una guerra santa. A veces lahay en las
Guerras Santas que yo he participado, siempre ha sido mi bando, por supuesto. Pero no importa porque
no hay algoritmo para demostrar convencidamente que una parte o la otra estan en o cierto.

Un comun, pero insatisfactorio modo de intentar solucinar una Guerra Santa es decir "Y a hemos gastado
bastante tiempo y energia de o que vale discutiendo esto! Por favor, ¢podemos dejarlo? Hay dos proble-
mas en esto. Primero, que el tiempo y la energia ya se han gastado y ya no se pueden recuperar; la unica
cuestion ahora es, cuanto esfuerzo mas permanecera? Si todavia alguno siente que un poco mas de dis-
cusion resolverala cuestion pronto, entonces todavia tiene sentido (desde su punto de vista) continuar.

El otro problema en preguntar para que la cuestion sea zanjada es que esto es a menudo equivalente a
permitir a una parte €l status quo, a declarar lavictoria por inaccion. Y en algunos casos, €l status quo es
conocido por ser de cualquier forma inaceptable: todo el mundo esta de acuerdo en que se debe llegar a
unadecision, se debe tomar alguna accion. Dejar € tema seria peor paratodo el mundo que simplemente
apoyando € argumento que daria alguien. Pero dado que el dilema se aplicaigualmente atodo € mun-
do, todavia es posible terminar discutiendo por siempre sobre que hacer.

¢Como deberias mangjar una Guerra Santa?

Puedes anticipar ciertas Guerras Santa estandar: tienden a tratar sobre lenguajes de programacion, licen-
cias (mira“LaGPL y compatibilidad entre licencias’ in Capitulo 9, Licencias, Copyrights y Patentes),
en respuesta a munging (mira“El gran debate del Reply-To” en Capitulo 3, Infraestructura Técnica), y
algunos otros topicos. Normal mente cada proyecto tiene una o dos Guerras Santas, tambien, las cuales
los desarrolladores mas experimentados estaran ya familiarizados. L as tecnicas para frenar las Guerras
Santas, 0 al menos limitar su dafio, son casi las mismas en cualquier lugar. Incluso s eres positivo y tu
parte es correcta, intenta encontrar alguna manera de expresar simpatiay comprension hacia los puntos
de vista que los otros hacen. A menudo el problema en una Guerra Santa es porque cada parte ha cons-
truido sus muros lo mas ato posible, y dejan claro que cualquier otra opinion es totalmente idiota, el ac-
to derendirse o cambiar el pensamiento de alguien se hace psicol ogicamente insostenible: seria un reco-
nocimiento no solamente siendo erréneo, pero habiendo sido ciertamentey todavia siendo erréneo. La
manera en que puedes hacer este reconocimiento aceptable por la otra parte es expresar alguna duda tu
mismo; precisamente mostrando que comprendes sus argumentos'y a menos eres sensible aellos, si no
persuasivo finalmente. Haz un gesto que proporcione espacio para un gesto reciproco, y hormalmente la
situacién mejorarad. No es ni mas ni menos probable que consigas €l resultado técnico que querias, pero
al menos puedes evitar el dafio colateral innecesario alamoral del proyecto.

Cuando una Guerra Santa no se puede evitar, decide pronto cuanto la apoyas, y entonces estéte dispuesto
publicamente a ceder. Cuando hagas esto, puedes decir que no estas respaldandola porque la Guerra
Santa no lo vale, pero no expreses ninglin rencor y no tomes la oportunidad para una despedida di spa-
rando contra los argumentos de la otra parte. Darse por vencido es efectivo solo cuando se hace con ele-
gancia

Las Guerras Santas de lenguajes de programaci 6n son un caso especial, porque a menudo soh mayor-
mente técnicas, todavia mucha gente se siente cualificada para tomar parte en éllas, y € interes es muy
alto, yaque € resultado puede determinar en gran medida en que lenguaje se va a escribir € proyecto.
Lamejor solucion es elegir € lenguaje pronto, con lainfluencia de los desarrolladoresiniciales, y enton-
ces defenderlo en los terrenos en los que eres comfortabl e escribiendo, no en €l terreno que seriamejor
en el que otro lengugje se pudiera utilizar. Nunca dejes que la conversacion en una comparacion acadé-
mica de lenguajes de programacion (esto parece ocurrir especia mente cuando alguien menciona Perl,
por algunarazén); éste es un topico muerto en el que simplemente debes evitar caer.

Para consultar més fondo histérico de las Guerras Santas, mira

93

Communications

http://catb.org/~esr/jargon/html/H/holy-wars.html, y €l articulo de Danny Cohen que popularizo el tér-
mino, http://www.ietf.org/rfc/ien/ien137.txt.

El efecto "Ruido Minoritario”

En cualquier discusion de unalista de correo, esfécil para una pequefia minoria dar laimpresion de que
hay un gran acuerdo de contrariead, esto es inundando lalista con numerososy largos emails. Esigual a
hacer una maniobra obstruccionista, excepto que lailusién de la disensién genera esincluso més pode-
rosa, porque esta dividida entre un nimero arbitrario de posts discretos y alamayoria delagente no le
importa seguir la pista de quién ha dicho que, cuando. S6lo tienen unaimpresion instintiva de que el te-
ma es muy controvertido, y esperan aque el escandalo disminuya.

Lamejor manera de contrarrestar este efecto esindicarlo muy claramente y proporcionar pistas respal da-
das mostrando como de pequefio es el nimero actual de disidentes comparado alos que estan en acuer-
do. Paraincrementar la disparidad, puedes querer encuestar de manera privada a la gente que ha estado
lamayor parte del tiempo en silencio, pero que sospechas que estaran de acuerdo con lamayoria. been
mostly silent, but who you suspect would agree with the majority. No digas nada que sugiera que los di-
sidentes estaban intentando deliberadamente inflar laimpresion que estaban creando. Oportunidades que
no tuvieron, e incluso si las tuvieron no habia una ventaja estratégica para sefidarla. Todo lo que necesi-
tas es mostrar €l ndmero actual en una comparacion cara-a-cara, y la gente se dara cuenta que su intui-
cién de lasituacion no coincidia con larealidad.

Este consegjo no sblo se aplica a temas con una clara posicion a-favor-en-contra. Se aplicaa cualquier
discusién donde hay un alboroto, pero no esta claro que lamayoria de la gente considere ese tema bajo
discusion que sea un problemareal. Despues de todo, si estas de acuerdo en que el temano es digno de
accion, y puedes ver que hafallado en atraer laatencion (incluso si ha generado muchos mails), puedes
observar publicamente que no esta teniendo traccion. Si € efecto "ruido minoritario” hafuncionado, tu
post parecerd un soplo de aire fresco. La mayoria de laimpresion de la gente de la discusién se dara
cuenta de que ese punto habra sido algo turbio: Huh, seguro que sienten como que hay un gran acuerdo
aqui, porque seguramente hay un montén de posts, pero no puedo ver que esté habiendo ninglin progreso
claro." Explicando como la manera en que la discusion se hizo parezca mas turbulenta de lo que real-
mente es, tu retrospectivamente le darés una nuevaforma, através de la cual la gente pueda recapitular
su comprension del resultado.

Gente dificil

No estan féacil tratar con gente dificl en foros electronicos como lo seria en persona. Con "dificil" no me
refiero a"maleducados’. La gente maleducada es molesta, pero no son necesariamente dificiles. En este
libro ya se ha discutido como manejarlos.comenta la grsoeria la primeravez, y desde entonces ignorales
o tratalos como otro cualquiera. Si continuan siendo maleducados, ellos mismos se haran tan impopula-
res que no tendran influencia en nadie del proyecto, por lo que serdn un problema de ellos mismos.

L os casos realmente dificiles son la gente que no son manifiestamente groseros, pero que manipulan o
abusan en |os procesos del proyecto de una manera que termina costando €l tiempo y la energiade otras
personas, y todo ello sin traer ningln beneficio a proyecto. Tales personas a menudo buscan puntos de
presién en los procedimientos del proyecto, paradarse a si mismos mas influencia que de otra manera no
tendrian. Esto es mucho més insidioso que la groseria meramente, porque ni el comportamiento ni € da-
fio que causa es aparente alos observadores casuales. Un gjemplo clasico es aquellos que realizan ma-
niobras obstruccionistas, en la que aguien (siempre sonando tan razonable como sea posible, por su-
puesto) viene demandando que la cuestion bagjo discusion no esta lista para una solucién, y ofrece mésy
mas posibles soluciones, 0 nuevos puntos de vista de vigjas soluciones, cuando lo que realmente esta pa-
sando es que el sentido de un consenso o votacion esta a punto de ocurrir, y no le gusta por donde va en-
caminado. Otro gjemplo es cuando hay un debate que nho converge en consenso, pero € grupo al menos
intenta clarificar los puntos en desacuerdo y produce un sumario para que todo el mundo se refieraa par-
tir de el. El obstruccionista, que sabe que e sumario puede llevar aun punto que ael nolevaagustar, a
menudo intentara retrasar e sumario, implacablemente mediante complicadas cuestiones que deberian
estar ahi, u objetando sugerencias razonables, o mediante la introduccion de nuevos asuntos.

94

http://catb.org/~esr/jargon/html/H/holy-wars.html
http://www.ietf.org/rfc/ien/ien137.txt

Communications

Tratando con gente dificil

Para contrarrestar tal comportamiento, ayuda el comprender la mentalidad de aquellos que caenen él. La
gente generalmente no |o hara conscientemente. Nadie se levanta por lamafianay se dice a si mismo:
"Hoy voy amanipular cinicamente las formasy procedimientos para ser asi un irritante obstruccionista."
En cambio, tales acciones estan a menudo precedidas por un sentimiento de semi-paranoia de estar fuera
delasinteraccionesy decisiones del grupo. La persona piensa que no se le toma seriamente, o (en casos
mas severos), que existe una conspiracion contra él;y que los otros miembros del proyecto han decidido
formar un club exclusivo, del cual el no es miembro. Esto entonces justifica en su mente, atomar las re-
glas literalmente y encargandose de una manipulacion formal de los procedimientos del proyecto, para
asi hacer que todo el mundo e tome en serio. En casos extremos, |a persona puede incluso pensar que
esta luchando una batalla solo para salvar el proyecto de si mismo.

Eslanaturaleza del propio atague la que hara que nadie se percate de él a mismo tiempo, y mucha gente
no lo notara, a menos que se presente con evidencias muy fuertes. Esto significa que neutralizarlo puede
[levar algo de trabajo. No basta con persuadirse a si mismo de que esta ocurriendo; tendras que organizar
muy bien las evidencias para persuadir alos deméas de |o que esta ocurriendo, y entonces tendras que
distribuir estas evidencias de una manera atenta.

Dado que hay mucho por lo que luchar, amenudo la mejor opcion estolerarlo de vez en cuando. Piensa
en esto como un parasito, esto es unadolencia suave: si no es muy debilitante, el proyecto podra afrontar
el permanecer infectado, y la medicina podriatener efectos perjudiciales. Sin embargo, si consigue mas
dafio del que se puedatolerar, entonces es tiempo de entrar en accién. Empieza reuniendo notas de los
patrones que observas. Asegurate de incluir referencias a archivos publicos; esta es una de las razones
por la que los proyectos mantiene histdricos, para que puedas usarlos tambien. Una vez que tengas una
buena recopilacion, empieza a entablar conversaciones privadas con otros participantes del proyecto. No
les digas o que has observado; en vez de eso, preglintales primero que es lo que observan ellos. Esta
puede ser tu Ultima oportunidad de conseguir feedback sin filtrar sobre como los demas observan €l
comportamiento de los que crean problemas; una vez que has empezado a hablar abiertamente, la opi-
niodn se polarizardy nadie sera capaz de recordar que es lo que anteriormente opinaba sobre €l temaen
cuestion.

Si las discusiones privadas indican que tambien hay otros que perciben el problema, entonces es hora de
hacer algo. Aqui es donde tienes que ser realmente cautel 0so, porque sera muy fécil para este tipo de
persona hacer parecer como que tu eres €l que actua injustamente. Hagas |o que hagas, nunca acuses de
abusar maliciosamente de |os procedimientos del proyecto, o de ser paranoico, o, en general, de cual-
quier otra cosa que sospeches que probablemente sea cierta. Tu estrategia debera mostrarse tanto razona-
ble como consciente del bienestar global del proyecto. Con el objetivo de reformar la actitud de la perso-
na, 0 de expulsarladel proyecto permanentemente. Dependiendo de |os otros desarrolladores, y de tu re-
lacién con ellos, puede ser ventajoso conseguir aliados de manera privada primero. O puede que no; ya
gue puede dificultar el ambiente interno, si la gente piensa que te estas dedicando a una campafia de fal-
SOS € impropi oS rumores.

Recuerda que aunque la otra persona sea la que se este portando destructivamente tu seras la que parezca
destructiva si le culpas publicamente y no lo puedes probar. Asegurate de tener varios gemplosy de-
mostrar |o que estas diciendo, y dilo tan suave como puedes pero siendo directo. Puede que no persuadas
alapersona en cuestion, pero estard bien mientras puedas persuadir alos demés.

Estudio del caso

Recuerdo sblo una situacién, en mas de 10 afios trabajando en Software Libre, donde las cosas fueron
tan mal, que nosotros tuvimos que preguntar a alguien para que parase de postear completamente. Como
eratan amenudo €l caso, €l no era maleducado y queria sinceramente ser de utilidad. Simplemente no
sabia cuando escribir alalistay cuando no hacerlo. Nuestras listas estaban abiertas a publico, y é escri-
bia muy a menudo, preguntando cuestiones de diferentes temas, que empez6 a ser un problema de ruido
parala comunidad. Nosotros habiamos intentado preguntarle de buenas maneras para que hiciera un po-
co mas de investigacién para |as respuestas antes de escribir alalista, pero no hizo efecto.

95

Communications

Laestrategiaque a final funciond es un gjemplo perfecto de como construir una situacion neutral, y con
datos cuantitativos. Uno de los cuatro desarrolladores hizo una exploracién en los archivos, y envio en-
tonces €l siguiente mensaje de manera privada a unos pocos desarrolladores. El ofendido (el tercer nom-
bre en lalista de abajo, se muestra aqui como "J. Random") tenia muy poca historia con el proyecto, y
no habia contribuido ni con cédigo ni documentacién. Y aln asi era el tercero més activo en escribir
mensajes en lalista de correo:

From "Brian W Fitzpatrick" <fitz@oll ab. net>

To: [... recipient list omtted for anonymty ...]
Subj ect: The Subversion Energy Sink

Date: Wed, 12 Nov 2003 23:37:47 -0600

En los uUltinops 25 dias, el top de los 6 que nmas han escrito en la lista de svn [de

294 kf ogel @ol | ab. net

236 "C. Mchael Pilato" <cnpilato@oll ab. net>
220 "J. Randont' <jrandom@robl emati c-poster.conp
176 Branko #i bej <brane@bc. nu>

130 Philip Martin <philip@odenmatters. co. uk>

126 Ben Col |l i ns-Sussman <sussnman@ol | ab. net >

Diria que cinco de esas personas estan contribuyendo con éxito al desarrollo
de la versioén 1.0 de subversi 6n en un futuro cercano.

Tanbien diria que una de esas personas esta constantenente atrayendo tienpo y ener
otras cinco, sin nencionar a la lista cono un todo, asi, (aunque no intenci onadane
el desarrollo de Subversion. No hice un andlisis de los hilos de correo, pero haci
en m archivo de correo me nuestra que a cada correo de esta persona | e responde a
dos de los otros cinco de la lista anterior.

Creo que algdn tipo de intervencion radical es necesaria en esto, incluso si nos a
susodi cho se marche. Se ha conprobado que la finura y amabilidad aqui no tienen ef

dev@ubversion es una lista de correo para facilitar el desarrollo de un sistenma d
no una sesi 6n de terapi a de grupo.

-Fitz, intentando abrir camno con dificultad por el correo de svn de tres dias qu

Aunque no pueda parecerlo a principio, € comportamiento de J. Random's era un clasico de abuso de
los procedimientos del proyecto. El no estaba haciendo nada obvio mas que intentando obstruccionar en
los votos, y estaba aprovechandose de la ventaja de la politica de lalista de correo de depender en la
propia moderacion de sus miembros. Dejamos al juicio de cadaindividuo en lo que escribe y sobre que
materias. De esta manera, no teniamos recursos de procedimiento paratratar con aquellos que no tenian
buen juicio, o que no lo practicaban. No habia ninguna regla que pudieras apuntar e indicar que se estaba
violando, aungue todo el mundo ya sabia que sus frecuentes correos se estaban convirtiendo en un pro-
blema serio.

La estrategia de Fitz era retrospectivamente maestra. El recopilo una cantidad de evidenciairrefutable, y
entonces la distribuyo discretamente, enviandola primero a unas pocas personas cuyo soporte seria clave
en una accion dréstica. Ellos estuvieron de acuerdo en que era necesaria algin tipo de accion, y a final
[lamamos a J. Random por teléfono, le describimos el problema directamente, y le preguntamos para que
simplemente parase de escribir correos alalista. EI nunca comprendio realmente las razones de el o; si
hubiera sido capaza de comprenderlo, probablemente hubiera ejercido un juicio apropiado en primer lu-
gar. Pero €l acord6 en parar de escribir correos, y lalistade correo se convirtio en (til de nuevo. Unade
las razones por las que esta estrategia funciono fue quizas, la amenaza implicita con la que hubieramos
empezado arestringir sus posts via el software de moderacion que normal mente se utiliza para prevenir
el spam (consulta“Prevenir el Spam” en Capitulo 3, Infraestructura Técnica). Pero larazoén por la que
fuimos capaces de aquella opcidn en reserva fue que Fitz habia recopilado el apoyo necesario de la gente
clave en primer lugar.

96

Communications

Manejando el crecimiento

El precio del éxito es muy pesado en e mundo del Open Source. Conforme tu software se hace més po-
pular, el nimero de gente que empieza a buscar informacion sobre él, se incrementa dramaticamente,
mientras € nimero de gente capaza de proporcionar informacion se incrementa mucho mas despacio.
Ademas, incluso si € ratio fuera uniformemente bal anceado, todavia existiria un problema de escal ahili-
dad en laformaen que lamayoria de los proyectos Open source manejan las comunicaciones. Considera
por g emplo las listas de correo. La mayoria de los proyectos tienen una lista de correo para cuestiones
generales de los usuarios; aveces |os nombres de estas listas son "usuarios”, "discusiones’, o0 "ayuda' o
algo similar. Cuaquiera que sea su hombre, el propdsito de esas listas es el mismo: proporcionar un lu-
gar donde la gente pueda resolver sus cuestiones, mientras otros observan y (presumiblemente) absorben
conocimiento de la observacion de ese intercambio de conocimiento.

Estas listas de correo funcionan muy bien hasta unos pocos miles de usuarios y/o un par de cientos de
posts a dia. Pero més o menos, a partir de ahi el sistema empieza a romperse, porque cada suscriptor vee
cada post; si €l nimero de post alalista empieza a exceder lo que cualquier lector individual puede pro-
cesar en un dia, lalista se convierte en una carga para sus miembros. |magina por g.emplo, si Microsoft
tuvieratal lista de correo para Windows X P. Windows XP tiene cientos de millones de usuarios; ain in-
cluso si €l uno por ciento de ellos tuviera cuestiones en un periodo de veinticuatro horas, entonces esta
lista hipotética cientos de miles de posts a dial Por supuesto, tal lista de correo no podria existir, porque
nadie permaneceria subscrito. Este problemano esta limitado alas listas de correo; lamismaldgica se
aplicaalos canales del IRC, los foros de discusion online y por ende, acualquier sistemaen el cua un
grupo escuche preguntas de individuos. Las implicaciones son siniestras: el modelo usual del Open
Source del soporte masivamente paral elizado simplemente no escala | os niveles necesarios para la domi-
nacion mundial.

No habra una explosién cuando los foros alcancen su punto de ruptura. Se trata simplemente de un efec-
to silencioso de feedback negativo: la gente se borrara de las listas, o saldrén de los candlesdel IRC, 0 a
cualquier ritmo cesaran de preocuparse en preguntar cuestiones, porgque veran que no se les escuchara
entre tanta gente. Asi cuanta méas gente haga de estas su principal eleccién racional, la actividad de los
foros empezara a permanecer a un nivel inmanejable precisamente porque la gente racional o (al menos
experimentada), empezard a buscar informacion por otros medios, mientras la gente sin experiencia per-
maneceray continuard preguntando en forosy listas de correo. En otras palabras, uno de los efectos de
continuar con el uso de model os de comunicacién que no son escalables mientras que €l proyecto crece
es que la calidad mediatanto de preguntas y respuestas tiene a disminuir, o cual hace que los nuevos
usuarios parezcan mas tontos de lo que son, cuando de hecho probablemente no lo sean. Se trata simple-
mente de que € ratio beneficio/costo de el uso de esos foros masificados, disminuye, por lo que de ma-
nera natural, aquellos con experiencia, empezaran a buscar respuestas en otros sitios. Ajustar |os meca
nismos de comunicacién para poder con €l crecimiento del proyecto, implicard dos estrategias relaciona
das:

1. Reconociendo cuando partes especiales de un foro no sufren un crecimiento desmesurado, incluso si
el foro se trata como un todo, y separando aquellas partes creando otras nuevas, en foros mas especia-
lizados (gjem., no dejes que los buenos se arrastren por 1os mal0s).

2. Asegurando que existen muchas fuentes de informaci 6n automaticas disponibles, y que se mantienen
organizadas, actualizadasy féciles delocalizar.

Laestrategia (1) normamente no es muy dura. La mayoria de |os proyectos empiezan con un foro prin-
cipal: y unalistade correo para discusiones generales, en las cuales |as ideas de caracteristicas, cuestio-
nes de disefio y problemas de codificacion puedan ser discutidos. Todo el mundo involucrado en el pro-
yecto esta en lalista. Despues de un tiempo, se comprueba que lalista ha evolucionado en varias sublis-
tas basadas en diferentes teméticas. Por g emplo, algunos hilos son claramente sobre desarrollo y disefio;
otros son dudad de usuarios del tipo ¢'Como hago tal cosa'?; quiza exista unatercera temética centrada
en el registro de procesar los informes de bugsy peticiones de mejora; y asi. Un individuo dado, por su-
puesto puede participar en varios tipos diferentes de hilos, pero lo més importante de todo es que no hay

97

Communications

mucho solapamiento entre los diferentes tipos mismos. Pueden ser divididos en listas separadas sin cau-
sar ningun perjuicio en el proyecto, porque los hilos se mantienen repartidos por teméticas.

Actualmente, realizar estadivision es un proceso de dos pasos. Creas lanuevalista (o el canal IRC, olo
gue vayaa ser), y entonces gastas el tiempo necesario de manera educada pero insistiendo y recordando
alagente ausar los nuevos foros apropiadamente. Este paso puede llevar semanas pero finalmente la
gente captara laidea. Simplemente tienes que hacer ver aalguien que envia un post al destino equivoca
do, cual es el nuevo camino y hacerlo de manera visible, animando a que otras personas ayuden tambien
en |os nuevos usuos. Es tambien muy Util tener una pagina web proporcionando una guia haciatodas las
listas disponibles; tus respuestas simplemente pueden referenciar esta paginay, como gratificacion, el
destinatario puede aprender sobre |as pautas a seguir antes de escribir un correo.

Laestrategia (2) es un proceso en curso, dura durante todo el tiempo de vida del proyecto einvolucraa
muchos participantes. Por supuesto es en parte cuestion de tener una documentacion actualizada (mira
“Documentacion” en Capitulo 2, Primeros Pasos) y asegurandote que la gente vaya ahi. Pero es tambien
mucho més que eso; |as secciones que siguen discuten esta estrategia en detalle.

Sobresaliente uso de los archivos

Tipicamente, todas |as comuni caciones de un proyecto Open Source (excepto algunas veces conversa-
ciones en el IRC), son archivadas. Los archivos son publicos y se pueden buscar, y tienen una estabili-
dad referencial: que significa, unavez que una pieza de informacion se ha grabado en una direccion par-
ticular, permanece en esa direccion para siempre.

Usa estos archivos tanto como puedas, y tan visiblemente como sea posible. Incluso cuando sepas lares-
puesta a alguna pregunta, si piensas que existe unareferencia en |os archivos que contiene la respuestas,
gasta el tiempo necesario para buscarlay presentarla. Cada vez que hagas esto de una manera publica-
mente visible, algunas personas aprenderan la primera vez que significan esos archivos, y que buscando
en ellos pueden encontrar respuestas. Tambien, refiriéndose alos archivos en vez de reescribir lares-
puesta, refuerzas lanormasocia contrala duplicacion de informacién. ¢Por qué obtenemos lamisma
respuesta en dos sitios diferentes? Cuando el nimero de sitios que se puede encontrar es mantenido aun
minimo, la gente que lo ha encontrado antes estan mas predispuestos a recordar qué y donde buscarlo
paralas proximas veces. Las referencias bien situadas tambien contribuyen ala calidad de los resultados
de busqueda en general, porque €llos refuerzan los recursos del objetivo en los rankings de los motores
de busqueda en Internet.

Sin embargo, hay veces en las que duplicar lainformacion tiene sentido. Por ejemplo, supon que hay
una respuesta en los archivos, que no es de ti, diciendo:

Parece que | os indices Scanley indexes han sido corronpi dos. Para devolverlos a
su estado original, ejecuta estos pasos:

1. Apaga el servidor Scanley.
2. Ejecuta el programa 'descorronper' que viene con Scanley.
3. Inicia el servidor.

Entonces, meses después, ves otro mail indicando que algunos indices han sido corrompidos. Buscas los
archivosy presentas la vigja respuesta anterior, pero te das cuenta que faltan algunos pasos (quizas por
error, o quiza porque el software ha cambiado desde que se escribi6 ese post). La clésica manera para
manejar esto, es escribir un nuevo mail, con un conjunto de instrucciones més completo, y explicitamen-
te dar como obsoleto €l anterior post mencionandolo asi:

Parece que tus indices Scanley han sido corronpidos. Vinpbs este problemall & por J
y J. Random publicé una soluci 6n en http://bl ahbl ahbl ah/ bl ah. Abaj o hay una descr
mas conpl eta de cono recuperar tus indices, basado en |as instrucciones de J. Rand
pero extendi éndol o un poco nas:

98

Communications

Para el servidor Scanley.

Canbi ate al usuario con el que se ejecuta el servidor Scanley.
Conp este usuario, ejecuta el prograna 'recuperar' en |los indices.
Ej ecuta Scanl ey a nano para ver si |los indices funcionan ahora.
Rei nicia el servidor.

akwbdE

(En un mundo ideal, seria posible poner una notaen el vigjo post, indicando que existe informacion méas
actualizaday apuntando a nuevo post que la contiene. Sin embargo, no conozco ningun software de ar-
chivacion que ofrezca una caracteristica " obsoleto por”, quiza porque seria muy dificil de implementar
de unamanera en que no viole laintegridad de los archivos. Esta es otrarazon de porqué es buenaidea
crear paginas web con respuestas a cuestiones comunes.

L os archivos probablemente son buscados mas a menudo para respuestas a cuestiones técnicas, pero su
importancia para el proyecto vamés ala de eso. Si una pautaformal del proyecto son sus leyes estable-
cidas, los archivos son su ley comun: una grabacion de todas las decisiones hechas y como se lleg6 hasta
ellas. En cualquier discusion recurrente, actualmente es casi obligatorio empezar con una blsqueda en
los archivos. Esto permite empezar la discusién con un sumario del estado actual de las cosas, anticipan-
dose a objeciones, preparando refutaciones y posiblemente descubriendo angulos que no habias imagi-
nado. También los otros participantes esperan de ti que hayas hecho una bisqueda en los archivos. In-
cluso si las discusiones previas no llevaron a ninguna parte, ta deberias incluir sugerencias cuando vuel-
vas a téma, para que la gente pueda ver por st mismos a) que no llegaron a ningun consenso, y b) quetd
hiciste tu trabajo, y por tanto que probablemente se este diciendo algo ahora que no se dijo anteriormen-
te.

Treat all resources like archives

Todos |os consgj os anteriores son extensibles méas all& de los archivos de las listas de mail. Tener piezas
particulares de informacion de manera estable, y en direcciones que se puedan encontrar conveniente-
mente deberia ser un principio de organizacion paratoda lainformacion de un proyecto. Vamos aver la
FAQ como un caso de estudio.

¢Coémo usalagente una FAQ?

1. Buscan palabrasy frases especificas.

2. Quieren poder navegarla, disfrutando de lainformacion sin buscar necesariamente respuestas a cues-
tiones especificas.

3. Esperan que motores de blisqueda como google conozcan el contenido de la FAQ, de manera que las
blsquedas puedan ser entradas en laFAQ.

4. Quieren ser capaces de dirigirse directamente a otra gente en temas especificos en laFAQ.

5. Quieren ser capaces de afadir nuevo material alaFAQ, pero hay que ver que esto ocurre menos a
menudo que la busqueda de respuestas —L as FAQs son de |gos mucho més | eidas que escritas.

El punto 1 implica que la FAQ deberia estar disponible en algin tipo de formato textual. Los puntos 2 y
3 implican que laFAQ deberia estar disponible en forma de paginaHTML, con €l punto 2 indicando
adicionalmnente que el HTML deberia ser disefiado con legibilidad (jem., necesitaras algun tipo de
control sobre su apariencia), y deberiatener unatabla de contenidos. El punto 4 significa que cada entra-
daindividual en la FAQ deberia ser asignada como un HTML named anchor, un tag que permite ala
gente alcanzar un sitio particular en la pagina. El punto 5 significa que los ficheros fuente de la FAQ de-
berian estar disponibles de una manera conveniente (ver “Versiones de todo” en Capitulo 3, Infraestruc-
tura Técnica), un formato que seafécil de editar.

99

Communications

Named Anchors and ID Attributes

There are two ways to get a browser to jump to a specific location within a web page: named an-
chors and id attributes.

A named anchor isjust anormal HTML anchor element (<a>. . . </ a>), but with a"name" at-
tribute:

. .. </ a>

More recent versions of HTML support ageneric id attribute, which can be attached to any
HTML element, not just to <a>. For example:

<p id="nyl abel ">...</p>

Both named anchors and id attributes are used in the same way. One appends a hash mark and the
label to a URL, to cause the browser to jump straight to that spot in the page:

htt p: // nyproj ect. exanpl e. com f aq. ht m #nyl abel

Virtually all browsers support named anchors; most modern browsers support the id attribute. To
play it safe, | would recommend using either named anchors alone, or named anchors and id attri-

butes together (with the same label for both in a given pair, of course). Named anchors cannot be
self-closing—even if there's no text inside the element, you must still writeit in two-sided form:

</ a>

...though normally there would be some text, such asthe title of a section.

Whether you use a named anchor, or an id attribute, or both, remember that the label will not be
visible to someone who browses to that location without using the label. But such a person might
want to discover the label for a particular location, so they can mail the URL for a FAQ answer to
afriend, for example. To help them do this, add atitle attribute to the same element(s) where you
added the "name" and/or "id" attribute, for example:

...
When the mouse pointer is held over the text inside the title-attributed element, most browsers

will pop up atiny box showing thetitle. | usually include the hash-sign, to remind the user that
thisis what she would put at the end of the URL to jump straight to this location next time.

Formatting the FAQ like thisis just one example of how to make a resource presentable. The same pro-
perties—direct searchability, availability to major Internet search engines, browsahility, referential stabi-
lity, and (where applicable) editability—apply to other web pages, the source code tree, the bug tracker,
etc. It just happens that most mailing list archiving software long ago recognized the importance of these
properties, which is why mailing lists tend to have this functionality natively, while other formats may
require some extra effort on the maintainer's part (Capitulo 8, Coordinando a los Voluntarios discusses
how to spread that maintenance burden across many volunteers).

Codifying Tradition

Asaproject acquires history and complexity, the amount of data each incoming participant must absorb

100

Communications

increases. Those who have been with the project along time were able to learn, and invent, the project's
conventions as they went along. They will often not be consciously aware of what a huge body of tradi-
tion has accumulated, and may be surprised at how many missteps recent newcomers seem to make. Of

course, the issue is not that the newcomers are of any lower quality than before; it's that they face abig-
ger acculturation burden than newcomers did in the past.

The traditions a project accumul ates are as much about how to communicate and preserve information
asthey are about coding standards and other technical minutae. We've already looked at both sorts of
standards, in “ Documentacion para Desarrolladores’ in Capitulo 2, Primeros Pasos and “ Tomando Nota
de Todo” in Capitulo 4, Infraestructura Social y Palitica respectively, and examples are given there.
What this section is about is how to keep such guidelines up-to-date as the project evolves, especially
guidelines about how communications are managed, because those are the ones that change the most as
the project grows in size and compl exity.

First, watch for patterns in how people get confused. If you see the same situations coming up over and
over, especially with new participants, chances are there is a guideline that needs to be documented but
isn't. Second, don't get tired of saying the same things over and over again, and don't sound like you're
tired of saying them. Y ou and other project veterans will have to repeat yourselves often; thisis an ine-
vitable side effect of the arrival of newcomers.

Every web page, every mailing list message, and every |RC channel should be considered advertising
space—not for commercial advertisements, but for ads about your project's own resources. What you
put in that space depends on the demographics of those likely to read it. An IRC channel for user ques-
tions, for example, islikely to get people who have never interacted with the project before—often so-
meone who has just installed the software, and has a question he'd like answered immediately (after all,
if it could wait, he'd have sent it to amailing list instead, which would probably use less of histotal ti-
me, although it would take longer for an answer to come back). People usually don't make a permanent
investment in the IRC channel; they'll show up, ask their question, and leave.

Therefore, the channel topic should be aimed at people looking for technical answers about the software
right now, rather than at, say, people who might get involved with the project in along term way and for
whom community interaction guidelines might be more appropriate. Here's how areally busy channel
handles it (compare this with the earlier examplein “IRC / Sistemas de Chat en Tiempo Real” in Capitu-
lo 3, Infraestructura Técnica):

You are now tal ki ng on #linuxhelp

Topic for #linuxhelp is Pl ease READ

http://ww. cat b. org/ ~esr/fags/smart-questions. htm &&

http://wwv. tldp.org/docs. ht M #howt o BEFORE aski ng questi ons | Channe
rules are at http://ww. nerdfest.org/lh_rules.htm | Please consult
http://kernel trap. org/ node/vi ew 799 before aski ng about upgrading to a
2.6.x kernel | nenory read possible: http://tinyurl.com4sént ->

update to 2.6.8.1 or 2.4.27 | hash algo disaster: http://tinyurl.com 6w8rf
| reiser4 out

With mailing lists, the "ad space” is atiny footer appended to every message. Most projects put subs-
cription/unsubscription instructions there, and perhaps a pointer to the project's home page or FAQ page
aswell. You might think that anyone subscribed to the list would know where to find those things, and
they probably do—but many more people than just subscribers see those mailing list messages. An ar-
chived post may be linked to from many places; indeed, some posts become so widely known that they
eventually have more readers off the list than on it.

Formatting can make a big difference. For example, in the Subversion project, we were having limited
success using the bug-filtering technique described in “Pre-filtrado del gestor de fallos’ in Capitulo 3,
Infraestructura Técnica. Many bogus bug reports were still being filed by inexperienced people, and
each time it happened, the filer had to be educated in exactly the same way as the 500 people before

101

Communications

him. One day, after one of our devel opers had finally gotten to the end of his rope and flamed some poor
user who didn't read the issue tracker guidelines carefully enough, another devel oper decided this pattern
had gone on long enough. He suggested that we reformat the issue tracker front page so that the most
important part, the injunction to discuss the bug on the mailing lists or IRC channels before filing, would
stand out in huge, bold red letters, on a bright yellow background, centered prominently above everyt-
hing else on the page. We did so (you can see the results at
http://subversion.tigris.org/project_issues.html), and the result was a noticeable drop in the rate of bogus
issue filings. We still get them, of course—we always will—but the rate has slowed considerably, even
as the number of usersincreases. The outcome is not only that the bug database contains less junk, but
that those who respond to issue filings stay in a better mood, and are more likely to remain friendly
when responding to one of the now-rare bogus filings. Thisimproves both the project's image and the
mental health of its volunteers.

The lesson for us was that merely writing up the guidelines was not enough. We a so had to put them
where they'd be seen by those who need them most, and format them in such away that their status as
introductory material would be immediately clear to people unfamiliar with the project.

Static web pages are not the only venue for advertising the project's customs. A certain amount of inte-
ractive policing (in the friendly-reminder sense, not the handcuffs-and-jail sense) isaso required. All
peer review, even the commit reviews described in “Practicad revisiones visibles del codigo” in Capitu-
lo 2, Primeros Pasos, should include review of peoplée's conformance or non-conformance with project
norms, especially with regard to communications conventions.

Another example from the Subversion project: we settled on a convention of "r12908" to mean "revision
12908 in the version control repository." The lower-case "r" prefix is easy to type, and because it's half
the height of the digits, it makes an easily-recognizable block of text when combined with the digits. Of
course, settling on the convention doesn't mean that everyone will begin using it consistently right away.
Thus, when a commit mail comesin with alog message like this:

r12908 | gsinmon | 2005-02-02 14:15:06 -0600 (Wed, 02 Feb 2005) | 4 lines
Patch fromJ. Random Contributor <jrcontrib@mail.conpr

* trunk/contrib/client-side/psvn/psvn.el:
Fi xed sone typos fromrevision 12828.

...part of reviewing that commit isto say "By the way, please use 'r12828', not 'revision 12828 when re-
ferring to past changes." Thisisn't just pedantry; it'simportant as much for automatic parsability as for
human readership.

By following the general principle that there should be canonical referral methods for common entities,
and that these referral methods should be used consistently everywhere, the project in effect exports cer-
tain standards. Those standards enable people to write tools that present the project's communicationsin
more useable ways—for example, arevision formatted as "r12828" could be transformed into alive link
into the repository browsing system. This would be harder to do if the revision were written as "revision
12828", both because that form could be divided across aline break, and because it's less distinct (the
word "revision" will often appear alone, and groups of numbers will often appear alone, whereas the
combination "r12828" can only mean arevision number). Similar concerns apply to issue numbers, FAQ
items (hint: use a URL with a named anchor, as described in Named Anchors and ID Attributes), etc.

Even for entities where there is not an obvious short, canonical form, people should still be encouraged
to provide key pieces of information consistently. For example, when referring to amailing list message,
don't just give the sender and subject; also give the archive URL and the Message-I1D header. The last
allows people who have their own copy of the mailing list (people sometimes keep offline copies, for
example to use on alaptop while traveling) to unambiguously identify the right message even if they
don't have access to the archives. The sender and subject wouldn't be enough, because the same person

102

http://subversion.tigris.org/project_issues.html

Communications

might make several postsin the same thread, even on the same day.

The more a project grows, the more important this sort of consistency becomes. Consistency means that
everywhere people look, they see the same patterns being followed, so they know to follow those pat-
terns themselves. This, in turn, reduces the number of questions they need to ask. The burden of having
amillion readersis no greater than that of having one; scalability problems start to arise only when a
certain percentage of those readers ask questions. As a project grows, therefore, it must reduce that per-
centage by increasing the density and accessibility of information, so that any given person is more li-
kely to find what he needs without having to ask.

No Conversations in the Bug Tracker

In any project that's making active use of its bug tracker, there is always a danger of the tracker turning
into a discussion forum itself, even though the mailing lists would really be better. Usually it starts off
innocently enough: someone annotates an issue with, say, a proposed solution, or a partial patch. So-
meone el se sees this, realizes there are problems with the solution, and attaches another annotation poin-
ting out the problems. The first person responds, again by appending to the issue...and so it goes.

The problem with thisis, first, that the bug tracker is a pretty cumbersome place to have a discussion,
and second, that other people may not be paying attention—after al, they expect development discus-
sion to happen on the development mailing list, so that's where they look for it. They may not be subs-
cribed to the issue changes list at all, and even if they are, they may not follow it very closely.

But exactly where in the process did something go wrong? Was it when the original person attached her
solution to the issue—should she have posted it to the list instead? Or was it when the second person
responded in the issue, instead of on the list?

Thereisn't one right answer, but there isa general principle: if you're just adding datato an issue, then
doit in the tracker, but if you're starting a conversation, then do it on the mailing list. Y ou may not al-
ways be able to tell which isthe case, but just use your best judgement. For example, when attaching a
patch that contains a potentially controversial solution, you might be able to anticipate that people are
going to have questions about it. So even though you would normally attach the patch to the issue
(assuming you don't want to or can't commit the change directly), in this case you might choose to post
it toamailing list instead. At any rate, there eventually will come a point in the exchange where one
party or the other can tell that it is about to go from mere appending of datato an actual conversa-
tion—in the example that started this section, that would be the second respondent, who on realizing that
there were problems with the patch, could predict that areal conversation is about to ensue, and therefo-
rethat it should be held in the appropriate medium.

To use amathematical analogy, if the information looks like it will be quickly convergent, then put it di-
rectly in the bug tracker; if it looks like it will be divergent, then amailing list or IRC channel would be
a better place.

This doesn't mean there should never be any exchanges in the bug tracker. Asking for more details of the
reproduction recipe from the original reporter tends to be a highly convergent process, for instance. The
person's response is unlikely to raise new issues; it's simply going to flesh out information already filed.
There's no need to distract the mailing list with that process; by all means, take care of it with a series of
commentsin the tracker. Likewise, if you're fairly sure that the bug has been misreported (i.e., isnot a
bug), then you can simply say so right in the issue. Even pointing out a minor problem with a proposed
solution is fine, assuming the problem is not a showstopper for the entire solution.

On the other hand, if you're raising philosophical issues about the bug's scope or the software's proper
behavior, you can be pretty sure other developers will want to be involved. The discussion islikely to di-
verge for awhile before it converges, so do it on the mailing list.

Alwayslink to the mailing list thread from the issue, when you choose to post to the mailing list. It's still
important for someone following the issue to be able to reach the discussion, even if theissueitsalf isn't
the forum of discussion. The person who starts the thread may find this laborious, but open sourceis

103

Communications

fundamentally awriter-responsible culture: it's much more important to make things easy for the tens or
hundreds of people who may read the bug than for the three or five people writing about it.

It's fine to take important conclusions or summaries from the list discussion and paste them into theis-
sue, if that will make things convenient for readers. A common idiom isto start alist discussion, put a
link to the thread in the issue, and then when the discussion finishes, paste the final summary into the is-
sue (along with alink to the message containing that summary), so someone browsing the issue can ea-
sily see what conclusion was reached without having to click to somewhere else. Note that the usual
"two masters” data duplication problem does not exist here, because both archives and issue comments
are usually static, unchangeable data anyway.

Publicity

In free software, there isafairly smooth continuum between purely internal discussions and public rela-
tions statements. Thisis partly because the target audience is always ill-defined: given that most or all
posts are publicly accessible, the project doesn't have full control over the impression the world gets. So-
meone—say, a dashdot.org editor—may draw millions of readers' attention to a post that no one ever
expected to be seen outside the project. Thisisafact of life that all open source projects live with, but in
practice, therisk is usually small. In general, the announcements that the project most wants publicized
are the ones that will be most publicized, assuming you use the right mechanisms to indicate relative
newsworthiness to the outside world.

For major announcements, there tend to be four or five main channels of distribution, on which announ-
cements should be made as nearly simultaneously as possible:

1. Your project's front pageis probably seen by more people than any other part of the project. If you
have areally major announcement, put a blurb there. The blurb should be avery brief synopsis that
links to the press rel ease (see below) for more information.

2. At the same time, you should also have a"News" or "Press Releases" area of the web site, where the
announcement can be written up in detail. Part of the purpose of a pressreleaseisto provide asingle,
canonical "announcement object” that other sites can link to, so make sure it is structured accor-
dingly: either as one web page per release, as a discrete blog entry, or as some other kind of entity
that can be linked to while still being kept distinct from other press releases in the same area.

3. If your project has an RSS feed, make sure the announcement goes out there too. This may happen
automatically when you create the press rel ease, depending on how things are set up at your site.
(RSSis amechanism for distributing meta-data-rich news summaries to "subscribers’, that is, people
who have indicated an interest in receiving those summaries. See
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html for more information about RSS.)

4. If the announcement is about a new release of the software, then update your project's entry on
http://freshmeat.net/ (see “ Anunciar” about creating the entry in the first place). Every time you upda-
te a Freshmeat entry, that entry goes onto the Freshmeat change list for the day. The change list is up-
dated not only on Freshmeat itself, but on various portal sites (including slashdot.org) which are wat-
ched eagerly by hordes of people. Freshmeat a so offers the same data via RSS feed, so people who
are not subscribed to your project's own RSS feed might still see the announcement via Freshmeat's.

5. Send amail to your project's announcement mailing list. Thislist's name should actually be "announ-
ce", that is,announce@our pr oj ect domai n. or g, because that's afairly standard convention
now, and the list's charter should make it clear that it is very low-traffic, reserved for major project
announcements. Most of those announcements will be about new rel eases of the software, but occa
sionally other events, such as afundraising drive, the discovery of a security vulnerability (see
“Announcing Security Vulnerabilities’) later in this chapter, or amajor shift in project direction may
be posted there as well. Because it is low traffic and used only for important things, the announce
list typically has the highest subscribership of any mailing list in the project (of course, this means

104

slashdot.org
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://freshmeat.net/
slashdot.org

Communications

you shouldn't abuse it—consider carefully before posting). To avoid random people making announ-
cements, or worse, spam getting through, the announce list must aways be moderated.

Try to make the announcementsin all these places at the same time, as nearly as possible. People might
get confused if they see an announcement on the mailing list but then don't see it reflected on the pro-
ject'shome page or in its press releases area. If you get the various changes (emails, web page edits, etc.)
gueued up and then send them all in arow, you can keep the window of inconsistency very small.

For alessimportant event, you can eliminate some or al of the above outlets. The event will still be no-
ticed by the outside world in direct proportion to itsimportance. For example, while a new release of the
software is amajor event, merely setting the date of the next release, while still somewhat newsworthy,
isnot nearly asimportant as the release itself. Setting a date is worth an email to the daily mailing lists
(not the announce list), and an update of the project's timeline or status web page, but no more.

However, you might still see that date appearing in discussions elsewhere on the Internet, wherever the-
re are peopleinterested in the project. People who are lurkers on your mailing lists, just listening and ne-
ver saying anything, are not necessarily silent elsewhere. Word of mouth gives very broad distribution;
you should count on it, and construct even minor announcements in such away as to encourage accurate
informal transmission. Specifically, posts that you expect to be quoted should have a clearly meant-
to-be-quoted portion, just as though you were writing aformal press release. For example:

Just a progress update: we're planning to release version 2.0 of Scanley in mid-August
2005. You can always check http://mww.scanley.org/status.html for updates. The ma-
jor new feature will be regular-expression searches.

Other new featuresinclude: ... There will also be various bugfixes, including: ...

Thefirst paragraph is short, gives the two most important pieces of information (the release date and the
major new feature), and a URL to visit for further news. If that paragraph is the only thing that crosses
someone's screen, you're still doing pretty well. The rest of the mail could be lost without affecting the
gist of the content. Of course, sometimes people will link to the entire mail anyway, but just as often,
they'll quote only asmall part. Given that the latter is a possibility, you might as well make it easy for
them, and in the bargain get some influence over what gets quoted.

Announcing Security Vulnerabilities

Handling a security vulnerability is different from handling any other kind of bug report. In free softwa-
re, doing things openly and transparently is normally almost areligious credo. Every step of the standard
bug-handling processis visible to all who care to watch: the arrival of theinitial report, the ensuing dis-
cussion, and the eventual fix.

Security bugs are different. They can compromise users' data, and possibly users' entire computers. To
discuss such a problem openly would be to advertise its existence to the entire world—including to all
the parties who might make malicious use of the bug. Even merely committing afix effectively announ-
ces the bug's existence (there are potential attackers who watch the commit logs of public projects, sys-
tematically looking for changes that indicate security problems in the pre-change code). M ost open sour-
ce projects have settled on approximately the same set of steps to handle this conflict between openness
and secrecy, based on the these basic guidelines:

1. Don't talk about the bug publicly until afix isavailable; then supply the fix at exactly the same mo-
ment you announce the bug.

2. Come up with that fix as fast as you can—especially if someone outside the project reported the bug,
because then you know there's at |east one person outside the project who is able to exploit the vulne-
rability.

105

Communications

In practice, those principles lead to afairly standardized series of steps, which are described in the sec-
tions below.

Receive the report

Obvioudly, a project needs the ability to receive security bug reports from anyone. But the regular bug
reporting address won't do, because it can be watched by anyone too. Therefore, have a separate mailing
list for receiving security bug reports. That mailing list must not have publicly readable archives, and its
subscribership must be strictly controlled—only long-time, trusted devel opers can be on the list. If you
need aformal definition of "trusted", you can use "anyone who has had commit access for two years or
more" or something like that, to avoid favoritism. Thisisthe group that will handle security bugs.

Ideally, the security list should not be spam-protected or moderated, since you don't want an important
report to get filtered out or delayed just because no moderators happened to be online that weekend. If
you do use automated spam-protection software, try to configure it with high-tolerance settings; it's bet-
ter to let afew spams through than to miss areport. For the list to be effective, you must advertise its ad-
dress, of course; but given that it will be unmoderated and, at most, lightly spam-protected, try to never
to post its address without some sort of address hiding transformation, as described in “ Ocultar las direc-
ciones en los archivos’ in Capitulo 3, Infraestructura Técnica. Fortunately, address-hiding need not ma-
ke the addressiillegible; see http://subversion.tigris.org/security.html, and view that page's HTML sour-
ce, for an example.

Develop the fix quietly

So what does the security list do when it receives areport? The first task is to evaluate the problem's se-
verity and urgency:

1. How seriousisthe vulnerability? Does it allow a malicious attacker to take over the computer of so-
meone who uses your software? Or does it, say, merely leak information about the sizes of some of
their files?

2. How easy isit to exploit the vulnerability? Can an attack be scripted, or does it require circumstantial
knowledge, educated guessing, and luck?

3. Who reported the problem to you? The answer to this question doesn't change the nature of the vulne-
rability, of course, but it does give you an idea of how many other people might know about it. If the
report comes from one of the project's own developers, you can breathe alittle easier (but only alitt-
le), because you can trust them not to have told anyone else about it. On the other hand, if it camein
an email from anonynous14@l obal hacker z. net , then you'd better act as fast as you can.
The person did you afavor by informing you of the problem at al, but you have no idea how many
other people she'stold, or how long she'll wait before exploiting the vulnerability on liveinstalla
tions.

Note that the difference we're talking about here is often just a narrow range between urgent and extre-
mely urgent. Even when the report comes from a known, friendly source, there could be other people on
the Net who discovered the bug long ago and just haven't reported it. The only time things aren't urgent
is when the bug inherently does not compromise security very severely.

The"anonynous14@l obal hacker z. net " exampleis not facetious, by the way. Y ou really may
get bug reports from identity-cloaked people who, by their words and behavior, never quite clarify whet-
her they're on your side or not. It doesn't matter: if they've reported the security hole to you, they'll feel
they've done you a good turn, and you should respond in kind. Thank them for the report, give them a
date on or before which you plan to release a public fix, and keep them in the loop. Sometimes they may
give you a date—that is, an implicit threat to publicize the bug on a certain date, whether you're ready or
not. This may feel like a bullying power play, but it's more likely a preémptive action resulting from past
disappointment with unresponsive software producers who didn't take security reports seriously enough.

106

http://subversion.tigris.org/security.html

Communications

Either way, you can't afford to tick this person off. After al, if the bug is severe, he has knowledge that
could cause your users big problems. Treat such reporters well, and hope that they treat you well.

Another frequent reporter of security bugs is the security professional, someone who audits code for ali-
ving and keeps up on the latest news of software vulnerabilities. These people usually have experience
on both sides of the fence—they've both received and sent reports, probably more than most developers
in your project have. They too will usually give a deadline for fixing a vulnerability before going public.
The deadline may be somewhat negotiable, but that's up to the reporter; deadlines have become recogni-
zed among security professionals as pretty much the only reliable way to get organizations to address se-
curity problems promptly. So don't treat the deadline as rude; it's a time-honored tradition, and there are
good reasons for it.

Once you know the severity and urgency, you can start working on afix. There is sometimes a tradeoff
between doing afix elegantly and doing it speedily; thisiswhy you must agree on the urgency before
you start. Keep discussion of the fix restricted to the security list members, of course, plus the original
reporter (if she wants to be involved) and any devel opers who need to be brought in for technical rea-
sons.

Do not commit the fix to the repository. Keep it in patch form until the go-public date. If you wereto
commit it, even with an innocent-looking log message, someone might notice and understand the chan-
ge. You never know who iswatching your repository and why they might be interested. Turning off
commit emails wouldn't help; first of al, the gap in the commit mail sequence would itself look suspi-
cious, and anyway, the datawould still be in the repository. Just do all development in a patch and keep
the patch in some private place, perhaps a separate, private repository known only to the people aready
aware of the bug. (If you use a decentralized version control system like Arch or SVK, you can do the
work under full version control, and just keep that repository inaccessible to outsiders.)

CAN/CVE numbers

Y ou may have seen a CAN number or a CVE number associated with security problems. These numbers
usually look like "CAN-2004-0397" or "CV E-2002-0092", for example.

Both kinds of numbers represent the same type of entity: an entry in the list of "Common Vulnerabilities
and Exposures” list maintained at http://cve.mitre.org/. The purpose of the list is to provide standardized
names for all known security problems, so that everyone has a unique, canonical name to use when dis-
cussing one, and a central place to go to find out more information. The only difference between a
"CAN" number and a"CVE" number isthat the former represents a candidate entry, not yet approved
for inclusion in the official list by the CVE Editorial Board, and the latter represents an approved entry.
However, both types of entries are visible to the public, and an entry's number does not change when it
is approved—the "CAN" prefix is simply replaced with "CVE".

A CAN/CVE entry does not itself contain a full description of the bug and how to protect against it. Ins-
tead, it contains a brief summary, and alist of references to external resources (such as mailing list ar-
chives) where people can go to get more detailed information. The real purpose of http://cve.mitre.org/
isto provide awell-organized space in which every vulnerability can have a name and a clear route to
more data. See http://cve.mitre.org/cgi-bin/cvename.cgi ?name=2002-0092 for an example of an entry.
Note that the references can be very terse, with sources appearing as cryptic abbreviations. A key to tho-
se abbreviationsis at http://cve.mitre.org/cvelrefs/refkey.html.

If your vulnerability meets the CVE criteria, you may wish to acquire it a CAN number. The process for
doing so isdeliberately gated: basically, you have to know someone, or know someone who knows so-
meone. Thisis not as crazy as it might sound. In order for the CVE Editorial Board to avoid being
overwhelmed with spurious or poorly written submissions, they take submissions only from sources they
already know and trust. In order to get your vulnerability listed, therefore, you need to find a path of ac-
guaintance from your project to the CVE Editorial Board. Ask around among your developers; one of
them will probably know someone else who has either done the CAN process before, or knows someone
who has, etc. The advantage of doing it thisway is also that somewhere along the chain, someone may
know enough to tell you that a) it wouldn't count as a vulnerability or exposure according to MITRE's
criteria, so thereis no point submitting it, or b) the vulnerability already hasa CAN or CVE number.

107

http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0092
http://cve.mitre.org/cve/refs/refkey.html

Communications

The latter can happen if the bug has already been published on another security advisory list, for exam-
ple at http://www.cert.org/ or on the BugTrag mailing list at http://www.securityfocus.com/. (If that hap-
pened without your project hearing about it, then you should worry what else might be going on that you
don't know about.)

If you get a CAN/CVE number at all, you usually want to get it in the early stages of your bug investiga-
tion, so that all further communications can refer to that number. CAN entries are embargoed until the
go-public date; the entry will exist as an empty placeholder (so you don't lose the name), but it won't re-
veal any information about the vulnerability until the date on which you will be announcing the bug and
thefix.

More information about the CAN/CVE process may be found at
http://cve.mitre.org/about/candidates.html, and a particularly clear exposition of one open source pro-
ject's use of CAN/CVE numbersis at http://www.debian.org/security/cve-compatibility.

Pre-notification

Once your security response team (that is, those devel opers who are on the security mailing list, or who
have been brought in to deal with a particular report) has a fix ready, you need to decide how to distribu-
teit.

If you simply commit the fix to your repository, or otherwise announce it to the world, you effectively
force everyone using your software to upgrade immediately or risk being hacked. It is sometimes appro-
priate, therefore, to do pre-notification for certain important users. Thisis particularly true with client/
server software, where there may be well-known serversthat are tempting targets for attackers. Those
servers administrators would appreciate having an extra day or two to do the upgrade, so that they are
already protected by the time the exploit becomes public knowledge.

Pre-natification simply means sending mails to those administrators before the go-public date, telling
them of the vulnerability and how to fix it. Y ou should send pre-notification only to people you trust to
be discreet with the information. That is, the qualification for receiving pre-notification is twofold: the
recipient must run alarge, important server where a compromise would be a serious matter, and the reci-
pient must be known to be someone who won't blab about the security problem before the go-public da-
te.

Send each pre-notification mail individually (one at atime) to each recipient. Do not send to the entire
list of recipients at once, because then they would see each others' names—meaning that you would es-
sentially be aerting each recipient to the fact that each other recipient may have a security hole in her
server. Sending it to them all viablind CC (BCC) isn't agood solution either, because some admins pro-
tect their inboxes with spam filters that either block or reduce the priority of BCC'd mail, since so much
spam is sent via BCC these days.

Here's a sample pre-notification mail:

From Your Nane Here

To: adm n@ ar ge- f anmobus- server.com

Repl y-to: Your Name Here (not the security list's address)
Subj ect: Confidential Scanley vulnerability notification.

This email is a confidential pre-notification of a security alert
in the Scanl ey server.

Pl ease *do not forward* any part of this mail to anyone. The public
announcenment is not until May 19th, and we'd like to keep the
i nformati on enbargoed until then.

You are receiving this mail because (we think) you run a Scanl ey
server, and would want to have it patched before this security hole is

108

http://www.cert.org/
http://www.securityfocus.com/
http://cve.mitre.org/about/candidates.html
http://www.debian.org/security/cve-compatibility

Communications

made public on May 19t h.

Ref er ences:

CAN- 2004- 1771: Scanl ey stack overflow in queries
Vul nerability:

The server can be made to run arbitrary commands if the server's
locale is msconfigured and the client sends a nmal formed query.

Severity:

Very severe, can involve arbitrary code execution on the server.

Wor kar ounds:

Setting the 'natural -1 anguage-processing’ option to "off' in
scanl ey. conf closes this vulnerability.

The patch bel ow applies to Scanley 3.0, 3.1, and 3. 2.

A new public release (Scanley 3.2.1) will be nade on or just before
May 19th, so that it is available at the same tinme as this

vul nerability is nmade public. You can patch now, or just wait for

the public release. The only difference between 3.2 and 3.2.1 will
be this patch.

[...patch goes here...]

If you have a CAN number, include it in the pre-notification (as shown above), even though the infor-
mation is still embargoed and therefore the MITRE page will show nothing. Including the CAN number
allows the recipient to know with certainty that the bug they were pre-notified about is the same one
they later hear about through public channels, so they don't have to worry whether further action is ne-
cessary or not, which is precisely the point of CAN/CVE numbers.

Distribute the fix publicly

Thelast step in handling a security bug is to distribute the fix publicly. In asingle, comprehensive an-
nouncement, you should describe the problem, give the CAN/CVE number if any, describe how to work
around it, and how to permanently fix it. Usually "fix" means upgrading to a new version of the softwa-
re, though sometimes it can mean applying a patch, particularly if the software is normally run in source
form anyway. If you do make a new release, it should differ from some existing release by exactly the
security patch. That way, conservative admins can upgrade without worrying about what el se they might
be affecting; they also don't have to worry about future upgrades, because the security fix will bein all
future releases as a matter of course. (Details of release procedures are discussed in “ Security Releases’
in Capitulo 7, Packaging, Releasing, and Daily Devel opment.)

Whether or not the public fix involves a new release, do the announcement with roughly the same prio-
rity as you would a new release: send amail to the project'sannounce list, make a new press release,
update the Freshmeat entry, etc. While you should never try to play down the existence of a security bug
out of concern for the project's reputation, you may certainly set the tone and prominence of a security
announcement to match the actual severity of the problem. If the security holeis just a minor informa-

109

Communications

tion exposure, not an exploit that allows the user's entire computer to be taken over, then it may not wa-
rrant alot of fuss. Y ou may even decide not to distract theannounce list with it. After all, if the pro-
ject crieswolf every time, users might end up thinking the software is less secure than it actualy is, and
also might not believe you when you have areally big problem to announce. See
http://cve.mitre.org/about/terminology.html for a good introduction to the problem of judging severity.

In general, if you're unsure how to treat a security problem, find someone with experience and talk to
them about it. Assessing and handling vulnerabilitiesis very much an acquired skill, and it's easy to ma-
ke missteps the first few times.

110

http://cve.mitre.org/about/terminology.html

Capitulo 7. Packaging, Releasing, and
Daily Development

This chapter is about how free software projects package and rel ease their software, and how overall de-
velopment patterns organize around those goals.

A major difference between open source projects and proprietary onesis the lack of centralized control
over the development team. When a new release is being prepared, this differenceis especialy stark: a
corporation can ask its entire development team to focus on an upcoming release, putting aside new fea-
ture development and non-critical bug fixing until the release is done. Volunteer groups are not so mo-
nolithic. People work on the project for all sorts of reasons, and those not interested in helping with a gi-
ven release still want to continue regular development work while the release is going on. Because deve-
lopment doesn't stop, open source release processes tend to take longer, but be less disruptive, than com-
mercial release processes. It's abit like highway repair. There are two ways to fix aroad: you can shut it
down completely, so that arepair crew can swarm all over it at full capacity until the problem is solved,
or you can work on a couple of lanes at atime, while leaving the others open to traffic. Thefirst way is
very efficient for the repair crew, but not for anyone else—the road is entirely shut down until the job is
done. The second way involves much more time and trouble for the repair crew (now they have to work
with fewer people and less equipment, in cramped conditions, with flaggers to slow and direct traffic,
etc.), but at least the road remains useable, albeit not at full capacity.

Open source projects tend to work the second way. In fact, for a mature piece of software with several
different release lines being maintained simultaneously, the project is sort of in a permanent state of mi-
nor road repair. There are always a couple of lanes closed; a consistent but low level of background in-
convenience is aways being tolerated by the development group as awhole, so that rel eases get made
on aregular schedule.

The model that makes this possible generalizes to more than just releases. It's the principle of paralleli-
zing tasks that are not mutually interdependent—a principle that is by no means unique to open source
development, of course, but one which open source projects implement in their own particular way.
They cannot afford to annoy either the roadwork crew or the regular traffic too much, but they also can-
not afford to have people dedicated to standing by the orange cones and flagging traffic along. Thus they
gravitate toward processes that have flat, constant levels of administrative overhead, rather than peaks
and valleys. Volunteers are generally willing to work with small but consistent amounts of inconvenien-
ce; the predictability allows them to come and go without worrying about whether their schedule will
clash with what's happening in the project. But if the project were subject to a master schedule in which
some activities excluded other activities, the result would be alot of developers sitting idle alot of the ti-
me—uwhich would be not only inefficient but boring, and therefore dangerous, in that a bored devel oper
islikely to soon be an ex-developer.

Release work is usually the most noticeable non-development task that happensin parallel with develop-
ment, so the methods described in the following sections are geared mostly toward enabling releases.
However, note that they also apply to other parallelizable tasks, such as translations and internationaliza-
tion, broad API changes made gradually across the entire code basg, etc.

Release Numbering

Before we talk about how to make arelease, let's look at how to name releases, which reguires knowing
what releases actually mean to users. A release means that:

» Old bugs have been fixed. Thisis probably the one thing users can count on being true of every relea-
se.

111

Packaging, Releasing, and Daily Devel opment

» New bugs have been added. This too can usually be counted on, except sometimes in the case of secu-
rity releases or other one-offs (see* Security Releases” later in this chapter).

» New features may have been added.

» New configuration options may have been added, or the meanings of old options may have changed
subtly. The installation procedures may have changed slightly since the last rel ease too, though one
aways hopes not.

* Incompatible changes may have been introduced, such that the data formats used by older versions of
the software are no longer useabl e without undergoing some sort of (possibly manual) one-way con-
version step.

Asyou can see, not al of these are good things. Thisiswhy experienced users approach new releases
with some trepidation, especially when the software is mature and was aready mostly doing what they
wanted (or thought they wanted). Even the arrival of new featuresis a mixed blessing, in that it may
mean the software will now behave in unexpected ways.

The purpose of release numbering, therefore, is twofold: obviously the numbers should unambiguously
communicate the ordering of releases (i.e., by looking at any two releases numbers, one can know
which came later), but also they should indicate as compactly as possible the degree and nature of the
changesin the release.

All that in a number? Well, more or less, yes. Release numbering strategies are one of the oldest bikes-
hed discussions around (see “ Cuanto més blando sea €l tema, més largo sera el debate” in Capitulo 6,
Communications), and the world is unlikely to settle on a single, complete standard anytime soon. Ho-
wever, afew good strategies have emerged, along with one universally agreed-on principle: be consis-
tent. Pick a numbering scheme, document it, and stick with it. Y our users will thank you.

Release Number Components

This section describes the formal conventions of rel ease numbering in detail, and assumes very little
prior knowledge. It isintended mainly as areference. If you're already familiar with these conventions,
you can skip this section.

Release numbers are groups of digits separated by dots:

Scanley 2.3
Singer 5.11.4

...and so on. The dots are not decimal points, they are merely separators; "5.3.9" would be followed by
"5.3.10". A few projects have occasionally hinted otherwise, most famously the Linux kernel with its
"0.95","0.96"... "0.99" sequence leading up to Linux 1.0, but the convention that the dots are not deci-
mals is now firmly established and should be considered a standard. Thereis no limit to the number of
components (digit portions containing no dots), but most projects do not go beyond three or four. The
reasons why will become clear later.

In addition to the numeric components, projects sometimes tack on a descriptive label such as"Alpha"
or "Beta" (see Alfay Beta), for example:

Scanley 2.3.0 (Alpha)
Singer 5.11.4 (Beta)

112

Packaging, Releasing, and Daily Devel opment

An Alphaor Beta qualifier means that this release precedes a future release that will have the same num-
ber without the qualifier. Thus, "2.3.0 (Alpha)" leads eventualy to "2.3.0". In order to allow several
such candidate releases in arow, the qualifiers themselves can have meta-qualifiers. For example, here
isaseries of releasesin the order that they would be made available to the public:

Scanley 2.3.0 (Alpha 1)
Scanley 2.3.0 (Alpha 2)
Scanley 2.3.0 (Beta 1)
Scanley 2.3.0 (Beta 2)
Scanley 2.3.0 (Beta 3)
Scanley 2.3.0

Notice that when it hasthe "Alpha" qualifier, Scanley "2.3" iswritten as "2.3.0". The two numbers are
equivalent—trailing all-zero components can always be dropped for brevity—but when a qualifier is
present, brevity is out the window anyway, so one might as well go for completeness instead.

Other qualifiersin semi-regular use include "Stable", "Unstable", "Development", and "RC" (for "Relea-
se Candidate"). The most widely used ones are till "Alpha’ and "Beta’, with "RC" running a close third
place, but note that "RC" always includes a numeric meta-qualifier. That is, you don't release " Scan-

ley 2.3.0 (RC)", you release "Scanley 2.3.0 (RC 1)", followed by RC2, etc.

Those three [abels, "Alpha’, "Beta", and "RC", are pretty widely known now, and | don't recommend
using any of the others, even though the others might at first glance seem like better choices because
they are normal words, not jargon. But people who install software from rel eases are already familiar
with the big three, and there's no reason to do things gratuitoudly differently from the way everyone else
does them.

Although the dotsin release numbers are not decimal points, they do indicate place-value significance.
All "0.X.Y" releases precede "1.0" (which isequivalent to "1.0.0", of course). "3.14.158" immediately
precedes "3.14.159", and non-immediately precedes "3.14.160" as well as "3.15.anything", and so.

A consistent release numbering policy enables auser to look at two release numbers for the same piece
of software and tell, just from the numbers, the important differences between those two releases. In a
typical three-component system, the first component is the major number, the second is the mi-

nor number, and the third is the micro number. For example, release "2.10.17" is the seventeenth micro
release in the tenth minor release line within the second major release series. The words "line" and "se-
ries' are used informally here, but they mean what one would expect. A major seriesissimply al the re-
leases that share the same major number, and a minor series (or minor line) consists of al the releases
that share the same minor and major number. That is, "2.4.0" and "3.4.1" are not in the same minor se-
ries, even though they both have "4" for their minor number; on the other hand, “2.4.0" and "2.4.2" are
in the same minor line, though they are not adjacent if "2.4.1" was released between them.

The meanings of these numbers are exactly what you'd expect: an increment of the major number indi-
cates that major changes happened; an increment of the minor number indicates minor changes; and an
increment of the micro number indicates really trivial changes. Some projects add a fourth component,
usually called the patch number, for especialy fine-grained control over the differences between their
releases (confusingly, other projects use "patch” as a synonym for "micro” in a three-component sys-
tem). There are also projects that use the last component as a build number, incremented every time the
software is built and representing no change other than that build. This helps the project link every bug
report with a specific build, and is probably most useful when binary packages are the default method of
distribution.

Although there are many different conventions for how many components to use, and what the compo-
nents mean, the differences tend to be minor—you get alittle leeway, but not alot. The next two sec-
tions discuss some of the most widely used conventions.

113

Packaging, Releasing, and Daily Devel opment

The Simple Strategy

Most projects have rules about what kinds of changes are allowed into arelease if oneis only incremen-
ting the micro number, different rules for the minor number, and still different ones for the major num-
ber. There isno set standard for these rules yet, but here | will describe a policy that has been used suc-
cessfully by multiple projects. Y ou may want to just adopt this policy in your own project, but even if
you don't, it's still agood example of the kind of information release numbers should convey. This po-
licy is adapted from the numbering system used by the APR project, see
http://apr.apache.org/versioning.html.

1. Changes to the micro number only (that is, changes within the same minor line) must be both for-
ward- and backward-compatible. That is, the changes should be bug fixes only, or very small enhan-
cements to existing features. New features should not be introduced in amicro release.

2. Changes to the minor number (that is, within the same major line) must be backward-compatible, but
not necessarily forward-compatible. It's normal to introduce new featuresin aminor release, but
usually not too many new features at once.

3. Changes to the major number mark compatibility boundaries. A new major release can be forward-
and backward-incompatible. A major release is expected to have new features, and may even have
entire new feature sets.

What backward-compatible and forward-compatible mean, exactly, depends on what your software
does, but in context they are usually not open to much interpretation. For example, if your projectisa
client/server application, then "backward-compatible" means that upgrading the server to 2.6.0 should
not cause any existing 2.5.4 clients to lose functionality or behave differently than they did before
(except for bugs that were fixed, of course). On the other hand, upgrading one of those clientsto 2.6.0,
along with the server, might make new functionality available for that client, functionality that 2.5.4
clients don't know how to take advantage of. If that happens, then the upgrade is not "forward-compa-
tible": clearly you can't now downgrade that client back to 2.5.4 and keep all the functionality it had at
2.6.0, since some of that functionality was new in 2.6.0.

Thisiswhy micro releases are essentially for bug fixes only. They must remain compatible in both di-
rections: if you upgrade from 2.5.3 to 2.5.4, then change your mind and downgrade back to 2.5.3, no
functionality should be lost. Of course, the bugs fixed in 2.5.4 would reappear after the downgrade, but
you wouldn't lose any features, except insofar as the restored bugs prevent the use of some existing fea-
tures.

Client/server protocols are just one of many possible compatibility domains. Another is data formats:
does the software write data to permanent storage? If so, the formatsit reads and writes need to follow
the compatibility guidelines promised by the release number policy. Version 2.6.0 needsto be able to
read the files written by 2.5.4, but may silently upgrade the format to something that 2.5.4 cannot read,
because the ability to downgrade is not required across a minor number boundary. If your project distri-
butes code libraries for other programs to use, then APIs are a compatibility domain too: you must make
sure that source and binary compatibility rules are spelled out in such away that the informed user need
never wonder whether or not it's safe to upgrade in place. She will be able to look at the numbers and
know instantly.

In this system, you don't get a chance for afresh start until you increment the major number. This can
often be areal inconvenience: there may be features you wish to add, or protocols that you wish to rede-
sign, that simply cannot be done while maintaining compatibility. There's no magic solution to this, ex-
cept to try to design things in an extensible way in the first place (atopic easily worth its own book, and
certainly outside the scope of this one). But publishing a release compatibility policy, and adhering to it,
is an inescapable part of distributing software. One nasty surprise can alienate alot of users. The policy
just described is good partly because it's already quite widespread, but also because it's easy to explain
and to remember, even for those not aready familiar withit.

114

http://apr.apache.org/versioning.html

Packaging, Releasing, and Daily Devel opment

It is generally understood that these rules do not apply to pre-1.0 releases (although your release policy
should probably state so explicitly, just to be clear). A project that is still in initial development can re-
lease 0.1, 0.2, 0.3, and so on in sequence, until it's ready for 1.0, and the differences between those relea-
ses can be arbitrarily large. Micro numbersin pre-1.0 releases are optional. Depending on the nature of
your project and the differences between the releases, you might find it useful to have 0.1.0, 0.1.1, etc.,
or you might not. Conventions for pre-1.0 release numbers are fairly loose, mainly because people un-
derstand that strong compatibility constraints would hamper early devel opment too much, and because
early adopters tend to be forgiving anyway.

Remember that all these injunctions only apply to this particular three-component system. Y our project
could easily come up with a different three-component system, or even decide it doesn't need such fine
granularity and use a two-component system instead. The important thing is to decide early, publish
exactly what the components mean, and stick to it.

The Even/Odd Strategy

Some projects use the parity of the minor number component to indicate the stability of the software:
even means stable, odd means unstable. This applies only to the minor number, not the major and micro
numbers. Increments in the micro number still indicate bug fixes (no new features), and increments in
the major number till indicate big changes, new feature sets, etc.

The advantage of the even/odd system, which has been used by the Linux kernel project among others,
isthat it offers away to release new functionality for testing without subjecting production users to po-
tentially unstable code. People can see from the numbers that "2.4.21" is okay to install on their live web
server, but that "2.5.1" should probably stay confined to home workstation experiments. The devel op-
ment team handles the bug reports that come in from the unstable (odd-minor-numbered) series, and
when things start to settle down after some number of micro releases in that series, they increment the
minor number (thus making it even), reset the micro number back to "0", and release a presumably sta-
ble package.

This system preserves, or at least, does not conflict with, the compatibility guidelines given earlier. It
simply overloads the minor number with some extrainformation. This forces the minor number to be in-
cremented about twice as often as would otherwise be necessary, but there's no great harm in that. The
even/odd system is probably best for projects that have very long release cycles, and which by their na-
ture have a high proportion of conservative users who value stability above new features. It is not the
only way to get new functionality tested in the wild, however. “ Stabilizing a Release” later in this chap-
ter describes another, perhaps more common, method of releasing potentially unstable code to the pu-
blic, marked so that people have an idea of the risk/benefit trade-offsimmediately on seeing the release's
name.

Release Branches

From adeveloper's point of view, afree software project isin a state of continuous release. Developers
usually run the latest available code at all times, because they want to spot bugs, and because they fo-
[low the project closely enough to be able to stay away from currently unstable areas of the feature spa-
ce. They often update their copy of the software every day, sometimes more than once a day, and when
they check in a change, they can reasonably expect that every other developer will have it within 24
hours.

How, then, should the project make aformal release? Should it smply take a snapshot of thetree at a
moment in time, package it up, and hand it to the world as, say, version "3.5.0"? Common sense says no.
First, there may be no moment in time when the entire development tree is clean and ready for release.
Newly-started features could be lying around in various states of completion. Someone might have chec-
ked in amajor change to fix a bug, but the change could be controversial and under debate at the mo-
ment the snapshot is taken. If so, it wouldn't work to simply delay the snapshot until the debate ends, be-
cause another, unrelated debate could start in the meantime, and then you'd have wait for that one to end

115

Packaging, Releasing, and Daily Devel opment

too. This processis not guaranteed to halt.

In any case, using full-tree snapshots for releases would interfere with ongoing devel opment work, even
if the tree could be put into a releasable state. Say this snapshot is going to be "3.5.0"; presumably, the
next snapshot would be "3.5.1", and would contain mostly fixes for bugs found in the 3.5.0 release. But
if both are snapshots from the same tree, what are the devel opers supposed to do in the time between the
two releases? They can't be adding new features; the compatibility guidelines prevent that. But not ever-
yone will be enthusiastic about fixing bugs in the 3.5.0 code. Some people may have new features
they're trying to complete, and will become irate if they are forced to choose between sitting idle and
working on things they're not interested in, just because the project’s rel ease processes demand that the
development tree remain unnaturally quiescent.

The solution to these problems is to always use arelease branch. A release branch isjust a branch in the
version control system (see rama (branch)), on which the code destined for this release can be isolated
from mainline development. The concept of release branchesis certainly not original to free software;
many commercial development organizations use them too. However, in commercial environments, re-
lease branches are sometimes considered a luxury—akind of formal "best practice" that can, in the heat
of amajor deadline, be dispensed with while everyone on the team scrambles to stabilize the main tree.

Release branches are pretty much required in open source projects, however. | have seen projects do re-
leases without them, but it has always resulted in some devel opers sitting idle while others—usually a
minority—work on getting the release out the door. The result isusually bad in several ways. First, ove-
rall development momentum is slowed. Second, the release is of poorer quality than it needed to be, be-
cause there were only afew people working on it, and they were hurrying to finish so everyone else
could get back to work. Third, it divides the development team psychologically, by setting up a situation
in which different types of work interfere with each other unnecessarily. The developers sitting idle
would probably be happy to contribute some of their attention to arelease branch, aslong as that were a
choice they could make according to their own schedules and interests. But without the branch, their
choice becomes "Do | participate in the project today or not?' instead of "Do | work on the release to-
day, or work on that new feature |'ve been developing in the mainline code?'

Mechanics of Release Branches

The exact mechanics of creating a release branch depend on your version control system, of course, but
the general concepts are the same in most systems. A branch usually sprouts from another branch or
from the trunk. Traditionally, the trunk is where mainline development goes on, unfettered by release
congtraints. The first release branch, the one leading to the "1.0" release, sprouts off the trunk. In CVS,
the branch command would be something like this

$ cd trunk-worki ng- copy
$ cvs tag -b RELEASE 1_0_ X

or in Subversion, like this:
$ svn copy http://.../repos/trunk http://.../repos/branches/1.0.x

(All these examples assume a three-component rel ease numbering system. While | can't show the exact
commands for every version control system, I'll give examplesin CV S and Subversion and hope that the
corresponding commands in other systems can be deduced from those two.)

Notice that we created branch "1.0.x" (with aliteral "x") instead of "1.0.0". Thisis because the same mi-
nor line—i.e., the same branch—will be used for all the micro releases in that line. The actual process of
stahilizing the branch for release is covered in “ Stabilizing a Release” later in this chapter. Here we are
concerned just with the interaction between the version control system and the release process. When the
release branch is stabilized and ready, it is time to tag a snapshot from the branch:

116

Packaging, Releasing, and Daily Devel opment

$ cd RELEASE 1
$ cvs tag REL

_0_X-wor ki ng- copy
SE_1_0_0
or
$ svn copy http://.../repos/branches/1.0.x http://.../repos/tags/1.0.0

That tag now represents the exact state of the project's source treein the 1.0.0 release (thisis useful in
case anyone ever needs to get an old version after the packaged distributions and binaries have been ta-
ken down). The next micro release in the same lineis likewise prepared on the 1.0.x branch, and when it
isready, atag is made for 1.0.1. Lather, rinse, repeat for 1.0.2, and so on. When it'stime to start thinking
about a 1.1.x release, make a new branch from trunk:

$ cd trunk-worki ng- copy
$ cvs tag -b RELEASE 1_1 X

or
$ svn copy http://.../repos/trunk http://.../repos/branches/1.1.x

Maintenance can continue in parallel ong both 1.0.x and 1.1.x, and releases can be made independently
from both lines. In fact, it is not unusual to publish near-simultaneous releases from two different lines.
The older seriesis recommended for more conservative site administrators, who may not want to make
the big jump to (say) 1.1 without careful preparation. Meanwhile, more adventurous people usually take
the most recent release on the highest line, to make sure they're getting the latest features, even at the
risk of greater instability.

Thisis not the only release branch strategy, of course. In some circumstances it may not even be the
best, though it's worked out pretty well for projects I've been involved in. Use any strategy that seemsto
work, but remember the main points: the purpose of arelease branch isto isolate release work from the
fluctuations of daily development, and to give the project a physical entity around which to organize its
release process. That processis described in detail in the next section.

Stabilizing a Release

Sabilization is the process of getting a release branch into areleasable state; that is, of deciding which
changes will be in the release, which will not, and shaping the branch content accordingly.

There'salot of potential grief contained in that word, "deciding". The last-minute feature rush is a fami-
liar phenomenon in collaborative software projects: as soon as devel opers see that arelease is about to
happen, they scramble to finish their current changes, in order not to missthe boat. This, of course, isthe
exact opposite of what you want at release time. It would be much better for people to work on features
at acomfortable pace, and not worry too much about whether their changes make it into this release or
the next one. The more changes one tries to cram into arelease at the last minute, the more the codeis
destabilized, and (usually) the more new bugs are created.

Most software engineers agree in theory on rough criteriafor what changes should be allowed into are-
lease line during its stabilization period. Obviously, fixes for severe bugs can go in, especialy for bugs
without workarounds. Documentation updates are fine, as are fixes to error messages (except when they
are considered part of the interface and must remain stable). Many projects also allow certain kinds of
low-risk or non-core changes to go in during stabilization, and may have formal guidelines for measu-

117

Packaging, Releasing, and Daily Devel opment

ring risk. But no amount of formalization can obviate the need for human judgement. There will always
be cases where the project simply has to make a decision about whether a given change can go into are-
lease. The danger is that since each person wantsto see their own favorite changes admitted into the re-
lease, then there will be plenty of people motivated to allow changes, and not enough people motivated
to bar them.

Thus, the process of stabilizing arelease is mostly about creating mechanisms for saying "no". The trick
for open source projects, in particular, isto come up with ways of saying "no" that won't result in too
many hurt feelings or disappointed developers, and also won't prevent deserving changes from getting
into the release. There are many different waysto do this. It's pretty easy to design systems that satisfy
these criteria, once the team has focused on them as the important criteria. Here I'll briefly describe two
of the most popular systems, at the extreme ends of the spectrum, but don't let that discourage your pro-
ject from being creative. Plenty of other arrangements are possible; these are just two that 1've seen work
in practice.

Dictatorship by Release Owner

The group agrees to et one person be the release owner. This person has final say over what changes
make it into the release. Of course, it is normal and expected for there to be discussions and arguments,
but in the end the group must grant the release owner sufficient authority to make final decisions. For
this system to work, it is necessary to choose someone with the technical competence to understand all
the changes, and the socia standing and people skills to navigate the discussions leading up to the relea-
se without causing too many hurt feelings.

A common pattern is for the release owner to say "l don't think there's anything wrong with this change,
but we haven't had enough time to test it yet, so it shouldn't go into thisrelease.”" It helpsalot if the re-
lease owner has broad technical knowledge of the project, and can give reasons why the change could be
potentially destabilizing (for example, itsinteractions with other parts of the software, or portability con-
cerns). People will sometimes ask such decisionsto be justified, or will argue that a change is not as
risky asit looks. These conversations need not be confrontational, as long as the release owner is able to
consider al the arguments objectively and not reflexively dig in his heels.

Note that the release owner need not be the same person as the project leader (in cases where thereisa
project leader at all; see “Dictadores Benevolentes’ in Capitulo 4, Infraestructura Social y Politica). In
fact, sometimesiit's good to make sure they're not the same person. The skills that make a good devel op-
ment leader are not necessarily the same as those that make a good release owner. In something asim-
portant as the release process, it may be wise to have someone provide a counterbalance to the project
leader's judgement.

Contrast the release owner role with the less dictatorial role described in “ Release manager” later in this
chapter.

Change Voting

At the opposite extreme from dictatorship by release owner, developers can simply vote on which chan-
gestoinclude in the release. However, since the most important function of release stabilization isto ex-
clude changes, it's important to design the voting system in such away that getting a change into the re-
lease involves positive action by multiple developers. Including a change should need more than just a
simple majority (see “¢Quién Vota?' in Capitulo 4, Infraestructura Social y Politica). Otherwise, one
vote for and none against a given change would suffice to get it into the release, and an unfortunate dy-
namic would be set up whereby each developer would vote for her own changes, yet would be reluctant
to vote against others changes, for fear of possible retaliation. To avoid this, the system should be arran-
ged such that subgroups of developers must act in cooperation to get any change into the release. This
not only means that more people review each change, it also makes any individual developer less hesi-
tant to vote against a change, because she knows that no particular one among those who voted for it
would take her vote against as a personal affront. The greater the number of people involved, the more
the discussion becomes about the change and less about the individuals.

118

Packaging, Releasing, and Daily Devel opment

The system we use in the Subversion project seems to have struck a good balance, so I'll recommend it
here. In order for a change to be applied to the release branch, at least three developers must votein fa-
vor of it, and none against. A single "no" vote is enough to stop the change from being included; that is,
a"no" votein arelease context is equivalent to aveto (see“Vetos'). Naturally, any such vote must be
accompanied by ajustification, and in theory the veto could be overridden if enough people fedl it isun-
reasonable and force a special vote over it. In practice, this has never happened, and | don't expect that it
ever will. People are conservative around releases anyway, and when someone feels strongly enough to
veto the inclusion of a change, there's usually agood reason for it.

Because the release procedure is deliberately biased toward conservatism, the justifications offered for
vetoes are sometimes procedural rather than technical. For example, a person may feel that a changeis
well-written and unlikely to cause any new bugs, but vote against itsinclusion in amicro release simply
because it's too big—perhaps it adds a new feature, or in some subtle way fails to fully follow the com-
patibility guidelines. I've occasionally even seen devel opers veto something because they simply had a
gut feeling that the change needed more testing, even though they couldn't spot any bugsin it by inspec-
tion. People grumbled allittle bit, but the vetoes stood and the change was not included in the release (I
don't remember if any bugs were found in later testing or not, though).

Managing collaborative release stabilization

If your project chooses a change voting system, it isimperative that the physical mechanics of setting up
ballots and casting votes be as convenient as possible. Although there is plenty of open source electronic
voting software available, in practice the easiest thing to do isjust to set up atext filein the release
branch, called STATUS or VOTES or something like that. Thisfile lists each proposed change—any de-
veloper can propose a change for inclusion—along with all the votes for and against it, plus any notes or
comments. (Proposing a change doesn't necessarily mean voting for it, by the way, athough the two of-
ten go together.) An entry in such afile might look like this:

* 12401 (issue #49)
Prevent client/server handshake from happeni ng twice.
Justification:
Avoi ds extra network turnaround; small change and easy to review.
Not es:
This was discussed in http://.../miling-lists/message-7777.htm
and ot her messages in that thread.
Vot es:
+1: jsmith, kinf
-1: tmartin (breaks conpatibility with some pre-1.0 servers;
adm ttedly, those servers are buggy, but why be
i nconpatible if we don't have to?)

In this case, the change acquired two positive votes, but was vetoed by tmartin, who gave the reason for
the veto in a parenthetical note. The exact format of the entry doesn't matter; whatever your project sett-
les on is fine—perhaps tmartin's explanation for the veto should go up in the "Notes:" section, or per-
haps the change description should get a "Description:" header to match the other sections. The impor-
tant thing is that all the information needed to evaluate the change be reachable, and that the mechanism
for casting votes be as lightweight as possible. The proposed change is referred to by its revision number
in the repository (in this case asingle revision, r2401, although a proposed change could just as easily
consist of multiple revisions). The revision is assumed to refer to a change made on the trunk; if the
change were already on the rel ease branch, there would be no need to vote onit. If your version control
system doesn't have an obvious syntax for referring to individual changes, then the project should make
one up. For voting to be practical, each change under consideration must be unambiguously identifiable.

Those proposing or voting for a change are responsible for making sure it applies cleanly to the release
branch, that is, applies without conflicts (see conflicto). If there are conflicts, then the entry should either
point to an adjusted patch that does apply cleanly, or to atemporary branch that holds an adjusted ver-
sion of the change, for example:

119

Packaging, Releasing, and Daily Devel opment

* 113222, r13223, r13232

Rewite [ibsvn_fs_fs's auto-nerge algorithm

Justification:
unaccept abl e performance (>50 mnutes for a small conmit) in
a repository wth 300,000 revisions

Branch:
1.1.x-r13222@3517

Vot es:
+1: epg, ghudson

That example istaken from red life; it comes from the STATUS file for the Subversion 1.1.4 release
process. Notice how it uses the original revisions as canonical handles on the change, even though there
is aso abranch with a conflict-adjusted version of the change (the branch also combines the three trunk
revisions into one, r13517, to make it easier to merge the change into the release, should it get approval).
The original revisions are provided because they're still the easiest entity to review, since they have the
original log messages. The temporary branch wouldn't have those log messages; in order to avoid dupli-
cation of information (see “ Singularidad de lainformacion” in Capitulo 3, Infraestructura Técnica), the
branch's log message for r13517 should simply say "Adjust r13222, r13223, and r13232 for backport to
1.1.x branch." All other information about the changes can be chased down at their original revisions.

Release manager

The actual process of merging (see merge) approved changes into the rel ease branch can be performed
by any developer. There does not need to be one person whose job it is to merge changes; if therearea
lot of changes, it can be better to spread the burden around.

However, although both voting and merging happen in a decentralized fashion, in practice there are
usually one or two people driving the release process. Thisrole is sometimes formally blessed asrelease
manager, but it is quite different from arelease owner (see “ Dictatorship by Release Owner” earlier in
this chapter) who has final say over the changes. Rel ease managers keep track of how many changes are
currently under consideration, how many have been approved, how many seem likely to be approved,
etc. If they sense that important changes are not getting enough attention, and might be left out of the re-
lease for lack of votes, they will gently nag other developers to review and vote. When a batch of chan-
ges are approved, these people will often take it upon themselves to merge them into the release branch;
it'sfineif othersleave that task to them, aslong as everyone understands that they are not obligated to
do al the work unless they have explicitly committed to it. When the time comes to put the release out
the door (see “Testing and Releasing” later in this chapter), the release managers also take care of the lo-
gistics of creating the final rel ease packages, collecting digital signatures, uploading the packages, and
making the public announcement.

Packaging

The canonical form for distribution of free software is as source code. Thisis true regardless of whether
the software normally runsin source form (i.e., can be interpreted, like Perl, Python, PHP, etc.) or needs
to be compiled first (like C, C++, Java, etc.). With compiled software, most users will probably not com-
pile the sources themselves, but will instead install from pre-built binary packages (see “Binary Packa-
ges’ later in this chapter). However, those binary packages are still derived from a master source distri-
bution. The point of the source package is to unambiguously define the rel ease. When the project distri-
butes "Scanley 2.5.0", what it means, specifically, is"The tree of source code files that, when compiled
(if necessary) and installed, produces Scanley 2.5.0."

Thereisafairly strict standard for how source releases should look. One will occasionally see deviations
from this standard, but they are the exception, not the rule. Unless there is a compelling reason to do ot-
herwise, your project should follow this standard too.

120

Packaging, Releasing, and Daily Devel opment

Format

The source code should be shipped in the standard formats for transporting directory trees. For Unix and
Unix-like operating systems, the convention isto use TAR format, compressed by compress, gzip, bzip
or bzip2. For MS Windows, the standard method for distributing directory treesis zip format, which
happens to do compression as well, so there is no need to compress the archive after creating it.

TAR Files

TAR stands for "Tape ARchive", because tar format represents a directory tree as alinear data
stream, which makesit ideal for saving directory treesto tape. The same property also makes it
the standard for distributing directory trees as a single file. Producing compressed tar files (or tar-
balls) is pretty easy. On some systems, the tar command can produce a compressed archive itself;
on others, a separate compression program is used.

Name and Layout

The name of the package should consist of the software's name plus the release number, plus the format
suffixes appropriate for the archive type. For example, Scanley 2.5.0, packaged for Unix using GNU Zip
(gzip) compression, would look like this:

scanley-2.5.0.tar.gz

or for Windows using zip compression:

scanley-2.5.0.zip

Either of these archives, when unpacked, should create a single new directory tree named scanl ey-

2. 5. 0 inthe current directory. Underneath the new directory, the source code should be arranged in a
layout ready for compilation (if compilation is needed) and installation. In the top level of new directory
tree, there should be a plain text READVE file explaining what the software does and what release thisis,
and giving pointers to other resources, such as the project's web site, other files of interest, etc. Among
those other files should be an | NSTALL file, sibling to the READVE file, giving instructions on how to
build and install the software for all the operating systems it supports. As mentioned in “Cémo aplicar
unalicencia a nuestro software” in Capitulo 2, Primeros Pasos, there should also be a COPYl NGor LI -
CENSE file, giving the software's terms of distribution.

There should also be a CHANGES file (sometimes called NEWS), explaining what's new in this release.
The CHANGES file accumulates changelists for all releases, in reverse chronological order, so that the
list for this release appears at the top of the file. Completing that list is usualy the last thing done on a
stabilizing rel ease branch; some projects write the list piecemeal as they're developing, others prefer to
saveit all up for the end and have one person write it, getting information by combing the version con-
trol logs. The list looks something like this:

Version 2.5.0
(20 Decenber 2004, from/branches/2.5. x)
http://svn.scanl ey. org/ repos/svn/tags/2.5.0/

New f eat ures, enhancenents:
* Added regul ar expression queries (issue #53)

121

Packaging, Releasing, and Daily Devel opment

* Added support for UTF-8 and UTF-16 docunents
* Docunentation translated into Polish, Russian, Ml agasy
*

Bugf i xes:
* fixed reindexi ng bug (issue #945)
* fixed sone query bugs (issues #815, #1007, #1008)

Thelist can be aslong as necessary, but don't bother to include every little bugfix and feature enhance-
ment. Its purpose is ssimply to give users an overview of what they would gain by upgrading to the new
release. In fact, the changelist is customarily included in the announcement email (see “Testing and Re-
leasing” later in this chapter), so write it with that audience in mind.

CHANGES Versus ChangelLog

Traditionally, afile named Changel og lists every change ever made to a project—that is, every
revision committed to the version control system. There are various formats for Changel og files;
the details of the formats aren't important here, asthey all contain the same information: the date
of the change, its author, and a brief summary (or just the log message for that change).

A CHANGES file is different. It too is alist of changes, but only the ones thought important for a
certain audience to see, and often with metadata like the exact date and author stripped off. To
avoid confusion, don't use the terms interchangeably. Some projects use "NEWS" instead of
"CHANGES"; athough this avoids the potential for confusion with "Changel.og", it isabit of a
misnomer, since the CHANGES file retains change information for all releases, and thus has alot
of old news in addition to the new news at the top.

Changel og files may be slowly disappearing anyway. They were helpful in the days when CVS
was the only choice of version control system, because change data was not easy to extract from
CVS. However, with more recent version control systems, the data that used to be kept in the
ChangeL og can be requested from the version control repository at any time, making it pointless
for the project to keep a static file containing that data—in fact, worse than pointless, since the
Changel og would merely duplicate the log messages already stored in the repository.

The actual layout of the source code inside the tree should be the same as, or as similar as possible to,
the source code layout one would get by checking out the project directly from its version control repo-
sitory. Usually there are afew differences, for example because the package contains some generated fi-
les needed for configuration and compilation (see “ Compilation and Installation” later in this chapter),
or because it includes third-party software that is not maintained by the project, but that is required and
that users are not likely to already have. But even if the distributed tree corresponds exactly to some de-
velopment tree in the version control repository, the distribution itself should not be aworking copy (see
copia funcional). The release is supposed to represent a static reference point—a particular, unchangea-
ble configuration of sourcefiles. If it were aworking copy, the danger would be that the user might up-
dateit, and afterward think that he still has the rel ease when in fact he has something different.

Remember that the package is the same regardless of the packaging. The release—that is, the precise en-
tity referred to when someone says " Scanley 2.5.0"—is the tree created by unpacking a zip file or tar-
ball. So the project might offer al of these for download:

scanley-2.5.0.tar.bz2
scanley-2.5.0.tar.gz
scanley-2.5.0.zip

122

Packaging, Releasing, and Daily Devel opment

...but the source tree created by unpacking them must be the same. That source tree is the distribution;
the formin which it is downloaded is merely a matter of convenience. Certain trivial differences bet-
ween source packages are allowable: for example, in the Windows package, text files should have lines
ending with CRLF (Carriage Return and Line Feed), while Unix packages should use just LF. The trees
may be arranged dlightly differently between source packages destined for different operating systems,
too, if those operating systems require different sorts of layouts for compilation. However, these are al
basically trivia transformations. The basic source files should be the same across al the packagings of a
given release.

To capitalize or not to capitalize

When referring to a project by name, people generally capitalize it as a proper noun, and capitalize
acronyms if there are any: "MySQL 5.0", "Scanley 2.5.0", etc. Whether this capitalization is reproduced
in the package nameis up to the project. Either Scanl ey- 2. 5. 0. tar. gz orscanl ey-

2.5. 0. tar. gz would befine, for example (I personally prefer the latter, because | don't like to make
people hit the shift key, but plenty of projects ship capitalized packages). The important thing is that the
directory created by unpacking the tarball use the same capitalization. There should be no surprises: the
user must be able to predict with perfect accuracy the name of the directory that will be created when
she unpacks a distribution.

Pre-releases

When shipping a pre-release or candidate release, the qualifier istruly a part of the release number, so
include it in the name of the package's name. For example, the ordered sequence of alpha and betarelea-
ses given earlier in “Release Number Components” would result in package names like this:

scanley-2.3.0-alphal.tar.gz
scanley-2.3.0-apha2.tar.gz
scanley-2.3.0-betal.tar.gz
scanley-2.3.0-beta2.tar.gz
scanley-2.3.0-beta3.tar.gz
scanley-2.3.0.tar.gz

The first would unpack into adirectory named scanl ey- 2. 3. 0- al phal, the second into scan-
| ey- 2. 3. 0-al pha2, and so on.

Compilation and Installation

For software requiring compilation or installation from source, there are usually standard procedures that
experienced users expect to be able to follow. For example, for programs written in C, C++, or certain
other compiled languages, the standard under Unix-like systemsis for the user to type:

$./configure
$ nake
make install

The first command autodetects as much about the environment as it can and prepares for the build pro-
cess, the second command builds the software in place (but does not install it), and the last command
installsit on the system. The first two commands are done as aregular user, the third as root. For more
details about setting up this system, see the excellent GNU Autoconf, Automake, and Libtool book by
Vaughan, Elliston, Tromey, and Taylor. It is published as treeware by New Riders, and its content is al-
so freely available online at http://sources.redhat.com/autobook/.

123

http://sources.redhat.com/autobook/

Packaging, Releasing, and Daily Devel opment

Thisis not the only standard, though it is one of the most widespread. The Ant (http://ant.apache.org/)
build system is gaining popularity, especially with projects written in Java, and it has its own standard
procedures for building and installing. Also, certain programming languages, such as Perl and Python,
recommend that the same method be used for most programs written in that language (for example, Perl
modules use the command per| Makefile.pl). If it's not obvious to you what the applicable standards are
for your project, ask an experienced developer; you can safely assume that some standard applies, even
if you don't know what it isat first.

Whatever the appropriate standards for you project are, don't deviate from them unless you absolutely
must. Standard installation procedures are practically spinal reflexesfor alot of system administrators
now. If they see familiar invocations documented in your project's | NSTALL file, that instantly raises
their faith that your project is generally aware of conventions, and that it is likely to have gotten other
things right aswell. Also, asdiscussed in “Descargas’ in Capitulo 2, Primeros Pasos, having a standard
build procedure pleases potential developers.

On Windows, the standards for building and installing are a bit less settled. For projects requiring com-
pilation, the general convention seemsto be to ship atree that can fit into the workspace/project model
of the standard Microsoft devel opment environments (Developer Studio, Visual Studio, VS.NET,
MSVC++, etc.). Depending on the nature of your software, it may be possible to offer a Unix-like build
option on Windows viathe Cygwin (http://www.cygwin.com/) environment. And of course, if you're
using alanguage or programming framework that comes with its own build and install conven-
tions—e.g., Perl or Python—you should simply use whatever the standard method is for that framework,
whether on Windows, Unix, Mac OS X, or any other operating system.

Bewilling to put in alot of extraeffort in order to make your project conform to the relevant build or
installation standards. Building and installing is an entry point: it's okay for things to get harder after
that, if they absolutely must, but it would be a shame for the user's or developer's very first interaction
with the software to require unexpected steps.

Binary Packages

Although the formal release is a source code package, most users will install from binary packages, eit-
her provided by their operating system's software distribution mechanism, or obtained manually from
the project web site or from some third party. Here "binary” doesn't necessarily mean "compiled"; it just
means any pre-configured form of the package that allows a user to install it on his computer without
going through the usual source-based build and install procedures. On RedHat GNU/Linux, it isthe
RPM system; on Debian GNU/Linux, it isthe APT (. deb) system; on MS Windows, it'susually . VSl
files or self-installing . exe files.

Whether these binary packages are assembled by people closely associated with the project, or by distant
third parties, users are going to treat them as equivalent to the project's official releases, and will fileis-
sues in the project's bug tracker based on the behavior of the binary packages. Therefore, it isin the pro-
ject'sinterest to provide packagers with clear guidelines, and work closely with them to see to it that
what they produce represents the software fairly and accurately.

The main thing packagers need to know is that they should always base their binary packages on an offi-
cial source release. Sometimes packagers are tempted to pull alater incarnation of the code from the re-
pository, or include selected changes that were committed after the release was made, in order to provide
users with certain bug fixes or other improvements. The packager thinks he is doing his users afavor by
giving them the more recent code, but actually this practice can cause agreat deal of confusion. Projects
are prepared to receive reports of bugs found in released versions, and bugs found in recent trunk and
major branch code (that is, found by people who deliberately run bleeding edge code). When abug re-
port comes in from these sources, the responder will often be able to confirm that the bug is known to be
present in that snapshot, and perhaps that it has since been fixed and that the user should upgrade or wait
for the next release. If it is a previously unknown bug, having the precise release makes it easier to re-
produce and easier to categorize in the tracker.

124

http://ant.apache.org/
http://www.cygwin.com/

Packaging, Releasing, and Daily Devel opment

Projects are not prepared, however, to receive bug reports based on unspecified intermediate or hybrid
versions. Such bugs can be hard to reproduce; also, they may be due to unexpected interactionsin isola-
ted changes pulled in from later development, and thereby cause misbehaviors that the project's develo-
pers should not have to take the blame for. | have even seen dismayingly large amounts of time wasted
because a bug was absent when it should have been present: someone was running a slightly patched up
version, based on (but not identical to) an official release, and when the predicted bug did not happen,
everyone had to dig around a lot to figure out why.

Still, there will sometimes be circumstances when a packager insists that modifications to the source re-
lease are necessary. Packagers should be encouraged to bring this up with the project's devel opers and
describe their plans. They may get approval, but failing that, they will at least have notified the project
of their intentions, so the project can watch out for unusua bug reports. The devel opers may respond by
putting a disclaimer on the project's web site, and may ask that the packager do the same thing in the ap-
propriate place, so that users of that binary package know what they are getting is not exactly the same
as what the project officially released. There need be no animosity in such a situation, though unfortuna-
tely there oftenis. It'sjust that packagers have a slightly different set of goals from devel opers. The pac-
kagers mainly want the best out-of-the-box experience for their users. The devel opers want that too, of
course, but they also need to ensure that they know what versions of the software are out there, so they
can receive coherent bug reports and make compatibility guarantees. Sometimes these goals conflict.
When they do, it's good to keep in mind that the project has no control over the packagers, and that the
bonds of obligation run both ways. It's true that the project is doing the packagers afavor smply by pro-
ducing the software. But the packagers are also doing the project afavor, by taking on amostly ungla-
morous job in order to make the software more widely available, often by orders of magnitude. It's fine
to disagree with packagers, but don't flame them; just try to work things out as best you can.

Testing and Releasing

Once the source tarball is produced from the stabilized release branch, the public part of the release pro-
cess begins. But before the tarball is made available to the world at large, it should be tested and appro-
ved by some minimum number of developers, usually three or more. Approval is not simply a matter of
inspecting the release for obvious flaws; ideally, the developers download the tarball, build and install it
onto a clean system, run the regression test suite (see “ Comprobaciones Autométicas’) in Capitulo 8,
Coordinando a los Voluntarios, and do some manual testing. Assuming it passes these checks, aswell as
any other release checklist criteriathe project may have, the developersthen digitally sign the tarball
using GnuPG (http://www.gnupg.org/), PGP (http://www.pgpi.org/), or some other program capable of
producing PGP-compatible signatures.

In most projects, the developers just use their personal digital signatures, instead of a shared project key,
and as many developers as want to may sign (i.e., there is aminimum number, but not a maximum). The
more devel opers sign, the more testing the rel ease undergoes, and al so the greater the likelihood that a
security-conscious user can find adigital trust path from herself to the tarball.

Once approved, the release (that is, all tarballs, zip files, and whatever other formats are being distribu-
ted) should be placed into the project's download area, accompanied by the digital signatures, and by
MD5/SHA 1 checksums (see http://en.wikipedia.org/wiki/Cryptographic_hash_function). There are va
rious standards for doing this. One way isto accompany each released package with afile giving the co-
rresponding digital signatures, and another file giving the checksum. For example, if one of the released
packagesisscanl ey- 2. 5. 0. t ar. gz, place in the same directory afilescanl ey-
2.5.0.tar.gz. asc containing the digital signature for that tarball, another filescanl ey-
2.5.0.tar. gz. nd5 containing its MD5 checksum, and optionally another, scanl ey-
2.5.0.tar. gz. shal, containing the SHA1 checksum. A different way to provide checking isto co-
llect al the signatures for al the released packagesinto asinglefile, scanl ey- 2. 5. 0. si gs; thesa
me may be done with the checksums.

It doesn't really matter which way you do it. Just keep to a simple scheme, describeit clearly, and be
consistent from release to release. The purpose of al this signing and checksumming isto give users a
way to verify that the copy they receive has not been maliciously tampered with. Users are about to run

125

http://www.gnupg.org/
http://www.pgpi.org/
http://en.wikipedia.org/wiki/Cryptographic_hash_function

Packaging, Releasing, and Daily Devel opment

this code on their computers—if the code has been tampered with, an attacker could suddenly have a
back door to all their data. See “ Security Releases” later in this chapter for more about parancia

Candidate Releases

For important rel eases containing many changes, many projects prefer to put out release candidates
firgt, e.g., scanl ey- 2. 5. 0- bet al beforescanl ey- 2. 5. 0. The purpose of acandidate is to sub-
ject the code to wide testing before blessing it as an official release. If problems are found, they are fixed
on the release branch and a new candidate releaseisrolled out (scanl ey- 2. 5. 0- bet a2). Thecycle
continues until no unacceptable bugs are left, at which point the last candidate rel ease becomes the offi-
cial release—that is, the only difference between the last candidate release and the real releaseisthe re-
moval of the qualifier from the version number.

In most other respects, a candidate release should be treated the same as areal release. The alpha, beta,
or rc qualifier is enough to warn conservative users to wait until the real release, and of course the an-
nouncement emails for the candidate rel eases should point out that their purposeisto solicit feedback.
Other than that, give candidate releases the same amount of care as regular releases. After all, you want
people to use the candidates, because exposure is the best way to uncover bugs, and also because you
never know which candidate release will end up becoming the official release.

Announcing Releases

Announcing areleaseis like announcing any other event, and should use the procedures described in
“Publicity” in Capitulo 6, Communications. There are afew specific things to do for releases, though.

Whenever you give the URL to the downloadable release tarball, make sure to also give the MD5/SHA 1
checksums and pointers to the digital signaturesfile. Since the announcement happensin multiple fo-
rums (mailing list, news page, etc.), this means users can get the checksums from multiple sources,
which gives the most security-conscious among them extra assurance that the checksums themselves ha-
ve not been tampered with. Giving the link to the digital signature files multiple times doesn't make tho-
se signatures more secure, but it does reassure people (especially those who don't follow the project clo-
sely) that the project takes security seriougly.

In the announcement email, and on news pages that contain more than just a blurb about the release, ma-
ke sure to include the relevant portion of the CHANGES file, so people can see why it might be in their
interests to upgrade. Thisis asimportant with candidate releases as with final releases; the presence of
bugfixes and new features isimportant in tempting people to try out a candidate release.

Finally, don't forget to thank the development team, the testers, and all the people who took the time to
file good bug reports. Don't single out anyone by name, though, unless there's someone who isindivi-
dually responsible for a huge piece of work, the value of which iswidely recognized by everyonein the
project. Just be wary of sliding down the slippery slope of credit inflation (see “ Credit” in Capitulo 8,
Coordinando a los Voluntarios).

Maintaining Multiple Release Lines

Most mature projects maintain multiple release linesin parallel. For example, after 1.0.0 comes out, that
line should continue with micro (bugfix) releases 1.0.1, 1.0.2, etc., until the project explicitly decides to
end the line. Note that merely releasing 1.1.0 is not sufficient reason to end the 1.0.x line. For example,
some users make it a policy never to upgrade to the first release in anew minor or major series—they let
others shake the bugs out of, say 1.1.0, and wait until 1.1.1. Thisisn't necessarily selfish (remember,
they're forgoing the bugfixes and new features too); it's just that, for whatever reason, they've decided to
be very careful with upgrades. Accordingly, if the project learns of amajor bug in 1.0.3 right before it's
about to release 1.1.0, it would be a bit severeto just put the bugfix in 1.1.0 and tell al the old 1.0.x
users they should upgrade. Why not release both 1.1.0 and 1.0.4, so everyone can be happy?

126

Packaging, Releasing, and Daily Devel opment

After the 1.1.x line iswell under way, you can declare 1.0.x to be at end of life. This should be announ-
ced officially. The announcement could stand alone, or it could be mentioned as part of a 1.1.x release
announcement; however you do it, users need to know that the old line is being phased out, so they can
make upgrade decisions accordingly.

Some projects set awindow of time during which they pledge to support the previous release line. In an
open source context, "support” means accepting bug reports against that line, and making maintenance
releases when significant bugs are found. Other projects don't give a definite amount of time, but watch
incoming bug reports to gauge how many people are till using the older line. When the percentage
drops below a certain point, they declare end of life for the line and stop supporting it.

For each release, make sure to have atarget version or target milestone available in the bug tracker, so
people filing bugs will be able to do so against the proper release. Don't forget to also have atarget ca-
Iled "development” or "latest” for the most recent development sources, since some people—not only
active developers—will often stay ahead of the official releases.

Security Releases

Most of the details of handling security bugs were covered in “ Announcing Security Vulnerabilities’ in
Capitulo 6, Communications, but there are some special details to discuss for doing security releases.

A security releaseis arelease made solely to close a security vulnerability. The code that fixes the bug
cannot be made public until the release is available, which means not only that the fixes cannot be com-
mitted to the repository until the day of the release, but also that the release cannot be publicly tested be-
fore it goes out the door. Obviously, the devel opers can examine the fix among themselves, and test the
release privately, but widespread real-world testing is not possible.

Because of thislack of testing, a security release should always consist of some existing release plus the
fixes for the security bug, with no other changes. Thisis because the more changes you ship without tes-
ting, the more likely that one of them will cause a new bug, perhaps even a new security bug! This con-
servatism is also friendly to administrators who may need to deploy the security fix, but whose upgrade
policy prefers that they not deploy any other changes at the sametime.

Making a security release sometimes involves some minor deception. For example, the project may have
been working on a 1.1.3 release, with certain bug fixesto 1.1.2 already publicly declared, when a secu-
rity report comesin. Naturally, the developers cannot talk about the security problem until they make the
fix available; until then, they must continue to talk publicly as though 1.1.3 will be what it's always been
planned to be. But when 1.1.3 actually comes out, it will differ from 1.1.2 only in the security fixes, and
all those other fixes will have been deferred to 1.1.4 (which, of course, will how also contain the secu-
rity fix, aswill al other future releases).

Y ou could add an extra component to an existing rel ease to indicate that it contains security changes
only. For example, people would be able to tell just from the numbersthat 1.1.2.1 is a security release
against 1.1.2, and they would know that any release "higher" than that (e.g., 1.1.3, 1.2.0, etc.) contains
the same security fixes. For those in the know, this system conveys alot of information. On the other
hand, for those not following the project closely, it can be a bit confusing to see a three-component re-
lease number most of the time with an occasional four-component one thrown in seemingly at random.
Most projects I've looked at choose consistency and simply use the next regularly scheduled number for
security releases, even when it means shifting other planned releases by one.

Releases and Daily Development

Maintaining parallel releases simultaneously has implications for how daily development is done. In par-
ticular, it makes practically mandatory a discipline that would be recommended anyway: have each
commit be asinglelogical change, and never mix unrelated changes in the same commit. If achangeis
too big or too disruptive to do in one commit, break it across N commits, where each commit isawell-

127

Packaging, Releasing, and Daily Devel opment

partitioned subset of the overall change, and includes nothing unrelated to the overall change.

Here's an example of an ill-thought-out commit:

r6228 | jrandom| 2004-06-30 22:13:07 -0500 (Wed, 30 Jun 2004) | 8 lines

Fi x 1ssue #1729: Make indexing gracefully warn the user when a file
is changing as it is being i ndexed.

* uil/repl.py
(Changi ngFil e): New exception cl ass.
(Dol ndex): Handl e new excepti on.

* i ndexer/index. py
(Foll owStream): Raise new exception if file changes during indexing.
(BuildbDir): Unrel atedly, renpve sonme obsol ete conments, reformat
sone code, and fix the error check when creating a directory.

O her unrel ated cl eanups:

* ww i ndex. htnml: Fix sone typos, set next rel ease date.

The problem with it becomes apparent as soon as someone needs to port the Bui | dDi r error check fix
over to a branch for an upcoming maintenance release. The porter doesn't want any of the other chan-
ges—for example, perhaps the fix to issue #1729 wasn't approved for the maintenance branch at all, and
thei ndex. ht m tweakswould simply be irrelevant there. But she cannot easily grab just the Bui | d-
Di r change viathe version control tool's merge functionality, because the version control system was
told that that changeislogically grouped with all these other unrelated things. In fact, the problem
would become apparent even before the merge. Merely listing the change for voting would become pro-
blematic: instead of just giving the revision number, the proposer would have to make a special patch or
change branch just to isolate the portion of the commit being proposed. That would be alot of work for
others to suffer through, and all because the original committer couldn't be bothered to break things into
logical groups.

In fact, that commit really should have been four separate commits: one to fix issue #1729, another to re-
move obsolete comments and reformat code in Bui | dDi r, another to fix the error check in

Bui | dDi r, and finally, oneto tweak i ndex. ht m . Thethird of those commits would be the one pro-
posed for the maintenance release branch.

Of course, release stabilization is not the only reason why having each commit be one logical changeis
desirable. Psychologically, a semantically unified commit is easier to review, and easier to revert if ne-
cessary (in some version control systems, reversion isrealy aspecial kind of merge anyway). A little
up-front discipline on everyone's part can save the project alot of headache later.

Planning Releases

One area where open source projects have historically differed from proprietary projectsisin release
planning. Proprietary projects usually have firmer deadlines. Sometimes it's because customers were
promised that an upgrade would be available by a certain date, because the new rel ease needs to be coor-
dinated with some other effort for marketing purposes, or because the venture capitalists who invested in
the whole thing need to see some results before they put in any more funding. Free software projects, on
the other hand, were until recently mostly motivated by amateurism in the most literal sense: they were
written for the love of it. No one felt the need to ship before al the features were ready, and why should
they? It wasn't asif anyone's job was on the line.

Nowadays, many open source projects are funded by corporations, and are correspondingly more and

128

Packaging, Releasing, and Daily Devel opment

more influenced by deadline-conscious corporate culture. Thisisin many ways a good thing, but it can
cause conflicts between the priorities of those devel opers who are being paid and those who are volun-
teering their time. These conflicts often happen around the issue of when and how to schedule rel eases.
The salaried devel opers who are under pressure will naturally want to just pick a date when the releases
will occur, and have everyone's activities fall into line. But the volunteers may have other agen-
das—perhaps features they want to complete, or some testing they want to have done—that they feel the
release should wait on.

Thereis no general solution to this problem except discussion and compromise, of course. But you can
minimize the frequency and degree of friction caused, by decoupling the proposed existence of a given
release from the date when it would go out the door. That is, try to steer discussion toward the subject of
which releases the project will be making in the near- to medium-term future, and what features will be
in them, without at first mentioning anything about dates, except for rough guesses with wide margins of
error. By nailing down feature sets early, you reduce the complexity of the discussion centered on any
individual release, and therefore improve predictability. This also creates akind of inertial bias against
anyone who proposes to expand the definition of arelease by adding new features or other complica-
tions. If the release’'s contents are fairly well defined, the onus is on the proposer to justify the expansion,
even though the date of the release may not have been set yet.

In his multi-volume biography of Thomas Jefferson, Jefferson and His Time, Dumas Malone tells the
story of how Jefferson handled the first meeting held to decide the organization of the future University
of Virginia. The University had been Jefferson'sideain the first place, but (asis the case everywhere,
not just in open source projects) many other parties had climbed on board quickly, each with their own
interests and agendas. When they gathered at that first meeting to hash things out, Jefferson made sure to
show up with meticulously prepared architectural drawings, detailed budgets for construction and opera-
tion, a proposed curriculum, and the names of specific faculty he wanted to import from Europe. No one
else in the room was even remotely as prepared; the group essentially had to capitulate to Jefferson's vi-
sion, and the University was eventually founded more or less in accordance with his plans. The facts that
construction went far over budget, and that many of hisideas did not, for various reasons, work out in
the end, were all things Jefferson probably knew perfectly well would happen. His purpose was strate-
gic: to show up at the meeting with something so substantive that everyone else would have to fall into
the role of simply proposing modificationsto it, so that the overall shape, and therefore schedule, of the
project would be roughly as he wanted.

In the case of afree software project, there is no single "meeting”, but instead a series of small proposals
made mostly by means of the issue tracker. But if you have some credibility in the project to start with,
and you start assigning various features, enhancements, and bugs to target releases in the issue tracker,
according to some announced overall plan, people will mostly go along with you. Once you've got
things laid out more or less as you want them, the conversations about actual release dates will go much
more smoothly.

Itiscrucial, of course, to never present any individual decision as written in stone. In the comments as-
sociated with each assignment of an issue to a specific future release, invite discussion, dissent, and be
genuinely willing to be persuaded whenever possible. Never exercise control merely for the sake of
exercising control: the more deeply others participate in the rel ease planning process (see “ Share Mana
gement Tasks as Well as Technical Tasks” in Capitulo 8, Coordinando a los Voluntarios), the easier it
will be to persuade them to share your priorities on the issues that really count for you.

The other way the project can lower tensions around release planning is to make releases fairly often.
When there's along time between releases, the importance of any individual release is magnified in
everyone's minds; people are that much more crushed when their code doesn't make it in, because they
know how long it might be until the next chance. Depending on the complexity of the rel ease process
and the nature of your project, somewhere between every three and six months is usually about the right
gap between rel eases, though maintenance lines may put out micro releases a bit faster, if thereis de-
mand for them.

129

Capitulo 8. Coordinando a los
Voluntarios

Conseguir que la gente se ponga de acuerdo sobre cuales son |las necesidades de un proyecto, y trabajar
en lamismadireccion parallevarlas a cabo, requiere de algo mas que un ambiente de trabajo genial sin
disfunciones visibles. Requiere una, o varias personas, que coordinen diligentemente atoda la gente in-
volucrada en el proyecto. Es posible que coordinar voluntarios no sea un arte tecnol 6gico como |o pueda
ser la programacion, pero como cualquier arte puede mejorarse através del estudio y la préctica

Este capitulo es un cajon de sastre de técnicas para coordinar voluntarios. Se nutre, quiza més intensa-
mente que capitul os anteriores, en el proyecto Subversion, en parte porque yo trabajaba en dicho proyec-
to mientras escribia esto y teniainformacion de primera mano, y en parte porque es mas aceptable tirar
piedras sobre mi propio tejado que sobre el tejado de otro. No obstante, también he sido testigo de las
consecuencias que ha tenido aplicar sobre otros proyectos (y las consecuencias de no hacerlo) las reco-
mendaciones que se exponen a continuacion. Siempre que sea politicamente correcto dar detalles de
otros proyectos, asi o haré.

Hablando de politica, este momento es tan bueno como cualquier otro parainspeccionar en detalle la su-
sodicha palabra maldita. Muchos ingenieros hablan de politica como si no fuera con ellos; "Yo me centro
enlamejor parael proyecto, pero Ella no deja de poner pegas por razones politicas." Pienso que dicho
distanciamiento de la palitica (o por lo que se piensa que es la politica) es especialmente significativo
entre los ingenieros, porque se los educa para pensar que siempre hay razones objetivas para determinar
gue unas soluciones son superiores a otras. Por tanto, cuando alguien actla con motivaciones aparente-
mente externas a proyecto (p.g. solidificar la propia posicion de influenciaen el proyecto, disminuir la
influencia de otros, chalaneos descarados, o evitar herir |os sentimientos de alguien) otros participantes
del proyecto pueden molestarse. Por supuesto, esto raramente evita que ellos se comporten de la misma
manera cuando sus propios intereses se ven amenazados.

Si consideras que la"politica" es una palabra sucia, y tienes esperanzas de mantener tu proyecto libre de
ella, mejor que abandones ahora mismo. La politica es algo que surge inevitablemente cada vez que un
grupo de personas han de cooperar en la gestion de recursos compartidos. Es de [6gica que, cada vez que
una persona toma una decision, ésta se vea influenciada por como va a afectar a su futuro personal en el
proyecto. Después de todo, si tienes confianza en tu juicio y habilidades, como sucede con la mayoria de
programadores, entonces una posible pérdida de influencia sobre el proyecto podria ser considerada, en
cierta manera, COmo un aspecto técnico atener en cuenta. Razonamientos similares se pueden aplicar a
comportamientos que, en apariencia, sean "pura’ politica. De hecho, no existe tal cosa como la " pura po-
litica'; para empezar, porque como todas las acciones tienen mltiples consecuencias en lavidarea la
gente adquiere conciencia politica. La politica, a final, simplemente reconoce que todas las consecuen-
cias de nuestras decisiones han de tenerse en cuenta. Si decisiones concretas llevan el proyecto por un
camino gue la mayoria considera técnicamente correcto, pero dicha decisién conlleva un cambio en el
equilibrio de influencias del proyecto aislando afiguras clave del mismo, entonces hemos de dar igual
grado de importancia a ambas consecuencias. No hacerlo asi, no solo no seriajuicioso, sino que seria
una actitud corta de miras.

Por tanto, mientras leas |0s consegj 0s que siguen a continuacion, y mientras trabajas en tu propio proyec-
to, recuerda que no hay nadie que esté por encima de la politica. Dar laimpresién que se esta por encima
de ella es simplemente otra estrategia politicamésy, por cierto, en ocasiones una muy Util, pero nunca
reflgjalarealidad. La politica es sencillamente |o que sucede cuando la gente no esté de acuerdo en algo,
y los proyectos que acaban con éxito son aquellos capaces de desarrollar un mecanismo politico para
gestionar los desacuerdos de forma constructiva.

Conseguir el Maximo de los Voluntarios

Por qué los voluntarios trabajan en proyectos de software libre? !

130

Coordinando alos Voluntarios

Cuando se les pregunta, muchos dicen que lo hace por que quieren producir buen software, o por que
quieren involucrarse en arreglar errores que son importantes para ell os. Pero estas razones no acostum-
bran a ser toda la verdad. Después de todo ¢podrias imaginarte a un voluntario permaneciendo en un
proyecto a pesar de que nadie, nunca, le dirigiera un palabra de aprecio por su trabajo, o sele escuchara
en las discusiones? Claro que no. Claramente, la gente gasta su tiempo en el software libre por razones
gue van més alla del deseo abstracto de producir buen codigo. Comprender |as verdaderas motivaciones
de los voluntarios te ayudard a organizar las cosas de manera que puedas atraerlos y que no se vayan. El
deseo de producir buen cadigo puede estar entre esas motivaciones, junto con €l desafio y valor educati-
VO que supone trabajar en problemas dificiles, pero los seres humanos tienen el deseo natural de trabajar
con otros humanos, y el de dar y recibir respeto através de actividades colectivas. Grupos cooperando
en tareas col ectivas deben desarrollar normas de comportamiento tales que el prestigio sea adquirido ,y
mantenido, a través de acciones que ayuden ala consecucion de las metas del grupo.

Esas normas no aparecen por si solas. Por gjemplo, en algunos proyectos (desarrolladores con experien-
ciaen codigo abierto podrian mencionar varias de memoria) la gente piensa que se gana prestigio por
enviar largos mensgjes frecuentemente. No llegan a esta conclusion por casualidad, llegan a ella porque
son recompensados con respeto por crear largos e intrincados argumentos, independientemente de que
estos ayuden a proyecto. A continuacion se explican algunas técnicas para crear una atmésferaen laque
se pueda adquirir prestigio a través de acciones constructivas.

Delegar

Delegar no simplemente una forma de distribuir la carga de trabajo, sino que también es una herramienta
politicay social. Piensa en todas las consecuencias que tiene pedir a alguien que haga algo. El efecto
maés evidente es que, Si acepta, esa persona hace el trabagjo y tl no. Pero otro efecto es que esa persona
toma consciencia de que tl confias en él parareadlizar latarea. Ademés, si haces la peticion en un foro
publico, también aprecia que el resto de participantes son conscientes de la confianza que ha sido depo-
sitadaen é. También es posible que se sienta presionado a aceptar, por tanto has de preguntar de manera
gue le seafacil declinar la ofertasi realmente no quiere aceptarla. Si latarea requiere coordinarse con
otros participantes del proyecto, entonces le estas pidiendo un mayor grado de compromiso con €l pro-
yecto, crear lazos que no se hubieran creado de otraformay, quiza, convertirse en unafuente de autori-
dad y algunos subdominios del proyecto. La responsabilidad adquirida puede ser agobiante, o puedelle-
varle ainvolucrarse en mas éreas del proyecto gracias a un renovado sentimiento de compromiso.

Debido atodos estos posibles efectos, a menudo tiene sentido pedir a otro que haga algo incluso cuando
sabes que tu lo podrias hacer mejor o més répido. Por supuesto, siempre hay momentos en que delegarés
Unicamente por motivos de eficiencia; quiza el coste de oportunidad de hacer unatarea t mismo es de-
masiado alto debido a que podrias dedicarte a hacer algo més importante para el proyecto. Pero incluso
cuando el argumento del coste de oportunidad no existe, aln asi es posible que pidas a otro hacer unata-
rea simplemente porque quieres involucrar més a una determinada persona en el proyecto, incluso si eso
significa que has de supervisar su trabajo al principio. Esta técnicatambién funcionaal revés; si ocasio-
nalmente te presentas voluntario para hacer un trabajo que alguien no quiere, o no tiene tiempo de hacer,
te ganaras su confianzay su respeto. Delegar y sustituir no tiene que ver simplemente con finalizar ta-
reas, tiene mucho que ver también con aumentar el grado de compromiso de la gente con el proyecto.

Distingue claramente entre pedir y asignar

En ocasiones es |6gico esperar que una persona aceptara de buen grado unatarea en particular. Por
giemplo, si alguien introduce un error en el cédigo, o envia codigo que incumple de forma clara con las
directrices del proyecto, deberia ser suficiente con mencionar €l problemay esperar que el responsable
de dicho cddigo se haga cargo. Pero hay otras situaciones donde no esta nada claro que puedas esperar
gue alguien haga cargo. La persona podria hacer lo que le pides, o quiza no. Como a nadie le gusta que
se dé por hecho que va a obedecer, has de ser consciente en todo momento de cual de estas dos situacio-

1Esta cuestion fue estudiada en detalle, arrojando interesantes resultados, en un ensayo de Karim Lakhani y Robert G. Walf, titula-
doPor qué los Hackers Hacen lo que Hacen: Comprensién de la Motivacion y el Esfuerzo en Proyectos de Cédigo Libre/Abierto.
Ved http:/freesoftware.mit.edu/papers/lakhaniwolf.pdf.

131

Coordinando alos Voluntarios

nes estas tratando y, en funcion de la misma, medir tus palabras ala hora de solicitar unatarea.

Algo que casi siempre sientamal es que te pidan hacer algo como si fuera tu responsabilidad cuanto tu
piensas que no es asi. Por jemplo, asignar nuevos problemas en el codigo es terreno abonado para este
tipo de situaciones. L os participantes de un proyecto normal mente saben quien es experto en cada area,
asi que cuando un error en €l cédigo aparece, habra normamente una o dos personas en las que todo el
mundo piensa que podrian arreglar €l problema rapidamente. No obstante, si asignas la tarea auna de es-
tas personas sin pedirles permiso, dicha persona podria sentirse incomoday forzada a encargarse dela
tarea, podria sentir que se esperamucho de ellay que, de algunaforma, estd siendo castigada por sus co-
nocimientosy experiencia. Después de todo, la forma en la que uno adquiere dichas habilidades es corri-
giendo cédigo, asi que jquiza deberia ser otro € que lo corrija estavez! (Cabe mencionar que los gesto-
res automaticos de errores que asignan tareas en funcion del tipo de error, reducen este tipo de conflictos
porque todo el mundo sabe que las tareas se asignan de forma autométicay que nadie esperanadade la
persona alaque se haasignado latarea.)

Aunque lo deseable seria distribuir la carga de trabajo tan equitativamente como fuera posible, hay oca
siones en las que simplemente quieres que puede arreglar el problema mas répidamente haga el trabgjo.
Dado que no puedes permitirte establecer un didlogo paratodasy cada una de las tareas que se han de
asignar ("¢Teimportaria echarle un vistazo aeste error?' "Si." "Vale, entonceste asigno latareaati.”
"Vae."), deberias siempre asignar tareas en forma de peticidn, sin g ercer presion alguna. Casi todos los
gestores de errores permiten asociar comentarios alatarea asignada. En dicho comentario podrias decir
algo asi:

Tareaasignada ati, jaleatorio, porque tu eres la persona mas familiarizada con este c6-
digo. No te preocupes si no puedes hacerte cargo de latarea por € motivo que sea. (En
cualquier caso hazme saber si preferirias no recibir mas tareas en € futuro.)

Asi se distingue claramente |a peticion de latarea de la aceptacidn de la misma. El mensaje no solo va
dirigido ala personaalaque se pide latarea; informaatodo el grupo del &rea de experiencia de dicho
miembro y, ademés, deja claro atodos que dicha persona es libre de aceptar o rechazar latarea.

Supervisar después de delegar

Cuando le pidas a alguien que haga algo, recuerda que los has hecho y supervisacon é latareapase lo
que pase. La mayoria de peticiones se hace en foros publicos més o0 menos de la siguiente manera

" ¢Podrias encargarte de X? Dinos algo en cualquier caso. En caso de que no puedas no pasa nada, pero
haznosl o saber.” Pueden responder, o no, atu peticién, pero si te responden, y la respuesta es negativa,

el proceso se cierray tendras que buscar alternativas parallevar acabo latarea X. Si larespuesta es po-
sitiva entonces vigila como progresa el trabajo y haz comentarios sobre el mismo (todo el mundo trabaja
mejor cuando sabe que hay alguien que aprecia su trabajo). Si no hay respuesta después de unos dias,
pregunta de nuevo, o comenta en €l foro que nadie arespondido y que buscas a alguien que ses encargue
de latarea, o simplemente hazlo ti pero, en cualquier caso, aseglrate de comentar que no recibiste res-
puesta alguna atu peticion”

El motivo de hacer publicalafalta de respuesta no es para humillar ala personaalaque se le hizo la pe-
ticion, y cuando menciones el temalo has de hacer de forma que esto quede claro. El proposito es de de-
jar claro que sigues la pista de todo |o que pides, y que reaccionas ante las respuestas que recibes, o0 no, a
tus peticiones. Esta actitud hace que sea mas probable que la gente acepta latareala préximavez, y esto
es asi porque se daran cuenta (aunque sea inconscientemente) que es probable que aprecies cualquier
trabajo que hagan debido a que prestas atencidn a detalles tan pequefios como el que alguien no respon-
da auna peticion.

Fijate en lo que se interesa la gente

Otra cosa que pone ala gente contenta es que te fijes en susintereses; en general, cuantos mas aspectos
recuerdas de la personalidad de alguien, mas a gusto se encontrara dicha persona, y se interesara mas por

132

Coordinando alos Voluntarios

trabajar en grupos de los que td seas parte.

Por g.emplo, habia una clara diferenciaen el proyecto Subversion entre la gente que queriallegar pronto
aunaversion final 1.0 (cosa que finalmente hicimos), y la gente que principa mente queria afiadir nue-
vas funcionalidades y trabajar en problemas interesantes sin importarles mucho cuando estarialistala
version 1.0. Ninguna de estas dos posturas es mejor 0 peor que la otra; simplemente reflejan dos tipos
distintos de desarrolladores, y ambos realizan mucho trabajo en el proyecto. Pero aprendimos répida-
mente que eravital no asumir que el interés por tener unaversion 1.0 era compartido por todos. Las co-
muni caciones electronicas pueden ser muy engafiosos; puedes pensar que hay un ambiente de propdsito
comun cuando, en realidad, dicho propésito sélo es compartido por la gente con la que tu has estado ha-
blando, mientras otras personas tienen prioridades completamente distintas

Cuanto més consciente seas de lo que la gente quiere sacar del proyecto, més eficientemente podras pe-
dirles cosas. Simplemente demostrando comprension por lo que quieren, sin demandar nada por ello, tie-
ne una utilidad per se, puesto que confirma a cada uno que no es una simple particula de una masainfor-
me.

Halagos y Criticas

Halago y critica no son anténimos, de hecho, en muchos aspectos son muy similares. Ambas son mues-
tras de atencidn, y son mas efectivas cuando son especificas que cuando son genéricas. Ambas deben ha
cerse con metas especificas en mente. Ambas pueden diluirse por el abuso; halaga mucho o demasiado y
tus halagos perderan valor, y lo mismo sirve paralas criticas aunque, en la préctica, las criticas provocan
reacciones que las hacen mucho mas resistentes a la devaluacion.

Un importante aspecto de la cultura tecnol 6gica es que la detallada y desapasionada critica a menudo se
toma como una especia de aago (como se vio en “Reconociendo la groseria’ en Capitulo 6, Communi-
cations), esto se debe alaimplicacion de que €l trabajo en cuestion vale la pena ser analizado. En cual-
quier caso, ambos aspectos; detallada y desapasionada han de cumplirse para que esto se cumpla. Por
gjemplo, si alguien hace algiin cambio chapucero en el codigo, esinttil (y de hecho perjudicial) comen-
tar el asunto simplemente diciendo "Eso es una chapuza'. El ser un chapuzas es, a final, una caracteris-
tica de la persona, no de su trabgjo, y esimportante mantener tu atencién enfocada en el trabajo hecho.
Es mucho mas eficiente describir todas las cosas equivocadas que se han introducido al realizar el cam-
bio, y hay que hacerlo con tactoy sin malicia. Si fuera el tercer o cuarto cambio descuidado de la misma
persona, entonces |o mas apropiado mencionar el hecho, después de la critica sobre el trabajo realizado,
y de nuevo sin ningln signo de enfado, para asi degjar claro que dicho patrén de comportamiento es evi-
dente.

Si alguien no mejora después de las criticas, la solucion no es criticar mas, o hacerlo mas duramente. La
solucion consiste en que el grupo retire a dicha persona del trabajo en € que es incompetente de forma
gue se hieralo menos posible los sentimientos de lamisma, leed “ Transitions” al final del capitulo unos
gjemplos. En cualquier caso, este no es un hecho frecuente. La mayoria de gente responde muy bien a
las criticas que son especificas, detalladas, y que contienen una clara (aungue sea entre lineas) indica
cién de que se espera una mejora.

Las alabanzas no herirala sensibilidad de nadie, por supuesto, pero eso no significa que se deba usar con
menos cuidado que las criticas. Las alabanzas son una herramienta; antes de usarla pregiintate por qué
quieres usarla. Como regla, no es una buenaidea aabar a aguien por hacer 1o que normamente hace, o
por acciones que son habituales y esperadas de alguien que trabaja en grupo. Si hicieras eso, no seraf&
cil saber cuando parar; ¢deberias alabar atodo el mundo por hacer 1o habitual? Al finy a cabo, si te de-
jas aalguien se preguntarén por qué. Es mucho mejor expresar alabanzas 'y gratitud ocasionalmente en
respuesta a un esfuerzo inusual, o inesperado, con laintencidn de fomentar dichos esfuerzos. Cuando un
participante parece haberse trasladado permanentemente a un estado de alta productividad, debes ajustar
tu nivel de alabanzas consecuentemente. Repetidas alabanzas se acaban convirtiendo en algo sin signifi-
cado alguno. En su lugar, dicha persona deber sentir que su alto nivel de productividad se considera nor-
mal y natural, y solo trabajo que sobrepasa ese nivel debe ser significado.

133

Coordinando alos Voluntarios

Por supuesto, esto no quiere decir que las contribuciones de dicha persona no deban ser reconocidas. Pe-
ro recuerda que si el proyecto se organiza correctamente, todo lo que hace una persona es visible de to-
das formas, y por tanto el grupo vera (y la personaimplicada sabra que el resto de miembros lo ven tam-
bién) todo lo que ella hace. También hay otras maneras de reconocer el trabajo de alguien ademés de las
alabanzas. Podrias mencionar de pasada, al debatir sobre un tema, que dicha persona ha trabajado mucho
en ese areay que es expertaen lamisma. Podrias realizar consultas publicas a dicha persona sobre €l c6-
digo o, quizAmejor, podrias utilizar su trabajo de forma ostensible para que la persona pueda apreciar
gue la gente tiene confianza en los resultados de su trabajo. Probablemente no es necesario hacer todas
estas cosas de forma calculada. Las personas que contribuyen notablemente |o saben y ocuparan una po-
sicion de influencia de forma natural. Normalmente no hay que tomar medidas explicitas para asegurar
esto, a menos que sientas que, por cualquier motivo, un miembro del grupo es poco valorado.

Prevén la Territorialidad

Ten cuidado con los participantes que intentan apropiarse la exclusividad en ciertas areas del proyecto, y
con aquellos que parecen querer hacer todo € trabajo en esas areas hasta el punto de apropiarse del tra-
bajo que otros han comenzado. Dicho comportamiento puede parecer saludable al principio, después de
todo, a primera vista parece como s €l individuo en cuestion simplemente estd tomando mas responsabi-
lidad, y mostrando una mayor actividad en dichas éreas. A lalarga, no obstante, dicho comportamiento
es destructivo. Cuando la gente ve sefiales de "no pasar” se apartan del proyecto. Esto conlleva una vi-
sién mas estrecha de esa area, y unamayor fragilidad de la misma puesto se depende de la disponibili-
dad e un anico desarrollador. Todavia peor, rompe €l espiritu de cooperacion igualitaria del proyecto. En
teoria, laayuda de cualquier desarrollador debe ser bienvenida en cualquier momento, y sobre cualquier
area. Por supuesto, en la précticalas cosas funciona de manera algo diferente; la gente tiene &reas donde
es mas o menos influyente, y los inexpertos habitual mente dejan que los expertos tomen las riendas en
ciertos dominios del proyecto. Pero la clave es que todo esto es algo voluntario; la autoridad se gana me-
diante la competenciay conocimiento probado, y nunca debe ser conquistada activamente. Incluso si la
persona deseando la autoridad es realmente competente, alin asi es crucial que maneje esa autoridad de
manerainformal, através del consenso del grupo, y sin apartar anadie de colaborar en su areadein-
fluencia

Por supuesto, rechazar o editar el trabajo de otro por motivos técnicos es un asusto total mente distinto.
En este caso, €l factor decisivo es € contenido del trabajo, no quien actlia como portero. Podria suceder
gue lamisma personarealice la mayor parte de revisiones para un area particular, pero mientras no evite
gue otros hagan su trabgjo, las cosas deberian ir bien.

Para combatir cualquier territorialismo incipiente, o incluso la mera aparienciadel mismo, muchos pro-
yectos han tomado medidas como la de prohibir lainclusion del nombre del autor, o de los encargados
elegidos, en el cédigo fuente. Y o estoy de acuerdo de todo corazdn con esta practica; la utilizamosen el
proyecto Subversion y es, més 0 menos, la politicaoficial en la Apache Software Foundation. El miem-
bro del ASF Sander Striker lo explica de estaforma:

en la Apache Software Foundation desaconsejamos €l uso de entradas con € nombre
del autor en & cadigo fuente. Hay varias razones para esto ademas de motivos lega-
les. En el desarrollo en equipo setrata de trabajar en grupo y tratar al proyecto en
grupo. Dar crédito es bueno, y debe hacerse, pero de alguna manera esta forma de
actuar evita falsas atribuciones, incluso cuando solo son implicitas. No hay una direc-
triz clara de cuando se ha de afiadir o quitar entradas con el nombre del autor;
¢Afades tu nombre si cambias un comentario? ¢Cuando arreglas una sola linea de
codigo? ¢Has de borrar el nombre de alguien cuando reestructuras el codigo y es di-
ferente al anterior en un 95%7? ¢Qué haces con la gente que va tocando cada archivo,
cambiando lo minimo para que su nombre aparezca en todas partes?

Hay mejores formas de dar crédito, y nosotros preferimos usar esas. Desde un punto
de vista técnico las entradas con €l nombre del autor son innecesarias; si quieres sa-
ber quién escribi6 una determinada linea de codigo se puede consultar el sistema de
control de versiones para averiguarlo. Ademds, las entradas de autor acostumbran a

134

Coordinando alos Voluntarios

estar caducadas; ¢Real mente quieres que se pongan en contacto contigo por unas li-
neas de cddigo que programaste hace cinco afios y estas contento de haberlas olvida-
do?

El corazon de laidentidad de un proyecto lo forman los archivos con el codigo fuente. Estos deben refle-
jar que lacomunidad, como un todo, es responsable de los mismos, y no deben dividirse en pegquefios
feudos.

La gente a veces defiende las entradas de autor en el codigo fuente argumentando que dan crédito de for-
mavisible a aquellos que han realizado mas trabajo. Hay dos problemas con este argumento. Primero,
las entradas de autor traen consigo laincomoda pregunta de cuanto trabajo se hade realizar paraque tu
nombre también aparezca en el archivo. Segundo, las entradas fusiona la autoridad en un érea con €l cré-
dito en lamisma; haber hecho la mayor parte del trabajo en un &rea no implica que se posea dicha area,
pero es dificil, sino imposible, evitar dichaimplicacién cuando hay nombres de personas al comienzo de
un archivo de codigo fuente. En cualquier caso, se puede saber el autor del codigo através del sistema
de control de versiones u otros métodos alternativos como los archivos de las listas de correos, de esta
forma no se pierde ningunainformacién a no permitir las entradas de autor en € codigo fuente.

Si en tu proyecto se decide no permitir incluir entradas de autores en el codigo fuente, asegurate de no
pasarte de laraya. Por € emplo, muchos proyectos tienen un &reacont r i b/ donde se amacenan pe-
quefias herramientas y scripts de ayuda, a menudo escritos por gente que no estan asociados con € pro-
yecto de ninguna otra manera. Para ese tipo de archivos est4 bien que se introduzcalos nombres de los
autores porque ellos no estan desarrollando el proyecto en si. Por otro lado, si una de estas herramientas
comienza a ser alterada por otros miembros del proyecto, puede que a final quieras trasladar dicha he-
rramienta a un lugar menos aislado y, suponiendo que el autor original aceptara, borrar 1os nombres de
los autores para que €l archivo sigala politicadel resto de archivos del proyecto. Si €l autor original no
Se siente a gusto con estainiciativa se pueden alcanzar acuerdos, por gemplo:

i ndexcl ean. py: Borrar datos viejos del indice Scanley.

#

Autor Original: K Mru <kobayashi @et anot heremai |l servi ce. conp

Cestionado Ahora Por: The Scanley Project <http://ww.scanley.org/>
and K. Maru.

HHH

Pero, dentro de lo posible, es mejor evitar dichos compromisos, ademas, la mayoria de autores estan dis-
puestos a ser persuadidos puesto que se sienten felices de que su contribucion pase a ser parte integral
del proyecto.

Lo importante es recordar que hay una continuidad entre el centro y la periferiade cualquier proyecto.
Los archivos del cédigo fuente del software son claramente centrales en el proyecto, y deben ser gestio-
nados por la comunidad en su conjunto. Por otro lado, herramientas accesorias, 0 documentacion, pue-
den ser el resultado del trabajo de un solo individuo, y o puede gestionar €l solo aunque su trabgjo esté
asociado, en incluso distribuido, con el proyecto. En cualquier caso, no hay necesidad de aplicar lamis-
ma regla atodos los archivos siempre y cuando |os recursos comunitarios sean gestionados por todos, y
no puedan convertirse en conto privado de nadie.

El Ratio de Automatizacion

Intenta evitar que los humanos hagan |o que pueden hacer las maquinas en su lugar. Como regla general,
automati zar unatarea comuin supone un esfuerzo diez veces menor a esfuerzo que le supondriaa desa
rrollador realizar la tarea a mano. Paratareas muy frecuentes, o muy complejas, € ratio puede ser veinte
veces superior e incluso mayor.

135

Coordinando alos Voluntarios

Verte ati mismo como aun "Director de Proyecto”, en lugar de como a un desarrollador, puede llegar a
ser una actitud positiva. A veces, algunos desarrolladores estan demasiado enfrascados en su trabajo a
bajo nivel, esto no les permite tener una visién general del proyecto y darse cuenta de que todo el mundo
esté desperdiciando mucho esfuerzo en realizar tareas manual mente que podrian muy bien automati zar-
se. Incluso agquellos que si se dan cuenta, pueden no tomarse €l tiempo pararesolver € problema, a fin
el a cabo, & rendimiento de cadaindividuo pararealizar dichatarea no es una carga demasiada onerosa,
nadie se siente lo suficientemente molesto como para hacer algo a respecto. La automatizacion se hace
atractiva cuando se tiene en cuenta que, esa pequefia carga, se multiplica por el nimero de veces que ca-
da desarrollador ha de redlizarla, y entonces ese nimero se mltiplica por el nimero de desarrolladores.

Aqui estoy utilizando la palabra "automatizacion™ con un sentido muy amplio queriendo dar a entender,
no solo acciones repetitivas donde una o dos variables cambian cada vez, sino también cualquier tipo de
infraestructura técnica que ayude alos humanos. La minima automatizacion estandar necesaria paralle-
var acabo un proyecto en nuestros dias fue descrita en Capitulo 3, Infraestructura Técnica, pero cada
proyecto puede tener sus propios problemas especiales. Por jemplo, un grupo trabajando en la docu-
mentaci én quiza quiera una paginaweb gque muestre las versiones mas actualizadas del documento en
todo momento. Como la documentacion se redacta normalmente en lenguajes del estilo de XML, puede
haber un paso de compilacion, a menudo bastante intrincado, relacionado con la creacion de documentos
para que puedan ser mostrados o bajados de lared. Crear un pagina web donde esa compilacién tenga
lugar autométicamente en cada envio puede ser bastante complejo y llevar mucho tiempo—pero vaela
pena, incluso si te llevauno o mas dias configurarla. Los beneficios globales de tener paginas actualiza-
das disponibles en todo momento son enormes, incluso si €l coste de no tenerlas pueda parecer una sim-
ple molestia en un momento dado, para un desarrollador cualquiera.

Seguir estos pasos no solo eliminalas pérdidas de tiempo, sino también las obsesionesy frustraciones
gue aparecen cuando |os humanos cometen errores (inevitablemente lo haran) a intentar realizar proce-
dimientos complicados manualmente. Las tareas con multiples pasos y operaciones deterministas son €l
tipo de cosas paralas que se inventaron las computadoras, y asi dejamos que los humanos hagan cosas
més interesantes.

Comprobaciones Automaticas

Ejecutar pruebas automaticas es muy Util para cualquier proyecto de software, pero especialmente para
proyectos de cadigo abierto porque las pruebas autométicas (especialmente las pruebas de regresion)
permiten que los desarrolladores se encuentren a gusto ala hora de cambiara cédigo en areas en las que
no estan familiarizados y, asi, se favorece el desarrollo de exploracién. Como es muy dificil detectar fa-
[los a simple vista—basicamente has de adivinar dénde alguien puede haberse equivocado y realizar va
rios experimentos para asegurarte de que no lo hizo—tener métodos autométicos para detectar dichos
errores ahorra muchisimo tiempo. También hace que la gente se relgje ala hora de refactorizar grandes
franjas de cédigo y, por lo tanto, contribuye a que el software pueda ser gestionado a largo plazo.

Pruebas de Regresion

Por Pruebas de Regresién se entienden las comprobaciones que se realizan para detectar errores
gue ya se han reparado. El objetivo de las pruebas de regresion es reducir las probabilidades de
gue los cambios en &l codigo rompan € software de forma inesperada. Cuando un proyecto de
software crece y se complica, las probabilidades de encontrarse dichos efectos secundarios crecen
al mismo paso. Un buen disefio puede reducir €l crecimiento del ratio de dicha probabilidad, pero
no puede eliminar el problema completamente.

Como resultado de esta situacion, muchos proyectos tienen una coleccion de pruebas, un progra-
ma aparte que ejecuta el software del proyecto en formasy maneras que se sabe producian errores
especificos con anterioridad. Cuando la coleccion de pruebas consigue reproducir uno de estos
errores, esto es conocido como regresion, dando a entender que las modificaciones de alguien han
vuelto a recrear inesperadamente un error corregido con anterioridad.

136

Coordinando alos Voluntarios

Ved también http://en.wikipedia.org/wiki/Regression_testing.

L as pruebas de regresion no son un panacea. Por un lado funciona bien para programas que tienen un es-
tilo de interfaz de lineas de comando. El software que se utiliza principalmente através de unainterfaz
gréfica es mucho més dificil de utilizar mediante otro programa. Otro problemaradica en que la estruc-
tura misma de la coleccidn de pruebas puede ser muy compleja, con una curva de aprendizaje y cargas
de mantenimiento propias. Reducir esta complgjidad es una de las cosas mas Utilies que puedes hacer,
incluso s ello implica una cantidad de tiempo considerable. Cuanto més facil sea afiadir nuevas pruebas
ala coleccion, més desarrolladores 1o haran, y menos errores sobrevivirdn alaversion final. Cualquier
esfuerzo empleado en que la creacion de pruebas sea sencilla redundara con intereses en €l desarrollo del
proyecto.

Muchos proyectos siguen laregla"jNo rompas el codigo!" , queriendo decir: no envies cambios que ha-
gan que sea imposible compilar o gecutar €l software. Ser la persona que rompe el cédigo es normal-
mente causa de cierta vergiienzay burla. Proyectos con colecciones de pruebas de regresién tienen ame-
nudo una nueva reglaa modo de corolario: no envies ningin cambio que hagan fallar las pruebas. Di-
chos fallos son mas féciles de identificar si se realizan jecuciones autométicas cada noche de toda la co-
leccion de pruebas, con los resultados enviados por email alos desrrolladores o alistas de correo dedica
das al efecto; este es otro €jemplo de automatizacion que vale la pena.

Lamayoriade los desarrolladores voluntarios estan dispuestos atomar el tiempo adicional para escribir
pruebas de regresion, cuando el sistema de pruebas es comprensible y f&cil de trabajar. Acompafiar mo-
dificaciones con pruebas es entendido como una responsabilidad de hacerlo, y es también una oportuni-
dad facil parala colaboracion: a menudo los desarrolladores dividen el trabajo para corregir un fallo,

uno de ellos corrige, y €l otro escribe el ggemplo de prueba. El segundo desarrollador puede terminar con
mas trabajo, y aunque escribir un g emplo de prueba es menos satisfactorio que corregir realmente el fa-
Ilo, esimprescindible que e conjunto de pruebas no haga la experiencia més dolorosa de o que debe
Ser.

Some projects go even further, requiring that a new test accompany every bugfix or new feature. Whet-
her thisisagood idea or not depends on many factors: the nature of the software, the makeup of the de-
velopment team, and the difficulty of writing new tests. The CV S (http://www.cvshome.org/) project has
long had such arule. It isagood policy in theory, since CVSisversion control software and therefore
very risk-averse about the possibility of munging or mishandling the user's data. The problem in practice
isthat CV S'sregression test suite is a single huge shell script (amusingly named sani ty. sh), hard to
read and hard to modify or extend. The difficulty of adding new tests, combined with the requirement
that patches be accompanied by new tests, means that CV S effectively discourages patches. When | used
towork on CVS, | sometimes saw people start on and even compl ete a patch to CV S's own code, but gi-
ve up when told of the requirement to add anew testto sani ty. sh.

It isnormal to spend more time writing a new regression test than on fixing the original bug. But CVS
carried this phenomenon to an extreme: one might spend hours trying to design one's test properly, and
still get it wrong, because there are just too many unpredictable complexities involved in changing a
35,000-line Bourne shell script. Even longtime CV S devel opers often grumbled when they had to add a
new test.

This situation was due to afailure on all our parts to consider the automation ratio. It istrue that swit-
ching to areal test framework—whether custom-built or off-the-shelf—would have been amajor effort.?
But neglecting to do so has cost the project much more, over the years. How many bugfixes and new
features are not in CV Stoday, because of the impediment of an awkward test suite? We cannot know
the exact number, but it is surely many times greater than the number of bugfixes or new features the de-
velopers might forgo in order to develop a new test system (or integrate an off-the-shelf system). That
task would only take a finite amount of time, while the penalty of using the current test suite will conti-

Note that there would be no need to convert all the existing tests to the new framework; the two could happily exist side by side,
with old tests converted over only as they needed to be changed.

137

http://en.wikipedia.org/wiki/Regression_testing
http://www.cvshome.org/

Treat

Coordinando alos Voluntarios

nue forever if nothing is done.

The point is not that having strict requirements to write tests is bad, nor that writing your test system asa
Bourne shell script is necessarily bad. It might work fine, depending on how you design it and what it
needsto test. The point is simply that when the test system becomes a significant impediment to deve-
lopment, something must be done. The same is true for any routine process that turnsinto a barrier or a
bottleneck.

Every User as a Potential Volunteer

Each interaction with auser is an opportunity to get a new volunteer. When a user takes the time to post
to one of the project's mailing lists, or to file abug report, he has aready tagged himself as having more
potential for involvement than most users (from whom the project will never hear at al). Follow up on
that potential: if he described a bug, thank him for the report and ask him if he wantsto try fixing it. If
he wrote to say that an important question was missing from the FAQ, or that the program's documenta-
tion was deficient in some way, then freely acknowledge the problem (assuming it really exists) and ask
if he'sinterested in writing the missing material himself. Naturally, much of the time the user will de-
mur. But it doesn't cost much to ask, and every time you do, it reminds the other listenersin that forum
that getting involved in the project is something anyone can do.

Don't limit your goalsto acquiring new developers and documentation writers. For example, even trai-
ning people to write good bug reports pays off in the long run, if you don't spend too much time per per-
son, and if they go on to submit more bug reports in the future—which they are more likely to do if they
got a constructive reaction to their first report. A constructive reaction need not be afix for the bug, alt-
hough that's always the ideal; it can also be a solicitation for more information, or even just a confirma-
tion that the behavior is a bug. People want to be listened to. Secondarily, they want their bugs fixed.

Y ou may not always be able to give them the latter in atimely fashion, but you (or rather, the project as
awhole) can give them the former.

A corollary of thisisthat developers should not express anger at people who file well-intended but va-
gue bug reports. Thisis one of my personal pet peeves; | see developersdo it al the time on various
open source mailing lists, and the harm it does is pal pable. Some hapless newbie will post a uselessre-
port:

Hi, | can't get Scanley to run. Every time| start it up, it just errors. Is anyone else
seeing this problem?

Some devel oper—who has seen this kind of report a thousand times, and hasn't stopped to think that the
newbie has not—will respond like this:

What are we supposed to do with so little information? Sheesh. Give us at least some
details, like the version of Scanley, your operating system, and the error.

This developer has failed to see things from the user's point of view, and also failed to consider the ef-
fect such areaction might have on all the other people watching the exchange. Naturally a user who has
no programming experience, and no prior experience reporting bugs, will not know how to write a bug
report. What is the right way to handle such a person? Educate them! And do it in such away that they
come back for more:

Sorry you're having trouble. We'll need more information in order to figure out what's
happening here. Please tell usthe version of Scanley, your operating system, and the
exact text of the error. The very best thing you can do is send a transcript showing the
exact commands you ran, and the output they produced. See
http://www.scanley.org/how_to_report_a bug.html for more.

Thisway of responding is far more effective at extracting the needed information from the user, because

138

Coordinando alos Voluntarios

it iswritten to the user's point of view. Firgt, it expresses sympathy: You had a problem; we feel your
pain. (Thisisnot necessary in every bug report response; it depends on the severity of the problem and
how upset the user seemed.) Second, instead of belittling her for not knowing how to report a bug, it
tells her how, and in enough detail to be actually useful—for example, many users don't realize that
"show us the error" means "show us the exact text of the error, with no omissions or abridgements.” The
first time you work with such a user, you need to be specific about that. Finally, it offers a pointer to
much more detailed and complete instructions for reporting bugs. If you have successfully engaged with
the user, she will often take the time to read that document and do what it says. This means, of course,
that you have to have the document prepared in advance. It should give clear instructions about what
kind of information your development team wants to see in every bug report. Ideally, it should also evol-
ve over timein response to the particular sorts of omissions and misreports users tend to make for your
project.

The Subversion project's bug reporting instructions are a fairly standard example of the form (see Apén-
dice D, Ejemplo de Instrucciones para Informar sobre Fallos). Notice how they close with an invitation
to provide a patch to fix the bug. Thisis not because such an invitation will lead to a greater patch/report
ratio—most users who are capable of fixing bugs already know that a patch would be welcome, and
don't need to betold. The invitation'sreal purposeisto emphasizeto all readers, especially those new to
the project or new to free software in general, that the project runs on volunteer contributions. In a sense,
the project's current developers are no more responsible for fixing the bug than is the person who repor-
ted it. Thisis an important point that many new users will not be familiar with. Once they redlize it,
they're more likely to help make the fix happen, if not by contributing code then by providing a more
thorough reproduction recipe, or by offering to test fixes that other people post. The goal isto make
every user redlize that there is no innate difference between herself and the people who work on the pro-
ject—that it's a question of how much time and effort one putsin, not a question of who oneis.

The admonition against responding angrily does not apply to rude users. Occasionally people post bug
reports or complaints that, regardless of their informational content, show a sneering contempt at the
project for some failing. Often such people are alternately insulting and flattering, such as the person
who posted this to a Subversion mailing list:

Why isit that after almost 6 days there still aren't any binaries posted for the windows
platform? ? It's the same story every time and it's pretty frustrating. Why aren't these
things automated so that they could be available immediately?? When you post an
"RC" build, | think the ideais that you want users to test the build, but yet you don't
provide any way of doing so. Why even have a soak period if you provide no means of
testing??

Initial response to this rather inflammatory post was surprisingly restrained: people pointed out that the

project had a published policy of not providing official binaries, and said, with varying degrees of anno-
yance, that he ought to volunteer to produce them himself if they were so important to him. Believeit or
not, his next post started with these lines:

First of all, let me say that | think Subversion is awesome and | really appreciate the
efforts of everyoneinvolved. [...]

...and then he went on to berate the project again for not providing binaries, while still not volunteering
to do anything about it. After that, about 50 people just jumped all over him, and | can't say | really min-
ded. The "zero-tolerance" policy toward rudeness advocated in “ Echad a volar lamalaeducacién” in Ca
pitulo 2, Primeros Pasos applies to people with whom the project has (or would like to have) a sustained
interaction. But when someone makes it clear from the start that he is going to be afountain of bile, the-
reis no point making him feel welcome.

Such situations are fortunately quite rare, and they are noticeably rarer in projects that make an effort to
engage users constructively and courteously from their very first interaction.

139

Coordinando alos Voluntarios

Share Management Tasks as Well as Technical
Tasks

Share the management burden as well as the technical burden of running the project. As a project beco-
mes more complex, more and more of the work is about managing people and information flow. There

is no reason not to share that burden, and sharing it does not necessarily require atop-down hierarchy
either—what happens in practice tends to be more of a peer-to-peer network topology than a military-sty-
le command structure.

Sometimes management roles are formalized, and sometimes they happen spontaneously. In the Subver-
sion project, we have a patch manager, atrandation manager, documentation managers, issue managers
(albeit unofficial), and a release manager. Some of these roles we made a conscious decision to initiate,
others just happened by themselves; as the project grows, | expect more roles to be added. Below welll
examine these roles, and a couple of others, in detail (except for release manager, which was already co-
vered in “Release manager” and “ Dictatorship by Release Owner” earlier in this chapter).

Asyou read the role descriptions, notice that none of them requires exclusive control over the domain in
guestion. The issue manager does not prevent other people from making changes in the issues database,
the FAQ manager does not insist on being the only person to edit the FAQ, and so on. Theseroles are all
about responsibility without monopoly. An important part of each domain manager's job is to notice
when other people are working in that domain, and train them to do the things the way the manager
does, so that the multiple efforts reinforce rather than conflict. Domain managers should a so document
the processes by which they do their work, so that when one leaves, someone else can pick up the slack
right away.

Sometimes there is a conflict: two or more people want the same role. Thereis no one right way to
handle this. Y ou could suggest that each volunteer post a proposal (an "application") and have all the
committers vote on which is best. But thisis cumbersome and potentially awkward. | find that a better
techniqueisjust to ask the multiple candidates to settle it among themselves. They usually will, and will
be more satisfied with the result than if a decision had been imposed on them from the outside.

Patch Manager

In afree software project that receives alot of patches, keeping track of which patches have arrived and
what has been decided about them can be a nightmare, especially if done in a decentralized way. Most
patches arrive as posts to the project's development mailing list (though some may appear first in theis-
sue tracker, or on external web sites), and there are anumber of different routes a patch can take after
arrival.

Sometimes someone reviews the patch, finds problems, and bounces it back to the original author for
cleanup. This usually leads to an iterative process—all visible on the mailing list—in which the original
author posts revised versions of the patch until the reviewer has nothing more to criticize. It isnot al-
ways easy to tell when this processis done: if the reviewer commits the patch, then clearly the cycleis
complete. But if she does nat, it might be because she simply didn't have time, or doesn't have commit
access herself and couldn't rope any of the other developersinto doing it.

Another frequent response to a patch is a freewheeling discussion, not necessarily about the patch itself,
but about whether the concept behind the patch is good. For example, the patch may fix abug, but the
project prefers to fix that bug in another way, as part of solving amore general class of problems. Often
thisis not known in advance, and it is the patch that stimulates the discovery.

Occasionally, a posted patch is met with utter silence. Usually thisis due to no developer having time at
that moment to review the patch, so each hopes that someone else will do it. Since there's no particular
limit to how long each person waits for someone else to pick up the ball, and meanwhile other priorities
are always coming up, it's very easy for a patch to dip through the cracks without any single person in-
tending for that to happen. The project might miss out on a useful patch this way, and there are other

140

Coordinando alos Voluntarios

harmful side effects aswell: it is discouraging to the author, who invested work in the patch, and it ma-
kes the project as awhole look abit out of touch, especially to others considering writing patches.

The patch manager'sjob is to make sure that patches don't "slip through the cracks.” Thisis done by fo-
[lowing every patch through to some sort of stable state. The patch manager watches every mailing list
thread that results from a patch posting. If it ends in a commit of the patch, he does nothing. If it goesin-
to areview/reviseiteration, ending with afinal version of the patch but no commit, he files an issue
pointing to the final version, and to the mailing list thread around it, so that there is a permanent record
for developersto follow up on later. If the patch addresses an existing issue, he annotates that issue with
the relevant information, instead of opening a new issue.

When a patch gets no reaction at all, the patch manager waits afew days, then follows up asking if anyo-
neis going to review it. This usually gets areaction: a devel oper may explain that she doesn't think the
patch should be applied, and give the reasons why, or she may review it, in which case one of the pre-
viously described paths is taken. If there is still no response, the patch manager may or may not file an
issue for the patch, at his discretion, but at least the original submitter got some reaction.

Having a patch manager has saved the Subversion devel opment team alot of time and mental energy.
Without a designated person to take responsihility, every developer would constantly have to worry "If |
don't have time to respond to this patch right now, can | count on someone else doing it? Should | try to
keep an eye on it? But if other people are aso keeping an eye on it, for the same reasons, then we'd have
needlesdly duplicated effort.” The patch manager removes the second-guessing from the situation. Each
developer can make the decision that isright for her at the moment she first sees the patch. If she wants
to follow up with areview, she can do that—the patch manager will adjust his behavior accordingly. If
she wants to ignore the patch compl etely, that's fine too; the patch manager will make sureit isn't forgot-
ten.

Because this system works only if people can depend on the patch manager being there without fail, the
role should be held formally. In Subversion, we advertised for it on the development and users mailing
lists, got several volunteers, and took the first one who replied. When that person had to step down (see
“Transitions” later in this chapter), we did the same thing again. We've never tried having multiple peo-
ple share the role, because of the communications overhead that would be required between them; but
perhaps at very high volumes of patch submission, a multiheaded patch manager might make sense.

Translation Manager

In software projects, "trandation™” can refer to two very different things. It can mean translating the soft-
ware's documentation into other languages, or it can mean translating the software itself—that is, having
the program display errors and help messages in the user's preferred language. Both are complex tasks,
but once the right infrastructure isin place, they are largely separable from other devel opment. Because
the tasks are similar in some ways, it may make sense (depending on your project) to have asingle trans-
lation manager handle both, or it may be better to have two different managers.

In the Subversion project, we have one trand ation manager handle both. He does not actually write the
trangations himself, of course—he may help out on one or two, but as of thiswriting, he would need to
speak ten languages (twelve counting dialects) in order to work on all of them! Instead, he manages
teams of volunteer trandators: he helps them coordinate among each other, and he coordinates between
the teams and the rest of the project.

Part of the reason the translation manager is necessary is that translators are a different demographic
from developers. They sometimes have little or no experience working in a version control repository, or
indeed with working as part of a distributed volunteer team at all. But in other respects they are often the
best kind of volunteer: people with specific domain knowledge who saw a need and chose to get invol-
ved. They are usually willing to learn, and enthusiastic to get to work. All they need is someone to tell
them how. The trandation manager makes sure that the translations happen in away that does not inter-
fere unnecessarily with regular development. He also serves as a sort of representative of the trandators
as aunified body, whenever the developers must be informed of technical changes required to support
the trandlation effort.

141

Coordinando alos Voluntarios

Thus, the position's most important skills are diplomatic, not technical. For example, in Subversion we
have a policy that all trandations should have at least two people working on them, because otherwise
there is no way for the text to be reviewed. When a new volunteer shows up offering to translate Subver-
sion to, say, Malagasy, the translation manager has to either hook him up with someone who posted six
months ago expressing interest in doing a Malagasy trandation, or else politely ask the volunteer to go
find another Malagasy trandlator to work with as a partner. Once enough people are available, the mana-
ger sets them up with the proper kind of commit access, informs them of the project's conventions (such
as how to write log messages), and then keeps an eye out to make sure they adhere to those conventions.

Conversations between the translation manager and the developers, or between the translation manager
and trandation teams, are usually held in the project's original language—that is, the language from
which all the trandations are being made. For most free software projects, thisis English, but it doesn't
matter what it is as long as the project agrees on it. (English is probably best for projects that want to at-
tract a broad international development community, though.)

Conversations within a particular translation team usually happen in their shared language, however, and
one of the other tasks of the trandation manager isto set up a dedicated mailing list for each team. That
way the trandlators can discuss their work freely, without distracting people on the project's main lists,
most of whom would not be able to understand the translation language anyway.

Internationalization Versus Localization

Internationalization (118N) and localization (L10N) both refer to the process of adapting a pro-
gram to work in linguistic and cultural environments other than the one for which it was originally
written. The terms are often treated as interchangeable, but in fact they are not quite the same
thing. As http://en.wikipedia.org/wiki/G11n writes:

The distinction between them is subtle but important: Internationalization is the adap-
tation of products for potential use virtually everywhere, while localization is the addi-
tion of special features for usein a specific locale.

For example, changing your software to losslessly handle Unicode
(http://en.wikipedia.org/wiki/Unicode) text encodings is an internationalization move, sinceit's
not about a particular language, but rather about accepting text from any of a number of langua-
ges. On the other hand, making your software print all error messagesin Slovenian, when it de-
tectsthat it isrunning in a Slovenian environment, is alocalization move.

Thus, the translation manager's task is principally about localization, not internationalization.

Documentation Manager

Keeping software documentation up-to-date is a never-ending task. Every new feature or enhancement
that goes into the code has the potential to cause a change in the documentation. Also, once the project's
documentation reaches a certain level of completeness, you will find that alot of the patches people send
in are for the documentation, not for the code. This is because there are many more people competent to
fix bugsin prose than in code: all users are readers, but only afew are programmers.

Documentation patches are usually much easier to review and apply than code patches. Thereislittle or
no testing to be done, and the quality of the change can be evaluated quickly just by review. Since the
guantity is high, but the review burden fairly low, the ratio of administrative overhead to productive
work is greater for documentation patches than for code patches. Furthermore, most of the patches will
probably need some sort of adjustment, in order to maintain a consistent authorial voice in the documen-
tation. In many cases, patches will overlap with or affect other patches, and need to be adjusted with res-
pect to each other before being committed.

142

http://en.wikipedia.org/wiki/G11n
http://en.wikipedia.org/wiki/Unicode

Coordinando alos Voluntarios

Given the exigencies of handling documentation patches, and the fact that the code base needs to be
constantly monitored so the documentation can be kept up-to-date, it makes sense to have one person, or
asmall team, dedicated to the task. They can keep arecord of exactly where and how the documentation
lags behind the software, and they can have practiced procedures for handling large quantities of patches
in an integrated way.

Of course, this does not preclude other people in the project from applying documentation patches on
the fly, especialy small ones, as time permits. And the same patch manager (see “Patch Manager” ear-
lier in this chapter) can track both code and documentation patches, filing them wherever the devel op-
ment and documentation teams want them, respectively. (If the total quantity of patches ever exceeds
one human's capacity to track, though, switching to separate patch managers for code and documenta-
tion is probably a good first step.) The point of a documentation team is to have people who think of
themselves as responsible for keeping the documentation organized, up-to-date, and consistent with it-
self. In practice, this means knowing the documentation intimately, watching the code base, watching
the changes others commit to the documentation, watching for incoming documentation patches, and
using all these information sourcesto do whatever is necessary to keep the documentation healthy.

Issue Manager

The number of issuesin aproject's bug tracker grows in proportion to the number of people using the
software. Therefore, even as you fix bugs and ship an increasingly robust program, you should still ex-
pect the number of open issuesto grow essentially without bound. The frequency of duplicate issues will
also increase, as will the frequency of incomplete or poorly described issues.

I ssue managers help alleviate these problems by watching what goes into the database, and periodically
sweeping through it looking for specific problems. Their most common action is probably to fix up inco-
ming issues, either because the reporter didn't set some of the form fields correctly, or because the issue
isaduplicate of one already in the database. Obviously, the more familiar an issue manager is with the
project's bug database, the more efficiently she will be able to detect duplicate issues—thisis one of the
main advantages of having afew people specialize in the bug database, instead of everyone trying to do
it ad hoc. When the group triesto do it in a decentralized manner, no single individual acquires a deep
expertise in the content of the database.

I ssue managers can also help map between issues and individual developers. When there are alot of bug
reports coming in, not every developer may read the issue notification mailing list with equal attention.
However, if someone who knows the development team is keeping an eye on all incoming issues, then
she can discreetly direct certain developers attention to specific bugs when appropriate. Of course, this
has to be done with a sensitivity to everything else going on in development, and to the recipient's desi-
res and temperament. Therefore, it is often best for issue managers to be devel opers themselves.

Depending on how your project uses the issue tracker, issue managers can also shape the database to re-
flect the project's priorities. For example, in Subversion we schedul e issues into specific future releases,
so that when someone asks "When will bug X be fixed?' we can say "Two releases from now," even if
we can't give an exact date. The releases are represented in the issue tracker as target milestones, afield
availablein Issuezilla® Asarule, every Subversion release has one major new feature and alist of spe-
cific bug fixes. We assign the appropriate target milestone to all the issues planned for that release
(including the new feature—it gets an issue t0o), so that people can view the bug database through the
lens of release scheduling. These targets rarely remain static, however. As new bugs comein, priorities
sometimes get shifted around, and issues must be moved from one milestone to another so that each re-
lease remains manageable. This, again, is best done by people who have an overall sense of what'sin the
database, and how various issues relate to each other.

Another thing issue managers do is notice when issues become obsolete. Sometimes a bug is fixed acci-
dentally as part of an unrelated change to the software, or sometimes the project changes its mind about
whether a certain behavior is buggy. Finding obsoleted issuesis not easy: the only way to do it systema-

3Issuezillais the issue tracker we use; it is a descendant of BugZilla

143

Coordinando alos Voluntarios

ticaly is by making a sweep over al theissues in the database. Full sweeps become less and less feasi-
ble over time, however, as the number of issues grows. After a certain point, the only way to keep the
database sane isto use a divide-and-conquer approach: categorize issuesimmediately on arrival and di-
rect them to the appropriate developer's or team's attention. The recipient then takes charge of the issue
for the rest of itslifetime, shepherding it to resolution or oblivion as necessary. When the database is
that large, the issue manager becomes more of an overall coordinator, spending less time looking at each
issue herself and more time getting it into the right person's hands.

FAQ Manager

FAQ maintenance is a surprisingly difficult problem. Unlike most other documents in a project, whose
content is planned out in advance by the authors, a FAQ is awholly reactive document (see Mantenien-
do un FAQ (Preguntas Mas Frecuentes)). No matter how big it gets, you still never know what the next
addition will be. And because it is always added to piecemeal, it is very easy for the document as awho-
le to become incoherent and disorganized, and even to contain duplicate or semi-duplicate entries. Even
when it does not have any obvious problems like that, there are often unnoticed interdependencies bet-
ween items—Ilinks that should be made but aren't—because the related items were added a year apart.

Therole of a FAQ manager istwofold. First, she maintains the overall quality of the FAQ by staying fa-
miliar with at least the topics of al the questionsin it, so that when people add new items that are dupli-
cates of, or related to, existing items, the appropriate adjustments can be made. Second, she watches the
project mailing lists and other forums for recurring problems or questions, and to write new FAQ entries
based on this input. This latter task can be quite complex: one must be able to follow a thread, recognize
the core questions raised in it, post a proposed FAQ entry, incorporate comments from others (since it's
impossible for the FAQ manager to be an expert in every topic covered by the FAQ), and sense when
the processiis finished so the item can at last be added.

The FAQ manager usually also becomes the default expert in FAQ formatting. There are alot of little
detailsinvolved in keeping a FAQ in shape (see “ Treat all resources like archives’ in Capitulo 6, Com-
munications); when random people edit the FAQ, they will sometimes forget some of these details.
That's okay, as long as the FAQ manager is there to clean up after them.

Various free software is available to help with the process of FAQ maintenance. It'sfineto useit, as
long as it doesn't compromise the quality of the FAQ, but beware of over-automation. Some projectstry
to fully automate the process of FAQ maintenance, allowing everyone to contribute and edit FAQ items
inamanner similar to awiki (see “Wikis” in Capitulo 3, Infraestructura Técnica). |'ve seen this happen
particularly with Fag-O-Matic (http://fagomatic.sourceforge.net/), though it may be that the cases | saw
were simply abuses that went beyond what Fag-O-Matic was originally intended for. In any case, while
complete decentralization of FAQ maintenance does reduce the workload for the project, it aso results
in apoorer FAQ. There's no one person with a broad view of the entire FAQ, no one to notice when cer-
tain items need updating or become obsol ete entirely, and no one keeping watch for interdependencies
between items. The result isa FAQ that often failsto provide users what they were looking for, and in
the worst cases misleads them. Use whatever tools you need to to maintain your project's FAQ, but ne-
ver let the convenience of the tools seduce you into compromising the quality of the FAQ.

See Sean Michael Kerner's article, The FAQs on FAQs, at http://osdir.com/Articlel722.phtml, for des-
criptions and evaluations of open source FAQ maintenance tools.

Transitions

From time to time, a volunteer in a position of ongoing responsibility (e.g., patch manager, trandation
manager, etc.) will become unable to perform the duties of the position. It may be because the job turned
out to be more work than he anticipated, or it may be due to completely external factors: marriage, a
new baby, a new employer, or whatever.

When avolunteer gets swamped like this, he usually doesn't notice it right away. It happens by slow de-

144

http://faqomatic.sourceforge.net/
http://osdir.com/Article1722.phtml

Coordinando alos Voluntarios

grees, and there's no point at which he consciously realizes that he can no longer fulfill the duties of the
role. Instead, the rest of the project just doesn't hear much from him for awhile. Then there will sud-
denly be aflurry of activity, as he feels guilty for neglecting the project for so long and sets aside a night
to catch up. Then you won't hear from him for awhile longer, and then there might or might not be anot-
her flurry. But ther€'srarely an unsolicited formal resignation. The volunteer was doing the job in his
spare time, so resigning would mean openly acknowledging to himself that his spare time is permanently
reduced. People are often reluctant to do that.

Therefore, it's up to you and the othersin the project to notice what's happening—or rather, not happe-
ning—and to ask the volunteer what's going on. The inquiry should be friendly and 100% guilt-free.

Y our purpose isto find out a piece of information, not to make the person feel bad. Generaly, the in-
quiry should be visible to the rest of the project, but if you know of some special reason why a private
inquiry would be better, that's fine too. The main reason to do it publicly is so that if the volunteer res-
ponds by saying that he won't be able to do the job anymore, there's a context established for your next
public post: arequest for a new volunteer to fill that role.

Sometimes, avolunteer is unable to do the job he's taken on, but is either unaware or unwilling to admit
that fact. Of course, anyone may have trouble at first, especialy if the responsibility is complex. Howe-
ver, if someone just isn't working out in the task he's taken on, even after everyone else has given al the
help and suggestions they can, then the only solution is for him to step aside and let someone new have a
try. And if the person doesn't see this himself, he'll need to be told. There's basically only one way to
handle this, | think, but it's a multistep process and each step isimportant.

First, make sure you're not crazy. Privately talk to othersin the project to see if they agree that the pro-
blemis as serious as you think it is. Even if you're already positive, this serves the purpose of |etting ot-
hers know that you're considering asking the person to step aside. Usually no one will object to
that—they'll just be happy you're taking on the awkward task, so they don't have to!

Next, privately contact the volunteer in question and tell him, kindly but directly, about the problems
you see. Be specific, giving as many examples as possible. Make sure to point out how people had tried
to help, but that the problems persisted without improving. Y ou should expect this email to take along
time to write, but with this sort of message, if you don't back up what you're saying, you shouldn't say it
at all. Say that you would like to find a new volunteer to fill the role, but also point out that there are
many other ways to contribute to the project. At this stage, don't say that you've talked to others about it;
nobody likes to be told that people were conspiring behind his back.

There are afew different ways things can go after that. The most likely reaction is that he'll agree with
you, or at any rate not want to argue, and be willing to step down. In that case, suggest that he make the
announcement himself, and then you can follow up with a post seeking a replacement.

Or, he may agree that there have been problems, but ask for alittle more time (or for one more chance,
in the case of discrete-task roles like release manager). How you react to that is ajudgement call, but
whatever you do, don't agree to it just because you feel like you can't refuse such a reasonable request.
That would prolong the agony, not lessen it. Thereis often avery good reason to refuse the request, na-
mely, that there have aready been plenty of chances, and that's how things got to where they are now.
Here'show | put it in amail to someone who was filling the rel ease manager role but was not really sui-
ted for it:

> |f you wish to replace ne with sonme one else, | will gracefully
> pass on the role to who cones next. | have one request, which
> | hope is not unreasonable. | would Iike to attenpt one nore
> release in an effort to prove nyself.

| totally understand the desire (been there nyself!), but in
this case, we shouldn't do the "one nore try" thing.

This isn't the first or second release, it's the sixth or
seventh... And for all of those, | know you've been dissatisfied

145

Coordinando alos Voluntarios

with the results too (because we've tal ked about it before). So
we' ve effectively already been down the one-nore-try route.
Eventual ly, one of the tries has to be the last one... | think
[this past release] should be it.

In the worst case, the volunteer may disagree outright. Then you have to accept that things are going to
be awkward and plow ahead anyway. Now is the time to say that you talked to other people about it (but
till don't say who until you have their permission, since those conversations were confidential), and that
you don't think it's good for the project to continue as things are. Be insistent, but never threatening.
Keep in mind that with most roles, the transition really happens the moment someone new starts doing
the job, not the moment the old person stops doing it. For example, if the contention is over the role of,
say, issue manager, at any point you and other influential people in the project can solicit for a new issue
manager. It's not actually necessary that the person who was previously doing it stop doing it, aslong as
he does not sabotage (deliberately or otherwise) the efforts of the new volunteer.

Which leads to atempting thought: instead of asking the person to resign, why not just frame it as a mat-
ter of getting him some help? Why not just have two issue managers, or patch managers, or whatever the
roleis?

Although that may sound nicein theory, it is generally not a good idea. What makes the manager roles
work—what makes them useful, in fact—is their centralization. Those things that can be donein ade-
centralized fashion are usually already being done that way. Having two people fill one managerial role
introduces communi cations overhead between those two people, as well as the potential for dippery dis-
placement of responsibility ("I thought you brought the first aid kit!" "Me? No, | thought you brought
the first aid kit!"). Of course, there are exceptions. Sometimes two people work extremely well together,
or the nature of therole is such that it can easily be spread across multiple people. But these are not li-
kely to be of much use when you see someone flailing in arole heis not suited for. If he'd appreciated
the problem in the first place, he would have sought such help before now. In any case, it would be dis-
respectful to let someone waste time continuing to do ajob no one will pay attention to.

The most important factor in asking someone to step down is privacy: giving him the space to make a
decision without feeling like others are watching and waiting. | once made the mistake—an obvious
mistake, in retrospect—of mailing all three parties at once in order to ask Subversion's release manager
to step aside in favor of two other volunteers. 1'd already talked to the two new people privately, and
knew that they were willing to take on the responsibility. So | thought, naively and somewhat insensiti-
vely, that I'd save some time and hassle by sending one mail to al of them to initiate the transition. | as-
sumed that the current release manager was already fully aware of the problems and would see the rea-
sonableness of my point immediately.

| was wrong. The current release manager was very offended, and rightly so. It's one thing to be asked to
hand off the job; it's another thing to be asked that in front of the people you'll hand it off to. Once | got
it through my head why he was offended, | apologized. He eventually did step aside gracefully, and con-
tinues to be involved with the project today. But his feelings were hurt, and needless to say, this was not
the most auspicious of beginnings for the new volunteers either.

Committers

Asthe only formally distinct class of peoplefound in al open source projects, committers deserve spe-
cial attention here. Committers are an unavoidable concession to discrimination in a system which is ot-
herwise as non-discriminatory as possible. But "discrimination” is not meant as a pejorative here. The
function committers perform is utterly necessary, and | do not think a project could succeed without it.
Quiality control requires, well, control. There are aways many people who feel competent to make chan-
gesto a program, and some smaller number who actually are. The project cannot rely on people's own
judgement; it must impose standards and grant commit access only to those who meet them*. On the ot-
her hand, having people who can commit changes directly working side-by-side with people who cannot

146

Coordinando alos Voluntarios

sets up an obvious power dynamic. That dynamic must be managed so that it does not harm the project.

In“¢Quién Vota?' in Capitulo 4, Infraestructura Social y Poalitica, we already discussed the mechanics
of considering new committers. Here we will look at the standards by which potential new committers
should be judged, and how this process should be presented to the larger community.

Choosing Committers

In the Subversion project, we choose committers primarily on the Hippocratic Principle: first, do no
harm. Our main criterion is not technical skill or even knowledge of the code, but merely that the com-
mitter show good judgement. Judgement can mean simply knowing what not to take on. A person might
post only small patches, fixing fairly simple problemsin the code; but if the patches apply cleanly, do
not contain bugs, and are mostly in accord with the project's log message and coding conventions, and
there are enough patches to show a clear pattern, then an existing committer will usually propose that
person for commit access. If at least three people say yes, and no one objects, then the offer is made.
True, we might have no evidence that the person is able to solve complex problemsin all areas of the
code base, but that does not matter: the person has made it clear that heis capable of at least judging his
own abilities. Technical skills can be learned (and taught), but judgement, for the most part, cannot.
Therefore, it is the one thing you want to make sure a person has before you give him commit access.

When a new committer proposal does provoke adiscussion, it is usually not about technical ability, but
rather about the person's behavior on the mailing lists or in IRC. Sometimes someone shows technical
skill and an ability to work within the project's formal guidelines, yet is also consistently belligerent or
uncooperative in public forums. That's a serious concern; if the person doesn't seem to shape up over ti-
me, even in response to hints, then we won't add him as a committer no matter how skilled heis. In avo-
lunteer group, social skills, or the ability to "play well in the sandbox", are asimportant as raw technical
ability. Because everything is under version control, the penalty for adding a committer you shouldn't
have is not so much the problemsiit could cause in the code (review would spot those quickly anyway),
but that it might eventually force the project to revoke the person's commit access—an action that is ne-
ver pleasant and can sometimes be confrontational.

Many projects insist that the potential committer demonstrate a certain level of technical expertise and
persistence, by submitting some number of nontrivial patches—that is, not only do these projects want
to know that the person will do no harm, they want to know that sheislikely to do good across the code
base. Thisisfine, but be careful that it doesn't start to turn committership into a matter of membership in
an exclusive club. The question to keep in everyone's mind should be "What will bring the best results
for the code?' not "Will we devalue the social status associated with committership by admitting this
person?' The point of commit access is not to reinforce people's self-worth, it's to alow good changesto
enter the code with a minimum of fuss. If you have 100 committers, 10 of whom make large changes on
aregular basis, and the other 90 of whom just fix typos and small bugs afew times a year, that's still bet-
ter than having only the 10.

Revoking Commit Access

Thefirst thing to be said about revoking commit accessis: try not to be in that situation in the first place.
Depending on whose access is being revoked, and why, the discussions around such an action can be
very divisive. Even when not divisive, they will be atime-consuming distraction from productive work.

However, if you must do it, the discussion should be had privately among the same people who would
bein aposition to vote for granting that person whatever flavor of commit access they currently have.
The person herself should not be included. This contradicts the usual injunction against secrecy, but in
this case it's necessary. First, no one would be able to speak freely otherwise. Second, if the motion fails,

“Note that the commit access means something a bit different in decentralized version control systems, where anyone can set up a
repository that is linked into the project, and give themselves commit access to that repository. Nevertheless, the concept of com-
mit access still applies: "commit access" is shorthand for "the right to make changes to the code that will ship in the group's next
release of the software." In centralized version control systems, this means having direct commit access; in decentralized ones, it
means having one's changes pulled into the main distribution by default. It is the same idea either way; the mechanics by which it
isrealized are not terribly important.

147

Coordinando alos Voluntarios

you don't necessarily want the person to know it was ever considered, because that could open up ques-
tions ("Who was on my side? Who was against me?"') that lead to the worst sort of factionalism. In cer-
tain rare circumstances, the group may want someone to know that revocation of commit accessis or
was being considered, as awarning, but this openness should be a decision the group makes. No one
should ever, on her own initiative, reveal information from a discussion and ballot that others assumed
were secret.

Once someone's access is revoked, that fact is unavoidably public (see “Avoid Mystery” later in this
chapter), so try to be as tactful asyou can in how it is presented to the outside world.

Partial Commit Access

Some projects offer gradations of commit access. For example, there might be contributors whose com-
mit access gives them free rein in the documentation, but who do not commit to the code itself. Common
areas for partial commit access include documentation, translations, binding code to other programming
languages, specification files for packaging (e.g., RedHat RPM spec files, etc.), and other places where a
mistake will not result in a problem for the core project.

Since commit accessis not only about committing, but about being part of an electorate (see “ ¢Quién
Vota?' in Capitulo 4, Infraestructura Social y Politica), the question naturally arises: what can the par-
tial committers vote on? Thereis no one right answer; it depends on what sorts of partial commit do-
mains your project has. In Subversion we've kept things fairly simple; a partial committer can vote on
matters confined exclusively to that committer's domain, and not on anything else. Importantly, we do
have a mechanism for casting advisory votes (essentially, the committer writes"+0" or

"+1 (non-binding)" instead of just "+1" on the ballot). There's no reason to silence people entirely just
because their vote isn't formally binding.

Full committers can vote on anything, just as they can commit anywhere, and only full committers vote
on adding new committers of any kind. In practice, though, the ability to add new partial committersis
usually delegated: any full committer can "sponsor" a new partial committer, and partial committersin a
domain can often essentially choose new committers for that same domain (thisis especially helpful in
making translation work run smoothly).

Y our project may need adightly different arrangement, depending on the nature of the work, but the sa-
me general principles apply to al projects. Each committer should be able to vote on matters that fall
within the scope of her commit access, and not on matters outside that, and votes on procedural ques-
tions should default to the full committers, unless there's some reason (as decided by the full commit-
ters) to widen the electorate.

Regarding enforcement of partial commit access: it's often best not to have the version control system
enforce partial commit domains, even if it can. See “Autorizaciones’ in Capitulo 3, Infraestructura Téc-
nica for the reasons why.

Dormant Committers

Some projects automatically remove people's commit accessif they go a certain amount of time (say, a
year) without committing anything. | think thisis usually unhelpful and even counterproductive, for two
reasons.

First, it may tempt some people into committing acceptable but unnecessary changes, just to prevent
their commit access from expiring. Second, it doesn't really serve any purpose. If the main criterion for
granting commit access is good judgement, then why assume someone's judgement would deteriorate
just because he's away from the project for awhile? Even if he completely vanishes for years, not |oo-
king at the code or following development discussions, when he reappears he'll know how out of touch
heis, and act accordingly. Y ou trusted his judgement before, so why not trust it aways? If high school
diplomas do not expire, then commit access certainly shouldn't.

Sometimes a committer may ask to be removed, or to be explicitly marked as dormant in the list of com-

148

Coordinando alos Voluntarios

mitters (see “ Avoid Mystery” below for more about that list). In these cases, the project should accede to
the person's wishes, of course.

Avoid Mystery

Although the discussions around adding any particular new committer must be confidential, the rules
and procedures themselves need not be secret. In fact, it's best to publish them, so people realize that the
committers are not some mysterious Star Chamber, closed off to mere mortals, but that anyone can join
simply by posting good patches and knowing how to handle herself in the community. In the Subversion
project, we put thisinformation right in the devel oper guidelines document, since the people most likely
to be interested in how commit accessis granted are those thinking of contributing code to the project.

In addition to publishing the procedures, publish the actual list of committers. The traditional place for
thisisafile called MAI NTAI NERS or COVM TTERS in the top level of the project's source code tree. It
should list all the full committers first, followed by the various partial commit domains and the members
of each domain. Each person should be listed by name and email address, though the address can be en-
coded to prevent spam (see “ Ocultar las direcciones en los archivos’ in Capitulo 3, Infraestructura Téc-
nica) if the person prefers that.

Since the distinction between full commit and partial commit access is obvious and well defined, it is
proper for the list to make that distinction too. Beyond that, the list should not try to indicate the infor-
mal distinctions that inevitably arisein a project, such aswho is particularly influential and how. Itisa
public record, not an acknowledgmentsfile. List committers either in alphabetical order, or in the order
in which they arrived.

Credit

Credit isthe primary currency of the free software world. Whatever people may say about their motiva
tionsfor participating in a project, | don't know any devel opers who would be happy doing al their work
anonymously, or under someone else's name. There are tangible reasons for this: one's reputation in a
project roughly governs how much influence one has, and participation in an open source project can al-
so indirectly have monetary value, because some employers now look for it on resumés. There are also
intangible reasons, perhaps even more powerful: people simply want to be appreciated, and instinctively
look for signs that their work was recognized by others. The promise of credit is therefore one of best
motivators the project has. When small contributions are acknowledged, people come back to do more.

One of the most important features of collaborative development software (see Capitulo 3, Infraestructu-
ra Técnica) isthat it keeps accurate records of who did what, when. Wherever possible, use these exis-
ting mechanisms to make sure that credit is distributed accurately, and be specific about the nature of the
contribution. Don't just write "Thanks to J. Random <jrandom@example.com>" if instead you can write
"Thanks to J. Random <jrandom@example.com> for the bug report and reproduction recipe” in alog
message.

In Subversion, we have an informal but consistent policy of crediting the reporter of abug in either the
issuefiled, if thereis one, or the log message of the commit that fixes the bug, if not. A quick survey of
Subversion commit logs up to commit number 14525 shows that about 10% of commits give credit to
someone by name and email address, usually the person who reported or analyzed the bug fixed by that
commit. Note that this person is different from the developer who actually made the commit, whose na-
meis aready recorded automatically by the version control system. Of the 80-odd full and partial com-
mitters Subversion has today, 55 were credited in the commit logs (usually multiple times) before they
became committers themselves. This does not, of course, prove that being credited was afactor in their
continued involvement, but it at least sets up an atmosphere in which people know they can count on
their contributions being acknowledged.

It isimportant to distinguish between routine acknowledgment and special thanks. When discussing a
particular piece of code, or some other contribution someone made, it is fine to acknowledge their work.

149

Coordinando alos Voluntarios

For example, saying "Daniel's recent changes to the delta code mean we can now implement feature X"
simultaneously helps people identify which changes you're talking about and acknowledges Daniel's
work. On the other hand, posting solely to thank Daniel for the delta code changes serves no immediate
practical purpose. It doesn't add any information, since the version control system and other mechanisms
have already recorded the fact that he made the changes. Thanking everyone for everything would be
distracting and ultimately information-free, since thanks are effective largely by how much they stand
out from the default, background level of favorable comment going on al the time. This does not mean,
of course, that you should never thank people. Just make sure to do it in ways that tend not to lead to
credit inflation. Following these guidelines will help:

» The more ephemeral the forum, the more free you should feel to express thanks there. For example,
thanking someone for their bugfix in passing during an IRC conversation isfine, asisan asidein an
email devoted mainly to other topics. But don't post an email solely to thank someone, unlessit's for a
truly unusual feat. Likewise, don't clutter the project's web pages with expressions of gratitude. Once
you start that, it'll never be clear when or where to stop. And never put thanks into commentsin the
code; that would only be a distraction from the primary purpose of comments, which isto help the
reader understand the code.

» Thelessinvolved someoneisin the project, the more appropriate it isto thank her for something she
did. This may sound counterintuitive, but it fits with the attitude that expressing thanks is something
you do when someone contributes even more than you thought she would. Thus, to constantly thank
regular contributors for doing what they normally do would be to express alower expectation of them
than they have of themselves. If anything, you want to aim for the opposite effect!

There are occasional exceptionsto thisrule. It's acceptable to thank someone for fulfilling his expec-
ted role when that role involves temporary, intense efforts from time to time. The canonical example
is the release manager, who goesinto high gear around the time of each release, but otherwise lies
dormant (dormant as a release manager, in any case—he may also be an active developer, but that's a
different matter).

» Aswith criticism and crediting, gratitude should be specific. Don't thank people just for being great,
even if they are. Thank them for something they did that was out of the ordinary, and for bonus
points, say exactly why what they did was so great.

In genera, thereis always a tension between making sure that people's individual contributions are re-
cognized, and making sure the project is a group effort rather than a collection of individual glories. Just
remain aware of thistension and try to err on the side of group, and things won't get out of hand.

Forks

In “Forkability” in Capitulo 4, Infraestructura Social y Politica, we saw how the potential to fork has
important effects on how projects are governed. But what happens when afork actually occurs? How
should you handle it, and what effects can you expect it to have? Conversely, when should you initiate a
fork?

The answers depend on what kind of fork it is. Some forks are due to amicable but irreconcilable disa
greements about the direction of the project; perhaps more are due to both technical disagreements and
interpersonal conflicts. Of course, it's not always possible to tell the difference between the two, astech-
nical arguments may involve personal elements aswell. What al forks have in common isthat one
group of developers (or sometimes even just one developer) has decided that the costs of working with
some or all of the others now outweigh the benefits.

Once a project forks, there is no definitive answer to the question of which fork isthe "true" or "origi-
nal" project. People will colloquialy talk of fork F coming out of project P, as though P is continuing
unchanged down some natural path while F divergesinto new territory, but thisis, in effect, adeclara-

150

Coordinando alos Voluntarios

tion of how that particular observer feels about it. It is fundamentally a matter of perception: when alar-
ge enough percentage of observers agree, the assertion starts to become true. It is not the case that there
is an objective truth from the outset, one that we are only imperfectly able to perceive at first. Rather, the
perceptions are the objective truth, since ultimately a project—or afork—is an entity that existsonly in
people's minds anyway.

If those initiating the fork feel that they are sprouting a new branch off the main project, the perception
guestion is resolved immediately and easily. Everyone, both developers and users, will treat the fork as a
new project, with anew name (perhaps based on the old name, but easily distinguishable from it), a se-
parate web site, and a separate philosophy or goal. Things get messier, however, when both sides feel
they are the legitimate guardians of the original project and therefore have the right to continue using the
original name. If there is some organization with trademark rights to the name, or legal control over the
domain or web pages, that usually resolvesthe issue by fiat: that organization will decide who is the pro-
ject and who isthe fork, because it holds all the cardsin a public relations war. Naturally, things rarely
get that far: since everyone already knows what the power dynamics are, they will avoid fighting a battle
whose outcome is known in advance, and just jump straight to the end.

Fortunately, in most cases thereis little doubt asto which is the project and which is the fork, because a
fork is, in essence, avote of confidence. If more than half of the developers arein favor of whatever
course the fork proposes to take, usually there is no need to fork—the project can simply go that way it-
self, unlessit isrun as a dictatorship with a particularly stubborn dictator. On the other hand, if fewer
than half of the developers are in favor, the fork is a clearly minority rebellion, and both courtesy and
common sense indicate that it should think of itself as the divergent branch rather than the main line.

Handling a Fork

If someone threatens afork in your project, keep calm and remember your long-term goals. The mere
existence of afork isn't what hurts a project; rather, it's the loss of developers and users. Y our real aim,
therefore, is not to squelch the fork, but to minimize these harmful effects. Y ou may be mad, you may
feel that the fork was unjust and uncalled for, but expressing that publicly can only alienate undecided
developers. Instead, don't force people to make exclusive choices, and be as cooperative asis practicable
with the fork. To start with, don't remove someone's commit access in your project just because he deci-
ded to work on the fork. Work on the fork doesn't mean that person has suddenly lost his competence to
work on the original project; committers before should remain committers afterward. Beyond that, you
should express your desire to remain as compatible as possible with the fork, and say that you hope de-
velopers will port changes between the two whenever appropriate. If you have administrative accessto
the project's servers, publicly offer the forkers infrastructure help at startup time. For example, offer
them a complete, deep-history copy of the version control repository, if there's no other way for them to
get it, so that they don't have to start off without historical data (this may not be necessary depending on
the version control system). Ask them if there's anything else they need, and provide it if you can. Bend
over backward to show that you are not standing in the way, and that you want the fork to succeed or fail
on its own merits and nothing else.

The reason to do all this—and do it publicly—is not to actually help the fork, but to persuade devel opers
that your sideis a safe bet, by appearing as non-vindictive as possible. In war it sometimes makes sense
(strategic sense, if not human sense) to force people to choose sides, but in free software it almost never
does. In fact, after afork some developers often openly work on both projects, and do their best to keep
the two compatible. These devel opers help keep the lines of communication open after the fork. They
allow your project to benefit from interesting new featuresin the fork (yes, the fork may have things you
want), and also increase the chances of a merger down the road.

Sometimes a fork becomes so successful that, even though it was regarded even by its own instigators as
afork at the outset, it becomes the version everybody prefers, and eventually supplants the original by
popular demand. A famous instance of this was the GCC/EGCS fork. The GNU Compiler Collection
(GCC, formerly the GNU C Compiler) isthe most popular open source native-code compiler, and also
one of the most portable com;s)i lersin the world. Due to disagreements between the GCC's official main-
tainers and Cygnus Software,” one of GCC's most active developer groups, Cygnus created a fork of

151

Coordinando alos Voluntarios

GCC cdled EGCS. The fork was deliberately non-adversarial: the EGCS devel opers did not, at any
point, try to portray their version of GCC as a new officia version. Instead, they concentrated on making
EGCS as good as possible, incorporating patches at afaster rate than the official GCC maintainers.
EGCS gained in popularity, and eventually some major operating system distributors decided to package
EGCS as their default compiler instead of GCC. At this point, it became clear to the GCC maintainers
that holding on to the "GCC" name while everyone switched to the EGCS fork would burden everyone
with a needless name change, yet do nothing to prevent the switchover. So GCC adopted the EGCS co-
debase, and there is once again asingle GCC, but greatly improved because of the fork.

This example shows why you cannot always regard a fork as an unadulteratedly bad thing. A fork may
be painful and unwelcome at the time, but you cannot necessarily know whether it will succeed. There-
fore, you and the rest of the project should keep an eye on it, and be prepared not only to absorb features
and code where possible, but in the most extreme case to even join the fork if it gainsthe bulk of the
project's mindshare. Of course, you will often be able to predict afork's likelihood of success by seeing
who joinsit. If the fork is started by the project's biggest complainer and joined by a handful of disgrunt-
led devel opers who weren't behaving constructively anyway, they've essentially solved a problem for
you by forking, and you probably don't need to worry about the fork taking momentum away from the
original project. But if you seeinfluential and respected devel opers supporting the fork, you should ask
yourself why. Perhaps the project was being overly restrictive, and the best solution is to adopt into the
mainline project some or al of the actions contemplated by the fork—in essence, to avoid the fork by
becoming it.

Initiating a Fork

All the advice here assumes that you are forking as alast resort. Exhaust al other possibilities before
starting afork. Forking almost always means |osing devel opers, with only an uncertain promise of gai-
ning new ones later. It also means starting out with competition for users' attention: everyone who's
about to download the software has to ask themselves: "Hmm, do | want that one or the other one?"
Whichever one you are, the situation is messy, because a question has been introduced that wasn't there
before. Some people maintain that forks are healthy for the software ecosystem as awhole, by a stan-
dard natural selection argument: the fittest will survive, which means that, in the end, everyone gets bet-
ter software. This may be true from the ecosystem's point of view, but it's not true from the point of view
of any individual project. Most forks do not succeed, and most projects are not happy to be forked.

A corollary isthat you should not use the threat of afork as an extremist debating technique—"Do
things my way or I'll fork the project!"—because everyone is aware that afork that fails to attract deve-
lopers away from the original project is unlikely to survive long. All observers—not just devel opers, but
users and operating system packagers too—will make their own judgement about which side to choose.
Y ou should therefore appear extremely reluctant to fork, so that if you finally do it, you can credibly
claim it was the only route | eft.

Do not neglect to take all factors into account in evaluating the potential success of your fork. For exam-
ple, if many of the developers on a project have the same employer, then even if they are disgruntled and
privately in favor of afork, they are unlikely to say so out loud if they know that their employer is
against it. Many free software programmers like to think that having a free license on the code means no
one company can dominate development. It istrue that the license is, in an ultimate sense, a guarantor of
freedom—if others want badly enough to fork the project, and have the resources to do so, they can. But
in practice, some projects development teams are mostly funded by one entity, and there is no point pre-
tending that that entity's support doesn't matter. If it is opposed to the fork, its developers are unlikely to
take part, even if they secretly want to.

If you still conclude that you must fork, line up support privately first, then announce the fork in anon-
hostile tone. Even if you are angry at, or disappointed with, the current maintainers, don't say that in the
message. Just dispassionately state what led you to the decision to fork, and that you mean no ill will to-
ward the project from which you're forking. Assuming that you do consider it afork (as opposed to an
emergency preservation of the original project), emphasize that you're forking the code and not the na

SNow part of RedHat (http://www.redhat.com/).

152

http://www.redhat.com/

Coordinando alos Voluntarios

me, and choose a name that does not conflict with the project's name. Y ou can use a name that contains
or refersto the original name, aslong as it does not open the door to identity confusion. Of course it's fi-
ne to explain prominently on the fork's home page that it descends from the original program, and even
that it hopes to supplant it. Just don't make users lives harder by forcing them to untangle an identity
dispute.

Finally, you can get things started on the right foot by automatically granting all committers of the origi-
nal project commit access to the fork, including even those who openly disagreed with the need for a
fork. Even if they never use the access, your message is clear: there are disagreements here, but no ene-
mies, and you welcome code contributions from any competent source.

153

Capitulo 9. Licencias, Copyrights y
Patentes

Lalicencia que €lijas probablemente no tendra un gran impacto en la adopcién de tu proyecto, siempre
que sea software libre. Los usuarios generalmente eligen software basandose en la calidad y las funcio-
nalidades, no en los detalles de lalicencia. No obstante, necesitas una comprension basica de las impli-
caciones delaslicencias libres, tanto para asegurar que lalicenciadel proyecto es compatible con sus
objetivos, como para discutir sobre |las decisiones acerca de lalicencia con otros. Por favor, ten en cuen-
ta que no soy abogado, y nada contenido en este capitulo debe ser tenido en cuenta como advertencia le-
gal. Para€llo, necesitaras contratar un abogado o serlo.

Terminologia

En cualquier discusion acerca de las licencias de software libre, 1o primero que encuentras es que parece

gue hay diferentes nomenclaturas paralos mismos conceptos. software libre (free software), software de
fuentes abiertas (open source), FOSS, F/OSS y FLOSS. Empecemos por ordenar estos términos, ademas
de algunos otros.

Software libre (free software)
Software que puede ser compartido y modificado con libertad, incluyendo el codigo fuente. El tér-
mino fue acufiado por Richard Stallman, quien lo utilizé en la GNU Genera Public License (GPL),
y quien fundé la Free Software Foundation (http://www.fsf.org/) para promocionar el concepto.

Aunque "software libre" cubre casi exactamente el mismo software que "software de fuentes abier-
tas', laFSF, entre otros, prefiere el término anterior porque hace hincapié en laidea de libertad, y €l
concepto de libre distribucion del software principalmente como un movimiento socia y no técnico.
La FSF admite que el término es ambiguo—puede significar "free" como "de coste cero”, en lugar
de "free" como "libertad"— pero considera que alln es el mejor término, y que las otras alternativas
en inglés tienen sus propias ambigiiedades (alo largo de este libro, "free" se utiliza con el sentido de
libertad, y no con el concepto de gratuito).

Softwar e de fuentes abiertas (open source)
Software libre bajo otro nombre. Pero la diferencia en € nombre refleja unaimportante diferencia
filosofica: "open source" fue acufiado por la Open Source Initiative (http://www.opensource.org/)
como una aternativa deliberada a "free software”, con € fin de hacer este tipo de software una op-
cién mas apetecible para empresas, mediante su presentacion como una metodol ogia de desarrollo
en vez de un movimiento politico. También podrian haber querido sobreponerse a otro estigma: 1o
"gratuito” es de baja calidad.

Mientras que cualquier licencia que sea "free software" es también "open source”, y viceversa (con
unas pocas excepciones), la gente tiende aelegir un término y aferrarse a él. En general, aquellos
que prefieren "software libre" suelen tener una postura mas filosofica o moral sobre el tema, mien-
tras que los que prefieren "open source” o no lo ven como un asunto de libertad, o no estén interesa-
dos en publicitar €l hecho de ese modo. Vease “#Libre# vs #Abierto#’ en Capitulo 1, Introduccion
para una historia més detallada de este cisma.

L a Free Software Foundation tiene una excel ente —carente de objetividad, pero con maticesy muy
justa—exégesis de |os dos términos, en

http://www.fsf.org/licensing/essay s/free-software-for-freedom.html. La vision de la Open Source
Initiative a respecto esta en dos péginas.
http://www.opensource.org/advocacy/case_for_hackers.php#marketing y
http://www.opensource.org/advocacy/free-notfree.php.

154

http://www.fsf.org/
http://www.opensource.org/
http://www.fsf.org/licensing/essays/free-software-for-freedom.html
http://www.opensource.org/advocacy/case_for_hackers.php#marketing
http://www.opensource.org/advocacy/free-notfree.php

Licencias, Copyrightsy Patentes

FOSS F/OSS, FLOSS
Donde caben dos, caben tres, y eso es exactamente lo que esta ocurriendo con |os términos para €l
software libre. EI mundo académico, quiza buscando precision eincluso por encima de la elegancia,
parece haber establecido FOSS, o0 aveces F/OSS, significando "Free / Open Source Software”. Otra
variantes ganando adeptos es FLOSS, que quiere decir "Free/ Libre Open Source Software" (libre
es comln en variosidiomas y no sufre de laambigliedad de "free"; vease
http://en.wikipedia.org/wiki/FLOSS para mas detalles).

Todos estos términos significan esencialmente o mismo: software que puede ser modificado y re-
distribuido por cualquiera, algunas veces—pero no siempre— con el requisito de que los trabajos
derivados deben ser distribuibles libremente bajo |os mismos términos.

Conforme con las DFSG
Conforme con las Directrices de Software Libre de Debian (Debian Free Software Guidelines
http://www.debian.org/social_contract#guidelines). Esta es una prueba ampliamente usada para
comprobar si una licencia dada es verdaderamente software libre. La misién del proyecto Debian es
mantener un sistema operativo totalmente libre, de modo que cualquiera que lo instale nunca dude
de quetiene &l derecho amodificar y redistribuir cualquier parte del sistema. Las Directrices de
Software Libre de Debian son los requisitos que la licencia de un paquete software debe cumplir pa-
ra poder ser incluido en Debian. Debido a que €l proyecto Debian invirtié gran cantidad de tiempo
pensando en como realizar una prueba, las directrices que surgieron han demostrado ser muy robus-
tas (vease http://en.wikipedia.org/wiki/DFSG), hasta donde yo s, ninguna objeccion seria se halan-
zado ni por la Free Software Foundation ni por la Open Source Initiative. Si sabes que unalicencia
es conforme con las DFSG, sabes que garantiza todas las libertades importantes (tales como la posi-
bilidad de un fork incluso en contra de los deseos del autor) requeridas para mantener la dindmica
de un proyecto libre. Todas las licencias tratadas en este capitulo son conformes alas DFSG.

Aprobadas por OS
Aprobadas por la Open Source Initiative. Este es otra prueba ampliamente usada para comprobar si
unalicencia cumple todas las libertades necesarias. La definicion de la OSl del software libre esta
basada en las DFSG, y unalicencia que se gjusta a una prueba casi siempre se gjustaalaotra A tra-
Vés de los afios han habido contadas excepciones, pero solo relativas a un nicho de licencias de nin-
gunarelevanciaaqui. Al contrario que €l proyecto Debian, la OSI mantiene unalistadetodaslas|i-
cencias que ha aprobado, en http://www.opensource.org/licenses/, por |o que ser aprobada por OSI
€s un estado sin ambigiiedades: unalicenciaestd o no estaen lalista

La Free Software Foundation también mantiene unalista de licencias en
http://mww.fsf.org/licensing/licenses/license-list.html. La FSF clasificalas licencias no sélo por su
libertad, sino también por su compatibilidad con la GNU General Public License. La compatibilidad
con laGPL es un asunto important, que seratratado “La GPL y compatibilidad entre licencias’ més
tarde en este capitulo.

Propietario, Codigo cerrado
Lo opuesto al software libre. Significa que el software se distribuye bajo términos tradicionales, con
licencias basadas en derechos de autor, donde |os usuarios pagan por copia, o bajo otros términos
cual esqui era suficientemente restrictivos para prevenir ladinamica del software libre. Incluso el
software distribuido gratuitamente puede ser propietario, si su licenciano permite lalibre redistribu-
cion y derecho a modificacion.

Generalmente, software "proprietario” y software "de codigo cerrado” son sinénimos. Sin embargo,
"codigo cerrado” adicionalmente implica que € codigo fuente no puede ser visto. Debido aque €
codigo no puede verse en lamayoria del software privativo, esta diferencia generalmente no afecta.
Sin embargo, ocasionalmente alguien publica software propietario bajo unalicencia que permite a
otros ver € codigo. Equivocadamente, algunas veces [laman a esto "cddigo abierto" o "cercano al
codigo abierto”, etc., pero es engafioso. Lavisibilidad del cddigo no es el problema, €l temaimpor-
tante es que estas autorizado a hacer con é. Asi, ladiferenciaentre el codigo cerrado o propietario
s en gran parte intrascendente, y ambos términos pueden tratarse como sindnimos.

155

http://en.wikipedia.org/wiki/FLOSS
http://www.debian.org/social_contract#guidelines
http://en.wikipedia.org/wiki/DFSG
http://www.opensource.org/licenses/
http://www.fsf.org/licensing/licenses/license-list.html

Licencias, Copyrightsy Patentes

Algunas veces comercial es usado como sindnimo de "propietario”, pero hablando con propiedad,
no es lo mismo. El software libre puede ser software comercial. Después de todo, el software libre
puede venderse, siempre que los compradores no estén restringidos a distribuir copias. También
puede comercializarse por otras vias, por ejemplo mediante la venta de soporte, serviciosy certifi-
caciones. Hoy existen empresas multimillonarias basadas en el software libre, por tanto claramente
no es intrinsecamente anticomercial o contrario alas empresas. Por otro lado, es anti-proprietario
por su naturalezay ésta esla clave de la diferencia con los model os tradicionales de licencia por co-
pia.

Dominio publico
Que no tiene derechos de autor, significa que no hay nada que tenga el derecho arestringir la copia
delaobra. Estar en el dominio publico no eslo mismo que no tener autor. Todo tiene un autor, e in-
cluso s € autor del trabajo o los autores eligen ponerlo en el dominio piblico, no cambia el hecho
de que elloslo escribieron.

Cuando un trabajo esta en €l dominio publico, material de éste puede ser incorporado en trabajos
con derechos de autor, y entonces esa copia del material esté cubierta bajo los mismos derechos de
autor que el trabajo completo. Pero esto no afecta aladisponibilidad del trabajo original, que per-
manece en el dominio publico. Asi, publicar algo en el dominio pablico es técnicamente un modo
de hacerlo "libre", de acuerdo con las directrices de la mayoria de organi zaciones certificadoras de
software libre. Sin embargo, normalmente hay buenas razones para usar unalicencia en vez de pu-
blicar algo en el dominio publico: incluso con el software libre, ciertas restricciones pueden ser Uti-
les, no sblo para el poseedor de los derechos de autor sino también para los beneficiarios, como
aclarala siguiente seccion.

copyleft
Unalicenciaque utilizalaley de propiedad intelectual paralograr el resultado contrario al derecho
de autor tradicional. Dependiendo de a quién preguntes, esto significa que cualquier licencia que
permita las libertades bajo discusion aqui, 0, més estrictamente, las licencias que no sélo permiten
esas libertades sino que las imponen, estipulando que | as libertades deben acompafiar al trabajo. La
Free Software Foundation usa la segunda definicidn exclusivamente; en otros sitios, es un comple-
mento: mucha gente usa el término del mismo modo que la FSF, pero otros —incluyendo a algunos
gue escriben en los principal es medios de comuni cacién— tienden a usar la primera definicion. Esta
claro que no todo el mundo que usa el término es consciente de que hay distinciones que deben ha-
cerse.

El ejemplo clésico de la més limitada, una definicién mas estricta esla GNU General Public Licen-
se, que estipula que todo trabajo derivado debe estar también bajo dichalicencia, vease“La GPL y
compatibilidad entre licencias’ mas tarde en este capitulo para més detalles.

Aspectos de las licencias

Aunque hay muchas licencias distintas de software libre disponibles, en |os aspectos importantes, todas

dicen lo mismo: que cualquier persona puede modificar el codigo, que cualquier persona puede redistri-

burlo tanto en laforma original como modificada, y que los titulares del copyright y los autores no ofre-
cen garantia alguna (evitar las responsabilidades es especia mente importante teniendo en cuenta que la

gente puede g ecutar versiones modificadas incluso sin saberlo). Las diferencias entre las licencias se re-
ducen a unas pocas cuestiones muy recurrentes:

Compeatibilidad con licencias propietarias
Algunas licencias libres permiten que el cédigo que cubren se utilice en software propietario. Esto
no afectaalostérminos de lalicencia del software propietario: sigue siendo propietario como siem-
pre, solo que contiene cédigo de una fuente no propietaria. La Apache License, X Consortium Li-
cense, licencias estilo BSD, y licencias estilo MIT son ejemplos de licencias compatibles con licen-
cias propietarias.

156

Licencias, Copyrightsy Patentes

Compatibilidad con otraslicencias libres
Muchas licencias libres son compatibles con las demas, significando que el cédigo bajo unalicencia
puede combinarse con cadigo bajo otra, y € resultado se distribuye bajo otralicenciasin violar los
términos de las otras. La mayor excepcion a esto esla GNU General Public License, que requiere
gue cualquier trabajo que utilice cddigo GPL se distribuyabajo la GPL, y sin afiadir ninguna restric-
cion mas aparte de las de la GPL. La GPL es compatible con agunas licencias libres, pero no con
todas. Esto se trata con mas detalle “La GPL y compatibilidad entre licencias’ més tarde en este ca-
pitulo.

Obligacion de acreditacion
Algunas licencias libres estipulan que cualquier uso del codigo que cubren debe ir acompafiado de
un aviso, cuya colocacion y exhibicidn se suele especificar, dando crédito alos autores o titulares
del copyright del codigo. Estas licencias son generalmente compatibles con licencias propietarias:
no necesariamente requieren que € trabajo derivado sea libre, simplemente que se dé crédito a co-
digo libre.

Proteccion de lamarca
Unavariante de la obligacion de acreditacion. Las licencias que protegen las marcas especifican que
el nombre del software origina (o lostitulares del copyright, o su institucién, etc.) no deben ser uti-
lizados por trabajos derivados sin € permiso previo por escrito. Aunque la obligacion de acredita
cion insiste en que se utilice cierto nombre, y la proteccion de la marca insiste en que no, son expre-
siones de un mismo deseo: que lareputacion del cédigo original se preservey transmita, pero no sea
empafiada por asociacion.

Proteccion de la"integridad artistica’
Algunas licencias (la Artistic License, usada para laimplementacién mas popular del lenguaje de
programacion Perl, y lalicencia TeX de Donad Knuth, por ejemplo) requieren que la modificacion
y redistribucion se haga de modo que se distinga claramente entre la version original del cddigo y
cualquier modificacion. Permiten esencia mente las mismas libertades que las demés licencias li-
bres, pero imponen una serie de requisitos que hacen facil verificar laintegridad del cddigo original.
Estas licencias no han despertado mucho interés mas alla de los programas para | os cuales se hicie-
ron, y no seran tratadas en este capitulo. Se mencionan aqui sélo con el propésito de exhaustividad.

Lamayoria de estas disposiciones no son mutuamente excluyentes, y algunas licencias incluyen varias.
El hilo comun entre ellas es que imponen unas exigencias al beneficiario a cambio del derecho delos
destinatarios a usar y/o redistribuir el cédigo. Por jemplo, algunos proyectos desean que su nombrey
reputacion se transmita con € cadigo, y esto hace que impongan las cladsulas de crédito o de proteccion
delamarca. Dependiendo de éstas, la carga afiadida puede resultar en que algunos usuarios €elijan un pa-
guete con una licencia menos exigente.

La GPL y compatibilidad entre licencias

Delargo lamayor linea divisoria en cuanto alicencias es entre las licencias compatibles y las incompati-
bles con las licencias propietarias, es decir, entre la GNU General Public Licensey todas las demas. De-
bido aque €l objetivo primordial de los autores de la GPL es la promocion del software libre, delibera-
damente crearon con sumo cuidado lalicencia para hacer imposible lamezcla de codigo GPL en softwar
re propietario. Especificamente, entre las clalisulas de la GPL (vease
http://www.fsf.org/licensing/licenses/gpl.html para obtener el texto completo) estan estos dos:

1. Todo trabajo derivado—es decir, todo trabajo que contenga una cantidad no trivial de codigo GPL
—debe ser distribuido bajo la GPL.

2. Ningunarestriccion adicional debe ser afiadida ala redistribucion del trabajo original o de un trabajo
derivado (lafrase litera es: "Usted no puede imponer ninguna restriccion adicional alos beneficiarios
en el gercicio de los derechos otorgados en este documento.").

157

http://www.fsf.org/licensing/licenses/gpl.html

Licencias, Copyrightsy Patentes

Con estas claiisulas, la GPL triunfaal hacer lalibertad contagiosa. Unavez que un programa se licencia
con laGPL, sus términos de distribucién son virales —se pasan a cualquier sitio donde €l cédigo sein-
corpore, haciendo efectivamente imposible usar codigo GPL en programas de cadigo cerrado. Sin em-
bargo, estas mismas clalisulas hacen ala GPL incompatible con algunas otras licencias libres. La manera
comun de que esto ocurra es que la otra licenciaimpone un requisito —por gjemplo, unaclalisula de cré-
dito requiriendo que se mencione alos autores originales de algiin modo— que es incompatible con €l
"Ninguna restriccion adicional debe ser afadida...” dela GPL. Desde € punto de vista de la Free Soft-
ware Foundation, estas consecuencias secundarias son deseables 0, al menos, no lamentables. La GPL

no solo mantiene el software libre, sino que hace de tu software un agente paraimpulsar que otro soft-
ware sea libre también.

Lacuestién de si éste es 0 no un buen modo de promover el software libre es una de las guerras santas
més persistentes en Internet (vease “Evitando las Guerras Santas’ en Capitulo 6, Communications), y no
lavamos atratar agui. Lo que importante para nuestro objetivos es que la compatibilidad con laGPL es
un problema importante cuando elegimos unalicencia. La GPL es de lgjos lalicencia de software libre
mas popular; en http://freshmeat.net/stats/#license, tiene un 68%, y lasiguiente en el ranking tiene un
6%. Si quieres que tu codigo se puede emplear libremente con cddigo GPL — y hay mucho codigo GPL
ahi fuera— debes elegir unalicencia compatible con la GPL. Algunas de las licencias compatibles con
la GPL son también compatibles con software propietario: es decir, codigo bajo esalicencia puede usar-
se en un programa GPL, y también en un programa propietario. Por supuesto, |os resultados de estas
mezclas no seran compatibles con la otra, ya que una estara bajo la GPL y otra estard bajo unalicencia
de cédigo cerrado. Pero esa preocupacion se aplica Unicamente a las obras derivadas, y no al codigo que
se distribuya en primer lugar.

Afortunadamente, |a Free Software Foundation mantiene una lista que muestra qué licencias son compa-
tibles con la GPL y cudles no, en http://www.gnu.org/licenses/license-list.html. Todas las licencias trata-
das en este capitulo estén presentes en esalista, en un lado u en otro.

Eligiendo una licencia

Cuando eliges unalicencia para aplicarla atu proyecto, si es posible usa una licencia existente en vez de
crear una nueva. Hay dos razones por la que licencias existentes son una mejor opcion:

» Familiaridad. Si utilizas una de las tres o cuatro licencias més populares, la gente no sentira que debe
leer textos legales para utilizar tu codigo, porque yalo habran hecho para esa licencia hace tiempo.

» Calidad. A menos que tengas un equipo de abogados a tu disposicion, seguramente no consigas unali-
cencia solidalegalmente. Las licencias mencionadas aqui son producto de mucho trabajo y experien-
cia. A menos que tu proyecto tenga necesidades poco comunes, es poco probable que o hagas mejor.

Para aplicar una de estas licencias a tu proyecto, lee “Coémo aplicar unalicencia a nuestro software” en
Capitulo 2, Primeros Pasos.

La MIT / X Window System License

Si tu objetivo es que tu codigo sea accesible para el mayor niimero de desarrolladores y trabajos deriva
dos posible, y no teimporta que el codigo se pueda utilizar en software propietario, elijelaMIT / X
Window System license (llamada asi debido a que eslalicenciabagjo lacual el Massachusetts Institute
of Technology lanzé el codigo original del sistema de ventanas X). El mensaje basico de estalicenciaes
"Ereslibre para usar este cddigo como quieras.". Es compatible con la GNU GPL, y es corta, sencilla, y
fécil de entender:

Copyright (c) <afio> <propietarios del copyright>

Perm ssion is hereby granted, free of charge, to any person obtaining

158

http://freshmeat.net/stats/#license
http://www.gnu.org/licenses/license-list.html

Licencias, Copyrightsy Patentes

a copy of this software and associ ated docunentation files (the
"Software"), to deal in the Software w thout restriction, including
without limtation the rights to use, copy, nodify, nerge, publish,

di stribute, sublicense, and/or sell copies of the Software, and to
permit persons to whomthe Software is furnished to do so, subject to
the foll owi ng conditions:

The above copyright notice and this perm ssion notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE |S PROVIDED "AS I'S', W THOUT WARRANTY OF ANY KI ND,
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF
MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE AND

NONI NFRI NGEMENT. | N NO EVENT SHALL THE AUTHORS OR COPYRI GHT HOLDERS BE
LI ABLE FOR ANY CLAIM DANMAGES OR OTHER LI ABILITY, WHETHER I N AN ACTI ON
OF CONTRACT, TORT OR OTHERW SE, ARI SI NG FROM OUT OF OR | N CONNECTI ON
W TH THE SOFTWARE OR THE USE OR OTHER DEALI NGS I N THE SOFTWARE.

(Tomada de http://www.opensource.org/licenses/mit-license.php.)

La GNU General Public License

Si prefieres que tu cédigo no sea utilizado en software propietario, o0 si, al menos, no te importasi puede
0 No usarse en éstos, elije la GNU Genera Public License

(http:/Iwww fsf.org/licensing/licenses/gpl.html). La GPL es probablemente la licencia de software libre
mas utilizada en el mundo a dia de hoy; este capacidad de reconocerse en ella es una de las mayores
ventgjasdelaGPL.

Cuando programamos una biblioteca cuyo fin es ser usada en otros programas, considera detenidamente
si lasrestricciones que la GPL impone concuerdan con los objetivos de tu proyecto. En algunos casos —
por gemplo, si intentas desbancar una biblioteca propietaria competidora que realizala misma funcién
— tiene un sentido mas estratégico el licenciar tu cédigo de modo que pueda ser utilizada en software
propietario, incluso aunque no lo desearas. La Free Software Foundation prepar6 una alternativaala
GPL paraesas circunstancias: la GNU Library GPL, después renombrada como GNU Lesser GPL (la
mayoria de la gente utiliza directamente el acronimo LGPL, de todos modos). La L GPL tiene restriccio-
nes menos estrictas que la GPL, y puede mezclarse mas facilmente con cadigo no libre. Sin embargo,
también es mas complejay toma mas tiempo entenderla, por lo que si no vas a utilizar laGPL, te reco-
miendo utilizar unalicenciatipo MIT/X.

¢Es la GPL libre o no?

Una consecuencia de elegir la GPL es la posibilidad —pequefia, pero no infinitesimal— de encontrarte a
ti 0 atu proyecto envueltos en una disputa acerca de si la GPL es o no realmente libre, dado que exige
ciertas restricciones en qué puedes hacer con el cadigo—a saber, larestriccién de que el cédigo no pue-
de ser redistribuido bajo ninguna otralicencia. Para algunos, la existencia de esta restriccion significa
gue laGPL es"menos libre" que otras licencias méas permisivas como lalicenciaMIT/X. El fin de este
argumento generalmente es, por supuesto, que dado que "més libre" debe ser mejor que "menos libre"
(después de todo, ¢quién no esta afavor de lalibertad?), esas licencias son mejores que la GPL.

Este debate es otra guerra santa (vease “ Evitando las Guerras Santas’ en Capitulo 6, Communications)
muy popular. Evita participar en ella, al menos en foros del proyecto. No intentes probar que la GPL es
menos libre, tan libre o mas libre que otras licencias. En vez de eso, explicalas razones especificas por
las que elegiste la GPL paratu proyecto. Si fue el conocimiento de lalicencia, di eso. Si también fue por
las restricciones de licencia libre para trabaj os derivados, dilo también, pero niégate a discutir acercade
si esto hace a c6digo mas o menos libre. Lalibertad es un tema complejo, y no tiene mucho sentido ha-
blar de ellasi laterminologia que va a ser utilizada como alimento para un caballo de acecho.

Dado que esto es un libro y no un hilo de una lista de correo, sin embargo, admitiré que nunca entendi el

159

http://www.opensource.org/licenses/mit-license.php
http://www.fsf.org/licensing/licenses/gpl.html

Licencias, Copyrightsy Patentes

argumento "la GPL no eslibre". La Unicarestriccién que la GPL impone previene ala gente de imponer
mayor es restricciones. Decir que eso significa tener menos libertad siempre me ha parecido como decir
que laabolicion de la esclavitud reduce lalibertad, porque previene que cierta gente posea esclavos.

(Oh, y si te vesinmerso en un debate sobre ello, no aumentes la apuesta haciendo anal ogias inflamato-
rias.)

¢, Qué tal la licencia BSD?

Unagran cantidad de software libre se distribuye bagjo la BSD license (0 algunas veces unalicencia esti-
lo BSD). Lalicenciaoriginal BSD fue usada por la Berkeley Software Distribution, en laque la Univer-
sidad de Californialanzé partes importantes de una implementacion de Unix. Estalicencia (el texto
exacto puede verse en la seccion 2.2.2 de http://www.xfree86.org/3.3.6/COPY RIGHT 2.html#6) erasi-
milar en esenciaalalicenciaMIT/X, excepto por unacladsula

Todo material publicitado que mencione caracteristicas o use este software debe mos-
trar la siguiente advertencia: "Este producto contiene software desarrollado por la
Universidad de California, Lawrence Berkeley Laboratory.

La presencia de esta cladsula no sélo hace ala BSD incompatible con la GPL, sino que también sienta
un peligroso precedente: mientras otras organizaciones pongan cladsulas publicitarias similares en su
software libre —sustituyendo su propio nombre en lugar de "la Universidad de California, Lawrence
Berkeley Laboratory"— los redistribuidores del software se enfrentan a una creciente carga en cuanto a
lo que se ven requeridos a mostrar. Afortunadamente, muchos de |os proyectos que usaron esta licencia
se percataron del problema, y simplemente eliminaron esa cladsula. En 1999, incluso la Universidad de
Cdlifornialo hizo.

El resultado eslalicencia BSD revisada, que es ssmplemente lalicenciaBSD original sin la clalsula pu-
blicitaria. Sin embargo, la historia hace ala expresion "licenciaBSD" un poco ambigua: ¢se refiereala

original, o alaversion revisada? Por esto es por |o que prefiero lalicenciaMIT/X, que es equivalente en
esencia, y no sufre ninguna ambigiiedad. Sin embargo, quiza hay unarazon para preferir laBSD revisa-

dafrentealalicenciaMIT/X, que es que laBSD incluye esta clalisula

Ni el nombre de la <ORGANIZACION> ni los nombres de sus contribuyentes debe
usarse para apoyar o promocionar productos derivados de este software sin permiso
previo por escrito explicito.

No queda claro que sin esa clalisula, un receptor del software podriatener el derecho a usar e nombre
del autor, pero esa clalisula borra cualquier tipo de duda. Para organi zaciones preocupadas por €l control
de marcas registradas, por lo tanto, lalicencia BSD puede ser preferible alaMIT/X. En general, sin em-
bargo, unalicencia de copyright liberal no implica que los receptores tengan ninguin derecho a usar sus
marcas — las leyes de copyright y las leyes de marcas son dos cosas diferentes.

Si quieres utilizar lalicencia BSD revisada, una plantilla esté disponible en
http://www.opensource.org/licenses/bsd-license.php.

Asignacion y propiedad del Copyright

Hay tres maneras de gestionar |a propiedad del copyrighy en el software libre contribuido por mucha
gente. Laprimeraesignorar totalmente el asunto del copyright (no recomiendo esta). La segunda es re-
coger un acuerdo del contribuyente a la licencia(CLA, de las iniciales de contributor license agreement)
de cada persona que trabaja en €l proyecto, garantizando explicitamente a proyecto el derecho de usar €l
codigo de esa persona. Generalmente esto es suficiente parala mayoria de proyectos, y algo positivo es-
taen que en algunas jurisdicciones, los CLAS pueden ser enviados por correo electronico. El tercer mo-
do es obtener asignaciones de propiedad del copyright de parte de los contribuyentes, de modo que el

160

http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6
http://www.opensource.org/licenses/bsd-license.php

Licencias, Copyrightsy Patentes

proyecto (por ejemplo, algunaentidad legal, generalmente sin &nimo de lucro) es la propietaria de todo
el copyright. Esta es |a manera més hermética legalmente, pero es también la mas onerosa para los con-
tribuyentes, solo a gunos proyectos insisten en ella.

Nétese que incluso bajo la propiedad centralizada del copyright, el codigo permanece libre, porque las
licencias de software libre no dan a propietario del copyrifht el derecho a apropiarse retroactivamente
detodas las copias del cédigo. Por lo tanto, incluso si € proyecto, como entidad juridica, de repente de-
cide cambiar y empezar a distribuir € codigo bajo unalicenciarestrictiva, eso no causaria un problemaa
la comunidad. Los otros desarrolladores podrian simplemente comenzar un fork basado en la dltima co-
pialibre del codigo, y continuar como si nada hubiera pasado. Debido a que saben que pueden hacer

eso, muchos contribuyentes cooperan cuando se les pide firmar un CLA o asignar el copyright.

No hacer nada

Algunos proyectos nunca recogen CLAS 0 asignaciones de copyright de sus contribuyentes. En lugar de
es0, aceptan €l codigo siempre que quede razonablemente claro que el contribuyente pretendia que fuera
incluido en el proyecto.

Bajo circunstancias normales, eso es suficiente. Pero de vez en cuando alguien puede decidir demandar
por infringimiento del copyright, alegando que €ellos son los verdaderos propietarios del codigo en cues-
tién y que nunca accedieron a que fuera distribuido por el proyecto bajo unalicencialibre. Por gjemplo,
el Grupo SCO hizo algo como esto con €l proyecto Linux, vease
http://en.wikipedia.org/wiki/SCO-Linux_controversies para mas detalles. Cuando esto ocurre, €l proyec-
to no tiene documentacion que demuestre que €l contribuyente formalmente ha garantizado e derecho a
utilizar €l cédigo, que puede hacer la defensalegal mas complicada.

Contributor License Agreements

CLASs probably offer the best tradeoff between safety and convenience. A CLA istypically an electronic
form that a developer fills out and sends in to the project. In many jurisdictions, email submission is
enough. A secure digital signature may or may not be required; consult alawyer to find out what method
would be best for your project.

Most projects use two dlightly different CLAS, one for individuals, and one for corporate contributors.
But in both types, the core language is the same: the contributor grants the project “...perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare deri-
vative works of, publicly display, publicly perform, sublicense, and distribute [the] Contributions and
such derivative works." Again, you should have alawyer approve any CLA, but if you get all those ad-
jectivesinto it, you're probably fine.

When you request CLAs from contributors, make sure to emphasize that you are not asking for actual
copyright assignment. In fact, many CLAs start out by reminding the reader of this:

Thisis a license agreement only; it does not transfer copyright ownership and does
not change your rights to use your own Contributions for any other purpose.

Here are some examples:

* Individua contributor CLAS:
« http://apache.org/licensed/icla.txt
« http://code.google.com/legal/individual-cla-v1.0.html

 Corporate contributor CLAS:

161

http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://apache.org/licenses/icla.txt
http://code.google.com/legal/individual-cla-v1.0.html

Licencias, Copyrightsy Patentes

« http://apache.org/licenses/cla-corporate.txt

« http://code.google.com/legal/corporate-cla-v1.0.html

Transfer of Copyright

Copyright transfer means that the contributor assigns to the project copyright ownership on her contribu-
tions. Ideally, thisis done on paper and either faxed or snail-mailed to the project.

Some projectsinsist on full assignment because having asingle legal entity own the copyright on the en-
tire code base can be useful if the terms of the open source license ever need to be enforced in court. If
no single entity has theright to do it, all the contributors might have to cooperate, but some might not
have time or even be reachable when the issue arises.

Different organizations apply different amounts of rigor to the task of collecting assignments. Some
simply get an informal statement from a contributor on a public list mailing list—something to the effect
of "I hereby assign copyright in this code to the project, to be licensed under the same terms as the rest
of the code." At least one lawyer I've talked to saysthat's really enough, presumably because it happens
in a context where copyright assignment is normal and expected anyway, and because it represents a bo-
na fide effort on the project's part to ascertain the devel oper's true intentions. On the other hand, the Free
Software Foundation goes to the opposite extreme: they require contributors to physically sign and mail
in a piece of paper containing aformal statement of copyright assignment, sometimes for just one contri-
bution, sometimes for current and future contributions. If the devel oper is employed, the FSF asks that
the employer sign it too.

The FSF's paranoiais understandable. If someone violates the terms of the GPL by incorporating some
of their software into a proprietary program, the FSF will need to fight that in court, and they want their
copyrights to be as airtight as possible when that happens. Since the FSF is copyright holder for alot of
popular software, they view this asareal possibility. Whether your organization needs to be similarly
scrupulous is something only you can decide, in consultation with lawyers. In general, unless there's so-
me specific reason why your project needs full copyright assignment, just go with CLAS; they're easier
for everyone.

Dual Licensing Schemes

Some projects try to fund themselves by using adual licensing scheme, in which proprietary derivative
works may pay the copyright holder for the right to use the code, but the code still remains free for use
by open source projects. This tends to work better with code libraries than with standal one applications,
naturally. The exact terms differ from case to case. Often the license for the free side isthe GNU GPL,
since it aready bars others from incorporating the covered code into their proprietary product without
permission from the copyright holder, but sometimesit is a custom license that has the same effect. An
example of the former isthe MySQL license, described at
http://ww.mysgl.com/company/legal/licensing/; an example of the latter is Sleepycat Software's licen-
sing strategy, described at http://www.sl eepycat.com/download/licensinginfo.shtml.

Y ou might be wondering: how can the copyright holder offer proprietary licensing for a mandatory fee if
the terms of the GNU GPL stipulate that the code must be available under less restrictive terms? The
answer isthat the GPL's terms are something the copyright holder imposes on everyone else; the owner
istherefore free to decide not to apply those termsto itself. A good way to think of it isto imagine that
the copyright owner has an infinite number of copies of the software stored in a bucket. Each timeit ta-
kes one out of the bucket to send into the world, it can decide what license to put on it: GPL, proprietary,
or something else. Itsright to do thisis not tied to the GPL or any other open source license; it is simply
apower granted by copyright law.

The attractiveness of dual licensing isthat, at its best, it provides away for afree software project to get

162

http://apache.org/licenses/cla-corporate.txt
http://code.google.com/legal/corporate-cla-v1.0.html
http://www.mysql.com/company/legal/licensing/
http://www.sleepycat.com/download/licensinginfo.shtml

Licencias, Copyrightsy Patentes

areliable income stream. Unfortunately, it can aso interfere with the normal dynamics of open source
projects. The problem is that any volunteer who makes a code contribution is now contributing to two
distinct entities: the free version of the code and the proprietary version. While the contributor will be
comfortable contributing to the free version, since that's the norm in open source projects, she may feel
funny about contributing to someone el se's semi-proprietary revenue stream. The awkwardness is exa-
cerbated by the fact that in dual licensing, the copyright owner really needs to gather formal, signed
copyright assignments from all contributors, in order to protect itself from a disgruntled contributor later
claiming a percentage of royalties from the proprietary stream. The process of collecting these assign-
ment papers means that contributors are starkly confronted with the fact that they are doing work that
makes money for someone else.

Not all volunteers will be bothered by this; after all, their contributions go into the open source edition
aswell, and that may be where their main interest lies. Nevertheless, dual licensing is an instance of the
copyright holder assigning itself a special right that othersin the project do not have, and is thus bound
to raise tensions at some point, at |east with some volunteers.

What seems to happen in practice is that companies based on dual licensed software do not have truly
egalitarian development communities. They get small-scale bug fixes and cleanup patches from external
sources, but end up doing most of the hard work with internal resources. For example, Zack Urlocker,
vice president of marketing at MySQL, told me that the company generally ends up hiring the most acti-
ve volunteers anyway. Thus, athough the product itself is open source, licensed under the GPL, its de-
velopment is more or less controlled by the company, abeit with the (extremely unlikely) possibility
that someone truly dissatisfied with the company's handling of the software could fork the project. To
what degree this threat preémptively shapes the company's policies| don't know, but at any rate,
MySQL does not seem to be having acceptance problems either in the open source world or beyond.

Patents

Software patents are the lightning rod issue of the moment in free software, because they pose the only
real threat against which the free software community cannot defend itself. Copyright and trademark
problems can always be gotten around. If part of your code looks like it may infringe on someone else's
copyright, you can just rewrite that part. If it turns out someone has a trademark on your project's name,
at the very worst you can just rename the project. Although changing names would be a temporary in-
convenience, it wouldn't matter in the long run, since the code itself would still do what it always did.

But a patent is a blanket injunction against implementing a certain idea. It doesn't matter who writes the
code, nor even what programming language is used. Once someone has accused a free software project
of infringing a patent, the project must either stop implementing that particular feature, or face an expen-
sive and time-consuming lawsuit. Since the instigators of such lawsuits are usually corporations with
deep pockets—that's who has the resources and inclination to acquire patentsin the first place—most
free software projects cannot afford the latter possibility, and must capitulate immediately even if they
think it highly likely that the patent would be unenforceable in court. To avoid getting into such a situa-
tion in thefirst place, free software projects are starting to code defensively, avoiding patented algorit-
hms in advance even when they are the best or only available solution to a programming problem.1

Surveys and anecdotal evidence show that not only the vast majority of open source programmers, but a
majority of all programmers, think that software patents should be abolished entirel y.2 Open source pro-
grammers tend to feel particularly strongly about it, and may refuse to work on projects that are too clo-
sely associated with the collection or enforcement of software patents. If your organization collects soft-
ware patents, then make it clear, in apublic and irrevocable way, that the patents would never be enfor-

ced on open source projects, and that they are only to be used as a defense in case some other party ini-

tiates an infringement suit against your organization. Thisis not only the right thing to do, it's also good

sun M icrosystems and IBM have also made at |east a gesture at the problem from the other direction, by freeing large numbers of
software patents—1600 and 500 respectively—for use by the open source community. | am not alawyer and thus can't evaluate
thereal utility of these grants, but even if they are all important patents, and the terms of the grants make them truly free for use by
any open source project, it would still be only adrop in the bucket.

2see http://Ipf .ai.mit.edw/Whatsnew/survey.html for one such survey.

163

http://lpf.ai.mit.edu/Whatsnew/survey.html

Licencias, Copyrightsy Patentes

open source public rel ations.

Unfortunately, collecting patents for defensive purposes is arational action. The current patent system,
at least in the United States, is by its nature an armsrace: if your competitors have acquired alot of pa-
tents, then your best defense isto acquire alot of patents yourself, so that if you're ever hit with a patent
infringement suit you can respond with a similar threat—then the two parties usually sit down and work
out across-licensing deal so that neither of them hasto pay anything, except to their intellectual property
lawyers of course.

The harm done to free software by software patents is more insidious than just direct threats to code de-
velopment, however. Software patents encourage an atmosphere of secrecy among firmware designers,
who justifiably worry that by publishing details of their interfaces they will be giving technical help to
competitors seeking to slap them with patent infringement suits. Thisis not just atheoretical danger; it
has apparently been happening for along time in the video card industry, for example. Many video card
manufacturers are reluctant to release the detailed programming specifications needed to produce high-
performance open source drivers for their cards, thus making it impossible for free operating systemsto
support those cards to their full potential. Why would the manufacturers do this? It doesn't make sense
for them to work against software support; after al, compatibility with more operating systems can only
mean more card sales. But it turns out that, behind the design room door, these shops are all violating
one another's patents, sometimes knowingly and sometimes accidentally. The patents are so unpredicta-
ble and so potentially broad that no card manufacturer can ever be certain it's safe, even after doing a pa-
tent search. Thus, manufacturers dare not publish their full interface specifications, since that would ma-
ke it much easier for competitorsto figure out whether any patents are being infringed. (Of course, the
nature of this situation is such that you will not find a written admission from aprimary sourcethat it is
going on; | learned it through a personal communication.)

Some free software licenses have special clauses to combat, or at |east discourage, software patents. The
GNU GPL, for example, contains this language:

7. If, as a consequence of a court judgnment or allegation of patent
i nfringement or for any other reason (not linited to patent issues),
conditions are inmposed on you (whether by court order, agreenment or
ot herwi se) that contradict the conditions of this License, they do not
excuse you fromthe conditions of this License. |[|f you cannot
distribute so as to satisfy sinultaneously your obligations under this
Li cense and any other pertinent obligations, then as a consequence you
may not distribute the Programat all. For exanple, if a patent
license would not pernmit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely fromdistribution of the Program

[...]

It is not the purpose of this section to induce you to infringe any
patents or other property right clains or to contest validity of any
such clainms; this section has the sole purpose of protecting the
integrity of the free software distribution system which is

i mpl enented by public license practices. Many people have made
generous contributions to the wi de range of software distributed

t hrough that systemin reliance on consistent application of that
system it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a |icensee cannot

i npose that choice.

The Apache License, Version 2.0 (http://www.apache.org/licenses/L I CENSE-2.0) also contains anti-
patent requirements. First, it stipulates that anyone distributing code under the license must implicitly in-

3For example, RedHat has pledged that open source projects are safe from its patents, see
http://www.redhat.com/legal/patent_policy.html.

164

http://www.redhat.com/legal/patent_policy.html
http://www.apache.org/licenses/LICENSE-2.0

Licencias, Copyrightsy Patentes

clude aroyalty-free patent license for any patents they might hold that could apply to the code. Second,
and most ingenioudly, it punishes anyone who initiates a patent infringement claim on the covered work,
by automatically terminating their implicit patent license the moment such a claim is made:

3. Grant of Patent License. Subject to the terns and conditions of
this License, each Contributor hereby grants to You a perpetual
wor | dwi de, non-excl usive, no-charge, royalty-free, irrevocable (except
as stated in this section) patent |icense to nmake, have made, use,
offer to sell, sell, inport, and otherw se transfer the Wrk, where
such license applies only to those patent clains |icensable by such
Contributor that are necessarily infringed by their Contribution(s)

al one or by conbination of their Contribution(s) with the Wrk to

whi ch such Contribution(s) was submtted. If You institute patent
litigation against any entity (including a cross-claimor counterclaim
inalawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent

i nfringement, then any patent |icenses granted to You under this

Li cense for that Work shall ternminate as of the date such litigation
is filed.

Although it isuseful, both legally and politically, to build patent defenses into free software licenses this
way, in the end these steps will not be enough to dispel the chilling effect that the threat of patent law-
suits has on free software. Only changes in the substance or interpretation of international patent law
will do that. To learn more about the problem, and how it's being fought, go to
http://www.nosoftwarepatents.com/. The Wikipedia article http://en.wikipedia.org/wiki/Software_patent
also has alot of useful information on software patents. I've also written a blog post summarizing the ar-
guments against software patents, at

http://www.rants.org/2007/05/01/how-to-tel|-that-sof tware-patents-are-a-bad-ided/.

Recursos adicionales

Este capitulo es sélo unaintroduccion alas incidencias del licenciamiento de software libre. A pesar de
gue espero que contenga suficiente informacion parainiciarte en tu propio proyecto de software libre,
cualquier investigacion seria acerca de | as licencias puede facilmente aumentar la que este libro ofrece.
Aqui hay unalista de recursos acerca de licencias de software libre:

 Understanding Open Source and Free Software Licensing por Andrew M. St. Laurent. Publicado por
O'Reilly Media, primera edicion Agosto 2004, |SBN: 0-596-00581-4.

Se trata de un completo libro sobre licenciamiento de software libre en toda su complgidad, incluyen-
do muchos temas omitidos en este capitulo. Vease http://www.oreilly.com/catal og/osfreesoft/ para
mas detalle.

» Make Your Open Source Software GPL-Compatible. Or Else. por David A. Wheeler, en
http://www.dwheel er.com/essays/gpl-compatible.html.

Se trata de un completo articulo bien escrito sobre por qué es importante usar una licencia compatible
con laGPL incluso cuando no usamos la propia GPL. El articulo también trata otras muchas pregun-
tas acerca de licencias de software, y tiene una gran cantidad de excelentes enlaces.

* http://creativecommons.org/

Creative Commons es una organizacion que promociona una serie de copyrights més flexiblesy libe-
rales que las que la practicamas tradicional del copyright propone. Ofrecen licencias no sblo para
software, sino también paratextos, arte y misica, todas accesibles mediante una seleccion fécil de
usar. Algunas de estas licencias son copyleft, otras no son no-copyleft pero son libres, y otras son sim-
plemente copyright con algunas restricciones relgjadas. La pagina web de Creative Commons propor-

165

http://www.nosoftwarepatents.com/
http://en.wikipedia.org/wiki/Software_patent
http://www.rants.org/2007/05/01/how-to-tell-that-software-patents-are-a-bad-idea/
http://www.oreilly.com/catalog/osfreesoft/
http://www.dwheeler.com/essays/gpl-compatible.html
http://creativecommons.org/

Licencias, Copyrightsy Patentes

ciona claras instrucciones de sobre qué va. Si tuvieraque elegir un sitio para demostrar lasimplicacio-
nes filosoficas més amplias del movimiento del software libre, seria éste.

166

Apéndice A. Sistemas de Control de
Versiones Libres

Estos son todos |os sistemas de control de versiones de codigo abierto de los que soy consciente a me-
diados de 2007. El Unico que uso frecuentemente es Subversion. Poseo poca experiencia o ninguna con
lamayoria de estos sistemas, excepto con Subversiony CV'S; lainformacién de aqui ha sido tomada de
sus sitios wehb. Ver también http://en.wikipedia.org/wiki/List_of revision_control_software.

CVS — http://www.nongnu.org/cvs/

CV S ha estado durante mucho tiempo, y muchos desarrolladores estan ya familiarizados con él. En su
diafue revolucionario: fue el primer sistema de control de versiones de cédigo abierto con acceso are-
des de &rea amplia para desarrolladores (que yo sepa), y €l primero que ofrecié ""checkouts'" anénimos
de sdlo lectura, 1os que dieron alos desarrolladores una manera fécil de implicarse en los proyectos.
CV S solo versiona ficheros, no directorios; ofrece ramificaciones, etiquetado, y un buen rendimiento en
laparte del cliente, pero no maneja muy bien ficheros grandes ni ficheros binarios. Tampoco soporta
cambios atomicos. [Descargo: he estado activo en el desarrollo de CVSdurante cinco afios, antes de
ayudar a empezar €l proyecto Subversion para reemplazarlo.]

Subversion — http://subversion.tigris.org/

Subversion fue escrito ante todo para reemplazar a CV S—es decir, para acceder a control de versiones
aproximadamente de la misma manera que CVS o hace, pero sin los problemas o falta de utilidades que
mas frecuentemente mol estan alos usuarios de CV'S. Uno de | os objetivos de Subversion es encontrar la
transicién a Subversion relativamente suave parala gente que ya esta acostumbradaa CV'S. Aqui no hay
sitio para entrar en detalles sobre las caracteristicas de Subversion; acceda a su sitio web para més infor-
macion. [Descargo: Estoy implicado en el desarrollo de Subversion, y es el Unico de estos sistemas que
uso habitualmente.]

SVK — http://svk.elixus.org/

Aunque se ha construido sobre Subversion, probablemente SVK se parece mas a algunos anteriores sis-
temas descentralizados més que Subversion. SVK soporta desarrollo distribuido, cambios locales, mez-
clasofisticada de cambios, y la habiluidad de ""reflgjar/clonar"" arboles desde sistemas de control de
versiones que no son SVK. Veasu sitio web para més detalles.

Mercurial — http://www.selenic.com/mercurial/

Mercurial es un sistemas de control de versiones distribuido que ofrece, entre otras cosas, "una completa
""indexacion cruzada' de ficherosy conjutos de cambios; unos procotol os de sincronizacion SSH y
HTTP eficientes respecto a uso de CPU y ancho de banda; unafusion arbitraria entre ramas de desarro-
[ladores; unainterfaz web auténoma integrada; [portabilidad a] UNIX, MacOS X, y Windows' y més
(las anterior lista de caracteristicas ha sido parafraseada del sitio web de Mercurial).

GIT — http://git.or.cz/

GIT es un proyecto empezado por Linus Torvalds para manejar €l arbol fuente del ""kernel"" de Linux.
Al principio GIT se enfoco bastante en las necesidades del desarrollo del ""kernel"", pero se ha expandi-
do mas all& que eso y ahora es usado por otros proyectos a parte del ""kernel"" de Linux. Su paginaweb
dice que esta"... diseflado para manejar proyectos muy grandes eficaz y vel ozmente; se usa sobre todo
en varios proyectos de codigo abierto, entre los cuales el més notable es el ""kernel"" de Linux. GIT cae

167

http://en.wikipedia.org/wiki/List_of_revision_control_software
http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://svk.elixus.org/
http://www.selenic.com/mercurial/
http://git.or.cz/

Sistemas de Control de Versiones Libres

en la categoria de herramientas de administracion de cadigo abierto distribuido, similar al, por ejemplo,
GNU Arch o Monotone (o bitkeeper en e mundo comercial). Cada directorio de trabajo de GIT esun
repositorio completo con plenas capaci dades de gestion de revisiones, sin depender del acceso alared o
de un servidor central.”

Bazaar — http://bazaar.canonical.com/

Bazaar estatodavia en desarrollo. Serd unaimplementacion del protocolo GNU Arch, mantendrd com-
patibilidad con el procotolo GNU Arch amedida que evolucione, y trabajara con el proceso de la comu-
nidad GNU Arch para cualquier cambio de protocolo que fuera requerido afavor del agrado del usuario.

Bazaar-NG — http://bazaar-ng.org/

Bazaar-NG (0 bzr) esta actualmente siendo desarrollado por Canonical (http://canonical.com/). Ofrece la
eleccion entre € trabajo centralizado y € descentralizado dentro de un mismo proyecto. Por g emplo,
cuando en la oficina uno puede trabajar en unarama central compartida; para cambios experimentales o
trabajo desconectado, se puede crear unaramaen el portatil y mezclarla mas tarde.

Darcs — http://abridgegame.org/darcs/

"El Sistema Avanzado de Control de Revisién de David (David's Advanced Revision Control System)
es alin otro reemplazo de CVS. Esti escrito en Haskell, y se hausado en Linux, MacOX, FreeBSD,
Open BSD y Microsoft Windows. Darcs incluye un archivo de comandos cgi, €l cual puede ser usado
para ver |os contenidos de su repositorio.

Arch — http://www.gnu.org/software/gnu-arch/

GNU Arch soporta tanto desarrollo distribuido como centralizado. L os desarrolladores suben sus cam-
bios aun "archivo", que puede ser local, y los cambios pueden ser metidos y quitados de otros archivos
tal y como los administradores de esos archivos vean conveniente. Como toda metodologiaimplica,
Arch posee més soporte de mezclado que CV'S. Arch tambien permite a uno crear facilmente ramas de
archivos alas cuales uno no tiene acceso para subir cambios. Esto es solo un breve sumario; para mas
detalles vea las paginas web de Arch.

monotone — http://www.venge.net/monotone/

"monotone es un sistemade control de version distribuido libre. Ofrece un amacén simple de version
transacional de un solo fichero, con una operacion completa de desconexion y un protocolo de sincroni-
zacion entre iguales " peer-to-peer"" eficiente. Comprende el mezclado susceptible a historial, ramas li-
geras, revision de codigo integrado y pruebas de terceros. Usa nombrado criptogréfico de version y cer-
tificados de cliente RSA. Posee un buen soporte de internacionalizacion, no tiene dependencias externas,
se gjecutaen Linux, Solaris, OSX, y windows, y estalicenciado bajo laGNU GPL."

Codeville — http://codeville.org/

" ¢Por qué otro sistema de control de version? Todos los sistemas de control de version requieren que se
mantenga una gestion cuidadosa de las relaciones entre ramas con tal de no tener que mezclar repetida-
mente |os mismos conflcitos. Codeville es mucho méas anérquico. Permite actualizar o subir cambios a
cualquier repositorio en cualquier momento sin innecesarias re-mezclas.”

"Codeville funciona creando un identificador para cada cambio que sea hecho, y recordando lalistade
todos |os cambios que se han aplicado a cadafichero y el Gltimo cambio que modificd cadalineade ca-
dafichero. Cuando hay un conflicto, lo comprueba paraver si una de las dos partes se ha aplicado yaa
laotra, y s es asi hace ala otra automaticamente ganadora. Cuando hay un conflicto de version real que

168

http://bazaar.canonical.com/
http://bazaar-ng.org/
http://canonical.com/
http://abridgegame.org/darcs/
http://www.gnu.org/software/gnu-arch/
http://www.venge.net/monotone/
http://codeville.org/

Sistemas de Control de Versiones Libres

no se puede mezclar autométicamente, Codeville se comporta de una manera casi exactaque CVS."

Vesta — http://lwww.vestasys.org/

"V esta es un sistema portétil SCM [Administrador de Configuracion de Software o Software Configura-
tion Management] orientado a apoyar €l desarrollo de sistemas de software de casi cualquier tamario,
desde bastante pequefios (menos de 10.000 lineas de cadigo fuente) hasta muy grandes (10.000.000 li-
neas de codigo fuente).”

"V esta es un sistema maduro. Es el resultado de més de 10 afios de investigacion y desarrollo en el Cen-
tro de Desarrollo desistemas Compag/Digital, y ha estado en uso productivo por el grupo de microproce-
sador Alpha de Compag durante més de dos afios y medio. El grupo Alphatuvo més de 150 desarrolla-
dores activos en dos sitios a miles de millas de distancia el uno del otro, en la costaestey en la oeste de
los Estados Unidos de América. El grupo uso Vesta para administrar ""builds"™ con alo sumo 130 MB
de datos fuente, cada uno produciendo 1,5 GB de datos derivados. Las ""builds"" hechas en |la parte oes-
te de media en un dia producieron 10-15 GB de datos derivados, todos administrados por Vesta. Aunque
Vesta se disefid teniendo en mente el desarrollo de software, €l grupo Alpha demostré laflexibilidad del
sistema usandolo para el desarrollo de hardware, comprobando los ficheros en lenguaj e de descripcion
de su hardware dentro de la facilidad de control de codigo fuente de Vestay contruyendo simuladoresy
otros objetos derivados con € ""constructor"" de Vesta. Los miembros del ex-grupo Alpha, ahora parte
de Intel, hoy continuan usado Vestaen el proyecto de un nuevo microprocesador.”

Aegis — http://aegis.sourceforge.net/

"Aegis es un sistema de administracién de configuracion de software basado en transacciones. Propor-
ciona un marco dentro del que un equipo de desarrolladores puede trabajar en muchos cambios de un
programa independientemente, y Aegis coordina laintegracion de esos cambios dentro del cédigo fuente
maestro del programa, con el menor transtorno posible.”

CVSNT — http://cvsnt.org/

"CVSNT es un sistema de control de version multiplataforma avanzado. Compatible con el protocolo es-
tandar CV S de industria ahora soporta muchas més caracteristicas... CVSNT es Cddigo Abierto, softwa-
relibre licenciado bajo la Licencia Piblica General GNU." Su lista de caracteristicas incluye autentifica-
cién viatodos los protocol os estandar de CV'S, més SSPI y Directorio Activo especificos de Windows;
soporte de transporte seguro, via sserver o SSPI encriptada; plataf ormas cruzadas (corre en entornos
Windows o Unix); laversién NT esta totalmente integrada con el sistemas Win32; €l proceso Merge-
Point significa no tener que mezclar etiquetas més; bajo desarrollo activo.

META-CVS — http://lusers.footprints.net/~kaz/mcvs.html

"Meta-CV S es un sistema de control de versién construido alrededor de CVS. Aungue conserva lama-
yoriade las caracteristicas de CVS, incluyendo todo el soporte de red, tiene més capacidad que CVS, y
esmésfécil de usar." Las caracteristicas listadas en el sitio web de META-CV Sincluyen: versionado de
estructura de directorio, manejo de tipos de ficheros mejorado, mezclado y ramificado mas simpley més
fécil de usar, soporte para enlaces simbdlicos, listas de propiedad adjuntadas a los datos versionados, im-
portacién mejorada de datos de terceros, y un facil actualizacion desde las existenciasen CVS.

OpenCM — http://www.opencm.org/

"OpenCM esta disefiado como un reemplazo seguro y de altaintegridad de CVS. Se puede encontrar una
lista de |as caracteristicas clave en la pagina de caracteristicas. Aun cuando no estan 'rico en caracteristi-
cas como CV'S, soporta algunas cosas Utiles de las que carece CV S. En pocas palabras, OpenCM pro-
porciona soporte de primera clase para renombrado y configuracién, autentificacion criptograficay con-
trol de acceso, y ramas de primera clase."

169

http://www.vestasys.org/
http://aegis.sourceforge.net/
http://cvsnt.org/
http://users.footprints.net/~kaz/mcvs.html
http://www.opencm.org/

Sistemas de Control de Versiones Libres

Stellation — http://www.eclipse.org/stellation/

"Stellation es un sistema avanzado y extensible de administracidn de configuracion de software, origi-
nalmente desarrollado por IBM Research. Mientras que Stellation proporciona todas las funciones estan-
dar disponibles en cualquier sistema SCM, se distingue por un nimero de caracteristicas avanzadas, ta-
les como administracion de cambios orientada a tarea, versionado consistente de proyectosy ramifica-
cion ligera, destinado parafacilitar €l desarrollo de sistemas software por grupos grandes de desarrolla-
dores coordinados libremente."

PRCS — http://prcs.sourceforge.net/

"PRCS, €l Sistema de Control de Revision de Proyecto (Project Revision Control System), es lainterfaz
de un conjunto de herramientas que (como CV S) proporcionan una manera de tratar con conjuntos de fi-
cherosy directorios como una entidad, preservando versiones coherentes del conjunto entero... Su pro-
posito essimilar a de SCCS, RCS, y CV'S, pero (al menos segun sus autores), es mucho més simple que
cualquiera de aquellos sistemas.”

ArX — http://www.nongnu.org/arx/

ArX esun sistema de control de version distribuido que ofrece caracteristicas de ramificacion y mezcla,
verificarion criptogréfica de integridad de datos, y la capacidad de publicar archivos facilmente en cual-
quier servidor HTTP.

SourceJammer — http://sourcejammer.org/

"SourceJammer es un sistema de versionado y control de codigo fuente escrito en Java. Consiste en un
componente en la parte del servidor que mantiene el historial delaversiony de losficheros, y mangja
subidas, descargas, etc, y otros comandos; y en un componente en la parte del cliente que hace peticio-
nes a servidor y administraficheros en el sistema de ficheros en la parte del cliente.”

http://www.zedshaw.com/projects/fastcst/ind
FastCST — ex.html

"Un sistema 'moderno’ que usa conjuntos de cambios sobre revisiones de ficheros, y operacion distribui-
da mas que control centralizado. Siemprey cuando se posea una cuenta de correo electrénico se puede
usar FastCST. Para distribuciones més grandes solo se necesita un servidor FTP y/o un servidor HTTP p
usar e comando incorporado 'serve' para servir directamente las cosas. Todos los conjutos de cambios
son Unicos universalmente y tienen toneladas de meta-datos, por 10 que se puede rechazar cualquier cosa
gue no se [quiera] antes de intentarlo. La mezcla es hecha comparando un conjunto de cambios mezcla-
do con los contenidos del directorio actual, méas que intentar mezclarlo con otro conjunto de cambios.”

Superversion — http://www.superversion.org/

"Superversion es un sistema de control de versién distribuido multi-usuario basado en conjuntos de cam-
bios. Apuntaa ser una aternativa de cédigo abierto con peso en laindustria frente a soluciones comer-
ciaes, e cual esigual defacil de usar (o inclusive masfacil) y con una potencia similar. De hecho, la
utilizacion intuitivay eficiente ha sido una de las méximas prioridades en el desarrollo de Superversion
desde los comienzos."

170

http://www.eclipse.org/stellation/
http://prcs.sourceforge.net/
http://www.nongnu.org/arx/
http://sourcejammer.org/
http://www.zedshaw.com/projects/fastcst/index.html
http://www.zedshaw.com/projects/fastcst/index.html
http://www.superversion.org/

Apéndice B. Gestor de fallos libres

Daigual que gestor de fallos usa un proyecto, a algunos desarrolladores siempre les gusta quejarse de
ellos. Esto esinclusive més cierto para gestores de fallos que para cual quier otra herramienta estéandar de
desarrollo. Creo gque es porgue los gestores de fallos son tan visuales y tan interactivos que es f&cil ima-
ginar las mejoras que uno mismo haria (si solamente tuvieratiempo), y describirlas en voz ata. Toma
las inevitables quejas con excepticismo— muchos de |os gestores que se describen mas tarde son bastan-
te buenos.

A lolargo de estos listados, la palabra ejemplar se usa para referirse a elementos que el gestor gestiona.
Pero recuerda que cada sistema puede tener su propiaterminologia, en lacual €l término correspondien-
te podria ser "artefacto" o "fallo" o cualquier otra cosa.

Bugzilla— http://www.bugzilla.org/

Bugzillaes muy popular, es mantenido activamente, y parece que hace a sus usuarios muy felices. Yo he
estado usando una variante modificada de €l en mi trabajo desde hace cuatro afios, y me gusta. No es al-
tamente personalizable, pero esa puede ser, de una manera curiosa, una de sus caracteristicas: Las insta-
laciones de Bugzilla tienden a parecer |a misma sea donde sea que se encuentren, 1o que significa que
muchos desarrolladores estén ya acostumbrados a su interfaz y se sentirén en un territorio familiar.

GNATS — http://www.gnu.org/software/gnats/

GNU GNATS es uno de los gestores de fallos de codigo abierto mas antiguos, y se usa extensamente. Su
mayor fortaleza reside en la diversidad de interfaces (no solamente puede ser usado a través de un nave-
gador WEB, sino que también através de correo electronico o utilidades de linea de comandos), y € al-
macenamiento de los gjemplares en texto plano. El hecho de que los datos de todos los gjemplares se al-
macenen en ficheros de texto en el disco hace que sea mas facil escribir herramientas a medida para bus-
car y analizar sintacticamente los datos (por ejemplo, para generar informes estadisticos). GNATS tam-
bién puede absorber correos el ectrénicos de muchas maneras, y afiadirlos alos ejemplares apropiados
basados en patrones dentro de las cabeceras del correo electronico, lo que hace que el registro de las
conversaciones del usuario/desarrollador sean muy féciles.

RequestTracker (RT) — http://www.bestpractical.com/rt/

El sitio Web de RT dice que "RT es un sistema de etiquetado de niveles de seguridad que permite aun
grupo de gente manejar tareas, ejemplares, y peticiones enviadas por una comunidad de usuarios de una
manerainteligente y eficiente, y todo eso en resumen. RT posee unainterfaz web bastante pulida, y pa-
rece tener una base bastante ampliamente instalada. Lainterfaz es un poco compleja en términos visua-
les, pero que llega a ser menos molesto a medida que se utiliza. RT tiene unalicencia GNU GPL (por al-
gunarazén, su sitio web no deja esto claro).

Trac — http://trac.edgewall.com/

Trac es un poco mas que un gestor de fallos: realmente es un sistemawiki y gestor de fallos integrado.
Usa el enlace Wiki para conectar gjemplares, ficheros, grupos de cambios de control de version, y sim-
ples péaginas wiki. Es bastante ssmple de configurar, y se integra con Subversion (ver Apéndice A, Siste-
mas de Control de Versiones Libres).

Roundup — http://roundup.sourceforge.net/

Roundup es bastante f&cil de instalar (solo se necesita Python 2.1 o superior), y simple de usar. Tiene in-
terfaces web, para correo electronico y de linea de comandos. Las plantillas de datos de eemplaresy las

171

http://www.bugzilla.org/
http://www.gnu.org/software/gnats/
http://www.bestpractical.com/rt/
http://trac.edgewall.com/
http://roundup.sourceforge.net/

Gestor de falos libres

interfaces web son parametrizables, a igua que alguna de su légica de transicion de estados.

Mantis — http://www.mantisbt.org/

Mantis es un sistema de gestion de fall os basado en web, escrito en PHP, y que usa la base de datos
MySQL como almacenaje. Posee las caracteristicas que se esperarian de él. Persona mente, encuentro la
interfaz web limpia, intuituva, y visualmente fécil.

Scarab — http://scarab.tigris.org/

Scarab esté pensado para ser un gestor de fallos altamente parametizable y con todas | as caracteristicas,
ofreciendo mas o menos € conjunto total de |as caracteristicas ofrecidas por otros gestores de fallos: en-
tradas de datos, consultas, informes, notificaciones a grupos interesados, acumulacion colaborativa de
comentarios, y gestién de dependencias.

Se parametriza a través de péginas web administrativas. Se puede tener multiples "médulos’ (proyectos)
activos en una Unicainstalacion de Scarab. Dentro de un mddulo dado, se puede crear nuevos tipos de
gjemplares (defectos, mejoras, tareas, peticiones de apoyo, etc.), y afadir atributos arbitrarios, para afi-
nar €l gestor alos requisitos especificos de tu proyecto.

A Ultimos de 2004, Scarab se acercaba a su version liberada 1.0.

Sistema de Gestion de Fallos de Debian (Debian Bug
Tracking System
http://www.chiark.greenend.org.uk/~ian/debb
(DBTS)) — ugs/

El Sistema de Gestién de Fallos de Debian (Debian Bug Tracking System) esinusual en el sentido que
todas las entradas y manipul aciones de gjemplares se hace via correo electronico: cada ejemplar obtiene
su propia direccion de correo electrénico dedicada. El DBTS escala bastante bien:
http://bugs.debian.org/ tiene 227.741 ejemplares, por g emplo.

Y aque lainteraccién se hace via clientes de correo normales, un entorno que es familiar y facilmente
accesible paralamayoria de gente, el DBTS es bueno para manejar grandes vol imenes de informes en-
trantes que necesitan una rapida clasificacion y respuesta. Por supuesto, también existen desventajas.

L os desarrolladores deben dedicar €l tiempo necesario a aprender el sistema de comando del correo elec-
trénico, y los usuarios deben escribir sus informes de fallos sin un formulario web que los guie en la
eleccion de lainformacién que hay que escribir. Hay algunas herramientas disponibles para ayudar alos
usuarios a enviar mejor sus informes de fallos, tales como el programa de linea de comandos reportbug
o €l paquete debbugs- el para Emacs. Pero lamayoria de la gente no usara estas herramientas; sélo
escribiran correos el ectronicos a mano, y podran o no seguir las pautas para reportar fallos publicadas
por su proyecto.

El DBTStiene unainterfaz web de sdlo lectura, paraver y consultar gjemplares.

Gestores de Etiquetado de Problema

Estos estéan mas orientados hacia la gestion de etiquetas del escritorio de ayuda que ala gestion de fallos
de software. Probablemente seriamejor con un gestor de fallos habitual, pero estos se han listado por
completitud, y porque posiblemente podria tener proyectos poco comunes para los cuales un sistema de
etiquetado de problemas podria ser més apropiado que un gestor de fallos tradicional.

172

http://www.mantisbt.org/
http://scarab.tigris.org/
http://www.chiark.greenend.org.uk/~ian/debbugs/
http://www.chiark.greenend.org.uk/~ian/debbugs/
http://bugs.debian.org/

Gestor de falos libres

» WebCall — http://myrapid.com/webcall/
» Teacup — http://www .altara.org/teacup.html

(Teacup no parece estar activo bajo desarrollo, pero los ficheros para descargar estan todavia accesi-
bles. Nota que tiene tanto interfaz web como por correo electrénico.)

Bluetail Ticket Tracker
(BTT) — http://btt.sourceforge.net/

El BTT sesituaen agun lugar entre un gestor de etiquetas de problemay un gestor de fallos. Ofrece ca
racteristicas de privacidad que son algo inusuales entre los gestores de fallos de cadigo abierto: los usua-
rios del sistema se clasifican como Plantilla (Staff), Amigo (Friend), Cliente (Customer), 0 Anénimo
(Anonymous), y méas o menos | os datos son accesibles seglin la categoria de uno mismo. Ofrece algo de
integracion con el correo electronico, unainterfaz por linea de comandos, y un mecanismo para conver-
tir correos electrénicos en etiquetas. También posee utilidades para mantener lainformacién no asociada
con una etiqueta especifica, tal como documentacion internao FAQs. BTT is somewhere between a
standard trouble-ticket tracker and a bug tracker. It offers privacy features that are somewhat unusual
among open source bug trackers: users of the system are categorized as Staff, Friend, Customer, or
Anonymous, and more or less datais available depending on one's category. It offers some email inte-
gration, acommand-line interface, and mechanisms for converting emailsinto tickets. It also has featu-
res for maintaining information not associated with any specific ticket, such asinternal documentation
or FAQs.

173

http://myrapid.com/webcall/
http://www.altara.org/teacup.html
http://btt.sourceforge.net/

Apéndice C. Why Should | Care What
Color the Bikeshed Is?

Y ou shouldn't; it doesn't really matter, and you have better things to spend your time on.

Poul-Henning Kamp's famous "bikeshed" post (an excerpt from which appears in Capitulo 6, Communi-
cations) is an eloquent disquisition on what tends to go wrong in group discussions. It is reprinted here
with his permission. The orginal URL is

http://www.freebsd.org/cgi/getmsg.cgi ?fetch=506636+517178+/usr/l ocal iwww/db/text/1999/freebsd-ha
ckers/19991003.freebsd-hackers.

Subj ect: A bike shed (any colour will do) on greener grass...
From Poul - Henni ng Kanp <phk@r eebsd. or g>

Date: Sat, 02 Cct 1999 16: 14: 10 +0200

Message- | D: <18238.938873650@ritter.freebsd. dk>

Sender: phk@r ritter.freebsd. dk

Bcc: Blind Distribution List: ;

M ME- Version: 1.0

[bcc'ed to committers, hackers]
My | ast panphl et was sufficiently well received that | was not

scared away from sendi ng another one, and today | have the tine
and inclination to do so.

I"'ve had a little trouble with deciding on the right distribution
of this kind of stuff, this tine it is bcc'ed to conmtters and
hackers, that is probably the best | can do. [|'mnot subscribed
to hackers nyself but nore on that |ater.

The thing which have triggered me this tine is the "sleep(1l) should
do fractional seconds" thread, which have pestered our lives for
many days now, it's probably already a couple of weeks, | can't
even be bothered to check.

To those of you who have missed this particular thread: Congratul ations.

It was a proposal to nake sleep(l) DIRT if given a non-integer
argunent that set this particular grass-fire off. [|'mnot going
to say anynore about it than that, because it is a rmuch smaller
itemthan one would expect fromthe length of the thread, and it
has al ready received far nore attention than sone of the *probl ens*
we have around here.

The sleep(1l) saga is the nost blatant exanple of a bi ke shed

di scussion we have had ever in FreeBSD. The proposal was well

t hought out, we would gain conpatibility with QpenBSD and Net BSD,
and still be fully conpatible with any code anyone ever wote.

Yet so nmany objections, proposals and changes were raised and

| aunched that one would think the change woul d have pl ugged all
the holes in swiss cheese or changed the taste of Coca Cola or
somet hing simlar serious.

"What is it about this bike shed ?" Sone of you have asked ne.

It's a long story, or rather it's an old story, but it is quite
short actually. C. Northcote Parkinson wote a book in the early

174

http://www.freebsd.org/cgi/getmsg.cgi?fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-hackers/19991003.freebsd-hackers
http://www.freebsd.org/cgi/getmsg.cgi?fetch=506636+517178+/usr/local/www/db/text/1999/freebsd-hackers/19991003.freebsd-hackers

Why Should | Care What Color the Bikeshed
Is?

1960' i es, called "Parkinson's Law', which contains a |ot of insight
into the dynam cs of managenent.

You can find it on Amazon, and maybe al so in your dads book-shelf,
it is well worth its price and the tinme to read it either way,
if you like Dilbert, you'll |ike Parkinson

Sonebody recently told ne that he had read it and found that only
about 50% of it applied these days. That is pretty darn good
woul d say, many of the nodern managenment books have hit-rates a
ot lower than that, and this one is 35+ years ol d.

In the specific exanple involving the bike shed, the other vital
conponent is an atomc power-plant, | guess that illustrates the
age of the book.

Par ki nson shows how you can go in to the board of directors and
get approval for building a nulti-mllion or even billion dollar
atom c power plant, but if you want to build a bi ke shed you will
be tangl ed up in endl ess discussions.

Par ki nson explains that this is because an atomic plant is so vast,
so expensive and so conplicated that people cannot grasp it, and
rather than try, they fall back on the assunption that sonebody

el se checked all the details before it got this far. Ri chard P
Feynmann gives a couple of interesting, and very much to the point,
exanples relating to Los Alanps in his books.

A bi ke shed on the other hand. Anyone can build one of those over
a weekend, and still have tine to watch the gane on TV. So no
matter how well prepared, no matter how reasonable you are with
your proposal, sonebody will seize the chance to show that he is
doing his job, that he is paying attention, that he is *here*.

In Denmark we call it "setting your fingerprint". It is about
personal pride and prestige, it is about being able to point
somewhere and say "There! *1* did that." It is a strong trait in

politicians, but present in nost people given the chance. Just
t hi nk about footsteps in wet cenent.

I bow nmy head in respect to the original proposer because he stuck
to his guns through this carpet blanking fromthe peanut gallery,
and the change is in our tree today. | would have turned ny back
aRd mglked away after less than a handful of nessages in that

t hr ead.

And that brings ne, as | promised earlier, to why I am not subscribed
to -hackers:

| un-subscribed from -hackers several years ago, because | could
not keep up with the email load. Since then | have dropped off
several other lists as well for the very same reason

And | still get alot of email. A lot of it gets routed to /dev/nul
by filters: People like [omitted] will never make it onto ny
screen, commts to docunents in |anguages | don't understand

i kewise, comits to ports as such. Al these things and nore go
the winter way without nme ever even know ng about it.

But despite these sharp teeth under ny mailbox | still get too much
emai | .

This is where the greener grass cones into the picture:

175

Why Should | Care What Color the Bikeshed
Is?

I wish we could reduce the amount of noise in our lists and | w sh
we could | et people build a bike shed every so often, and | don't
really care what col our they paint it.

The first of these wi shes is about being civil, sensitive and
intelligent in our use of emil.

If | could concisely and precisely define a set of criteria for
when one shoul d and when one should not reply to an email so that
everybody woul d agree and abide by it, | would be a happy man, but
| amtoo wise to even attenpt that.

But let me suggest a few pop-up windows | would like to see
mai | - prograns inpl enent whenever people send or reply to enail
to the lists they want nme to subscribe to

Your enmail is about to be sent to several hundred thousand
people, who will have to spend at | east 10 seconds readi ng
it before they can decide if it is interesting. At |east
two man-weeks will be spent reading your email. Many of
the recipients will have to pay to downl oad your enail

Are you absolutely sure that your email is of sufficient
i nportance to bother all these people ?

[YES] [REVISE] [CANCEL]

Warni ng: You have not read all emails in this thread yet.
Sonebody el se may al ready have said what you are about to
say in your reply. Please read the entire thread before
replying to any email init.

Warning: Your mail program have not even shown you the
entire nessage yet. Logically it follows that you cannot
possi bly have read it all and understood it.

It is not polite to reply to an email until you have
read it all and thought about it.

A cool off tinmer for this thread will prevent you from
replying to any email in this thread for the next one hour
[Cancel]
o e e m e e e e e e e mm e e e e e mmmmmm e e e memmm e e e e e mmmm .-
e e e e e e e e e e e e e e mmmmmmmmmememmmmmmmmmmememmmmmmmeeemmmmmm——————a

You conposed this enail at a rate of nore than N. NN cps

It is generally not possible to think and type at a rate
faster than A AA cps, and therefore you reply is likely to
i ncoherent, badly thought out and/or enotional

A cool off tiner will prevent you from sendi ng any enai
for the next one hour.

176

Why Should | Care What Color the Bikeshed
Is?

The second part of ny wish is nore enotional. Cbviously, the
capacities we had manning the unfriendly fire in the sleep(l)
thread, despite their nany years with the project, never cared
enough to do this tiny deed, so why are they suddenly so enfl aned
by somebody el se so nuch their junior doing it ?

I wish | knew.

| do know that reasoning will have no power to stop such "reactionaire
conservatism'. It may be that these people are frustrated about

their own |lack of tangible contribution lately or it nmay be a bad

case of "we're old and grumpy, WE know how yout h shoul d behave".

Either way it is very unproductive for the project, but | have no
suggestions for howto stop it. The best | can suggest is to refrain
fromfuelling the nonsters that lurk in the mailing lists: Ignore
them don't answer them forget they're there.

| hope we can get a stronger and broader base of contributors in
FreeBSD, and | hope we together can prevent the grunpy old nen
and the [omtted]s of the world from chew ng themup, spitting
them out and scaring them away before they ever get a leg to the
gr ound.

For the peopl e who have been lurking out there, scared away from
participating by the gargoyles: | can only apol ogi se and encour age
you to try anyway, this is not the way | want the environnent in
the project to be.

Poul - Henni ng

177

Apéndice D. Ejemplo de Instrucciones
para Informar sobre Fallos

Esto es una copia editada ligeramente de las instrucciones en linea del proyecto Subversion para nuevos
usuarios sobre como informar sobre fallos. Ver “ Treat Every User as a Potential Volunteer” en Capitu-
lo 8, Coordinando a los Voluntarios para saber porque es importante que un proyecto tengatalesins-
trucciones. El documento original se localiza en http://svn.collab.net/repos/svn/trunk/www/bugs.html.

I nformar sobre Fall os en Subversion

Este docunento explica conp y dénde informar sobre fallos. (no es una lista
de todos los fallos pendientes - pero se puede conseguir eso aqui)

Donde i nformar sobre un fallo

* Si el fallo esta en el propio Subversion, nmandar un correo a
users@ubversion.tigris.org. Una vez que se ha confirmado que es
un fallo, alguién, posiblenmente ti, puede introducirlo en e
gestor de ""ejenplares"". (o si estas bastante seguro del fallo,
sigue adel ante y publicalo directanente en nuestra |lista de desarrollo,
dev@ubversion.tigris.org. Preo si no estas seguro, es nejor que se
publ i que prinero en users@ ahi al gui én puede decirte si el conportam ento
gue se encontré es el esperado o no.)

* Si el fallo esta en la libreria APR, por favor informalo en estas
dos |listas de correo: dev@pr.apache.org, dev@ubversion.tigris.org.

* Si el fallo esta en la libreria de HTTP Neon, por favor inférmalo en
neon@webdav. org, dev@ubversion.tigris.org.

* Si el fallo estd en el Apache HTTPD 2.0, por favor infdrnmalo en
estas dos listas de correo: dev@ttpd. apache. org,
dev@ubversion.tigris.org. La lista de correo para el desarroll ador de
Apache httpd tiene nmucho trafico, asi que tu publicacion del infornme
del fallo puede que sea pasada por alto. Tanbi én debes introducir
un informe del fallo en http://httpd. apache. org/bug report.htm .

* Si el fallo estd en tu ""alfonbra"", por favor dale un abrazo y
déjalo ""conodo"".

Conmo i nformar sobre un fallo

Prinmero, asegurate que es un fallo. Si Subversion no se conporta conp esperas,
mra |la docunentaci 6n y los archivos de las |listas de correo buscando al guna
evi denci a que indi que que deberia conportarse conp esperas. Por supuesto,

si es una cosa de sentido comin, conb que Subversion ha destruido tus datos

y ha hecho que salga hunb de tu nonitor, entonces puedes fiarte de tu juicio.
Pero si no estas seguro, sigue adelante y pregunta prinero en las lista

de correo de usuarios, users@ubversion.tigris.org, o pregunta en |RC,
irc.freenode.net, en el canal #svn.

Una vez que has denpstrado que es un fallo, |o mas inportante que debes hacer
es proponer una descripci6n sinple y una receta para reproducirlo. Por ejenplo,
si el fallo, comb lo encontraste inicialnente, inplica cinco ficheros

sobre di ez canbios, intenta hacer que se reproduzca con solo un fichero

y un canbio. Cuanto mas sinple es |la receta para reproducirlo, mas

probabl e es que un desarrol |l ador tenga éxito al reproducir el fallo

178

http://svn.collab.net/repos/svn/trunk/www/bugs.html

Ejemplo de Instrucciones para Informar sobre
Fallos

y en arreglarlo.

Cuando escribas |la receta para reproducirlo, no escribas una descripcién
inversa de | o que hiciste para que ocurriera el fallo. Por el contrario,

da una transcripcion literal de la serie exacta de comandos que ej ecutaste,

y sus salidas. Uiliza la funcién cortar-y-pegar para este fin. S hay ficheros
i mpl i cados, asegurate incluir |os nonbres de los ficheros, e incluso su
conteni do si piensas que podria ser relevante. Lo nmejor es enpaquetar

tu receta para reproducirlo en un archivo de comandos, |o cual ayuda mucho.

Una sana conprobaci 6n répi da: *estas* utilizando |la version mas

reci ente de Subvesion, ¢no? :-) Posiblenente el fallo ya se ha corregido;
deberias probar tu receta para reproducir el fallo en el arbol de desarrollo
de Subversio6n nés reciente

Adenmés de |a receta para reproducirlo, también necesitarenos una
descripci én conpl eta del entorno donde se reproduci é el error

Esto es:
* Tu sistemn operativo
* La version |liberada y/o revisi én de Subversion
* El conpilador y | as opciones de configuraci én con las que ""construiste"" Su
* Cual qui er nodificaci 6n personal que hiciste a Subversion
* La version de la BD de Berkeley con |la que estés corriendo Subversion, si u
*

Cual quier otra cosa que podria ser posiblemente relevante. Mejor tener denmas
mas que tener denasi ada poca.

Una vez que tienes todo esto, estas listo para escribir el infornme. Enpieza

con una descripcién clara del fallo en si. Es decir, di conp esperabas que
Subversion se conportara, y contrastalo con conp real mente se conporté

Aunque el fallo puede parecerte obvio a ti, puede no ser tan obvio para

otra persona, por tanto es nejor evitar |as adivinanzas. Sigue con |a descripcién
del entorno, y la receta para reproducirlo. Si tanbién quieres incluir

al guna especul aci 6n sobre |a causa, e inclusive un parche para arreglar

el problemn, seria genial - ver http://svn.collab. net/repos/svn/trunk/ww hacki ng.
con | as instrucciones para mandar parches.

Publica toda esta informaci 6n en dev@ubversion.tigris.org, o si ya |lo has hecho

y has pedi do que se publique un ""ejenplar"", entonces ve al Gestor de ""Ejenplare
y sigue las instrucciones de alli.

Graci as. Sabenps que es mucho trabajo publicar un infornme de fallos efectivo,
pero a un buen inforne puede ahorrar horas de tienpo a un desarroll ador
y hace que los fallos tengan nas probabilidad de ser arregl ados.

179

Apéndice E. Copyright

This work is |licensed under the Creative Conmons
Attribution-ShareAlike License. To view a copy of this |icense, visit
http://creativecomons. org/licenses/by-sa/3.0/ or send a letter to
Creative Commobns, 559 Nat han Abbott Way, Stanford, California 94305,
USA. A summary of the license is given below, followed by the ful
legal text. |If you wish to distribute sone or all of this work under
different terms, please contact the author, Karl Foge

<kf ogel @ ed- bean. conp.

You are free:

* to Share —to copy, distribute and transnmit the work
* to Remi x —to adapt the work

Under the follow ng conditions:

* Attribution. You nust attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that
t hey endorse you or your use of the work).

* Share Alike. If you alter, transform or build upon this work,
you may distribute the resulting work only under the sane,
simlar or a conpatible |icense.

* For any reuse or distribution, you nust make clear to others the
license terns of this work. The best way to do this is with a
link to this web page.

* Any of the above conditions can be waived if you get perm ssion
fromthe copyright hol der

* Nothing in this license inpairs or restricts the author's nora
ri ghts.

Creative Commobns Legal Code: Attribution-ShareAlike 3.0 Unported

CREATI VE COVMONS CORPCRATION |'S NOT A LAW FI RM AND DOES NOT PROVI DE
LEGAL SERVI CES. DI STRIBUTION OF THI S LI CENSE DOES NOT CREATE AN
ATTORNEY- CLI ENT RELATI ONSHI P. CREATI VE COVWIONS PROVI DES THI S

| NFORVATI ON ON AN "AS-1S" BASI S. CREATI VE COVWONS MAKES NO WARRANTI ES
REGARDI NG THE | NFORVATI ON PROVI DED, AND DI SCLAI M5 LI ABILITY FOR
DAMAGES RESULTI NG FROM I TS USE

Li cense:

THE WORK (AS DEFI NED BELOW | S PROVI DED UNDER THE TERMS OF THI S
CREATI VE COMMONS PUBLI C LI CENSE ("CCPL" OR "LICENSE"). THE WORK | S
PROTECTED BY COPYRI GHT AND/ OR OTHER APPLI CABLE LAW ANY USE OF THE
WORK OTHER THAN AS AUTHORI ZED UNDER THI' S LI CENSE OR COPYRI GHAT LAW I S
PROHI Bl TED.

BY EXERCI SI NG ANY RI GHTS TO THE WORK PROVI DED HERE, YQOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THI S LI CENSE. TO THE EXTENT THI S
LI CENSE MAY BE CONSI DERED TO BE A CONTRACT, THE LI CENSOR GRANTS YQU
THE RI GHTS CONTAI NED HERE | N CONSI DERATI ON OF YOUR ACCEPTANCE OF SUCH

180

Copyright

TERVS AND CONDI TI ONS

1. Definitions

a.

"Adaptati on" nmeans a work based upon the Wbrk, or upon the Wrk
and other pre-existing works, such as a translation, adaptation
derivative work, arrangenent of music or other alterations of a
literary or artistic work, or phonogram or perfornance and

i ncl udes ci nenat ographi ¢ adaptati ons or any other formin which
the Work may be recast, transforned, or adapted including in any
formrecogni zably derived fromthe original, except that a work
that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoi dance of
doubt, where the Work is a nusical work, perfornmance or
phonogram the synchronization of the Wirk in tined-relation
with a noving image ("synching") will be considered an
Adaptation for the purpose of this License.

"Col |l ection" neans a collection of literary or artistic works,
such as encycl opedi as and ant hol ogi es, or perfornmances,
phonograns or broadcasts, or other works or subject natter other
than works listed in Section 1(f) below, which, by reason of the
sel ection and arrangenment of their contents, constitute
intellectual creations, in which the Work is included in its
entirety in unnodified formalong with one or nore other
contributions, each constituting separate and independent works
in thenmsel ves, which together are assenbled into a collective
whole. A work that constitutes a Collection will not be

consi dered an Adaptation (as defined below) for the purposes of
t hi s License

"Creative Commopns Conpatible License" neans a |icense that is
listed at http://creativecommons. org/conpati bl elicenses that has
been approved by Creative Conmpbns as being essentially
equivalent to this License, including, at a mnimm because
that license: (i) contains terns that have the same purpose,
nmeani ng and effect as the License Elenments of this License; and,
(ii) explicitly permits the relicensing of adaptations of works
nmade avail abl e under that |icense under this License or a
Creative Commons jurisdiction |icense with the sane License

El enents as this License.

"Distribute" nmeans to nmake available to the public the origina
and copies of the Wrk or Adaptation, as appropriate, through
sal e or other transfer of ownership.

"Li cense El enents"” means the follow ng high-Ilevel license
attributes as selected by Licensor and indicated in the title of
this License: Attribution, ShareAlike.

"Li censor" means the individual, individuals, entity or entities
that offer(s) the Work under the ternms of this License.

"Original Author" means, in the case of a literary or artistic
work, the individual, individuals, entity or entities who
created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a
performance the actors, singers, nusicians, dancers, and other
persons who act, sing, deliver, declaim play in, interpret or
otherwi se performliterary or artistic works or expressions of
folklore; (ii) in the case of a phonogramthe producer being the
person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of
broadcasts, the organization that transnmits the broadcast.

181

Copyright

h. "Wbrk" means the literary and/or artistic work of fered under the
terms of this License including without linmitation any
production in the literary, scientific and artistic domain
what ever nay be the npde or formof its expression including
digital form such as a book, panphlet and other witing; a
| ecture, address, sermon or other work of the sane nature; a
dramatic or dramatico-nusical work; a choreographic work or
entertai nnent in dumb show, a nusical conposition with or
wi t hout words; a cinematographic work to which are assinilated
wor ks expressed by a process anal ogous to ci nemat ography; a work
of drawi ng, painting, architecture, scul pture, engraving or
i thography; a photographic work to which are assinilated works
expressed by a process anal ogous to photography; a work of
applied art; an illustration, map, plan, sketch or
t hree-di mensi onal work relative to geography, topography,
architecture or science; a perfornance; a broadcast; a
phonogram a conpilation of data to the extent it is protected
as a copyrightable work; or a work perforned by a variety or
circus perfornmer to the extent it is not otherw se considered a
literary or artistic work.

i. "You" means an individual or entity exercising rights under this
Li cense who has not previously violated the terms of this
Li cense with respect to the Wrk, or who has received express
perm ssion fromthe Licensor to exercise rights under this
Li cense despite a previous violation.

j. "Publicly Perform means to performpublic recitations of the
Wrk and to communicate to the public those public recitations,
by any neans or process, including by wire or wirel ess neans or
public digital performances; to nake available to the public
Works in such a way that nenbers of the public may access these
Wrks froma place and at a place individually chosen by them
to performthe Wirk to the public by any means or process and
the conmuni cation to the public of the perfornmances of the Wrk,
i ncluding by public digital perfornmance; to broadcast and
rebroadcast the Work by any neans including signs, sounds or
i mages.

k. "Reproduce" neans to nmake copies of the Work by any neans
including without limtation by sound or visual recordings and
the right of fixation and reproducing fixations of the Wrk
i ncluding storage of a protected perfornmance or phonogramin
digital formor other el ectronic nedium

2. Fair Dealing R ghts.

mt, or restrict
mlimtations or
h the copyri ght
Wws

Nothing in this License is intended to reduce, | ,
I
t
| aws.

[
any uses free fromcopyright or rights arising fro
exceptions that are provided for in connection wt
protection under copyright |aw or other applicable

3. License Gant.

Subject to the terns and conditions of this License, Licensor
hereby grants You a worl dwi de, royalty-free, non-excl usive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Wrk as stated bel ow

a. to Reproduce the Wrk, to incorporate the Wrk into one or nore
Col ections, and to Reproduce the Wrk as incorporated in the
Col | ecti ons;

182

Copyright

to create and Reproduce Adaptations provided that any such
Adaptation, including any translation in any nedium takes
reasonabl e steps to clearly |abel, demarcate or otherw se
identify that changes were nmade to the original Wrk. For
exanpl e, a translation could be marked "The original work was
translated fromEnglish to Spanish," or a nodification could
i ndi cate "The original work has been nodified.";

to Distribute and Publicly Performthe Wrk including as
i ncorporated in Collections; and,

to Distribute and Publicly Perform Adaptati ons.
For the avoi dance of doubt:

i . Non-wai vabl e Conpul sory License Schenes. In those
jurisdictions in which the right to collect royalties
t hrough any statutory or conpul sory |licensing schene
cannot be waived, the Licensor reserves the exclusive
right to collect such royalties for any exercise by You of
the rights granted under this License;

ii. Waivable Conpul sory License Schenes. In those
jurisdictions in which the right to collect royalties
t hrough any statutory or conpul sory licensing schene can
be wai ved, the Licensor waives the exclusive right to
coll ect such royalties for any exercise by You of the
ri ghts granted under this License; and,

iii. Voluntary License Schenes. The Licensor waives the right
to collect royalties, whether individually or, in the
event that the Licensor is a nenber of a collecting
soci ety that adm nisters voluntary |icensing schenes, via
that society, fromany exercise by You of the rights
granted under this License.

The above rights may be exercised in all mnmedia and formats whet her
now known or hereafter devised. The above rights include the right
to make such nodifications as are technically necessary to exercise
the rights in other nedia and formats. Subject to Section 8(f), all
ri ghts not expressly granted by Licensor are hereby reserved.

Restrictions.

The license granted in Section 3 above is expressly nmade subject to
and limted by the following restrictions:

a.

You may Distribute or Publicly Performthe Wrk only under the
ternms of this License. You nust include a copy of, or the

Uni f orm Resource ldentifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform You may not
of fer or inpose any terns on the Wrk that restrict the terns of
this License or the ability of the recipient of the Wrk to
exercise the rights granted to that recipient under the terns of
the License. You may not sublicense the Wirk. You nust keep
intact all notices that refer to this License and to the

di sclainer of warranties with every copy of the Wrk You
Distribute or Publicly Perform Wen You Distribute or Publicly
Performthe Wrk, You may not inpose any effective technol ogi ca
nmeasures on the Work that restrict the ability of a recipient of
the Work from You to exercise the rights granted to that
reci pi ent under the terns of the License. This Section 4(a)
applies to the Wirk as incorporated in a Collection, but this
does not require the Collection apart fromthe Wrk itself to be

183

Copyright

made subject to the terns of this License. If You create a
Col I ection, upon notice fromany Licensor You nust, to the
extent practicable, renove fromthe Collection any credit as
required by Section 4(c), as requested. |If You create an
Adapt ati on, upon notice fromany Licensor You nust, to the
extent practicable, renove fromthe Adaptation any credit as
required by Section 4(c), as requested.

You may Distribute or Publicly Performan Adaptation only under
the terms of: (i) this License; (ii) a later version of this
License with the same License Elenents as this License; (iii) a
Creative Commons jurisdiction license (either this or a later
license version) that contains the same License Elenments as this
Li cense (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative
Conmons Conpati bl e License. If you license the Adaptation under
one of the licenses nentioned in (iv), you nust conply with the
terms of that Iicense. If you license the Adaptation under the
terns of any of the licenses nentioned in (i), (ii) or (iii)
(the "Applicable License"), you nust conply with the terms of
the Applicable License generally and the follow ng provisions:
(1) You nust include a copy of, or the URI for, the Applicable
Li cense with every copy of each Adaptation You Distribute or
Publicly Perform (11) You may not offer or inmpose any termnms on
the Adaptation that restrict the ternms of the Applicable License
or the ability of the recipient of the Adaptation to exercise
the rights granted to that recipient under the ternms of the
Applicable License; (I11) You must keep intact all notices that
refer to the Applicable License and to the disclainer of
warranties with every copy of the Wirk as included in the
Adaptation You Distribute or Publicly Perform (1V) when You
Distribute or Publicly Performthe Adaptation, You may not

i npose any effective technol ogi cal nmeasures on the Adaptation
that restrict the ability of a recipient of the Adaptation from
You to exercise the rights granted to that recipient under the
ternms of the Applicable License. This Section 4(b) applies to
the Adaptation as incorporated in a Collection, but this does
not require the Collection apart fromthe Adaptation itself to
be made subject to the ternms of the Applicable License.

If You Distribute, or Publicly Performthe Wrk or any
Adaptations or Collections, You nmust, unless a request has been
made pursuant to Section 4(a), keep intact all copyright notices
for the Wirk and provide, reasonable to the nedium or neans You
are utilizing: (i) the nane of the Original Author (or
pseudonym if applicable) if supplied, and/or if the Oigina

Aut hor and/or Licensor designate another party or parties (e.g.
a sponsor institute, publishing entity, journal) for attribution
("Attribution Parties") in Licensor's copyright notice, ternms of
service or by other reasonable means, the name of such party or
parties; (ii) the title of the Wirk if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Wrk, unless such URl does
not refer to the copyright notice or licensing infornation for
the Work; and (iv) , consistent with Ssection 3(b), in the case
of an Adaptation, a credit identifying the use of the Work in
the Adaptation (e.g., "French translation of the Wirk by
Oiginal Author," or "Screenplay based on original Wrk by
Original Author"). The credit required by this Section 4(c) may
be i nmpl emented in any reasonabl e manner; provided, however, that
in the case of a Adaptation or Collection, at a mni num such
credit will appear, if a credit for all contributing authors of
the Adaptation or Collection appears, then as part of these
credits and in a nanner at |east as pronminent as the credits for
the other contributing authors. For the avoi dance of doubt, You

184

Copyright

may only use the credit required by this Section for the purpose
of attribution in the manner set out above and, by exercising
Your rights under this License, You may not inplicitly or
explicitly assert or inply any connection with, sponsorship or
endorsenent by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Wrk, w thout
the separate, express prior witten perm ssion of the Oigina
Aut hor, Licensor and/or Attribution Parties.

d. Except as otherwi se agreed in witing by the Licensor or as may
be otherwi se permtted by applicable law, if You Reproduce,
Distribute or Publicly Performthe Wirk either by itself or as
part of any Adaptations or Collections, You nust not distort,
nmutilate, nodify or take other derogatory action in relation to
the Work which would be prejudicial to the Oiginal Author's
honor or reputation. Licensor agrees that in those jurisdictions
(e.g. Japan), in which any exercise of the right granted in
Section 3(b) of this License (the right to nake Adaptations)
woul d be deened to be a distortion, mutilation, nodification or
ot her derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as
appropriate, this Section, to the fullest extent permtted by
the applicable national |aw, to enable You to reasonably
exerci se Your right under Section 3(b) of this License (right to
make Adaptations) but not otherw se.

5. Representations, Warranties and Di scl ai mer

UNLESS OTHERW SE MUTUALLY AGREED TO BY THE PARTIES I N WRI Tl NG

LI CENSCR OFFERS THE WORK AS-1S AND MAKES NO REPRESENTATI ONS OR
WARRANTI ES OF ANY KI ND CONCERNI NG THE WORK, EXPRESS, | MPLIED
STATUTORY OR OTHERW SE, | NCLUDI NG W THOUT LI M TATI ON, WARRANTI ES OF
TI' TLE, MERCHANTI BI LI TY, FITNESS FOR A PARTI CULAR PURPOSE

NONI NFRI NGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT

DI SCOVERABLE. SOVE JURI SDI CTI ONS DO NOT' ALLOW THE EXCLUSI ON OF | MPLI ED
WARRANTI ES, SO SUCH EXCLUSI ON MAY NOT APPLY TO YQU

6. Limtation on Liability.

EXCEPT TO THE EXTENT REQUI RED BY APPLI CABLE LAW I N NO EVENT W LL

LI CENSCR BE LI ABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECI AL,

I NCI DENTAL, CONSEQUENTI AL, PUNI TI VE OR EXEMPLARY DAMAGES ARI SI NG OUT
OF TH' S LI CENSE OR THE USE OF THE WORK, EVEN | F LI CENSOR HAS BEEN
ADVI SED OF THE POSSI BI LI TY OF SUCH DAMAGES.

7. Term nation

a. This License and the rights granted hereunder will term nate
automatically upon any breach by You of the ternms of this
Li cense. Individuals or entities who have recei ved Adaptati ons
or Collections from You under this License, however, will not
have their licenses term nated provided such individuals or
entities remain in full conpliance with those |icenses. Sections
1, 2, 5, 6, 7, and 8 will survive any term nation of this
Li cense.

b. Subject to the above terns and conditions, the |license granted
here is perpetual (for the duration of the applicable copyright
in the Wirk). Notwi thstandi ng the above, Licensor reserves the
right to rel ease the Work under different license ternms or to
stop distributing the Wirk at any tinme; provided, however that
any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted

185

Copyright

under the terns of this License), and this License will continue
in full force and effect unless term nated as stated above.

8. M scel | aneous

a. Each time You Distribute or Publicly Performthe Wrk or a
Col l ection, the Licensor offers to the recipient a license to
the Work on the sane terns and conditions as the |icense granted
to You under this License

b. Each tine You Distribute or Publicly Performan Adaptation
Li censor offers to the recipient a license to the original Wrk
on the sane terns and conditions as the license granted to You
under this License.

c. If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the remai nder of the ternms of this License,
and wi thout further action by the parties to this agreenent,
such provision shall be reformed to the m ni nrum extent necessary
to make such provision valid and enforceabl e.

d. No termor provision of this License shall be deemed wai ved and
no breach consented to unl ess such waiver or consent shall be in
witing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreenent between the
parties with respect to the Wirk |icensed here. There are no
under st andi ngs, agreenents or representations with respect to
the Work not specified here. Licensor shall not be bound by any
addi ti onal provisions that may appear in any conmunication from
You. This License may not be nodified wthout the nutual witten
agreenent of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in
this License were drafted utilizing the terni nol ogy of the Berne
Convention for the Protection of Literary and Artistic Wrks (as
amended on Septenber 28, 1979), the Rone Convention of 1961, the
W PO Copyright Treaty of 1996, the W PO Performances and
Phonograns Treaty of 1996 and the Universal Copyright Convention
(as revised on July 24, 1971). These rights and subject matter
take effect in the relevant jurisdiction in which the License
terns are sought to be enforced according to the correspondi ng
provi sions of the inplenentation of those treaty provisions in
the applicable national law If the standard suite of rights
granted under applicable copyright |aw includes additiona
rights not granted under this License, such additional rights
are deened to be included in the License; this License is not
intended to restrict the license of any rights under applicable

aw.

Creati ve Conmons Noti ce

Creative Commons is not a party to this License, and makes no warranty
what soever in connection wth the Wirk. Creative Commons will not be
liable to You or any party on any |legal theory for any damages

what soever, including without linmtation any general, special

i nci dental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Conmons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor

Except for the limted purpose of indicating to the public that the

186

Copyright

Wrk is licensed under the CCPL, Creative Conmons does not authorize
the use by either party of the trademark "Creative Conmpns" or any
related trademark or | ogo of Creative Conmons w thout the prior
witten consent of Creative Commobns. Any pernmitted use will be in
conpliance with Creative Commobns' then-current tradenmark usage

gui del i nes, as nmay be published on its website or otherw se nade
avai | abl e upon request fromtine to tine. For the avoi dance of doubt,
this trademark restriction does not formpart of the License.

Creative Commons may be contacted at http://creativeconmons. org/.

187

