" CONSULTORES EDITORIALES
AREA DE INFORMATICA Y COMPUTACION

Antonio Vaquero Sdnchez

Catedrético de Lenguajes y Sistemas Informdticos
Escuela Superior de Informética

Universidad Complutense de Madrid

ESPANA

Gerardo Quiroz Vieyra

Ingeniero en Comunicaciones y Electrénica

por la ESIME del Instituto Politécnico Nacional
Profesor de la Universidad Auténoma Metropolitana
Unidad Xochimilco

MEXICO

Willy Vega Gilvez
Universidad Nacional de Ingenieria
PERU

PROGRAMACION
ORIENTADA A OBJETOS

Luis Joyanes Aguilar
Director del Departamento de
Lenguajes y Sistemas Informdticos e Ingenietia de Software
Facultad de Informdtica
Universidad Pontificia de Salamanca Campus Madrid

McGraw-Hill

MADRID » BUENOS AIRES « CARACAS + GUATEMALA - LISBOA » MEXICO
NUEVA YORK - PANAMA « SAN JUAN « SANTAFE DE BOGOTA « SANTIAGO » SAQ PAULO
AUCKLAND » HAMBURGO » LONDRES » MILAN « MONTREAL » NUEVA DELHI » PARIS
SAN FRANCISCO « SIDNEY « SINGAPUR » ST LOUIS « TOKIO » TORONTO

PROGRAMACION ORIENTADA A OBJETOS

CONTENIDO

Prélogo S . xvi

Parte |

EL. MUNDO DE LA ORIENTACION A OBJETOS:
CONCEPTOS, RELACIONES, MODELADO Y LENGUAJES
DE PROGRAMACION

Capitulo 1. FEl desarrollo de software = 3

1.1, La complejidad inherente al software : 4
111 La complejidad del dominio del problema G . 4
112 Ta dificultad de gestionar el proceso de desarrollo 4
113 laflexibilidad a través del software : 5

12 La crisis del softwate . 5

1.3 Factotes en la calidad deI software 7
131 Razones fundamentales que estan mﬂuyendo en la 1mp01tanc1a de

No estd permitida la reproduccidn total o parcial de este libio, ‘ni su trgtamiemo
informadtico, ni la transmisién de ninguna forma o por cualquier n}ed:o, ya sea
electr6nico, mecdnico, por fotocopia, por registto u otros métodos, sin €l permiso
previo y por escrito de los titulares del Copyright

DERECHOS RESERVADOS (€ 1996, respecto a la primera edicién en sspafiol, por
McGRAW-HILL/INTERAMERICANA DE ESPANA, 5 A

Edificio Valrealty, 1° planta
Basauri, 17
28023 Aravaca (Madrid)

ISBN: 84-481-0590-7
Depdsito legal: M. 30 121-1996

Editor: José Dominguez Alconchel
Disefio de cubierta: Juan Garcia
Compuesto ¢ impreso en Ferndndez Ciudad, S L

IMPRESO EN ESPANA - PRINTED IN SPAIN

la POO . .. o e 9

14 Programacién y absttaccu‘in Ce S - 9
15 El papel (el rol} de la abstraccién ... o . 10
151 La abstraccién como proceso natural mental oo 10

152 Mistoria de la abstraccién del software 11

153 Procedimientos 12

154 Médulos 13
155, Tipos abstractos de datos e I3

156 Objetos 14

16 Un nuevo paradigma de pmgramacnén 15
1.7 Orientacidn a objetos 16
171 Absttaccién 17

172 Encapsulacidn 18

173 Modularidad .. . 8

174 Jerarqufa 18

175 Polimorfismo . — 19
176 Otras propiedades . . | S 20

18 Reutilizacién de software .. . o 21
19 Lenguajes de programacién onentados a objetos 22
191 Clasificacién de los lenguajes orientados a objetos 23

. vi Contenido

110 Desarrolio tradicional frente a orientado a objeios ..
1.11 Beneficios de las lecnologlas de ob]etos (TO)
Resumen . U , ‘

Capitulo 2. Modularidad: tipos abstractos de datos

21 Modulazidad . .
211 1Ila esnuctura de un modulo -
2.1.2. Reglas de modularizacién ..
22 Disefio de médulos
221 Acoplamiento de modulos
222 Cohesidén de mddulos .
23 Tipos de datos
24 Abstraccidén en lenguajes de progtamac;on
241 Abstracciones de control .
242 Abstraccion de datos
25 Tipos abstiactos de datos
251 Ventajas de los tipos abstfdcms de datos
2.52 Implementacion de los TAD . :
26 Tipos abstractos de datos en Turbo Pascal o
261 Aplicacién def tipo abstracto de dato Pila
27 Tipos abstiactos de datos en Modula-2 .
271 Mddulos . o
272 Moddulos locales
273 Tipos opacos .
274 Tipos transparentes
275 Una versidn del tipo abstldcto cle dato Prla con datos opacos
2.76 Otia aplicaciéh del TAD Pila
28 Tipos absiractos de datos en Ada
281 Tipos privados .. .
282 Tipos privados limitados
29 Tipos abstractos de datosen C ..
291 Un gjemplo de un tipo abstracto de datos en C
210 Tipos abstractos de datos en C++ . L
2101 Definicién de una clase Pila en C++
Resumen . o
Ejercicios

Capitule 3. Conceptos fundamentales de pmgramacmn orientada a ob-
jetos Coe e e

31. Programacién estructurada .
311 Desventajas de la plogramamén estructu1ada
32 ;Qué es la programacién orientada a objetos? .
321 El objeto .
322 Ejemplos de ob]etos
3.2.3 Métodos y mensajes
33 Clases o o L
331. Implementacién de clases en lenguajes . .
3.32 Sintaxis . S
34 Un mundo de ob]etos

25
27
29

35

36

37

38

39

310
311
312

313

314

341 Definicion de objetos

342 ldentificacion de objetos

343 Duracién de los objetos ..

344 Objetos frente a clases Representamon giaflca (Notacxon de Ege).
3435 Datos internos e -
346 Ocultacién de datos

Herencia

351 Sintaxis

3.52 Tipos de herenma

Comunicaciones entre objetos los mensa]es
361 Activacién de objetos .

362 Mensajes .

3.63 Paso de mensajes

Estiuctura interna de un objeto

371 Attibutos

372 Métodos .. .
Clases .. . i, AT

381 Una comparacién con tablas de datos
Herencia y tipos .

391 Herencia simple (heJ encia ferdr qwca)

392 Herencia miiltiple (herencia en maila)

393 Clases abstractas

Contenido

Anulacién/Sustitucién

Sobrecarga .. .

Ligadura dindmica

3121 Funciones o metodos Vutua]es
3.122 Polimorfismo

Objetos compuestos . ‘

3131 Un ejemplo de objetos compuestos :
3132 Niveles de profundidad .
Reutilizacién con orientacién a objetos .

3141

Objetos y reutilizacién

315 Polimorfismo
Resumen

Capitulo 4. Lenguajes de programacion orientados a objetos ..

41

42

43

Evolucién de tos LPOOS

411

Estado actual de los lenguajes onentados a ob;etos en la decadd de
los noventa ..

Clasificacién de lenguajes orlentados a objetos

421
422
4273
424
425
426
Ada .
431
432
433
434

Taxonomia de lenguajes orientados a ob]etos e
Cazacteristicas de los lenguajes orientados a objetos .
Puros frente a hibridos

lipificacidn estdtica frente a dmamlca

Ligadura estdtica fiente a dindmica ...

Revision de lenguajes orientados a objetos
Abstraccion de datos en Ada

Genericidad en Ada .. .

Soporte de herencia en Ada-83

Soporte Ada para orientacién a objetos

110
110
111

113
114

117
118
119
120
121
122
124
125
126
126
127
128
128

viii Contenido

44 Eiffel

441 La biblioteca de clases Eiffel

442 FEl entorno de programacion Eiffel

443. FEl lenguaje Eiffel
45 Smalltalk . . .

451 El lenguaje Smalltaik .

452 La jerarquia de clases Smalllalk C
46 Otros lenguajes de programacién orientados a objetos ..
Resumen . S A
Ejercicios

Capitulo 5. Modelado de objetos: relaciones .

51, Relaciones entre clases . .
52 Relacién de general1zacxon/espec;ahzac1én (zs a/es un)
521 Terarquias de generalizacidn/especializacién .
53 Relacién de agregacién (has-a/tiene-un)
531 Agtegacién frente a generalizacién .
54 Relacidon de asociacién ‘
541 Otros gjemplos de cardmahdad
5.5 Herencia: jerarquia de clases
551 Herencia simple .
552 Herencia multiple . ‘ .
5521 Ventajas de la hexencm multlple o
5522 Inconvenientes de la herencia multiple
5523 Disefio de clases con hetencia miltiple .
56 Herencia repetida
Resumen
Ejercicios

Parte 11
PROGRAMACION ORIENTADA A OBJETOS CON C++

Capitulo 6. Clases y objetos en C++

61 Clases y objetos

62 Objetos . . .
6.21 Identlilcacmn de ob]etos
63 Clases ‘

6.4 Creacién de clases

65 Diagramas de clases y ob]etos

66 Construccién de clases en C++ o
661 Declaracién de clases L
6,62 Definicién de una clase .
6.63 Constructores y destructores
6.64 Usar las clases . . o
665 Espe{:1ﬁcamén/lmplementamén de c]ases o
6.6.6. Compilacidn separada de clases .
667 Reutilizacién de clases .
668 Estilos de declaracién de clases

129
130
130
131
132
133
134
134
135
136

137

138
138
141
143
145
146
149
150
151
152
155
155
156
157
160
160

167

168
169
170
mn
172
173
176
177
179
180
181
181
183
184
184

Contenido
6.7 Diseflos prdcticos de clases
6.7.1 Clases RechJ v Presentar
68 Técnicas de creacién e inicializacién de ob]etos
681 Objetos dindmicos new y delete .
69 Inicializacidén y limpieza de objetos ..
691 Usodeunaclase.
6 10. Regias précticas para construccmn de clases
6101 Funciones miembro . .
6.102 Una aplicacién sencilla
6.10.3 Control de acceso a los miembros de una clase
6.104. Creacidn, inicializacidn y destruccién de objetos
6 11. El punteto this
Resumen -
Ejercicios =~
Capitulo 7. Clases abstractas y herencia
7.1 Abstraccion de la generalizacién y especializacién de clases
7.2 Clases abstractas o
73 Herencia en C++: clases denvadas
7.31 Sintaxis de la herencia simple
732, Sintaxis de la herencia multiple ..
7.33. Ambigliedad y resolucién de dmbito
7.4, Herencia repetida y clases base virtuales .
7.5 Funciones virtuales puras o
7.51. Otro ejemplo de clase abstracta :
76 Disefio de clases abstractas
77 Una aplicacién préctica: jerarquia de ﬁguras
771 La clase Figwa
Resumen L
Ejercicios
Capitulo 8. Polimorfismo
81 Ligadura
8.11 L1gadura en C++ .
82 Funciones virtuales .. .
821 Ligadura dindmica medlante funcmnes vutuales
83 Polimotfismo .
831 EI polimorfismo sin hgadura dmémica
832 El polimorfismo con ligadura dindmica ..
84 Uso del polimorfismo . . . o
841 Uso del polimorfiosmo en C++ e
85 Ligadura dindmica frente a lipadura estdtica
8.6, Ventajas del polimotfismo
Resumen
Ejercicios . .
Capitulo 9. Genericidad: plantillas (templates)
91 Genericidad . . o
92 Conceptos fundamentales de plantﬂlas en C++ oo

185
188
190
192
193
201
204
207
208
213
216
221
222
223

229

230
232
233
233
237
240
242
243
247
247
251
251
252
252

255

256
256
257
258
260
261
262
263
263
264
265
265
266

268

269
270

X Contenido

9.3, Plantillas de funciones .
931 Fundamentos teéncos .
932 Definicién de plantilla de funmén .
933 Un ejemplo de plantilla de funciones .. .
934, Un ejemplo de funcién plantilla .
935 Plantillas de funcién ordenar y buscar .
936 Una aplicacién prédctica
937 Problemas en las funciones plantllla

94 Plantillas de clases . o
941 Definicién de una plantllla de clase e
042 Instanciacidon de una plantilla de clases
943 Utilizacién de una plantilla de clase ..
944 Argumentos de plantillas
9435 Aplicaciones de plantillas de clases

9.5 Una plantilla para manejo de pilas de datos .. .
9.51. Definicién de las funciones miembio ..
952 Utlizacién de una clase plantilla .
953 Instanciacién de una clase plantilla con clases
9354 Uso de las plantillas de funciones con clases

96 Plantillas frente a polimorfismo

Resumen

Ejercicios

Capitato 10. Excepciones . . .

101 Concepto de excepcic’m
10.2. Manejo de excepciones
1021. Medios tipicos para el mane]o de excepcxones
10.3. El mecanismo de excepciones en C+ +
104 Lanzamiento de excepciones .
1041 Formatos de throw .
10.5 Manejadores de excepciones .
i0.51. Bloques fry .
1052 Captura de cxcepclones
10.53 Relanzamiento de excepciones
106 Especificacién de excepciones
10.7 Aplicaciones prdcticas de manejo de excepcmnes .
10.71 Calcular las raices de una ecuacidn de segundo grado
1072 Control de excepciones en una estructura tipo pila
Resumen
Ejercicios

Capitule 11. Reuntilizacién de software con C++

111

112

113

114

Mecanismos de reutilizacidn .
11 11. Herramientas tradicionales de reutlhzacwn
Reutilizacidn por herencia ..

1121 Ventajas de la reuuhzamén a traves de la herenc1a

Las recompilaciones en C++ ce
Reutilizacién mediante plantillas o tipos genencos ‘
1141 Polimorfismo frente a genericidad

271
271
272
274
276
277
278
279
280
280
283
283
284
285
287
288
289
292
292
293
294
295

297

298
298
299
301
302
303
303
304
305
306
306
307
307
308
310
3

314

315
315
316
316
317
318
319

Contenido

115 Bibliotecas de clases . .
1151 Contenedores o
1152 La necesidad de los contenedmes L
1153 Clases contenedoras de Borland C++ 31 a 50
1154 La biblioteca estdndar de plantillas {STL}
116 Clases contenedoras en Boiland C++ 4.5/50
1161 Nombres de las clases contenedoras
1162 Ciases vector
1163 Clases listas doblemente enlazadas ‘
11.64 Clases array .
11.65 Creacién v uso de contencdores
Resamen

Parte II1
DISENO ORIENTADO A OBJETOS

Capitulo 12. Disefio orientado a objetos (Notaciones Booch, Rumbaugh
y Coad/Yourdon)oviiuuiumnioiivincueniiann

121 Desarrollo de un sistema orientado a objetos . .
121.1 ldentificar clases y objetos
1212 Asignacién de atributos y compor tamlenlo
1213 Enconiiar las relaciones entre clases v objetos
1214 Interfaz e implementacién de las clases

122 Notaciones graficas e S
1221 Notacién de Booch’ 93 oo . S
1222 Notacidn de Yourdon ...
1223 Notacién de Rumbaugh (OM I)

123 Implementacién de clases y objetos en C++
12.3.1. El modificador const .

124 Creacidn de funciones miembro en C++
1241 Funciones infine .
1242 Funciones miembro vutuales y vutuales pulas

¢ 1243 Variables miembro y accesibilidad

125 Implementacién de relaciones con C++
1251 Relaciones de genera117a01én—espec;ahzacmn (es un)
1252 Relacién de agregacidn/composicion (tiene-un)
12.5.3 Relacién de asociacidn . S
1254 Relacién utiliza {uses) .

126 Clases abstractas ‘
126.1 Abstraccidn medlante plantll]a,s oo

127 Una aplicacién orientada a objetes
1271 Identificar las clases
1272 Identificar relaciones y
1273, Definit el interfaz de cada clase

Resumen

Ejercicios

xi

321
323
324
325
326
326
327
328
328
329
329
331

335

336
337
338
340
341
342
344
348
350
353
354
355
355
356
357
357
357
362
366
367
368
372
372
373
373
376
379
381

xii

Contenido

Parte IV

EL LENGUAJE C++: SINTAXIS, CONSTRUCCION
Y PUESTA A PUNTO DE PROGRAMAS

Capitulo 13. De Ca C++

131
13.2
133
13.4

13.5
136

137

138

139

13 10

1311

1312
1313,

13.14

13.15.

1316
13.17

1318

Limitaciones de C

Mejora de caractenstlcas de C en C++

El primer programa C++

1331 Comparacién de programas C y C++

Nuevas palabras reservadas de C++

Comentarios S

Declaraciones de vanables e .

13.61. Declaracidn de variables en un bucle for

13.62 Declaraciones externas . o

13.63 El dmbito de una variable

El especificador de tipos const .

1371 Diferencias entre const de C++ y const de C :

1372 Las variables voldtiles S

Especificador de tipo void

1381 Punteros void

Los tipos char . .

139.1 Inicializacién de caracteres

Cadenas .

Conversién obhgatona de tlpos (Castmg)

El especificador de tipo velatile . . .

Estructuras, uniones y enumeraciones . ..

13131, Estiucturas y uniones

13132 Uniones andénimas

13133 Enumeraciones

13 134 Enumeraciones anémmas .

Funciones en C++ .

13141 main()

13142 Prototipos de func1ones .

13143 Una declaracién tipica de funcxones y pxototlpos

13144 Funciones en linea . .

13.14.5 Ventajas sobre las macros

13146 Argumentos por omisién : :

13.147 Funciones con un nimero Vanable de parametros (el parame-
tro..}. ‘ e

Llamada a funcwnes C Piogiamas letOS C/C++ .

El tipo referencia ..

Sobrecarga

13171 Sobiecarga de funmones

13172 Aplicacién de sobrecarga de func;ones

13173 Sobrecarga de operadores

Asignacién dindmica de memoria

13181 El operadot new

13182 El puntero nulo/cero

1318 3. El operador delete .

13184 Ventajas de new y delete .

385

386
386
388
389
390
391
392
394
395
396
398
400
402
403
403
404
404
405
406
407
408
409
410
411
413
414
414
415
417
419
421
422

425
426
427
432
432
435
437
438
439
441
441
442

Contenido

1319 Organizacién de un programa C++ e .

13191 Evitar definiciones multiples e
13192 Evitar incluir archivos de cabecera més de una vez

Resumen . o
Ejercicios oo e o
Capitulo 4. Construccion de programas en C++/C
141 Compilacién separada de programas . o
1411 Programas multiarchivo S
1412 Bibliotecas de clases = .
142 Almacenamiento extern y static
1421 extern .
1422 static . . :
143 Estructuta de un progxama C ‘
144 Compilacidn separada de clases .
145 FEstructura de un programa C++
1451 ;Qué son archivos de cabecera?
1452 Inclusién de archivos . . .
146, Programas multiarchivo S
1461 ;Qué se debe poner en un archlvo fuente?
1462 Referencias externas
147 Construccién de archivos proyvecto
1471 Abrir un proyecto . ..
1472 Afdadir archivos fuente .
148 Iransporte de aplicaciones desde C a C++
1481 Enlace entie programas C y C++
Resumen G S
Ejercicios

Capitulo 15. Puesta a _punto de ptogramas en C-++. Errores de progra-

151

152
15.3.

154
155

I56

157

158

macion tlplCOS

Depuracién de programas . o

1511 Errores durante la depuraadn e

Errores en arrays ..

Errores en cadenas

1531 Caéleculo incorrecto de la longatud de una cadena

Errores en comentarios

Ertores en corchetes v Haves . o » S

Errores en funciones, ..

1561 Pasar un argumento por valor en lugar de por Vanab]e ‘

1562 Fallos en ¢l valor de retorno de la funcién

1563 No incluir el archivo de cabecera de una funcién en tlei‘npo de
gjecucidn

Errores en macros ‘

1571 Omisidn de parentes1s en los atgumentos de macros . ‘

1572 Especificacién no vdlida de macros tipo funcién

Errotes con operadores . :

1581 Mal uso de operadores de incremento (++) y decremento (——)

1582 Confusién de operadores de asignacién C

1583 Fallos en la precedencia de operadores

xiii

443
444
445
447
448

450

451
452
452
453
453
455
456
458
460
462
463
463
464
465
466
467
467
468
468
470
471

474

475
476
476
477
478
479
480
480
481
481

482
482
483
483
484
4384
484
485

XV Contenido Contenida XV

159 FErrores en punteros 486 A1l Punteros {Apuntadores) . e o ... 525
1591 Olvido del operador de d}reccuin (&) Lo ... 486 ‘ A 11.1. Declaracién de punteros L L . 526
1592 Fallos al inicializar un puntero .. . C 486 . A 112 Punteros a attays o L. 527
1593 Declaracién de un puntero con el tipo mcorrecto e 487 A 113 Punteros a estructuras o o oL 527
15 10. Errores en sentencias de seleccién (switch, if~else) 487 .- A 114 Punteros a objetos constantes, S . 528
1511 Errores en separadores 488 . A 115 Punteros a void 528
15.12. Errores hdsicos frecuentes 489 A 116 Punteros y cadenas 529
1513 Brrores en clases . .. oo 494 B} A 117 Aritmética de punteros L . 530
Resumen o e 500 . A 12 Los operadores new y deleie S 530
Ejercicios o e S L e 500 Al13 Arrtays o S 532
A 131 Definicion de arrays o532
Apéndice A. Guia de referencia de sintaxis del lengraje C-++ (Estan- . i%g’ gngmeracmnes, SSUUCIUIAS ¥ BMIOMES oo o e g;g
darc++ ANSI) N o] L 503 .:. adends . v . . s e
. A 16 Funciones L . G 536
. A161 Declaracién de funciones T 1
A1 Elementos del lenguaje e T S 303 A 162 Definicién de funciones 835
All Caracteres Co e 303 A 163 Argumentos por omisién 537
A12 Comentarios ... o S oo A 164 Funciones en linea (inline) 537
A13 Identificadores S S04 A 165 Sobrecarga de funciones. .. = . .. o 538
A.14 Palabras reservadas . . EEREE e S04 & A 166 El modificador const . . L , Lo 539
A2 Tipos de datos I 306 A 167 Paso de pardmetros a funciones o . £ 1
A21 Verificacién de tlpDS S S o C e 506 G A 168 Paso de arrays .. . S 540
A3 Constantes A S 507 ‘ ' ‘
‘ e Constantes » . . . 507 S
Ad é;ni,m]%flﬁfff;gf ‘ . S 508 Apéndice B. Propiedades de objetos de Turbo/Borland Paseal 7.0 (Object
A5 Declatacidn de variables 508 Pasecal) 542
A6 Operadores P 11 8 Bl Objetos . . oo ‘ 542
A 61 Operadores atitméticos . | o - 3 L1 S B2 Herencia . . . 544
A62 Operadores de asignacién . . Co IS B3 Polimorfismo y métodos v1rtuales e R ... 545
A63 Operaciones légicos y relacionales S 512 B4 Objetos dindmicos . .. o 547
A 64 Operadores de manipulacién de bits .. C 513 i
A 65 Fl operador sizeof .. . o ... 514 .o . . . ,
Ab66 Pnoﬁdad y asocu{;mdad de operadores : e 514 k. Apéndice C. El lenguaje Delphi (Object Pascal) frente a C++ .. 548
A 67 Sobrecarga de operadores oo 515 C1 El nuevo modelo de objetos 48
A7 Entradas y salidas basicas 316 C2 Métodos de clases L L 49
A71 Salida . . Co T TR 516 C3 Definicién de métodos 5
A72 Entrada = .. oo o 517 Lk C4 Tipos de métodos L e 550
A 73 Manipuladores .. -) C.5 Anulacién de un métedo o o 551
A8 Sentencias . . PR ... 518 C6 Self .. . ‘ L 551
A81 Sentencias de declaracion 518 C7 Especificadores de visibilidad de clases 551
A82 Sentencias de expresion . . e S 518 C8 Construccién de un nuevo t1po derivado (Herenma) o 552
A 83 Sentencias compuestas .. N . 519 C9 Ligadura estdtica y dindmica L 553
A9 Sentencias condicionales if oo S . 519 C.10 Disefio de clases o L) 554
A91 Sentencias if-else anidadas - .3 | C 11 Reutilizacién, ‘ .. 557
A92 Senteucias de alternativa multlple swzt(,h -
A0 Eulcéels g:l;tteezzliis‘jggzt.ltlvz‘t‘s‘ S g%g Apéndice D. El lenguaje Ada-95. Guia de referencia 339
A102 Sentencia do 523 D1 Caracteristicas basadas en objetos de Ada-83 559
A 103 Sentencia for ‘ S L. ... 524 D2 Propiedades orientadas a objetos de Ada-95 562
A 104 Sentencias break y continue 524 D3 Clases, polimorfismo y ligadura dindmica de Ada-95 566
A 105 Sentencia mula 352 D4 Clases abstractas o o o 56T
A 106 Sentencia returiio e o 525 D5 Aplicacién completa 569

xvi

Contenido

Apéndice E. Java: el lengnaje orientado a objetos de Internet. Gufa de

E1l
E2
E3
E4
ES
Ee6
E7
ES8
ES

sintaxis

Caracteristicas del lenguaje Java ..
La sintaxis del lenguaje Java
Caracteristicas eliminadas de C y C-+
Los objetos C :
Herencia de clases

Interfaces

Paquetes

Excepciones o
Bibliografia .. : o

E 10. Fuente de mforma{nén en Intemet

Apéndice F. Sobrecarga de operadores en C++ . .

FI
F2
F.3
F4
F5
Fo6
F7
F&
F.9.

Conceptos generales . » S e

Sobrecarga de operadores unltanos e

Sobrecarga de operadores binarios e
Sobrecarga de operadores de insercién y extraccmn .
Convetsién de datos v operadores de conversién forzada de tlpos .
Sobrecaiga de new y delete: asignacién dindmica

Manipulacién de sobrecarga de operadores ..

Una aplicacién de sobrecarga de operadores

Resumen :

Apéndice G. Metodologia de andlisis y disefio orientados a objetos. No-

taciones

Booch’93 . . . ‘
OMT (Rumbaugh et al)
Coad/Yourdon
Notacién de R. Edge
Notacién de Taylor

Apéndice H. Glosario

Bibliografia

Indice

571

571
572
376
578
582
584
585
587
587
588

589

589
597
603
610
614
618
621
623
625

626

626
629
633
036
640

642
651
653

PROLOGO

LA ORIENTACION A OBJETOS

Las tecnologias orientadas a objetos se han convertido en la década de los
noventa en uno de los motores clave de la industria del software. Sin embargo,
las tecnologzas de ob]etos no es, como algunos innovadores pregonan, una
novisima tecnologia, sino que, muy al contrario, es una viegja y maduza tecno-
log1a que se remonta a los afios sesenta. De hecho Simula, uno de los lengua-
jes orientados a objetos mds antiguos, fue desarrollado en 1967

El desarrollo de programas orientados a objetos es un enfoque diferente
del mundo informdtico Implica la creacién de modelos del mundo real y la
construccién de programas informdticos basados en esos modelos El proceso
completo de programacién comienza con la construccién de un modelo del
suceso (evento) real El resultado final del proceso es un programa de compu-
tadoia que contiene caracteristicas que representan algunos de los objctos del
mundo real que son parte del suceso

El principio bédsico de la programacién orientada a objetos es que un
sistema de software se ve como una secuencia de «transformaciones» en un
conjunto de objetos. El téimino objeto tiene el mismo significado que un
nombre o una frase nominal. Es una persona, un lugar o una cosa Ejemplos
de objetos del mundo real son: persona, tabla, computadora, avién, vuelo de
avién, diccionario, ciudad o la capa de ozono. La mayoria de los objetos del
mundo real tienen atributos (caracteristicas que los describen). Por ejemplo,
los atributos de una persona incluyen el nombre, la édad, el sexo, la fecha de
nacimiento, la direccidn, etc Los objetos tienen atributos, y eIlos a su vez,
compottamiento El comportamiento (behavior) es el conjunto de cosas que
puede hacer un objeto; por ejemplo, una persona puede estudiar, caminar,
trabajar, etc En sintesis, se puede decit que los objetos conocen cosas y hacen
cosas Las cosas que un objeto conoce son sus atributos; las cosas que puede
hacer un ob]eto son su comportamiento.

Los principios en que se apoyan las tecnologias orientadas a objetos som:

* Objetos como 1nstanc1a de una clase
e Métodos.
¢ Mensajes

xvii

xviii Profogo

Y las caracteristicas que ayudan a definir un objeto somn:

Encapsulamiento.
Modularidad
Abstraccion
Polimorfismo

Las clases se organizan para modelar el mundo real en las siguientes
relaciones:

o Herencia (generalizacién/especializacidn}
s Agregacion

+ Asociacion

* Uso

TIPOS ABSTRACTOS DE DATOS Y CLASES

Una clase e¢s una caracterizacién abstracta de un conjunto de 0bj§tos; todos
los objetos similares pertenecen a una clase determinada Por ej?mplo, un
conjunto de objetos tales como cuadrados, tridngulos, circulos,_ hneas,. ete,
pertenecen a una clase figura De modo mds fom}al, una clage define vangbles
(datos) y métodos (operaciones) comunes a un conjunto de ob_ptos En realidad,
una clase es un prototipo o generador de un conjunto de objetos

Una clase bien disefiada especifica un tipo abstracto de dato (TAD).‘_Un
tipo de dato es abstracto si las operaciones de alto nivel a'decuada‘s a los tipos
de datos estdn aisladas de los detalles de la implementacién asociados con el
tipo de datos. Asi, por ejemplo, si diseflamos una clase circulo que c013v1erte
a un cfrculo en un tipo abstracto de dato, la clase nos proporciona métodos
(funciones) tales como dibujar, mover, ampliaz, contraet, borrar, etc S¢ pueden
utilizar estos métodos para manipular objetos circulo de todas las formas
esperadas Los métodos son todo lo que se necesita conocer sobre la clase
cireulo. Una estructuza de datos fundamental de un circulo puede ser un atray,
un registro, una cadena de caracteres, etc. Los detalles de la I?presentaaén
interna de un cfrculo se pueden ignorar mientras se crean, amplian o mueven
circulos. Un circulo como tipo abstracto de dato se centra exclusi'vamente en
operaciones (métodos) apropiadas a los circulos; un circulo como tipo abstrac-
to de dato ignora totalmente la representacién interna de un circulo ‘

La clase ¢s el blogue de construccién fundamental de un lenguaje de
programacioén orientada a objetos. Una clase es un tipo gbstra.cto de datos
junto con un conjunto de transformaciones permitidas de dicho tipo abstracto
de datos; puede definir también su interfaz a otras clases o funcwnes_, descu-
briendo para ello que parte de su descripcién interna de datos o conjunto de
transformaciones permitidas pueden hacerse piblicos. La regla por defecto es
que nada de una clase es piblica, a menos que se declare explicitamente por
el desarrollador de software que definid 1a clase)

Aunque no es completamente una terminologia esténdal‘ en PQO, el tér-
mino objeto se utiliza normalmente para repiesentar una instancia de una

Prélogo Xix

clase. Otra visién de la clase es que un tiempo de ejecucién tiene un estado,
un comportamiento y una identidad

El entoino orientado a objetos oculta los detalles de implementacién de
un objeto Es la propiedad conocida como ocultacién de la informacién La
parte que no estd oculta de un objeto es su interfaz piblico, que consta de los
mensajes que se pueden enviar al objeto. Los mensajes representan operaciones
de alto nivel, tales como dibujar un circulo. El término encapsulamiento sc
utiliza también para enfatizar un aspecto especifico de un tipo abstracto de
datos. Un TAD combina métodos (operaciones) vy representacién interna (im-
plementacion).

Un objeto es una instancia —ejemplar o caso— de una clase que encapsula
operaciones y representacién. Este encapsulamiento contrasta con la separa-
¢ion tradicional de operaciones (funciones) y representacién (datos) La clase
en C++ y el paquete en Ada-95 soportan el encapsulamiento

ANALISIS Y DISENO ORIENTADO A OBJETOS

El problema fundamental que debe asumir un equipo de desarrollo de software
es convertir el mundo real en un programa informdtico. En esencia, la tarea
clave de la programacién es describir las tareas de especificacion del programa
que resueive el problema dado.

Un problema de programacién se describe normalmente con un conjunto
de especificaciones (detalles que constituyen el problema real). Las especifica-
ciones son paite de lo que se denomina andlisis orientado 2 objetos (AQQ),
que 1esponde en realidad a la pregunta «;Qué hace?» Durante la fase de
andlisis se piensa en las especificaciones en términos intuitivos y con indepen-
dencia del lenguaje y de la mdquina. La etapa critica de esta actividad es
deducir los tipos de objetos del mundo real que estdn implicados y obtenet
los atributos de estos objetos determinando su comportamiento e interac-
ciones.

La siguiente fase del proceso de desarrollo de software es el disefio orientado
a objetos (DOO), que responde a la pregunta «;Cémo Io hace?» Durante esta
fase se comienza a crear un modelo de computadora basado en el andlisis que
realice la tarea especifica concreta En esta etapa se piensa en objetos del
mundo real que pueden ser representados como objetos del mundo informa-
tico. Se deben especificar los objetos con mayor precisién especificando en
detalle lo que los objetos conocen y lo que pueden hacer, y describe con
prudencia sus interacciones. Durante la fase de disefio se pueden encontrar
atributos 1tiles adicionales y comportamiento de los objetos que noaparecie-
ton en la fase de andlisis 0 no estaban definidos con claridad

La diferencia entre AOO y DOO no es clara, y es dificil definiz la transicién
entre ambas etapas. De hecho, ninguna de las metodologias de QO cldsicas,
como Yourdon/Coad, Booch o Rumbaugh (OMT) proporcionan reglas preci-
sas para pasar de una etapa a otra De hecho, las fases AOO y DOO no
representan un proceso estricto de dos etapas, v a veces se funden en una sola
Normalmente, ocurrird que el modelo inicial que se selecciona no es el apro-

XX Prdlogo

piado, y se necesita retroceder y volver a reiterar el proceso su’cesivamente Se
pueden descubrir especilicaciones adicm.nales que no se conoclan al comenzar
su trabajo inicial y encontrar que los atributos o comportamiento de un objeto
sean diferentes de lo que se decidid en la etapa de anzihSIS._De cualqmer_ forma,
el mejor medio para practicar desarrollo de softwe}re orientado a objetos es
realizar el andlisis y disefio de ejemplos de todo tipo Por esta causa, ¢n C'l
libro se incluyen numerosos ejemplos que tratan de ayudar al Jector a fami-
liarizarse con la POO. _ _

La fase de disefio conduce a la fase de implementacion, que consiste en
traducir dicho disefio en un cédigo real en un lenguaje de programacion OO
La fase de codificacién del proceso de desarrollo OO se llama programacion
orientada a objetos (POO). o

El proceso de desarrollo otientado a objetos supone, en smtesm,_la cons-
truccién de un modelo del mundo real que se pueda traducit posteriormente
en un c6digo real escrito en un lenguaje de programacién OO. E’n Ieahdad,
las tres fases, andlisis, disefio y programacidn, interactian entre si. Las deci-
siones de progiamacién pueden cambiar alguqos aspectos del modelo o pue-
den refinar 1ealmente algunas decisiones anteriores _

Los objetos pueden cambiat, o incluso modificarls,e 0 de('il:lClI'SG dtf otros
objetos; atributos y comportamiento se pueden también m.OdIfICElI) an'adu a
cada objeto. En resumen, el andlisis, disefio y prog;amamén no constituyen
un proceso dnico de tres ctapas para la resolucién de un problema, sino que
todas las etapas interactdan entre s para resolver los problemas del mundo
real. Sin embargo, como regla general, el aneilisis.se debe _hacex. ’antes del
disefio, vy éste se ha de hacer antes de la programacion o codificacion.

NOTACIONES ORIENTADAS A OBJETOS

FEl mejor sistema para modelar el mundo real con objetos de un modo préctic’o
es disponer de una notacién grafica consistente y ef101epte. Cad@ metodologia
de andlisis y disefio orientado a objetos posee su propia notacién

Nuestra expetiencia en estos cinco ultimos afios 1mpa1t1qndo cursos de
AOO y DOO a estudiantes de pregrado, postgrado y profesionales nos ha
llevado a seleccionar las notaciones que personalmente hemos comprobado
que son las més idéneas, tanto desde el punto de vista pedagégico como
profesional. Pensando en un aprendizaje 1dpido y gradual, bemos seleccionado
tres metodologias de las mds populares:

¢ Coad/Yourdon
* Booch’93
e OMT (Rumbaugh et al)

Junto con otras dos notaciones, que si bien no son tan conocidas, a
nosotros nos han resultado de gran valor v podemos considetarlas excelentf:s
para el aprendizaje de objetos. Son las notacior}es de Rgimqnd K. Ege y David
Taylor, que hemos incluido en el texto y con ejemplos inspirados en sus textos

Prologo XXi

base, que se¢ recogen en el momento oportuno y en la bibliografia, y gue
recomendamos como lecturas notables v excelentes, asi como referencia obli-
gada de todo buen estudioso de las tecnologias de objetos

PROGRAMACION ORIENTADA A OBJETOS

La programacién orientada a objetos es una extensién natural de Ia actual
tecnologia de programacién, y representa un enfoque nuevo y distinto al
tradicional Al igual que cualquier otro programa, el disefio de un programa
orientado a objetos tiene lugar durante la fase de disefio del ciclo de vida de
desarrollo de software. El disefio de un programa QO es tnico en el sentido
de que sc organiza en funcién de los objetos que manipulard De hecho,
probablemente la parte mds dificil de la creacién de software orientado a
objetos es identificar las clases necesarias y el modo en que interactdan entre si

Desgraciadamente, no hay reglas ficiles para determinar las clases de un
programa dado. La identificacidn de clases puede ser tanto arte como ciencia
El proceso es algo impreciso, y por esta causa han surgido numetosos métodos
que proporcionan reglas para la identificacién de clases y las relaciones que
existen entre ellas; estos métodos son los citados anteriormente.

EL LENGUAJE C++

C++ todavia no es un lenguaje estdndar, aunque ya se encuentra en la fase
final de estandarizacién C++ es sin duda el lenguaje del futuro, y marca las
pautas de desarrollo para nuevos lenguajes, como es el caso de Java, el
lenguaje de programacién orientado a objetos para desarrollo en Internet, o
Ada-95, el lenguaje de desarrollo para sistemas en tiempo real también orien-
tado a objetos

Las caracteristicas comunes mas importantes a las nuevas versiones de
C++ son:

* C++ es esencialmente un superconjunto de C ANSL

¢ C++ tiene las mismas caracteristicas de tipificacién que C ANST para
propiedades no OO

¢ Los compiladores de C++ aceptan normalmente cédigo escrito en la
version original de K&R (Kernighan y Ritchie) Generalmente, los com-
piladores de C++ proporcionan mensajes de error o advertencia cuando
el cédigo C no tiene prototipos

* Desde el punto de vista especifico de sintaxis, algunas caracteristicas de
C han sido mejoradas notablemente:

I Las funciones de entrada/salida printf v scanf se utilizan raia-
mente en C++, y en su lugar se emplean cin y cout, que realizan
un trabajo mejor v mds eficiente

xxii Prélogo

2 Las constantes #define y las mactos han sido sustituidas por el
calificador const y las funciones inline

3 Identificadozes de tipos en tiempo de ejecucion

4 Espacios de nombre

Las principales diferencias entre los diversos compiladores de C+-+ son,
ademds del precio, entornos integrados de desarrqllo (_edltores, d.epurado-
res, etc), velocidad de compilacion, veloci_dad del codigo e;ecutable, sistema en
tiempo de ejecucién, calidad de mensajes de error e mteroperabﬂﬂad de
codigo con otro software, tales como sistemas operativos, sistemas de ventana,
enlazadores u otros programas de aplicacion. ‘ _

Otras diferencias incluyen soporte para manejadoles de excepciones y
plantillas (templates) L a mayorfa de los corppiladores actuales proporcionan
soporte para ambas propiedades Los manejadores (handiers) de excepciones
son construcciones que permiten a los programas recuperar su cpl}trol ante
errores en tiempo de ejecucién no previstos Las plantillas permitidn a las
clases ser definidas mediante tipos genéricos de datos

HISTORIA DEL LENGUAJE C++

Al principio de los ochenta, Bjarne Stroustrup disefié una ’ex.tensién del len-
guaje C al que llamé C con clases, debido a que su caracteristica fundamentgl
era anaditle clases a C El concepto de clase procedia de Simula 67 y servia
paia captuiar el comportamiento del mundo real a la vez que oculta los
detalles de su implementacién _

En 1983-84, C con clases fue redisefiado, extendido e implementado ¢n un
compilador. El lenguaje se denominé C++ vy fue descrito por Stroustrup en
Data Abstraction in C en el Technical Journal (vol 63, nim. 8, octubre 1984),
de AT&T Bell Laboratories. La primera versién cometcial de C++ estuvo
disponible en 1985 y se document6 en el libro de Bjarne Stroustrup The C++
Programming Language, editado por Addison-Wesley en 1986:

El nombre de C++ fue elegido como variante del lenguaje de programa-
cién C. Dado que era una extensién de C, se decidid elegitr C++ df:blflo a
que el operador ++ significa «afiadir uno a 12} va‘rlable>-> y por consiguiente
el lenguaje C++ se supondria que era una versién inmediatamente supetiof o
siguiente a C o o

En realidad, Stroustrup cieé C++ con dos objetivos principales: (_1) hacer
compatible C++ con el C ordinario, y (2) ampliar C con construcciones de
POO basadas en la construccién clase de Simula 67. El lenguaje en su forma
actual ha sido descrito en 1990 por Stroustrup y Ellis en el Annotated C++
Reference Manual (¢l ARM)!, que sirve como documento base pata la estan-

! MARGARET FLLIS y BIARNE STROUSTRUP: The Amnotated C++ Reference Manual Rcadin_g,
Mass, Addison-Wesley, 1990 Existe versién en espafiol con el titulo C++ Manual de referencia
con anotaciones editado por Addison-Wesley/Diaz de Santos en 1994

Prologo xxiii

darizacion de la versién 3.0, actualmente en fase de estandatizacién por el
comité ANSTE

Como C++ es una extensién del C estdndar, la mayoria de los programas
C se pueden compilar utilizando un compilador C++.

La versién actual estandazizada por ANSI —la citada actualizacién 30—
es la que soportan la mayoria de los fabricantes mundiales: Borland, Micro-
soft, Watcom, AT&T, ctc., en sus ultimas actualizaciones tales como 4. 5/5 de
Borland, Visual C++ 4, 1a 10 de Watcom, etc

OBJETIVOS DEL LIBRO

Programacién Orientada a Objetos Conceptos, modelado, diseiio v codificacion
en C++, es una obra, como su nombre indica, esencialmente de objetos. Trata
fundamentalmente de ensefiar a programar con tecnologias de objetos, pero
al contrario que otras obras —incluso algunas nuestras— centradas exclusi-
vamente en un lenguaje de programacién orientada a objetos —casi siempre
C++—, hemos pensado que seria muy interesante —sin abandonar el estudio
de C++— dar mayor importancia a los conceptos teSticos ¥ practicos fun-
damentales del mundo de objetos, que sélo son tratados por libros especificos
de las metodologias de AOO/DOO e incluso ingenieria de software OO y
otros de cardcter avanzado.

Desde finales de los ochenta, en que decidimos adentrarnos en las emer-
gentes tecnologias de objetos, se ha producido un cambio radical en el mundo
de la ingenieria de software. Los objetos que los afios 1988 a 1990 se centraban
en experiencias sobre el primitivo lenguaje C++ y Smallialk e incipientes
trabajos en Eiffel, comenzaron a pasar en los afios 1990 a 1992 al campo
profesional, y asi nacieron las metodologias de andlisis y disefio orientadas a
objetos de primera generacién y que han facilitado la transicién al nuevo
paradigma. Las metodologias pioneras se deben a Shlaet y Mellor, que, junto
con Rebeca WirkBrocks, se consideran como creadores del modelado de ob-
jetos; Yourdon/Coad, autores consolidados de metodologias estructuradas que
se pasaron a metodologias de objetos, y lanzan en esos afios dos excelentes
libros sobre andlisis y disefio OO; Grady Booch, uno de los pioneros del
mundo de ingenierfa de software en tiempo real con Ada, que aprovecha su
expetiencia para lanzar una metodologia de disefic OO que se ha hecho muy
popular y cuya ultima edicién se publicé en 1993; Rumbaugh et al, autores
de la metodologia OMT, seguramente la metodologia mds utilizada en el
mundo del software en estos dltimos afios

La siguiente frontera se produce en 1995, cuando se publica el borrador 0.8
del método unificado disefiado por la unién en una misma empresa (Rational),
de Grady Booch y James Rumbaugh, que han contado también con la cola-
boracién de Ivar Jacobson, creador del use case —caso de uso—, concepto
tedrico fundamental que se ha impuesto en todos los buenos desarrollos de
OO de los ltimes afios. Desde el punto de vista del lenguaje se estd estanda-
rizando C++ con la versidn 30 de AT&T v se ha estandarizado Ada con 1a

XXiv Préloge

versién Ada-95, v se han lanzado al mercado otros lenguajes de oqutos
hibridos: Object Pascal, Object COBOL, Delphi, Visual BASIC 4 —con cier-
tas caracteristicas de objetos—, Visual Object, etc. Los lenguajes puros cldsicos
como Eiffel y Smalltalk luchan por hacerse un hueco en el mercado profesio-
nal, saliendo de los laboratorios de investigacién y umiversitarios hacia el
mundo profesional Internet, el fendmeno social y tecnoldgico de la década de
los noventa y del futuro siglo xx1, ha traido el advenimiento de Java un
lenguaje QO evolucionado de C++ que la empresa Sum lanz6 el afio pasado
y que promete convertirse en un duro competidor de C++. '

Teniendo presente el estado del arte de la ingenietfa de software orientada
a objetos y nuestia experiencia personal en el Departamento de Lenguajes y
Sistemas Informdticos ¢ Ingenierfa de Softwase de la Universidad Pontificia
de Salamanca en Madrid, donde hemos impartido numerosos cursos de pro-
gramacién, andlisis y disefio orientados a objetos, asi como otros cursos,
seminatios y conferencias en otras universidades espafolas y Iatinoamencagas
y en emptesas informdticas multinacionales y escuelas de la administrgmén
publica espafiola, hemos considerado los numesosos consejos, sugerencias y
criticas de alumnos y colegas, y como resultado hemos esctito un contenido
para esta obra que contiene los conceptos vitales de las tecnologias de objetos
que confiamos permitan una progresion y aprendizaje tdpido y ef§c1ente por
parte del lector en el mundo de la programacién otientada a objetos. Para
cumplir estos objetivos, pensamos que serfa muy interesante mezclar con el
mdximo de prudencia conceptos fundamentales tales como:

e Tipos abstractos de datos.

Clases y objetos.

Relaciones de objetos: generalizacién/especializacién.
Herencia

Modelado de objetos,

Disefio orientado a objetos.

Fundamentos de reutilizacién de software con objetos.
Bibliotecas de clases.

Asf pues, Ia obra considera los conceptos tedrico-practicos importantes
de la programacién orientada a objetos, junto con los métodos correspondien-
tes de codificacién en C++ El contenido del libio se ha disenado de modo
que pueda permitir al lector ya iniciado en objetos y/o C++, y al no iniciado
adentrarse en el mundo de los objetos de un modo gradual y con la mayor
eficacia posible. Para ello se ha pensado que el mejor método podifa ser
ensefiar al lector las técnicas de modelado del mundo real mediante objetos,
de modo que cuando se tuviera el modelo idéneo se pudiera pasar fdcilmente
a la codificacién de un programa que resolviera el problema en cuestién
Para conseguir estos objetivos hemos creido conveniente hacer uso no sélo
de los conceptos tedricos ya mencionados, sino recurrir a una herramienta
grafica que facilite al lector realizar el andlisis y disefio previo a la progra-
macién que redunde en el mayor grado de eficiencia por parte del pro-
gramador

FPrologo XNV

CONTENIDO DEL LIBRO

Este libro se apoya fundamentalmente en el emergente paiadigma de la orien-
tacién a objetos y trata de ensefiarle sus conceptos bdsicos, asi como las
técnicas de programacion de dicho paradigma. Supone que el lector tiene
experiencia antetior en programacion en algiin lenguaje, tal como BASIC, C
o Pascal; también supone que el lector tiene experiencia en editar, compilar,
enlazar y ejecutar programas en su computadora De cualquier forma, pen-
sando en los lectores que no conocen C ni C+-+, hemos incluido un apéndice
que contiene una gufa de referencia del lenguaje C++, junto con una parte
completa {Parte IV) que incluye tres capitulos que pretenden ensefiar al lector
la transicién de C a C++, o simplemente el lenguaje C++, caso de no conocer
C/C++, asi como 1eglas prdcticas para poner a punio programas en C++,
con una amplia relacidén de errores tipicos cometidos en programas,

El libro consta de cuatro partes que contienen quince capitulos, todos ellos
con una estructura muy similar: teoria y ejemplos prdcticos desarrollados en la
version 3 0 de C++ de ANSI, de modo que practicamente podrd utilizar con
cualquier compilador de los comercializados en la actualidad de las empresas
Borland, Microsoft, Watcom, etc; un resumen del capitulo y ejercicios propues-
tos al lector, de modo que pueda practicar los conceptos aprendidos en el
capitulo correspondiente

La Parte 1, «El mundo de la orientacién a objetos», describe los conceptos
fundamentales de objetos, relaciones, modelado v lenguajes de programacién
orientada a objetos (LPOO). El Capitulo 1 ofrece una visidon general del
desarrollo del software, con una revisién de los conceptos clave del mismo,
que abarcan desde los tactores de calidad del software a la reutilizacion de
software, pasando por conceptos clave, como abstraccion de datos, encapsu-
lamiento, jerarquia y polimorfismo, entre otros. El Capitulo 2 es una revision
del importante concepto de modularidad y su pieza clave los tipos abstractos
de datos Se han utilizado como herramientas de programacidn los lenguajes
Modula-2, Ada, Turbo Pascal, C y C++ El Capitulo 3 es una descripcion
exhaustiva de los conceptos fundamentales de la programacién orientada a
objetos (clases, objetos, lenguajes, herencia, sobrecarga, ligadura, objetos come-
puestos y reutilizacién) El Capitulo 4 describe los lenguajes de POO, los
clasifica y realiza una sintesis de las propiedades orientadas a objetos de los
lenguajes seleccionados, en este caso Ada, Eiffel y Smalltalk. El Capitulo 5
trata el importante concepto de modelado El proceso de desarrollo de un
sistema de software comienza con la construccién de un modelo del mundo
real Este modelo captura normalmente las caracteristicas mds significativas
del problema, v para ello se apoya en el concepto de relaciones entie clases
Las diferentes relaciones junto con la importante propiedad de la herencia y
sus tipos, se describen también en el Capitulo 5

La Parte II incluye los Capitulos 6 al 11 y explica los fundamentos de la
programacioén orientada a objetos (POO) con C++ El Capitulo 6 describe
cémo declarar y construir clases, disefios v reglas précticas para la construc-
cién de clases El Capitulo 7 examina las clases abstractas y la propiedad de
la herencia, junto con la sintaxis para su implementacion y el problema de la

XXVi Prologo

herencia repetida; el capitolo se termina con una aplicacion prdctica FEl
Capitulo 8 piesenta la propiedad de polimorfismo, junto con el concepto de
ligadura El Capitulo 9 describe las plantillas (templates) y muestra el concepto
de genericidad; examina la sintaxis para declarar plantillas de funciones y de
clases, asi como la definicién de sus funciones miembro y el modo de instanciar
las clases El Capitulo 10 presenta el concepto de excepeién, junto con su
manejo o manipulacién (errores en tiempo de ejecucién), y examina el método
empleado por C++ para lanzar y capturar excepciones; se describe la sintaxis
de C++ para implementar estas operaciones y muestra cémo manejar excep-
ciones. El Capitulo 11 describe la reutilizacion de software con C++ y los
diferentes métodos empleados para ello. Asimismo, se describen las bibliotecas
y contenedores de clases

La Parte III incluye el transcendental Capitulo 12, que describe los prin-
cipios para el desarrollo orientado a objetos y especialmente su disefio Se
describen las notaciones grédficas de las metodologias Booch, Yourdon/Coad
y Rumbaugh (OMT), junto con las reglas prdcticas para la implementacién
con C++ de las diferentes relaciones entre clases; se incluye una pequefia
aplicacién orientada a objetos. La Parte 1V «El lenguaje C++: Sinfaxis,
construccién y puesta apunto de programas» contiene los Capitulos 13 a 15
El Capitulo 13 describe las caracteristicas mds sobresalientes de C++ que lo
diferencian de C en €l sentido de mejorario y ampliarlo. El Capitulo 14 explica
un sistema préctico paia constiuir programas en C/C++ junto con el con-
cepto de programas multiarchivos y el sistema para construir archivos proyec-
to. La puesta a punto de programas en C++ se explica en el Capitulo 14; en
este capitulo se dan reglas pricticas para depurar programas con una extensa
enumeracién de errores tipicos en el desarrollo de programas.

Aunque el lenguaje base del texto es C++ se pretende que ¢l lector pueda
codificar fidcilmente los conceptos fundamentales de objetos v comenzar el
aprendizaje de la POO con otros lenguajes Por esta causa los Apéndices A a
E incluyen guias de referencias de sintaxis de los lenguajes C++, Delphi,
Turbo/Borland Pascal, Ada-95 y Java —el nuevo lenguaje orientado a objetos
de Internet— El Apéndice F explica un concepto importante y especifico de
CH++: la sobrecarga de operadores La serie de apéndices se completa con el
Apéndice G, que contiene sintesis de las notaciones grdficas de las metodo-
logfas de andlisis y disefio orientadas a objetos mds populares y usadas en el
libro. Estas notaciones se han extraido de las fuentes otiginales de las meto-
dologias utilizadas; Booch’93, OMT (Rumbaugh et al) y Coad/Yourdon Por
tltimo, se incluye un glosario de términos de objetos que facilitan la compren-
sién del lector. La bibliografia contiene los libros consultados por el autor en
la escritura de la obra, incluyendo los libros base de las metodologfas de AOO
y DOO utilizadas en el libro.

AGRADECIMIENTOS

Muchas son las personas que me han prestado ayuda de una v otra forma en
la elaboracidn de esta obra y a las que debo mi agradecimiento mds sincero.

Prélogo Xxvii

En particular, deseo expresar mi reconocimiento a mis colegas del Departa-
mento de Lenguajes y Sistemas Informéticos de la Facultad y Escuela Uni-
versitaria de Informdtica de la Universidad Pontificia de Salamanca, en el
campus de Madrid, que han impartido e imparten conmigo Programacion
Orientada a Objetos dentro de la asignatura Metodologia de Ia Programacion,
asi como Analisis y Disefio Orientados a Objetos, cuyas sugerencias, consejos y
criticas han permitido los apuntes originales de la asignatura en este libro que
hoy ve la luz Estos profesores son: Ignacio Zahonero, Antonio Reus, Paloma
Centenera, Rosa Herndndez, Rafael Ojeda, Fernando Davara, M.? Luisa Diez,
Daniel Garcfa y Luis Doreste De un modo especial han contribuido a esta
obra las profesoras Paloma Centenera, Maria Luisa Diez y Rosa Herndndez,
que han volcado su experiencia docente personal en la revisién de las galeradas
de esta obra; tras su lectura han detectado erratas y sobre todo me han dado
consejos, sugerencias y aportaciones personales que han permitido mejozar la
veisién original de esta obra Gracias, amigas y colegas, por vuestia ayuda
También el profesor Ignacio Zahonero ha leido parte de las galeradas y me
ha sugerido ideas de mejora. Aunque no han intervenido directamente en la
obra hay numerosisimas personas que han conttibuido eficieniemente en la
redaccion final de esta obra, sin su colaboracién esta obra no estaria ahora
en la calle Son todos mis alumnos de los dltimos cinco afios a los que he
impartido cursos, seminarios y conferencias sobre tecnologias orientadas a
objetos (andlisis, disefio, programacién v bases de datos) en universidades
espafiolas y Jatinoamericanas, asf como en centros de formacién de empresas
multinacionales y de la administracién espafiola Ellos me han alentado en
todo momento a difundir las tecnologfas de objetos y de ellos he recibido todo
tipo de criticas, consejos y sugerencias que he volcado en muchos casos en el
libro. Por dltimo, deseo expresar de modo muy especial mi agradecimiento a
Jorge Piernavieja, mi antiguo editor —y, sin embargo, amigo— que inicié la
edicién de esta obra y que por sus nuevas responsabilidades profesionales no
la ha podido terminar, pero su consejo v aliento al igual que tantas otras veces
nunca me faltaron. A mi nuevo editor y también amigo Pepe Dominguez que
ha terminado la obra; mi agradecimiento por su paciencia v compiension. Al
lector que ha confiado en esta obra ¢n la esperanza de que le sea lo mds ritil
y eficaz posible en su formacién en programacién orientada a objetos

En Carchelejo (Andalucia-Esparia), verano de 1996
El autor

PARTE |

EL MUNDO DE LA ORIENTACION
A OBJETOS: CONCEPTOS,
RELACIONES, MODELADO

Y LENGUAJES
DE PROGRAMACION

CAPITULO

EL DESARROLLO DE SOFTWARE

CONTENIDO

La complejidad inherente al software

La crisis del software

Factores en la calidad del software
Programacion y abstraccion

El papel (el rol} de la abstraccion

Un nuevo paradigma de programacion
Qrientacién a objetos

Reutilizacién de software

9. Lenguajes de programacion orientados a objetos
1.10. Desarrollo tradicional versus orientado a objetos
1.11. Beneficios de las tecnologias de objetos {TO)
RESUMEN

=l 3 s
COoNOTRWN

La década de los noventa ser3, sin lugar a dudas, la década de
la programacion orientada a objetos. Como Rentsch predijo,
«la programacion orientada a objetos seréd en los ochenta lo
que la programacicn estructurada fue en la década de los se-
tentar. En la actualidad la programacion orientada a objetos
se ha hecho enormemente popular. Escritores y disefiadores
de software, junto a companias importantes en el campo del
software, se dedican de modo continuo a producir compilado-
res de lenguajes, sistemas operativos, bases de datos, etc.,
orientados a objetos.

¢Que es la programacion orientada a objetos? ;Por qué es
tan popular? La programacion orientada a objetos es algo mas
que una coleccidn de lenguajes de programacion, tales comao
Smalitalk, Object Pascal, C++, etc. Se podria decir que este
tipo de programacion es un nuevo medio de pensar sobre lo
que significa computar (computadorizar), es decir, ¢como se
puede estructurar informacion en un computador.

4 Pragramacién orientada a objetos

1.1. LA COMPLEJIDAD INHERENTE AL SOFTWARE

Como Brooks sugieze, «la complejidad del software es una propiedad esencial,
no accidental» Esta complejidad inherente al software, como dice Booch, se
deriva de cuatro clementos: la complejidad del dominio del problema, 1a dificul-
tad de gestionar el proceso de desarrollo, la posible flexibilidad a través del
software y los problemas de caracterizaci6n del comportamiento de sistemas
discretos

1.1.1. La complejidad del dominio del problema

Los problemas que se intentan resolver con software implican normalmente
clementos de ineludible complejidad, en los que se encuentran una gran canti-
dad de requisitos, en muchas ocasiones contradictorios. Esta complejidad se
produce por las dificiles interacciones entre los usuarios de un sistema y sus
desarrolladores: los usuarios encuentran generalmente muy diffcil dar precisién
sobre sus necesidades de forma que los desarrolladores puedan comprender En
casos extremos, los usuatios pueden tener sélo ideas vagas de lo que se desea en
un sistema software

Por otia parte, los usuarios y desarrolladores tienen diferentes perspectivas
de la naturaleza del problema y hacen suposiciones diferentes sobie la naturale-
za de 1a solucién El medio comin de expiesar los requisitos hoy dia es utilizat
un gran volumen de textos, en ocasiones acompafiados por esquemas y dibujos.
Tales documentos son dificiles de comprender, estdn abiertos a diferentes inter-
pretaciones v con frecuencia contienen elementos que son disefios ¢n lugar de
requisitos esenciales.

Otra complicacién frecuente es que los requisitos de un sistema software
cambian durante su desarrollo Esto supone que un sistema grande tiende a
evolucionar con el tiempo y el mantenimiento del software en ocasiones es un
término que no siempre estd bien acufiado.

Para ser mds preciso, existen diferentes términos a definir: el mantenimiento
busca errores; la evolucion responde a cambios de requisitos, y Ia conservacion,
cuando se utilizan medios para mantener piezas de software en funcionamiento
Desgraciadamente, la realidad sugiere que un porcentaje alto de los recursos de
desarrollo de software se gastan en la conservacién del software

1.1.2. La dificultad de gestionar el proceso de desarrollo

El tamafio de un programa no es una gran virtud en un sistema de software. Sin
embargo, la escritura de un gran programa requiere la escrituta de grandes
cantidades de nuevo software v la reutilizacién del software existente Recorde-
mos que hace dos o tres décadas los programas en lenguaje emsamblador se
construian a base de centenares de lineas Sin embargo, hoy es usual encontrar
sistemnas en funcionamiento cuyo tamafio se mide en centenares de millares, o

El desarrollo de software 5

incluso millones de lineas de cédigo. Esta caracteristica se facilita descompo-
mendo nuestra implementacidn en centenares y a veces millones de médulos
independientes Esta cantidad de trabajo exige el uso de un equipo de desarro-
lladozes, aunque se trata por todos los medios de que este equipo sea lo mds
pequedo posible. Ahora bien, a medida que haya mds desarroiladores, se pro-
ducen comunicaciones entre ellos mds complejas, ¢ incluso con coordinacién
dificil entre ellos, particularmente si el equipo estd disperso geograficamente,
como suele ser el caso de proyectos grandes

La rotura de una aplicacién en entidades y 1elaciones que son significativas
a los usuarios es un andlisis convencional y técnicas de disefio. Con la progra-
macién orientada a objetos, este proceso de descomposicién se extiende a la
fase de implementacién. Es mds fdcil diseiar e implementar aplicaciones orien-
tadas a objetos, ya que los obietos en el dominio de la aplicacién se cortespon-
den directamente con los objetos en el dominio del software

1.1.3. La flexibilidad a través del software

El software ofrece flexibilidad, de modo que es posible para un desarroliador
expresar practicamente cualquier clase de abstraccién.

Los sistemas orientados a objetos proporcionan el rendimiento, la flexibi-
lidad y funcionalidad requerida para implementaciones prdcticas. La progia-
macién se puede hacer con extensiones de lenguajes comerciales, tales como
iject-Pascal (Tutbo Pascal, Borland Pascal, Mac Pascal, etc) y C++, que
incotporan a sus tipicas propiedades las propiedades orientadas a objetos, v
lenguajes OO puros, como Smalltalk y FEiffel Por otra paite, las ayudas de
programacion actual mejoran la capacidad del programador para administrar
y modificar sistemas mientras se desarrollan

-La programacion orientada a objetos expande también la variedad de apii-
caciones que se pueden programar, debido a que se liberan las restricciones de
los tipos de datos predefinidos

La programacién orientada a objetos acomoda estructuras de datos hetero-

génc‘ios y complejos Se pueden ailadir nuevos tipos de datos sin modificar
codigo existente.

1.2. LA CRISIS DEL SOFTWARE

En 1968 una conferencia sobre software, patrocinada por la OTAN, asumié los
términos ingenieria del software y crisis del software. Con estos términos se
queria expresar que el software era caro, poco fiable y escaso

L as metodologias v técnicas estructurales que han reinado en la década de
los setenta y ochenta no han eliminado el problema, v de hecho la crisis del
software continiia hoy en dia Pese a las muchas herramientas y métodos utili-
zados, los problemas del disefio descendentes permanecen igual, posiblemente
debido a que la complejidad del problema ha crecido considerablemente

6 Programacion orientada a objetos

Entre las diferentes fases del ciclo de vida del software (Fig. 1.1), el mante-
nimiento, aunque en tiempos fue despreciada su importancia, se considera ac-
tualmente como uno de los problemas mds rigurosos en el desarrollo del soft-

ware.
Andlisis W
Disefio I‘w
Implementacién
N

Depuracion

Mantenimiento

Figura 1.1. Ciclo de vida del software,

Muchos investigadores sugieren que los costes de software requieren mds de
la muitad de los costes y recursos globales en el desarrollo de software.

Implementacion
7 %

Depuracion
Andlisis 15 %
6 %

Disefio
5%

Mantenimiento
67 %

Figura 1.2. Costes de las diferentes fases del ciclo de vida
de un proyecto software,

E! desarroflo de software 7

Los cambios realizados en la evolucién de un programa son el punto débil
de los métodos tradicionales de desarrolio de softwaie, siendo paradéjicamente
uno de los puntos fuertes de los métodos de desarrollo de software orientado a
objetos.

En 1986, Fredrick P Brooks', en un famoso articulo, apuntaba que en los
ultimos diez afios no se habia producido ningin progreso significativo en ¢l
desarrollo de software, y analizaba criticamente todas las tecnologias mas pro-
metedoras. Aunque él confesaba que tenia mds confianza en la programacién
orientada a objetos que en cualquier otra tecnologia, mantenfa dudas sobre sus
ventajas efectivas

Recientemente, las propuestas de reusabilidad o reutilizacion, «rensability», de
componentes software, se consideran como bloques iniciales para la construc-
cién del programa, de modo similar a la construccion de cualquier objeto
complejo (tal como un automévil} que se construye ensamblando sus partes.

En respuesta al articulo de Brooks, Brad Cox?, el inventor de Objective-C,
publicé un articulo en el que esencialmente rebatia las tesis de Biooks:

Existe una bala de plata. Es un arma tremendamente potente, impulsada po:
vastas fuerzas econdmicas a la que nuevos obstdculos técnicos sélo pueden resistir
brevemente

La bala de plata es un cambio cultural en lugar de un cambio tecnoldgico Es
un nuevo paradigma; una revolucién industrial basada en partes reutilizables e
intercambiables gue modificardn el universo del software, de igual modo que la
revolucién industrial cambid la fabricaciéon

Por consiguiente, la POO (Programacion Ornentada a Objetos) no sélo son
nuevos lenguajes de programacidn, sino un nuevo modo de pensar y disefiar
aplicaciones que pueden ayudar a resolver pioblemas que afectan al desarrollo
del software. Sin embargo, el lenguaje debe ser capaz de soportar el nuevo
paradigma, siendo por consiguiente una parte esencial de esta revolucién.

1.3. FACTORES EN LA CALIDAD DEL SOFTWARE

La construccidn de software requiere el cumplimiento de numerosas carac-
teristicas Entre ellas se destacan las siguientes:

Eficiencia

La eficiencia del software es su capacidad paia hacer un buen uso de los recur-
sos que manipula

' BrROOKS, Frederik P Ji.: «No Silver Bullets, Computer 10-19, abril 1986
2 Cox, Brad I: «There is a Silver Bullet», Byte. 20%-218, octubre 1987

8 Programacidn orientada a objetos

Transportabilidad {portabilidad)

La transportabilidad o portabilidad es la facilidad con la que un software
puede ser transportade sobre diferentes sistemas fisicos o Idgicos.

Verificabilidad

La verificabilidad es facilidad de verificacién de un software; es su capacidad
para sopottar los procedimientos de validacién y de aceptar juegos de test o
ensayo de programas

Integridad

La integridad es la capacidad de un software para proteger sus propios compo-
nentes contra los procesos que no tengan derecho de acceso.

Facil de utilizar

Un software es fdcil de utilizar si se puede comunicar con él de manera cémoda.

Correccion

Capacidad de los productos software de realizar exactamente las tareas defini-
das por su especificacién

Robustez

Capacidad de los productos software de funcionar incluso en situaciones anor-
males

Extensibilidad

Facilidad que tienen los productos de adaptarse a cambios en su especificacién
Existen dos principios fundamentales para conseguir esto:

o disefio simple;
e descentralizacion.

Reutilizacion

Capacidad de los productos para ser reutilizados, en su totalidad o en parte, en
nuevas aplicaciones.

Compatibilidad

Facilidad de los productos para ser combinados con otros.

El desarrollo de software 9

1.3.1. Razones fundamentales que estan influyendo
en la importancia de la POO

Algunas de las causas que estdn influyendo considerablemente en el notable
desarrollo de las técnicas orientadas a objetos son:

e La OO (Orientacion a Objetos) es especialmente adecuada para realizar
determinadas aplicaciones, sobre todo realizacién de prototipos y simula-
cién de programas.

* Los mecanismos de encapsulacién de POO soportan un alto grado
de reutilizacién de cédigo, que se incrementa por sus mecanismos de
herencia

e En el entorno de las bases de datos, la QOO se adjunta bien a los modelos
semdnticos de datos para solucionar las limitaciones de los modelos tradi-
cionales, incluido el modelo relacional

¢ Aumento espectacular de LPOO (Lenguajes de Programacién Qrienta-
dos a Objetos).

» Interfaces de usuario grdficos (por iconos) vy visuales. Los interfaces de
usuario de una aplicacién manipulan la entrada vy salida del usuario. Por
consiguiente, su funcién principal es la comunicacién con el usuario final
La entrada al sistema se puede controlar a través de Ifneas de Srdenes
(enfoque utilizado por DOS y UNIX), o alternativamente el usuario pue-
de interactuar con el sistema, con construcciones de programacion visua-
les, tales como iconos de menus, Windows, Macintosh, etc

Estas razones hacen fundamentalmente que dentro de las tendencias actua-
les de la ingenieria de software, el marco de POO se revela como el mds
adecuado para la elaboracién del disefio y desartollo de aplicaciones

Este marco se caracteriza por la utilizacién del disefio modular QO y la
reutilizacién del software. Los TAD (Tipo Abstracto de Dato) han aumentado
la capacidad para definir nuevos tipos (clases) de objetos, cuyo significado se
definird abstractamente, sin necesidad de especificar los detalles de implementa-
cidn, tales como la estructura de datos a utilizar para la representacién de los
objetos definidos

Los objetos pasan a ser los elementos fundamentales en este nuevo maico,
en detrimento de los subprogramas que lo han sido en los marcos tradicionales.

1.4, PROGRAMACION Y ABSTRACCION

Para comprender mejor el significado de la revolucion que suponen las tecno-
logias orientas a objetos, se va a examinasr uno de los elementos [undamentales:
progiamacion por abstraccidn

En general, un programa no es mds que una descripcién abstracta de un
procedimiente o fendmeno que existe o sucede en el mundo teal Frecuente-
mente, un programa imita un comportamiento o accién humana; otras veces
simula (es decir, lo reproduce) un fenémeno fisico.

10 Programacidn orientada a objetos

Sin embargo, la relacién entre abstraccidn y lenguaje de programacion es
doble: por un lado se utiliza el lenguaje de programacién para escribir un
programa que es una abstraccién del mundo real; por otro lado se utiliza el
lenguaje de programacion para describir de un modo abstracto el comporta-
miento fisico de la computadora que se estd utilizando (por ejemplo utilizando
nimeros decimales en lugar de niimeros binarios, variables en lugar de celdas
de memoria direccionadas explicitamente, etc.)

En la década de los cincuenta, el Unico mecanismo de abstraccién era el
lenguaje ensamblador y de mdquina, que ofrecfa la posibilidad de utilizar nom-
bres simbdlicos para representar celdas de memoria Posteriormente, los len-
guajes de alto nivel ofrecieron un nuevo nivel de abstraccién

El arte de la programacion es el método por el que se describitd a una
computadora (mediante un lenguaje de programacion) un fenémeno, una ac-
¢ién, un comportamiento o una idea

1.5. EL PAPEL (EL ROL) DE LA ABSTRACCION

Los programadotes han tenido que luchar con el problema de la complejidad
durante mucho tiempo desde el nacimiento de la informdtica Para comprender
lo mejor posible la importancia de las téenicas orientadas a objetos, revisemos
cudles han sido los diferentes mecanismos utilizados por los programadores
para controlar la complejidad. Entre todos ellos destaca la abstraccidn. Como
describe Wulft: «Los humanos hemos desarrollado una téenica excepcional-
mente potente pata tratar la complejidad: abstraernos de ella. Incapaces de
dominar en su tolalidad los objetos complejos, se ignora los detalles no esencia-
les, tratando en su lugar con el modelo ideal del objeto v centrdndonos en el
estudio de sus aspectos esenciales »

En esencia, la abstraccidn es la capacidad para encapsular v aislar la informa-
cion del disefio y ejecucidn En otro sentido, las técnicas orientadas a objetos se
ve como 1esultado de una larga progresién histérica que comienza en los pro-
cedimientos y sigue en los mdédulos, tipos abstractos de datos v objetos.

1.5.1. La abstraccion como proceso natural mental

Las personas normalmente comprenden el mundo construyendo modelos men-
tales de partes del mismo; tratan de comprender cosas con las que pueden
interactuar: un modelo mental es una vista simplificada de cémo funciona de
modo que s¢ pueda interactuar contra ella. En esencia, este proceso de cons-
truccidn de modelos es lo mismo que el disefio de software, aunque ¢l desarro-
llo de software es tnico: el disefio de software produce el modelo que puede ser
manipulado por una computadora

Sin embaigo, los modelos mentales deben ser mds sencillos que el sisiema al
cual imitan, 0 en caso contrario serdn inttiles. Por ejemplo, consideremos un
mapa como un modelo de su territorio. A fin de ser Gtil, el mapa debe ser m4s
sencillo que el territorio gue modela. Un mapa nos ayuda, ya que abstrae sdlo

El desarrollo de software 11

aquellas caracteristicas del territorio que deseamos modelar. Un mapa de ca-
rreteras modela cémo conducit mejor de una posicidén a otra. Un mapa topo-
grafico modela el contorno de un territorio, quizd para planear un sistema de
largos paseos o caminatas.

De igual forma que un mapa debe ser mds pequefio significativamente que
su territorio e incluye sélo informacidn seleccionada cuidadosamente, asi los
modelos mentales abstraen esas caracteristicas de un sistema requerido para
nuestra comprension, mientras ignotan caracteristicas irrelevantes Este proce-
so de abstraccién es psicoldgicamente necesario y natural: la abstraccién es
crucial para comprender este complejo mundo.

La abstraccién es esencial para el funcionamiento de una mente humana
normal y es una herramienta muy potente para tratar la complejidad Conside-
ra1, por ejemplo, el gjercicio mental de memorizar nimeros. Un total de siete
digitos se puede memorizar con mds o menos facilidad Sin embaigo, si se
agrupan y se denominan nimetos de teléfono, los digitos individuales se rele-
gan en sus detalles de mds bajo nivel, credndose un nivel abstracto y mds alto,
en ¢l que los siete nlimeros se organizan en una dnica entidad. Utilizando este
mecanismo se pueden memorizar algunos nimeros de teléfonos, de modo que
la agrupacién de diferentes entidades conceptuales es un mecanisno potente al
servicio de la abstiaccién.

1.5.2. Historia de la abstraccion del software

La abstraccion es la clave para disefiar buen soltware En los primeros dias de
la informdtica, los programadores enviaban instrucciones binarias a una compu-
tadora, manipulando directamente interrupciones en sus paneles fiontales Los
nemotécnicos del lenguaje ensamblador eran abstiacciones disehadas para evi-
tar que los programadores tuvieran que recordar las secuencias de bits que
componen las instrucciones de un programa FEl siguiente nivel de abstraccidn
se consigue agrupando instrucciones primitivas para formar macroinstrucciones
Por ejemplo, un conjunto se puede definir por abstraccidn como una colec-
cion no ordenada de elementos en el que no existen duplicados. Utilizando esta
definicién, se pueden especificar si sus elementos se almacenan en un array, una
lista enlazada o cualquier otra estructura de datos Un conjunto de instiuecio-
nes realizadas por un usuario se pueden invocar por una macioinstruccién; una
macioinstruccién instruye a la maquina para que realice muchas cosas Tras los
lenguajes de programacién ensambladores aparecieron los lenguajes de progia-
macién de alto nivel, que supusieron un nuevo nivel de abstraccién Los len-
guajes de programacidn de alto nivel permitieron a los programadores distan-
ciarse de las interioridades arquitectdnicas especificas de una mdquina dada.
Cada instiuccidén en un lenguaje de alto nivel puede invocar varias mstruceio-
nes mdquina, dependiendo de la maquina especifica donde se compila el pro-
grama. Esta abstraccidn permitia a los programadores escribir software para
propdsito genérico, sin preocuparse sobre que maquina corre el programa
Secuencias de senfencias de lenguajes de alto nivel se pueden agrupar en
procedimientos y se invocan por una sentencia La programacidn estructurada

12 Programacidn orientada a objetos

alienta el uso de abstracciones de control, tales como bucles o sentencias if-then,
que se han incorporado en lenguajes de alto nivel Estas sentencias de control
permitieron a los programadores abstraer las condiciones comunes para cam-
biar la secuencia de ejecucion.

El proceso de abstraccion fue evolucionando desde la aparicién de los pri-
meros lenguajes de programacién. El método mds idéneo para controlar la
complefidad fue aumentar los niveles de abstraccién. En esencia, la abstraccion
supone la capacidad de encapsular y aislar la informacién del disefio y gjecu-
cién En un determinado sentido, las técnicas orientadas a objetos pueden verse
como un preducto natural de una larga progresion histdrica, que va desde las
estructuras de control, pasando por los procedimientos, los médulos, los tipos
abstractos de datos y los objetos.

En las siguientes secciones describitemos los mecanismos de abstraccién
que han conducido al desarrollo preofundo de los objetos: procedimientos, ma-
dulos, tipos abstractos de datos y objetos

1.5.3. Procedimientos

Los procedimientos y funciones fueron uno de los primeros mecanismos de
abstraccidén que se utilizaron ampliamente en lenguajes de programacién Los
procedimientos permitian tareas que se ejecutaban rdapidamente, o eran ejecu-
tadas sélo con ligeras variaciones, que se reunian en una entidad y se reutiliza-
ban, en lugar de duplicar el cédigo varias veces Por otra parte, el procedimien-
to proporciond la primera posibilidad de ocultacion de informacion. Un
programador podia escribit un procedimiento o conjunto de procedimicentos
que se utilizaban por otros programadores. Estos otros programadores no
necesitaban conocer con exactitud los detalles de la implementacidn; sélo nece-
sitaban el interfaz necesario. Sin embaigo, los procedimientos no resolvian
todos los problemas En particular, no era un mecanismo efectivo para ocultar
la informacion v para resolver el problema que se producia al trabajar multi-
ples programadores con nombres idénticos.

Para ilustrar el problema, consideremos un programador que debe escribir
un conjunto de rutinas para implementar una pila. Siguiendo los criterios cldsi-
cos de disefio de software, nuestro programador establece en primer hagar el
interfaz visible a su trabajo, es decir cuatio rutinas: meter, sacar, pilavacia
¥ pilallena. A continuacién implementa los datos mediante arrays, listas
enlazadas, etc. Naturalmente, los datos contenidos en la pila no se pueden
hacer locales a cualquiera de las cuatro 1utinas, ya que se deben compartir por
todos. Sin embargo, si las dnicas elecciones posibles son variables locales o
globales, entonces la pila se debe mantener en variables globales: por el contra-
rio, al ser las variables globales, no existe un método para limitar la accesibili-
dad o visibilidad de dichas variables. Por ejemplo, si la pila se representa
mediante un array denominado datospila, este dato debe ser conocido por
otros programadores, que puedan desear crear variables utilizando el mismo
nombre pero relativo a las referidas rutinas De modo similar, las rutinas cita-
das estdn reservadas y no se pueden utilizar en otras partes del programa para

El desarrolfo de software 13

otros propdsites. En Pascal existe ¢l dmbito local v global Cualquier ambito
que permite acceso a los cuatro procedimientos debe permitir también el acceso
a sus datos comunes. Para resolver este problema se ha desarrollado un meca-
nismo de estructuracién diferente

1.5.4. Moaodulos

Un mdédulo es una técnica que propotciona la posibilidad de dividir sus datos y
procedimientos en una parfe privada —sdlo accesible dentro del médulo— vy
parte piblica —accesible fuera del médulo— Los tipos, datos {variables) y
procedimientos se pueden definir en cualquier parte

El criterio a seguir en la construccién de un médulo es que si no se necesita
algin tipo de informacion, no se debe tener acceso a ella. Este criterio es la
ocultacidn de informacion

Los médulos resuelven algunos problemas, pero no todos los problemas del
desarrollo de software Por ejemplo, los mddulos permitirdn a nuestios progra-
madores ocultar los detalles de [a implementacién de su pila, pero ;qué sucede
si otros usuatios desean tener dos o mds pilas? Supongamos que un programa-
dot ha desarrollado un tipo de dato Complejo (representacion de un nimero
complejo) v ha definido las operaciones aritmeéticas sobre nimeros complejos
—suma, resta, multiplicacién y divisién; asimismo ha definido rutinas para
convertir niimeros convencionales a complejos. Se presenta un problema: sélo
puede manipular un niimero complejo El sistema de ntmeros complejos no
serd 1til con esta restriccién, pero es la situacion en que se encuentra el progia-
mador con médulos simples

Los médulos proporcionan un método efectivo de ocultacién de la informa-
cién, pero no permiten realizar instanciacidn, que es la capacidad de hacer
multiples copias de las zonas de datos

1.5.5. Tipos abstractos de datos

Un tipo abstracto de datos (1 AD) es un tipo de dato definido por el programa-
dor que se puede manipular de un modo similar a los tipos de datos definidos
por el sistema. Al igual que los tipos definidos por el sistema, un tipo de dato
abstracto corresponde a un conjunto (puede ser de tamafio indefinido) de valo-
res legales de datos v un ndmero de operaciones primitivas que se pueden
tealizar sobre esos valores. Los usuarios pueden crear variables con valores que
estdn en el rango de valores legales y pueda operar sobre esos valores utilizan-
do las operaciones definidas Por ejemplo, en el caso de la pila ya citada se
puede definir dicha pila como un tipo abstracto de datos y las operaciones
sobre la pila como las tnicas operaciones legales que estdn permitidas para ser
realizadas sobre instancias de la pila.

Los médulos se utilizan frecuentemente como una técnica de implementa-
cién para tipos abstractos de datos, v el tipo abstracto de datos es un concepto
mds tedrico. Para construir un tipo abstracto de datos se debe poder:

14 Programacion orientada a objetos

—_

Exponer una definicién del tipo

2. Hacer disponible un conjunto de operaciones que se puedan utilizar
para manipular instancias de ese tipo

3. Proteget los datos asociados con el tipo de modo que sélo se pueda
actuar sobre ellas con las rutinas proporcionadas.

4. Hacer instancias multiples del tipo

Los médulos son mecanismos de ocultacién de informacién y no cumplen
bdsicamente mds que los apaitados 2 vy 3. Los tipos abstractos de datos se
implementan con mddulos en Moduia-2 y paguetes en CLU o Ada

1.5.6. Objetos

Un objeto es sencillamente un tipo abstracto de datos al que se afaden impor-
tantes innovaciones en compatticién de cédigo y reutilizacidn Los mecanismos
bésicos de orientacién a objetos son: objetos, mensajes y métodos, clases e ins-
tancias y herencia

Conceptos clave

Abstraccién Encapsulacion Persisiencia

Herencia Polimorfismo Geneticidad

Entidades bdsicas

Mensajes Clases Herencia

ot :
Objeto Métodos Instancias Jerarquia

Figura 1.3. Principios bésicos de la orientacion a objetos,

Una idea fundamental es la comunicacién de los objetos a través de paso de
mensajes. Ademds de esta idea, se afiaden los mecanismos de herencia v polimor-
fismo. La herencia permite diferentes tipos de datos para compartir el mismo
codigo, permitiendo una reduccién en el tamafio del cédigo y un incremento en
la funcionalidad. El pelimorfismo permite que un mismo mensaje pueda actuar
sobre objetos diferentes y comportarse de modo distinto

E! desarrolfo de software 15

La persistencia se refiere a [a permanencia de un objeto, esto es, la cantidad
de tiempo para el cual se asigna espacio y permanece accesible en la memoria
del computador.

1.6. UN NUEVO PARADIGMA DE PROGRAMACION

La programacién orientada a objetos (POO)Y* se suele conocer como un nuevo
paradigma de progiamacién. Otros paradigmas conocidos son: el paradigma de
la programacidn imperativa (con lenguajes tales como Pascal o C), el paradigma
de la programacidn [6gica (PROLOG) y el paradigma de la progi amacion funcio-
nal (Lisp). El significado de paradigma® (paradigma en latin; paradeigma en
griego) en su origen significaba un ejemplo ilustrativo, en particular enunciado
modelo que mostraba todas las inflexiones de una palabra En el libio The
Structure of Scientific Revolutions, el historiador Thomas Kuhn* describia un
paradigma como un conjunto de teorfas, estindai y métodos gue juntos repre-
sentan un medio de organizacién del conocimiento: es decir, un medio de
visualizar el mundo En este sentido, la programacién orientada a objetos es un
nuevo paradigma La orientacidn a objetos fuerza a reconsiderar nuestro pen-
samiento sobre la computacién, sobte lo que significa realizar computacién y
sobre cémo se estructuta la informacién dentro del computador?®

Jenkins vy Glasgow observan gue «la mayotfa de los programadores traba-
jan en un lenguaje y utilizan sélo un estilo de programacién Ellos programan
en un paradigma forzado por el lenguaje que utilizan Con frecuencia, ne se
enfrentan a métodos alternativos de resolucién de un problema, y por consi-
guiente tienen dificultad en ver la ventaja de elegir un estilo mds apropiado al
problema a manejar» Bobrow y Stefik definen un estilo de programacién como
«un medio de organizacién de programas sobre la base de algin modelo con-
ceptual de programacidén y un lenguaje apropiado para hacer programas en un
estilo claro». Sugieren que existen cuatro clases de estilos de programacién:

e Orientados a procedimientos Algoritmos

e Orientados a objetos Clases v objetos
¢ Orientados a l6gica Expresado en cdlculo de predicados
¢ Orientados a reglas Reglas if-then

No existe ningtin estilo de programacién idéneo para todas las clases de
programacion. La orientacidn a objetos se acopla a la simulacién de situacio-
nes del mundo real

En POQ, las entidades centrales son los ebjetos, que son tipos de datos que
encapsulan con el mismo nombie estructuras de datos y las operaciones o
algoritmos que manipulan esos datos.

* Un ejemplo que sirve como modelo o patrén: Dictionary of Science and Technology Academic
Press, 1992

* Kunn, Thomas S.: The Structure of Scientific Revolution 2° ed , University of Chicago Press,
Chicago, 1970.

* Object-Oriented Programming (OOP)

16 Programacién orientada a objetos

1.7. ORIENTACION A OBJETOS

La orientacién a objetos puede describitse como el conjunto de disciplinas (in-
genieria) que desarrollan y modelizan software que facilitan la construccién de
sistemas complejos a partir de componentes.

El atractivo intuitivo de la orientacién a objetos es que propoiciona concep-
tos y herramientas con las cuales se modela y representa el mundo real tan ficl-
mente como sea posible Las ventajas de la orientacion a objetos son muchas en
programacién y modelacién de datos. Como apuntaban Ledbetter y Cox (1985):

La programacidn origntada a objetos permite una representacién mds directa
del modelo de mundo 1eal en el cddigo El resultado es que la transformacidn
radical normal de los requisitos del sistema (definido en términos de usuario} a la
especificacidn del sistema {definido en términos de computador) se reduce consi-
derablemente

La Figura 14 ilustra el problema Ultilizando técnicas convencionales, el
cédigo generado para un problema de mundo 1eal consta de una primera
codificacién del problema y a continuacién la transformacién del problema en
términos de un lenguaje de computador Von Newmann Las disciplinas y técni-
cas orientadas a objetos manipulan la transformacién automdticamente, de
modo que el volumen de cédigo codifica ¢l problema y la transformacién se
minimiza. De hecho, cuando se compara con estilos de programacién conven-
cionales (procedimentales por procedimientos), las reducciones de cédigo van
desde un 40 por 100 hasta un orden de magnitud elevado cuando se adopta un
estilo de programacion orientado a objetos.

Los conceptos y herramientas orientados a objetos son tecnologias que
permiten que los problemas del mundo real sean expresados de modo fécil y

Problema del

Transformacion de Von Newman

Programa <

Codificacion del programa

Figura 1.4 Construccion de software.

El desarrollo de software 17

natural Las técnicas orientadas a objetos proporcionan mejoras y metodo-
logias paira construir sistemas de software complejos a paitir de unidades de
software modularizado y reutilizable.

Se necesita un nuevo enfoque para construir softwate en la actualidad Este
nuevo enfoque debe ser capaz de manipular tanto sistemas grandes como pe-
quefios y debe crear sistemas fiables que sean flexibles, mantenibles v capaces
de evolucionar para cumplir las necesidades de cambio.

La tecnologia orientada a objetos puede cubrir estos cambios y algunos
otros mds en el futuro

La orientacién a objetos trata de cumplir las necesidades de los usuarios
finales, asi como las propias de los desarrolladores de productos software. Estas
tareas se 1ealizan mediante la modelizacién del mundo teal. El soporte funda-
mental es el modelo objeto. Los cuatro elementos {propiedades) mds importan-
tes de este modelo® son:

» Abstraccidn.

¢ Encapsulacidn
e Modularidad
o Jerarquia.

Como sugiere Booch, si alguno de estos elementos no existe, se dice que el
modelo no es orientado a objetos.

1.7.1. Abstraccion

La abstraccion es uno de los medios mds importantes, mediante el cual nos
enfrentamos con la complejidad inherente al software. La abstraccién es la
propiedad que permite representar las caracteristicas esenciales de un objeto,
sin preocuparse de las 1estantes caracteristicas (no esenciales)

Una abstraccién se centra en la vista externa de un objeto, de modo que
sirva para sepatar el comportamiento esencial de un objeto de su implementa-
cién Definir una abstraccién significa describir una entidad del mundo real, no
importa lo compleja que pueda ser, y a continuacién utilizar esta descripeién en
un programa

El elemento clave de la programacion orientada a objetos es la clase. Una
clase se puede definit como una descripcién abstracta de un grupo de objetos,
cada uno de los cuales se diferencia por su estado especifico y por la posibilidad
de 1ealizar una serie de operaciones. Por ejemplo, una pluma estilografica es un
objeto que tiene un estado (llena de tinta o vacia) y sobre la cual se pueden
realizar algunas operaciones (por ejemplo escribir, poner o quitar el capuchdn,
llenar de tinta si estd vacia)

La idea de escribir programas definiendo una serie de abstracciones no es
nueva, pero el uso de clases para gestionar dichas abstracciones en lenguajes de
programacién ha facilitado considerablemente su aplicacién

¢ Boocn, Grady: Object-Oriented Analysis and Design with Applications Benjamin/Cummings,
1994

18 Prograrnacion otientada a objetos

1.7.2. Encapsulacion

La encapsulacion o encapsulamiento es la propiedad que permite asegurar que el
contenido de la informacién de un objeto estd oculta al mundo exterior: el
objeto A no conoce lo que hace el objeto B, y viceversa La encapsulacién
(también se conoce como ocultacion de la informacion), en esencia, es el proceso
de ocultar todos los secietos de un objeto que no contribuyen a sus carac-
teristicas esenciales.

La encapsulacién permite la divisién de un programa en mddulos Estos
mdédulos se implementan mediante clases, de forma que una clase representa la
encapsulacion de una abstraccién. En la prdctica, esto significa que cada clase
debe tener dos partes: un interfaz y una implementacién El interfaz de una
clase captura sélo su vista externa y la implementacidn contiene la representa-
cién de la abstraccién, asi como Jos mecanismos que realizan el comportamien-
to deseado

1.7.3. Modularidad

La modularidad es la propiedad que permite subdividii una aplicacién
en pattes mds pequefias (llamadas mddulos), cada una las cuales debe sex
tan independiente como sea posible de la aplicacién en si y de las restantes
partes

La modularizacién, como indica Liskov, consiste en dividir un programa en
mdédulos que se puedan compilar po1 separado, pero que tienen conexiones con
otros médulos. Al igual que la encapsulacién, los lenguajes soportan la modu-
laridad de diversas formas. Por ejemplo, en C++ los médulos son archivos
compilados por separado. La préctica usual (se verd en el Capitulo 2} es situar
los interfaces de los médulos en archivos con nombres con extensién . h (ar chi-
vos de cabecera} y tas implementaciones de los médulos se sitdan en archivos
con nombies con extension . cpp.

En Ada, el mddule se define como paquete (package) Un paquete tiene dos
partes: la especificacion del paquete y el cuerpo del paquete; también se pueden
compilar por separado

Como se verd en el Capitulo 2, la modularidad es la propiedad de un sistema
que permite su descomposicion en un conjunto de médulos cohesivos y débil-
mente acoplados

1.7.4. Jerarquia

La jerarquia es una propiedad que permite una ordenacién de las abstiaccio-
nes. Las dos jerarquias mds importantes de un sistema complejo son: estructura
de clases (jerarquia «es-un» (is-a): generalizacién/especializacidn) y estructura
de objetos (jerarquia «parte-de» (part-of }: agregacién)

El desarrollo de software 19

N o 'se debe confundlr .clases y objetos de far n'usma clase un coche rOJo _
un cochie azul no son objetos de cIases dlferentes sino ob}etos de la mlsma
clase con un: atnbuto d1ferente

Las jeratquias de generalizacion/especializacién se conocen como herencia.
Bdsicamente, 1a herencia define una relacion entre clases, en donde una clase
comparte la estructura o comportamiento definido en una o mds clases (heren-
cia simple y herencia miltiple, respectivamente).

La agregacion es el concepto que permite el agrupamiento fisico de estruc-
turas relacionadas I6gicamente Asi, un camién se compone de ruedas, motoi,
sistema de transmisién y chasis; en consecuencia, camidn es una agregacion, y
ruedas, motor, transmisioén y chasis son agregados de camién

1.7.5. Polimorfismo

La quinta propiedad significativa de Jos lenguajes de programacién orientados
a objetos es el polimorfismo. Esta propiedad no suele ser considerada como
fundamental en los diferentes modelos de objetos propuestos, pero, dada su
importancia, no tiene sentido considerar un objeto modelo que no soporte esta
propiedad.

Polimorfismo es la propiedad que indica, literalmente, la posibilidad de que
una entidad tome muchas formas. En términos prdcticos, el polimorfismo per-
mite 1eferirse a objetos de clases diferentes mediante el mismo elemento de
programa y realizar la misma operacién de diferentes formas, segiin sea el
objeto que se referencia en ese momento

Por ¢jemplo, cuando se describe la clase mamiferos se puede observar que la
operacidn comer es una opetacion fundamental en la vida de los mamiferos, de
modo que cada tipo de mamifero debe poder realizar la operacién o funcién
comer Por ofra parte, una vaca o una cabra que pastan en un campo, un nifio
que se come un bombén o caramelo y un leén que devora a otro animal, son
diferentes formas que utilizan los distintos mamiferos para realizar la misma
funcién (comer).

El polimorfismo implica la posibilidad de tomar un objeto de un tipo
(mamifero, por ejemplo) e indicarle que ejecute comer; esta accién se ejecutard
de diferente forma, segin sea el objeto mamifero sobre el que se aplica

Clases, herencia y polimorfismo son aspectos claves en la programacion
orientada a objetos, y se reconocen a estos elementos como esenciales en la
orientacién a objetos. El polimorfismo adquiete su médxima expresién en la
derivacidn o extension de clases, es decit, cuando se obtiene una clase a partir de
una clase ya existente, mediante la propiedad de derivacién de clases o heren-
cia. Asi, por ejemplo, si se dispone de una figura que represente figuras genéri-
cas, se puede enviar cualquier mensaje, tanto a un tipo derivado (elipse, circulo,
cuadtado, etc) como al tipo base. Por gjemplo, una clase figura puede aceptar
los mensajes dibujar, borrar y mover Cualquier tipo derivado de una figura s
un tipo de figura y puede recibir el mismo mensaje. Cuando se envia un mensaje,

20 Programacidn orientada a objetos

por ejemplo dibujar, esta tarea se1d distinta seglin que la clase sea un triangulo,
un cuadrado o una elipse Esta propiedad es el polimorfismo, que permite que
una misma funcién se comporte de diferente forma segin sea la clase sobre la
que se aplica La funcién dibujar se aplica igualmente a un circulo, a un cuadra-
do o a un tridngulo, v el objeto ejecutard el cédigo apropiado dependiendo del
tipo especifico.

El polimorfismo requiere ligadura tardia o posteigada {también llamada
dindmica), y esto sélo se puede producir en lenguajes de programacién orienta-
dos a objetos. Los lenguajes no orientados a objetos soportan ligadura tempra-
na o anterior; esto significa que ¢l compilador genera una Hamada a un nombre
especifico de funcién y el enlazador (linker) resuelve la Hamada a la direccién
absoluta del cédigo que se ha de ejecutar En POO, el programa no puede
determinar la direccién del cédigo hasta el momento de la ejecucién; para
resolver este coneepto, los lenguajes orientados a objetos utilizan el concepto
de ligadura tardia Cuando se envia un mensaje a un objeto, el cédigo que se
llama no se determina hasta el momento de la ejecucién. El compilador asegura
que la funcién existe y 1caliza verificacién de tipos de los argumentos y del
valor de retorno, pero no conoce el cédigo exacto a ejecutar

Para realizar la ligadura tardia, el compilador inserta un segmento especial
de cédigo en lugar de la llamada absoluta Este cédigo calcula la direccion del
cuerpo de la funcién para ejecutar en tiempo de ejecucién utilizando informa-
cién almacenada en el propio objeto. Por consiguiente, cada objeto se puede
comportar de modo diferente de acuerdo al contenido de ese puntero Cuando
se envia un mensaje a un objeto, éste sabe qué ha de hacer con ese mensaje

1.7.6. Otras propiedades

El modelo objeto ideal no s6lo tiene las propiedades anteriormente citadas al
principio del apartado, sino que es conveniente que soporte, ademds, estas otras
propiedades:

¢ Concurrencia (multitarea)
e Persistencia.

* Genericidad

* Manejo de excepciones

Muchos lenguajes soportan todas estas propiedades y otros sélo algunas de
ellas Asi, por ejemplo, Ada soporta concurrencia y Ada y C++ soportan
genericidad y manejo de excepciones La persistencia o propiedad de que las
variables —y por extensién a los objetos-— existan entre las invocaciones de un
programa es posiblemente la propiedad menos implantada en los LPOO?,
aungue ya es posible considerar la persistencia en lenguajes tales como Smalltalk
y C+, lo que facilitard el advenimiento de las bases de datos orientadas a obje-
tos, como asf estd sucediendo en esta segunda mitad de la década de los noventa.

7 Lenguaje de Programacién Orientado a Objetos.

E! desarroflo de software 21

1.8. REUTILIZACION DE SOFTWARE

Cuando se construye un automdvil, un edificio o un dispositivo electrénico, se
ensamblan una serie de piezas independientes, de modo que estos componentes
se reutilicen, en vez de fabricarlos cada vez que se necesita construitr un automé-
vil 0 un edificio En Ja construccin de software, esta pregunta es continua. (Por
qué no se utilizan programas ya construidos para formar programas mds gran-
des? Es decir, si en electrénica los computadores y sus periféricos se forman
esencialmente con el ensamblado de circuitos integrados, ; existe algin método
que permita realizar grandes programas a partir de la utilizacién de otros
programas ya realizados? ; Es posible reutiliza estos componentes de software?

Las técnicas orientadas a objetos proporcionan un mecanismo para cons-
truir componentes de software reutilizables que posteriormente puedan ser inter-
conectados entre si y formar grandes proyectos de software®

En los sistemas de programacién tradicionales, y en particular en los basa-
dos en lenguajes de programacién estructuradas (tales como FORTRAN,
C, etc), existen las bibliotecas de funciones, que contienen funciones (o procedi-
mientos, segilin el lenguaje) que pueden ser incorporados en diferentes progra-
mas. En sistemas orientados a objetos se pueden construir componentes de
software reutilizables, al estilo de las bibliotecas de funciones, normalmente
denominados bibliotecas de software o paquetes de software reutilizables Ejem-
plos de componentes reutilizables comercialmente disponibles son: Turbo Vi-
sién de Turbo Pascal OLE 2.0 de C++, jerarquia de clases Smalltalk, clases
MacApp paia desarrollo de interfaces graficos de usuatio en Object Pascal,
disponibles en Apple, la coleccion de clases de Objective-C, etc.

En el futuro inmediato, los ingenieros de software dispondidn de catdlogos
de paquetes de softwate reutilizable, al igual que sucede con los catdlogos de
circuitos integrados electrénicos, como les ocurte a los ingenicros de hardware

Las técnicas orientadas a objetos ofrecen una alternativa de escribir el mis-
mo programa una y otra vez El programador orientado a objetos medifica una
funcionalidad del ptograma sustituyendo elementos antiguos u objetos por
nuevos objetos, o bien conectando simplemente nuevos objetos en la apli-
cacién

La reutilizacion de cédigo en reprogramacidn tradicional se puede realiza
copiando y editando. mientras que en programacién orientada a objetos se
puede reutilizar el cédigo, creando automdticamente una subclase v anulando
alguno de sus métodos

Muchos lenguajes orientados a objetos fomentan la reutilizacién mediante
el uso de bibliotecas robustas de clases preconstruidas, asi como otras herra-
mientas, como hojeadores («browser»), para localizar clases de interés y depu-
radores interactivos para ayudar al programador

¥ Brap Cox, en su va cldsico libro Object-Otiented Programming An Evolutionary Approach
[Cox, Novobilski, 917, acufié el término chip de software (Software-IC), o componentes de software
para definir las clases de objetos como componentes de software reutilizables Existe versién en
espafiol de Addison-Wesley/Diaz de Santos, 1993, con el titulo Programacidn orientada a objetos
Un enfoque evolutivo

22 Programacidn orientads a objetos

1.9. LENGUAJES DE PROGRAMACION ORIENTADOS
A OBJETOS

El primer lenguaje de programacién que introdujo ¢l concepto de clase fue
Simula-67, como entidad que contenia datos y las operaciones que manipula-
ban los datos. Asimismo, introdujo también el concepto de herencia

El siguiente lenguaje orientado a objetos, y seguramente el mds populat
desde un enfoque conceptual exclusivamente de objetos, es Smalltalk, cuya
primera versién comercial se desarrolld en 1976, y en 1980 se popularizé con la
aparicién de Smalitalk-80. Postetiormente se ha populatizado gracias al des-
arrollo de Smalltalk/V de la casa Digital Y, que tecientemente se ha implemen-
tado bajo entorno Windows El lenguaje se caracteriza por soportar todas las
propiedades fundamentales de la orientacién a objetos, dentro de un entorno
integrado de desarrollo, con interfaz interactivo de usuario basado en ments.

Entre los lenguajes orientados a objetos que se han desarrollado a partir de
los ochenta destacan extensiones de lenguajes tradicionales tales como C++ y
Objective-C (extensiones de C), Modula-2 y Object Pascal (extensién de Pascal)
y recientemente Object Cobol, que a lo fargo de 1994 han aparecido sus primeras
versiones comerciales, y Java, el nuevo lenguaje para programacién en Internet.

Otro lenguaje orientado a objetos puros es Eiffel, cteado por Bertrand
Meyer y que soporta todas las propiedades fundamentales de objetos. Hasta
ahota no ha adquirido popularidad mds que en ambientes universitarios y de
investigacion Sin embargo, la prevista aparicion para el afio 1995 de la ver-
sién 3, que correrd bajo Windows, seguramente aumentard su difusién

Ada ha sido también un lenguaje —en este caso basado en objetos— que
soporta la mayoria de las propiedades orientadas a objetos Sin embargo, la
nueva versién Ada-95 ya soporta herencia v polimotfismo.

Algol \
Sirrl:ula \\
v T

Smalltalk

CLU Pascal] BASIC
\\
Objet Pascal l
* .
Ada ACtOI’ Objective_c C++ V|Sual BASIC 3
v v
Ada-95 Y Visual BASIC 4

Betland Pascal

Delphi Java

Figura 1.5, Evolucién de los lenguajes orientados a objetos.

El desarrolio de software 23

En los dltimos afios han aparecido lenguajes con soporte de objetos que
cada vez se estdn popularizando mds: Clipper 5-2, Visual BASIC, etc

De cualquier forma, existe un rey actual en los lenguajes orientados a obje-
tos: C++ Lanormalizacion por ANST y AT&T de la versién 3 0 y las numero-
sas versiones de diferentes fabricantes, tales como Botland C++ 4.0/4 5, Turbo
C++ 30/31y45, Microsoft C/C++ 7.0, Visual C-++ 1 5/2, Symantec 6.0/7.0,
etcétera, hacen que en la segunda mitad de los noventa serd ¢l lenguaje orienta-
do a objetos mds popular y utilizado en ¢l mundo de la programacién

La evolucidn de los lenguajes orientados a objetos se han mostrado en la
Figura 1.5, en la que se aprecia el tronco comuin a todos los lenguajes modernos
Algol y las tres lineas fundamentales: enfoque en Pascal (Ada, Object Pascal),
enfoque puto de orientacién a objetos (Simula/Smalltalk/Eiffel} y enfoque en C
(Objective-C, C++, Java)

1.9.1. Clasificacion de los lenguajes orientados a objetos

Existen varias clasificaciones de lenguajes de programacién orientados a obje-
tos, atendiendo a criterios de construccién o caracteristicas especificas de fos
mismos Una clasificacién ampliamente aceptada y difundida es la dada por
Wegner y que se ilustra en la Figura 16°,

Basadoes
en objetos

+clases

N

Basados
en clases

+herencia

Orientados
a objetos

Figura 1.6. Clasificacidn de lenguajes OO de Wegner.

La clasificacion de Wegner divide los lenguajes en tres categorfas:

1 Lenguajes basados en objetos que soportan objetos Es decir, disponen
de componentes caracterizados por un conjunto de operaciones {com-
portamiento) y un estado

2 Lenguajes basados en clases que implican objetos y clases Es decir,
disponen de componentes tipo clase con operaciones y estado comin

® WEGNER, Peter [1987]: Dimensions of Object-Based Languajes Design Nimero especial de
SIGPLAN Notices.

24 Programacion orientada a objetos

Una clase de un objeto se construye con un «interfuz» que especifica las
operaciones posibles y un «cuerpo» que implementa dichas operaciones
3. Lenguajes orientados a objetos que ademds de objetos y clases oftecen
mecanismos de herencia entre clases Esto es, la posibilidad de derivar
operaciones y atributos de una clase (superclase) a sus subclases.

La definicién anterior, pese a su antigiiedad, sigue teniendo vigencia. Existen
otras clasificaciones similares, pero con la inclusion de la propiedad de polimor-
fismo en la categorfa 3, como requisito para ser lenguaje otientado a objetos

De cualquier forma, hoy en dfa es posible ampliar esa clasificacién de acuer-
do a criterios puramente técnicos v hacer una nueva clasificacién de la cate-
goria 3

31 Lenguajes orientados a objetos puros. Soportan en su totalidad el para-
digma de orientacién a objetos:

Smalltalk Eiffel Simula

32 Lenguajes orientados a objeros hibridos. Soportan en su totalidad el
paradigma de orientacién a objetos sobre un nicleo de lenguaje
hibrido:

C++ (extensidn de C: Borland C+++, Microsoft C++, Turbo C+-,
, Visual C++, Symantec,Watcom).

Objective-C {extensidn de C)

Object COBOL. {extension de COBOL).

Object Pascal (extension de Pascal: Turbo/Bortand Pascal)

Visual Object (extensidn de Clipper).

Delphi (extensién de Turbo Pascal 7.0).

Java (extension de C++ y Ada-95)

Tabla 1.1, Criterios de Meyer en lenguajes OO y basados en objetos.

0 Criterios ' Ada-83 Ada95 Ciot Eiffel Smallalk Java

1 Modularizacién S{ Si Si Si Si Si
2 Tipos abstractos de datos St Si 81 St Si Si
3 Gestidn antomdtica de me-

moria Si Si En parte St Si Si
4 S6lo clases Si 81 Enparte Si St Si
5 Herencia No 87 St St Si Si
6 Polimoifismo (y ligadura di-

ndmica) No Si Si Si Si Si
7. Herencia multiple y repetida No No Si S8i No No

De cualquier forma, Meyer, creador del lenguaje Eiffel, proporciona unos
criterios para consideras la «bondad»'® de un lenguaje orientado a objetos,

"¢ MEVER, Bertrand: Object Oriented Software Construction Englewood Cliffs NJ, Prentice-
Hali, 1988

El desarrolfo de software 25

cuyos compiementos configuran, de hecho, una nueva clasificacién. En este
sentido, los criterios recogidos por este autor son los siguientes:

1 Lamodulatizacién de los sistemas ha de realizarse mediante estructuras
de datos apropiadas.

2. Los objetos se describen como [a implementacién de tipos abstractos de
datos

3. La memoria se gestiona (administra) automdticamente

4 Existe una correspondencia entre tipos de datos no elementales y clases

5 Las clases se pueden definir como extensiones o 1estricciones de otras
clases va existentes mediante herencia

6. Soportan polimorfismo y ligadura dindmica

7. Existe herencia miltiple y repetida

De acuerdo con los criterios de Meyer, recogemos en la Tabla 1 1 el cumpli-
miento de dichos criterios en los lenguajes OO y basados en objetos mds
populares.

1.10. DESARROLLO TRADICIONAL FRENTE A
ORIENTADO A OBJETOS

El sistema tradicional del desarrollo del software para un determinado sistema
es la subdivisién del mismo en mdédulos, a la cual deben aplicarse criterios
especificos de descomposicidn, los cuales se incluyen en metodologias de dise-
fio Estos médulos se refieren a la fase de construccién de un programa, que en
el modelo cldsico sigue a la definicién de los requisitos (fase de andlisis) que se
muestra en la Figura 3.1.

El modelo cldsico del ciclo de vida del software no es el dnico modelo
posible, dado que es posible desarrollar cddigo de un modo evolutivo, por
refinamiento y prototipos sucesivos Existen numetosos lenguajes de programa-
cién y metodologfas que se han desarrollado en paralelo a los mismos, aunque
normalmente con independencia de ellos

En esta seccidn nos centraremos en la metodologia mds utilizada, denomi-
nada desarrollo estructurado, que se apoya esencialmente en el disefio descen-
dente y en la programacion estructurada

La programacidn estructurada es un estilo disciplinado de programa-
c16n seglin los lenguajes procedimentales (por procedimientos), tales como
FORTRAN, BASIC, COBOL vy recientemente Cy C+-+.

Las metodologias disefio descendente (o descomposicién funcional) se cen-
tran en operaciones y tienden a descuidar la importancia de las esrtructuras de
datos. Se basan en la célebre ecuacién de Wirth:

Datos + Algoritmos = Programas

La idea clave del disefio descendente es romper un programa grande en
tarcas mds pequefias, mds manejables Si una de estas tarcas es demasiado
grande, se divide en tareas mds pequefias Se continia con este proceso hasta

26 Programacion orientada a objetos

que el programa se compartimentaliza en mddulos mds pequefios y que se
programan facilmente. Los subprogramas facilitan ¢l enfoque estructurado, v
en el caso de lenguajes como C, estas umdades de programas, Hamadas funcio-
nes, representan las citadas tareas o mdédulos individuales Las técnicas de
programacion estructuradas reflejan, en esencia, un modo de resolver un pro-
grama en términos de las acciones que realiza

Para comprender mejor fas relaciones entre los algoritmos (funciones) v los
datos, consideremos una comparacién con el lenguaje natural (por ejemplo
espaiol o inglés), que se compone de muchos elementos pero que reflejard poca
expresividad si sélo se utilizan nombies y verbos. Una metodologia que se basa
sdlo en datos o s6lo en procedimientos es similar a un lenguaje (idénea) en el gue
sélo se utilizan nombres o verbos. Sélo enlazando nombres o verbos correctos
{siguiendo las reglas semdnticas), las expresiones tomardn formas inteligibles y
su proceso serd mds fdcil

Las metodologias tradicionales se vuelven poco prdcticas cuando han de
aplicarse a provectos de gran tamafio El disefio orientado a objetos se apoya
en lenguajes orientados a objetos que se sustentan fundamentalmente en los
tipos de datos y operaciones que se pueden realizar sobre los tipos de datos.
Los datos no fluyen abiertamente en un sistema, como ocurie en las técnicas
estructuradas, sino que estdn protegidos de modificaciones accidentales En

programacion otientada a objetos, los mensajes (en vez de los datos) se mueven .

por el sistema En lugar del enfoque funcional (invocar una funcién con unos
datos), en un lenguaje orientado a objetos, «se envia un mensaje a un objeto»

De acuerdo con Meyer, el disefio orientado a objetos es el método que
conduce a arquitecturas de software basadas en objetos que cada sistema o
subsistema evaltia.

Recordemos (qué son los objetos? Un objeto es una entidad cuyo compotta-
miento se caracteriza por las acciones que realiza. Con mds precisidn, un objeto
se define como una entidad caracterizada por un estado; su compoitamiento se
define por las operaciones que puede realizar; es una instancia de una clase; se
identifica por un nombie; tiene una visibilidad limitada pata otros objetos; se
define el objeto mediante su especificacién y su implementacion

Una definicién muy elaborada se debe a Meyver: «Disefio orientado a obje-
tos es la construccidn de sistemas de software como colecciones estructuradas
de implementaciones de tipos de datos abstractos »

La construccidén de un sistema se suele realizar mediante el ensamblado
ascendente (abajo-artiba) de clases preexistentes Las clases de un sistema pue-
den tener entre si, como se verd en los siguientes capitulos, relaciones de uso
(cliente), relaciones de derivacion (herencia) o relaciones de agregacion (compo-
sicion) o incluso sélo relaciones de asociacién. Asi, por gjemplo, con una 1ela-
cién de cliente, una clase puede utilizar los objetos de otra clase; con una
relacién de herencia, una clase puede heredar o derivar sus propiedades defini-
das en otra clase

El hardware se ensambla a partit de componentes electrénicos, tales como
circuitos integrados {clips), que se pueden utilizar tepetidamente para disefiar y
construir conjuntos mucho mds grandes, que son totalmente reutilizables. La
calidad de cada nivel de disefio se asegura mediante componentes del sistema

El desarrolfo de software 27

que han sido probados previamente a su utilizacién. El ensamblado de compo-
nentes electidnicos se garantiza mediante interfaces adecuados.

Estos conceptos se aplican también con tecnologias de objetos Las clases
(tipos de objetos) son como los chips de hardware, Cox les llamé chips de
sofiware, que no sélo se pueden enlazar (ensamblar) entre si, sino que también
s¢ pueden reutilizar (volver a utilizar) Las clases se agrupardn normalmente
en bibliotecas de clases, que son componentes reutilizables, ficilmente legibles

En la actualidad existe gran cantidad de software convencional, en su
mayorfa escrito normalmente para resolver problemas especificos; por esta ra-
z0n, a veces es mds ficil escribir nuevos sistemas que convertir los existentes.

Los objetos, al reflejar entidades del mundo real, permiten desarrollar apli-
caciones, creando nuevas clases y ensambldndolas con otras ya existentes.
Normalmente, los desartolladores experimentados gastan un porcentaje alto
de su tiempo (20 al 40 por 100) en crear nuevas clases y el tiempo restante en
ensambiar componentes probados de sistemas, construyendo sistemas potentes
y fiables

1.11. BENEFICIOS DE LAS TECNOLOGIAS
DE OBJETOS (TO)

Una pregunta que hoy dia se hacen muchos informdticos es: ; Cudl es la razon
para introducir métodos de TO en los procesos de desarrollo? La principal razén,
sin lugar a dudas, son los beneficios de dichas T'O: aumento de la fiabilidad y
productividad del desarrollado:. La fiabilidad se puede mejorar, debido a que
cada objeto es simplemente «una caja negias con respecto a objetos externos
con los que debe comunicarse Las estructuras de datos internos y métodos se
pueden refinar sin afectar a otias partes de un sistema (Fig. 1.7).

Objeto
Métodos

Figura 1.7 El objeto como caja negra.

Los sistemas tradicionales, por otra parte, presentan con frecuencia efectos
laterales no deseados Ias tecnologias de objetos ayudan a los desatrolladores
a tratar la complejidad en el desariollo del sistema.

La productividad del desartollador se puede mejorar, debido a que las clases
de objetos se pueden hacer reutilizables de modo que cada subclase o instancia
de un objeto puede utilizar el mismo cédigo de programa paira la clase. Por
otra parte, esta productividad también aumenta, debido a que existe una aso-
ciacion mds natural entre objetos del sistema y objetos del mundo real

28 Programacion orientada a objetos

Programa Programa

Figura 1.8, Proceso tradicional de datos.

Taylor"' considera que los beneficios del modelado y desarrollo de objetos son:
d

Desarrollo mds 1dpido.

Calidad mds alta.

Mantenimiento mas fdcil

Coste 1educido.

Incremento en escalabilidad
Mejores estructuras de informacion
Incremento de adaptabilidad

Sin embargo, Taylor®? también considera algunos inconvenientes, aunque
algunos de ¢llos ya han sido superados o al menos reducido su impacto.

Inmadurez de la tecnologia (hoy dia ya no s¢ puede considerar asf).
Necesidades de estdndares (el grupo OMG es una iealidad)
Necesidad de mejores herramientas.

Velocidad de ejecucidn

Disponibilidad de personal cualificado.

Coste de conversion

Sopotte para modularidad a gran escala

I_a Figura 1.9 muestra los beneficios genéricos de las tecnologias de objetos.

I NV ETCR N

- NV SRV

* Reuiifizacion Las clases se construyen a partir de otras clases.
- Sistemas mds fiables.

= Proceso de desarrolio mds rdpido

= Desarrolfo mds flexible.

* Modelos que reflejan mejor la realidad

= Mejor independencia e interoperatividad de la tecnologia

= Mejor informadtica distribuida y cliente-servidor.

= Bibliotecas de clases comerciales disponibles.

~ Mejor relaciones con los clientes.

= Mejora la calidad del producto software terminado.

Figura 1.9. Beneficios de las tecnologias de objetos.

I TavLor, David A: Objet-Oriented Technology Reading MA: Addison-Wesley, 1992, pdgi-
nas 103-107
2 Ihid pégs 108-113

E! desarrolfo de software 29

RESUMEN

Este capitulo es una introduccién a los métodos de desartollo orientados a
objetos Se comienza con una breve revisién de los problemas encontrados en el
desartollo tradicional de software que condujeron a la crisis del softwaze y que
se han mantenido hasta los afios actuales. El nuevo modelo de programacidn se
apoya esencialmente en ¢l concepto de objetos

La orientacién a objetos modela el mundo real de un modo més facil a la
perspectiva del usuario que el modelo tradicional La orientacién a objetos
propoiciona mejotes técnicas y paradigmas para construir componentes de
software reutilizables y bibliotecas ampliables de médulos de software Esta
caracteristica mejora la extensibilidad de los programas desarrollados a través
de metodologfas de orientacién orientada a objetos. Los usuarios finales, pro-
gramadores de sistemas v desarrolladotes de aplicaciones se benefician de las
tecnologias de modelado y programacién orientadas a objetos

Los conceptos fundamentales de orientacién a objetos son tipos abstractos
de datos, herencia ¢ identidad de los objetos. Un tipo abstracto de datos descri-
be una coleccion con la misma estructura y comportamiento. Los tipos abstrac-
tos de datos extienden la nocidén de tipos de datos, ocultando 1a implementa-
cién de operaciones definidas por el usuario {mensajes) asociados con los tipos
de datos. Los tipos abstiactos de datos se implementan a través de clases Las
clases pueden heredar unas de otras. Mediante la herencia se pueden construir
nuevos médulos de software (tales como clases) en la parte superior de una

jerarquia existente de médulos La herencia permite la comparticién de cédigo

(¥ por consiguiente reutilizacién} entie médulos de software. La identidad es la
propiedad de un objeto que diferencia cada objeto de los restantes Con la
identidad de un objeto, los objetos pueden contener o 1eferirse a otros objetos
La identidad del objeto organiza los objetos del espacio del objeto manipulado
por un programa orientado a objetos.

Este capftulo examina el impacto de las tecnologias orientadas a objetos en
lenguajes de programacidn, asf como los beneficios que producen en el desario-
llo de software

Los conceptos claves de la programacién orientada a objetos se examina en
el capitulo; si no ha leido hasta ahora nada sobre tecnologias de objetos, deberd
examinar con detenimiento todos los elementos conceptuales del capitulo, que
se ampliardn en detalle en capitulos postetiores; st ya tiene conocimientos bdsi-
cos de Ia orientacién a objetos, este capitulo debe consolidatlos y prepararle
para una eficiente lectura de los siguientes capitulos.

CAPITULO

MODULARIDAD:
TIPOS ABSTRACTOS DE DATOS

CONTENIDO

30

Modularidad

Disefio de mddulos

Tipos de datos

Abstraccion en lenguajes de programacion
Tipos abstractos de datos

Tipos abstractos de datos en Turbo Pascal
Tipos abstractos de datos en Modula-2

.8. Tipos abstractos de datos en Ada

2.9. Tipos abstractos de datos en C

2.10. Tipos abstractos de datos en C++
RESUMEN

EJERCICICS

NRNNNRDNN
PN UT W=

En este capitulo se examinaran los conceptos de modularidad y
abstraccion de datos. La modularidad es la posibilidad de dividir
una aplicacién en piezas més pequehnas llamadas médulos. Abs-
traccidn de datos es la técnica de inventar nuevos fipos de datos
que sean mas adecuados a una aplicacidn y, por consiguiente,
facilitar la escritura del programa. La técnica de abstraccion de
datos es una técnica potente de propdsito general, que cuando se
utiliza adecuadamente puede producir programas mas corios,
mas legibles y flexibles.

Los lenguajes de programacion soportan en sus compiladores
tipos de datos fundamentales 0 bdsicos (predefinidos), tales co-
mo int, char y float en C y C++, o bien integer, real o
boolean en Pascal. Algunos lenguajes de programacion tienen
caracteristicas que permiten ampliar el lenguaje afadiendo sus
propios tipos de datos.

Un tipo de dato definido por el programador se denomina
tipo abstracto de dato, TAD {Abstract Data Type, ADT). El término
abstracto se refiere al medio en que un programador abstrae al-
gunos conceptos de programacion creando un nuevo tipo de dato.

La modularizacion de un programa utiliza la nocién de tipo abs-
tracto de dato (TAD) siempre que sea posible. Si el TAD soporta los
tipos que desea el usuario y el conjunto de operaciones sobre cada
tipo, se obtiene un nuevo tipo de dato denominado objeto.

Modularidad: tipos abstractos de datos 31

2.1. MODULARIDAD

La programacién modulas trata de descomponer un programa en un pequefio
nimero de abstracciones coherentes que pertenecen al dominio del problema y
cuya complefidad interna es susceptible de ser enmascarada por la descripcidn
de un interfaz

St las abstracciones que se desean representar pueden en ciertos casos corres-
ponder a una dinica accién abstracta y s¢ implementan en geneial con la nocién
de objeto abstiacto (o tipo abstracto) caracterizado en todo instante por:

» Un estado actual, definido por un cietto nimero de atributos
s Un conjunto de acciones posibles.

En consecuencia, la modularidad es la posibilidad de subdividir una aplica-
cion en piezas mds pequeilas (denominadas mddulos), cada una de las cuales
debe ser tan independiente como sea posible, considerando la aplicacién como
un todo, asf como de las otras piezas de las cuales es una parte. Este principio
bdsico desemboca en el principio bdsico de construir programas modulares Esto
significa que, aproximadamente, ha de subdividir un progiama en piezas mds
pequefias, o médulos, que son generalmente independientes de cada una de las
iestantes y se pueden ensamblar ficilmente pata construir la aplicacién completa

En esencia, las abstracciones se implementan en mddulos, conocidos en la
terminologia de Booch como objetos, que agrupan en una sola entidad:

* Un conjunto de datos
» Un conjunto de operaciones que actian sobre los datos.

Liskov define la modularizacién como «el proceso de dividir un programa
en médulos que se pueden compilar separadamente, pero que tienen conexio-
nes con otros médulos». Parnas va mds lejos y dice que «las conexiones entre
mdodulos deben seguir ¢l criterio de ocultacién de 1a informacién: un sistema se
debe descomponer de acuerdo al criterio general, de que cada médulo oculta
alguna decision de disefio del 1esto del sistema; en otras palabtas, cada médulo
oculta un secreto»

Si un programa se descompone (0 subdivide en médulos) de modo consisten-
te con el criterio de Parnas —es decir, aplicando el principio de ocultacién de la
informacion—, se reduce la complejidad de cada médulo que compone la solu-
cion. Estos se constituyen en cierto modo independientes de los restantes, con lo
que se reduce la necesidad de tomar decisiones globales, operaciones y datos.

2.1.1. La estructura de un moédulo

Un médulo se caracteriza fundamentalmente por su interfaz y por su implemen-
tacion. Parnas define el médulo como «un conjunto de acciones denominadas,
funciones o submédulos que cotresponden a una abstraccién coherente, que
compartan un conjunto de datos comunes implantadas estdticamente llamadas
atributos, eventualmente asociadas a definiciones Iégicas de tipos Las acciones
o funciones de un médulo que son susceptibles de ser lamadas desde el exterior

32 Programacion orientada a objetos

se denominan primitivas o puntos de entrada del mdédulo. Los tipos 1égicos
eventualmente definidos en el interfaz permiten representar los pardmetros de
estas primitivas».

Primitivas de acceso

fntertaz Descripcidn de propiedades de los datos
Saeccién Atributos Algoritmos
privaaa Representacion Parametros actuales

Figura 2.1. Estructura de un mdédulo.

2.1.2. Reglas de modularizacién

En primer lugar, un método de disefio debe ayudar al programador a resolver
un problema, dividiendo el problema en subproblemas mds pequefios, que se
puedan resolver independientemente unos de otros. También debe ser facil
conectar los diferentes médulos a los restantes, dentio del programa que esté
escribiendo

Cada médulo tiene un significado especifico propio v debe asegurarse que
cualquier cambio en su implementacién no afecte a su exterior (o al menos lo
minimo). De ignal modo, asegurar que los errores posibles, condiciones de
limites o frontera, comportamientos errdticos, no se propaguen mds alld del
mdédulo (0 como méximo a los médulos que estén directamente en contacto
con el afectado).

Para obtener médulos con las caracteristicas anteriores deben seguirse las
siguientes reglas:

Unidades modulares

El lenguaje debe proporcionar estructuras modulares con las cuales se puedan
describir las diferentes unidades. De este modo, el lenguaje (v el compilador)
puede reconocer un médulo y debe ser capaz de manipular y gobetnar su uso,
ademds de las ventajas evidentes relativas a la legibilidad del cédigo resultante.
Estas construcciones modulares pueden, como en el caso de los lenguajes orien-
tados a objetos, mostrar caracteristicas que facilitan Ia estructura del programa,
as{ como la escritura de programas. En otras palabras, nos referimos a las
unidades modulares lingiifsticas, que en el caso de C-++ se conocen como
clases En C/C++ los médulos son archivos compilados separadamente, aun-
que la representacién ideal en C++ es la clase. La prdctica tradicional en
C/C++ es situar interfaces del médulo en archivos cuyos nombres contienen el
sufijo . h (archivos de cabecera). Las implementaciones del médulo se sitdan en

Modulatridad: tipos abstractos de datos 33

un archivo cuyo nombre tiene el sufijo . ¢ Las dependencias entre archivos se
pueden declarar utilizando la macto #include. En Turbo Pascal, los médulos
se denominan unidades. La sintaxis de las unidades diferencia entre ¢l interfaz y
la implementacién del médulo. Las dependencias entre unidades se pueden
declarar sélo en un interfaz del médulo Ada va mas lejos y define el paguete en
dos partes: la especificacion del paquete y ¢l cuerpo del paguete. Al contrario
que Object Pascal, Ada permite que la conexién entre médulos se declaren
independientemente en la especificacién v en el cuerpo de un paguete.

Interfaces adecuados

En la estructuracién de un programa en unidades es beneficioso que existan
pocos interfaces y que ¢éstos sean pequefios Es conveniente que existan pocos
enlaces entre los diferentes médulos en que se descompone un programa El
interfaz de un mddulo es la parte del médulo (datos, procedimientos, etc) que es
vistble fuera del médulo.

Los interfaces deben ser también pequefios (esto es, su tamafio debe ser
pequeno con respecto al tamafio de los médulos implicados) De este modo, los

mddulos estdn acoplados débilmente; se enlazardn por un nimero pequefio de
Namadas (Fig 2.3)

Pocos Muchos
inferfaces interfaces

Figura 2.2, |nterfaces adecuados (pocos-muchos).

Interfaces
grandes
Parte
visible
Inferfaces
pequefios

Figura 2.3, Interfaces adecuados {grandes-pequefios).

34 Programacion orientada a objetos

Interfaces explicitos

Fl interfaz o parte visible externamente de un médu,lo se debe declarar y desc(g;-
bit explicitamente; el programa debe especificar cudles son los datos y "proc? 1-
mientos que un mdédulo trata de exportar y cqfﬂes deben permangcel ocultos
del exterior. El interfaz debe ser f4cilmente legible, tanto para el program%dox
como paia ¢l compilador Es decir, el programador debe comprengle; cémo
funciona el programa y el compilador ha de poder comprobar si el cédigo que
accede al médulo se ha escrito correctamente.

Ocultacion de la informacion

Todos los médulos deben seguit el principio de ocuitaci(f)n de la infqrmamén;
cada médulo debe representar al menos un elemento (;le disefio (por ejemplo, la
estructwra de un registro, un algoritmo, una abstraccion, etc))

Otro criterio a tener en cuenta es la subdivisién de un sistema en modglqs,
es el principio denominado abier to-cei-}'adoi,’formulado port Meyer.lEste princi-
pio entiende que cada médulo se considerard cer rado (esto es, term_mado,'y por
consiguiente til o activo desde dentro de otros médqlps), y al mismo pempo
debe ser abierto (esto es, sometido a cambios y m_oc}1f10acmnes). El principio
abierto-cerrado debe producirse sin tener que rescribit todos los maddulos que
ya utilizan el mddulo que se estd modificando.

_En lengiiajes de programacidn cldsicos, la modularizacion se c¢

_ ‘subprogramas (procedimientos, funciones .y subrutinas). 1

~orientados a“objétos, la modularizacion ‘o particién del pro
©‘suelve a“través de los tipos abstractos de dé:to':s.'-;_._:_;_

En disefio estructurado, la modularizacién —como ya se t}g comentadq»
se centra en el agrupamiento significativo de subprogramas, utilizando el crite-
tio de acoplamiento y cohesién _ L

En disefio orientado a objetos, el problema es sutilmente diferente: ‘la tarea
consiste en decidir dénde se empaquetan ffsicamcnte'las clases y objetos de
la estructura 16gica del disefio, que son claramente diferentes de los subpro-
gramas.

! Qahre el principio abierto-cerrado y su implementacion en C-!—'+ ¥y E_iffel, se puede COI}S;II‘(&I.]&
bibliografia de Miguel Katrib Algunos titulos destacados sobre orientacidn a obietos son: Progr él-
macidn Ovientada a Objetos a travds de C++ y Eiffel 'V Esct’lela Intn_:macmnal en Temas Se];:/;:éto.s ;’:
Computacion, Zacatecas, México, 1994 (esta Escucla estla'orgamzada por l‘a UNAM, . XIIC(;?;
Programacion Orientadg o Objetos en C++ Infosys, México, 1994; Collections and Iterators
Eiffel Joop, vol 6, n°7, nov/dic. 1993

Modularidad: tipos abstractos de datos 35

2.2. DISENO DE MODULOS

Aunque ¢l disefio modular persigue la divisién de un sistema grande en médu-
los mds pequefios y a la vez manejables, no siempre esta division es garantia de
un sistema bien organizado. Los médulos deben disefiarse con los criterios de
acoplaimiento y cohesidn. El primer criferio exige independencia de médulos y el
segundo criterio se corresponde con la idea de que cada médulo debe realizarse
con una sola funcién relacionada con el problema

Desde esta perspectiva, Booch? define la modularidad como «la propiedad

de un sistema que ha sido descompuesto en un conjunto de mddulos cohesivos y
débilmente acopladoss».

2.2.1. Acoplamiento de mddulos

El acoplamiento es una medida del grado de interdepéndencia entre médulos, es
decir, el modo en que un médulo estd siendo afectado por la estructura interna
de otro médulo. El grado de acoplamiento se puede utilizar para evaluar la
calidad de un disefio de sistema. El objetivo es minimizar el acoplamiento entre
mddulos, es decir, minimizar su interdependencia, de modo que un médulo sea
afectado lo menos posible pot la estructura de otro modulo El acoplamiento
entre moédulos varia en un amplio rango Por un lado, ¢l disefio de un sistema
puede tener una jerarquia de médulos totalmente desacoplados Sin embargo,
dado que un sistema debe realizar un conjunto de funciones o tareas de un
modo otganizado, no puede constar de un conjunto de médulos totalmente
desacoplados En el otro extremo se tendrd una jerarquia de méduios estrecha-
mente acoplados; es decir, hay un alto grado de dependencia entre cada pareja
de médulos de] disefio.

Tal como define Booch, un sistema modulat débilmente acoplado facilita:

I La sustitucién de un médulo por otro, de modo que sélo unos pocos
modulos serdn afectados por el cambio

2. El seguimiento de un erior y el aislamiento del médulo defectuoso que
produce ese error

Existen varias clases de acoplamiento entre dos mdédulos (Tabla 2.1). Exa-
minaremos los cinco tipos de acoplamiento, desde el menos deseable (esto es,
acoplamiento estrecho o impermeable) al mds deseable (esto es, acoplamiento
mds débil). La fuerza de acoplamiento entre dos médulos estd influenciada por

el tipo de conexidn, el tipo de comunicacién entre ellos y a complejidad global
de su interfaz,

2.2.2. Cohesion de méduios

La cohesién es una extensién del concepto de ocultamiento de la informacién
Dicho de otro modo, la cohesién describe la naturaleza de las interacciones

* BoocH, Grady: Object Oriented Design with applications Benjamin/Cummings, 1991, pdg 52

36 Programacion orientada a objetos

dentro de un médulo software Este criterio sugiere que un sistema bien modu-
larizado es aquel en el cual los interfaces de los mdédulos son claros y simples.
Un médulo cohesivo ejecuta una tarea sencilla de un procedimiento de softwa-
re y requiere poca interaccién con procedimientos que ¢jecutan otras partes de
un programa En otras palabras, un médulo cohesivo sélo hace (idealmente)
una cosa

La cohesién y el acoplamiento se miden como un «espectio» que muestra
las escalas gue siguen los médulos La Tabla 2.1 muestra la clasificacién de
acoplamientos de médulos y su grado de acoplamiento

Tabla 2.1. Clasificacion del acoplamiento de mddulos.

© Tipo de acoplamiento " Grado de acoplamiento - Grado de mantenibilidad -
Por contenido Alto (fuerte) Bajo
Comiin
De control

Por sellado (estampado)

Datos
Sin acoplamiento Bajo {débil) Alio

La Tabla 2 2 muestra los grados de cohesién: baja cohesién. {(no deseable) y
alta cohesion (descable), asi como los diferentes tipos de cohesién

Tabla 2.2. Clasificacion de cohesion de mddulos.

‘Grado de cohesion -

Tipo de cohesion

Por coincidencia Bajo Bajo
Légica

Temporal

Por procedimienios

Por comunicaciones

Secuencial

Funcional

Informacional Alto Alto

Tdealmente, se buscan mddulos altamente cohesivos y débilmente acoplados.

2.3. TIPOS DE DATOS

Todos los lenguajes de programacién soportan algin tipo de datos Por ejem-
plo, el fenguaje de programacién convencional Pascal sopotta tipos base tales
como enteros, reales y caracteres, asf como tipos compuestos tales como arrays
(vectores y matrices) y registios. Los tipos abstractos de datos extienden la

Modularidad: tipos abstractos de datos 37

funcién de un tipo de datos; ocultan la implementacién de las operaciones
definidas por el usuario asociadas con el tipo de datos Esta capacidad de
ocultar la informacién permite el desarrollo de componentes de soffware reuti-
lizables v extensibles.

Un tipo de dato es un conjunto de valores, y un conjunto de operaciones
definidas por esos valores

Un valor depende de su representacién y de la interpretacion de la represen-
tacién, por lo que una definicién informal de un tipo de dato es:

Representacion + Operaciones

Un tipo de dato describe un conjunto de objetos con la misma representa-
cién Existen un ntimero de operaciones asociadas con cada tipo. Es posible
realizar aritmética sobre tipos de datos enteros y reales, concatenar cadenas o
recupeiar o modificar el valor de un ¢lemento

La mayoria de los lenguajes tratan las variables v constantes de un progia-
ma como instancias de un tipo de dato. Un tipo de dato propotciona una
descripcién de sus instancias que indican al compilador cosas como cuénta
memotia se debe asignar para una instancia, cémo interpretar los datos en
memoria y qué operaciones son permisibles sobre esos datos. Potr ejemplo,
cuando se escribe una declaracién tal como float z en C o C++, se estd
declarando una instancta denominada z del tipo de dato fioat El tipo de
datos float indica al compilador que reserve, por ejemplo, 32 bits de memo-
1ia, y qgue operaciones tales como «sumar» y «multiplicar» estdn permitidas,
mientras que operaciones tales como ¢l «el resto» (médulo) y «desplazamiento
de bits» no lo son. Sin embargo, no se necesita escribir la declaracion del tipo
float —el autor de compilador 1o hizo por nosotros y se constiuyen en el
compilador-—. Los tipos de datos que se construyen en un compilador de este
modo se conocen como tipos de datos fundamentales (predefinidos), y por ejem-
plo en Cy C++ son, entre otros: int, char v float.

Cada lenguaje de programacién incorpora una coleccién de tipos de datos
fundamentales, que incluyen normalmente enteros, reales, cardcter, etc. Los
lenguajes de programacién soportan también un nimero de constructores de
tipos incorpotados que permiten generar tipos mds complejos. Por ejemplo,
Pascal soporta registros y arrays.

En lenguajes convencionales tales como C, Pascal, etc, las operaciones
sobre un tipo de dato son composiciones de constructores de tipo v operacio-
nes de tipos bases

Operaciones = Operaciones constructor + Operaciones base

Algunos tipos de constructores incluyen registros, arrays, listas, conjuntos,
etcétera.

38 Programacion orientada a objetos

2.4. ABSTRACCION EN LENGUAJES
DE PROGRAMACION

Los lenguajes de programacidn son las herramientas mediante las cuales los
disefiadores de lenguajes pueden implementar los modelos abstractos. La abs-
traccién ofiecida por los lenguajes de programacion se puede dividir en dos
categorias: abstraccion de datos (perteneciente a los datos) v abstraccién de
control (perteneciente a las estructuras de control),

Desde comienzo del decenio de los sesenta, en que se desarrollaron los
primetos lenguajes de programacién de alto nivel, ha sido posible utilizar Jas
abstracciones mds primitivas de ambas categorfas (variables, tipos de datos,
procedimientos, control de bucles, etc.) Ambas categorfas de abstracciones han
producido una gran cantidad de lenguajes de programacién no siempre bien
definidos

2.4.1. Abstracciones de control

Los microprocesadores oftecen directamente sélo dos mecanismos paia con-
trolar el flujo y ejecucién de las instrucciones: secuencia y salto. Los primeros
lenguajes de programacién de alto nivel introdujeron las estructuias de control:
sentencias de bifurcacién (1£) y bucles (for, while, do-loop, etc).

Las estructuras de contiol describen el orden en que se ejecutan las senten-
cias o grupos de sentencia (unidades de programa) Las unidades de programa se
utilizan como bloques bdsicos de la cldsica descomposicién «descendente» En
todos los casos, los subprogramas constituyen una herramienta potente de
abstraccién, ya que durante su implementacién el programador describe en
detalle como funcionan fos subprogramas. Cuando el subprograma se llama,
basta con conocer lo que hace y no ¢cémo lo hace De este modo, los subptogra-
mas se convierten en cajas negras que amplian el lenguaje de progiamacién a
utilizar. En general, los subprogramas son los mecanismos mds ampliamente
utilizados para reutilizar cddigo, a través de colecciones de subprogramas en
bibliotecas.

Las abstiacciones y estructuras de contro] se clasifican en estructuras de
control a nivel de sentencia v a nivel de unidades Las abstracciones de control
a nive] de unidad se conoce como abstraccién procedimental

Abstraccion procedimental (por procedimientos)

Es esencial para disefiar software modular y fiable La abstraccidn procedimen-
tal se basa en la utilizacién de procedimientos o funciones, sin preocupaise de
cémo se implementan Esto es posible sélo si conocemos qué hace el procedi-
miento; esto es, conocemos la sintaxis y semdntica que utiliza el procedimiento
o funcién El tinico mecanismo en Pascal estdndar para establecer abstraccién
procedimental es el subpiograma (p1ocedimientos y funciones) La abstraccién
aparece en los subprogramas debido a las siguientes causas:

Modularidad: tipos abstractos de datos 39

¢ Con el nombre de los subprogramas, un programador puede asignar una
descripeion abstiacta que captura el significado global del subprograma.
Utilizando €l nombre en lugar de escribir el c6digo, permite al programa-
dor aplicat la accién en términos de su desciipeion de alto nivel, en lugar
de sus detalles de bajo nivel.

» Los subprogramas en Pascal proporcionan ocultacién de la informacion.
Las variables locales y cualquier otra definicion local se encapsulan en el
subprograma, ocultdndolos realmente, de forma que no se pueden utilizar
fucra del subprograma. Por consiguiente, el programador no tiene que
preocuparse sobre las definiciones locales; sin embargo, pueden utilizarse
los componentes sin conocer nada sobre sus detalles.

¢ L os pardmetros de los subprogramas, junto con la ocultacién de la infor-
macién anterior, permite crear subprogramas que constituyen entidades
de software propias Los detalles Jocales de la implementacién pueden
estar ocultos, mientras que los pardmetios se pueden utilizar para estable-
cer el interfaz publico.

Otros mecanismos de abstraccion de control

La evolucién de los lenguajes de programacién ha permitido la aparicién de
otros mecanismos para la abstraccién de control, tales como manejo de excep-
ciones, corrutinas, unidades concurrentes, plantillas (templates) Estas construc-
ciones son soportadas pot los lenguajes de programacién basados y orientados
a objetos, tales como Modula-2, Ada, C++, Smalltalk o Fiffel

2.4.2. Abstraccion de datos

Los primetos pasos hacia la abstraccién de datos se creaton con lenguajes tales
como FORTRAN, COBOL y ALGOL 60, con la introduccién de tipos de
variables diferentes, que manipulan enteros, nimeros reales, caracteres, valores
16gicos, etc Sin embargo, estos tipos de datos no podian ser modificados y no
siempre s¢ ajustaban al tipo de uno para ¢l que se necesitaban Por ejemplo, el
tratamiento de cadenas es una deficiencia en FORTRAN, mientras que la pre-
cisién y fiabilidad para cdlculos matemdticos es muy alta

La siguiente generacién de lenguajes, incluyendo Pascal, SIMULA-67 v
ALGOL 68, oftecié una amplia seleccién de tipos de datos y permitié al pro-
gramador modificar y ampliar los tipos de datos existentes mediante construc-
ciones especificas (por ejemplo arrays y registros) Ademds, SIMULA-67 fue el
primer lenguaje que mezclé datos y procedimientos mediante la construccién
de clases, que eventualmente se convirtié en la base del desartollo de programa-
cién orientada a objetos

La abstraccion de datos es la técnica de programacién que permite inventar
o definir nuevos tipos de datos (tipos de datos definidos por el usuario) adecua-
dos a la aplicacién que se desea realizar. La abstraccién de datos es una técnica
muy potente que permite disefiar programas mas cortos, legibles v flexibles La

40 Programacion orientada a objetos

esencia de la abstraccion es similar a la utilizacién de un tipo de dato, cuyo uso
se realiza sin tener en cuenta cédmo estd representado o implementado.

Los tipos de datos son abstracciones y ¢l proceso de construir nuevos tipos
se llaman abstracciones de datos Los nuevos tipos de datos definidos por ¢l
usuario se llaman tipos abstractos de datos.

El concepto de tipo, tal como se definié en Pascal y ALGOL 68, ha consti-
tuido un hito importante hacia la realizacién de un lenguaje capaz de soportar
programacién estructurada. Sin embargo, estos lenguajes no soportan total-
mente una metodologia La abstraccidn de datos Gtil para este propésito no
sélo clasifica objetos de acuerdo a su estructura de representacién, sino que se
clasifican de acuerdo al comportamiento esperado. Tal comportamiento es ex-
presable en t€rminos de operaciones que son significativas sobre esos datos, y
las operaciones son el dnico medio para crear, modificar y acceder a los objetos.

En téiminos mds precisos, Ghezzi indica que un tipo de dato definibie por el
usuario se denomina tipo abstracto de dato (TAD) si:

» Existe una construccién del lenguaje que le permite asociar la representa-
cién de los datos con las operaciones que lo manipulan

* La representacién del nuevo tipo de dato estd oculta de las unidades de
programa que lo utilizan [Ghezzi 87]

Las clases en SIMULA sélo cumplian la primera de las dos condiciones,
mientias que otros lenguajes actuales cumplen las dos condiciones: Ada, Mo-
dula-2 y C++

Los tipos abstractos de datos proporcionan un mecanismo adicional me-
diante el cual se realiza una separacion clara entre el interfaz y la implementa-
cién del tipe de dato La implementacién de un tipo abstracto de dato consta de:

I La representacion: eleccidén de las estructuras de datos
2 Las operaciones: eleccién de los algoritmos.

El interfaz del tipo abstracto de dato se asocia con las operaciones y datos
visihles al exterior del TAD

2.56. TIPOS ABSTRACTOS DE DATOS

Algunos lenguajes de programacién tienen caracteristicas que nos permiten
ampliar ¢l lenguaje, afiadiendo sus propios tipos de datos. Un tipo de dato
definido por el programador se denomina tipo abstracto de datos (TAD) para
diferenciarlo del tipo fundamental (predefinido) de datos. Pot ¢jemplo, en Tui-
bo Pascal un tipo Punto, que representa a las coordenadas x e y de un sistema
de coordenadas rectangulares, no existe Sin embaigo, es posible implementar
el tipo abstracto de datos considerando los valores que se almacenan en las
variables y qué operaciones estdn disponibles para manipular estas variables
En esencia, un tipo abstracto de datos es un tipo de datos que consta de datos
(estructuras de datos propias) y operaciones que se pueden realizar sobre esos
datos.

Modularidad, tipos abstractos de datos 41

Un YAD se compone de estructuras de datos vy los procedimientos o funcio-
res que manipulan esas estzucturas de datos.

TAD = Representacién (datos} + Opetaciones (funciones y procedimientos)

Las opetaciones desde un enfoque orientado a objetos se suelen denominar
métodos

La estructura de un tipo abstracto de dato (clase), desde un punto de vista
global, se compone del interfaz y de la implementacién (Fig 2.4)

Método 1 Método 2
Método 3 Método 4
Interfaz publico

Representacidn:
estructuras de datos
(variables de instancia)

Implementacién de métodos:
Cddigo del método 1
Cddigo del método 2
Cadigo del método 3
Cédige del método 4

Implementacion privada

Figura 2 4. Estructura de un tipo abstracto de datos (TAD).

Las estructuras de datos reales elegidas para almacenar la representacién
de un tipo abstracto de datos son invisibles a los usuarios o clientes. Los
algoritmos utilizados para implementa: cada una de las operaciones de los
TAD estdn encapsuladas dentro de los propios TAD. La caracteristica de ocul-
tamiento de la informacién del TAD significa que los objetos tienen interfaces
piblicos. Sin embargo, las representaciones e implementaciones de esos interfa-
ces son privados

42 Prograrmacion orieniada a objetos

2.5.1. Ventajas de los tipos abstractos de datos

Un tipo abstracto de datos es un modelo (estructura) con un niimero de opera-
ciones que afectan a ese modelo. Es similar a la definicién que daremos en el
capitulo siguiente de objeto, y de hecho estdn unidos fntimamente Los tipos
abstractos de datos ptoporcionan numerosos beneficios al programador, que se
pueden resumir en los siguientes:

1 Permite una mejor conceptualizacién y modelizacién del mundo real
Mejora la representacién y la comprensibilidad Clarifica los objetos
basados en estructuras y comportamientos comuncs,

2. Mejora la robustez del sistema. Si hay caracteristicas subyacentes en los
lenguajes, permiten la especificacion del tipo de cada variable, los tipos
abstractos de datos permiten la comprobacién de tipos pata evitar erro-
res de tipo en tiempo de ejecucién

3 Mejora el rendimiento (prestaciones) Para sistemas tipeados, el conoci-
miento de los objetos permite la optimizacién de tiempo de compilacién.

4, Separa la implementacién de la especificacién. Permite la modificacion
y mejora de la implementacidn, sin afectar al interfaz pablico del tipo
abstracto de dato.

5 Permite la extensibilidad del sistema Los componentes de software
reutilizables son més faciles de ciear y mantener

6 Recoge mejor la semdntica del tipo Los tipos absttactos de datos agru-
pan o localizan las operaciones y la representacion de atributos

25.2. Implementacion de los TAD

Los lenguajes convencionales, tales como Pascal, permiten la definicién de
nuevos tipos v la declaracion de procedimientos y funciones para realizar ope-
raciones sobre objetos de los tipos. Sin embatgo, tales lenguajes no permiten
que los datos y las operaciones asociadas sean declaradas juntos como una
unidad vy con un solo nombte. En los lenguajes en el que los médulos (TAD) se
pueden implementar como una unidad, éstos reciben nombres distintos:

Tuibo/Borland Pascal unidad, objeto

Modula-2 mddulo
Ada paguete
C++ clase
Java clase

En estos lenguajes se definen la especificacion del TAD, que declara las
operaciones y los datos ocultos al exterior, y la implementacion, que muestra ¢l
codigo fuente de las operaciones y que permanece oculto al exterior del médulo.

Las ventajas de los TAD se pueden manifestar en toda su potencia, debido a
que las dos partes de los médulos (especificacion e implementacion) se pueden
compilar por separado mediante la técnica de compilacién separada («separate
compilations) :

Modularidad: tipos abstractos de dstos 43

2.6. TIPOS ABSTRACTOS DE DATOS EN TURBO PASCAL

Una pila es una de las estructuras de datos mds utilizadas en el mundo de la
compilacién Una pila es un tipo de dato cldsico utilizado frecuentemente para
introducir al concepto de tipo abstracto de datos; es una lista lineal de elemen-
tos en la que los elementos se afiaden o se quitan por un solo extremo de la
lista La pila almacena elementos del mismo tipo y actian sobre ella las opera-
ciones cldsicas de Meter y Sacar elementos en dicha pila, teniendo presente la
estructura logica LIFO (i#ltimo en entrar, primero en salir)

Pila

Estructura de datos

Almacena una serie de elementos del tipo elemento. La pila esta inicialmente
vacla y los elementos se meten o sacan en ia pila por el mismo extremo,

Operaciones (Procedimientos que acttian sobre la estructura de datos)

Meter
Sacar
Crear
Destruir
PilaVacia

Sacardfﬁa\\\ Meter
Cima —————m 4//f—_

«—— PilaVacia

Figura 25 Estructura de datos pila,

En Turbo Pascal, los TAD se implementan mediante estructuzas tipo uni-
dad. Recordemos que una unidad es una biblioteca de funciones y procedimien-
tos que pueden ser utilizados por cualquier programa con la condicién de
incluir el nombre de la unidad en la cldusula uses de su sintaxis.

unit <nombre unidad>;
interface
<¢lausula uses>
<constantes, tipos y variables publicas>
<cabeceras de procedimientos y funciones publicas>
implementation
<clausula uses:>
<constantes. tipos y variables privadas>
<procedimientos/funciones privadas y cuerpos de
procedimientos/funciones publicas>
begin
<gsecuencia de sentencias para inicializacion>
end.

44 Programacicn orientada a objetos Modularidad: tipos abstractos de datos 45

La implementacién de una pila con capacidad para 1000 elementos del L Una vez que se ha implementado ¢l tipo de dato Pila, éste puede ser utiliza-
tipo entero es: S do en cualquier programa con tal de invocar en lIa ¢ldusula uses a dicho tipo
3 de dato Pila.

unit Pila;
interface .
const Rt . s . -
MaxPila = 1000; i 2.6.1. Aplicacion del tipo abstracto de dato Pila
type S
TipoElemento = integer; . . .
ListaElementos - array (L. MaxPila] of TipoElemento; N - El mgulente programa lee una secuencia de enteros, uno por linea, tales como
tipec = record gea estos:;
Elems : ListaBElementos;

. ‘ 100
Cima : integer; 4567
end; -20
250

procedure Crear {var S:tipo);

(* ¢ se inicializa y se limpia o vacia *) . . .
y genera la misma secuencia de ndmeros en orden inverso (los saca de la pila).
procedure Destruir (var S:tipo);

(* Se libera memoria asignada a 5 *)

{(* § no estd inicializada *) %;g
procedure Meter (var S:tipo; Item: tipoElemento); iggT

(* Se aflade un elemento & la cima de la pila *)

procedure Sacar {wvar S:tipo; Item:tipoElemento);

Esta tarea se consigue metiendo nimeros en la pila y a continuacién vacian-
(* quitar un elementc de la pila *} ’

do dicha pila.
procedure PilavVacia (var S:tipo):boolean;

(* devuelve true si S es vacia; false en casc contrarioc *) program Numeros;

implementation uses
procedure Crear {(var S:tipo}; Pilas
begin var

2 Cima := 0; S:Pila.Tipo;
end;

procedure Destruir (var S:tipo); procedure LeeryAlmacenarNumeros(var NumPila:Pila Tipo);

begin var .]
g. (* no hace nada *) Aux:Pila TipoElemento;
end; begin
' while not eof do
procedure Meter (var £:tipo; Item:TipoElemento); begin
begin readln (Aux) ;
S Cima := $.Cima + 1; Pila Meter (NumPila, Aux);
S Elems[S.Cimal] := Item; end;
end; end;

procedure Sacar {var S:tipo; var Item:TipoElemento); procedure VerNumercs(var NumPila: Pila.Tipo);

begin var
Item := S Elems{3 Cimal; Aux: Pila TipoElemento:
end; begin
while not Pila Pilavacia(NumPila) do
procedure Pilavacia (var S:tipo) :boolean; begin
beg%n _ Pila.Sacar (NumPila, Aux);
PilavVacia :1= (8. Cima=0); WritelLn (Aux) ;
end; end; {(* while *)
end

end; (* VerNumeros *)

46 Programacién orientada a objetos

begin {* programa principal *)
Pila Crear (S)
LecrvhilmacenarNumeros (S) ;
Pila Destruir{S);

end. (* fin de principal *}

Al igual que se ha definido el tipo Pila con estructuras estdticas tipo array,
se podia haber realizado con estructuras dindmicas tales como listas enlazadas
De igual modo se pueden implementar otros tipos de datos abstractos, tales
como, por ejemplo, las colas que se utilizan en muchas aplicaciones: sistemas
operativos, sistemas de comunicaciones, etc.

2.7. TIPOS ABSTRACTOS DE DATOS EN MODULA-2

Modula-2, el segundo lenguaje inventado por Niclaus Wirth (el disefiador de
Pascal), soporta esencialmente las caracteristicas de:

e Compilacion separada de modulos
o Abstraccion de datos

2.7.1. Moddulos

La construccidén que proporciona las caracteristicas citadas anteriormente se
denomina mddulo. Sintdcticamente, el modulo posee 1a misma estructura que
las uniones en Pascal (versiones USCD y Turbo de Borland)

Un programa en Modula-2 proporciona una coleccién de médulos bibliote-
ca que pueden ser ampliados por el programador escribiendo sus propios md-
dulos biblioteca. Los médulos programa y biblioteca pueden contener anida-
dos médulos mds pequefios ocultos del resto del programa, que se denominan
modulos locales

Los médulos pueden compilarse por separado y facilitan a los programado-
res el desarrollo de bibliotecas de cédigo reutilizable vy la construccién de gran-
des programas, :

El formato bdsico de un mdédulo es:

MODULE identificador_mod;
<declaraciones>

BEGIN
<sentencias>

END identificador _mod.

En Modula-2, la especificacién v la implementacién de un tipo abstracto de
datos se compilan por separado en un mddulo de definicién y en un mddulo de
implementacicn Esta separacion es consistente con el principio fundamental del

Modularidad: tipos abstractos de datos 47

TAD: los tipos de datos y las defliniciones de las operaciones asociadas (que
manipulan} con esos datos se agrupan en una parte (médulo de definicidn:
DEFINITION MODULE) v el cuerpo de las operaciones asociadas en otra parte
(médulo de implementacién: IMPLEMENTATION MODULE).

2.7.2. Madulos locales

Un mdédulo anidado (declarado) dentro de otro médulo o procedimiento se
denomina mddulo local Tas declaraciones de los médulos locales aparecen en
[a misma posicién que las declaraciones de otras entidades

Los moédulos locales tienen propiedades similares a los mddulos biblioteca,
incluyendo la capacidad de importar vy exportar entidades.

La abstraccion de datos es posible realizarla en Modula-2 a través de la
construccion médulo que proporciona el encapsulamiento y ocultamiento de
fos datos. La visibilidad y ocultamiento de los datos se puede obtener mediante
tipos opacos (ocultos o privados) o transparentes (publicos)

Médulo

Datos opacos

- transparentes

Figura 2.6. Ocultamiento de datos.

2.7.3. Tipos opacos

Un tipe opaco es, como su nombre indica, uno cuya estructura se oculta de sus
usuarios. Un tipo opaco se puede exportar desde un mdédulo y se puede utilizar
para declarar objetos, tales como variables, elementos de arrays y campos de
registros, en médulos que los importan.

El uso de un tipo opace en el médulo de definicién soporta el principio de
ocultamiento: los detalles de la implementacién del tipo de dato (Pila en el
ejemplo) estdn separados de su declaracién y estdn ocultos en el médulo de
implementacién, junto con la implementacién de las operaciones

El tipo opaco se define en el médulo de definicién en la seccién TYPE Un
médulo cliente que importa un tipo opaco se puede utilizar de igual modo que
cualquier tipo en Modula-2 Dado que los mdédulos clientes no conocen la
estructura del tipo, las tnicas operaciones que pueden realizar sobie variables
del tipo dado sin asignaciones y pruebas de igualdad y desigualdad

43 Programacion orientada a objetos

Cuando la parte de definicidn de un médulo biblioteca define un tipo opa-
co, la parte de implementacién del médulo debe incluir una declaracién com-
pleta del tipo. La declaracién completa de un tipo opaco se debe especificar
como un tipo abstracto de dato Pila, v es el siguente:

DEFINICICN MODULE PILA;

TYPE Pila; (* Tipo opaco *)

PROCEDURE TInicializar{VAR s: Pila};

PROCEDURE Meter (VAR s: Pila} : INTEGER;

PROCEDURE Sacar{ s: Pila) : INTEGER;

PROCEDURE Pilavacia(s: Pila} : BOOLEAN;

PROCEDURE Pilallena{s: Pila) : BOOLEAN;
END PILA.

La declaracién de un tipo opaco se hace en el médulo de implementacidn.

IMPLEMENTATION MODULE PILA;

CONST
LongPila = 100;
TYPE RegistroPila = RECORD
PilaArray : ARRAY [1..LongPila] OF Char;
CimabDePila: [0 . LengPila + 1]
END:
Pila = POINTER TO RegistroPila;

2.7.4. Tipos transparentes

Un médulo de definicién puede contener la declaracién de —estructura— un
tipo de dato, en cuyo caso el tipo se denomina transparente o piiblico, v se
puede acceder a €l y a sus campos desde cualquier médulo cliente,

Veamos cdmo se escriben los médulos de definicién v de implementacién de
un tipo abstracto de datos PilaCaracteres. Se puede definir el tipo de dato
mediante arrays o punteros; en este caso consideremos la implementacion me-
diante arrays El médulo PilaCaracteres permite la exportacién del tipo de
dato PilaCar, que tiene cardcter tiansparente.

DEFINITION MODULE PilaCaracteres;
(* exporta tipo PilaCar (pila de caracteres)
vy procedimientos para manipulacidén de variables de tipo
PilaCar *}
CONST TamanyoPila = 100:
(* maximo tamafio de un tipo PilarCar *)
TYPE PilaCar = RECORD
ArrayPila : ARRAY [1 .TamanyoPila] OF CHAR;
CimaPila : {0.. TamanyoPila + 1]
END;
(* exportacidn transparentes de PilaCar *)
PROCEDURE Meter (VAR &: PilaCar; ch: CHAR});
(* empuja c¢h en la pila s; termina programa si pila
estd llena ¥*)

Modularidad: tipos abstractos de datos 49

PROCEDURE Sacar (VAR s: PilaCar; VAR ch: CHAR]);

(* almacena elemento superior de la pila s en ch, a
continuacidén saca s; termina programa si pila estad
vacia *)

PROCEDURE EsVacia(s: PilarCar): BOOLEAN;

(* devuelve TRUE si s estd vacia *)

END PilaCaracteres

Este mddulo tiene algunos inconvenientes Si se decide incrementar el tama-
flo mdximo de la pila, se deben recompilar todos los mddulos que importan
PilaCaracteres, incluso cuando cambie ia representacién de PilaCar. Es-
tos inconvenientes y otros mds no citados s¢ pueden mejorar haciendo Pila-
Car de tipo opaco, permitiendo que PilaCaracteres exporte PilarCar sin
proporcionar ninguna informacién a los médulos cliente sobre la estructura
real de la variable Pilacar Este enfoque resuelve nuestros problemas: se
puede cambiar la representacidén de PilaCar en cualquier momento sin cam-
biar los mdédulos cliente v se asegura que los clientes no pueden modificar
variable PilaCar, excepto a través de procedimiento exportados por PilaCa-
racteres.

2.7.5. Una version del tipo abstracto de dato Pila
con datos opacos

Una version mejorada del moédulo de definicién de PilaCaracteres con
PilaCar definida como un tipo opaco es:

DEFINITION MODULE PilaCaracteres;

(* exporta tipo PilaCar (pila de caracteres)
¥ procedimientos para manipulacidén de variables de tipo
PilaCar *)

TYPE PilaCar; {* exportacidn opaca *)
PROCEDURE Inicializar (VAR s: PilaCar);
(* crea una pila s vy la hace vacia *)
PROCEDURE Meter (VAR s: PilaCar; ch: CHAR};
{(* empuja ch en pila s; termina programa si pila estéd
llena *)
PROCEDURE Sacar (VAR s: PilaCar; VAR ch: CHAR);

(* almacena elementc superior de pila s en ch, a
continuacidén saca s; termina programa si pila esta
vacia *)

PROCEDURE EsvVacia{s: PilaCar) : BOOLEAN;

(* devuelve TRUE si s es vacia, FALSE en caso

contrario *}
END PilaCaracteres

Los médulos que importan PilaCar pueden declarar variables de tipo
PilaCar, pero el Unico medio para manipular estas variables es a través de los
procedimientos Inicializar, Meter, Sacar V¥ EsVacia.

La especificacién completa del tipo Pilacar debe aparecer en la seccién de
implementacién de PilaCaracteres Dado que PilaCar debe ser un tipo

50 Programacién orientada a objetos

puntero, se declara como un puntero a un registro que contiene los campos
ArrayPilay CimaPila. El procedimiento Inicializar asigna espacio para
estos registros y después fija el campo CimaPila a 0 El médulo de implemen-
tacion es:

IMPLEMENTATION MODULE PilaCaracteres;
FROM Storage IMPORT ALLOCATE
FROM IO IMPORT WrStr, WrLn;
CONST TamanyoPila = 100;
(* tamafio médximo de una PilaCar *)
TYPE PilaReg =

RECORD
ArrayPila : Array[l TamanyoPila] OF CEAR;
CimaPila : [0. TamanyoPila + 1]

END;

PilaCar = POINTER TO PilaReg;

PROCEDURE Inicializar{VaR s: PilaCar}:
(* crea una pila y la hace vacia *)

BEGIN
ALLOCATE (s, SIZE (PilaREg);
s™~.CimaPila := 0

END Inicializar;

PROCEDURE Meter (VAR s: PilaCar; ch: CHAR);
(* empuja c¢h en la pila s; termina programa si pila llena *)
BEGIN
INC {(s".cimaPila};
IF 8™ cimaPila < tamanyoPila THEN
WrsStr { Desbordamiento Pila"};
WrLn;
HALT
END;
S™.ArrayPila [s”.cimaPilal := ch
END Meter;

PROCEDURE Sacar (VAR s: PilaCar; VAR ch: CHAR);
(* almacena elementc supericr de la pila s en ch,
después saca s; termina programa si pila esta vacia *})
BEGIN
SF 8" cimaPila = 0 THEN
WrStr { Desbordamientoc negative pila"):

Wrln;
HALT
END;
ch := s”.ArrayPila{s” cimaPila];
DEC{s".cimaPila}
END Meter;
PROCEDURE EsVacia{s: PilaCar} : BOOLEAN;
{* devuelve TRUE si s estd vacia *)
BEGIN

RETURN s cimaPila = 0
END EsVacia;
END PilaCaracteres

Modularidad: tipos abstractos de datos 51

Una aplicacién Inversa utiliza un médulo programa que lee una cadena
de caracteres y visualiza su inversa Este programa es fdcil de escribir si se
utiliza una pila para almacenar la cadena A medida que lee caracteres, se van
empujando a la pila, deteniéndose cuando se alcanza el final de la cadena.
Inversa saca los caracteres de la pila hasta que se vacie, escribiendo a conti-
nuacién cada cardcter a medida que se saca ¢l cardcter

MODULE Inversa;
{(* invierte una cadena escrita por el usuario *)

FROM IO IMPORT RdKey, WrChar, WrStr, WrIn;)
i FROM PilaCaracteres IMPORT PilaCar, Inicializar, Meter,
o sacar, EsVacia;

CONST r¢ = 15¢; {* retorno de carro *}

S VAR s : PilaCar;

car: CHAR
BEGIN
Inicializar(s); {(* vacia pila s *)

S Wrstr {"Introduzca cadena:");
R car := RdKey{);

. WHILE car # rc Do
WrChar {(car);
Meter (g, car);
car := RdKey

END;

Wrlm;

wrStr{"Cadena inversa es:)
WHILE NOT EsVacia (s) DO
Sacar(s,car);
WrChar (car)
END;
Wrin;
END Inversa.

2.7.6. Otra aplicacion del TAD Pila

Diseflar un TAD Ppila que disponga de un tipo opaco (su representacién sélo
serd visible en el médulo de implementacién; no serdn visibles a los médulos
clientes). Los tipos opacos se restringen a punteros y, en consecuencia, es preci-
so asignar memoria dindmicamente antes de utilizarlos Por consiguiente, hay
que incluir un procedimiento de inicializacién de modo que el usuario pueda
crear una pila para su uso.

definition meodule pilamod;
ryrpe wilatipe;
procedure vacia (stk:pilatipo):boolean;

52 Programacidn orientada a objetos

procedure meter {var stk:pilatipo; elemento:integer);
procedure guitar {var stk:pilatipo);
procedure cima (stk:pilatipe):integer;

end pilamod.

implementation module pilamod;
from InQut import WriteString, Writeln;
from Storage import allocate
const max = 100;

type pilatipe = pointer to
record
lista: arrayl{l. maxlof integer;
cimasub: {0. . max]
end;
procedure vacia (stk:pilatipo):boolean;
begin
return stk”.cimasub = 0
end vacia;

procedure meter (vaxy stk:pilatipo; elemento:integer);
begin
if stk”.cimapila = max then
WriteString("error - desbordamiento pila");

WritelLn;
else
Inc {stk™.listalstk” cimapilal := elemento

end
end meter;

procedure gquitar (stk:pilatipo):integer;
begin
if vacia {stk) then
WriteString("Exrror - desbordamiento negativo");
WritelLn
elge
dec {stk”.cimasub)
end (* fin de if vacia *)
end quitar;

procedure cima (stk:pilatipo):integer;
begin
if vacia (stk) then
WriteString("Error - desbordamiento negatiwveo");
Writeln;
else
return stk”. cimasub[stk”.cimasubl]
end
end c¢ima;

procedure crear (var stk:pilatipo);

begin
new {stk);
stk”.cimasub := ©

end crear;

end pilamod

Modularidad: tipos abstractos de datos 53

El siguiente cddigo crea e inicializa una pila, mete dos valores, 42 y 27,
luego saca el 27 y deja el valor 42

module usodepila;
from InOut import WriteLn, WritelInt, WriteString;
frompilamodimportpilatipo vacia, meter, quitar, cima crear;

var pila:pilatipo;
var aux:integer;

begin
crear {pila);
meter (pila, 42);
meter (pila, 27);

guitar (pila);
aux := cima {(pila);

end usodepila

2.8. Tipos abstractos de datos en Ada

Ada propoiciona unidades de programa: construcciones que estdn definidas
con un nombre y son auténomas en el disefio de un programa. Las unidades en
Ada son:

¢ Subprogramas: procedimientos y funciones andlogos a sus homénimos en
Pascal

Tareas: unidades de progtama disefiadas para ejecutarse concurrente-
mente, que se identifican como colecciones estdticas de cédigo y procesos.
*» Paquetes: construcciones que soportan abstraccién de datos y son la base
de componentes software

Unidades genéricas: unidades que permiten la creacién de tipos genéricos
0 pazametrizados Son plantillas que sirven para construir subprogramas
¥ paquetes y que constituye el mecanismo principal para construir com-
ponentes de software reutilizable.

Ada es un lenguaje que soporta el tipo abstracto de datos identificado como
mddulo en una entidad denominada paquete Un paguete 1epresenta en Ada la
idea de la encapsulacion, que es la clave para la abstraccién de datos

El paquete en Ada representa el nivel mds alto de abstraccién del pr ograma
y actda como un médulo La ocultacién de datos se 1ealiza a través del uso de
tipos private (privado) o limited private (privado limitado) Las opera-
ciones de asignacién y vetificacién de igualdad son las Gnicas opetraciones que
estdn delinidas en el lenguaje para tipos privados Para tipos privados limita-
dos no existen operaciones piedefinidas proporcionadas por el lenguaje. El
programador debe prever todas las operaciones soportadas, incluyendo asigna-
¢ién y verificacion de igualdad

54 Programacién orientada a objetos

Ada divide el paquete en dos construcciones sintdcticamente inde‘pendien-
tes: la especificacion del paquete y el cuerpo d?llp'aquete. El contenido de la
especificacién es muy similar al médulo de definicién (DEFINITI-O,N MODULE)
en Modula-2. El cuerpo se corresponde al médulo de implementacién (TMPLE-
MENTATION MODULE)

Especificacion del paquete
La especificacién del paquete tiene la siguiente sintaxis:

package <nombrepaguete> is
<items declarativos>
[private
<items declarativos>}
end <nombrepaguetes

La especificacion tiene dos partes:

1. Visible. Los componentes definidos en la parte visible son accesibles
fuera de la especificacién del paquete. '

2. Privada La parte privada de la especificacién del paquete no ¢s accesi-
ble a los clientes del paquete

Cuerpo del paguete

El cuerpo del paquete contiene las definiciones de los componentes que estan
ocultas a los clientes del paquete. Un cuerpo del paquete se p}lede definir en un
mddulo separado de la especificacidn del paquete La sintaxis es:

package body <nombrepaguete> is
<declaraciones>

<implementacidn subprogramas>
[manejador de excepciones]
begin <inicializaciones>

end <nombrepaguete>

Asi, el tipo abstracto Pila mds simple {sélo el procedimiento METER y la
funcién SACAR) se escribiria ast:

package TADPila is --egspecificacidén

Urilizado para declarar
instancia de la clase
procedure METER({x:integer, p: in out Pilg);
procedure SACAR (p: in out Pila x: out integer);

type Pila is private; |

private
max:constant := 100;
type Pila is record . _
P: arrayi{l .Max) of integer; Interfaz privado
Cima:integer range 0 max := 0;

end record;
end Pila;

Modularidad, tipos abstractos de datos b5

package body TADPila is --cuerpo

procedure Meter (x:integer, p: in out Pila} is

begin
Cima := Cima+1;
P(Cima) := x;
end Meter;

procedure Sacar (p: in out Pila, x: out integer) is

begin
Cima := Cima-1;
x! = P{Cima+l);

end Sacar;

begin inicializaciones
Cima := 1;

end TADPila;

Los paquetes permiten ocultar a los usuarios de los mismos los objetos
mternos de los mismos. Los tipos privados nos permiten ocultar a los usuarios
de los mismos los detalies de construccién de los tipos. Ada soporta dos tipos
de datos: privados v privados limitados

2.8.1. Tipos privados

La parte de la especificacion que estd antes de la palabra reservada private es
la pate visible y la informacién estd disponible fuera del paquete. Después de
private se tienen que dar los detalles de los tipos declarados como privados y
dar los valores iniciales de las constantes definidas correspondientes

Las caracteristicas adicionales en la especificacién de un paquete que expor-
ta un tipo privade son:

¢ La declaracién, en la parte piblica de la declaracién, de uno o mds tipos
privados. Cada declaracién debe ser de la forma:

type identificador is private

* Una seccion a continuacién de la palabia reservada private y termina-
da en end, al final de la especificacién, en la que se declaran los detalles de
implementacién del tipo o tipos privados.

Asi, por ejemplo, la seccién de especificacién de un tipo de datos abstracto
Pilas es:

package Pilas is
~—~comentarios
--un padguete gue exporta un tipo abstracto Pila de enteros
type Pila_ent is private;
procedure Iniciar (S:in out Pila_ent);
procedure Meter (S:in out Pila ent; Inst:integer):
procedure Sacar (S:in out Pila_ent, x: ocut integer) ;
function Cima (P:Pila_ent) return integer;
function Es_wvacia (S:Pila_ent) return boolean:
function Es_llena (S:Pila_ent) return boolean;

b6 Programacion orfentada a objetos
private .
—— definiciones del tipe Pila
limite_pila: constant := 100;

Subtype rango_pila is integer range 1 limite_pila;
cype Pila_ent is
record
Pila_array:array (rango_pila) of integer;
Cima:rango_cima;
end record:
end Pilas;

Las unicas operaciones disponibles en objetos de tipo privado son igualdad
y asignacién

2.8.2. Tipos privados limitados

Las operaciones disponibles para un tipo privado pueden restringirse com‘pie-
tamente a las especificadas en la parte visible del paquete Esto se consigue
declarando el tipo como limitado, al mismo tiempo que privado, del siguiente

modo:
type t is limited private;

La ventaja de hacer que un tipo privado limitado es que el progxamadqx _del
paquete tiene un control completo sobre los objetos del tipo Se p'uede v_1g11ar
la copia de recursos, etc. Asf, un tipo Pila definido como un tipo privade

(Private) limitado:

package Pila is)
type Pila_ent 1s limited Private;
procedure Iniciar (S:in out Pila_ent); . .
procedure Meter {S: in out Pila_ent; valor_lgt:lnteger);
procedure Sacar (S: in out Pila_ent, x: out integer);
precedure Cima (S: Cima) return integer;
function Es_wvacia (5: Pila_ent) return bcolean;
function Es_llena (S: Pila_ent) return boolean;

function "=" {izda, dcha: Pila_ent) return boolean;
private
Max : constant := 100;

type Vector_ Enterc ig array (Integer range <>) of integer;
type Pila_ent is

record
P: Vector Entero{l..Max);
Cima:Integer range 0. . Max := 0;
end racord;

end;

Cuando una variable se declara como tipo privado limitado, no estdn dis- -

ponibles ni las operaciones predefinidas de igualdad ni de asignacién. Si se
requieren, se puede definir una nueva funcién =, que sélo compara los elemen-

Modularidad: tipos abstractos de datos 57

tos significativos, pero el operador de asignacién : = no se puede redefinir, y en
comsecuencia, si se requiere una operacién de asignacion, habrd que declarar un
procedimiento especial asignar.

2.9. TIPOS ABSTRACTOS DE DATOS EN C

El lenguaje C proporciona algin soporte para abstraccién de datos, aungque
€sta es independiente de la implementacién particular. La tnica estructura de
programa definida en el lenguaje es la funcién, que es un subprograma que
puede poscer pardmetros de sélo lectura y generalmente devuelve un valor
mediante la sentencia return. Las implementaciones estdndar de C reconocen
una estructura de mds alto nivel —tipo £ile—, que es simplemente un archivo
que contiene cédigo fuente. El archivo en C es la unidad de compilacién; al
igual que el mddulo, los archivos son unidades de compilacién. De este modo,
la mayorfa de los programas se componen de diferentes archivos compilados
sepatadamente Sin embargo, esta propiedad se convierte normalmente en un
inconveniente, ya que C, al contrario que sus rivales Modula-2 ¥y Ada, no es
capaz de 1ealizar verificacién de tipos durante el proceso de compilacién sepa-
rada: es decir, cuando se disponen de varios archivos, no existen fSrmulas
claras que permitan definir dicha verificacién.

El interfaz del mdédulo utilizado es la declaracién del archive de cabece-
ra(.h), que mezcla en el archivo fuente merced al preprocesador aquellas
declaraciones de funciones incluidas en los citados archivos No existe en C
ninguna estructuia para encapsular datos y funciones en una sola entidad.

Normalmente, un programa C se organiza en uno o mds archivos fuente o
modulos. Cada archivo tiene una estructura similat, con comentatios, directi-
vas de preprocesador, declaraciones de variables v funciones, v sus definiciones
Normalmente se situard cada grupo de variables y funciones relacionadas en un
tinico archivo fuente. Algunos archivos son simplemente un conjunto de decla-
raciones que se utilizan en otros archivos a través de la directiva #include del
preprocesador C. Estos archivos, ya citados, se conocen como archivos de cabe-
cera y sus nombtes terminan con la extensién .k y constituyen la éspecificacion
del TAD. Las operaciones indicadas en la seccién de especificacidn han de ser
implementadas; la opcién mds segura es un archivo independiente con un sufijo
o extensién . ¢. Como C no soporta el tipo de dato clase que implementa en
una unica unidad los datos y opetaciones que manipulan los datos, la imple-
mentacién del tipo abstracto de datos se realiza mediante typedef, los datos
con struct y la implementacién de las operaciones con un conjunto de
funciones

Un ejemplo de un TAD que representa un punto en un sisterna de coorde-
nadas rectangulares podria ser:

especificacidn implementacidn

include "punto L' # include <math h>

define CANEVAS_LONG 10000 # include "punto.h
typedef short int Coord; # define norma{x} (.}

58 Programacion orientada a objetos
typedef struect { Punto Distancia (Punto pl. Punto p2)
Coord x, ¥Yi }
} Punto; long dx=pl x — p2 x
dy=pl ¥y = p2 ¥;
double Distancia (Punto pl, return sgrt (dx*dx+dy*dy);
Puntc p2};: }
/* . restantes funciones */ /* .. restantes implementaciones */

2.9.1. Un ejemplo de un tipo abstracto de datos en C

Definit un tipo abstracto de datos complejo en C que represenie ndmeros
complejos (datos y operaciones sobte nimeros complejos: parte real, parte ima-
ginaria, sumar, restar, igualdad, multiplicar y dividir)

Un niimero complejo z tiene parte real y parte imaginaria:

Z=Xx"+iy

/* tipo abstracto de datos en T */
/* archivo: complex.h */

#ifndef COMPLEX
#define COMPLEX

typedef struct {
fleoat x, 1i:
} complejo;

complejo nueve_compiejo{ficat x, float v);
float real (complejc ¢);

fleoat imag{complejo c};

complejo sumar{complejo a, ccmplejo b):
complejo restar{complejo a, complejo b};

int igual (complejo a, complejo k};

complejo multiplicar{complejo a, complejo b);
complejo dividir(complejo a, complejo b);

$endif

Los cuerpos de las funciones se implementan en el archivo complex.c:

/* FICHERQO: complex.c */
#include "complex h"

complejo nuevo_complejc({float x, float v) {
complejo ¢;
c r = X;
c.i =y
return <;

Modularidad: tipos abstractos de datos

float real{complejo c) {
refturn c.r;

}

float imag{complejo c) {
return c.i;

3

complejo sumar (complejo a, complejo b) {
complejo c;
c.¥Y = a.r +

+

r;
c.i=ai i

r

b.
b

return c;

}

complejo restar {complejo a, compleio b} |
compleijo c;

cr =ar -5br;
c.i=a.i - b.i;
return ¢;

}

int igual (complejo a, complejo b} {
return(a. r == r.¥r && a.i == b.1);

}

complejo multiplicar (complejo a, complejo b) {
complejo ¢;

c.¥r =ar *b.r -ai*b.i;
¢C.l =ar *bi-ail®*hbrx;
return c;

}

complejo dividir (complejo a, complejo b) |
compleijo c;
float denom = b.r * b.r + Lb.i * b.i;

c.r=({(a.r *br+ai* b i}/denom;
ci=1+{ail*br-ar*bi)/denom
return o

}

/* FICHERD: principa.g */
#include "complex. h"

int main{} {
complejo X, v, zZ:

P-4
Y

nuevo_compleijo(7.0. 7 0);
nuevo_complejo{5.0, 5.0);

printf{"x = (%£, %f£)\n",real(x}, imag(x});

59

Una vez definido el tipo de dato complejo, se puede invocar a los mismos
dentro de un programa principal.

60 Programacidn orientada a objefos

printf('y = (&f, %f£)\n'.really), imag (v));

2 = sumar{multiplicar(x, vy}, X);
printf (' (x+y)*x = (&t %£)\n",z});

return 0;

3

C no permite definir los signos + y — pata trabajar con tipos defin_idos por
el usuario, cosa que si podrd realizarse con C++ mediante Ja propiedad de
sobrecarga de operadores.

2.10. TIPOS ABSTRACTOS DE DATOS EN C++

Fn C+-+ el equivalente del paquete o médulo se denomina clage, y es el tipo de
dato que soporta la abstraccién de datos. Una clase es un tipo de dato.que
incluye datos y opetaciones que manipulan esos datos La_clase es la entidad
principal de fos lenguajes de programacién orientados a objetos (C++, Small-
talk, Fiffel, etc) .

Una definicién de una clase en C++ consta de miembros dato y funciones
miembro, a través de las cuales se puede acceder a los detalles internos de la
clase. Una clase se define como una estructura en C (struct), con la diferencia
de que puede contener tres secciones: publica, privada y protegida, v que puede
definirse con las palabras reservadas struct y class

Asi, la definicién de una clase (TAD) pila de caracteres (pila_carac) en
C++ es su especificacién, y su sintaxis es:

class pila_carac {
char listallCO0];
int cima_de la_pila;

public:
pila_carac/(
void meter!(
void sacar(
char cimal)

) {cima_de_la_pila = -1};
char) ;
char *);

i

Ti

La nueva clase pila_carac contiene las operaciones meter, sacar y
cima Las clases pueden incluir otras funciones miembro con igua'l _nombte que
Ja clase y que s¢ denominan constructores y destructores, cuya utilidad se verd
postetiormente (Capitulo 6).

El encapsulamiento en C++ se consigue declarando todos los datos como
privados (en la seccién privada, por defecto las sentencias que vienen a con-
tinuacién de la Hlave de apertura hasta la primera cldusula public ©
protected). A la seccién privada sélo se puede acceder mediante las funciones
miembro de la clase

La seccion publica es accesible (visible) a cualquier otra clase y sus datos - -
pueden ser modificados por funciones miembros externas a la clase -

Meduiaridad: tipos abstractos de datos 61

La implementacién de la clase (fos cuetpos de la funcidn) se pueden declarar
dentro de una definicion de la clase, pero es mds frecuente incluir los prototipos
de la funcidn en la especificacion y declarar los cuerpos de la funcién separada-
mente, aprovechando la propiedad de compilacién separada que posee el len-
guaje C++. Ademds, cada parte se compila en un archivo: la especificacién con
la extensién .h y la implementacién con la extensién . cpp.

En el caso dela citada clase Pila, los cuerpos de las funciones se declaran y
compilan por separado mediante el operador de resolucién de ambito (::), que
permite asociar los nombres de las funciones miembro con Ia clase correspon-
diente. Asi, los cédigos fuente serian:

void pila_carac::meter(char x)
{listal++cima_de la pila] = x;}

void pila_carac::sacar (char * x)
{* x = listalcima_de_la pila--];}

char pila_carac::cimaf)
{return lista{cima_de_la_pilal;}

Los uvsuarios de la informacién declarada en una clase se conocen como
clientes. Las variables de la clase pila_carac se pueden declarar y manipular
por un cliente de la forma siguiente:

main{)

{
plla _carac a, b; // se crean dos objetos de la clase
char ch;
a meter(*£'); b meter(‘qg‘);

ch = a.cimal(});

2.10.1. Definicion de una clase Pilaen C++

La clase Pila se define en el archivo de cabecera pila . h, de modo que podrd
ser utilizado por otros programas La implementacién de la pila utiliza un
array items, que contiene los elementos de la pila, y un indice cuentas, que
contiene cuantos elementos existen realmente en la pila. Las funciones que
manipulan la pila son meter, sacar, cima y vacia Estas operaciones se
desea que estén disponibles a los usuarios de la pila y, por consiguiente, se
deben definir piblicas (mediante la palabia reservada public), lo que significa
que cualquier vsuario de la pila puede llamar a las diferentes funciones miem-
bro que implementan las opeiaciones de la pila

Con el tipo struct, el acceso por omisién en piblico (pubic) para todos
sus miembros. En la definicién de pila existe un prototipo especial denomina-
do pila(). Cualquier funcién miembro con ¢l mismo nombie que el tipo dato
es un constructor. Un constructor se llama automadticamente siempre que crea-

62 Programacion orientada a objetos

mos una instancia de un tipo de dato particular Su trabajo es inicializar los
campos dato dentro de un objeto, ahorrando al programador la molestia de
Hlama: a una rutina de inicializacién especifica De modo similar, se puede
especificar un destructor, una funeién miembro con ¢l mismo nombre que fa

clase, con un simbolo ~ delante

//archivo pila h
//definicidn de una pila,

const int MAXPILA = 100;

struct pila
{
private:;
int cuenta;
int items [MAXPILA];
public:
pila();
void meter {int item);
void sacar();
int cimal);
int vacfa(};
T

con operaciones

//tamafio por defecto de la pila

//nimero de elementos de la pila
//definicidén de la pila

//inicializar pila, constructor
//meter elementos en la pila
//quitar elementos de la pila
//devuelve elemento cima de la pila
//¢la pila estd vacia?

Las operaciones de la pila implementadas en el cuerpo de la clase:

//definicidn de la pila: pila.cpp

/i
#include "pila h"

pila::pilail
{

cuenta = 0;

}

void pila::meter (int item)
{
items[cuenta++] = item;

}
void pila::sacar()

cuenta--;

}
int pila::cimaf)

return iltemsfcuenta-1];

3

int pila::vaciaf)
{
return cuenta == Q;

)

//inicializa la pila a vacia

//meter un elemento en la pila

//quitar elemento superior de la
//pila

//devuelve elemento superior de la
/ipila

//:estd la pila vacia?

Modularidad: tipos abstractos de datos 63

Un programa que invierte un flujo de enferos:

//utilizar pila para invertir un flujo de enterocs
//archivo inver. ¢pp

#include <iostream.h>
#inciude “"pila.h"

maini)

{
pila s; //crear una pila
int i;

while (cin >»> i)

s meter{i); //meter entrada en la pila

for (; !s vacia(); s sacar{()) //visualizar pila
cout << s.cima(} << "\n";
return 0O;

3

El gjercicio anterior se puede implementar mediante el tipo class lLa
compilacién separada se consigue con el archivo de cabecera pila h, el archi-
vo de implementacién de funciones pila cpp v el programa principal que
hace uso del archivo pila.h

//ARCHIVO: pila h
//Interfaz de una pila de enterocs

“#ifndef PILA

#define PILA

class pila {

private:
const unsigned int maxime;
int cuenta;
int * items;

public:
pila();
~pila():
void meter(int item):
vold sacar()
int cimal(});
int vaciaf();

}i
#endif
//ARCHIVO: pila cpp
#include "pila. h®
pila::pila{)

maximo (100)

cuenita (0) {
items = new int [maximol;

64 Programacién orientada a objetos

pila::~pila(} {
delete items;

}

void pila: :meter{int item} {
items [cuenta++] = item;
}

int pila::sacar{) {
cuenta~-;

3

int pila::cima({} {
return items[cuenta-1}

}

int pila::vacia() {
return cuenta == 0;

}

El operador de tesolucién de dmbito (::) permite asociar una funcién
miembro con su clase, y ha de definirse asi cuando se implementa el cuerpo de
la funcién

//ARCHIVO: principa. cpp

#include <iostream h>
#include "pila.h"

int main() {
pila s;
int 1;
for (; cin.goocd{); cin >> ii)

s.meter (i) ;

cout << 'NUMEROS INVERTIDOS" << endl;
for (; s.vacia{); s.sacar({())
cout << s.cima(} << endl;

return {;

RESUMEN

Este capitulo examina el concepto fundamental de la orientacién a objetos, el
tipo abstracto de datos. Los tipos abstractos de datos (TAD) describen un
conjunto de objetos con la misma representacién y comportamiento. Los
tipos abstractos de datos representan una separacién clara entre la intertaz
externa de un tipo de datos y su implementacién interna La implementacién
de unm tipo abstracto de datos estd oculta Por consiguiente, se pueden ufilizar
implementaciones alternativas para el mismo tipo abstracto de datos sin cam-
biar su interfaz

Modularidad: tipos abstractos de datos 65

En la mayoria de los lenguajes de programacién orientados a objetos, los
tipos abstractos de datos se implementan mediante clases (unidades en Pascal
mddulos en Modula-2, paquetes en Ada).

En este capitulo se analizan y describen las implementaciones de tipo abs-
tractos de datos en los lenguajes Turbo Pascal (versiones 5.5 a 7), Modula-2,
Ada, Cy C+-+

¢l

EJERCICIOS

21. Construit un tipo abstracto lista enlazada de nodos que contienen en-
teros
—>»| 25 » 45 » 50 » 15

2.2. Disefiar un tipo abstracto de datos pila de nimeros enteros y que al
menos sopotte las siguientes operaciones:

Borrar: Eliminar todos los nimeros de la pila.

Copiar: Ilace una copia de la pila actual

Meter: Afladir un nuevo elemento en la cima de la pila

Sacar: Quitar un elemento de la pila

Longitud: Devuelve un ndmero natural igual al nimero de objetos de la
pila

Llena: Devuelve verdadero si la pila estd llena (no existe espacio libre
en la pila)

Vacia: Devuelve verdadero si la pila estd vacia v falso en caso contra-
rio

Igual; Devuelve verdadero si existen dos pilas que tienen la misma

profundidad y las dos secuencias de nidmeros son iguales
cuando se comparan elemento a elemento desde sus respecti-
vas cimas de la pila; false en caso contrario

2.3. Crear un tipo abstracto Cola que sitva para implementar una estructura
de de datos cola

2.4. Crear un TAD para 1epresentar:

» Un vector (representacién grafica v operaciones)
* Una matriz y sus diferentes operaciones.
e Un nimero complejo v sus diferentes operaciones

2.5, Crear un TAD que represente un dato tipo cadena (string) y sus diversas
opetaciones: cdlculo, longitud, buscar posicién de un cardcter dado, con-
catenar cadenas, extraer una subcadena, cte

CAPITULO

CONCEPTOS FUNDAMENTALES
DE PROGRAMACION
ORIENTADA A OBJETOS

CONTENIDO

66

Programacidn estructurada

3.2, ;Qué es la programacién orientada a objetos?
3.3. Clases

3.4. Un mundo de objetos

3.5. Herencia)
3.6. Comunicaciones entre objetos: los mensajes
3.7. Estructura interna de un objeto

3.8. Clases

3.9. Herenciay tipos

3.10. Anulacion/Sustitucion

3. 11. Sobrecarga

3.12. Ligadura dinamica

3.13. Objetos compuestos

3.14, Reutilizacion con orientacion a objetos

3.15. Polimorfismo

RESUMEN

La programacién orientada a objetos es un importante con-
junto de técnicas que pueden utilizarse para hacgf el degarr.o_—
llo de programas mas eficientes, a la par que mejora la flal?ljl-
dad de los programas de computadora. En la programacion
orientada a objetos, los objetos son los elementos principales
de construccién. Sin embargo, la simple comprension de lo
que es un objeto, ¢ bien el uso de objetos en un programa, no
significa que esté programado en un modo orleptado a _obje-
tos. Lo que cuenta es el sistema en el cual los objetos se inter-
conectan y comunican entre si.

En este texto nos limitaremos al campo de la programa-
cidn, pero es también posible hablar de sistemas de adminis-
tracion de bases de datos orientadas a objetos, sistemas ope-
rativos orientados a objetos, interfaces de usuarios orientados
a objetos, etc.

T

Conceptos fundamentales de programacicn orientada a objetos 67

3.1. PROGRAMACION ESTRUCTURADA

La programacion estructurada se emplea desde el principio de la década de
los setenta y es uno de los métodos mé4s utilizados en el campo de Ia progra-
macién

La técnica descendente o el refinamiento sucesivo comienza descomponiendo
el progiama en piezas manejables mds pequefias, conocidas como funciones
(subrutinas, subprogramas o procedimientos), que realizan tareas menos com-
plejas. Un programa estructurado se construye rompiendo el programa en
funciones. Esta divisién permite escribir c6digo m4s claro y mantener el control
sobie cada funcién

Un concepto importante s¢ introdujo con la programacién estructurada, ya
comentado anteriormente: la abstraccion, que se puede definit como Ia capaci-
dad para examinar algo sin preocuparse de sus datos internos. En un programa
estructurado es suficiente conocer que un procedimiento dado realiza una tarea
especifica. EI c6mo se realiza esta tarea no es importante, sino conocer c6mo se
utiliza correctamente la funcién y lo que hace

Funcion
Funcion

Funcién

Funcién

Funcidn Funcién Funcion

FuncidnJ Funcién

’ Funcidn ‘

Funcién ’ Funcién ‘

Figura 3.1. Programa estructurado.

A medida que la complejidad de un programa crece, también crece su inde-
pendencia de los tipos de datos fundamentales que procesa. En un programa
estructurado, las estructuras de datos de un programa son tan importantes
como las operaciones realizadas sobre ellas. Esto se hace mds evidente a medi-
da que crece un programa en tamano Los tipos de datos se procesan en
muchas funciones dentro de un programa estructurado, v cuando se producen
cambios en esos tipos de datos, las modificaciones se deben hacer en cada
posicién que actiia sobre esos tipos de datos dentro del programa Esta tarea
puede ser frustrante y consumir un tiempo considerable en programas con
millones de lineas de cédigo y centenares de funciones.

En un programa estructurado, los datos locales se ocultan dentro de funcio-
nes y los datos compartidos se¢ pasan como argumentos (Fig 3.2)

68 Programacion orientada a objetos

Variables globales

Accesibles, por cualquier funcion

Variabies locales

Variabies locales

Funcién A Funcién B

Accesible sdlo por funcion A Accesible sélo por funcién B

Figura 3.2. Variables globales y locales.

Otro problema es que, dado que muchas funciones acceden a los mismos
datos, el medio en que se almacenan los datos se hace mds critico La disposi-
cién de los datos no se pueden cambiar sin modificar todas las funciones que
acceden a ellos Si por gjemplo se afiaden nuevos datos, se necesitard modificar
todas las funciones que acceden a los datos, de modo que ellos puedan también
acceder a esos ¢lementos

Datos
globales

Datos
globales

\/

Datos
giobales

Funcién Funcién ‘ Funcién Funcién

Figura 3.3 Descomposicién de un programa en moédulos {funciones).

Los programas basados en funciones son dificiles de disefiar. El problema es
que sus componentes principales —funciones y estructuras de datos— no mo-
delan bien el mundo real Por ejemplo, supongamos que se estd escribiendo un
programa para crear los elementos de un interfaz grafico de usuario: menus,
ventanas, cuadros de didlogo, etc. ; Qué funciones se necesitardn? ;Qué estruc-
turas de datos? La solucidn seria mds aproximada si hubiera una correspon-
dencia lo més estrecha posible entre los mends y ventanas y sus correspondien-
tes elementos de programa.

Conceptos fundamentales de programacion orientada a objefos 69

3.1.1. Desventajas de la programacion estructurada

Ademds de los inconvenientes citados anteriormente, comentaremos algunos
otros que influyen considerablemente en el disefio

Cuando diferentes programadores trabajan en equipo para disefiar una
aplicacién, a cada programador se le asigna la comstruccién de un conjunto
especifico de funciones y tipos de datos. Dado que los diferentes programadores
manipulan funciones independientes que 1elacionan a tipos de datos comparti-
dos mutuamente, los cambios que un programador hace a los datos se deben
teflejar en el trabajo del resto del equipo. Aunque los programas estructurados
son mds {dciles de disefiar en grupo, los errores de comunicacién entre miem-
bros de equipos pueden conducir a gastar tiempo en rescritura

Por otra parte, los lenguajes tradicionales presentan una dificultad afiadida:
la creacion de nuevos tipos de datos. Los lenguajes de programacién tipicamente
tienen tipos de datos incorporados: enteros, coma flotante, caracteres, etc ;C6-
mo inventar sus propios tipos de datos? Los tipos definidos por el usuario y la
facilidad para crear tipos abstractos de datos en determinados lenguajes es la
propiedad conocida como extensibilidad 1.0s lenguajes tradicionales no son
normalmente extensibles, y eso hace que los programas tradicionales sean mds
complejos de esciibir v mantener.

En resumen, con los métodos tradicionales, un programa se divide en dos
componentes: procedimientos y datos Cada procedimiento actiia como una caja
negra Esto es, es un componente que realiza una tarea especifica, tal como
convertir un conjunto de ndmeros o visualizar una ventana Este procedimien-
to permite empaquetar codigo programa en funciones, pero ;qué sucede con los
datos? Las estructuras de datos utilizadas en programas son con [recuencia
globales o se pasan explicitamente con pardmetros

3.2. (QUE ES LA PROGRAMACION ORIENTADA
A OBJETOS?

Grady Booch, autor del método de disefio orientado a objetos, define la progra-
macion orientada a objetos (POQO) como

«un método de implementacién en el que los programas se organizan como colec-
ciones cooperativas de objetos, cada uno de los cuales representan una instancia
de alguna clase, y cuyas clases son todas miembros de una jerarquia de clases
unidas mediante relaciones de herencia» *

Existen tres importantes partes en la definicién: la programacién orientada
a objetos 1) utiliza objetos, no algoritmicos, como blogues de construccién
16gicos (jerarquia de objetos); 2) cada objeto es una instancia de una clase, v 3}
las clases s¢ 1elacionan unas con otras por medio de relaciones de herencia.

' BoocH, Grady: Andlisis y disefio orientado @ objetos con aplicaciones 2. edicion Addison-
Wesley/Diaz de Santos, 1995

70 Programacion orientada a objetos

Un programa puede parecer otientado a objetos, pero si cualquiera de estos
elementos no existe, no es un programa orientado a objetos Especificamente, la
programacion sin herencia es distinta de la programacién orientada a objetos;
se denomina programacidn con tipos abstractos de datos o programacion basada
en objetos.

El concepto de objeto, al igual que los tipos abstractos de datos o tipos
definidos por el usuario, es una coleccidn de elementos de datos, junto con las
funciones asociadas utilizadas para operar sobre esos datos Sin embargo, la
potencia 1eal de los objetos reside en el modo en que los objetos pueden definir
otros objetos. Este proceso, ya comentado en el Capitulo 1. se denomina heren-
cia y es el mecanismo que ayuda a construir programas que se meoedifican
facilmente y se adaptan a aplicaciones diferentes.

Los conceptos fundamentales de programacién son: objetos, clases, heren-
cia, mensgjes y polimorfismo.

3.2.1. El objeto

La idea fundamental en los lenguajes otientados a objetos es combinar en una
sola unidad datos y funciones gue operan sobre esos daios. Tal unidad se deno-
mina objeto. Por consiguiente, dentro de los objetos residen los datos de los
lenguajes de programacién tradicionales, tales como nimeros, arrays, cadenas
y 1egistros, asi como funciones o subrutinas que operan sobse ellos,

Las funciones dentro del objeto (funciones miembro en C++, métedos en
Object-Pascal y Smalltalk) son el tinico medio de acceder a los datos privados
de un objeto. Si se desea leer un elemento datos de un objeto se llama a la
funcién miembro del objeto Se lee el elemento v se devuelve el valor No se
puede acceder a los datos directamente. Los datos estdn ocultos, y eso asegura
que no se¢ pueden modificar accidentalmente por funciones externas al objeto

Funciones externas Procedimientos externos Datos

Funcion Funcién miembro
Funcién miembro
Funcién <

Datos

|

Funcién miembro

b

Publico Privado

Figura 3.4, El modelo objeto.

g

Conceptos fundamentales de programacitn orientada a objetos 71

Los datos y las funciones (procedimientos en Object-Pascal) asociados se dicen
que estdn encapsulados en una tnica entidad o médulo. La encapsulacion de
datos y ocultacién de datos son términos importantes en la descripcidn de
lenguajes orientados a objetos.

Si se desea modificar los datos de un objeto, se conoce exactamente cudles
son las funciones que interactdan con el mismo Ninguna otra funcién puede
acceder a los datos Esta caracteristica simplifica [a escritura, depuracién y
mantenimiento del programa

3.2.2. Ejemplos de objetos

«Qué clase de cosas pueden ser objetos en un programa orientado a objetos?
La respuesta estd sélo limitada a su imaginacién Algunos ejemplos tipicos
pueden ser:

e Objetos fisicos
Aviones en un sistema de control de tréfico aéreo
Automdviles en un sistema de control de trdfico terrestre.
Casas

e Flementos de interfaces grdficos de usuario
Yentanas
Ments
Objetos grédficos (cuadrados, tridngulos, ete),
Teclado.
Cuadzos de didlogo
Ratdn

e Animales
Animales vertebrados
Ammales invertebrados
Pescados

e Tipos de daros definidos por el usuario
Datos complejos.
Puntos de un sistema de coordenadas

o Alimentos
Carnes
Frutas,
Pescados
Verduras
Pasteles.

Un objeto es una entidad gue contiene los atributos que describen el estado
de un objeto del mundo real y las acciones que se asocian con el objeto del
mundo 1eal. Se designa por un nombre o identificador del objeto.

Dentro del contexto de un lenguaje orientado a objetos (.OO), un objeto
encapsula datos y los procedimientos/funciones (métodos) que manegjan €sos
datos. La notacién grdfica de un objeto varia de unas metodologias a otzas.

72 Programacidn orientada a objetos
Métodos . 72 ~N)
Nombre del objeto
Datos
Métodos
Variablés -)j
(a) ()]
Nombre
~ del objeto
Nombre
Atributos
Métodos o
\ / Datos —

) Y operaciones @
Figura 3.5. Notaciones graficas de objetos: {a) Taylor; (b) Yourdon/Coad;
{e) OMT; {d) Booch.

Consideremos una ilustracién de un coche vendido por un distribuidor de
coches. El identificador del objeto es Cochel. Los atributos asociados pueden
ser: numerc de matricula, fabricante, precio _compra, precio,
actual, fecha_compra . FEl objeto Cochel se muestra en la Figura 3.6

(o ~)
Coche 1

Matricula
Marca
Precio

Afilo compra

Calcular_Precio_Actual

\ J

Figura 3.6. El objeto cochel,

Conceptos fundamentales de programacién orientada a objetos 73

Anributos: Datos o variables que caracterizan el estado de un objeto.
Métodos Procedimientos o acciones que cambian ¢l estado de un objeto,

El objeto retiene cierta informacién y conoce c6mo realizar cieitas opera-
ciones La encapsulacién de operaciones ¢ informacién es muy importante Los
meétodos de un objeto sélo pueden manipular directamente datos asociados con
ese objeto. Dicha encapsulacidn es la propiedad que permite incluir en una sola
entidad (el médulo u objeto) la informacion (los datos o atributos) y las opera-
ciones {los métodos o funciones) que operan sobre esa informacién

Seccicn Informacién
privada v
operaciones

Figura 3.7. Encapsulamiento de datos.

Los objetos tienen un interfaz piblico y una representacién privada que
permiten ocultar la informacién que se desee al exterior.

Interfaz plblico

Representacion
privada

Figura 3.8 Interfaz publico de un objeto,

3.2.3. Meétodos y mensajes

Un programa orientado a objetos consiste en un ndme1o de objetos que se
comunican unos con otros llamando a funciones miembro Las funciones
miembro (en C++) se denominan métodos en otros lenguajes orientados a
objetos (tales como Smalltalk y Turbo Pascal 5 5/6.0/7.0).

Los procedimientos y funciones, denominados métodos o funciones miembro,
residen en el objeto v determinan c6mo actian los objetos cuando reciben un
mensaje Un mensaje es 1a accién que hace un objeto Un método es el procedi-
miento o funcién que se invoca para actuar sobre un objeto. Un método especi-
fica cdmo se ejecuta un mensaje

El conjunto de mensajes a los cuales puede responder un objeto se denomi-
na protocolo del objeto Por ejemplo, el protocolo de un icono puede constar de

74 Programacion orientada a objetos
Objeto
Liegada 4
de mensajes \ Datos
Métodos

Figura 3.9. Métodos y mensajes de un objeto.

mensajes invocados por el clic de un botén del 1atén cuando el usuario localiza
un puntero sobre un icono.

Al igual que en las cajas negras, la estructura interna de un objeto estd
oculta a los usuatios v programadores Los menszjes que recibe el objeto son
los tnicos conductos que conectan el objeto con el mundo externo. Los datos
de un objeto estdn disponibles para ser manipulados sélo por fos métodos del
propio objeto

Cuando se ejecuta un programa orientado a objetos ocurren tres sucesos.
Primero, los objetos se crean a medida que se necesitan Segundo, los mensajes
se mueven de un objeto a otro (o desde el usuario a un objeto} a medida que el
programa procesa informacién internamente o responde a la entrada del usua-
1io. Tercero, cuando los objetos ya no son necesarios, se borran y se libera la
memotia.

La Figura 310 representa un diagrama orientado a objetos.

T T Objeto 1
e
Datos

Funcién miembro

Funcién miembro

Funcién miembro Funcién miembro

Objeto 2

Funcion miembro

Funcién miembro

Figura 3.10. Diagrama orientado a objetos.

Conceptos fundamentales de programacion orientada a objetos 75

3.3. CLASES

Una clase es la descripcion de un conjunto de objetos; consta de métodos y
datos que resumen caracteristicas comunes de un conjunto de objetos. Se pue-
den definir muchos objetos de la misma clase Dicho de otro modo, una clase es
la declaracion de un tipo objeto.

Las clases son similares a los tipos de datos y equivalen a modelos o planti-
llas que describen cdmo se construyen ciertos tipos de objetos Cada vez que se
construye un objeto a partir de una clase, estamos cteando lo que se llama una
instancia de esa clase Por consiguiente, 1os objetos no son mds que instancias
de una clase. Una instancia es una variable de tipo objeto En general, instancia
de una clase vy objeto son términos intercambiables

Cada vez que se construye un objeto de una clase, se crea una instancia de
esa clase Los objetos se crean cuando un mensaje de peticidn de creacién se
recibe por la clase base.

3.3.1. Implementacion de clases en lenguajes

Supongamos una clase Punto que consta de los campos dato (coordenadas x
e) vy los campos funcién (métodos leer dichas coordenadas x e y).

clase Puntoc

Coordenadas
X, ¥

Métodos
Fijar
Leer x
Leer v

Objetos de la clase punto

x1, vyl X2, y2 x3, v3
Métodos 1 Métodos 2 Métodos 3
objeto I chieto 2 objeto 3

76 Pragramacion orientada a objetos
’ Conceptos fundamentales de programacion orientada a objetos 17

En Turbo Pascal se¢ define una clase (en terminologia de Borland se
! denomina objeto) con la palabra object

L : - type
s Las func:lones del ObjGtO s denominan métodos Turbo 2ascal) momlljl('e{lzse} = obieci;
N <lisgta de campos de datoss
[
nes}nkﬂﬂbro{en (}+'%)_:__:__::_.”___. <lista de cadenas de funciones y procedimientos>
end;
En realidad, una clase es un tipo de dato definido por el usuario que deter- _ y el ejemplo de un objeto Punto
mina las estructuras de datos y operaciones asociadas con ese tipo. Dicho de j
otro modo, una clase es una coleccion de objetos similares. La definicidn de una - type Punto = object
clase no crea ningin objeto, de igual modo que la declaracién de variables L ®,y : Integer;
tampoco crea variables S procedure operar:
o end;
int x; =f;! var p : Punto;

int pesetas;

3.3.2. Sintaxis
3.4. UN MUNDO DE OBJETOS
En C++ se puede declarar una clase de la siguiente forma: o . - : il
Una de las ventajas includibles de la orientacién a objetos es la posibilidad de
reflejar sucesos del mundo real mediante tipos abstractos de datos extensibles a
objetos Asi pues, supongamos ¢l fenémeno corriente de la conduccién de una

c¢lass Punto
{

int x; bicicleta, un automévil, una motocicleta o un avién: usted conoce que esos
int y; vehiculos comparten muchas caractetisticas, mientras que difieren en otros
public:

Por ¢jemplo, cualquier vehiculo puede ser conducido: aungue los mecanismos

id fijarXy (int a, int b . . .
void Eijarxy) de conduccidn difieren de unos a otros, se puede generalizar el fenémeno de la

{

x = a; conduccién En esta consideracién, enfrentados con un nuevo tipo de vehiculo
v = b {por ejemplo una nave espacial), se puede suponer que existe algin medio para
3 conducirla Se puede decit que vehiculo es un tipo base y nave espacial es un
int leerX () \return x;) tipo derivado de ella
int leery () {return v;) ‘

s En consecuencia, se puede crear un tipo base que representa el comporta-
miento y caractetisticas comunes a los tipos derivados de este tipo base

Un objeto es en realidad una clase especial de variable de un nuevo tipo que
algin programador ha creado. Los tipos objeto definidos por el usuatio se com-
portan como tipos incorporados que tienen datos internos y operaciones exter-
nas Por ejemplo, un nimero en coma flotante tiene un exponente, mantisa y bit
de signo y conoce c6mo sumarse a sf mismo con otro ndmero de coma flotante

Los tipos objeto definidos por el usuario contienen datos definidos por

el usuario (caracteristicas) y operaciones (comportamiento) Las operaciones

La sintaxis anterior ha definido la clase Punto, pero no ha creado ningiin
objeto. Para crear un objeto de tipo Punto tendrd que utilizarse una declara-
cién del tipo correspondiente, al igual gue se declara cualquier variable de un
tipo incorporado C++

Punto P; // se define una variable de tipo Punto

78 Programacién orientada a objstos

definidas por el usuatio se denominan métodos. Para llamar a uno de estos
métodos se hace una peticién al objeto: esta accién se CORoOce COMO «ERVIAI un
mensaje al objeto» Por ¢jemplo, para detener un objeto automdovil se envia un
mensaje de parada («stop»). Obsérvese que esta operacion se basa en la nocién
de encapsulacién (encapsulamiento): se indica al objeto 1o que ha de hacer, pero
los detalles de como funciona se han encapsulado (ocultado)

3.4.1. Definicién de objetos?

Un objeto (desde el punto de vista formal se deberia hablar de clase), como ya se
ha comentado, es una abstraccién de cosas (entidades) del mundo real, tales que:

e Todas las cosas del mundo real dentro de un conjunto —denominadas
instancias— tienen las mismas caracteristicas
¢ Todas las instancias siguen las mismas reglas

Cada objeto consta de:

o Estado (atributos) _
e Operaciones o comportamiento (métodos invocados por mensajes),

Desde el punto de vista informatico, 1os objetos son tipos abstractos de datos
(tipos que encapsulan datos y funciones que operan sobre esos datos)
Algunos ejemplos tipicos de objetos:

e Niimero racional
Estado (valor actual)
Operaciones (sumar, multiplicar, asignar..)

» Vehiculo
Estado (velocidad, posicién, precio.).
Operaciones (acelerar, frenar, parar..).

e Conjunto
Estado (elementos).
Opetaciones (afiadir, quitar, visualizar.).
® Avidn
Estado (fabricante, modelo, matricula, nimero de pasajeros.).
Operaciones (aterrizar, despegar, navegar.)

3.4.2. Identificacion de objetos

El primer problema que se nos plantea al analizar un problema que se desea
implementar mediante un programa orientado a objetos es identificar los obje-

2 Cuando se habla de modo genérico, en realidad se deberiz hablat de ¢t asgs, dado que la clase
en ¢l tipo de dato v objeto es s6lo una instancia, ejemplas ¢ caso de Ja clase Aqui mantenemos el
términe objete per conservar la zigurosidad de la definicién «orientado a objelos», aungue en
realidad la definicién desde el punto de vista téenico seria la clase

Conceptos fundamentales de programacion orientada a ohjetos 79

tos; es decir, ;qué cosas son objetos?; jcomo deducimos los objetos dentro del
dominio de la definicidn del problema?

La identificacién de objetos se obtiene examinando la descripcidn del pro-
blema (andlisis gramatical somero del enunciado o descripeidn) v localizando
[os nombres o cldusulas nominales Normalmente, estos nombies y sus sindénimos
se suelen escribir en una tabla de la que luego deduciremos los objetos reales.

Los objetos, segtin Shlaer, Mellor y Coad/Yourdon, pueden caer dentro de
las siguienies categorias:

e Cosas tangibles (avidn, reactor nuclear, fuente de alimentacidn, televisor,
libro, automévil).

® Roles o papeles jugados o 1epiesentados por personas (gerente, cliente,
empleado, médico, paciente, ingeniero).

® Organizaciones (empresa, divisidn, equipo..)

s [ncidentes (representa un suceso -——evento— u ocurrencia, tales como vie-
lo, accidente, suceso, llamada a un servicio de asistencia técnica .}

e Interacciones (implican generalmente una fransaccidén o contrato v rela-
cionan dos o mds objetos del modelo: compras —comprador, vendedor,
articulo—, matrimonio —esposo, esposa, fecha de boda)

e Especificaciones (muestian aplicaciones de inventario o fabricacién: tefri-
gerador, nevera . }

e Lugares (sala de embarque, muelle de carga.)

Una vez identificados los objetos, serd preciso identificar los atributos y las
operaciones que actdian sobie ellos.

Los atributos describen la abstraccidn de caracteristicas individuales que
poseen todos los objetos.

AVION EMPLEADO
Matricula Nombre
Licencia del piioto Ndmero de identificacion
Nombre de avién Salario
Capacidad de carga Direccidn
Numero de pasajeros Nombre del departamento

Las operaciones cambian el objeto —su comportamiento— de alguna for-
ma, es decir, cambian valores de uno o mds atributos contenidos en el objeto.
Aunque existen gran nimetro de operaciones que se pueden realizar sobre un
objeto, generalmente se dividen en tres grandes grupos™

¢ Operaciones que manipulan los datos de alguna forma especifica (afiadir,
borrar, cambiar formato..).
e Operaciones que realizan un cdlculo o proceso

* PressMmaN, Roger: Ingenieria del software Un enfoque prdctico 3* edicién McGraw-Hill, 1993

80 Programacion orientada a objetos

e Operaciones que comprueban (menitorizan) un objeto frente a la ocurren-
cia de algiin suceso de control

La identificacién de las operaciones se realiza haciendo un nuevo andlisis
gramatical de la descripcién del problema y buscando y aislando los verbos del
texto

3.4.3. Duracion de los objetos

L.os objetos son entidades que existen en el tiempo; por ello deben ser creados o
instanciados (normalmente a través de otros objetos). Esta operacién se hace a
través de operaciones especiales llamadas constructores en C++ o inicializado-
res. Estas operaciones se ejecutardn implicitamente por el compilador o
explicitamente por el programador, mediante invocacidén a los citados construc-
tores

3.4.4. Objetos frente a clases. Representacion grafica
{Notacioén de Ege)

Los objetos y las clases se comparan a variables y tipos en lenguajes de progra-
macién convencional [Jna variable es una instancia de un tipo, al igual que un
objeto es una instancia de una clase; sin embargo, una clase es mds expresiva
que un tipo Expresa la estructura y todos los procedimientos y funciones que
se pueden aplicar a una de sus instancias

En un lenguaje estructutado, un tipo integer, pot ejemplo, define la es-
tructura de una variable entera, por gjemplo una secuencia de 16 bits y los
procedimientos y funciones que se pueden realizar sobre enteros De acuerdo a
nuestra definicidn de «clase», el tipo integer serd una clase. Sin embargo, en
estos lenguajes de programacién no es posible agrupar nuevos tipos y sus
correspondientes nuevas funciones v procedimientos en una tinica unidad En
un lenguaje orientado a objetos una clase proporciona este servicio.

Ademds de los t&rminos objetos y clases, existen otros términos en orienta-
cién a objetos Las variables o campos que se declaran dentro de una clase se
denominan datos miembro en CH-+; otros lenguajes se refieren a ellos como va-
riables instancia. Las funciones que se declaran dentio de una clase se denomi-
nan funciones miembro en C++; otros lenguajes utilizan el término métode Las
funciones y campos miembro se conocen como caracteristicas miembro, 0 sim-
plemente miembros A veces se invierten las palabras, y las funciones miembros
se conocen como miembro funcidn y los campos se denominan miembro datos.

Es 1til ilustrar objetos y clases con diagramas® La Figura 3.11 muestra el
esquema general de un diagrama objeto Un objeto se dibuja como una caja.

* Las notaciones de clases y objetos utilizada en esta seccion se deben a Raimund K. Ege, que
ias dio a conocer en su libro Programming in an Object-Oriented Environment Academic Press (AP),
1992

Concepfos fundamentales de programacion orientada & chjetos 81

La caja se etiqueta con ¢l nombre del objeto y representa el lfmite o frontera
entre el interior y el exterior de un objeto

Objeto

Campos miembro

I
1 ==

. . =1

Funciones miembro D g
T 2
N

<:ID «

o N /
' Y
Interior Exterior

Figura 3.11. Diagrama de un objeto.

Un campo se dibuja por una caja rectangular, una funcién por un hexdgono
largo. Los campos y funciones se etiquetan con sus nombres Si una caja rectan-
gular contiene algo, entonces se representa el valor del campo para el objeto
dibujado Los campos y funciones miembro en el interior de la caja estdn
ocultos al exterior, que significa estar encapsulados. El acceso a las carac-
teristicas de los miembios (campos y funciones) es posible a través del interfaz
del objeto En una clase en C++, ¢l interfaz se construye a partir de todas las
caracterfsticas que se listan después de la palabra reserva publie; puede ser
funciones y campos

La Figura 3 12 muestra el diagrama objeto del objeto "hola mundo® Se
llama saludol y permite acceder a su estado interno a través de las funciones
miembro ptblicas cambiar y anunciar. El campo miembro privado contiene
el valor Esto es saludoi

Saludot

Miembro dato privado

Bienvenido

Visualizar

Figura 3.12. El objeto saludol.

32 Programacion orientada a objetos
/Cudl es la diferencia entre clase y objeto?

Un objeto es un simple elemento, no importa lo complejo que pueda ser. Una
clase, por el contrario, describe una familia de elementos similares. En la pricti-
ca, una clase es como un esquema o plantifla que se utiliza para definir o crear
objetos

A partir de una clase se puede definir un ndmero determinado de obje-
tos Cada uno de estos objetos generalmente tendid un estado particular
propio {una pluma estilogrédfica puede estar llena, otra puede estar medio
llena y otra totalmente vacia) y otras caracteristicas (como su colot), aunque
compartan algunas operaciones comunes (como «escribir» o «llenar su depdsi-
to de tinta»)

Los objetos tienen las siguientes caracteristicas:

Se agrupan en tipos llamados clases.

Tienen datos internos que definen su estado actual
Soportan ocultacion de datos

Pueden heredar propiedades de otros objetos

Pueden comunicarse con otios objetos pasando mensajes
Tienen métodos que definen su comportamiento.

La Figura 3 13 muestra el disefio general de diagramas que representan a
una clase v a objetos pertenccientes a ella.

Clase

Campo miembro

]

Funciones miermbro

)

a—

Figura 3.13. Diagrama de una clase.

Una clase es un tipo defimido que determuna las estructuras de datos y
operaciones asociadas con ese tipo Las clases son como plantillas que descri-
ben como ciertos tipos de objetos estdn construidos. Cada vez que se construye
un objeto de una clase, estamos creando lo que se llama una instancia (modelo
o gjemplar) de una clase y Ia operacién correspondiente se Hama instanciacion
(creacion de instancias). Por consiguiente, los objetos no son mds que instancias
de clases. En general, los términos objeto e instancia de una clase se pueden
utilizar indistintamente.

Conceptos fundamentales de programacion orientada a objetos 83

Un abjto s uno instoncia do una e, |
Una clase pucde tener muchas instancias'y cada una'es un objeto ind

3.4.5. Datos internos

Una propiedad importante de los objetos es que almacenan informacién de su
estado en forma de datos internos El estado de un objeto es simplemente el
conjunto de valotes de todas las variables contenidas dentro del objeto en un
instante dado A veces se denominan a las variables gque representan a los
objetos variables de estado. Asf por ejemplo, si tuviésemos una clase ventana
en C+-+:

class ventana |
int posx, posy;
int tipo_wventana;
int tipo_borde;
int color_ventana;
public:
meve _hor {int dir, int ang);
move_ver (int dir, int ang);

H

Las variables de estado pueden set las coordenadas actuales de la ventana y
sus atributos de color actuales

En muchos casos, las variables de estado se¢ utilizan sélo indirectamente.
Asi, en el caso del ejemplo de la ventana, suponga que una orden {mandato})
fipica a la ventana es:

reducir en 5 filas y 6 columnas

Esto significa que la ventana se reducird en tamafio una cantidad dada por
5 filas v 6 colummas:

mensaje reducir

Afortunadamente, no necesita tener gue guardar la posicién actual de la
ventana, ya que el objeto hace esa operacién por usted. La posicién actual se
almacena en una variable de estado que mantiene internamente la ventana
Naturalmente, se puede acceder a esta variable estado cuando se desee, envian-
do un mensaje tal como:

indicar posicion actual

84 Programacién orientada a objetos

3.4.6. Ocultacion de datos

Con el fin de mantener las caracteristicas de caja negra de POO, se debe
considerar ¢cémo se accede a un objeto en el disefio del mismo. Normalmente es
una buena prdctica restringir el acceso a las variables estado de un objeto v a
otra informacién interna que se utiliza para definir el objeto. Cuando se utiliza
un objeto no necesitamos conocer todos los detalles de la implementacién Esta
prédctica de limitacién del acceso a cierta informacién interna se llama oculta-
cion de datos

En el ejemplo anterior de ventana, ¢l usuario no necesita saber cémo se
implementa la ventana; sélo cémo se utiliza. Los detalles internos de la imple-
mentacion pueden v deben ser ocultados. Considerando este enfoque, somos
libres de cambiar el disefio de la ventana (bien para mejorar su eficiencia o bien
pata obtener su trabajo en un hardware diferente), sin tener que cambiar el
¢codigo que la ufiliza.

3.5. HERENCIA

La encapsulacidn es una caracteristica muy potente, v junto con la ocultacién
de la informacidn, representan el concepto avanzado de objeto, que adquiere su
mayor relevancia cuando encapsula e integra datos, mds las operaciones que
manipulan los datos en dicha entidad Sin embargo, la orientacion a objetos se
caracteriza, ademads de por las propiedades anteriotes, por incorporar la carac-
teristica de herencia, propiedad que permite a los objetos ser constiuidos a
partir de otros objetos Dicho de otro modo, la capacidad de un objeto para
utilizar las estructuras de datos v los métodos previstos en antepasados o
ascendientes. El objetivo final es la reutilizabilidad o reutilizacién (reusability)’,
es decir reutilizar cédigo anteriormente ya desarrollado.

La herencia se apoya en el significado de ese concepto en la vida diaria. Asf,
las clases bdsicas o fundamentales se dividen en subclases Los animales se
dividen en mamiferos, anfibios, insectos, pajaros, peces, etc. La clase vehiculo se
divide en subclase automévil, motocicleta, camidn, autobus, etc El principio en
que se basa la divisién de clases es la jerarquia compartiendo caracteristicas
comunes. Asf, todos los vehiculos citados tienen un motor y ruedas, que son
caracteristicas comunes; si bien los camiones tienen una ¢aja para transportar
mercancias, mientras que las motocicletas tienen un manillar en lugar de un
volante. :

* Este término también se suele traducir por reusabilidad, aunque no es un término aceptado
por el Diccionario de la Real Academia Espaficla

Conceptos fundamentales de programacion orientada a objetos 85

Clase base

Caracteristica A

Caracteristica B]

Caracteristica A

Caracteristica B

Caracteristica A

Caracteristica B

Caracteristica A

Caracteristica B

Caracteristica W

Caracteristica X Caracteristica ¥

Caracteristica Z

Clase derivada Clase derivada Clase detivada

Figura 3.14. Jerarguia de clases.

La herencia supone una clase base y una jerarquia de clases que contienen
las clases derivadas de la clase base Las clases derivadas pueden heredar ¢l
c6digo y los datos de su clase base, afiadiendo su propio c¢édigo especial y datos
a ellas, incluso cambiar aquellos elementos de la clase base que necesita sean
diferentes

No se debe confundir las telaciones de los objetos con las clases, con las
telaciones de una clase base con sus clases derivadas Los objetos existentes
en la memoria de la computadora expresan las caracteristicas exactas de su
clase y sirven como un mdédulo o plantilla Las clases derivadas heredan

caractetisticas de su clase base, pero afiaden otras caracteristicas propias
nuevas

Ast, se puede decii que una clase de objetos es un conjunto de objetos que
comparten caracteristicas y comportamientos comunes Fstas caracteristicas y
comportamientos se definen en una clase base. Las clases derivadas se crean en
un proceso de definicién de nuevos tipos y reutilizacién del cédigo anterior-
mente desarrollado en la definicién de sus clases base. Este proceso se denomi-
na programacion por herencia. Las clases que heredan propiedades de una clase
base pueden a su vez servit como definiciones base de otras clases. Las jerar-

- quias de clases se organizan en forma de drbol

86 Programacidn orientada a objetos

3.5.1. Sintaxis

En lenguaje C++ la propiedad de herencia se implementa con la siguiente
sintaxis:

class <derivadas> : <lista clases base>

{
<datos propilos>
<funcicnes miembro propias>

}

En lenguaje Pascal orientado a objetos (versiones Turbo 55 a 7.0), la sinta-
xis de una clase (objeto en su terminologfa) es:

type ‘
<nombre-clase> = cobjeect (clase ascendiente)

<campos propics de nueveo objeto>
<métodos propios del nueve objeto>
end;

Asi, por ejemplo, en C++, si se crea una clase base:

class base {

int x. ¥y

public:

vold hacerdlgo ()
}

en Turbo Pascal se escribitfa la clase equivalente:

base = object
X, ¥ : integer;
procedure hacerAlgo;
end;

Se desea construir un nuevo tipo derivado del tipo base existente, tal que el
tipo derivado sea idéntico al tipo base, con una excepcién: extender base
afadiendo un método llamado hacerOtraCosa. Se construye una clase deri-

vada En C++:

class derivada : class base {
public:
void hacerOtraCosa ();

¥

En Turbo Pascal,

derivada = cbject (base)
procedure hacerOtraCosa;
end;

Conceptos fundamentales de programacion orientada a objetos 87

Dado que derivada hereda todos los datos y métodos de base, no se
necesita redefinirlos; simplemente indicar al compilador que desea derivar un
nuevo tipo (derivado) de un tipo base (base) y afiadir el nueve método. La
herencia permite construir tipos de datos complejos sin repetit mucho cédigo
El nuevo tipo hereda unas caracteristicas y comportamiento de un ascendiente
o antepasado. Puede también reimplementar o sobirescribir cualquier método
que elija. Esta reimplementacién de métodos del tipo base en los tipos deriva-
dos es fundamental el concepto de polimotfismo, que se verd mds tarde.

3.b.2. Tipos de herencia

Existen dos mecanismos de herencia utilizados cominmente en programacién
orientada a objetos: herencia simple y herencia miiltiple.

En herencia simple, un objeto (clase) puede tener sélo un ascendiente, o
dicho de otro modo, una subbase puede heredar datos y métodos de una dnica
clase, asf como afiadir o quitar comportamientos de la clase base Turbo Pascal
sélo admite este tipo de herencia C++ admite herencia simple y multiple

La herencia nuiltiple es la propiedad de una clase de poder tener mds de un
ascendiente inmediato, o lo que es igual, adquitir datos v métodos de mds de
una clase.

Una representacién gréfica de los tipos de herencia con una clase base
genérica 01 se muestra en la Figura 3 16

La Figura 3 15 tepresenta los grdficos de herencia simple y herencia muilti-
ple de la clase figura y persona, respectivamente

‘i_____/

Rectangulo
redondeado

Herencia simple Herencia maltiple

investigador

Profesor
universitario

Figura 3.15. Tipos de herencia.

En la Figura 3 16 se muestran graficamente las relaciones de herencia, apre-
cidndose facilmente los dos tipos (simple y maultiple)

A primera vista, se puede suponer que la herencia mdltiple es mejor que la
herencia simple; sin embargo, como ahoia comentaremos, no siempre serd asf

88 Programacién orientada a objetos

Herancia simple
Base (01)

(11) derivada de base (01)

(111} derivada de (171)
(12) derivada de base (01)

(13) derivada de base (01)

Herencia multiple
Base {01)

(11) derivada de base (01)
{111) derivada de (11)

(12} derivada de (02)

L (12111) derivada de (12) y (111)

Figura 3.16. Herencia simple y muitiple.

En los lenguajes de POO —incluyendo Object-Pascal, Objective-C, Small-
talk v Acter— implementan sélo herencia simple Eiffel y C++ (a partir de la
version 20), por otra parte, soportan herencia multiple.

En general, prdacticamente todo lo que se puede hacer con herencia miultiple
se puede hacer con herencia simple, aunque a veces resulta mds dificil Una
dificultad surge con la herencia miiltiple cuando se combinan diferentes tipos
de objetos, cada uno de los cuales define métodos o campos iguales. Suponga-
mos dos tipos de objetos pertenecientes a las clases Grdficos y Sonidos, v se
crea un nuevo objeto denominado Multimedia a partir de ellos. Graficos
tiene tres campos datos: tamafio, color ¥ mapasdebits, y los métodos
dibujar, cargar, almacenar y escala; sonidos tiene dos campos datos,
duracidén, voz ¥ tonc, vy los métodos reproducir, cargar, escala ¥
almacenar Asi, para un objeto Multimedia, el método escala significa poner
el sonido en diferentes tonalidades, o bien aumentar/reducir el tamafio de la
escala del grdfico

Naturalmente, el problema que se produce es la ambigiiedad, y se tendrd
que resolver con una operacién de priondad que el correspondiente lenguaje
deberd soportar y entender en cada caso.

En realidad, ni la herencia simple ni la herencia miltiple son perfectas en
todos los casos, y ambas pueden requerir un poco mds de cédigo extra que
represente bien las diferencias en el modo de trabajo

Conceptos fundamentales de programacion orientada a objetos 89

3.6. COMUNICACIONES ENTRE OBJETOS:
LOS MENSAJES

Ya se ha mencionado en secciones anteriores que los objetos realizan acciones
cuando ellos reciben mensajes El mensaje es esencialmente una orden que se
cnvia a un objeto para indicarle que realice alguna accién. Fsta técnica de
enviar mensajes a objetos se denomina pasar mensajes. Los objetos se comuni-
can entre si enviando mensajes, al igual que sucede con las personas. Los
mensajes tienen una contrapartida denominada métodos. Mensajes y métodos
son dos caras de la misma moneda Los métodos son los procedimientos que se
invocan cuando un objeto recibe un mensaje. En terminologia de programacién
tradicional, un mensaje es una Hamada a una funcién. Los mensajes juegan un
papel ctitico en POO Sin ellos los objetos que se definen no se podrdn comuni-
car entre si. Como ejemplo, consideramos enviar un mensaje tal como subir §
lineas el objeto ventana definido anteriormente. Fl aspecto importante no es
cémo se implementa un mensaje, sino cémo se utiliza

Consideremos de nuevo nuestro objeto ventana. Supongamos que desea-
mos cambiar su tamafio, de modo gue le enviamos el mensaje

Reducir 3 cclumnas por la derecha

Observe que no le indicamos a la ventana cémo cambiar su tamaiio, la
ventana maneja la opetacién por sf misma De hecho, se puede enviar el mismo
mensaje a diferentes clases de ventanas y esperar a que cada una 1ealice la
misma accidn

Los mensajes pueden venir de otios objetos o desde fuentes externas, tales
como un tatén o un teclado

——(Coaoe D

Figura 3.17. Mensajes entre objetos.

Una aplicacién Windows es un buen ejempio de c6mo se emplean los men-
sajes para comunicarse entre objetos El usuatio pulsa un botén para enviar
(remitit, despachar) mensajes a otios objetos que realizan una funcién es-
pecifica Si se pulsa el botén Exit, se envia un mensaje al objeto responsable de
cerrar la aplicacién Si el mensaje es vdlido, se invoca el métedo interno. Enton-
ces se cierra la aplicacién.

a0 Prograrnacion orienfada a objetos

3.6.1. Activacion de objetos

A los objetos sélo se puede acceder a través de su interfaz .pliblico.-g,Cémo se
permite el acceso a un objeto? Un objeto accede a otro objeto envidndole un

mensaje

Carro
R S
T
Edad

Precio_carre

Maltricula

Calcular precio ()

Calcular precio (}

-«

Figura 3.18. Envio de un mensaje.

3.6.2. Mensajes

Un mensaje es una peticién de un objeto a otro objeto al que le solicita ejecuﬁar
uno de sus métodos Por convenio, el objeto que envia la peticién se denomina
emisor y el objeto que recibe la peticién se denomina receptor.

D Prueba () .
_—

Objeto receptor

Objeto emisor

e .

Calcular_precio {100)

.
»>

(b}

Figura 3.19. Objetos emisor y receptor de un mensaje.

Estructuralmente, un mensaje consta de tres partes:

o Identidad del 1eceptor
e Bl método que se ha de gjecutar.

Conceptos fundamentales de programacion orientada a objetos 91

* Informacion especial necesaria para realizar el método invocado (argu-
mentos o pardmetros requeridos)

ohj_rtest "obj_test sumar 10 xyz"

/ receptor méiodo pardmetro

Figura 3.20. Estructura de un mensaje.

Cuando un objeto estd inactivo {durmiendo) y recibe un mensaje se hace
activo. El mensaje enviado por otros objetos o fuentes tiene asociado un méto-
do que se activard cuando ¢l receptor recibe dicho mensaje La peticién no
especifica cdmo se realiza la operacién. Tal informacién se oculta siempre al
emisor

El conjunto de mensajes a los que responde un objeto se denomina compor-
tamiento del objeto. No todos los mensajes de un objeto 1esponden; es preciso
que pertenezean al interfaz accesible,

Nombre de un mensaje

Un mensaje incluye el nombie de una operacién y cualquier argumento reque-
rido por esa operacién Con frecuencia, es util referirse a una operacién por
nombre, sin considerar sus argumentos.

Meétados

Cuando un objeto recibe un mensaje, se realiza la operacién solicitada ejecu-
tando un método Un método es el algoiitmo ejecutado en respuesta a la
recepcién de un mensaje cuyo nombre se cotresponde con el nombre del
método

La secuencia actual de acontecimientos es que el emisor envia su mensaje; ef
receptor ejecuta el método apropiado, consumiendo los pardmetros; a conti-
nuacién, el receptor devuelve algin tipo de respuesta al emisor para reconocer
el mensaje y devolver cualquier informacion que se haya solicitado.

92 Programacion orientada a objefos

3.6.3. Paso de mensajes

Los objetos se comunican entre s a través del uso de mensajes El interfaz del
mensaje se define un interfaz claro entre el objeto y el resto de su entorno.

Esencialmente, el protocolo de un mensaje implica dos partes: el emisor y el
receptor. Cuando un objeto emisor envia un mensaje a un objeto receptor, tiene
que especificar lo siguiente:

1. Un 1eceptor.
2 Un nombre de mensaje
3 Argumentos o pardmetios (si se necesita).

En primer lugar, un objeto receptor que ha de recibir el mensaje que s¢
ha especificado. Los objetos no especificados por ¢l emisot no responderdn El
teceptor trata de concordar el nombre del mensaje con los mensajes que
¢l entiende. Si el mensaje no se entiende, el objeto receptor no se activard. Si el
mensaje s¢ entiende por el objeto receptor, el receptor aceptard y responderd
al mensaje invocando ¢l método asociado.

Los pardmetros o argumentos pueden ser:

1. Datos utilizados por el método invocado.
2 Un mensaje, propiamente dicho

La estructura de un mensaje puede ser:

enviar <Objeto A>.<Métodol {pardmetrol, parametroN) >

El ejemplo siguiente muestra algunos mensajes que s¢ pueden enviar al
objeto Cochel. El primero de &éstos invoca al método Precio_Coche y no
tiene argumentos, mientras que el segundo, Fijar_precio, envia los pardme-
tros 8-10-92, y Poner_en_blanco no tiene argumentos.

Ejemplo

enviar Cochel Precio Cochel() envia & Cochel el mensaje Precio_Coche

enviar Cochel. Fijar_precic({8-10-92} envia a Cochel el mensaje Fijar _precio
con el pardmetro 8- 10-92

enviar Cochel .Poner en_blanco{} envia a Cochel el mensaje Poner _en_blanco

3.7. ESTRUCTURA INTERNA DE UN OBJETO

La estructura interna de un objeto consta de dos componentes bdsicos:

» Atributos.
¢ Métodos (operaciones o servicios).

Conceptos fundamentales de programacién orientada a objetos 93

Gato (Torno)

Atributos —+

Métodos ——

Objetos

Clase

Figura 3.21. Notacion grafica OMT de una clase y de un objeto.

Alimento
Atributos
Setvicios -)
{ (—
Pescado) (Came) (Leche \
\ J \ J ___ J

Figura 3.22. Objetos en notacion Yourdon/Coad.,

3.7.1. Atributos

Los atributos describen el estado del objete. Un atributo consta de dos pattes:
un nombre de atributo y un valor de atributo

Los objetos simples pueden constar de tipos primitivos, tales como entetos,
cardcter, boolean, reales, o tipos simples definidos por el usuario Los objetos
complejos pueden constar de pilas, conjuntos, listas, array, etc, o incluso es-
tructuras recursivas de alguno o todos los elementos.

Los constructores se utilizan para construir estos objetos complejos a partir
de otros objetos complejos.

3.7.2. Meétodos

Los métodos {operaciones o servicios) describen el comportamiento asociado a
un objeto. Representan las acciones que pueden realizarse por un objeto o
sobre un objeto. La ejecucién de un método puede conducir a cambiar el
estado del objeto o dato local del objeto.

Cada método tiene un nombre y un cuerpo que realiza la accién o compor-
tamiento asociado con el nombre del método En un LOQO, el cuerpo de un
método consta de un bloque de cédigo procedimental que ejecuta la accién
requerida. Todos los métodos que alteran o acceden a los datos de un objeto se
definen dentro del objeto Un objeto puede modificar directamente o acceder a
los datos de otros objetos

94 Programacion orientada a objetos

Un método dentro de un objeto se activa por un mensaje que se envia por
otro objeto al objeto que contiene el método De modo alternativo, se puede
llamar por otro método en el mismo objeto por un mensaje local enviado de un
método a otro dentro del objeto

Cbjeto A
Atributos
método_1 El método_1 llama
al método_2,
enviandole
método_2 | = un mensaje
Elmétodo_3
se invoca por | métrodo 3
un mensaje

de otro objeto

Figura 3.23. Invocacién de un método.

metodo: Precio_coche
inicio

Precio_coche := Precio_coste * (Marca+l);
fin.

3.8. CLASES

La clase es la construccién del lenguaje utilizada mds fiecuentemente para
definir los tipos abstractos de datos en lenguajes de programacidn orientados a
objetos Una de las primeras veces que se utilizé el concepto de clase fue en
Simula (Dahl y Nygaard, 1966; Dahl, Myhrhang y Nigaard, 1970) como enti-
dad que declara conjuntos de objetos similares En Simula, las clases se utiliza-
ron principalmente como plantillas para crear objetos de la misma estructura.
Los atributos de un objeto pueden ser tipos base, tales como enteros, 1eales y
booleans; o bien pueden ser arrays, procedimientos o instancias de otras clases

Generalmente, una clase se puede definit como una descripcion abstracta de
un grupo de objetos, cada une de los cuales se diferencia por un estado ¢s-
pecifico y es capaz de realizar una serie de operaciones

Por ejemplo, una pluma estilogréfica es un objeto que ticne un estado (llena
de tinta o vacfa) que puede realizar algunas operaciones (por ejemplo esctibir,
poner/quitar el capuchdn, rellenar si estd vacia)

En programacién, una clase es una estructura que contiene datos y procedi-
mientos (o funciones) que son capaces de operar sobre esos datos. Una clase
pluma estilogréfica puede tener, por ejemplo, una variable que indica si estd llena
0 vacia; otta variable puede contener la cantidad de tinta cargada realmente. La
clase contendrd algunas funciones que operan o utilizan esas variables.

Dentro de un programa, las clases tienen dos propdsitos principales: definir
abstracciones y favorecer la modularidad

Conceptos fundamentales de programacion arientada a objotos 95

Cudl es la diferencia entre una clase y un objeto, con independencia de su
complejidad? Una clase verdaderamente describe una familia de elementos si-
milares. En realidad, una clase es una plantilla para un tipo particular de
objetos Si se tienen muchos objetos del mismo tipo, sélo se tienen que definir
las caracteristicas generales de ese tipo una vez, en lugar de en cada objeto

A partit de una clase se puede definir un nimero de objetos Cada uno de
estos objetos tendrd generalmente un estado peculiar propio (una pluma puede
estar 1ellenada, otra puede estar medio-vacia y otra estar totalmente vacfa) y
otras caractetisticas (como su color), aungue compaitirdn operaciones comunes
(como «escribir», «llenar», «poner ¢l capuchéns, etc))

En resumen, un objeto es una instancia de una clase.

3.8.1. Una comparacidn con tablas de datos

Una clase se puede considerar como la extensién de un registro Aquellas
personas familiarizadas con sistemas de bases de datos pueden asociar clase e
instancias con tablas y registros, respectivamente. Al igual que una clase, una
tabla define los nombres y los tipos de datos de la informacién que contenga.
Del mismo medo que una instancia, un registro de esa tabla proporciona los
valores especificos para una entrada particular La principal diferencia, a nivel
conceptual, es que las clases contienen métodos, ademds de las definiciones de
datos,

Una clase es una caja negra o méduio en la que estd permitido conocer lo
que hace la clase, pero no cémo lo hace Una clase serd un mddulo y un tipo.
Como mddulo la clase encapsula los recursos que ofrece a otras clases (sus
clientes). Como ¢ipo describe un conjunto de objetos o instancias que existen en
tiempo de gjecucién

‘. Clase A [T ObjClase A

Instancia (objeto}
Clase de la clase

Figura 3.24. Una clase y una instancia (objeto} de la clase {Notacién Booch).

NStANCIAs: CoMo registros

96 Programacion orientada a objetos
Cuenta (Cuenta Cte) {Cuenta Ahorro)
Servicio S1010
Horas g
Frecuencia 2
Descuento 20
Clase Instancia

Figura 3.25. Instancias de una clase {notacién OMT).

Los objetos ocupan espacio en memoria, y en consecuencia existen en el
tiempo, y deberdn crearse o instanciarse {(probablemente a partir de otios obje-
tos} Por la misma razdén, se debe liberar el espacio en memoria ocupado por los
objetos. Dos operaciones comunes tipicas en cualquier clase son:

¢ Constructor: una operacién que crea un objeto y/o inicializa su estado
e Destructor: una operacion que libeta el estado de un objeto y/o destruye
el propio objeto.

En C++ los constructores y destructores se declaran como parte de la
definicién de una clase La creacién se sucle hacer a través de operaciones
especiales (constructores en C++, Pila); estas operaciones se aplicardn impli-
citamente o se deberdn llamar explicitamente por otros objetos, como sucede
en C++

Cuando se desea crear una nueva instancia de una clase, se llama a un
método de la propia clase para realizar el proceso de construccion Los méto-
dos constructores se definen como métodos de la clase De modo similar, los
métodos empleados para destruir objetos y liberar la memoria ocupada (des-
tructores en C++, ~Pila) también se definen dentro de la clase

3.9. HERENCIA Y TIPOS

Los objetos con propiedades comunes (atributos y operaciones) se clasifican en
una clase. De igual modo, las clases con propiedades y funciones comunes se
agrupan en una superclase Las clases que se derivan de una superclase son las
subclases.

Las clases se organizan como jerarquia de clases. La ventaja de definir clases
en una jerarquia es que a través de un mecanismo denominado herencia, casos
especiales comparten todas las caracteristicas de sus casos mds generales

I.a herencia es una caracteristica por la que es posible definir una clase, no
de un borrador, sino en términos de otra clase. Una clase hereda sus carac-
terfsticas (datos y funciones) de otra clase Esta caracteristica proporciona cla-

Conceptos fundamentales de programacién orientada & objetos 97

ramente un soporte poderoso para reutilizacién y extensibilidad, dado que la
definicién de nucvos objetos se pueden basar en clases existentes.
Como ejemplo, considérese la jerarquia de herencia mostrada en la Figu-

ra 3.26
Insecto

Mamifero

Persona

Y\
Hombre m

Figura 3.26. Jerarquia de herencia.

Las clases de objeto mamifero, pdjaro e insecto se definen como subclases de
animal, la clase de objeto persona, como una subclase de mamifero, y un hom-
bre y una mujer son subclases de persona.

Las definiciones de clases para esta jerarquia pucde tomar la siguiente es-
fructuia:

clage criatura

atributos
tipe : string;
pesc @ real;
habitat : (. . algun tipo de habitat..):

operaciones
crear () - criatura;
predadores{criatura) — fijar (criatura):
esperanza_vida(criatura) — entero;

end criatura.

¢lase mamifero imherit criatura;
atributogs (propiedades)
pericde_gestacion: real;
operaciones

end mamifero.

clase persona inherit mamiferc;
propiedades

93 Programacion orientada a objetos

apellidos, nombre: string;
fecha_nacimiento: date;
origen: pails;
end persona.
clase hombre inhexit persons;
atributos
esposa: mujer;
operaciones
end hombre
clase mujer inherit persona;
propiedades
esposc: man;

nombre: string:;

end mujer.

La herencia es un mecanismo potente para fratar con la evolucién natural
de un sistema y con modificacion incremental [Meyer, 1988] Existen dos tipos
diferentes de herencia: simple y muiltiple.

3.9.1. Herencia simple (herencia jerarquica)

En esta jerarquia cada clase tiene como médximo una sola superclase. La heren-
cia simple permite que una clase herede las propiedades de su superclase en una

cadena jerdrquica.
@ Amplificador

Figura 3.27. Herencia simple.

3.9.2. Herencia multiple (herencia en malla)

Una malla o reticula consta de clases, cada una de las cuales puede tener uno o
mds superclases inmediatas Una herencia miltiple es aquella en la que cada
clase puede heredar métodos v variables de cualquier nimero de superclase

Conceptos fundamentales de programacion orientada a objetos 99

En la Figuta 3 28 la clase C tiene dos superclases, A y D Por consiguiente,
la clase C hereda las propiedades de las clases A y D. Evidentemente, esta
accién puede producit vn conflicto de nombies, donde 1a clase C hereda las
mismas propiedades de A y D.

Cro CoO

Figura 3.28. Herencia maltiple,

Herencia selectiva

La herencia selectiva es la herencia en que algunas propiedades de las supercla-
ses se heredan selectivamente por parte de la clase heredada Por ejemplo, la
clase B puede heredar algunas propiedades de la superclase A, mientras que
la clase C puede heredar selectivamente algunas propiedades de Ia superclase A
y algunas de la superclase D

Herencia muftiple

Problemas:

1. La propiedad 1eferida solo estd en una de las subclases padre
2 La propiedad concreta existe en mds de una superclase.

Caso I. No hay problemas

Atribtifos Afributos
Nombre Empleado Nombre
Direccion Direccidn
Campus \ Estudios
Curso Salario
Afio

Dias_Vacaciones

Trabajador_est Método
i Aumento_Salario

Meétodos heredados

Atributos heredados

Nombre Dias_Vacaciones Aumento_Salario
Direccién Curso

Salario Campus

Estudios Afio

Figura 3.29. Herencia de atributos y métodaos.

Caso 2. Existen diferentes tipos de conflictos que pueden ocugrir:

* Conflictos de nombres.

100 Programacion orientada & objetos

Conflictos de valores
Conflictos por defecto.
Conflictos de dominio
Conflictos de restricciones

Por ejemplo,

Conflicte de nombres Nombre Nonbre_estudiante
Nombre_empleado

Valores Atributos con igual nombre, tienen
valores en cada clase

Universidad con diversos campus.

Reglas de resolucién de conflictos

—

Una lista de precedencia de clases, como sucede en LOOPS y FLAVORS.

2 Una piecedencia especificada por ¢l usunario para herencia, como en
Smalitalk.

3. Lista de precedencia del usuario, y si no sucede asf, la lista de preceden-
cia de las clases por profundidad.

Empteado
Estudiante

Estudiante_Trab

Figura 3.30. Clase derivada por herencia multiple.

3.9.3. Clases abstractas

Con frecuencia, cuando se disefia un modelo orientado a objetos es til introdu-
cir clases a cierto nivel gue pueden no existit en la realidad pero que son cons-
trucciones conceptuales tiles. Estas clases se conocen como clases abstractas

Una clase abstracta normalmente ocupa una posicidn adecuada en la jerar-
quia de clases que le permite actuar como un depésito de métodos v atributos
compattidos para las subclases de nivel inmediatamente inferior.

Las clases abstractas no tienen instancias directamente Se utilizan para
agrupar otras clases v capturar informacién que es comun al grupo. Sin embat-
go, las subclases de clases abstractas que corresponden a objetos del mundo
real pueden tener instancias.

Conceptos fundamentales de programacion orientada a objstos 101

Una clase abstracta es COCHE_TRANSPORTE_PASAJEROS. Una subclase
es SEAT, gque puede tener instancias directamente, por ejemplo Cochel y
Cochel.

Una clase abstracta puede ser una impresora.

Impresora

+ inyectores + agujas

Impresora de Impresora
chorro de tinta matricial

Figura 3.31. La clase abstracta impresora.

Las clases derivadas de una clase base se conocen como clases concretas,
que ya pueden instanciarse (es decit, pueden tener instancias)

3.10. ANULACION/SUSTITUCION

Como se ha comentado antetiormente, los atributos y métodos definidos en la
superclase se heredan por las subclases Sin embargo, si la propiedad se defi-
ne nuevamente en la subclase, aunque se haya definido anteriormente a nivel
de superclase; entonces la definicién realizada en la subclase es la utilizada en
esa subclase. Entonces se dice que anulan las correspondientes propiedades de
1a superclase Esta propiedad se denomina anunlacion o sustitucién (overriding).

)
e o

Figura 3.32. Anulacion de atributos y métodos en clases derivadas.

102 Programacion orientada a ohjetos

Supongamos que ciertos atributos y métodos definidos en la clase A se
redefinen en la clase C Las clases E, F, G y H heredan estos atributos y
métodos La cuestién que se produce es si estas clases heredan las definiciones
dadas en la clase A o las dadas en la clase C. El convenio adoptado es que una
vez que un atributo o método se redefine en un nivel de clases especifico,
entonces cualquier hijo de esa clase, o sus hijos en cualquier profundidad,
utilizan este método o atributo redefinido Por consiguiente, las clases E, F, G
y H utilizardn la redefinicién dada en la clase C, en lugar de la definicién dada
en la clase A

3.11. SOBRECARGA

La sobrecarga es una propiedad que describe una catacteristica adecuada que
utiliza el mismo nombre de operacién para tepresentar operaciones similares
que se comportan de modo diferente cuando se aplican a clases diferentes Por
consiguiente, los nombres de las operaciones se pueden sobrecargar, esto es, las
operaciones se definen en clases diferentes y pueden tener nombres idénticos,
aunque su cédigo programa puede diferir

Si los nombres de una operacién se utilizan para nuevas definiciones en
clases de una jerarquia, la operacion a nivel inferiot se dice que anula la opera-
¢ién a un nivel mds alto

Un ejemplo s¢ muestra en la Figura 3.33, en la que la operacién Incre-
mentar estd sobrecargada en la clase Empleade y la subclase Administra-
tivo Dado que Administrativo es una subclase de Empleado, la opera-
cién Incrementar, definida en el nivel Administiativo, anula la operacién
correspondiente al nivel Empleado En Ingenierc la operacién Incremen-
tar sc hereda de Empleado Por otia parte, la sobrecarga puede estar situada
entre dos clases que no estdn relacionadas jerdrquicamente Por ejem-
plo, Cdlculo_Comisidén estd sobrecaigada en aAdministrativeo y en
Ingeniero Cuando un mensaje Calcular_Comisién se envia al objeto
Ingeniero, la operacién correspondiente asociada con Ingeniero se activa

Nombre
Empleado Salario
Edad

Incrementar = Salarioc * Inflacidén

Administrativo Ingeniero

Beneficios Calcular Comisidén = 0,05 + Presupuesto
Salaric [40-80])

Edad [25-65]

Incrementar

Calcular Comisidén = 0,03 » Presupuesto

Figura 3.33. Sobrecarga.

Conceptos fundamentales de programacion orientada a objetos 1063

Actualmente la sobrecarga se aplica sélo a operaciones Aunque es posi-
ble extender la propiedad a atribuios y relaciones especificas del modelo
propuesto. '

La sobrecarga no es una propiedad especifica de los lenguajes orientados a
objetos. Lenguajes tales como C y Pascal soportan operaciones sobrecargadas
Algunos ejemplos son los operadores aritméticos, operaciones de E/S v opera-
dotes de asignacién de valores

En la mayoria de los lenguajes, los operadores antméticos «+», « —» y «x»
se utilizan para sumar, restar o multiplicar nimeros enteros o reales. Estos
operadores fancionan incluso aunque las implementaciones de aritmética ente-
1a y real (coma flotante} sean bastante diferentes. El compilador genera c6digo
objeto para invocar la implementacion apiopiada basada en la clase (entero o
coma flotante) de los operandos.

Asi, por ejemplo, las operaciones de E/S (Entrada/Salida) se utilizan con
frecuencia para leer nimeros enteros, caracteres o reales En Pascal read (x)
s¢ puede utihizar, siendo x un entero, un cardcter o un real Naturalmente, el
cédigo mAaquina real ejecutado para leer una cadena de caracteres es muy
diferente del cédigo mdquina para leer enteros read(x) €s una operacién
sobrecargada que soporta tipos diferentes. Otros operadores tales como
los de asignacién («:=» en Pascal o «=» en C) son sobrecargados. Los
mismos operadores de asignacién se utilizan para variables de diferentes
tipos

Los lenguajes de programacién convencionales soportan sobrecarga para
algunas de las operaciones sobre algunos tipos de datos, como enferos, reales y
caracteres. Los sistemas orientados a objetos dan un poco mds en la sobrecarga
y la hacen disponible para operaciones sobre cualquier tipo objeto.

Por ejemplo, en las operaciones binarias se pueden sobrecargar para nime-
tos complejos, arrays, conjuntos o Hstas que se hayan definido como tipos
estructurados o clases Asi, el operador binario «+» se puede utilizar paia
sumar las correspondientes partes reales e imaginarias de los niimeios comple-
jos Si Al y A2 son dos array de enteros, se pueden definir:

A := Al + AD
para sumar:
Afi] = RA1[i] + A21[i] //para todo 1
De modo similar, si 51 y 52 son dos conjuntos de objetos, se puede definir:
S := 81 + S2
como unidén de dos conjuntos S1 y S2.
(Cémo se asocia una operacién particular o mensaje a un método? La

respuesta es mediante la ligadura dindmica (dynamic binding), que se verd poste-
riormente.

104 Programacion orientada a objetos

3.12. LIGADURA DINAMICA

Los lenguajes OO tienen la caracteristica de poder ejecutar ligadura tardia
(dindmica), al contrario que los lenguajes imperativos, que emplean ligadura
temprana (estdtica). Por consiguiente, los tipos de variables, expresiones y fun-
ciones se conocen en tiempo de compilacidn para estos lenguajes imperativos.
Esto permite el enlazar entre llamadas a procedimientos y los procedimientos
utilizados que se establecen cuando se cumple el cédigo. En un sistema QO esto
requetia el enlace entre mensajes y que los métodos se establezcan en tiempo
dindmico.

En el caso de ligadura dindmica o tardia, el tipo se conecta directamente al
objeto Por consiguiente, el enlace entre el mensaje y el método asociado sélo se
puede conocer en tiempo de ejecucion.

La ligadura estdtica permite un tiempo de ejecucién mds rdpido que la
ligadura dindmica, que necesita resolver estos enlaces en tiempo de gjecucidn.
Sin embatgo, en ligadura estdtica se ha de especificar en tiempo de compilacién
las operaciones exactas a que responderd una invocacién del método o funcién
especifica, asf como conocer sus tipos

Por el contrario, en la ligadura dindmica simplemente se especifica un méto-
do en un mensaje, y las operaciones reales que realizan este método se determi-
nan en tiempo de ejecucion Esto permite definir funciones o métodos virtuales.

3.12.1. Funciones o0 métodos virtuales

Las funciones virtuales en C+-+ permiten especificar un método como vittual
en la definicién de una clase particular. La implementacién real del método se

Método virtual

/

)

\\
Circulo) @rado @m

[Dibujar | | Dibujar |

Cddigo para
dibujar un circulo

Figura 3.34. Métodos o funciones virtuales.

Conceptos fundamentales de programacicn orientada a objetos 105

realiza en las subclases En este caso, por consiguiente, la seleccion del método
se hace en tiempo de compilacién, pero el ¢édigo real del método utilizado se
determina utilizando ligadura dindmica o tardfa en tiempo de compilacién

Esto permite definir el método de un nimero de formas diferentes para cada
una de las diferentes clases Consideremos la jerarquia de clases definida en la
Figura 334,

Aqui el método virtual se define en la clase F IGURA y el cédigo procedimen-
tal real utilizado se define en cada una de las subclases CIRCULO, CUADRADC,
RECTANGULO y LINEA. Ahora, si un mensaje se envia a una clase especifica, se
gjecuta el cédigo asociado con ella. Esto contrasta con un enfoque mds conven-
cional que requiere definir los procedimientos por defecto, con nombres dife-
rentes, tales como Dibujar_circulo, bibujar_cuadrado, etc También se
requerird utilizar una llamada al nombre de la funcién especifica cnando sea
necesario

3.12.2. Polimorfismo

La capacidad de utilizar funciones virtuales y ejecutar sobrecaiga conduce a
una caracteristica impozrtante de los sistemas QO, conocida como polimorfismo,
que esencialmente permite desarrollar sistemas en los que objetos diferentes
puedan responder de modo diferente al mismo mensaje
En el caso de un método virtual se puede tener especializacién incremental
de, o adicién incremental a, un método definido anteriormente en la jerarquia
Mids adelante volveremos a tratar este concepto.

3.13. OBJETOS COMPUESTOS

Una de las caracteristicas que hacen a los objetos ser muy potentes es que
pueden contener otros objetos. Los objetos que contienen otros objetos se
conocen como objetos compuestos

En la mayotia de los sistemas, los objetos compuestos no «contienens en el
sentido estricto otros objetos, sino que contienen variables que se refieren a
otros objetos. La refetencia almacenada en la variable se llama identificador del
objeto (ID del objeto).

Esta caracterfstica oftece dos ventajas importantes:

I Los objetos «contenidos» pueden cambiar en tamafio y composicién,
sin afectar al objeto compuesto gue los contiene Esto hace que el man-
tenimiento de sistemas complejos de objetos anidados sea més sencillo,
que seria el caso contratio.

2 Los objetos contenidos estdn libres para patticipar en cualquier nimero
de objetos compuestos, en lugar de estar bloqueado en un tnico objeto
compuesto

106 Programacidn orientada a objetos

Objcompuesto

Wﬁ Objgl’ 2

Notacion Tav.or©

Figura 3.35. Un objeto compuesto,

Un objeto compuesto consta de una coleccién de dos o mds objetos compo-
nentes. Los objetos componentes tienen una relacién part-of (parte-de) o com-
ponent-of (componente-de) con objeto compuesto. Cuando un objeto compuesto
se instancia para producir una instancia del objeto, todos sus objetos compo-
nentes se deben instanciar al mismo tiempo. Cada objeto componente puede
set a su vez un objeto compuesto®

Figura 3.36. Relacion de agregacion (parte-de).

La relacién parte-de puede representarse también por has-a (tiene-un), que
indica la relacién que une al objeto agregado o continente En ¢l caso del objeto
compuesto COCHE se leerd: COCHE tiene-unm MOTOR, tiene-un SISTEMA_DE_
FREMNOS, etc.

§ TAYLOR, David: Object-Oriented Information System. Wiley, 1992

Conceptos fundamentales de programacion orientada a objetos 107

tfeni_uy

Figura 3,37, Relacién de agregacién (tiene-un).

3.13.1. Un ejemplo de objetos compuestos

La ilustracidp siguiente muestra dos objetos que representa érdenes de compra
Sus variables contienen informacién sobre clientes, articulos comprados y otios
datos. En lugar de introducir toda Ia informacién directamente en los objetos
orden_compra, s¢ almacenan referencia a estos objetos componentes en el
formato del identificador de objeto (IDO), '

Objetos crden_compra
campuestos
Cliente _*
AArticulo__*
Componentes

Articulo Cliente Articulo
Figura 3.38. Objetos compuestos {dos objetos orden_compra’).

3.13.2. Niveles de profundidad

Los objetos contenidos en objetos compuestos pueden, por si mismos, ser obje-
tos compuestos, y este anidamiento puede ir hasta cualquier profundidad. Esto

" Fsle ejempio estd citado en: TAYLOR, David: op cit. pdg 45 Asimismo, la notacidn de objetos
empleada por Taylor se ha mantenido en varios ejemplos de nuestra obra, ya que la consideramos
una de las mds iddneas para reflejar el concepto de objeto; esta sbra y oitas suyas sobre el tema son
consideradas como aportaciones muy notables al mundo cientifice de los objetos

108 Programacién orientada a objetos

significa que puede construir estructuras de cualquier complejidad conectando
objetos juntos. Esto es importante debido a que normalmente se necesita mas
de un nivel de modularizacién para evitar el caos en sistemas a gran escala.

Un objeto compuesto, en general, consta de una coleccidn de dos o mds
objetos relacionados conocidos como objetos componentes Los objetos com-
ponentes tienen una relacién una parte-de o un componente-de con objeto com-
puesto Cuando un objeto compuesto se instancia para producit un objeto
instancia, todos sus objetos componentes se deben instanciar al mismo tiempo.
Cada objeto componente puede, a su vez, ser un objeto compuesto, resultando,
po1 consiguiente, una jerarquia de componentes-de

Un ejemplo de un objeto compuesto es Ia clase CoOCHE. Un coche consta de
diversas partes, tales como un motor, un sistema de {renos, un sistema de
transmision y un chasis; se¢ puede considerar como un objete compuesto que
consta de partes diferentes; MOTOR, SISTEMA FRENOS, SISTEMA_ TRANSMI-
SION, CHASTS Estas partes constituyen los objetos componentes del objeto
COCHE, de modo que cada uno de estos objetos componentes pueden tener
atributos y métodos que los caracterizan

COCHE

atributos
Namero_coches_vendidos
atributos compartidos
Concesionario: SEAT Andalucia
atributos instancia
Modelo
Color
Precio
objetos componentes
MOTOR
SISTEMA_FRENOS
SISTEMA TRANSMISION

CHASIS
MOTOR SISTEMA_FRENOS
Atributos: Atributos:
Namero_cilindros Tipo:
Potencia ABS:
Cilindrada Proveedor:

Valvulas_cilindro

SISTEMA_TRANSMISION CHASTIS

Atributos: Atributos:
Tipo-embrague: Tipo:
Caja-cambio: Color:

Conceptos fundamentales de programacion orientada a objetos 109

La jerarquia componente-de (parte-de) pueden estar solapadas o anidadas
Una jerarquia de solapamiento consta de objetos que son componentes de mds
de un objeto padre

Una jerarquia anidada consta de objetos que son componentes de un objeto
padre que, a su vez, puede actuar como componente de otro objeto. El objeto Z
¢s un componente del objeto B, y el objeto B es un componente de un objeto
complejo mds grande, A

A

I R
) R

<] =

Figura 3.39. Jerarquia de componentes agregados.

A

Figura 3.40. Anidamiento de objetos,

Un ejemplo tipico de un objeto compuesto anidado es un archivador Un
archivador contiene cajones, un cajén contiene carpetas y una carpeta contiene

documentos El ¢jemplo COCHE, citado antetiormente, es también un objeto
compuesto anidado

3.14. REUTILIZACION CON ORIENTACION A OBJETOS

Reutilizacion o reutilizabilidad cs 1a propiedad por la que el software desarrolla-
do puede ser utilizado cuantas veces sea necesario en mds de un programa Asf
por ejemplo, si se necesita una funcién que calcule el cuadrado o el cubo de un

110 Programacion orientada a objetos

numero, se puede crear la funcién que realice 1a tatea que el programa necesita.
Con un esfuerzo suplementario se puede crear una funcién que pueda elevar
cualquier nimero a cuaiquier potencia. Esta funcién se debe guardar para
poderla utilizar como herramienta de propdsito general en cuantas ocasiones
sea necesario.

Las ventajas de la reutilizacidn son evidentes. El ahorro de tiempo es, sin
duda, una de las ventajas mds considerables, y otra la facilidad para intercam-
biar software desarrollado por diferentes programadores.

En [a programacion tradicional, las bibliotecas de funciones (casos de
FORTRAN o C) evitan tener que ser escritas cada vez que se necesita su uso

Ada y Modula-2 incorporan el tipo de dato paguete (package) v méduio
{module) que consta de definicién de tipos v cédigos y que son la base de la
reutilizacién de esos lenguajes

3.14.1. Objetos y reutilizacion

La programacién orientada a objetos proporciona el marco idéneo para Ia
reutilizacién de las clases. Los conceptos de encapsulamiento y herencia son las
bases que facilitan la reutilizacién Un programador puede utilizar una clase
existente, y sin modificarla, afiadirle nuevas caracteristicas y datos Esta opera-
cién se consigue derivando una clase a partir de la clase base existente. La
nueva clase hereda las propiedades de la antigua, pero se pueden afiadii nuevas
piopiedades. Por ¢jemplo, suponga que se escribe (o0 compra) una clase menu
que crea un sistema de ments (barras de desplazamiento, cuadros de didlogo,
botones, etc.); con el tiempo, aunque la clase funciona bien, observa que seria
interesante que las leyendas de las opciones de los mends parpadeardn o cam-
biatdn de color Para realizar esta tarea se disefia una clase derivada de mend
que afiada las nuevas propiedades de parpadeo o cambio de color

La facilidad para reuntilizar clases (y en consecuencia objetos) es una de las
propiedades fundamentales que justifican el uso de la programacién orientada
a objetos. Por esta razén los sistemas y en particular los lenguajes orientados a
objetos suelen venir provistos de un conjunto (biblioteca) de clases predefinidas,
que permite ahorrar tiempo y esfuerzo en el desarrollo de cualguier aplicacién
Esta herramienta —la biblioteca de clases— es uno de los pardmetros funda-
mentales a tener en cuenta en el momento de evaluar un lenguaje orientado a
objetos.

3.15. POLIMORFISMO

Otra propiedad importante de la programacién orientada a objetos es el poli-
motfismo Esta propiedad, en su concepcién bdsica, se encuenfra en casi todos
los lenguajes de programacion. El polimotrfismo, en su expresién mds simple, es
el uso de un nombie o un simbolo —por ejemplo un operador— para represen-
tar o significar mds de una accién Asi, en C, Pascal y FORTRAN —entre otros
lenguajes— los operadores aritméticos representan un ejemplo de esta carac-

Conceptos fundamentales de programacién orientada a objetos 11%

teristica El simbolo +, cuando se utiliza con enteros, representa un conjunto
de instrucciones mdquina distinto de cuando los operadores son valores reales
de doble precision De ignal modo, en algunos lenguajes el simbolo + sirve
para realizar sumas aritméticas o bien para concatenar (unir) cadenas.

La utilizacién de operadores o funciones de formas diversas, dependiendo
de cémo se estén operando, se denomina polimorfismo (mdltiples formas)
Cuando un operador existente en el lenguaje tal como +, = 0 * se le asigna
la posibilidad de operar sobre un nuevo tipo de dato, se dice que estd sobrecar-
gado. La sobrecarga es una clase de polimorfismo, que también es una carac-
teristica importante de POO Un uso tipico de los operadores aritméticos es la
sobrecarga de los mismos para actuar sobre tipos de datos definidos por el
usuario (objetos), ademds de sobre los tipos de datos predefinidos. Supongamos
que se tienen tipos de datos que 1epresentan las posiciones de puntos en la
pantalla de un computador (coordenadas x ¢ y) En un lenguaje orientado a
objetos se puede realizar la operacidn aritmética

posicidnl = origen + posicidén?

donde las variables posicidnl, posicién2 y origen representan cada una posicio-
nes de puntos, sobrecargando el operador mds {+) para realizar suma de posi-
ciones de puntos (x, y). Ademds de esta operacién de suma se podiian realizar
otras operaciones, tales como testa, multiplicacién, etc, sobrecargando conve-
nientemente los operadores —, =, ete

En un sentido mds general, el polimorfismo supone que un mismo mensaje
puede producir acciones (resultados) totalmente diferentes cuando se reciben
por objetos diferentes. Con polimorfismo un usuario puede enviar un mensaje
genérico y dejar los detalles de la implementacion exacta para el objeto que
recibe ¢l mensaje. El polimotfismo se fortalece con el mecanismo de herencia

Supongamos un tipo objeto llamado vehiculo y tipos de objetos deriva-
dos llamados bicicleta, automdvil, mote y embarcacién. Sise envia un
mensaje conducir al objeto vehicule, cualquier tipo que herede de vehiculo
puede también aceptar ese mensaje Al igual que sucede en la vida real, el
mensaje conducir reaccionard de modo diferente en cada objeto, debido a que
cada vehiculo requiere una forma distinta de conduciz.

RESUMEN

Fl tipo abstracto de datos se implementa a través de clases Una clase es un
conjunto de objetos que constituyen instancias de la clase, cada una de las
cuales tienen la misma estructura y comportamiento. Una clase tiene un nom-
bre, una coleccidn de operaciones para manipular sus instancias y una repre-
sentacidn. Las operaciones que manipulan las instancias de una clase se llaman
mérodos El estado o representacién de una instancia se almacena en variables
de instancia Estos métodos se invocan mediante el envio de mensajes a instan-
cias. El envio de mensajes a objetos {(instancias) es similar a la llamada a proce-
dimientos en lenguajes de programacién tradicionales.

112 Programacion orientada a objetos

El mismo nombre de un método se puede sobrecargar con diferentes imple-
mentaciones; el método Imprimir se puede aplicar a enteros, arrays y cadenas
de caractezes. La sobrecarga de operaciones permite a los programas ser exten-
didos de un modo elegante La sobrecarga permite la ligadura de un mensaje a
la implementacién de cddigo del mensaje y se hace en tiempo de ejecucién. Esta
caracteristica s¢ Illama ligadura dindmica.

El polimorfismo permite desarrollar sistemas en los que objetos diferentes
pueden responder de modo diferente al mismo mensaje La ligadura dindmica,
sobtecarga y la herencia permite soportar el peolimorfismo en lenguajes de
programacién orientados a objetos. ,

Los programas orientados a objetos pueden incluir objetos compuestos,
que son objetos que contienen otros objetos, anidados o integrados en ellos
mismos.

Los principales puntos clave tratados son:

e La programacién orientada a objetos incorpora estos seis componentes
impottantes:

Objetos
Clases.
M¢étodos,
Mensajes.
Herencia.
Polimozrfismo

» Un objeto se compone de datos y funciones que operan sobre esos
objetos.

s [a técnica de situar datos dentro de objetos de modo que no se puede
acceder directamente a los datos se llama ocultacidn de la informacion

* Una clase es una descripcién de un conjunto de objetos Una instancia es
una variable de tipo objeto y un objeto es una instancia de una clase.

» La herencia es la propiedad que permite a un objeto pasar sus propieda-
des a otro objeto, o dicho de otro modo, un objeto puede heredar de otro
objeto

* Los objetos se comunican entie si pasando mensajes.

» La clase padre o ascendiente se denomina clase base y las clases descen-
dientes clases derivadas.

* | a reutilizacién de software es una de las propiedades mas importantes
que presenta la programacién orientada a objetos.

s T polimorfismo es la propiedad por la cual un mismo mensaje puede
actuar de diferente modo cuando actida sobie objetos diferentes ligados
por la propiedad de la herencia

CAPITULO

LENGUAJES DE PROGRAMACION
ORIENTADOS A OBJETOS

CONTENIDO

4.1. Evolucién de los LPOO
4.2, Clasificacién de lenguajes orientados a objetos

4.3, Ada
4.4, Eiffel
45. Smalltalk

4.6. Otros lenguajes de programacion orientados a objetos
RESUMEN
EJERCICIOS

Este capitulo describe:

* La evolucion de los lenguajes de programacion orienta-
dos a objetos, desde Simula a Object COBOL.

» Las caracteristicas de un lenguaje orientado a objetos.

* | a clasificacion de los lenguajes orientados a objetos ba-
sados en objetos, orientados a objetos (puros e hibridos)
basados en objetos, orientados a objetos basados en cla-
ses.

* Una descripcidn breve de los lenguajes mas utilizados:
Smalltalk, C++, Objective-C, Eiffel, Object Pascal, Visual
BASIC y Ada.

113

114 Programacién orientada a ohjetos

4.1. EVOLUCION DE LOS LPOO

Al principio de la década de los sesenta, Kristen Nygaard y Ole-Johan Dhal
desarrollaron Simula en el Norwegian Computer Center (NCC), un lenguaje
que soportaba modelizacién para simulacidn de procesos industriales y
cientfficos Fue un lenguaje de propdsito general que ofrecia capacidad de
simulacién de sistemas Sin embargo, sus usuarios descubrieron pronto que
Simula proporcionaba nuevas y poderosas posibilidades para fines distintos de
la simulacién, como la elaboracién de prototipos y el disefio de aplicaciones.
Las sucesivas versiones de Simula fueron mejordndose hasta flegar a Simula-67
{aparicién en diciembre de 1966) Simula-67 se derivaba de Algol 60, donde
tiene sus raices, y se disefid fundamentalmente como un lenguaje de programa-
cién de disefio; tomd de Algol el concepto de bloque ¢ intiodujo el concepto de
objeto Los objetos de Simula tenfan su propia existencia y «podian» comuni-
carse entre si durante un proceso de simulacién Conceptualmente, un objeto
contenia tanto datos como las operaciones que manipulaban esos datos. Las
operactones se llamaron métodos Simula incorporaba también la nocién de
clases, que se utilizaron para describir la estructara y comportamiento de un
conjunto de clases La herencia de clases fue también soportada por Simula La
hetencia organiza las clases en jerarquias, permitiendo la compartimentacion
de implementacién y estructura. En esencia, Simula sent6 la base de los lengua-
jes orientados a objetos y definié algunos de los conceptos clave de la orienta-
cién a objetos Ademds, Simula era un lenguaje «fuertemente tipificado» FEsto
significa que el tipo de cada vatiable se conoce en tiempo de compilacién, de
modo que los errores que implican tipos se encuentran en esta etapa y no
cuande el programa se ejecuta

Simula-67 fue el primer lenguaje de programacién que incorpord mecanis-
mos para soportar los conceptos orientados a objetos mds sobresalientes:

» Encapsulamiento y objetos, que agrupan juntos atributos de datos y accio-
nes {métodos) que procesen esos datos

* Verificacién estdtica de tipos, que se realiza durante el proceso de compila-

cién para proporcionar seguridad en tiempo de ejecucién para la manipu-

lacién externa de los atributos de los objetos

Clases, como plantillas o patrones de objetos

Herencia, como medio de agrupar clases con propiedades comunes

Ligadura dindmica (polimorfismo), para permitit a las clases de objetos

que tengan interfaces idénticos y propiedades que se puedan intercam-

biar

La Figura 4.1 muestra la evolucién (genealogia) de los lenguajes de progia-
macidn orientados a objetos (LPOO). En esta figura se muestra que Simula-67
(Simula) inspir6 el desarrollo de Smalltalk, que es el verdadero primer lenguaje
de programacién otientado a objetos. ‘

Alan Kay creé Smalltalk-80 en Xerox PARC (Xerox Palo Alto Research
Park) con Adele Goldberg, que previamente habia trabajado con una implemen-
tacién de Simula Smalltalk es un lenguaje orientado a objetos puro, «todos es

Lenguajes de programacion orientados a objetos 115

FORTRAN | FLOW-MATIC

1957 ALGOL 58 I
1958 Y FORTRAN I| I/ COMTRAN
1959 & LISP COBOL

ALGCL 60
1960 FORTRAN IV

1961
1262
1963
1964
1965
1966
1967
1968
1069
1870
1871
1972
1973
1974
1975
1976
1977
1978
1972
1980
1961t
1982
1983
1984
1985
1086
1987
1988
1889

LISP e

SIMULA |

Schemex
\
¢ FORTRAN 77

Smalltalk 80

C++
A J
% Gomn
QOMmmon
4 e LISP
1Cr \

.
Oberon

1990 - ® GFORTRANGO T e
199 3A920 Modula-3 Quick Eiffel
1992 Basic
1993 Prolog++ x .
1994 , Object-COBOL
1905 Visual BASIC (00 COROL)

Ada-95 ¥

Delphi .
Java

Figura 41. Genealogia de los lenguajes de objetos segun Sebesta’.

! Bsta genealogfa ha sido extraida y modificada ligeramente con lenguajes de los noventa, de:
Robert W Sebesta, Conceprs of Programming Languages. Addison-Wesley, 2nd edn 1993

116 Programacion orientada a objetos

un objeto» de una clase y todas las clases heredan de una inica clase base
denominada object . Smalltalk afitmé el término «métodos» para describir las
acciones realizadas por un objeto y el concepto de «paso de mensajes» como el
medio para activar «métodos» Es también un lenguaje tipificado dindmica-
mente, que liga (enlaza) un método a un mensaje en tiempo de ejecucién

Smalltalk ha sido, a su vez, el inspirador de un gran nimero de lenguajes
OO Entre ellos destaquemos Eiffel, Smalltalk-80, Smalltalk/V, C++, Actor,
Objective-C y CLOS, asi como extensiones OO de lenguajes tradicionales, tales
como Object Pascal, Object COBOL, ete.

Bertran Meyer, el disefiador de Fiffel, fue también un usuazio de Simula, ¢
incluso llegé a ser presidente de la Asociacién de Usuarios de Simula Jean
Ichbiah, el disefiador jefe de Ada-83, dirigié un equipo que implementé un
subconjunto de Simula, y Bjarne Stioustrup, el disefiador de C++, utilizé
Simula v siempre ha agradecido su influencia en el disefio de C++.

Existen varias versiones v dialectos de Smalltalk: Smalltalk-72, -74, -76, -78,
-80, y m4ds recientemente —y seguramente la mds popular— Smalltalk/V de
Digitalk Smalltalk no ¢s un lenguaje tipificado Smalltalk es extraordinaria-
mente rico en conceptos orientados a objetos. En Smalltalk todo es un objeto,
incluyendo clases base y tipo base Esto significa que la potencia de Smalltalk,
como un entorno de programacién completo, se fundamenta en el envio de
mensajes a objetos

Otra caracteristica fundamental que diferencia a Smalltalk es su capacidad
de concuriencia. La concurrencia es un aspecto del mundo real Por ejemplo, en
un entorno de oficina, secietarias, administrativos, gerentes y otros empleados
funcionan simultdnea e independientemente. Se comunican entie si, a través de
conversaciones, informes, correo electrénico, etc. Smalltalk empled la construce-
cién denominada proceso para soportar concuriencia.

Durante la década de los ochenta, los conceptos orientados a objetos (tipos
abstractos de datos, herencia, identidad de objetos vy concurrencia), Smalltalk,
Simula y otros lenguajes comenzaron a mezclarse y producir nuevos lenguajes
orientados a objetos, as{ como extensiones y dialectos El desarrollo de lenguajes
de orientacién a objetos en esa década se muestra en la signiente clasificacidn:

1 Extensiones, dialectos y versiones de Smallialk. Xerox y Textronix incor-
potaron en sus mdquinas, a principios de los ochenta, la versién Small-
talk-80, que posteriormente se fue incorporando a otras muchas plata-
formas Digitalk lanzé Smalitalk/V para computadoras personales IBM
y compatibles.

2. Extensiones orientadas a objetos de lenguajes convencionales Uno de los
lenguajes orientados a objetos mds populares es C++. Este lenguaje
fue disefiado por Bjarne Stroustrup en AT&T al principio de los ochen-
ta [Stroustrup, 1986]. La primera implementacion del lenguaje C++ se
lanzd como un preprocesador a los compiladores C. C+-+ proporcionéd
dos construcciones para definiciones de clases El primer método es una
extensién de la construccidn struct (estructura de C) y la otra nueva
construccién class (clase) C++ incorpord jerarquia de clases y pet-
mitfa subclases que podian acceder a métodos y variables instancias de

Lenguajes de programacién orientados a objetos 117

otras clases de su jerarquia. El lenguaje C++ permitia la ligadura dind-
mica y el polimorfismo, asf como sobrecarga de funciones y operaciones
Sin embargo, al contratio que Smalitalk, las primeras versiones de C++
no se comercializaban en bibliotecas grandes de clases predefinidas

Otro dialecto importante de C+, con propiedades orientadas a ob-
jetos, es Objective-C [Cox, 1987]. Este lenguaje es un supetconjunto
de C, que incorpora caractetisticas orientadas a objetos de Smalltalk
Al igual que Smalltalk, Objective-C incluia una gran coleccién de clases
predefinidas que permitia simplificar el proceso de desarrollo. Objecti-
ve-C soportaba tipos abstractos de datos, herencia y sobrecarga de ope-
radores Sin embargo, al contrario que C++, no ampliaba la definicién
de construcciones existentes en lenguajes, v disefié nuevas construcciones
y operadores para realizar tareas tales como definicién de clases y paso
de mensajes. Las computadoras NEXT, cuyo éxito no pasé de unos afos,
eligieron Objective-C como su principal lenguaje de desartollo.

Niklaus Wirt y un grupo de ingenieros informdticos de Apple Com-
puter disefiaton Object Pascal [Schmucker, 1986]. Extendié el lenguaje
Pascal con sopozte para tipos abstractos de datos, métodos y herencia
Incluy6 el concepto de tipo de objeto y definicion de clases.

Los nuevos lenguajes Ada-95 vy Java son totalmente orientados a
objetos.

3 Lenguajes orientados a objetos fuertemente tipificados. Simula fue uno de
los lenguajes orientados a objetos que se desarrollaron en la década
de los ochenta y que fueron implementados en divetsas plataformas.

Otros lenguajes han emetgido en la década de los ochenta, con
caracteristicas fuertemente tipificadas (con verificacién estricta de ti-
pos) Un lenguaje disponible comercialmente y mds interesante es Fiffel
[Meyer, 1988] de Interactive Software Engineering, In¢c. Ademds de
encapsulamiento y herencia, Fiffel incorpora muchas caracteristicas
orientadas a objetos, tales como tipos paramétricos y pre y post-condi-
ciones pata métodos. Otro lenguaje fuertemente tipificado que soporta
conceptos orientados a objetos (abstraccién, objetos, tipos paramétri-
cos) es Ada, aunque la versién Ada-83 piesenta el inconveniente de no
soportar herencia

4. Extensiones orientadas a ohjetos de LISP. Existen diferentes versiones
de LISP, aunque la mds conocida y notable es CLOS (Common List
Object System) CLOS es un lenguaje OO que introduce notables mejo-
ras y tiene garantizada larga vida, especialmente desde la creacién del
comité X3J13 de ANSI para la estandarizacién del lenguaje

4.1.1. Estado actual de los lenguajes orientados a objetos
en la década de los noventa

La década de los ochenta lanzé 1a orientacién a objetos como base de la futura
ingenierfa de software orientada a objetos de la década de los noventa. En 1982
se predijo que la programacién orientada a objetos serfa en la década de los

118 Programacidn orientada a objetos

ochenta lo que la programacién estructurada fue en los setenta [Rentsch,
1982] La profecia se cumplié y la década de los ochenta se consagré como ¢l
origen de la explosién de la orientacién a objetos que se produciria en la
década de los noventa.

Sin duda, el desarrollo de conferencias internacionales sobie orientacién a
objetos y, en especial, OOSPLA (Object-Oriented Programming Systems and
L.Anguages) han sido los detonantes de la explosién de la QO en la década de
los noventa. La primera conferencia se celebid en el afio 1986.

Otros hitos gue han influido considerablemente en el enorme desarrollo de
los LPOO han sido la aparicién de diferentes publicaciones periddicas exclusi-
vamente dedicadas a orientacidn a objetos. En 1988 iaparecid la primera revista
de prestigio: The Journal of Object-Oriented Programming

En la década de los noventa, los lenguajes, técnicas, interfaces gréficos y
bases de datos se estdn haciendo muy populares Sin duda, los noventa serd la
década de la proliferacién de tecnologias y lenguajes orientados a objetos.
Microsoft, IBM, Borland, Sun, AT&T, Digitalk, Symantec y otras grandes
compafias estdn lanzando productos orientados a objetos de modo continuo y
Progresivo.

Los lenguajes mds implantados en la actualidad son Smalltalk y Eiffel,
junto con C-++, Object Pascal (Turbo/Borland Pascal especialmente}, Visual
BASIC y Object Visual como lenguajes hibridos

C++ es, sin lugar a dudas, el lenguaje mds popular, aunque Smalltalk estd
ganando adeptos dia a dia. Tanto C++ como Smalltalk han sido implementa-
dos en diferentes plataformas; DOS, UNIX, OS/2, Windows ¢ incluso en siste-
mas grandes; su importancia reside en la gran cantidad de desarrolladores y
vendedores que comercializan estos lenguajes.

4.2. CLASIFICACION DE LENGUAJES ORIENTADOS
A OBJETOS

Como va se ha comentado anteriormente, los lenguajes de programacién orien-
tados a objetos son: Eiffel, Lisp, Prolog, Simula, Smalltalk, C++, Object Pas-
cal, ctc Se entienden por lenguajes orientados a objetos aquellos que soportan
las caracteristicas de orientacién a objetos Otros lenguajes de programacion,
tales como Ada, C, Cliper, ptueden implementar algunas caracteristicas orienta-
das a objetos, utilizando ciertas técnicas de programacion, pero no se conside-
ran orientados a objetos

Los principales lengnajes de programacién utilizados actualmente para sis-
temas de tiempo real son C y Ada. Ada fue disefiado especificamente para la
implementacién de sistemas en tiempo real, especialmente empotrados. Aunque
Ada (Ada-83) no cumple las propiedades importantes de un LPOO (por ejemplo
herencia y ligadura dindmica), soporta un enfoque de disefio orientado a objetos
y s¢ le conoce usualmente como basado en objetos [Wegner, 87]. Ada-95, ya
estandarizado por ISO y ANSI, soporta herencia y ligadura dindmica; en conse-
cuencia, aungue todavia con restricciones, se considera orientado a objetos.

Lenguajes de programacion orientados a objetos 119

4.2.1. Taxonomia de lenguajes orientados a objetos

Una taxonomia de lenguajes de programacién con propiedades de orientacién
a objetos fue creada por Wegner* La clasificacion incluye los siguientes grupos:

1 Basado en objetos. Un lenguaje de programacién es basado en objetos
sl su sintaxis y semdntica soportan la creacién de objetos que tienen las
propiedades descritas en los capitulos anteriores

2. Basado en clases. Si un lenguaje de programacion es basado en obje-
tos v soporta ademds la creacidén de clases, se considera basado en
clases.

3. Orienatacion a objetos. Un lengoaje de programacidn orientado a obje-
tos es un lenguaje basado en clases que soporta también herencia

Objetos —| Basado en objetos

| + clases
Ada-83

Actor

: Basado en clases
Clipper 5 X + herencia
Clu

Orientado a objetos

C+

Eiffel

Simula

Smalltalk

Turbo Borland Pascal
Deiphi

Visual Object

Object COBOL
Ada-95

Figura 4.2, Taxonomia de lenguajes OO0 de Wegner.

Esta taxonomia de orientacién a objetos propotciona una definicién estric-
ta de los lenguajes de programacion orientados a objetos, que ha prevalecido
en la época actual Segiin esta taxonomia, no es suficiente que un lenguaje
soporte la creacién de objetos; para ser considerado orientado a objetos, es
necesario que existan construcciones de creacién de clases v que soporten he-

__rencia adecuadamente.

C++ soporta la creacién de objetos y clases, asi como herencia, y €3 por
consiguiente totalmente otientado a objetos. Ada-83 soporta la creacion de
objetos mediante paquetes (tipos abstractos de datos) Un paquete en Ada no

? WEGNER, P: The Object-Oriented Classification Paradigm in Research Directions in Object-
Oriented Programming pédgs. S08-510 MIT Press, Cambridge, MA 1987

120 Programacicn orientada a objetos

es una definicién de tipos come la clase C++, y en consecuencia Ada es un
lenguaje basado en objetos Ada-95 soporta, ademds de las propiedades de
Ada-83, clases y herencia, y se puede considerar orientado a objetos.

De acuerdo a la taxonomia de Wegner, se podiria actualizar la clasificacién
de los lenguajes pensando en la segunda década de los noventa:

Lenguajes basados en objetos Ada-83, Actor, Clipper 5.2, Visual Basic 4.
Lenguajes basados en clases Clu
Lenguajes orientados a objetos C++, Objective-C,
Object Pascal, Delphi, Visual Object,
Object COBOL, Overon
Eiffel, Smalltalk, Simula,
Prolog++, CLOS, Ada-95

4.2.2, Caracteristicas de los lenguajes orientados
a objetos

Ademds de las caracterfsticas citadas anteriormente de objetos, clases y heren-
cia, los LPOO deberdn tener algunas o todas las caracteristicas que se citan a
coniinuacidén;

1 Tipificacién estricta (fuerte). Tipificacion es ¢l proceso de declarar el
tipo de informacién que puede contener una variable Los errores de
programacidn 1clacionados con el nidmero de pardmettos, tipos de
pardmetros e interfaces de mddulos, se detectan durante las fases de
disefio e implementacién, en lugar de en tiempos de ejecucion

2. Encapsulamiento. Es deseable que el lenguaje soporte ocultacién de
la informacién, mediante partes independientes, para la especificacion
y la implementacién Esta caracteristica proporciona un disefio débil-
mente acoplado que cumple con rigor ¢l principio bdsico de la inferen-
cia de software: acoplamiento débil y fuerte cohesién entre los médulos
de un programa

3 Compilacién incremental. Caracteristica en el desarrolio de sistemas
grandes, en los que las porciones del sistema se crean e implementan
de un modo sistemdtico (poco a poco, etapa a etapa). Esta carac-
teristica complementa la caractetistica de tipificacién estricta, que so-
porta partes independientes de implementacidén y especifica.

4. Genericidad, Las clases parametiizadas (mediante plantillas —tem-
plates— o unidades genéricas) sirven para soportar un alto grado de
reusabilidad (reutilizacién). Estos elementos genéricos se disefian con
pardmetros formales, que se instanciardn con pardmetros reales, para
crear instancias de médulos que se compilan y enlazan vy ejecutan
posteriormente.

5 Paso de mensajes. El lenguaje es conveniente soporte paso bidimen-
sional de mensajes entre mdédulos, lo que implicard médulos débil-
mente acoplados y disefios flexibles. Esto significa que se deben poder

l.enguajes de programacion orientados a ohjetos 121

pasar sefiales entre médulos, sin necesidad de tener que pasar real-
mente ningtn dato.

6 Polimorfismo. Los lenguajes deben permitir que existan operaciones
con igual nombte, que se utilicen para manejar objetos de tipos dife-
rentes en tiempo de ejecucién. El polimorfismo se implementa, not-
malmente, en unién con la herencia.

7 Excepciones. Se deben poder detectar, informar y manejar condicio-
nes excepcionales utilizando construcciones del lenguaje. Esta propie-
dad ahadida al soporte de tolerancia a fallos del software permitird
una estrategia de disefio eficiente.

8 Concurrencia. Es conveniente que el lenguaje soporte la creacién de
procesos paralelos independientes del sistema operativo. Esta propie-
dad simplificad la transportabilidad de un sistema de tiempo real de
una plataforma a otra.

9 Persistencia. Los objetos deben poder ser persistentes; es decir, los
objetos han de poder permanecer después de la ejecucién del pro-
grama.

10 Datos compartides. Los médulos se deben poder comunicar median-
te memoria compartida, ademds del paso de mensajes

Los lenguajes de programacién disponibles actualmente no cumplen todas
las caracteristicas citadas anteriormente. En general, los lenguajes orientados a
objetos no soportan concurrencia; este es el caso de C++, aunque las versiones
de C++que siguen el futuro estdndar 4 0 comienzan a incorporar propiedades
de concurrencia e incluso petsistencia Asimismo, Ada-95, ademds de concu-
rrencia, soporta ya herencia y polimotfismo

4.2.3. Puros frente a hibridos

Existe un profundo debate entre los usuarios y desarrolladores de OO sobre la
decision del lenguaje a emplear. Este debate no es reciente, aunque sf es en la
actualidad cuando este debate se ha acrecentado y ha comenzado a ser decisivo
en el desarrollo de ja OO

Un LPOO puro es un lenguaje disefiado para soportar gnicamente cl paia-
digma orientado a objetos, en el que todo consta de objetos, métodos y clases
Los LPOO mds populares son Smalltalk y Eiffel Un LPOO hibrido, por otia
parte, soporta ofros paradigmas de programacién (tales como el tradicional
—estructurado—, funcional, etc), ademds del paradigma orientado a objetos
Los lenguajes hibridos se construyen a partir de otros lenguajes existentes, tales
como C o Pascal, de los cuales se derivan; ¢s posible utilizar el LPOO de un
modo no orientado a objetos y también como orientado a objetos utilizando
objetos, clases y métodos.

Cada tipo de lenguaje tiene sus ventajas ¢ inconvenientes Los lenguajes
puros, tales como Smalltalk o Eiffe], pueden ser mds potentes, ya que utilizan
todas las ventajas de la tecnologia. Proporcionan su méxima flexibilidad paia
cambiar los aspectos esenciales del lenguaje Dado que todo en el lenguaje se

122 Programacién orientada a objetos

Lenguajes puros Lenguafjes hibridos
Objetos Objetos
Mensajes Mensajes
Clases Clases
+

Lenguajes base
tradicional

Figura 4.3. Lenguajes QO puros/hibridos,

construye sobre la base de los objetos, se pueden realizar cambios profundos si
SO Necesarios

Existe un precio, sin embargo, a la potencia y flexibilidad de los lenguajes
puros. La mayoria de los lenguajes puros no son tan rdpidos como los hibridos
y son dificiles de codificar en toda clase de operaciones fundamentales. Esto les
hace perder eficiencia en tiempo de gecucidn.

En contraste, los lenguajes hibridos pierden con frecuencia alguna de las
caracteristicas de los lenguajes puros y normalmente no permiten modificar
caracteristicas de construccion del lenguaje base; aunque, como ya se ha co-
mentado, son normalmente mas rdpidos para operaciones construidas en el
lenguaje base.

Los lenguajes puros e hibridos difieren también en la facilidad de aprendiza-
j¢, si bien esta facilidad dependerd del nivel de cada persona Asi, para un
programador la ensefianza de un lenguaje puro normalmente es mds facil, ya
que es mds sencillo: sélo ha de aprenderse un lenguaje y no dos, como en el
caso de un lenguaje hitnido. Sin embairgo, para un programador experimenta-
do, el movimiento o emigracién hacia un lenguaje hibrido puede ser mds fdcil si
estd ya familiarizado con el lenguaje base, pues entonces s6lo necesita dominar
fas extensiones orientadas a objetos.

En la actvalidad, C++ es el lenguaje mds popular y utilizado; sin embargo,
Smalltalk estd ganando dia a dia en aceptacién, debido esencialmente a estar
soportado por las plataformas DOS, UNIX y Windows El hecho de que en
1994 IBM lanzase versiones de Smalltalk para sus sistemnas OS/2 v AIX hard
crecer ¢l ndmero de usuarios de este lenguaje

4.2.4. Tipificacidon estatica frente a dindmica

Tipificacion o tipado («typing») es el proceso de declarar cuil es el tipo de
informacién que puede contener una variable Por ejemplo, una variable se
puede tipificar para contener un tnico cardcter, una cadena de caracteres, un
numero entero o un nimero de coma f{lotante. Una vez que se ha declarado el
tipo (tipificado), la variable estd restringida a contener esa clase de datos. Cual-

Lenguajes de programacién orientados a objetos 123

quier intento de situar otra clase de datos en la variable producird un mensaje
de error

Algunos lenguajes de objetos requicten que a todas las variables se les
asigne un tipo antes de que se pueda utilizar. Otros lenguajes no requieren esos
requisitos, permitiendo que las variables puedan tomar sus tipos adecuados en
cualquier instante dado Estas dos opciones se denominan tipificacion fuerte,
estricta o estdtica, y tipificacidn débil, no estricta o dindmica

La tipificacién fuerte o sistemas de tipos estdticos exige que el programa-
dor asocie explicitamente un tipo con cada nombre declarado en un progra-
ma, de modo que el compilador del lenguaje puede verificar que los nombres
y expresiones compuestas de estos nombres se refieten siempre a los objetos
del tipo especificado El tipo de cada objeto se ha de determinar y comprobar
antes que se ejecute el programa. Lenguajes con sistemas de tipos estdticos
son los tradicionales FORTRAN, COBOL y PASCAL. La tipificacién fuerte es
menos flexible pero mds segura, ya que el lenguaje puede realizar comprobacio-
nes de rutinas para asegurar que los pardmetios de los mensajes sean de tipo
coirecto.

Las ventajas considerables de un lenguaje tipificado estdticamente son que
los errores 1elativos a tipos se capruran (detectan) durante la compilacién, antes
de que se ejecute el programa, y ¢l programa se puede ejecutar mds eficiente-
mente, dado que no hay necesidad de hacer ninguna verificacién de tipos en
tiempo de gjecucién

Los lenguajes con un sistema de tipos dindmicos (lenguajes de tipificacién
débil) no exigen que el programador haya de especificar el tipo de objeto que
puedan contener las variables cuando se escribe el programa Cada objeto
conoce su propio tipo cuando se crea durante la ejecucién Las ventajas de los
lenguajes con un sistema de tipos dindmicos son que los programas son mas
flexibles y puede disponer de nuevos tipos de objetos que no fueron previstos
cuando se escribid el programa. Esta flexibilidad se hace a costa de una pérdida
de eficiencia duzante la ejecucion del programa, debido a la necesidad de man-
tener y comprobar el tipo de todos los objetos durante la ejecucion.

Los lenguajes de objetos puros normalmente utilizan tipificacién débil, ya
que este enfoque les proporciona mdxima flexibilidad, especialmente durante el
desarrollo, cuando se ciean nuevos tipos objetos. Los lenguajes hibridos, en
contraste, tienden a construirse como lenguajes fuertemente tipificados. Es po-
sible especificar el tipo de un argumento, de modo que haya flexibilidad en
tiempo de ejecucidén, pero esta tarca iequiere esfuerzos especiales

* test = definir (int PariID)

) Requiere un parametro entero
Devueive Métedo

un puntero definir
al objeto cest

Figura 4.4. Tipificacion de un mensaje.

124 Programacion orientada a objetos

4.25. Ligadura estética frente a dinamica

Ligadura es el proceso de asociar un atributo a un nombre. En el caso de
funciones, el término ligadura (binding) se refiere a la conexién o enlace entre
una llamada a la funcién y el cédigo real ejecutado como resultado de la
llamada

La ligadura se clasifica en dos categorias: ligadura estdtica y ligadura dind-
mica. La ligadura estdtica se conoce también como ligadura temprana o antici-
pada y se realiza en tiempo de compilacién La ligadura dindmica se conoce
también como ligadura retardada o postergada y se 1ealiza en tiempo de cje-
cucion

Normalmente, los lenguajes funcionales y orientados a objetos presentan

ligadura dindmica, al contrario que los lenguajes imperativos, que suelen pre-

sentar ligadura estdtica. Desde el punto de vista de la estructura del lenguaje,
los intérpretes por definicién realizan todos ligadura dindmica, mientras que los
compiladores realizan normalmente ligadura estdtica

Como ejemplo de ligadura estdtica, considere las declaraciones:

const n = 3;
var x : integer;

el valor 3 sc enlaza estdticamente al nombre n, mientras que el tipo de dato
integer se enlaza al nombie x Por ofra parte, consideremos la sentencia de
asignacién x := 3; en este caso, se enlaza 3 dindmicamente a x cuando se
ejecuta la sentencia de asignacién. Y la sentencia

new(y) ;

enlaza dindmicamente una posicién de almacenamiento a v~ v asigna a esa
posicién el valor de v

Ejemplo de ligadura estatica

Se desea procesar una determinada funcion, seguin sea un determinado carécter
(cddigo). Mediante una sentencia switch se podria realizar el programa
correspondiente en C+-+:

#include <ctype he
#include <iostream. h>

/7

static void salir() funcl (), func2{);
char car;

’;

//car, contiene el cédigo de cardcter

int codigo = toupper{car};
switch{codigo)
{

case ‘S' : salir(});

Lenguajes de programacion orientados a objetos 125

case *P' : funcl(};
break;
case ‘*' : func2{);:
break;
default : cout << Cd&digo desconocido:' << car << endl;

}

En este caso, la funcién invocada en respuesta a cada orden se conoce
cuando el programa se estd compilando, ya que cada funcién se Hama
explicitamente por ¢l nombre.

En el caso de propiedades orientadas a objetos, la ligadura se considera
como el proceso mediante el cual se determina el receptor de un mensaje. En
lenguajes que requieren ligadura estdtica, la identidad del receptor se debe
especificar cuando se ciea el programa Si un lenguaje soporta ligadura dindmi-
ca, la identidad del receptor se puede dejar indeterminada hasta que se envia
realmente el mensaje en tiempo de gecucion

La ligadura dindmica permite la implementacién de una de las carac-
teristicas mds sobresalientes de la orientacién a objetos: el polimortismo.

4.2,6. Revision de lenguajes orientados a objetos

Los dos lengunajes mds utilizados en el desarrollo QO y mds introducidos en el
mercado son Eiffel, Smalltalk (en sus versiones 80 y V), C++, Actor, Objective-
C, CLOS, Object Pascal {especialmente Turbo Pascal) v Visual BASIC

El lenguaje Ada se sucle considerar por- muchos autores como basado en
objetos, debido esencialmente a que soporta el concepto de abstraccion de
datos mediante el paquete y la genericidad mediante unidades genéricas; tam-
bién es considerado basado en objetos, debido a que Grady Booch, autor del
famoso método de disefio Booch, se apoyé en dicho lenguaje en su primera
versién del método; 1a metodologia HOOD también se apoya en Ada como
lenguaje fundamental La nueva versién Ada-95 ya es totalmente orientada a
objetos

El lenguaje Eiffel se examina brevemente, debido a que fue disefiado pasa
soportar totalmente la orientacidn a objetos v otras caracteristicas de inge-
nieria de software El uso de precondiciones, poscondiciones e invariantes me-
joran significativamenie la robustez v documentacion de programas desarrolfla-
dos en FEiffel

Smalltalk, como heredero directo de Simula, es el prototipo de lenguaje de
programacién onentado a objetos puro. .

Ademads de estos lenguajes, realizaremos una sintesis de los lenguajes Ob-
jective-C, Object Pascal y Visual BASIC Por la importancia del lenguaje
C++ ydado que es ¢l lenguaje utilizado en este libro para la implementacidn
de los conceptos orientados a objetos, se dedicardn capitulos especificos para
ensefiar Ia escritura y sintaxis del lenguaje, asi como 1eglas y consejos para
mejorar el estilo de programacién y reglas y consejos para la depuracidn de
programas.

126 Programacicn orientada a objetos

4.3. ADA

Ada fue un lenguaje desarroilado a peticién de DOD (Departamento de Defen-
sa de Estados Unidos) y como fruto de un concurso para disefiar un lenguaje de
programacién que sirviera pata reducir el coste del desarrollo del software.

Ada sopoita conceptos orientados a objetos, tales como tipos abstractos de
datos, sobrecarga de funciones y operadotes, polimorfismo paramétrico (generi-
cidad) e incluso especializacion de tipos definidos por el usuario El tinico con-
cepto que no implementa Ada es la herencia, aunque es posible emular un tipo
de herencia elemental Las propiedades orientadas a objetos se implementan de
la forma siguiente:

¢ Encapsulamiento, mediante el uso de paquetes

¢ Ocultacién de la informacién, mediante tipos de datos privados y privados
limitados. Instancias de estos tipos de datos sélo se pueden manipular por
los subprogramas especificados en ¢l paquete que define los tipos de datos
privados; un tipo privado de Ada es un tipo abstiacto de datos.

e Sobrecarga de operadores, funciones y procedimientos.

* Genericidad, mediante paquetes y subprogramas genéricos

* Herencia, aunque Ada no soporta la propiedad de 1a herencia, es posible
emular la pseudoherencia mediante la definicién de tipos de datos deriva-
dos, aunque no es posible tener propiedades adicionales de datos o modi-
ficacién de las propiedades de datos existentes

4.3.1. Abstraccion de datos en Ada

En Ada los tipos abstractos de datos se implementan mediante paqaetes; si bien
los tipos abstractos de datos sirven ademds para una gran variedad de aplica-
ciones.

Un paguete Ada consta de dos partes:

» Especificacion del paquete, que declara los nombres de los tipos, subpro-
gramas y objetos que son visibles a los usuarios del paquete

¢ Cuerpo del paquete, que contiene la implementacién de los componentes
que son ocultos a los clientes del paguete

Los formatos para definir la especificacion vy el cuerpo de un paguete son:

package <nombre_paguete> is especificacion del paquete
<elementos_declarativos>
[private
<elementos_declarativos>]
end <nombre_paguetes ;

package body <nombre paquete> is cuerpo del paguete

end <nombre_paquete> ;

Lenguajes de programacion orientados a objstos 127

Un tipo abstracto de dato para representar nimeros completos con diferen-
tes tipos de operacidnes en Ada es:

package Tipo_Complejo is
tvpe complejo is private

function "+" (izda, dcha:complejo) return compleijo;

)
function "-" (izda, dcha:complejo) return complejo;
function "*" (izda dcha:complejo) return complejo;
function /" (izda, dcha:complejo) return complejo;
function *-' (dcha:complejo} return compleio;
private

type complejo is record

re:float := 0.0;

im:float := 0.0;

end record;
end Tipo_ Complejo;

Los tipos privados permiten que se definan nuevos tipos de datos, mientras
se oculta su implementacidn real. Al igual que otros tipos, los tipos privados
se declaran dentro de una especificacién de paquete. Un tipo privado se decla-
1a en la parte visible de un paquete, pero la definicidn real de su estructura
interna se especifica en la parte privada de la especificacidén del paquete La
estructura del tipo definido en la parte privada es accesible sélo dentro del
cuerpo del paguete

Las operaciones permitidas en tipos privados son asignacidn, pruebas para
igualdad v desigualdad, y cualquier operacién definida explicitamente dentio
de la especificacién del paquete

Ada proporciona también una definicién de un tipo privado mds limitado,
denominado privado limitado La diferencia principal es que el tipo privado
limitado no hereda automdticamente operadores para asignacién v pruebas de
igualdad vy desigualdad. Una instancia de un tipo privado limitado sélo se
puede copiar en, o compararlo con, otra instancia si las operaciones necesarias
han sido especificadas e implementadas por el paquete que declara el tipo de
dato privado limitado. Ada no permite que se sobrecaigue el operador de
asignacioén, de modo que una implementacidn de usuario de esta operacidn
para un tipo de dato privado limitado se ha de especificar como un procedi-
miento con nombre.

4.3.2. Genericidad en Ada

Ada soporta genericidad. Las unidades genéricas son subprogramas o paquetes
parametrizados que permiten al usuario desarrollar cédigo reutilizable El for-
mato de una unidad genérica es:

generic
<declaracidn genérica de pardmetro>
{<especificacidn_subprograma>
<egpecificacidn_pagquete> }

128 Programacion orientada a objetos

La instanciacién de una unidad genérica crea una copia de la unidad
genérica. Los pardmetios gencricos se corresponden con los patdmetros reales
durante la instanciacién Se especifican tipos reales para todos los tipos formales
genéricos Una variable o una constante se especifica para todos los objetos
genéricos formales. Un nombre de funcién o subpiograma se da a cualquier
subprograma genérico Asi, por ejemplo, para instanciar un subprograma genéti-
co Intercambio, que intercambia entre si el contenido de unas variables:

procedure Intercambio INTEGER is new Intercambio {INTEGER) ;

Tambi¢n se puede instanciat un procedimiento llamado Intercambio_
Empleado, que intercambia dos registios empleado:

procedure Intercambic_Empleadc is new Intercambioc (Empleado);

4.3.3. Soporte de herencia en Ada-83

Ada-83 no soporta herencia, pero si un tipo de pseudo-herencia, de modo
que una declaracién de tipo de dato puede especificar que el tipo de dato
se detiva de un tipo de dato ya existente Asi, a partir del tipo complejo,
definido anteriormente, se puede declarar otzo tipo Tipo_Complejo, del mo-
do siguiente:

with Tipo_Complejo;
package Ejemplc is
type otro_tipo_complejo is new Tipo_Complejo Complejo;

end Ejemplo;

Un tipo derivado Ada hereda todas las operaciones declaradas para el tipo
base y éstas se pueden redefinir para el nuevo tipo y especificadas operaciones
adicionales. Sin embargo, si el tipo base es privado, el tinico modo de imple-
mentar cualquiet operacién adicional o redefinida es a través del uso de opera-
ciones del tipo base; no existe en Ada ¢l concepto de acceso protegido de C++

No es posible especificar nuevas propiedades de datos para un tipo deriva-
do en Ada, y en consecuencia, todos los tipos derivados de un tipo base tienen
la misma representacién

El soporte de herencia de Ada no se puede utilizar para capturar abstraccio-
nes generalizadas, como un tipo de dato base abstracto (clase abstracta en
C++), de las que sc puedan detivar tipos de datos abstractos. Ada tampoco
soporta ninguna forma de ligadura dindmica ni de polimorfismo

4.3.4. Soporte Ada para orientacién a objetos

Las grandes limitaciones de método de herencia de Ada y su ausencia de sopo1-
te de polimorfismo no permiten que Ada pueda ser utilizado como un lenguaje
de programacién orientado a objetos A lo médximo, Ada se puede considerar

Lenguajes de programacidn orientados a objetos 129

como un lenguaje basado en objetos, en base a que soporta todo el concepto de
tipo abstracto de datos La Figura 4 5 muestra las caracterfsticas de OO de
Ada, asf como sus carencias.

Ada-83 soporta Genericidad
Scbrecarga (no totalmente)
Verificacion estatica de tipos
Encapsulamiento
Ocultacion de [la informacian
Ada-83 no soporta Herencia
Polimorfismo
Extensibilidad
Ada-95 soporta Herencia
Polimorfismo
Extensibilidad

Figura 4,5,

Un método acreditado de disefio basado en Ada se denomina Hierarchical
Object Oriented Design (HOOD), por lo que puede inducir a confusién entre
descomposicién jerdrquica de objetos, tinica posibilidad con Ada, y las verda-
deras jerarquias de clases que soportan abstracciones mediante generalizacio-
nes y especializaciones.

ElI proyecto Ada 9x, cuyo borrador definitivo se conoce como Ada-95, ha
definido un nuevo estandar de Ada publicado en 1995, tanto pot ISO como pot
ANSI, que proporciona soporte completo orientado a objetos, aungue con
ciertas restricciones todavia sobre C++, pero también con notables ventajas,
como ¢s ¢l caso de la concurrencia.

4.4, EIFFEL

Eiffel® es un lenguaje orientado a objetos puro desartollado por Bertran Meyer
de Interactive Software Environments Inc. Su disefio se inspiré en Simula, pero
también muestia la influencia de Smalltalk y Ada Ademds incorpora modernas
técnicas de ingenierfa de softwaie, que lo hacen idéneo para construccién de
software para grandes aplicaciones, permitiendo desarrollar aplicaciones to-
bustas, exactas, transportables y eficientes.

Eiffel es un lenguaje compilado tipificado fuertemente, que soporta la
mayorfa de los conceptos orientados a objetos descritos en los capitulos ante-
tiores, tales como abstraccién de datos mediante clases, genericidad, herencia
(simple y miltiple), ligadura dindmica v polimorfismo También proporciona
una amplia biblioteca de clases y soporta recoleccién de basura {garbage collec-
tion) Elentorno Eiffel estd especialmente concebido para dreas de ingenieria de
software, tales como bases de datos o inteligencia artificial, y tiene un soporte

muy limitado para objetos persistentes y concurrencia, aunque ambas carac-

* MEYER, Bertrand; Object-Oriented Software Construction Prentice-Hall, 1988

130 Programacion orientada a objetos

teristicas han sido prometidas por sus disefiadores [Mever, 1988] y en trabajos
posteriores. Las caracterisiicas de Fiffel se resumen en la Tabla 4.1

Tabla 4.1. Caracteristicas de Eiffel.

Ocultacién de la informacion Si.

Herencia 81 (simple y maltiple).
Verificacidn/ligadura de tipos Temprana
Polimorfismo Si

Recoleccidn de basura Si

Persistencia Pseudo-persistencia
Concurrencia Prometida
Genericidad Si

Bihlioteca de objetos Pocas

Eiffel soporta conceptos de ingenieria de software tales como precondicio-
nes, poscondiciones e invariantes de clases. Estas caracteristicas y las propias de
orientacién a objetos lo hacen muy ttil para construir, soportar y mantener
provectos de soltware grandes.

4.4.1. La biblioteca de clases Eiffel

El entorno de programacién Eiffel proporciona una biblioteca de clases prede-
linidas muy grande. Las clases predefinidas van desde clases de estructura de
datos, apoyo y de nicleo (Kernel}, hasta clases grdficas que soportan puntos,
tectdngulos, eic

La biblioteca de clases de grdficos avanzados soporta el sistema XWindow,
lo que permite al programador construir interfaces de usuario sofisticados.

4.4.2. El entorno de programacion Eiffel

El compilador Eiffel, un hojeador de clases (browser), un editor y las herramien-
tas «flat» v «short» son las partes fundamentales del entorno de programacién
Fiffel.

El compilador Eiffe] tiene una caracteristica de recompilacién automdtica.
Recompila sélo aquellas clases que estén afectadas por un cambio. El hojea-~
dor de clases permite el examen de clases en el contexto de sus jerarquias
(superclases y subclases), pudiendo visnalizar las relaciones existentes entre
clases.

La gestion de memoria en Eiffel se realiza por el entorno de programacién
El espacio de objetos se asigna cuando se crean objetos Fiffel proporciona
recoleccidn automdtica de basura. Se comprueba cuando un objeto se vuelve
obsoleto y libera su espacio asociado. Eiffel soporta también un mecanismo de
mangjo de excepciones.

Lenguajes de programacién orientados a obfetos 131
4.4.3. El lenguaje Eiffel

El tnico criterio de estructuracién en Fiffel es la clase Una clase ¢s una uni-
dad simple y no se separa en una parte interfaz y en una parte implementacién
Una clase en Eiffel define los elementos bdsicos de sus objetos instancia: varia-
bles de instancia, métodos de instancia v un método de clase Las variables de
instancias se llaman también atributos, los métodos de instancia se llaman

también rutinas v los atributos y rutinas se llaman colectivamente carac-
teristicas
La clase Persona se tepresenta con un cédigo similar a:

clage Persona
creation
crea
feature
nombre : STRWG;
conyuge: Persona;
feature {PERSONA} casado (n:PERSONA) is
do
conyuge :=n
end;
feature
crea (s:STRING) is do
nombre :=s;
end
casado_con (p: PERSONA) is
require
existe : p/=void;
solteros: (conyuge=void and v.conyuge=void)

do
casado{p)};
r casado (actual)
ensure
boda_valida:conyuge=y and actual=p conyuge
end
end

La clase Estudiante que se detiva de Persona podid ser:

class Estudiante
inherit
Persona
rename imprimir as imprimirpersona
redefine imprimir
end;
areation
hacer
feature {NONE}
eg: STDFILES;
feature
hacer x (n=STRING) is
do

132 Programacidn orientada a objetos

nombrepersona 1= 1;

end

imprimir is

do
es.putstring ("Estudiante:);
imprimirpersona;

end;

end

Una de las caracteristicas mds sobresalientes de Eiffel es soportar el concep-
to de contrato entre el proveedor (servidoi) de una clase y el usuario de una
clase. El proveedor o implementador de una clase es capaz de especificar, como
parte de la definicidén de la clase en Eiffel, bajo gqué condiciones los objetos de la
clase se comportan cortectamente En Eiffel, estas condiciones se expresan, de
la siguiente forma:

s Precondiciones, que se deben cumplir antes de que se invoque un método

¢ Poscondiciones, que se garantizan han de cumplirse después de que un
método se ha gjecutado

e Invariantes, que siempre son verdaderas paza todas las ruptancias de una
clase

El contrato entre €l proveedor v el usuario de una clase espera que:

s El usuario de una clase asegurard que las precondiciones de un método se
cumplan antes de que el método se invoque

* El proveedor de la clase garantizard que las poscondiciones se cumplan
después que se ha aplicado el método

45. SMALLTALK

Smalltalk es el primer lenguaje creado con tecnologia de objetos puros Fue
desarrollado al prinecipio de los setenta por Alan Kay y Adele Golberdg en ¢l
Software Concepts Group de Xerox Palo Alto Research Center En la actuali-
dad Smalltalk comienza a imponerse como uno de los primeros lenguajes de
programacidn orientados a ohjetos.

La primera versidén comercial de Smalltalk se lanzé en 1983 con el nom-
bre de Smalltalk-80 En un principio sélo estuvo disponible para potentes
estaciones de trabajo grdficas Smalltalk, en el sentido mds estricto, es un
entorno de progiamacién interactivo y requiere gran cantidad de memoria. En
la actualidad las versiones de Smalitalk corren bajo entornos Windows, OS/2 y
UNIX.

En esencia, ¢l entorno de programacion Smalltalk tiene tres componentes:
el lenguaje bdsico Smalltalk, una coleccidn de clases, que se utilizan para im-
plementar el sistema Smalltalk completo, v el entorno real de programacion,
que permite a un programador introducir, comprobar y gjecutar aplicaciones
Smalltalk.

Lenguajes de programacion orientados a objetos 133

45.1. El lenguaje Smalltalk

El bloque fundamental bésico de un programa Smalltalk ¢s la clase. La clase
contiene la descripcién de variables de instancia y métodos El método es el
equivalente al término funcidn miembro de ++ Al igual que en C++, los
métodos contienen el cédigo que definen cémo responde un objeto a un mensa-

je. La forma bdsica de una sentencia Smalltalk es un «mensaje enviar»:

receptor mensaje . arguimento

que expresa cdmo un mensaje se envia a un receptor con un argumento
Smalltalk es un lenguaje totalmente dindmico. Los métodos se buscan cuan-

do un objeto recibe un mensaje La ligadura estdtica no es una opcién en Small-

talk. La Tabla 4 2 relaciona los términos equivalentes entre C++ y Smalltalk.

Tabla 42. C-++ frente a Smalltalk.

Clase Clase

Superclase Clase base.

Subclase Clase derivada

Variable de clase Campo miembro estdtico
Variable de instancia Campo miembro

Método de una clase Fancién miembio estdtica
Método instancia Funcién miembro.

L a Tabla 43 contiene las caracteristicas mds sobresalientes de Smalltalk.

Tabla 4.3. Caracteristicas de Smalltalk.

Polimorfismo St
Ligadura/Veiificacién de tipos Tardia.
Ocultacién de la informacién St
Concurrencia Pobre
Herencia simple St
Herencia maltiple No.
Recoleccidn de basura ST
Genericidad No
Persistencia No

Smalltalk no es un lenguaje hibrido, como C++, sino un lenguaje puro, que
no permite un estilo de programacién convencional Es el lenguaje de progra-
macién mds dindmico de los conocidos y dispone de un entorno de programa-
cién excelente, aunque tiene el inconveniente de tener una velocidad de ejecu-
cién pequefia. Otro inconveniente de Smalltalk es ser un sistema de un solo
usuario.

134 Programacion orientada a objetos

Por el contrario, el desartollo de aplicaciones en Smalltalk tiende a ser muy
rdpido Ademds, dado que el cédigo de Smalltalk se compila incrementalmente
las nuevas definiciones de clases y objetos se vuelven eficaces tan pronto como’
se introducen. E] alto grado de interactividad del entorno Smalltalk lo hace
altamente productive para desarrollos rdpidos

45.2. La jerarquia de clases Smalltalk

El entorno de programacién incluye una amplia biblioteca de varios centenares
de clases. Para gestionar esta gran lista de clases, Smalltalk las agrupa en
categorfas Las categorfas de clases implementan muchas estructuras de datos
bésicos: colecciones, conjuntos, bolsas, diccionarios, etc. Ademads, existen clases
predeﬁpidas que 1ealizan entradas y salidas y ayudan a desarrollar componen-
tes de interfaces de usuvarios; algunas clases de esta categoifa son: Punto,
Rectdngulo, Forma, Vista
La Figura 4 6 muestra una pazte de la jerarquia de clases de Smalltalk.

< Bag Sequential Mapped s
Collection Collection et

Linked Arrayed ”
List Collection Dicticnary

Figura 4.6. Jerarquia Taylor de clases de Smalltalk,

4.6. OTROS LENGUAJES DE PROGRAMACION
ORIENTADOS A OBJETOS

Hoy dia se puede aventurar que existen muy pocos lenguajes comercializados
que no tengan versiones orientadas a objetos, tal vez sea FORTRAN el tinico
lenguaje que no soporta estas caracteristicas

La mayoria de los lenguajes estructurados modernos presentan una versién
que es hibrida. Los casos mds sobresalientes son:

Lenguajes de programacion orientados a objetos 135

Turbo Pascal (Object Pascal) version hibrida de Pascal

Visual Object version hibrida de Clipper
Delphi ver sion hibrida de Turbo Pascal
Object COBOL version hibrida de COBOL
Visual BASIC 4 (no incorpora propiedades de herencia ni de polimorfismo)
C++ version hibrida de C

El lenguaje C++ se estudia y analiza en profundidad en la segunda y
tercera parte de este libro, v es la base fundamental de todo el desarrollo del
mismo. Los Apéndices A, B, C, D y E muestran unas gufas rdpidas de los
lenguajes C++, Turbo/Borland Pascal 7, Delphi, Ada-95 y Java

RESUMEN

El auge de las tecnologias de otientacién a objetos se ha debido fundamental-
mente a la existencia y posterior popularidad de numerosos lenguajes de pro-
gramacién orientados a objetos

En la década de los sesenta, los disefiadores del lengnaje Simula introduje-
ron el concepto de objeto. Conceptualmente, un objeto contenia tantos datos
como operaciones que manipulaban esos datos. Simula incorpord también la
nocién de clases que se utilizaban para describir la estructura y comportamien-
to de un conjunto de objetos Otra caracteristica impoitante soportada por
Simula fue la herencia de clases.

Durante la década de los setenta y principio de los ochenta, los conceptos
de orientacién a objetos de Simula se pasaron a Smalltalk, uno de los lenguajes
orientados a objetos mds influyentes en el desarrollo de las tecnologias de
objetos. Este lenguaje incorporaba muchas de las caracteristicas orientadas a
objetos de Simula, incluyendo clases y herencia Pero Smalitalk afiadié una
caracteristica muy notable: la incorporacién de un entoino de programacién
completo y un interfaz de usuario interactivo basado en menus.

Smalltalk es muy rico en conceptos orientados a objetos En Smalltalk todo
es un objeto, incluyendo clases y tipos base.

La taxonomia de lenguajes de Wegner clasificaba éstos en basados en obje-
tos, basados en clases y orientados a objetos

Los lenguajes basados en objetos mds populazes son Ada, Modula-2, Clip-
per 5-2. Los lenguajes basados en clases se agrupan en torno a Cla Los lengua-
jes orientados a objetos se clasifican en dos grandes bloques: puros e hibridos.

Lenguajes orientados a objetos puros son Simula, Smalltalk y Eiffel, y len-
guajes orientados a objetos hibridos son Object Pascal (Turtbo Pascal y Bor-
land Pascal), Objective-C, Object COBOL, Overon, C++, Delphi, etc

El lenguaje OO hibiido pot excelencia es C++, aunque en los dltimos afios
estdn apareciendo otros lenguajes hibridos que comienzan a competir con ¢iei-
to éxito, tales como Object COBOL, Visual Object, Visual BASIC 4, Delphi,
etcétera.

En los lenguajes OO puros todo es un objeto, incluso las definiciones de
tipos, mientras que en los lenguajes hibridos no todo necesita ser un objeto

136 Programacion orientada a objetos

Las grandes ventajas de los lenguajes hibridos son:

* Periodo de apiendizaje (los programadores ya experimentados en versio-
nes no orientadas a objetos pueden comenzar con facilidad a utilizar las
versiones QQO),

* Se pueden utilizar las cnormes cantidades de cédigo puente existente
(c6digo heredado) C++ se disefid de modo que pudiera compilar cédigo
estdndar C con pocas o ninguna modificacion; de igual forma, Delphi se
ha diseflado para compilar programas anteriores de Turbo/Bozland Pas-
cal con cambios minimos

EJERCICIOS

4.1. Describa y justifique los objetos que obtiene de cada uno de estos casos:

a) Los habitantes de Europa v sus direcciones de correo.

b) Los clientes de un banco que tienen una caja fuerte alquilada.

¢} Las direcciones de cotreo electrénico de una universidad

d) Los empleados de una empresa y sus claves de acceso a sistemas de
seguridad

42. ;Cudles serian los objetos que han de considerarse en los siguientes sis-
temas?

a) Un programa para maquetar una revista
b) Un contestador telefénico.

¢} Un sistema de control de ascensores.

d) Un sistema de suscripcién a una revista,

4.3. Deducit los objetos necesarios para disefiar un programa de computado-
fa que permita jugar a diferentes juegos de cartas.

44. Dibujar un diagrama de objetos que represente la estructura de un coche
{carro) Indicar las posibles relaciones de asociacién, generalizacién y
agregacion.

4.3. Dibujar diagiamas de objetos que representen la jerarquia de objetos del
modelo Figura.

CAPITULO

MODELADO DE OBJETOS:
RELACIONES

CONTENIDO

5.1. Relaciocnes entre clases

5.2. Relacién de generalizacidon/especializacion (is-a/es-un)
5.3. Relacion de agregacion (has-a/tiene-un)

5.4. Relacidn de asociacion

5.5 Herencia: jerarquia de clases

5.6. Herencia repetida

RESUMEN

EJERCICIOS

La orientacidn a objetos (POOQ)} intenta modelar aplicaciones
del mundo real tan fielmente como sea posible, apoyandose
para ello en una gran facilidad de reutilizacion y extensibilidad
del software. E| potente concepto OO que proporciona todas
estas caracteristicas es la herencia. _

A través de la herencia, ios disefiadores pueden construir
modulos de software (tales como clases). Las nuevas clases
pueden heredar tanto el comportamiento (behaviour, opera-
ciones, métodos, etc.) como la representacion (variables de
instancia, atributos, etc.) a partir de las clases existentes.

La herencia es la caracteristica que diferencia esencial-
mente la programacion orientada a ohjetos de la programa-
cion tradicional, debido fundamentalmente a que permite ex-
tender vy reutilizar el codigo existente sin tener gue rescribir el
codigo,

En este capitulo analizaremos las relaciones fundamenta-
les entre clases: el concepto de herencia y su modo de imple-
mentacion en un lenguaje orientado a objetos, asi como las
otras relaciones entre clases, agregacidon y asociacion.

138 Programacion orientada a objetos

5.1. RELACIONES ENTRE CLASES

Las refaciones entre clases juegan un papel importante en el modelo de objetos
Las clases, al igual que los objetos, no existen de modo aislado. Por esta razén
existirdn relaciones entre clases y entie objetos

Las relaciones entre entidades, clave del modelo relacional de datos, se
expresan utilizando verbos a partir de [rases del lenguaje ordinario, tales como
vive-en, estudia-en, trabaja-para

Las 1elaciones entre clases, como indica Booch!, se deben a dos razones:
Primera, una relacién de clases puede indicar algin tipo de comparticién (por
ejemplo, margaritas y rosas son ambas tipos de flores). Segunda, una relacién
entre clases puede indicar algin tipo de conexidn semdntica; por ejemplo, las
rosas rojas y amariflas son mds parecidas entre si que las margaritas y rosas

Los tres grandes tipos de relaciones entre clases son:

s Generalizacidn/especializacidn (es-un).
o Agregacion (todo/parte).
¢ Asociacidn.

La primeta de ellas es la generalizacidn, que representa una relacién «un tipo
de» Por ejemplo, una rosa es un tipo de flor, significando que una rosa es una
subclase especializada de la clase mds general, flor Este tipo de 1elacion se
conoce como telacion es-ua (is-@) lLa segunda es agregacidn, que representa
«una parte de» la relacién. Por consiguiente, un pétalo no es una clase de flor; es
una parte de una flor. Esta relacién también s¢ conoce como 1elacidn tiene
(has) La tercera relacidn es la asociacion, que representa conexién semdntica
entre clases no relacionadas. Asi, por ejemplo, rosas y velas son clases indepen-
dientes, aunque ambas reptresentan cosas que se pueden utilizar para decorar
una mesa para cenar

Las relaciones se expresan frecuentemente utilizando verbos o frases verba-
les del lenguaje natural, tales como vive-en, estudia-en, es-responsable-de

5.2. RELACION DE GENERALIZACION/ESPECIALIZACION
(is-a/es-un)

Booch?, para mostrar las semejanzas y diferencias entre clases, utiliza las si-
guientes clases de objetos: flores, margaritas, rosas rojas, rosas amatillas y
pétalos. Se puede constatar que:

» Una margarita es un tipo (una clase) de flor.
e Lina rosa es un tipo (diferente) de flor.

' BoocH, Grady: Object-Oriented Analysis and Design with Applications Benjamin/Cummings,
2°* edicién, 1994

? BoocH, Grady: Object-Oriented Design with Applications Benjamin/Cumsmings, 1991, pags.
96-100

Modelado de objetos: refaciones 139

s Las rosas rojas v amarillas son tipos de rosas
* Un pétalo es una parte de ambos tipos de flores.

Como Booch afirma, las clases y objetos no pueden existir aislados, y en
consecuencia existirdn entre ellos relaciones Las relaciones entre clases pueden
indicar alguna forma de comparticién, asi como algin tipo de conexién semdn-
tica. Por ejemplo, las margaritas y las 10sas son ambas tipos de flores, signifi-
cando que ambas tienen pétalos coloreados brillantemente, ambas emiten fra-
gancia, efc La conexién semdntica se materializa en el hecho de que las rosas
rojas y las margaritas y las rosas estdn mds estrechamente relacionadas entre sf
que lo estdn los pétalos y las flores.

Las clases se pueden organizar en estructuras jerdrquicas. La herencia es
una relacién entre clases donde una clase comparte la estructura o comporta-
miento, definida en una (herencia simple) o mds clases (herencia muiltiple). Se
denomina superclase a la clase de 1a cual heredan otras clases. De modo similar,
una clase que hereda de una o mds clases se denomina subclase. Una subclase
heredard atributos de una superclase mds elevada en ¢l 4rbol jerdrquico La
herencia, por consiguiente, define un «tipo» de jerarquia entre clases, en las que
una subclase hereda de una o mds superclases

La Figura 5.1 ilustra una jerarquia de clases Animai, con dos subclases que
heredan de Animal, Mamiferos ¥ Reptiles

Figura 5.1. Jerarquia de clases.

Herencia es la propiedad por la cual instancias de una clase hija (o subclase)
puede acceder tanto a datos como a comportamientos (métodos) asociados con
una clase padre (o superclase). La herencia siempre es transitiva, de modo que
una clase puede heredar caracterfsticas de superclases de nivel superior Esto es,
sila clase perro es una subclase de la clase mami fero y de animal.

Una vez que una jerarquia se ha establecido es fAcil extenderla. Paia descri-
bir un nuevo concepto no es necesario describir todos sus atributos. Basta
describir sus diferencias a partir de un concepto de una jerarquia existente. La
herencia significa que el comportamiento y los datos asociados con las clases
hija son siempre una extensidn (esto es, conjunto estrictamente mds grande) de
las propiedades asociadas con las clases padres. Una subclase debe tener to-
das las propiedades de la clase padre v otras. El proceso de definir nuevos tipos

140 Programacion orientada a objetos

y reutilizar cédigo anteriormente desarrollado en las definiciones de la clase
base se denomina programacién por herencia Las clases gue heredan propieda-
des de una clase base pueden, a su vez, servir como clases base de otras clases
Esta jerarquia de tipos normalmente toma la estructura de drbol, conocido
como jerarquia de clases o jerarquia de tipos

La jerarquia de clases es un mecanismo muy eficiente, ya que se pueden
utilizar definiciones de variables y métodos en mds de una subclase sin duplicar
sus definiciones. Po1 ejemplo, consideremos un sistema que representa varias
clases de vehiculos manejados por humanos, Este sistema contendrd una clase
genérica de vehiculos, con subclases para todos los tipos especializados La
clase vehiculo contendid los métodos y variables que fueran propios de todos

los vehiculos, es decir, nimero de matricula, ndmero de pasajeros, capacidad.

del depésito de combustible. La subclase, a su vez, contendi4 métodos y varia-
bles adicionales que serdn especificos a casos individuales

P

Camién

Camloneta Remolque
Figura 5.2. Subclases de la clase vehiculo.

La flexibilidad y eficiencia de la herencia no es gratuita; se emplea tiempo en
buscar una jerarquia de clases para encontrar un método o vatiable, de modo
que un programa orientado a objetos puede correr mds lentamente que su
cotrespondiente convencional Sin embargo, los disefadores de lenguajes han
desarrollado técnicas para eliminar esta penalizacion en velocidad en la mayorfa
de los casos, permitiendo a las clases enlazar directamente con sus métodos y
variables heredados de modo que no se requiera realmente ninguna butsqueda.

Persona

Empieado Estudiante
Vendedor _ ‘@

Figura 5.3. Una jerarquia pPersona.

Modelado de objetos; relaciones 141

5.2.1. Jerarquias de generalizacion/especializacion

Las clases con propiedades comunes se organizan en superclases

Una superclase representa una generalizacion de las subclases. De igual
modo, una subclase de una clase dada representa una especializacion de la clase
supetior (Fig 54). La clase derivada es-un tipo de clase de la clase base o

superclase.

Vehiculo
carga

Vehiculo de
pasajerocs

es-un /

Vehiculo
de pasajeros
sin motor

es-un

Vehiculo
de pasajeros
con motor

Tren

Ciclomotor % pasajeros

BMW Toyota

Tren
pasajeros

B|C|cleta

Figura 5.4. Relacién de generalizacion.

Una superclase representa una generalizacion de las subclases Una subclase
de la clase dada representa una especializacion de la clase ascendente (Figu-
ra 5.5)

En la modelizacién o modelado otientado a objetos es 1til introducir clases
en un cierto nivel que puede no existir en la realidad, pero que son construccio-
nes conceptuales ttiles. Estas clases se conocen como clases abstractas y su
propiedad fundamental es que no se pueden crear instancias de ellas. Ejemplos
de clases abstractas son VEHICULO DE PASAJEROS y VEHICULQ DE MERCAN-
cIas Por ofra parte, de las subclases de estas clases abstractas, que correspon-
den a los objetos del mundo 1eal, se pueden crear instancias directamente por si
mismas Por ejemplo, de 8MW se pueden obtener, por gjemplo, dos instancias,
Cochel y Cochel.

La generalizacién, en esencia, es una abstraccién en que un conjunto de
objetos de propiedades similares se representa mediante un objeto genérico El
método usual para construir relaciones entre clases es definir generalizaciones
buscando propiedades y funciones de un grupo de tipos de objetos similares,
que se agrupan juntos para formar un nuevo tipo genérico Consideremos el

S _,"

142 Programacidn orientada a objetos

Persona

/i\es-un es-1n
Empleado
con motor

[
—-

25

)
§

as-un es-un es-un
Persona Generalizacion Informatico Especializacion Coche

es-un

es-un
| é
(c)

Figura 55. Relaciones de jerarquia es-un fis-a/: (a), {c) generalizacion;
{b) especializacion.

Programador

(b)

caso de empleados de una compafifa que pueden tener propiedades comunes
(nombre, nimero de empleado, direccién, etc) y funciones comunes (calcu-
lar._némina), aunque dichos empleados pueden ser muy diferentes en atencién
a su trabajo: oficinistas, gerentes, programadores, ingenieros, etc. En este caso,
lo normal serd crear un objeto genérico o superclase empleado, que definitd
una clase de empleados individuales Por gjemplo, analistas, programado-
res ¥y operadores se pueden generalizar en la clase informatico, Un pro-
gramador determinado (Mortimer) serd miembro de las clases programa-
dor, informatico y empleado; sin embargo, los atributos significativos de
este programador variardn de una clase a otra

Empleado
es-un

Informatico

es-un
Técnico
mantenimiento

Gerente

e

Analista Programador Operador

Figura 5.6, Una jerarquia de generalizacton de empleados.

Madelado de objetos: relaciones 143

La jerarquia de generalizaci6n/esp§cializa:cién tiene dos caracteristicas fun-
damentales y notables. Primero, un tipo c_)bjeto.no de.scmnde més que lde gn
tipo objeto genérico; segundo, los descendi‘entes inmediatos de cualgmer no1 0
no necesitan ser objetos de clases exclusivas mutuamente 'Por ejemplo, los
gerentes y los informdticos no tie_nen pqrqué ser exclL}swos mlutua_u’nente,
pero pueden ser tratados como dos objetos distintos; es ¢l tipo de relacién que

se denomina generalizacién miiltiple,

Empleado
es-un Wn
Técnico
mantenimiento

es-un Gerente

Informatico
A 8s-un
T _es-un

es-un \

Operador Analista
P senior

Analista

Programador

Figura 5.7. Una jerarquia de generalizacion multipie

5.3, RELACION DE AGREGACION (has-a/tiene-un)

Una agregacién e¢s una telacién que representa a los ob]etqs compuestos. Usr;
objeto es compuesto si se compone a su vez de otros ob}eto§ %na (ljlast?'ta_
compene de habitaciones, tejados, suelos, puertas, ventanas, etc Una 'ai: i

cién, a su vez, se compone de paredes, techos, suelo, ventanas y puertas (Figu-

1a 5.8)

Casa
tiene
tiene fiene
Habitacion Tejados
ﬁene) ﬁene
tiene tiene
Puertas } Ventanas Paredes

Figura 58 Un objeto compuesto (casa) y sus componentes.

144 Programacion orientada a objetos

La agregacidn de objetos permite describir modelos del mundo real que se
componen de otros modelos, que a su vez se componen de otros modelos. La
agregacion es un concepto que se utiliza para expresar tipos de relaciones entre
objetos parte-de (part-of} o tiene-un {has-a) El objeto componente, también a
veces denominado continente o contenedor, es un objeto agregado que se com-
pone de miultiples objetos

La agregacién es una forma especifica de asociacidn ¥ no un comporta-
miento independiente, que afiade significados o connotaciones semdnticas en
ciertos casos. Dos objetos forman un agregado, o existe entre ellos una relacion
de agregacion, si existe entre ellos una relacién todo-parte, continente-contenido
(whole-part) Si dos objetos se consideran normalmente como independientes,
sus relaciones se consideran normalmente una asociacién Rumbaugh et al*, en
la obra ya citada, sugicie las siguientes pruebas para determinar si una relacién
es una agregacién:

* ¢Sc utiliza la frase parte-de (tiene-un, consta-de .} para describir la relacién?

* Las operaciones del todo, ;se aplican automdticamente a sus partes?

* Los valores de los atiibutos, ;se propagan del todo (completo) a todas o
algunas partes?

* ;Existe una asimetiia intrinseca a la asociacién en la que una clase de
objetos se subordina a la otra?

Si se responde afitmativamente a cualquieta de estas preguntas, se tiene una
agregacion

La agregacién puede ser de dos tipos: por contenido fisica®, o por contenido
por referencia o conceptual

La agregacién por contenido fisico (Fig 59) o por valor implica que un objeto
contenido no existe independientemente del objeto contenedor La vida de
ambos objetos estd intimamente 1elacionada;

Cuando se crea un sintagma de la clase (un objeto) 01, se crea una instancia
de la clase 02 (otro objeto) Cuando se destruye un objeto del contenedor 01, se
destruye otro objeto de 02.

Ll objeto agregado COCHE® se compone de un MOTOR, una TRANSMISION,

* En la obra Objeci-Oriented Modeling and Design, de JAMES RUMRAUGH et al se muestra uno
de los mejores estudios existentes sobre modelos de objetos

* GrADY BoocH define estos dos términos en su obra, ya citada, Object-Otriented Analysis and
Design 2* edicidn

* En Latincamérica se utiliza como acepeion usual de automdvil la palabra carro

Modelado de objetos: relaciones 145

un CHASIS, etc, que son a su vez parte-de COCHE, representa un ejemplo de una
agregacién con contenido ffsico (Fig 59)

parte_de

parte_de _—7
parte_de

Motor

Transmisién

Figura 5.9. Agregacién con contenido fisico.

La agregacién no implica siempre contenido ﬁjsico, como en el caso de
COCHE, sino que puede implicar simplemente relaciones conceptuales. Asi, un
EDIFICIO pusde componerse de DIVISIONES, que a su vez constan de
OFICINAS, 0 bien una COMPANIA consta de varios DEPARTAMENTOS y cada
DEPARTAMENTO consta de varias SECCIONES.

Compaiifa Edificio

Departamento

I
Al

Seccidn
Figura 5.10. Agregacion sin contenido fisico.

En la agregacicn por referencia, conceptual o sin contenido fisico existe fuerte
dependencia entre objetos de las clases continente/contenido y no estdn acopla-
dos entre elios Eso significa que se pueden crear y destruir instancias de clase

independientemente

5.3.1. Agregacion frente a generalizacion

La agregacién es diferente de la gencralizacién La ge;ne;alizacién rel‘acior’la' las
clases constituyendo un modo de estructurar la descnpcujp de un objeto Gnico
Con la generalizacidn, un objeto es simultdneamente una instancia de la super-
clase o clase base y una instancia de la subclase Una superclase se compone de
propiedades que describen un objeto (telaciones es-un, un-tipo-de)

146 Programacion orientadz a objetos

Una agregacion relaciona instancias de objetos: un objeto es parte de otro
objeto. Las jerarquias de agregacién se componen de ocurrencias*de objetos
que a su vez son parte de un objeio contenedor (relacidn parte-de, tiene-un)

relacion de generalizacion es-un uR-tipo-de
relacion de agregacicn parte-de tiene-un

Las jerarquias complejas de objetos suclen constar de relaciones de agrega-
cién y de generalizacion. Este es el caso de fos dispositivos Avién que incluyen
en su jerarquia ambos tipos de relaciones

Avidn
l I |]
Avidn Avidn Avién de Tren de .
de carga militar pasajercs Alas Motor aterrizaje Cabina
Boeing Jumbo Concorde

Figura 5.11. Jerarquia compleja de agregaciones y generalizaciones.

' La relaci6n de agrsgacién

5.4, RELACION DE ASOCIACION

Una asociaci6n representa una dependencia semdntica entie clases e implica la
direccién de esta dependencia En general, las asociaciones son bidireccionales,
aungue pudiesen ser unidireccionales si asi se indica expresamente.

Una relacién de asociacion define una relacién de pertenencia. Para encon-
trar relaciones de asociacién es preciso buscar frases tales como «perienece a»,
«es miembro de», «estd asociado cons, «trabaja para», etc

lrabaja_para
Juan Mackoy —— 4 IBM

Las asociaciones pueden ser unitarias, binarias, ternarias o de cualquier
otro orden, aunque la mayoria serdn binarias

Modelada de objetos: relaciones 147

Una propiedad importante intrinseca a la relacién de asociacién o multipli-
cidad es la cardinalidad o multiplicidad. La maltiplicidad es la propiedad que
expresa el nimero de instancias de una clase que se asocian o conectan con
instancias de la clase asociada Esta propiedad ya fue introducida por Chen
para definir el modelo entidad-relacién (E/R). Existen tres tipos de multiplici-
dad o cardinalidad:

* Una a una
s Una a muchas.
¢ Muchas a muchas

Una relacién una-a-una implica una relacién estrecha entre objetos. Por
ejemplo, una relacién entre una clase venta de un producto y la clase Opera-
c1dnTC que 1epiesenta la operacidn o pago de la venta mediante una tarjeta de
crédito

! 4 J

Cada venta se corresponde con una operacién de una tarjeta de crédito y a
la inversa. Otro ejemplo es la relacién entre PATS y CAPITAL. Un pais tiene
una capital v s6lo una, y una ciudad que es capital de un pais sélo pertenece a
un pais.

Una relacion una a muchas se puede ver entre las clases PATS y CIUDAD. Un
pais tiene muchas ciudades, mientras que una ciudad sélo pertenece a un pafs

Pais Ciudad

Otro ejemplo se da entre la clase LINEA, CIRCUNFERENCTA, 0 en general
FIGURA y la clase PUNTO Cualquier figura puede tener muchos (infinitos) pun-
tos, y un punto se asocia a una figura

Linea Punto

Las clases Venta y Articulo se enlazan también por una relacion una-
muchas. Una venta puede constar de muchos articulos

148 Programacidn orientada a objetos

Por dltimo, la multiplicidad muchas-a-muchas implica que una instancia de
una clase puede corresponder con muchas instancias de otra clase, y viceversa.
Las clases Estudiante y Asignatura pueden estar relacionadas con asocia-
ciones de multiplicidad muchas-a-muchas. Un estudiante puede estar matricula-
do en muchas asignaturas, y en una asignatura determinada pueden estar ma-
triculados muchos alumnos

Estudiante Asignatura

Las relaciones de multiplicidad o cardinalidad se indican de muy diversas
formas, segin sea la metodologia de andlisis y disefio orientada a objetos que se
utilice Las notaciones mds usuales son;

1.n, 1-m una-a-muchas ! n
— una-a-muchas

0,1, 0-1 opcionalidad 0 1
—0 opcionalidad 9
m.n, mn muchas-a-muchas n m
LA muchas-a-muchas e —
—_— una-a-una

Figura 5.12. Relaciones de cardinalidad (multiplicidad).

Modelado de objetos. relaciones 149

5.4.1. Otros ejemplos de cardinalidad

Una asociacién una-a-una es la que mantienen objetos de la clase Persona y de
la clase Nimero de la Seguridad Social (Nss). Cada persona tiene un unico
ndmero de la Seguridad Social y dado un nimero de la Seguridad Social se
corresponde con una dnica persona Obsérvese la relacién bidireccional entre
objetos de estas dos clases

Persona NSS
tiene

Nombre identifica| Numero

Direccidn

Figura 5.13. Asociacién una-a-una

El rol (papel) representado en la linea (una persona tiene-un NSS) se lee de
izquietda a derecha; sin embargo, la relacién inversa (un NSS identifica a una
persona) estd también implicada y se lee de derecha a izquierda.

Una asociacion una-a-muchas se ilustra en la Figura 5 14 entre una Persc-
na y la Compafiia (empresa) para la que trabaja, suponiendo que una persona
no estd pluriempleada y sélo trabaja para una compaiifa

Persona] Compatiia
Trabaja-para
-
Nombre Nombre
Direccion Direccién

Figura 5.14. Asociacion una-a-muchas.

Una asoctacién muchas-a-muchas entie la clase Ventas y los Productoes
que se comprian en cada operacién de venta.

Ventas Productos

Figura 5.15. Asociacién muchas-a-muchas.

Las asociaciones se implementan mediante punteros o referencias a objetos
de las clases

150 Programacion orientada a objetos

5.5. HERENCIA: JERARQUIA DE CLASES

Una de las herramientas disponibles en lenguajes orientados a objetos mds
poderosos es la herencia Esta construccidn permite modelar, del modo mads
preciso, la realidad que se desea emular en su programa, abstrayendo el com-
portamiento comin entre objetos similares a fravés de un mecanismo de gene-
ralizacién. Este mecanismo, como ya se ha comentado, proporciona un gran
detalle de descripcién, que comienza en clases globales v se va extendiendo 3
través de subclases especificas v especializadas.

En otras palabras, la herencia permite ciear muchas clases que son similares
entre si, sin tener que rescribit cada vez las partes que son similares; esta
propiedad permite combinar varias clases en una de ellas o modificar una clase
existente sin modificar realmente el cédigo oniginal La herencia es el corazén de
la programacicn orientada a objetos y constituye el blogue fundamental de cons-
truccicn para reutilizar el c¢édigo. Bl segundo blogue de construccion es el poli-
morfismo. La herencia es una técnica natural y dtil para organizar programas.

La herencia, en esencia, ¢s una relacién entre clases, en donde una clase
compatte la estructura o comportamiento definida en una clase (herencia sim-
ple) o varias clases (herencia muiltiple).

La clase superior en la jerarquia se denomina superclase (clase base en
C++Y las clases que heredan los miembros de la superclase (incluyendo funcio-
nes y datos) se denominan subclase {clase derivada en C++). Las clases deriva-
das pueden también modificar miembros de la clase base o afiadir nuevos
miembros Este proceso puede continuar, de modo que una clase derivada
servird normalmente como una clase base, a partir de la cual se definen otras
clase derivadas Por consiguiente, se crean jerarquias de clases, en las que cada
clase puede servir come un padie o raiz de un nuevo conjunto de clases. La
Figura 5 16 representa un ejemplo de una jerarquia de clases

¥ . E5-un
es-un

Poligono El@

es-un es-un ? as-un
Triangulo Cuadrilatero Circulo
-) —~—
es-un .. 88-un

Cuadrado

@bo/ Recténgulo
_______//

Figura 5.16. Relaciones entre clases (un tipo de, o es un/una...).

Modelado de objetos: relaciones 151

La herencia es ia propiedad que implementa una relacién de generalizacién/
especializacidn (es-um; is-g), en la que una subclase hereda de una o mds super-
clases

La herencia significa que el comportamiento de los datos asociados con
las clases hijas son siempre una extensién (es decir, estrictamente hablando,
un conjunto mds grande) de las propiedades asociadas con las clases pa-
dies Una subclase debe tener todas las propiedades de la clase padre y
otras. Por otro lado, dado que una clase hija es una forma mds especializada
de la clase padre, es también, en un cierto sentido, una contraccién del tipo
padre

La herencia significa que las subclases heredan la estructura y el comporta-
miento de sus superclases. La mayoria de los lenguajes de la programacién
orientados a objetos permiten que los métodos de una superclase se puedan
heredar, asi como excluir, y también se permite afiadir y redefinir métodos en
una subclase .

La herencia se puede utilizar para ayudar a escribir cédigo teutilizable y
representar las relaciones entre tipos y subtipos (clases y subclases)
Existen dos tipos de herencia: herencia simple y herencia miiltiple.

5.5.1. Herencia simple

El caso mds simple de herencia es 1a herencia simple, en la que una clase s6lo se
deriva de otra clase. Asi, por cjemplo, en un caso tipico de zoologia,
un gato o un perro es un animal, y en un caso tipico de botdnica, un clavel es
una flor. Un gato posee determinadas caracteristicas de la categotfa o clase
animal; pot otra parte, un gato difiere en determinadas caracteristicas de la
categorfa animal En nuestros ejemplos, «Animab» o «Floi» son las superclases
o clases bases, y «Gato» o «Rosa» son las subclases, clases derivadas o clases
extendidas o ampliadas.

Otro ejemplo simple puede ser la clase Profesor como un tipo de clase
derivado de Persona

La clase Profesor es un tipo de (es-un) Persona, al que afiade sus propias
caracteristicas Las clases se organizan en una estructura Iégica denominada
jerarquia de clases La Figura 5 18 muestra una jerarquia de clases que contiene
en su nivel mds alto la clase Persona y dos subclases o clases derivadas,
Estudiante y Profesor Las subclases heredan caracteristicas de sus super-
clases Las caracteristicas pueden ser variables de instancias (campos miembro)
y/o métodos (funciones miembio).

152 Programacién orientada a objetos

) SN
Persona Persona

Persona
—
A

Profesor Profesor
~
(@) (b) (©)
:""“-meesor "‘ Persona :'
L (d)

Figura 5.17. Herencia simple: (a) notacién de Yourdon; (b} notacién genérica;
{e} notacién OMT; (d) notacién de Booch.

 Doaramma
Persona

Superciase o clase base

es-un es-un es-un
/——.._.' S ———— s
Profesor Estudiante Fisico
Subclase o
clase derivada
N/ e/

Figura 5.18. Jerarquia de clases: persona, Profesor y Estudiante.

5.5.2. Herencia miltiple

Hasta este momento sélo se ha utilizado la herencia simple: cada subclase o
clase derivada tiene una y sélo una superclase o clase base Supongamos una
Jerarquia de clases Persona, donde s6lo existen relaciones de herencia simple.

Modelado de objetos: relaciones 163

Persona
.~

o _

Empleado

[ngenierc

Director de
proyecto

Posgraduado

Gerente

Director
general

Figura 5.19. Jerarquia de clase Persona {Rerencia simple}.

La herencia simple no puede expresar relaciones miltiples, por ejemplo
aquellas personas que sean a la vez empleados y estudiantes En realidad,
existen numerosos ejemplos en la vida diaria de relaciones de herencia multiple:
un Fabricante de motocicletas japonesas tiene propiedades (variables
instancia y métodos) que pertenecen a Compafiia japonesa y a Fabricante
de motocicletas; una ventana VentanaTextoBordeada permite editar
texto en una ventana con bordes que hereda de VentanaTexto v de Venta-
naCenBordes; por tltimo, Robocop actda tanto de robot como de policia

Ventana Ventana

de texto con bordes
Fabricante es-una
de motos

es-una
Robot
es-tn 8s-un
Robocop

Figura 5.20. Jerarquia de herencia multiple.

texto con
bordes

Compafifa
japonesa

es-una

Fabricante de
motos japonesas

154 Programacion orientada a ohjetos

El mecanismo que permite a una clase heredar de mds de una clase se llama
herencia miiltiple; se dice entonces que una clase es una extension de dos_ 0 mads
clases. Con herencia multiple s¢ pueden combinar diferentes clases existentes
para producit combinaciones de clases que utilizan cada una de sus miltiples
superclases La representacidn grdfica en este caso se suele hacer con un grafo
dirigido no simétrico, ya que una clase puede tener mds de una predecesora
inmediata.

La Figura 521 proporciona un ejemplo de la jerarquia de clase Perscna
utilizando herencia multiple. Como en ella se ilustra, el GerenteVentas hereda
de Gerente ¥ Vendedor; de modo similar, EztudianteTrabajador hereda
de Estudiante; DirectorDeProyectos hereda de Gerente y de Ingenie-
ro; por dltimo, SecretarioTécnico hereda de Secretaric y de Ingenierc

Persona

P

/ \
Cngo> s et
..

Gerente Director de
de ventas proyectos

Director
general

Estudiante-
trabajador.

Secretario
técnico

Figura 5.21. Jerarquia de clases rersona con herencia multiple.

Comida
Planta Precio
Calorias
Regar Peso
Fertilizar Comprar
N Comer
Guisar

R
Fatata

Pelar
Cortar

Figura 5.22. Jerarquia de clases ratata con herencia miultiple.

Modelado de objetos: relaciones 155

Otro ejemplo de herencia miiltiple se puede ver en la Figura 522, en donde
Comida y Planta son dos clases que actiian como superclases de Patata, que
€s un alimento y a la vez una planta.

La herencia miltiple es una hetramienta muy potente, pero es fAcil abusar
de ella y caer en graves erotes; por el contrario, utilizada con precaucion, es
una ayuda valiosisima en el desairollo otientado a objetos. De cualquier forma,
la herencia miiltiple ha sido y sigue siecndo tema de debate entre expertos de
programacién y de lenguajes orientados a objetos,

5.5.2.1. Ventajas de la herencia miiltiple

La herencia multiple es itil en muchas situaciones. Puede ayudar, fundamental-
mente, a modelar objetos en su dominio del problema. Una aplicacién muy
frecuente de la herencia multiple se suele dar cuando se crea una nueva clase a
partir del comportamiento de dos o m4s clases, incluso aun cuando fueran
desartolladas independientemente unas de otras. Un uso muy comun es afiadir
persistencia® a los objetos.

Otra ventaja apreciable es su alto grado de flexibilidad, simplicidad y elegan-
cia en la definicién de nuevas clases que se crean a pattir de clases existentes

La herencia miltiple favorece claramente la reutilizacién, pot la razén im-
portante que permite mds libertad en la definicién de nuevas clases a partir de
las existentes Esta construceién permite crear jerarquias de clases completas
mds fdcilmente, sin restringir las relaciones en las jerarquias de clases o casos
singulares. En este sentido, 1a herencia multiple favorece un enfoque mds flexi-
ble para el disefio de aplicaciones.

Ademds, la herencia muiltiple facilita el cambio de la implementacién de una
clase, mientras deja inalterado su interfaz. De hecho, puede cambiar simple-
mente la parte de una clase que cortesponda a una de sus clases base, heredan-
do de una clase base diferente que realiza las mismas funcionalidades en dife-
tentes formas, obteniendo, en consecuencia, una implementacién diferente de la
misma abstraccidn

Sin embargo, hemos de reconocer que el uso generalizado de plantillas
(templates) ha reducido significativamente las ventajas de la herencia mitltiple.

55.22. Inconvenientes de la herencia multiple

Existen problemas asociados al uso de la herencia maltiple Con frecuencia
se produce confusién y comportamiento impredecible, debido al uso de la

® Los objetos persistentes —en contraposicion a los objetos transitorios— son aquellos que
permanecen aclivos entre ejecuciones El tiempo de vida de un objeto es la duracidn de la gjecucicn
del programa; una vez que el programa termina su gjecucion, todos los objetos que estaban activos
se vuelven inaccesibles Los objetos persistentes son aquellos que al almacenarse en disco permane-
cen intactos entre ejecuciones La persistencia o mejor el soporte de objetos persistentes es funda-
mental en los sistemas de gestién o administracion de bases de datos orientadas a objetos. Para
ampliar conceptos sobre objetos persistentes se puede estudiar a Beoch, Khosafian y Abnous,
Graham y Mary Loomies, entre otros

156 Programacion orientada a objetos

herencia a partir de clases con métodos que tienen los mismos nombres pero
significados diferentes; es decit, se produce ambigiiedad Todo lenguaje que
soporte herencia multiple ha de tener reglas propias para resolver csta ambi-
giledad Oto inconveniente de la herencia multiple es el aumento de tiempo
auxiliar que se aflade a los programas.

La herencia multiple estd soportada por C++, CLOS y Objective-C. Sin
embargo, Object-Pascal, Turbo Pascal 5.5/6/7 y Smalltalk no soportan esta
propiedad, aunque algunas versiones de Smalltalk también permiten esta ca-
racteristica.

55.2.3. Disefio de clases con herencia multiple

El disefio de una estructura de clases adecuada que implica herencia, espe-
cialmente herencia miltiple, es una tarea diffcil. Suele ser un proceso interac-
tivo ¢ inctemental. Dos problemas se suclen presentar cuando se manipula
herencia miiltiple: ;c6mo resolver las colisiones de nombzre de diferentes su-
perclases? Y jcomo manipular herencia repetida o herencia de ascendientes
comunes?

Las colisiones de nombres se producen cuando dos 0 més superclases dife-
rentes tienen el mismo nombre para algin elemento de sus interfaces, tales
como variables instancia y métodos. Y la herencia repetida se produce cuando
una clase es ascendiente de otra clase por mds de un camino. Supongamos que
las clases empleado y estudiante tienen las estructuras de variables instan-
cias que se muestran en la Figuta 523

Empleado Estudiante
Nembre Nombre
Edad Edad
Direccion Direccién
Salario Carrera
Categoria Curso
Departamento Grupo
Turno

T T

{ Estudiante \

trabajador
Nombre
Edad
Direccion
Carrera
Curso

N/

Colision
(se heredan Nombre, Edad yDireccidn
de las dos dases)

Figura 5.23. Colision de nombres de atributos.

Modelado de objstos: refaciones 157

La clase EstudianteTrabajador hereda de Empleado y Estudiante
Una variable instancia de Estudiante puede contener las variables {Nom-
bre, Edad, Direccidn, Carrera, Curso, Grupo, Turno} y una variable
instancia de Empleado contendrd las variables {Nombre, Edad, Direc-
cidén, Salario, Categoria, Departamento},

Booch considera que existen bdsicamente tres métodos para resolver las
colisiones o choque de nombres:

1. La semdntica del lenguaje puede considerar una colisién de nombres
como ilegal y rechaza la compilacién de la clase. Este es el método
utilizado por Smalltalk y Eiffel Sin embargo, en Eiffel es posible renom-
brar elementos de modo que no exista ambigiiedad

2. La semdntica del lenguaje puede considerar el mismo nombre introdu-
cido por clases diferentes con referencia al mismeo elemento conflictivo
Es el método de CLOS.

3. La semdntica del lenguaje puede permitir el choque o conflicto, pero
requiete que todas las 1eferencias de nombres califiquen la fuente de su
declaracién. Fs el método utilizado por C++.

5.6. HERENCIA REPETIDA

El otro problema grave que se produce en el uso de la herencia miiltiple es la
herencia repetida. Este tipo de herencia se produce cuando una clase hereda de
dos o mds superclases que a su vez heredan de la misma superclase. Esta
situacidn se presenta, por ejemplo, en el caso de la Figura 524, en la que
EstudianteTrabajador es una subclase de Fmpleado y Estudiante, que
a su vez son subclases de Persona. Suponiendo que Persena tiene los atribu-
tos Nombre, Edad, Direccidn que se reciben por herencia de Estudiante-
Trabajador En este caso, los atributos anteriores se repetitdn en la dltima
subclase

Afributos: Nombre
Persona Edad

—

/

Estudiante Trabajador

Estudiante trabajador

Figura 5.24. Herencia repetida,

La mayoria de los lenguajes de programacién no permiten la duplicacién
estdtica de la superclase, pero eso no se producird siempie, y asf se puede dar el
caso de que el compilador duphique la clase que se hereda dos o mds veces. En

158 Programacién orientada a objetos

la Figura 525 se muestran grafos de herencia repetida, con lo que se crea una
copia o dos copias (instancias), segiin el caso.

» ® ()
OO RNC) (22)

(a) (b)

Figura 5.25. Grafos de herencia repetida: {(a) creacién de dos copias
de la superclase; (b) creacidn de una sola copia de la superclase.

Estas dos clases diferentes de herencia repetida corresponden a dos signifi-
cados muy diferentes de esta construccidn, como se ilustra en los gjemplos
siguientes.

El primer ejemplo es una clase que describe una Persona (con atiibutos de
datos de la persona y otra informacién) Se crean dos nuevas clases a partir de
la clase Persona por herencia: la clase Profesor de universidad (se afiaden
datos adicionales relativos a la universidad donde imparte docencia, asignatu-
ras y cursos a su cargo); la otra clase que se crea por herencia es Autor de
libros (con algunos nuevos atributos, tales como titulos de libros publicados,
afios de publicacion y editoriales) En esta situaci6n se pueden considerar profe-
sores que son autores de libros, y cuya estructura jerdrquica se muestra en la
Figura 526, En este caso es mds correcto utilizar el caso de la herencia multiple
dela Figura 5.25b, ya que un Profescrautor es sélo una persona (;y no dos!),
y en consecuencia sus datos privados se han de duplicar

Profesor w

V\
ProfesorAutor

Figura 526. Grafo de herencia repetida (una copia de la superclase).

Madelado de chjetos: relaciones 159

Por el contrario, si consideramos una clase que describa a una pareja o
matrimonio que se derive de dos clases, Hombre y Mujer, respectivamente, la
clase Persona debe estar presente dos veces, ya que el matiimonio lo consti-
tuyen dos personas y no una La Figura 527 muestra otro ejemplo de herencia
repetida,

/__——*_\
Persona Persona

Matrimonio

Figura 5.26. Grafo de herencia repetida {dos copias de la superclase).

El grafo de la Figura 5 28 muestra cémo la clase D tiene dos copias, instan-
cias o subobjetos de la clase A: una copia A de W y otra copia —llamada vir tual
en C++-— compartida por By C

Cao Cad

~

Figura 5.28. Otro caso de herencia repetida.

Existen tres métodos para tratar el problema de la herencia repetida:

1. Tratar la ocurrencia de herencia repetida como ilegal Este es el enfoque
de Smalltalk y FEiffel {aunque Fiffel también permite el cambio de nom-
bre para evitar las ambigiiedades)

2 Se permite la duplicacién de superclases, pero requiere el use de nom-
bres cualificados totalmente para referirse a los miembros de una copia
especifica. Este es el método empleado por C++

160 Programacion orientada a objetos

3. Se puede tratar referencias a la misma clase como si fueran la misma
clase. Este es el método empleado por C++ cuando se introducen super-
clases repetidas como clases base virtual Una clase base virtual existe
cuando una subclase nombra a otra clase como su superclase y marca la
superclase como virtual, para indicar que es una clase compartida.

RESUMEN

Los modelos de objetos describen la estructura de datos estdtica de los objetos,
clases y sus relaciones entre si Una clase de objetos describe un grupo de
objetos con atributos, operaciones y semdntica comunes Un atributo es una
propiedad de los objetos de una clase; una operacién es una accién que se
puede aplicar a objetos de una clase.

Las relaciones entre clases pueden ser: generalizacién/especializacién, agre-
gacién y asociacién

Las asociaciones establecen relaciones entre objetos y clases. Un enlace
conecta dos o mds objetos La multiplicidad especifica cudntas instancias de
una clase se pueden relacionar con cada instancia de otza clase.

Una agregacidn es una relacién en la que un objeto de una clase se compone
de una serie de objetos de diferentes clases; asi, un motor de un coche (carro) se
compone de bujias, vdlvulas, cilindros, etc.

El término generalizacion es 1til para construir modelos conceptuales de
datos ¢ implementacién. Durante el modelo conceptual, la generalizacién per-
mite al desarrollador organizar clases en una estructura jerdrquica basada en
sus semejanzas y diferencias. Durante la implementacion, la herencia facilita la
reutilizacién de cédigo. El término generalizacion se refiere a las relaciones
entre clases; el t€rmino herencia se refiere al mecanismo de obtener atributos y
operaciones utilizando la estructura de generalizacién. La generalizacién pro-
potciona los medios para redefinir una superclase en una o mds subclases La
superclase contiene caracteristicas comunes a todas las clases; las subclases
contienen caracteristicas especificas de cada clase. La herencia puede producir-
se a través de un nitmero arbitrario de niveles, en donde cada nivel representa
un aspecto de un objeto.

La herencia entre clases puede ser simple y muiltiple

EJERCICIOS

5.1. Crear una clase Pila con la siguiente estructura:
miembros dato. array de enteros pila
(creacidén protegida) cima de tipo entero cima

meter datos en la pila
sacar datos en la pila

Sfunciones miembro:

5.2

5.3.

54.

5.5.

Modelado de objetos: relaciones 161

Esta clase tiene el inconveniente de no detectar desbordamientos posi-
tivos o negativos de la pila. En consecuencia, s¢ decide disefiar una nueva
clase pilaDer derivada de Pila, con las mismas funciones miembio
meter y sacar, pero que adviertan al usuario con mensajes de «Pila
vacia» o «Pila llena» cuando se intente sacar un elemento de una pila
vacia 0 meter un elemento en una pila llena Escribir programa gque
gestione la pila con ambas clases

Se dispone de la clase obj_geom:

#include <iostream,h>

class obj_geom {

protected:
float xC, vC;

public:
obj_geom(float x =0, float y =0) { xC =x; yC = v; }
void vercentrc ()} { cout << xC << "" << yC << end;}

}i

Disenar clases circulo y cuadrado derivadas del obi_geom que
permitan calcular sus dreas. Una vez disefiadas todas las clases, escribir
un programa que cree un objeto de cada clase, visualice los centros de
cada figura y a continuacién calcule y visualice las 41eas de cada figura

Una editorial de libros y discos desea crear fichas que almacenen el titulo
y el precio (de tipo £loat) de cada publicacién. Crear Ia correspondiente
clase (denominada Publicacién) que implemente los datos anteriores
A pattir de esta clase, disefiar dos clases derivadas: Libr o, con el nimero
de pdginas (tipo int), afio de publicacién (tipo int) y precio (tipo
float), y disco, con duracién en minutos (tipo float) y precio (tipo
int) Cada una de las tres clases tendid una funcién y otra funcién
mostrar (), para visualizar sus datos

Escribir un programa que cree instancias de las clases Libro y dis-
co, solicite datos del usuario y a continuacién los visualice

Se dispone de la clase publicacién del ejercicio 5.3 y se desea crear una
nueva clase base llamada ventas que contenga un array con las ventas
del tltimo semestre de una determinada publicacién. Esta clase debe
tener funciones miembios Leer () ymostrar () que obtenga v visualice
las citadas ventas. Modificar las clases Zibro v disco, lea y visualice las
publicaciones.

El departamento de informadtica de un hospital estd realizando un nuevo
registro de datos del personal, pacientes y proveedores del hospital y
desea realizar la jerarquia de clases siguientes:

Escribirt las clases correspondientes de acuerdo a las siguientes estruc-
turas:

162

5.6.

5.7.

Programacion orientada a objetos

Persona Paciente Empleado

nombre nombre nombre

direcciédn direccidn direccidn

ciudad ciudad ciudad

Leer() cddige _diagndstico cddigo empleado

visualizar() teléfono horas _extras
fecha de nacimiento compafiia de seguros
Leer{ } T.eer()
vigualizar() visualizar()
enviar factura enviar salario

Proveedor Plantilla Eventual

nombre datos de empleado datos de empleado

direccidn salario sumal honorarios/hora

ciudad afios de antiguedad pagar_salario()

cédigo vendedor pagar salario

saldo

fax

teléfono

descuentos

Leer()

visualizar

pagar factura()

Disefiar una clase nombre que contenga tres miembros datos (nombre,
primer apellido y segundo apellido), un constructor y dos funciones
miembro Leer_nombre() que obtiene valores para los miembros dato
de la clase mostrar () que oftece la visualizacién del nombre comple-
mento. Disefiar otra clase derivada direccién que tome la informacidn
de nombre v afiada calle, ciudad, provincia y cédigo postal Esta clase
debe tener acceso a las funciones piblicas de 1a clase base v tres funciones
miembro nueva_direccidén, nuevo_nombre(} y mostrar (). Escii-
bir un programa que ciee un objeto de direccién, lea datos y visualice
la informacién.

Disefiar una jerarquia de clases: Circulo, Cilindro y CilindroHue-
co. En esencia, se puede decir que un objeto cilindio es un objeto circulo
con una altura, y un cilindro hueco es un cilindro con un espacio hueco
dentro de él La clase C{rculo debe tener un dato Radio (fipo double)
y unas funciones miembro LeerRadio, Area y Circunferencia, que
obtienen el valor del radio y calculan el drea del circulo y la longitud de la
circunferencia. Escribir un programa que permita crear objetos Circu-
lo, Cilindro y CilindroHueco ¥y calcule la longitud de la circunfe-
rencia ¥ las dreas del circulo, del cilindio y del cilindro hueco.

Formulas

Circulo

Cilindro

Cilindro hueco

Longitud
Area

Area
Volumen

Longitud

Volumen

Modelado de objetos: relaciones

21y
12

2ar-h+2m el
7 1% h

2w (r* — riinterno) + 2 m ¢ h+
+2 m h interno
7 (r? — r%interno) h

163

